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Abstract: Learning to solve graph tasks is one of the key prerequisites of acquiring domain-specific
knowledge in most study domains. Analyses of graph understanding often use eye-tracking and
focus on analyzing how much time students spend gazing at particular areas of a graph—Areas
of Interest (AOIs). To gain a deeper insight into students’ task-solving process, we argue that the
gaze shifts between students’ fixations on different AOIs (so-termed transitions) also need to be
included in holistic analyses of graph understanding that consider the importance of transitions
for the task-solving process. Thus, we introduced Epistemic Network Analysis (ENA) as a novel
approach to analyze eye-tracking data of 23 university students who solved eight multiple-choice
graph tasks in physics and economics. ENA is a method for quantifying, visualizing, and interpreting
network data allowing a weighted analysis of the gaze patterns of both correct and incorrect graph
task solvers considering the interrelations between fixations and transitions. After an analysis of
the differences in the number of fixations and the number of single transitions between correct and
incorrect solvers, we conducted an ENA for each task. We demonstrate that an isolated analysis of
fixations and transitions provides only a limited insight into graph solving behavior. In contrast, ENA
identifies differences between the gaze patterns of students who solved the graph tasks correctly and
incorrectly across the multiple graph tasks. For instance, incorrect solvers shifted their gaze from the
graph to the x-axis and from the question to the graph comparatively more often than correct solvers.
The results indicate that incorrect solvers often have problems transferring textual information into
graphical information and rely more on partly irrelevant parts of a graph. Finally, we discuss how
the findings can be used to design experimental studies and for innovative instructional procedures
in higher education.

Keywords: epistemic network analysis; eye-tracking; graph understanding; economics;
higher education

1. Introduction

Understanding graphs has been considered an essential skill both in everyday life (e.g.,
understanding newspapers) and in most academic disciplines [1–3]. Graphs serve to simplify
the representation of complex concepts and can facilitate the development of conceptual knowledge in
a domain [4–7].
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Line graphs are a graph form that is used particularly frequently in various domains and has been
intensively researched for years [1,8]. Phenomena from several disciplines, such as the relationships
between time and velocity in physics or between time and costs in finance, can be visualized similarly
in line graphs due to the mathematical conceptualization of graphs as well as basic conventions for
their representation (e.g., axes, axis labels, linear progressions, function-based representations) [3,9,10].
Often, the graphs are embedded in text-based instruction to aid the perception of textual description
and to supplement it by presenting a learner with further information in the compressed form [11].

With the development of standardized tests for graph understanding (e.g., the Test of
Understanding Graphs in Kinematics (TUG-K) [8], the systematic assessment of graph understanding
based on test scores was intensified in physics education research [12–15]. Beyond science, there are
various domains, for instance, finance and economics, that frequently use graphs to illustrate complex
concepts and models and make them more comprehensible [9,11,16]. For example, to understand
changes in profit, cost, market share over time or to analyze share price developments and inflation, a
fundamental knowledge of how graphs are constructed and what the lines, labels, and axes mean is
required. In economics education, they are therefore considered already at the beginning of economics
studies [17,18].

Despite the high importance of line graphs in economics and finance contexts, there is little
research on students’ graph understanding in this domain so far. The few existing studies address
merely the instructional quality of financial graphs in textbooks [16], the construction principles of
graphs [11], and potential factors influencing the use of graphs in instruction [19]. Whether the
comprehensive findings on graph understanding, in particular from physics education research, can
be transferred and applied in the context of economics and finance is under-researched [20]. Previous
studies focusing on the contexts of economics and physics indicated differences in graph understanding
at the level of individual tasks concerning the graph concepts ‘area under a curve’ and ‘slope of a curve’
and the task’s level of mathematical requirements [1,3,20]. Since the transfer of graph understanding
between contexts seems to be difficult [21], there is a need for more studies that examine how the
knowledge and skills acquired in one domain are applied to graph tasks from different domains in a
comparative way.

Due to technological developments, a large number of recent studies, especially in the natural
sciences, used eye-tracking to observe the process of graph understanding [15,22,23]. Current
eye-tracking studies mainly examine students’ dwell time, frequency or duration of fixations on
individual graph components [1,3,20]. These analyses, however, reflect only an isolated part of
students’ graph task solution behavior. The extent to which a graph task with its different components
such as axes, curves, and labels has been solved only becomes evident when examining how the
students integrate and process the information presented in the whole task. The transitions between
looking at a task’s instructional text and the individual components of a graph included in the task
(gaze behavior) during the response process therefore need to be analyzed to gain insights into the
‘quality’ of students’ graph understanding.

To address this research deficit, we build on an earlier eye-tracking study [1] (see Section 3.1) with
23 economics students solving eight-line graph tasks in finance and physics contexts. We observed the
students’ gaze fixations and transitions while they were solving the tasks to gain an understanding of
their transitional gaze behavior. In this study, we argue that students’ gaze behavior while solving
graph tasks provides insights about the quality of students’ graph understanding, which manifests in
the final correct or incorrect task response. Accordingly, we analyzed the fixation-based transitions to
compare response processes that lead to correct and incorrect responses.

For a holistic analysis of the response process using transitions, we use epistemic network analysis
(ENA), a novel approach from the field of learning analytics [24–26]. Using this approach, the transition
patterns corresponding to the response processes of correct and incorrect solvers can be visualized
and compared. In this study, we illustrate that ENA can consider the complexity of eye movements
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during a response process and identify general differences between eye movements depending on the
students’ test scores.

2. Conceptual and Methodological Background

2.1. Response Processes of Solving Graph Tasks

There are various theories of graph understanding [5,6,27,28]. Though some theories only focus
on the understanding of graphs without texts, understanding graph tasks usually requires text-image
integration [29]. In graph tasks, a text-based explanation of the concepts or facts presented in the graph
is usually included and must be processed by a learner. Solving graph tasks therefore require models
that relate both texts and graphical representations. To understand and explain graph solving behavior
and strategies, integrative models of text and visual comprehension, so-termed “models of multimedia
learning”, were established [30,31].

Since graph tasks usually first present an introductory question textually and then learners have
to examine the graph with regard to the question to develop a solution, the integrative models are
especially important for the description of mental processes in graph understanding. When solving
graph tasks, learners mostly generate situational models of text content and its structure at first [31].
This involves reciprocal encoding and decoding processes in which the relevant textual features of the
graph task are recognized and given meaning. After task solvers have developed a situational model of
the problem presented, they turn their attention to the graph. It is assumed that the graph reader first
mentally decodes various components of the graph (slope, axes, course, labels), assigns them a meaning
and relates them to each other in the context of their internal mental representation of the concept in
question. Here, graphical elements (graph sequences, colors and shapes, axis representations) need to
be connected to each other to create meaningful contexts and to construct a coherent mental model to
enable an adequate interpretation of a graph.

If scheme-driven graph understanding processes are additionally activated, mental models are
developed that can connect the created internal representations of graphs and text on the basis of
semantic relations [32]. Since the “internal depictive representations” are developed by learners
on the basis of both textual and graphical representations, i.e., perceptual and conceptual cognitive
processes [31], after reading and understanding a question, graphs can be explored systematically.
Particularly, axis tick labels and graph labels can be related to the axis ticks and slopes of a graph,
understood and analyzed in the context of a textual question [1,2]. In this study, therefore, we follow
the established integrative models of graph understanding when conceptually describing response
processes of solving graph tasks [31].

2.2. Eye-Tracking Research on Students’ Difficulties in Graph Understanding

Understanding graphical representations are generally challenging for students [8,14,21]. The
difficulty that students often experience when first encountering graph tasks depends on the graphically
represented concepts. Reading a point from a line graph with its coordinates, for example, presents a
different challenge than interpolating between several data points or even predicting graph trends and
extrapolation beyond the representation of a graph [4]. Especially in the field of physics education
research, the determination of the slope of a graph vs. the area under a graph and the degree of
mathematical requirements have been identified as determinants of the level of task difficulty [13,22,33].

In recent studies, eye-tracking was used to get a closer look at students’ response processes [1,3,20]
to get an indication of the difficulties of graph understanding. This method enables the analysis of
not only the test scores but allows researchers to determine with which frequency and sequence a
learner looks at individual parts of a line graph—so-termed Areas of Interest (AOIs)—during the
process of task solving (e.g., axis labels, axis tick labels, response options like the attractor or distractor,
the curve). The frequency is often operationalized by the number of fixations that occur within an
AOI. Fixations are stable gaze patterns in which the eye is directed at a fixed spot and this gaze is
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maintained for a certain period [34]. The gaze shifts between the fixations, which also represent the
sequence of focusing, are termed saccades. They mark which areas a learner looks at one after the
other. Both types of eye-tracking metrics are used as indicators of the learner’s attention [35] and the
cognitive processes that take place while doing so (according to the eye-mind assumption [34]). For
instance, fixation duration, cumulative fixation duration, visit duration, fixation frequencies are often
chosen as indicators of cognitive effort [36,37].

Studies that examined the understanding of line graphs in physics and economics contexts
considered the dwell times and fixation times on AOIs of a graph and suggested that certain
eye-tracking metrics provide initial indications of students’ learning difficulties [1,20]. Relevant AOIs
(i.e., areas containing critical information, e.g., axes) were viewed longer and with higher frequency by
physics students who show a higher understanding of graphs [1,3]. Compared to physics students,
economics students showed a lower overall graph comprehension on average—especially for ‘area
under the curve’ tasks—, which was reflected in lower test scores but also in a longer dwell time [1,20].
A dedicated research effort on the differences in gaze patterns during the response process of individual
graph tasks that goes beyond the dwell times is, therefore, necessary to investigate such differences
concerning certain task types and contexts.

2.3. Transitions between AOIs as a Predictor of the Quality of Graph Understanding

Some studies conducted more fine-grained analyses and examined the eye movements that
learners make between individual pairs of AOIs of a graph task. In eye-tracking studies, these gaze
shifts between AOIs are called transitions, which represent an eye-tracking metric that indicates the
mental relations a learner tries to construct between different parts of a graph task [38,39]. These
transitions are saccades between AOIs [29] and the transition frequency is “the number of gaze shifts
between AOIs” [37]. Since a task solver needs to integrate different information from axes, texts,
labels to be able to interpret a graph appropriately, an analysis of transitions constitutes a significant
measure for describing response processes when solving graph tasks [29,40]. Individual transitions
between textual or verbal representations of information and graphs have therefore often been used as
a significant predictor of the quality of understanding processes [24,41].

Analyses of eye-tracking data often also include analyses of transitions [34,42]. Especially in
spatial and graphical representational contexts, they are often used to analyze the understanding
of different graphical elements in relation to each other (e.g., for analyzing geovisualization tools).
In other studies, focused on analyzing response processes on multiple-choice tests, transitions are
also frequently examined [23,43]. However, only a few studies explicitly focus on transition analysis
on kinematic line graphs [39,41,44,45]. A study by Mason et al. [39] on graph-text comprehension
indicated that learning success is higher for those students who try to integrate textual and visual
representations more often, i.e., where there are more transitions between relevant texts and graphs for
correct responses. Jian et al. [44] and Smith et al. [45] pointed out that transitions occur frequently,
especially in adjacent areas, and that learners often try to combine abstract and textual representations.
In a study on the interpretation of vector fields, Klein et al. [41] used graphs as explanatory aids and
demonstrated that more frequent transitions between textual and graphical representations promote
the understanding of vectors. Studies on solving tasks related to the electrical circuit also showed
that learners with correct responses more often returned from the task to the problem description [40].
In a study by Tsai et al. [23], predictions of debris slide hazards were graphically visualized and
students were asked to identify the weather conditions that lead to them. Students who gave incorrect
answers had significantly more transitions between the graphical representation of the slope and the
problem statement.

In these studies, however, only isolated transitions were analyzed so far. For example, transitions
between AOIs of the graph or between parts of the graph and an instruction text were always evaluated
separately concerning differences in learning success (e.g., experts vs. novices). Since fixations are
sequential and often limited to certain parts of the task, however, the participants’ gaze behavior while
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solving the whole task needs to be considered [44,45]. For example, a respondent can move their gaze
back and forth between a curve and an axis intercept more often simply because they also frequently
look at the curve, and such areas are adjacent. At the same time, a longer dwell time on the curve
indicates that the respondent will be less likely to move their gaze back and forth between individual
response options. The interpretation of a transition must generally be evaluated against the occurrence
of the other transitions in a response process.

Epistemic network analysis (ENA, see Section 3.6) allows for the modeling of data structures,
whereby the transition structure is the most important aspect of the analysis [24–26]. In the case of the
analysis of eye-tracking data, transitions between AOIs can be interpreted as connections. ENA creates
a network structure based on these connections and allows for a comparison of groups. Concerning
graph understanding, comparisons can be made between students who understand graph tasks and
students who do not. Therefore, we argue that in the case of eye-tracking data for graph tasks, ENA
can contribute to a holistic analysis of the transition structure between AOIs while offering insights
into the participants’ understanding or lack of understanding of graphs.

2.4. Research Questions

The aim of the study is to investigate how eye-tracking can be used to provide insights into
graph understanding. The present study ties in with the outlined research gap by examining the
differences in eye fixations and transition patterns of first-year economics students solving tasks on
graph understanding. To operationalize the identification of graph understanding, in this study, we
identify the correct solution to a graph task as the understanding of it. Concerning the fixations this
study examines the proportion of fixations on different AOIs in contrast to their frequency because
everybody takes a different number of fixations to solve the tasks. To guide our study, we focus on the
following research questions (RQ):

Our first RQ, concerns with the recognition of graph understanding based on fixation patterns:

RQ1: How do students who solved a task correctly (correct solvers) differ from students who
solved a task incorrectly (incorrect solvers) in their proportion of fixations on different AOIs of the
task graphs?

RQ2: How do correct and incorrect solvers differ in their transition patterns between different
AOIs of the task graphs?

To answer these RQs, in this study, we tracked the students’ gaze while solving eight linear
graph tasks.

3. Method

3.1. Background Information

To conduct the study, we used a modified subset of the data collected by Klein et al. [1] and applied
an ENA approach to analyze the central transitive and fixation-specific features. The similarities
and differences between our study and the study by Klein et al. [1] are described in the following
sections. The commonalities include the use of the same tasks and assessment design. The differences
include the sample used, the definition of AOIs, the data extraction, and the analytical focus on fixation
frequencies and transitions.

3.2. Commonalities

3.2.1. Tasks

The data used in both this study and the study by Klein et al. [1] was collected to assess graph
understanding. In the present study, we used the same four isomorphic pairs of linear graph tasks
(four economics and four physics tasks) the participants had to solve in the study by Klein et al. [1].



Sensors 2020, 20, 6908 6 of 33

All eight tasks have an identical structure. The task prompt was always presented first. Then, a graph
with one or two curves was presented, followed by a number of different response options, and the
participants were required to choose one. The tasks included graphical concepts (here: interpretation
and calculation of the slope of a curve and area under a curve) that are taught systematically in
secondary school mathematics courses. Thus, participants should already have the mathematical
knowledge needed to solve them. To explore whether previous knowledge on the topic of a graph task
affects how participants understand and solve that graph task, we decided to focus on the topics of
physics and economics. The topic of physics was selected because it is a mandatory topic in secondary
education curricula in all German federal states and all participants learned about this topic in school.
In contrast, the topic of economics is not systematically taught in secondary education in Germany [46],
which means most participants did not receive any significant formal training on that topic. Thus, we
used both domains to be able to conduct a comprehensive analysis on graph understanding in domains
the students were either well familiar or less familiar with. In this paper, we present the figures of two
sample tasks, as shown in Figures 1 and 2 (due to the copyright issues, we have illustrated only two
different tasks in Figures 1 and 2 as examples). Figure 1 presents the original tasks PhySlopeQual and
EcSlopeQuant in German and Figure 2 shows an English translation of the task EcSlopeQuant.Sensors 2020, 20, x 7 of 32 
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The graph in the second economics task (EcAreaQuant) displays a linear function representing
how wages increase based on the working hours. Participants have to select the earnings of an
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employee after working for a defined number of hours. The second physics task (PhyAreaQuant) also
displays a linear function, this time representing the speed of a car in relation to time. Participants
have to select how far the car moved in a certain amount of time.

The graph in the third economics task (EcSlopeQual), displays two linear functions representing
the price trend for two different shares. Participants have to compare the growth rate of the stocks at
a particular time. The graph of the third physics task (PhySlopeQual) displays two linear functions
that represent the velocity of two objects over time. Participants have to select which object has the
greater acceleration.

Finally, the graph of the fourth economics task (EcSlopeQuant) shows a linear function representing
the cost of a portion of ice cream in relation to the number of scoops (see Figures 1 and 2) [1]. Participants
have to determine the variable cost per scoop. The fourth physics task (PhySlopeQuant) shows a linear
function representing the speed of a train over time. Participants have to determine the acceleration of
the train.

3.2.2. Procedure and Apparatus

Another commonality of the two studies is the identical assessment design. Each study participant
had to consecutively solve four graph-based economics problems and four graph-based physics
problems while their eye movements were recorded. To record eye movements, we used Tobii X3-120
eye-trackers. The eye-tracker was placed underneath a 22-inch monitor with a resolution of 1920 ×
1080 pixels and the participants sat, equipped with a mouse for clicking on the selected responses and
a keyboard for navigating the test, at an average distance of 60 cm from the screen (see Appendix A
Figure A1 [1]). The eye-trackers recorded 120 frames per second, and the aforementioned setup allowed
the participants to move their heads relatively freely without impairment.

After an introduction to the technology and the setting, a 9-point calibration was performed with
each participant. The tasks were then presented to the participants in a randomized order, with the
condition that no two isomorphic tasks were ever presented in succession. After each task, which
consisted of the task question, the graph and the response options (Figure 1), only the response options
were presented again and the students were asked to select one of four response options with a mouse
click; the configuration was done with a HTML radio button syntax. By pressing the spacebar, the
students could determine the progress of the experiment on their own.

After the eye-tracking experiment, the participants filled out an additional paper-pencil
questionnaire to assess their sociodemographic characteristics (e.g., gender, age, the school type
attended for secondary education, the family language and educational background of the parents).

3.3. Differences and Extensions

In the present study, the central difference compared to the study in Klein et al. [1] lies in the
analytical approach. The first difference is already subject to the AOI specification. While Klein et al. [1]
did not differentiate between the y-axis and x-axis and the corresponding labels, for this study different
AOIs were specified for each axis and each label. Furthermore, in this study, the AOI graph refers only
to the curve and the surrounding plotting area and does not additionally include the axes. These are
indicated separately. Besides, a distinction is made between attractors and distractors, while Klein et
al. [1] treated the entire multiple-choice option in an aggregated manner. The exact representations of
the AOIs are shown exemplarily in Section 3.3.

A second difference lies in the analysis we used. While Klein et al. [1] compared the dwell times
and gaze shifts in the AOI graph between students from different domains, the present article focuses
on the frequencies and percentages of fixations of first-year economics students on newly specified
AOIs. Of particular interest are differences in fixation frequencies between correct and incorrect
solutions and analysis of transitions between AOIs (see Section 3.4). Since the transitions are also
considered globally, the ENA complements a method that has hardly been used for the analysis of
eye-tracking data (see Section 3.5)
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3.4. Participants

For this study, we used the data of 23 (15 female) first-semester students of economics from one
German University. The average age of the participants was 20.07 (1.86) years. This was slightly
lower than the average age of 20.52 (2.75) found for the Germany-wide representative sample of 7,679
first-year economics students in the WiWiKom study [47]. The average grade of university entrance
qualification in the sample was 2.30 (4.05), which was slightly below the average of 2.32 (5.84) of
the WiWiKom sample [48]. A short test of the German version of the Test of Economics Literacy
(TEL-4) was used to assess previous domain-related knowledge. A comparison with the results of the
WiWiKom sample showed that the sample used here has, Spearman-Brown corrected, comparable
knowledge (Mean = 8.472) [49] to the mean of the 23 students (Mean = 9.217). The students received
10 Euros for their voluntary participation in this study, which lasted about 45 min.

3.5. AOIs

To determine the number and sequence of fixations for each AOI, we used an Identification of
Velocity Threshold (I-VT) algorithm [50]. Only fixations that lasted at least 100 milliseconds were
considered to ensure that only fixations are used that reflect the students’ awareness and are not part
of mainly physical, microsaccadic fixations [37]. In comparison to previous studies [1,3], we extended
the definition of AOIs for a graph task in differentiating between the x-axis and the y-axis as well as the
attractor and the distractors, as these parts are relevant for correct and incorrect solutions. Thus, each
graph task presented the following AOIs (see the rectangles in Figure 2) that are relevant for solving
the tasks:

• AOI_Question represents the area of the screen where the task question was displayed.
• AOI_yaxislab represents the area of the screen where the label for the y-axis was displayed.
• AOI_xaxislab represents the area of the screen where the x-axis label was displayed.
• AOI_graph represents the area of the screen where the graph was displayed.
• AOI_Attractor represents the area of the screen where the correct answer (attractor) was displayed.
• AOI_yaxis represents the area of the screen where the y-axis was displayed.
• AOI_xaxis represents the area of the screen where the x-axis was displayed.
• AOI_Distractor represents the areas of the screen where the incorrect answers (distractors)

were displayed.

3.6. Data and Analysis

The structure of the dataset is determined by the students’ time-sequential task response processes,
i.e., at least every 100 ms. A dichotomous score indicates whether a fixation occurs within an AOI of a
task (=1) or not (=0). In total, the dataset contains 184 response processes (23 students × 8 tasks) and
37,411 fixations. Each line (see Table 1) describes a specific fixation and its affiliation (i) to a case, which
is listed in the index for the 184 response processes, (ii) to a participant’s alphanumeric seven-digit
code, which was individually generated at the beginning of the test, (iii) to a media, which refers to a
specific task and (iv) to socio-biographical variables (only gender and age are presented here). For
each fixation, the recording time in milliseconds (including the start and the end of a fixation), the
fixation index, which indicates the number of a specific fixation among all fixations of a respondent,
and the several AOI variables a fixation belongs to are shown. The dichotomous scoring for the AOI
variables indicates whether a respondent looked at an AOI at a specific point in time (Table 1).



Sensors 2020, 20, 6908 9 of 33

Table 1. Sample extract of the analyzed data.

Case Participant Media Record.T. Start End Fix.Index Process AOI_Quest. AOI_Yaxisl. AOI_Graph . . .

1 ae04rcVe AreaQualfin 370589 12:25:22.46 12:25:22.65 1112 AOI_Question1 0 0 . . .
1 ae04rcVe AreaQualfin 370781 12:25:22.65 12:25:22.90 1113 AOI_Question1 0 0 . . .
1 ae04rcVe AreaQualfin 371031 12:25:22.90 12:25:23.06 1114 AOI_Question1 0 0 . . .
1 ae04rcVe AreaQualfin 371189 12:25:23.06 12:25:23.14 1115 AOI_graph 0 0 1 . . .
1 ae04rcVe AreaQualfin 371272 12:25:23.14 12:25:23.38 1116 AOI_graph 0 0 1 . . .
1 ae04rcVe AreaQualfin 371514 12:25:23.38 12:25:23.62 1117 AOI_Question1 0 0 . . .
1 ae04rcVe AreaQualfin 371756 12:25:23.62 12:25:23.77 1118 AOI_Question1 0 0 . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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To identify and count the number of transitions, first, a string variable was generated that included
the AOI at which the respondent was looking at a specific point in time. Secondly, successive identical
AOIs were deleted. Two of each of the remaining AOIs now indicated whether a transition occurred
and if so, what type of transition it was. For example, two transitions can be found in the in the sample
data shown in Table 1: The first transition, after the start of the response process for this task, begins at
the AOI Question (fixation index 1114) and ends at the AOI graph (fixation index 1115). The second
transition starts at the AOI graph (fixation index 1116) and ends at the AOI Question (fixation index
1117). While solving the eight tasks, the 23 participants transitioned their gazes among the different
AOIs 9501 times.

In Table 2, the number of transitions in which an AOI is involved are noted for each AOI. If,
for example, a respondent shifts his gaze from the AOI_Question to the AOI_graph and back again,
this is counted as two transitions for the AOI_Question and two transitions for the AOI_graph. If
the respondent turns from the AOI_Question to the AOI_yaxislab and back to the AOI_graph, then
AOI_Question now has three transitions, AOI_yaxislab two and AOI_graph also three. According to
this calculation scheme, 1328 transitions are assigned to the AOI_Question and 6.987 to the AOI_graph
when all response processes are considered. AOI_graph was even part of most of the transitions and
the AOI_xaxislab was least involved in transitions (793 times).

Table 2. Sum of transitions per single AOI.

Question Yaxislab Xaxislab Graph Attractor Yaxis Xaxis Distractor

1328 1753 793 6987 1192 3004 1815 1539

We argue that transitions among the AOIs do not happen randomly. Cognitive processes while
students solve the tasks are responsible for triggering these transitions. We therefore consider that there
are some transitions between AOI_Question, AOI_graph and others that provide insights into the graph
task solving strategy applied by a participant. To analyze the importance of the transitions between
the AOIs of students’ fixations for solving the graph tasks, we consider both the individual transitions
as they occur among correct and incorrect solvers and the whole graph solving process. Thus, we take
a holistic view of the graph task solving process, since it is assumed that transitions influence each
other and occur with different frequencies in the solving process. For instance, transitions occur more
frequently between adjacent AOIs [44], i.e., more transitions between AOIs (e.g., between graph and
yaxislab) can cause more transitions to adjacent AOIs (e.g., between yaxis and yaxislab) than to distal
AOIs (e.g., between question and xaxislab). To consider these interrelations of transitions, we applied
Epistemic Network Analysis (ENA) [24–26] to our data using the ENA Web Tool 1.6.0 [51].

3.7. Epistemic Network Analysis (ENA)

ENA is a quantitative ethnographic technique that enables modelling structured connections
of data. ENA is based on three assumptions: First, it is possible to systematically identify a set of
meaningful features in the data, described as Codes. Second, the data have local structures, described
as Conversations. Third, an important feature of the data is how Codes are connected to one another
within Conversations [24–26].

ENA was originally designed to address challenges in learning analytics, however, the method is
not limited to the analysis of learning data. ENA, for example, has been used in the analysis of (a)
operative performance of surgery trainees’ during a simulated procedure [52]; (b) gaze coordination
during collaborative work [53]; (c) communication among health care teams [54,55].

The key assumption of the method is that the structure of data connections is the most important
aspect of the analysis. Thus, ENA is an appropriate analytic method for any context in which there is a
meaningful structure of connections. ENA is a useful technique for modeling the eye-tracking data
because it can model the connections (here, transitions) between the different AOIs as they occur while
participants solve graph-based problems.
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In our study, the ENA algorithm uses a moving window to construct a network model for each
line in the data (here, fixation points), pointing out how Codes in the current line are associated to
Codes that occur within the recent temporal context [56], defined as three lines (the current line plus the
two previous ones) within a given Conversation. The resulting networks were aggregated for all lines,
and for every unit of analysis in the model. We aggregated networks using a weighted summation
where the networks for a given line reflect the log of the product of each pair of Codes.

The ENA networks were visualized (see Section 4, Figures 5–12) using network graphs in which
nodes corresponding to the Codes and the edges width reflect the relative frequency of co-occurrence,
or associations, between two Codes. The result is two coordinated representations for each unit of
analysis: (1) a plotted point, representing the location of that unit’s network in the low-dimensional
projected space, and (2) a weighted network graph. The locations of the network graph nodes are fixed,
and those locations are determined by an optimization routine minimizing the difference between the
plotted points and their corresponding network centroids. This projected space and co-registration
of network graphs enables the positions of the network graph nodes—and the associations they
define—can be used to interpret the dimensions of the projected space and explain the positions of
plotted points in the space.

In this study, ENA was used to compare correct and incorrect solvers based on their plotted point
locations, individual networks, mean plotted point locations, and mean networks, which average the
association weights across individual networks. ENA also allowed us to compare the networks using
network difference graphs. These graphs are calculated by subtracting the weight of each association
in one network from the corresponding associations in another.

To examine the transitions between the AOIs and to contrast them between correct and incorrect
solvers, we defined the units of analysis as all the lines of data related with the individual score subsets
of the participants. Our ENA model included the AOIs as Codes. We defined conversations as all the
lines of data related with individual score subsets of the participants.

All eight ENA models (one for each graph task) had co-registrations correlations from 0.94 to 0.99
(Pearson) and from 0.93 to 0.99 (Spearman) for the first dimension, and co-registration correlations
from 0.97 to 0.99 (Pearson) and from 0.98 to 0.99 (Spearman) for the second. These measures indicate a
strong goodness of fit between the visualizations and the original models.

4. Results

4.1. Comparison of Fixation Frequencies between Correct and Incorrect Solvers

To answer RQ1, we added up the number of fixations for correct and incorrect solvers for each
task and calculated the relative fixation frequencies for each AOI. To compare the fixation frequencies
between correct and incorrect solvers, we used t-tests for independent samples for each AOI within a
task. Table 3 shows the proportion of fixations that the students with correct and incorrect solutions
had in each of the eight tasks. The Fisher criterion of p = 0.05 was applied to determine the significance
level (For the full results of the t-test look at Appendix A Table A1).
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Table 3. Average number of fixations of correct and incorrect solvers for each task in percent (significant differences in bold; * p > 0.5; ** p > 0.01).

AOI
ECAreaQual PhyAreaQual EcAreaQuant PhyAreaQuant EcSlopeQual PhylopeQual EcSlopeQuant PhySlopeQuant

7 4 7 4 7 4 7 4 7 4 7 4 7 4 7 4

AOI_Question 30.4% 25.5% 23.5% 21.6% 36.2% 19.9% * 28.9% 13.5%
* 21.8% 30.2% 20.4% 24.2% 25.3% 24.1% 15.6% 18.4%

AOI_yaxislab 6.8% 7.7% 5.7% 5.5% 11.7% 7.6% 6.8% 9.3% 2.6% 2.1% 3.9% 2.8% 3.4% 2.9% 6.9% 8.0%

AOI_xaxislab 1.5% 1.7% 2.4% 1.7% 1.0% 0.6% 1.7% 4.1% 2.4% 0.6% ** 2.0% 1.1% 2.6% 2.8% 4.1% 2.2%

AOI_graph 50.3% 53.9% 54.9% 53.7% 52.5% 64.0% 50.8% 64.8% 49.6% 46.1% 57.4% 56.5% 51.5% 55.6% 62.5% 59.7%

AOI_Attractor 8.3% 11.9% 5.4% 5.1% 1.5% 3.7% * 1.9% 5.8% * 1.5% 6.7% * 10.2% 8.2% 3.6% 7.5% * 2.8% 6.6% **

AOI_yaxis 5.9% 6.6% 8.9% 7.8% 10.4% 20.1% * 9.2% 9.5% 2.7% 3.4% 5.3% 4.2% 9.6% 8.8% 9.9% 10.0%

AOI_xaxis 2.9% 1.5% * 5.3% 6.7% 6.2% 7.4% 8.3% 12.5% 3.1% 1.8% 4.9% 2.4% * 7.1% 7.9% 6.1% 4.0%

AOI_Distractor 8.8% 5.2% 9.0% 11.7% * 3.2% 5.6% 7.6% 5.2% 17.5% 12.0% * 3.0% 4.2% * 14.2% 7.7% * 13.8% 9.2%

Number of
solvers 14 9 11 12 18 5 20 3 5 18 4 19 18 5 11 12
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By looking at the amount of correct and incorrect solvers for the Area under the curve related
problems we can identify that for all these problems with the exception of PhyAreaQual there were
more participants that provided an incorrect answer. In the case of the problems related to the slope
of the graph results show inverted results. For all slope related problems with the exception of
EcSlopeQuant there were more participants that provided a correct answer. Results also show that the
number of correct answers for qualitative problems was higher than for the quantitative ones.

Since the main focus of all tasks was placed on analyzing a graph, as expected, all students fixated
on each task’s graph most often. When looking at the frequencies of fixation on the AOI_Question,
incorrect solvers showed significantly more fixations only in tasks where a calculation of the area
under a curve (AreaQuant) was required. While there were no significant differences in the fixations
on the y-axis label, in tasks in which the slope of a curve had to be interpreted verbally, x-axis labels
were fixated on significantly more often by incorrect solvers. While, again, no differences were found
regarding the AOI_graph in five out of eight tasks, correct solvers fixated on the attractor more often.
The analysis of the individual axes (x-axis and y-axis) showed only isolated, unsystematic findings in
terms of differences between the two groups of students. In contrast, the fixation frequencies on the
distractors differed more notably. While students with wrong solutions fixated on the distractors for
the SlopeQuant and SlopeQual in economics tasks more often, correct solvers for qualitative physics
tasks fixated more often on the attractor. This finding may be related to a domain effect, i.e., students
found it more difficult to understand the meaning of distractors in a foreign domain (physics) than in a
familiar domain (economics).

To analyze how stable the gaze patterns of incorrect and correct solvers were between the
individual tasks, we calculated the correlation of fixation frequencies for these groups between the
tasks based on the AOIs. We examined the average proportion of incorrect solvers’ fixations on each of
the AOIs for each of the graph tasks (Incorrect-Across-Items) and calculated a Pearson correlation to
investigate commonalities of incorrect solving performances among the graph problems. There was a
significant strong positive association for the proportion of fixations spent on certain AOIs among all
graph tasks for both incorrect and correct solvers (Figure 3).
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We also calculated a Pearson correlation between incorrect and correct responses for each individual
graph problem (Correct-Incorrect-Singular). There was a significant strong positive association for
the proportion of fixations on the AOIs between correct and incorrect solvers for each individual task
(Figure 3 Bottom).

Next, we compared the coefficient of the correlations from Correct-Incorrect-Singular with
Incorrect-Across-Items and Correct-Across-Items. With the exception of the tasks EcAreaQuant and
PhyAreaQuant, the correlation coefficients for Correct-Incorrect-Singular were higher than the average
correlation coefficients from Incorrect-Multiple and Correct-Multiple. Therefore, when investigating
correct and incorrect strategies to solve graph problems by examining the proportion of AOI fixations,
each graph problem should be analyzed individually.

4.2. Gaze Transition Comparison between Correct and Incorrect Responses

To answer RQ 2, the frequencies of occurrence of the individual transitions were compared,
followed by an analysis of the interrelationships of the transition frequencies using ENA. To analyze
gaze transitions, we looked at the direction of the transitions, as participants often looked back and
forth between AOIs (e.g., between Question and Graph), in which case these transitions could be
counted as distinct types of transitions.

Figure 4 shows the percentages of the types of transitions that occur during the processing of the
graph tasks among incorrect (left) and correct solvers (middle), and the difference between correct and
incorrect solvers (right). The figure shows the distribution of the percentual transition frequencies
aggregated over all tasks. The values below the diagonal represent the proportion of transitions that
are directed from the row labels to the column labels. Above the diagonal, the proportions of the
transition that start from the columns and end in the rows are shown. The cells of the matrix were
divided into quantiles. First, the 50% quantile of each matrix was determined, which is shown in the
figure in a neutral white background. The minimum and maximum of each matrix were determined,
and highlighted in red or green, respectively. All values between the minimum and the 50% quantile
become brighter and less red the closer they are to the quantile. All values above the 50% quantile are
highlighted in green, and become progressively whiter the closer they are to the quantile. The different
colors of the individual cells in the table highlight the distance from the quantile.
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Figure 4. Proportion of the transitions (%) for incorrect (top) and correct solvers (bottom). The color
illustrates the difference plot of relative transition frequency differentiated by the 50% quantile (white,
incorrect solver: 0.61, correct solver: 0.50) from very rare (intense red) to very frequent (intense green).
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For example, for incorrect solvers, the proportion of transitions that start at the AOI_yaxislab
and end at the AOI_Question is 1.6% of all transitions. Conversely, for correct solvers, 1.65% of all
transitions start from AOI_Question and end at AOI_yaxislab. The transitions from the graph to
the y-axis and vice versa are the most common types of transitions for both incorrect and correct
solvers (dark green) at almost 25%. The two transition types with the lowest probability of occurrence
are the transitions from the x-axis to AOI_yaxislab (0.05%) and from AOI_xaxislab to the attractor
(0.08%). For correct solvers, the least probable transitions are the transitions from the AOI_Question
to AOI_xaxislab (0.05%) and, with an identical frequency of occurrence (0.08%), the transitions from
the attractor to the question and from AOI_xaxislab to AOI_yaxislab. This representation, however,
only shows which share a certain transition has in relation to all transitions in the response process
of correct and incorrect solvers. To show the differences between correct and incorrect solvers, it is
necessary to look at the differences in the individual transitions. To depict this, the difference table was
created. In this matrix, the values are shaded in a deeper green the more the percentage of correct
solvers exceeds the percentage of incorrect solvers by, and vice versa. The differences in the transition
between attractor and graph in particular are more pronounced the correct solvers. The differences in
the transitions between axes and graph more pronounced among the incorrect solvers. However, the
relative proportions of the transitions have to be considered, and are less frequent from the graph to
the axes than the transitions between attractor and graph.

However, these percentages do not necessarily express the importance of a transition. On the one
hand, a small percentage can occur because a particular transition plays a smaller role in the solver’s
response process. On the other hand, it is also possible that this type of transition occurs less frequently
because the AOIs are more distal to each other or differ in size, so that the specificity-sensitivity problem
of the AOI definition must be considered [34]. In any case, a more precise analysis would require a
weighting of the transitions and a consideration of the fixations within an AOI to identify differences
in the response processes.

In a first step, we conducted a Pearson correlation to further examine the symmetrical distribution
between the diagonals (Figure 4). We found a strong correlation between the direction of all of the
transitions, indicating that the direction of a transition is less important than the frequency of the
transitions and their relation to the task solution behavior (Table 4).

Table 4. Correlations between the direction of transitions for incorrect and correct solvers.

Incorrect Solvers Correct Solvers

Correlation R p-Value Correlation R p-Value

AOI_Question 0.98826 4.01 × 10−1 0.99264 9.90 × 10−2

AOI_yaxislab 0.96159 0.00014 0.92150 0.00114
AOI_xaxislab 0.96236 0.00013 0.96873 0.00007
AOI_graph 0.98055 0.00002 0.98529 7.87 × 10−1

AOI_Attractor 0.93042 0.00080 0.94725 0.00035
AOI_yaxis 0.99497 3.17 × 10−2 0.99882 4.10 × 10−4

AOI_xaxis 0.98343 0.00001 0.99320 7.83 × 10−2

AOI_Distractor 0.90852 0.00179 0.99200 1.27 × 10−1

Since we found a symmetrical transition structure, we added up the number of transitions for each
type of transition to analyze differences in the frequency of transitions between incorrect and correct
solvers for each of the eight tasks. We did not differentiate between the direction of transition (e.g.,
transitions from question to graph and from graph to question were considered the same transition
type); therefore, in our analysis, we only differentiated between 28 transition types.

The differences between the two groups were calculated for each of the 28 transition types and for
each task using a t-test with independent samples, as the students solved each task either correctly or
incorrectly. All 184 individual response processes were included in the analyses (23 students × 8 tasks).
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Table 5 shows the t-values and the significances; t-values with a positive sign indicate that the
incorrect solver had more transitions and negative signs indicate that the correct solver had more
transitions. The values and significance of the individual transition types vary greatly between the
eight tasks. Incorrect solvers had significantly more transitions between distractors and the y-axis than
correct solvers in the AreaQualPhys task, and in the AreaQuantFin task, correct solvers again show a
significantly higher proportion of transitions between attractors and distractors than incorrect solvers.

Although individual differences were identified, no uniform picture emerged regarding the
differences in the transition frequencies of individual transition types across tasks. The isolated
consideration of the individual transitions did not take into account the complexity of and connections
between the transitions, without which students would not be able to solve the task. For example,
in the solution process, some students might compare the attractor and graph several times while
others might compare the attractor to the distractors more often. To take into account the complexity
of transaction patterns, ENA was used in the next step.

We created ENA comparison plots for correct vs. incorrect solvers showing the AOI associations
for the eight tasks (Figures 5–12). To plot the multidimensional graph created by ENA into a
two-dimensional representation for the x-axis, we used MR1, which aligns the centroids of the
compared groups. Hence, the y-value displayed for the correct and incorrect solvers is always equal to
0 in all the figures. For the y-axis, we used the singular value decomposition (SVD2) for the AOIs that
presented the biggest variance for each of the tasks.
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Table 5. T-test results showing the differences in transition frequencies between correct and incorrect solvers per task for each of the 28 transition types. Negative
values indicate differences that favor correct solvers (Bold = significant result, * p < 0.05, ** p < 0.01).

AreaQualFin AreaQualPhys AreaQuantFin AreaQuantPhys SlopeQualFin SlopeQualPhys SlopeQuantFin SlopeQuantPhys

AOI_AttractorAOI_Distractor −0.763 −0.133 −2.155 * 0.440 −1.129 0.309 −0.633 0.626
AOI_AttractorAOI_graph −1.943 1.817 −2.371 * −2.418 * −2.315 * 1.645 −1.118 −1.809
AOI_AttractorAOI_question −2.280 * 1.914 −0.755 - - 1.518 −0.131 −0.518
AOI_AttractorAOI_xaxis −0.195 −1.130 −0.961 −0.641 - 1.873 0.091 −1.915
AOI_AttractorAOI_xaxislab −0.442 −0.518 0.518 0.552 - 3.370 ** −1.348 0.062
AOI_AttractorAOI_yaxis −0.693 1.929 −1.552 −1.000 −0.755 0.757 −1.166 0.589
AOI_AttractorAOI_yaxislab −1.254 −1.915 0.812 −1.000 −1.844 −0.655 −1.000 0.749
AOI_DistractorAOI_graph 1.294 0.176 −0.885 −0.039 −0.513 2.473 1.258 2.361 *
AOI_DistractorAOI_question 0.211 0.077 −1.100 −0.601 1.201 −0.450 −0.901 0.677
AOI_DistractorAOI_xaxis 1.749 −0.309 −0.916 −0.863 0.916 −0.450 0.825 2.362 *
AOI_DistractorAOI_xaxislab 0.795 1.060 −0.131 2.517 * 1.968 −0.450 −1.230 1.763
AOI_DistractorAOI_yaxis 1.472 2.257 * −1.149 0.823 −0.102 1.525 1.223 1.785
AOI_DistractorAOI_yaxislab 1.385 2.084 −0.641 0.828 0.166 −0.450 2.715 * 1.454
AOI_graphAOI_question −0.274 0.176 −0.351 2.325 * 1.694 2.396 0.210 0.334
AOI_graphAOI_xaxis 0.314 1.066 −2.284 * −0.769 0.667 1.313 −0.859 2.380 *
AOI_graphAOI_xaxislab −1.308 1.512 −1.551 −0.395 0.901 1.070 −0.178 1.824
AOI_graphAOI_yaxis −0.707 1.811 −0.974 −0.193 −0.583 0.653 −0.297 2.029
AOI_graphAOI_yaxislab −1.833 1.588 −0.076 −0.168 −0.596 3.642 0.052 1.523
AOI_questionAOI_xaxis 1.546 0.380 −0.797 0.812 −0.518 0.951 0.493 0.086
AOI_questionAOI_xaxislab 0.324 0.594 - −0.757 −0.518 −0.655 1.314 1.000
AOI_questionAOI_yaxis −1.060 1.112 0.215 3.249 ** −2.204 * −0.450 0.961 1.191
AOI_questionAOI_yaxislab 0.921 2.390 * 0.268 −0.546 −0.377 1.072 0.709 1.269
AOI_xaxisAOI_xaxislab −1.023 1.129 1.330 −0.849 1.804 1.633 0.337 0.915
AOI_xaxisAOI_yaxis −0.055 −0.547 −1.421 1.326 0.166 1.217 −0.266 1.510
AOI_xaxisAOI_yaxislab 0.211 0.481 −0.033 −2.671 * - - 2.204 * −1.393
AOI_xaxislabAOI_yaxis −0.615 1.234 −0.166 0.552 0.904 −0.772 −0.828 2.506 *
AOI_xaxislabAOI_yaxislab −1.284 0.362 −0.502 −0.734 −1.000 0.691 −1.188 0.156
AOI_yaxisAOI_yaxislab 0.230 1.899 −0.404 −0.279 0.777 0.856 0.458 1.172
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Figure 12. PhySlopeQuant transitions with incorrect solvers (red) and correct solvers (blue).

The comparison plot for the EcAreaQual task (Figure 5) presents the differences in weighted
transition frequencies between incorrect and correct solvers and shows the so-termed ‘AOI_graph’ in
the center of the network graph, since the graph was most frequently involved in all transitions. The
plot also shows how AOIs such as AOI_xaxis, AOI_Distractor, and AOI_Question are located on the
left side of the graph, meaning that they are closely related to the centroid of the incorrect solvers. In
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contrast, AOIs such as AOI_xaxislab, AOI_Attractor, and AOI_yaxislab are located on the right side of
the graph, meaning that they have a closer relation with the centroid for the correct solvers.

When comparing the centroids of the transition patterns of incorrect solvers and correct solvers
using a two-sample t-test, while assuming unequal variance along the two-dimensional structure
(x-axis and y-axis of the network graph), significant differences between incorrect solvers (mean=-0.
31, SD = 0.74, N = 14) and correct solvers (mean = 0.48, SD = 0.65, N = 9; t(18.86) = −2.68, p = 0.01,
Cohen’s d = 1.11) become evident along the x-axis.

In terms of the associations among the different AOIs, the red lines in the plot indicate the
correlations that were most common among incorrect solvers, and the blue lines represent the
correlations that were most common among correct solvers. The thicker the lines, the stronger the
correlations. For a summary of the strong gaze transition correlations, see Table 6.

Table 6. Strong associations between gaze transitions across the tasks and correct vs. incorrect solvers.
(Sum of strong associations across tasks in bold).

EcArea
Qual

PhyArea
Qual

EcArea
Quant

PhyArea
Quant

EcSlope
Qual

PhySlope
Qual

EcSlope
Quant

PhySlope
Quant Total

Strong Transition
Associations 4 7 4 7 4 7 4 7 4 7 4 7 4 7 4 7 4 7

AOI_graph and
AOI_Attractor 1 1 1 1 1 1 1 1 7 1
AOI_graph and
AOI_yaxislab 1 1 1 1 1 2 3
AOI_graph and
AOI_xaxislab 1 1 1 1 1 3
AOI_graph and
AOI_xaxis 1 1 1 1 1 1 2 4
AOI_graph and
AOI_yaxis 1 1 1 1 2 2
AOI_graph and
AOI_Distractor 1 1 1 1 1 0 5
AOI_graph and
AOI_Question 1 1 1 1 1 1 1 2 5
AOI_Attractor and
AOI_Distractor 1 1 1 1 1 1 1 1 7 1
AOI_xaxis and
AOI_yaxis 1 1 0
AOI_xaxislab and
AOI_yaxislab 1 1 1 2 1
AOI_xaxislab and
AOI_Distractor 1 0 1
AOI_xaxis and
AOI_Attractor 1 1 2 0
AOI_yaxislab and
AOI_xaxis 1 1 0
AOI_yaxislab and
AOI_yaxis 1 1 1 1 2
AOI_yaxis and
AOI_Attractor 1 1 0
AOI_Distractor and
AOI_yaxis 1 0 1
AOI_Question and
AOI_xaxis 1 1 1 1 2
AOI_Question and
AOI_yaxis 1 0 1
AOI_Question and
AOI_yaxislab 1 0 1

For the ENA plot of the PhyAreaQual task (Figure 6), along the x-axis, a two-sample t-test
assuming unequal variance (mean = 0.40, SD = 0.69, N = 11) indicated no statistically significant
differences at the alpha level = 0.05 (mean = −0.37, SD = 1.13, N = 12; t(18.50) = −1.99, p = 0.06, Cohen’s
d = 0.81). The plot shows that there was a particularly strong correlation of gaze transition between the
AOI_graph and AOI_yaxis for the incorrect solvers (red). For a summary of the strong gaze transition
correlations, see Table 6.
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For the ENA plot of the EcAreaQuant task (Figure 7), along the x-axis, a two-sample t-test
assuming unequal variance (mean = 0.26, SD = 1.10, N = 18) showed statistically significant differences
at the alpha level = 0.05 (mean = −0.92, SD = 0.81, N = 5; t(8.61) = −2.64, p = 0.03, Cohen’s d = 1.12). The
plot shows a strong correlation of gaze transition between the AOI_graph and AOI_yaxislab for the
incorrect solvers (red) and a strong gaze transition correlation between AOI_graph and AOI_Attractor
for correct solvers (blue). For a summary of the strong gaze transition correlations, see Table 6.

For the ENA plot of the PhyAreaQuant task (Figure 8), along the x-axis, a two-sample t-test
assuming unequal variance (mean = 0.19, SD = 0.61, N = 20) indicated statistically significant differences
at the alpha level = 0.05 (mean = −1.30, SD = 0.58, N = 3; t(2.72) = −4.10, p = 0.03, Cohen’s d = 2.44). In
contrast to the previously presented plots, this plot presents strong gaze transition correlations that are
not connected to the AOI_graph, for example AOI_Question and AOI_xaxis for incorrect solvers (red).
For a summary of the strong gaze transition correlations, see Table 6.

For the ENA plot of the EcSlopeQual task (Figure 9), along the x-axis, a two-sample t-test assuming
unequal variance (mean = 1.01, SD = 0.67, N = 5) indicated statistically significant differences at the
alpha level = 0.05 (mean = −0.28, SD = 0.71, N = 18; t(6.71) = −3.76, p = 0.01, Cohen’s d = 1.84). Similar
to the previous plots, this plot presents strong gaze transition correlations between the AOI_graph and
AOI_Attractor for correct solvers (blue). For a summary of the strong gaze transition correlations, see
Table 6.

For the ENA plot of the PhySlopeQual task (Figure 10), along the x-axis, a two-sample t-test
assuming unequal variance (mean =−1.30, SD = 0.49, N = 4) indicated statistically significant differences
at the alpha level = 0.05 (mean = 0.27, SD = 1.06, N = 19; t(10.10) = −4.56, p = 0.00, Cohen’s d = 1.58). In
this plot, the strong gaze transition correlation between AOI_Attractor and AOI_Distractor among the
correct solvers (blue) is notable. For a summary of the strong gaze transition correlations, see Table 6.

For the ENA plot of the EcSlopeQuant task (Figure 11), along the x-axis, a two-sample t-test
assuming unequal variance (mean = 0.31, SD = 0.83, N = 18) indicated statistically significant differences
at the alpha level = 0.05 (mean = −1.13, SD = 0.41, N = 5; t(14.14) = 5.40, p = 0.00, Cohen’s d =

1.88). Besides a strong gaze transition correlation between the AOI_graph and AOI_Distractor for the
incorrect solvers (red), there is a gaze correlation between AOI_Distractor and AOI_Attractor for the
correct solvers (blue). For a summary of the strong gaze transition correlations, see Table 6.

For the ENA plot of the PhySlopeQuant task (Figure 12), along the x-axis, a two-sample t-test
assuming unequal variance (mean = −0.59, SD = 0.88, N = 11) indicated statistically significant
differences at the alpha level = 0.05 (mean = 0.54, SD = 0.87, N = 12; t(20.77) = 3.08, p = 0.01, Cohen’s d
= 1.29). In this plot, the most noticeable gaze transition correlation is the one between AOI_graph and
AOI_Attractor for the correct solvers (blue). For a summary of the strong gaze transition correlations,
see Table 6.

To synthesize the ENA results, Table 6 shows the significant interrelations between gaze transitions
across the graph problems, grouped by correct and incorrect solvers. Overall, for 7 of the 8 tasks, correct
solvers had a significant correlation to gaze transitions between AOI_graph and AOI_Attractor as well
as between AOI_Attractor and AOI_Distractor. Incorrect solvers had a significant correlation to gaze
transitions between AOI_graph and AOI_Question as well as between AOI_graph and AOI_Distractor
for 5 of the 8 graph problems.

5. Discussion and Conclusions

In this study, we examined eye-tracking-based fixation and transition data from first-year
economics students while solving graph-based tasks to investigate the differences and commonalities
between correct and incorrect solution patterns. For an in-depth investigation of the transitional
eye-tracking metric on the basis of correct and incorrect solutions, we used ENA. With ENA, we chose
a holistic approach that considers the compensatory and selective characteristics of eye movements
more explicitly than previous studies that only included fixation frequencies or transitions between
individual AOIs.
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First, we examined the fixation frequencies of correct and incorrect solvers in the AOIs (RQ1).

RQ1: How do correct and incorrect solvers differ in their proportion of fixations on AOIs of graph
understanding tasks?

When examining each of the tasks individually, correct and incorrect solvers showed significant
differences on the percentage of their fixation frequencies on at least one of the AOIs for each of the eight
tasks. Three of the tasks showed significant differences in the percentage of fixation frequencies for
three AOIs; two tasks showed significant differences in two AOIs; and three tasks showed significant
differences in only one of the AOIs. It became evident that individual analyses of graph tasks are
necessary since they can each place different demands on the learner, which are also reflected in the
fixation frequencies.

Concurring with Madsen et al. [12], who show that students who solve a task correctly dwell
longer on selected areas of a graph, our findings show, as expected, that correct solvers also look at
these areas more frequently. For tasks in which the fixation frequency on the AOI attractor varies
significantly, the correct solvers always looked at the attractor more often than the incorrect solvers.
Assuming that the fixation frequency correlates with the dwell time in AOIs [34], the present study’s
results are comparable to the findings of other studies [1,3,12]. In accordance with the findings [1,12]
that the dwell time on the attractor as a solution-relevant factor correlates with solving the task correctly,
our results show that correct solvers fixate on the attractor more frequently.

In addition, there were differences in terms of the concepts presented in the tasks. For example,
in three out of four tasks in which a qualitative assessment of the slope or area under the curve was
required, the x-axis or the x-axis label was looked at more frequently by incorrect solvers. As Susac et
al. [3] and Madsen et al. [12] pointed out, this reflects an ineffective solution behavior since the focus
on the abscissa was irrelevant in these tasks, as it was mainly the graph itself or distances on the y-axis
that had to be considered.

In the calculation tasks for areas (AreaQuant), which were evidently more difficult to solve than
slope tasks [1,3,55], incorrect solvers fixated on the question more often. The task questions contain
relevant information about the task scenario, context and problem; thus, processing this information
already demanded a lot of cognitive resources from the students.

Moreover, correct solvers focused on distractors more frequently in two out of four qualitative
tasks. This can also be explained by the difference between qualitative and quantitative tasks. In
calculations based on formulas, such as the linear slope or the area under the curve, students may
determine the result of a task in an almost linear solution process, without even having seen the answer
options. Thus, when the result of a task was immediately determined this way, the other answer
options might have received less attention. This was different for the qualitative tasks, where the
information given in the task scenarios and the questions must be processed, compared and integrated
with the answer options given in each task [32].

The findings indicate which different response processes with regard to the graphic concepts and
mathematical requirements presented therein the tasks elicit in students. Thus, we examined whether
the significant differences identified in the individual tasks could be generalized across all tasks. Within
individual tasks, correct and incorrect solvers shared a greater proportion of fixations on the AOIs
than correct solvers and incorrect solvers did across the problems. This supports the assumption that
tasks with the graph concept of area under a curve are more difficult and address different cognitive
challenges for students than slope tasks and therefore require differentiated treatment [1,3,14].

The finding pertaining to RQ1 illustrates that the proportion of eye fixations can be used to
identify correct and incorrect graph task solving strategies only for individual tasks. However, the
findings cannot be generalized for all types of graph tasks. It cannot be ruled out that the graph
problems were not similar enough to find generalizable strategies across them. To generalize across
tasks, the differences in graph concepts and the mathematical and context-specific requirements must
be considered. The number of participants and number of tasks used in this study pose additional
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limitations in terms of generalization of results. By extending the number of participants in further
research, we expect to identify clearer incorrect and correct solving strategies for single items, and
larger differences across the tasks. However, the sample presented here exceeds the samples of other
studies using standardized tests tasks, which comprise 6 and 14 students respectively [23].

In comparison to many recent graph understanding studies using eye-tracking [1,3,14], which
focus merely on the dwell times in the domains of physics and economics, our study adds the analysis
of fixations and a holistic analysis of transitions. To our knowledge, this is the first study investigating
these metrics to assess the understanding of economics tasks of economics students. Therefore, in a
second step, we examined the following RQ:

RQ2: How do correct and incorrect solvers differ in their transitions on different AOIs of graph
understanding tasks?

Transitions are a powerful eye-tracking metric to analyze gaze shifts between, for example, different
web page elements [57], distances in air traffic observation [58], use of software [59] or image-text
integration of assessments [43]. Previous studies on graph understanding [23,41,44] between different
groups (here, correct and incorrect solvers) showed that certain transitions occur more often for one
group than for others. By analyzing the individual transitions among the AOIs, we first identified a
strong correlation for the direction of these transitions. Thus, when identifying properties of graph
problem solution behavior, the frequency of transitions between two AOIs is more important than their
respective direction and there are more transitions between adjacent AOIs than distant AOIs [34,44,45].
The most frequent transition, between the graph and the y-axis, addresses a gaze movement that is
in line with expectations for the natural movement of the eye, which can execute horizontal gaze
shifts more easily than vertical ones [34]. At the same time, it is typical for the task solving process
since a frequent comparison between y-axis segments and the curve is important for estimating slopes
and areas below a curve. Other horizontal transitions like comparisons between AOI_yaxis and
AOI_yaxislab were less frequent, indicating that they were less important for the response process
than expected. Overall, the findings show no uniform picture of the differences in the frequencies of
the individual transition types across tasks and for correct and incorrect solvers.

We argue that the transitions among AOIs have a temporal context, i.e., a transition is influenced
by the total number and type of all transitions that occur within a response process. To examine the
transitions in different contexts, we conducted an ENA for each of the tasks. The ENA allowed us to
identify significant differences in the AOI transitions between correct and incorrect solvers for seven of
the eight tasks. These findings revealed that there are important connections between the AOIs that
need to be identified and processed by learners to correctly solve graph tasks.

The use of ENA for the analysis of eye-tracking data allowed us to gain insights that were not
obtainable by analyzing only the immediate transitions among AOIs. For example, by using a moving
window of three transitions, our ENA findings show how correct solvers had strong transitions
between AOI_graph and AOI_Attractor and as well as strong transitions between AOI_Attractor
and AOI_Distractor. This indicates that correct solvers were not just moving their gaze between
AOI_Attractor and AOI_Distractor more than incorrect solvers. The moving window of transitions used
for this study allowed us to identify that correct solvers compared AOI_Attractor to AOI_Distractor
by looking at different parts of the problem and then returning their gaze to the possible solutions.
Furthermore, in comparison to other network analysis methods [43], ENA offers the possibility of a
simple inferential statistical comparison between two or more groups by calculating the centroid with
a 95% confidence interval. This makes it easier to analyze a complex interdependent structure, as it is
the case with transitions.

The transition association between AOI_graph and AOI_Attractor reflects a complementary and at
the same time parallel visual and textual representation of a graph problem, which has to be integrated
by the participants to find the solution. Thus, this text-image integration of identical phenomena [29,39]
seems to be required for the understanding of economic graph problems. The transition associations of
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correct solvers between attractor and distractor(s) is also in line with expectations, as correct solvers
tend to verify that their solution is correct by comparing it with the distractors. Studies on verbal
data in response process analyses using the think-aloud method show that incorrect solvers did not
perform a systematic comparison and simply selected any solution, i.e., a guessing behavior [43]. The
eye movement data of the present study suggest similar findings as well.

The think-aloud method is also a useful addition to eye-tracking studies as it can provide semantic
meaning to fixations and transitions. At the same time, it can also influence eye-tracking, for instance
if the fixation time increases during simultaneous think-alouds due to the higher cognitive load, thus
potentially leading to asynchronous or delayed verbalization, and gaze shifts [60]. In the present study,
the tasks are quite challenging for the test participants, so that a retrospective analysis of verbal data
could be useful to explore the meaning of the participants’ eye movements in further studies.

For incorrect solvers, we identified particularly strong transitions between AOI_graph and
AOI_Question, and AOI_graph and AOI_xaxis. The first transition indicates that incorrect solvers have
a greater need to reconcile information between the question and the graph, for example to re-explore
the question for more information as to what exactly they are supposed to look for in the graph, or to
compensate for misunderstandings based on erroneous situational models. In line with the findings
of Tsai et al. (2012) [23], the respondents often did not know how to proceed to solve the task and
therefore searched for additional information in the question. The second transition is less relevant for
solving a task correctly, since, for instance, for the solution of qualitative gradient tasks the steepness
of the graphs was considered or for the estimation of the areas under a curve the distances between
the curve along the y-axis had to be compared. Students with a less pronounced understanding of
graphs are more likely to linger on irrelevant areas such as the x-axis of a graph [1,12,22]. However,
our results suggest that transitions are a quite significant additional indicator, complementary to the
dwell time on the axes and the gaze shifts from the axes to the graph.

Since the understanding of an independent variable on the x-axis and the dependent variable on
the y-axis taught in school is often reversed in economics, for instance, by presenting the price as an
independent variable on the y-axis and the quantity of a product demanded or supplied on the x-axis,
new problems in graph understanding become apparent, which should be more strongly addressed by
transition research in the future. For example, it would be possible to swap the axes in diagrams or
to investigate the specifics of economic graph understanding with inverse graphs. In our study, in
which a comparison of graph understanding was made between physics and economics graphs, such a
question was not considered. On the basis of our findings, however, this is necessary for a subsequent
study to address the significance of axes especially in economics, for which still no standardized test
exists, as opposed to, for example, the TUG-K in physics [8].

Once more, the number of participants and the number and kind of tasks observed present a
limitation to generalizing the results regarding the difference in AOI transition patterns between correct
and incorrect solvers (RQ2).

Apparently, vertical eye movements describe the decisive difference between incorrect and correct
solvers. The most frequent transition, between graph and y-axis, is often (schematically) executed by
both groups and cannot be characteristic for a difference between the groups. Vertical eye movements
require more effort than horizontal eye movements and are performed more selectively, for example
to develop a certain idea or to search for specific information. The size and positioning of the AOIs
are often the subject of numerous discussions about the precision of the measurement of relevant
fixations [34]. In the present study, the AOIs were defined in such a way that a sufficient distance to the
actual text or graph allows for as many relevant fixations as possible to be captured. If the AOIs were
too small, too few fixations may be recorded, which would hinder a statistically robust analysis. If the
range was too large, fixations may be detected [35]. Further specifications are necessary for subsequent
investigations, for example pertaining to reading behavior measured by saccades and fixations within
an AOI. Thus, it is quite plausible to assume that students with a greater reading ability will better
understand the task and be better able to solve it. This assumption should be investigated in further
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studies. Due to the assumption that the individual AOIs are assigned different importance by the
solver over time, some studies suggest a time-sequential analysis of the transitions for individual time
intervals [42,53,59,61]. For example, in the present case, it is possible that AOI_Question is considered
by some students, depending on their solution strategy, only at the beginning but not at the end of the
task solving process. Following on from the present study, future research should examine whether
changes in transition frequencies over time occur.

Regardless of the limitations mentioned above, our study shows that sensors, in this particular
case eye-trackers, can be used to identify correct and incorrect graph problem solving strategies, and
therefore provide educational insights. Particularly, ENA can be applied for the analysis of eye-tracking
data in graph problem solving. Our findings suggest directions for the development of educational
interventions designed to foster graph understanding and graph problem solving. For example,
learners can be instructed to re-evaluate all the answers before arriving at a solution, even when they
think they know the correct one. Our results also suggest that Intelligent Tutoring Systems (ITSs)
can be enhanced with eye-tracking methods to improve instruction by reminding learners to check
all options before providing an answer when identifying weak gaze transition connections between
attractor and distractors. Moreover, when identifying strong gaze transition connections between the
graph and the question, ITSs can automatically ask learners if they require a clarification of the problem.
While eye-trackers currently are not broadly available devices, they are becoming increasingly more
affordable. Furthermore, high resolution webcams integrated in personal computers can already
perform eye-tracking functions to a certain extent. Thus, we foresee a real possibility of having ITSs
enhanced with eye-tracking capabilities in the near future.

To conclude, eye-tracking combined with ENA in the context of learning analytics have the
potential to support students in learning how to solve graph problems, and hence better understand
graphs, a significant skill in both everyday life and in various domains.
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Table A1. Average number of fixations of correct and incorrect solvers for each task including values of the T-tests (significant differences in bold).

AOI ECAreaQual PhyAreaQual EcAreaQuant PhyAreaQuant EcSlopeQual PhylopeQual EcSlopeQuant PhySlopeQuant

incorrect correct incorrect correct incorrect correct incorrect correct incorrect correct incorrect correct incorrect correct incorrect correct

AOI_Question 30.4% 25.5% 23.5% 21.6% 36.2% 19.9% 28.9% 13.5% 21.8% 30.2% 20.4% 24.2% 25.3% 24.1% 15.6% 18.4%
t(21) = 1.05; p = 0.3 t(21) = 0.65; p = 0.52 t(21) = 2.22; p = 0.04 t(21) = 1.86; p = 0.04 t(21) = −1.6; p = 0.13 t(21) = −0.7; p = 0.49 t(21) = 0.18; p = 0.86 t(21) = 0.61; p = 0.55

AOI_yaxislab 6.8% 7.7% 5.7% 5.5% 11.7% 7.6% 6.8% 9.3% 2.6% 2.1% 3.9% 2.8% 3.4% 2.9% 6.9% 8.0%
t(21) = −0.7; p = 0.49 t(21) = 0.32; p = 0.75 t(21) = 1.24; p = 0.23 t(21) = −0.87; p = 0.23 t(21) = 0.69; p = 0.55 t(21) = 0.48; p = 0.63 t(21) = 0.49; p = 0.63 t(21) = 0.55; p = 0.59

AOI_xaxislab 1.5% 1.7% 2.4% 1.7% 1.0% 0.6% 1.7% 4.1% 2.4% 0.6% 2.0% 1.1% 2.6% 2.8% 4.1% 2.2%
t(21) = 0.39; p = 0.7 t(21) = 1.36; p = 0.19 t(21) = 0.66; p = 0.52 t(21) = −1.58; p = 0.52 t(21) = 3.82; p < 0.01 t(21) = 1.29; p = 0.21 t(21) = 0.31; p = 0.76 t(21) = 1.42; p = 0.17

AOI_graph 50.3% 53.9% 54.9% 53.7% 52.5% 64.0% 50.8% 64.8% 49.6% 46.1% 57.4% 56.5% 51.5% 55.6% 62.5% 59.7%
t(21) = −0.64; p = 0.52 t(21) = 0.38; p = 0.7 t(21) = −1.65; p = 0.11 t(21) = −1.67; p = 0.11 t(21) = 0.50; p = 0.62 t(21) = 0.14; p = 0.89 t(21) = −0.58; p = 0.56 t(21) = 0.56; p = 0.58

AOI_Attractor 8.3% 11.9% 5.4% 5.1% 1.5% 3.7% 1.9% 5.8% 1.5% 6.7% 10.2% 8.2% 3.6% 7.5% 2.8% 6.6%
t(21) = −2.04; p = 0.05 t(21) = 0.4; p = 0.69 t(21) = −2.6; p = 0.02 t(21) = −3.4; p = 0.03 t(21) = −2.53; p = 0.02 t(21) = 0.87; p = 0.39 t(21) = −2.3; p = 0.03 t(21) = −3.7; p < 0.01

AOI_yaxis 5.9% 6.6% 8.9% 7.8% 10.4% 20.1% 9.2% 9.5% 2.7% 3.4% 5.3% 4.2% 9.6% 8.8% 9.9% 10.0%
t(21) = 0.27; p = 0.79 t(21) = 0.88; p = 0.39 t(21) = −2.7; p = 0.01 t(21) = −0.101; p = 0.9 t(21) = −0.35; p = 0.73 t(21) = 0.66; p = 0.52 t(21) = −0.34; p = 0.7 t(21) = −0.05; p = 0.96

AOI_xaxis 2.9% 1.5% 5.3% 6.7% 6.2% 7.4% 8.3% 12.5% 3.1% 1.8% 4.9% 2.4% 7.1% 7.9% 6.1% 4.0%
t(21) = 2.01; p = 0.049 t(21) = −1.44; p = 0.17 t(21) = −0.80; p = 0.43 t(21) = −1.73; p = 0.09 t(21) = 1.57; p = 0.13 t(21) = 2.36; p = 0.03 t(21) = −0.32; p = 0.8 t(21) = 1.72; p = 0.09

AOI_Distractor 8.8% 5.2% 9.0% 11.7% 3.2% 5.6% 7.6% 5.2% 17.5% 12.0% 3.0% 4.2% 14.2% 7.7% 13.8% 9.2%
t(21) = 1.75; p = 0.09 t(21) = 2.19; p = 0.04 t(21) = −1.47; p = 0.16 t(21) = 0.94; p = 0.36 t(21) = 2.74; p = 0.01 t(21) = 2.42; p = 0.03 t(21) = 2.6; p = 0.02 t(21) = 2.5; p = 0.019



Sensors 2020, 20, 6908 31 of 33

References

1. Klein, P.; Küchemann, S.; Brückner, S.; Zlatkin-Troitschanskaia, O.; Kuhn, J. Student understanding of graph
slope and area under a curve: A replication study comparing first-year physics and economics students.
Phys. Rev. Phys. Educ. Res. 2019, 15, 1–17. [CrossRef]

2. Ring, M.; Brahm, T.; Randler, C. Do difficulty levels matter for graphical literacy? A performance assessment
study with authentic graphs. Int. J. Sci. Educ. 2019, 41, 1787–1804. [CrossRef]

3. Susac, A.; Bubic, A.; Kazotti, E.; Planinic, M.; Palmovic, M. Student understanding of graph slope and area
under a graph: A comparison of physics and nonphysics students. Phys. Rev. Phys. Educ. Res. 2018, 14,
20109. [CrossRef]

4. Curcio, F.R. Comprehension of Mathematical Relationships Expressed in Graphs. J. Res. Math. Edu. 1987, 18,
382. [CrossRef]

5. Freedman, E.G.; Shah, P. Toward a Model of Knowledge-Based Graph Comprehension. In Proceedings of
the International Conference on Theory and Application of Diagrams, Callaway Gardens, GA, USA, 18–20
April 2002; Hegarty, M., Meyer, B., Narayanan, N.H., Eds.; Springer: Berlin/Heidelberg, Germany, 2002.

6. Pinker, S. A theory of graph comprehension. In Artificial Intelligence and the Future of Testing; Routledge:
London, UK, 1990; pp. 73–126.

7. Strobel, B.; Lindner, M.A.; Saß, S.; Köller, O. Task-irrelevant data impair processing of graph reading tasks:
An eye tracking study. Learn. Instr. 2018, 55, 139–147. [CrossRef]

8. Beichner, R.J. Testing student interpretation of kinematics graphs. Am. J. Phys. 1994, 62, 750–762. [CrossRef]
9. Benedict, M.E.; Hoag, J. Factors influencing performance in Economics: Graphs and quantitative useage. In

International Handbook on Teaching and Learning in Economics; Hoyt, G.M., McGoldrick, K., Eds.; Edward Elgar:
Cheltenham, UK, 2012; pp. 334–340.

10. Bowen, G.M.; Roth, W.M. Lecturing graphing: What features of lectures contribute to student difficulties in
learning to interpret graph? Res. Sci. Educ. 1998, 28, 77–90. [CrossRef]

11. Stern, E.; Aprea, C.; Ebner, H.G. Improving cross-content transfer in text processing by means of active
graphical representation. Learn. Instr. 2003, 13, 191–203. [CrossRef]

12. Madsen, A.M.; Larson, A.M.; Loschky, L.C.; Rebello, N.S. Differences in visual attention between those who
correctly and incorrectly answer physics problems. Phys. Rev. Phys. Educ. Res. 2012, 8, 10122. [CrossRef]

13. McDermott, L.C.; Rosenquist, M.L.; van Zee, E.H. Student difficulties in connecting graphs and physics:
Examples from kinematics. Am. J. Phys. 1987, 55, 503–513. [CrossRef]

14. Planinic, M.; Ivanjek, L.; Susac, A.; Milin-Sipus, Z. Comparison of university students’ understanding of
graphs in different contexts. Phys. Rev. Spec. Top. Phys. Educ. Res. 2013, 9, 020103. [CrossRef]

15. Wemyss, T.; van Kampen, P. Categorization of first-year university students’ interpretations of numerical
linear distance-time graphs. Phys. Rev. Spec. Top. Phys. Educ. Res. 2013, 9, 34. [CrossRef]

16. Cohn, E.; Cohn, S.; Balch, D.C.; Bradley, J. Do graphs promote learning in principles of economics? J. Econ.
Educ. 2001, 32, 299–310. [CrossRef]

17. Jensen, U. Wozu Mathe in den Wirtschaftswissenschaften? Eine Einführung für Studienanfänger; Springer:
Wiesbaden, Germany, 2011.

18. Vöttiner, A.; Woisch, A. Studienqualitätsmonitor 2010. Available online: https://www.dzhw.eu/forschung/

governance/sqm/berichte/sqm_2010 (accessed on 30 November 2020).
19. Hill, C.D.; Stegner, T. Which Students Benefit from Graphs in a Principles of Economics Class? Am. Econ.

2003, 47, 69–77. [CrossRef]
20. Brückner, S.; Zlatkin-Troitschanskaia, O.; Küchemann, S.; Klein, P.; Kuhn, J. Changes in Students’

Understanding of and Visual Attention on Digitally Represented Graphs across Two Domains in Higher
Education: A Postreplication Study. Front. Psychol. 2020, 11, 2090. [CrossRef]

21. Bergey, B.W.; Cromley, J.G.; Newcombe, N.S. Teaching high school biology students to coordinate text and
diagrams: Relations with transfer, effort, and spatial skill. Int. J. Sci. Educ. 2015, 37, 2476–2502. [CrossRef]

22. Kekule, M. Students’ Approaches When Dealing with Kinematics Graphs Explored by Eye-Tracking Research
Method. Available online: http://scimath.net/fiser2014/presentations/Martina%20Kekule.pdf (accessed on 30
November 2020).

23. Tsai, M.-J.; Hou, H.-T.; Lai, M.-L.; Liu, W.-Y.; Yang, F.-Y. Visual attention for solving multiple-choice science
problem: An eye-tracking analysis. Comput. Educ. 2012, 58, 375–385. [CrossRef]

http://dx.doi.org/10.1103/PhysRevPhysEducRes.15.020116
http://dx.doi.org/10.1080/09500693.2019.1640915
http://dx.doi.org/10.1103/PhysRevPhysEducRes.14.020109
http://dx.doi.org/10.5951/jresematheduc.18.5.0382
http://dx.doi.org/10.1016/j.learninstruc.2017.10.003
http://dx.doi.org/10.1119/1.17449
http://dx.doi.org/10.1007/BF02461643
http://dx.doi.org/10.1016/S0959-4752(02)00020-8
http://dx.doi.org/10.1103/PhysRevSTPER.8.010122
http://dx.doi.org/10.1119/1.15104
http://dx.doi.org/10.1103/PhysRevSTPER.9.020103
http://dx.doi.org/10.1103/PhysRevSTPER.9.010107
http://dx.doi.org/10.1080/00220480109596110
https://www.dzhw.eu/forschung/governance/sqm/berichte/sqm_2010
https://www.dzhw.eu/forschung/governance/sqm/berichte/sqm_2010
http://dx.doi.org/10.1177/056943450304700206
http://dx.doi.org/10.3389/fpsyg.2020.02090
http://dx.doi.org/10.1080/09500693.2015.1082672
http://scimath.net/fiser2014/presentations/Martina%20Kekule.pdf
http://dx.doi.org/10.1016/j.compedu.2011.07.012


Sensors 2020, 20, 6908 32 of 33

24. Shaffer, D.W. Quantitative Ethnography; Cathcart Press: Madison, WI, USA, 2017.
25. Shaffer, D.W.; Collier, W.; Ruis, A.R. A tutorial on epistemic network analysis: Analyzing the structure of

connections in cognitive, social, and interaction data. J. Learn. Anal. 2016, 3, 9–45. [CrossRef]
26. Shaffer, D.W.; Ruis, A.R. Epistemic Network Analysis: A Worked Example of Theory-Based Learning

Analytics. Available online: https://par.nsf.gov/servlets/purl/10060304 (accessed on 30 November 2020).
27. Friel, S.N.; Curcio, F.R.; Bright, G.W. Making sense of graphs: Critical factors influencing comprehension and

instructional implications. J. Res. Math. Educ. 2001, 32, 124–158. [CrossRef]
28. Schnotz, W.; Baadte, C. Surface and deep structures in graphics comprehension. Mem. Cognit. 2015, 43,

605–618.
29. Schüler, A. Investigating gaze behavior during processing of inconsistent text-picture information: Evidence

for text-picture integration. Learn. Instr. 2017, 49, 218–231. [CrossRef]
30. Ainsworth, S. DeFT: A conceptual framework for considering learning with multiple representations. Learn.

Instr. 2006, 16, 183–198. [CrossRef]
31. Carpenter, P.A.; Shah, P. A Model of the Perceptual and Conceptual Processes in Graph Comprehension. J.

Exp. Psychol. Gen. 1998, 4, 75–100. [CrossRef]
32. Schnotz, W.; Bannert, M. Construction and interference in learning from multiple representation. Learn. Instr.

2003, 13, 141–156. [CrossRef]
33. Leinhardt, G.; Zaslavsky, O.; Stein, M.K. Functions, Graphs, and Graphing: Tasks, Learning, and Teaching.

Rev. Educ. Res. 1990, 60, 1–64. [CrossRef]
34. Holmqvist, K.; Nyström, M.; Andersson, R.; Dewhurst, R.; Jarodzka, H.; van de Weijer, J. Eye Tracking: A

Comprehensive Guide to Methods and Measures, 1st ed.; Oxford University Press: Oxford, UK; New York, NY,
USA; Auckland, New Zealand, 2011.

35. Orquin, J.; Loose, S. Attention and Choice: A Review on Eye Movements in Decision Making. Acta Psychol.
2013, 144, 190–206. [CrossRef] [PubMed]

36. Raney, G.E.; Campbell, S.J.; Bovee, J.C. Using eye movements to evaluate the cognitive processes involved in
text comprehension. J. Vis. Exp. 2014, 83, 1–7. [CrossRef]

37. Schwonke, R.; Berthold, K.; Renkl, A. How multiple external representations are used and how they can be
made more useful. Appl. Cogn. Psychol. 2009, 23, 1227–1243. [CrossRef]

38. Klein, P.; Kuhn, J.; Müller, A. Förderung von Repräsentationskompetenz und Experimentbezug in den
vorlesungsbegleitenden Übungen zur Experimentalphysik. Zeitschrift für Didaktik der Naturwissenschaften
2018, 24, 17–34. [CrossRef]

39. Mason, L.; Pluchino, P.; Tornatora, M.C.; Ariasi, N. An Eye-Tracking Study of Learning From Science Text
With Concrete and Abstract Illustrations. J. Exp. Educ. 2013, 81, 356–384. [CrossRef]

40. Rosengrant, D.; Thomson, C.; Mzoughi, T.; Sabella, M.; Henderson, C.; Singh, C. Comparing Experts
and Novices in Solving Electrical Circuit Problems with the Help of Eye-Tracking. Available online:
https://aip.scitation.org/doi/abs/10.1063/1.3266728 (accessed on 30 November 2020).

41. Klein, P.; Viiri, J.; Kuhn, J. Visual cues improve students’ understanding of divergence and curl: Evidence
from eye movements during reading and problem solving. Phys. Rev. Spec. Top. Phys. Educ. Res. 2019, 15.
[CrossRef]

42. Blascheck, T.; Kurzhals, K.; Raschke, M.; Burch, M.; Weiskopf, D.; Ertl, T. Visualization of eye tracking data:
A taxonomy and survey. Comput. Graph. Forum 2017, 36, 260–284. [CrossRef]

43. Saß, S.; Schütte, K.; Lindner, M.A. Test-takers’ eye movements: Effects of integration aids and types of
graphical representations. Comput. Educ. 2017, 109, 85–97. [CrossRef]

44. Jian, Y.-C.; Wu, C.-J.; Su, J.-H. Learners’ eye movements during construction of mechanical kinematic
representations from static diagrams. Learn. Instr. 2014, 32, 51–62. [CrossRef]

45. Smith, A.D.; Mestre, J.P.; Ross, B.H. Eye-gaze patterns as students study worked-out examples in mechanics.
Phys. Rev. Spec. Top. Phys. Educ. Res. 2010, 6, 020118. [CrossRef]

46. Schuhen, M.; Kunde, F. Informelles Lernen und ökonomische Bildung. In Informelles Lernen; Rohs, M., Ed.;
Springer: Wiesbaden, Germany, 2016; pp. 455–466.

47. Kühling-Thees, C.; Happ, R.; Zlatkin-Troitschanskaia, O.; Pant, H.A. The Impact of Entry Preconditions
on Student Dropout and Subject Change in Business and Economics. In Student Learning in German Higher
Education; Springer: Wiesbaden, Germany, 2020; pp. 351–370.

http://dx.doi.org/10.18608/jla.2016.33.3
https://par.nsf.gov/servlets/purl/10060304
http://dx.doi.org/10.2307/749671
http://dx.doi.org/10.1016/j.learninstruc.2017.03.001
http://dx.doi.org/10.1016/j.learninstruc.2006.03.001
http://dx.doi.org/10.1037/1076-898X.4.2.75
http://dx.doi.org/10.1016/S0959-4752(02)00017-8
http://dx.doi.org/10.3102/00346543060001001
http://dx.doi.org/10.1016/j.actpsy.2013.06.003
http://www.ncbi.nlm.nih.gov/pubmed/23845447
http://dx.doi.org/10.3791/50780
http://dx.doi.org/10.1002/acp.1526
http://dx.doi.org/10.1007/s40573-018-0070-2
http://dx.doi.org/10.1080/00220973.2012.727885
https://aip.scitation.org/doi/abs/10.1063/1.3266728
http://dx.doi.org/10.1103/PhysRevPhysEducRes.15.010126
http://dx.doi.org/10.1111/cgf.13079
http://dx.doi.org/10.1016/j.compedu.2017.02.007
http://dx.doi.org/10.1016/j.learninstruc.2014.01.005
http://dx.doi.org/10.1103/PhysRevSTPER.6.020118


Sensors 2020, 20, 6908 33 of 33

48. Zlatkin-Troitschanskaia, O.; Jitomirski, J.; Happ, R.; Molerov, D.; Schlax, J.; Kühling-Thees, C.; Förster, M.;
Brückner, S. Validating a test for measuring knowledge and understanding of economics among university
students. Zeitschrift für Pädagogische Psychologie 2019, 33, 119–133. [CrossRef]

49. Schlax, J.; Zlatkin-Troitschanskaia, O.; Kühling-Thess, C.; Brückner, S. Influences on the Development
of Economic Knowledge over the First Academic Year. Results of a Germany-Wide Longitudinal Study.
In Student Learning in German Higher Education. Innovative Measurement Approaches and Research Results;
Zlatkin-Troitschanskaia, O., Pant, H.A., Toepper, M., Lautenbach, C., Eds.; Springer: Wiesbaden, Germany,
2020; pp. 371–400.

50. Salvucci, D.D.; Goldberg, J.H. Identifying fixations and saccades in eye-tracking protocols. In Proceedings of
the Symposium on Eye Tracking Research and Applications; Duchowski, A.T., Ed.; ACM Press: New York, NY,
USA, 2000; pp. 71–78.

51. Marquart, C.L.; Hinojosa, C.; Swiecki, Z.; Eagan, B.; Shaffer, D.W. Epistemic Network Analysis (Version 1.6.0)
[Software]. 2018. Available online: http://app.epistemicnetwork.org (accessed on 30 November 2020).

52. Ruis, A.R.; Rosser, A.A.; Quandt-Walle, C.; Nathwani, J.N.; Shaffer, D.W.; Pugh, C.M. The hands and head
of a surgeon: Modeling operative competency with multimodal epistemic network analysis. Am. J. Surg.
Pathol. 2018, 216, 835–840. [CrossRef]

53. Andrist, S.; Collier, W.; Gleicher, M.; Mutlu, B.; Shaffer, D. Look together: Analyzing gaze coordination with
epistemic network analysis. Front. Behav. Neurosci. 2015, 6, 1016. [CrossRef]

54. Sullivan, S.A.; Warner-Hillard, C.; Eagan, B.R.; Thompson, R.; Ruis, A.R.; Haines, K.; Pugh, C.M.; Shaffer, D.W.;
Jung, H.S. Using epistemic network analysis to identify targets for educational interventions in trauma team
communication. Surgery 2018, 4, 938–943. [CrossRef]

55. Wooldridge, A.R.; Carayon, P.; Eagan, B.R.; Shaffer, D.W. Quantifying the qualitative with epistemic network
analysis: A human factors case study of task-allocation communication in a primary care team. IISE Trans.
Healthc. Syst. Eng. 2018, 1, 72–82. [CrossRef]

56. Siebert-Evenstone, A.; Arastoopour Irgens, G.; Collier, W.; Swiecki, Z.; Ruis, A.R.; Williamson Shaffer, D. In
Search of Conversational Grain Size: Modelling Semantic Structure Using Moving Stanza Windows. J. Learn.
Anal. 2017, 4, 123–139. [CrossRef]

57. Eraslan, S.; Yesilada, Y.; Harper, S. Eye tracking scanpath analysis techniques on web pages: A survey,
evaluation and comparison. J. Eye Mov. Res. 2016, 9, 1–19.

58. Kang, Z.; Landry, S.J. An eye movement analysis algorithm for a multielement target tracking task: Maximum
transition-based agglomerative hierarchical clustering. IEEE Trans. Man-Mach. Syst. 2014, 45, 13–24.
[CrossRef]

59. Golebiowska, I.; Opach, T.; Rød, J.K. Breaking the Eyes: How Do Users Get Started with a Coordinated
and Multiple View Geovisualization Tool? Available online: https://www.tandfonline.com/doi/full/10.1080/

00087041.2019.1660513 (accessed on 30 November 2020).
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