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1 Introduction 

 

The identification of lead compounds showing activity against a therapeutic target is the 

most important and crucial step in early-stage drug discovery in pharmaceutical and 

academic research. This is followed by the optimization of potency and pharmacological 

properties (e.g. pharmacokinetics, solubility and selectivity). High-throughput screening 

(HTS) is the conventional method of choice for hit identification in drug discovery. HTS 

comprises the testing of large compound libraries in an in vitro assay against 

pharmacologically relevant targets.1,2 Reported hit rates of <  1%3–6, the high cost and 

time consuming character of this method shows the limitation of HTS. Progress in 

computational chemistry and computer-aided drug design offers an in silico alternative to 

conventional HTS. Those techniques both have the advantages of speed, cost efficiency 

and have become an essential part of drug design.7 Virtual screening (VS), as one major in 

silico techniques, is the search of compound libraries with the goal of drug discovery. VS 

is widely used in design and optimization of new drugs. Two complementary areas of 

searching technique, namely ligand-based drug design and structure-based drug design, 

are part of VS.  

Ligand-based drug design is based on known active ligands. Statistical methods and 

analytical tools are used to connect structural features to their corresponding biological 

effects. Some of the widely used methods in ligand-based drug design are 2D-QSAR, 

ligand-based virtual screening, pharmacophore generation/search and similarity 

search.1,8  

Structure-based drug design uses the knowledge of the 3D-structure of the biological 

target to investigate the molecular interactions involved in protein-ligand binding.2 A 

more detailed description of structure-based drug design follows in section 1.1. 

In vitro testing follows the hit generation of virtual screening to identify candidates for 

lead structure optimization.9 In a first optimizing step, binding affinity is maximized 

through changing, adding and removing functional groups from the identified candidates. 

Lead compounds are optimized regarding physicochemical properties like absorption, 

distribution, metabolism, excretion and toxicity (ADMET). In this step bioisosteres are 

often used to modify physicochemical and pharmacokinetic properties. Bioisosteres are 

groups, which have a similar molecular shape and volume as well as approximately the 
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same distribution of electrons. Such groups keep or even increase the biological activity 

of the compounds and simultaneously improve pharmacokinetic/ physicochemical 

properties (e.g. solubility). The prediction of promising modifications of hit compounds, 

also in connection with QSAR methods, is not possible at this particular time.10,11 

 

1.1 Structure-based drug design 

 

Today, structure-based drug design plays a central role in the development of new 

therapeutic drugs. This progress is mainly based on the immense growth of available 3D-

structures of biological targets. The key resource of 3D-structures today is the Protein 

Data Bank (PDB).12 This open access database contains 3D-structure data for large 

biological molecules like proteins, DNA and RNA. In 2019, the PDB has accumulated over 

150,000 available structures mainly from x-ray crystallography (~141,000 structures) 

but also NMR (nuclear magnetic resonance) (~12,500 structures) and electron 

microscopy (~4,000 structures) and it is continuously growing (Figure 1). This large 

number of structures provides the basis of structure-based drug design contributing to 

the design of new drugs. The structural information of protein structures and protein-

ligand complexes with an increasing level of resolution can be used to understand and 

 

Figure 1: Histogram of overall growth of released 3D-structures in the PDB. Since 1992, 

the available structures in the PDB have significantly increased. In addition, the number of 

structures released annually has increased to up to 10,000 new numbers every year. (Statistic 

taken from https://www.rcsb.org/, as at May 2020) 
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identify new targets and reaction pathways for treating diseases. The knowledge acquired 

in this way is used to analyze protein-ligand interactions and extract key interactions. It 

also enables the analysis of binding site topology, clefts and sub-pockets, electrostatic and 

hydrophobic properties. This information is used for the design of novel ligands 

containing all significant features for efficient modulation of the target of interest.13 

X-ray structures, as the main source of structural information on protein targets, are 

merely snapshots of the protein at a certain time. Proteins are highly flexible but are 

frozen in one conformation during crystallization. This snapshot might not resemble the 

true conformation in vivo. The activity of a protein can be linked to its flexibility. The 

phenomenon of induced fit is well documented and can make the difference between a 

ligand being an agonist or antagonist.8,13  

All structural data used for structure-based design must be carefully chosen. The 

determination of an X-ray structure is to a high degree a subjective interpretation of a 

measured electron density map by the crystallographer. This subjectivity must be 

handled carefully by everyone using an X-ray structure for structure-based design. 

Starting from an insufficient or wrong protein-ligand complex structure might jeopardize 

the entire drug discovery project. Not only is the resolution of an X-ray structure essential, 

but other crystallographic parameters (R-value14, B-value (temperature factor)15, 

Ramachandran violations16, structure-factors17) also contribute to the quality and 

suitability of a structure. The electron density map of the target of interest, especially the 

binding site residues and crystalized ligand atoms, should be verified manually.18,19 

The first step in the drug design cycle is the hit identification. This can either be 

accomplished via HTS or in silico screening. Structure-based virtual screening involves 

placing compounds from a screening library in a target receptor similar to the way it 

happens in vitro. This process is called “docking”. A variety of conformations of the 

compound is placed into the receptor by a docking software. With this method, possible 

poses of the compounds are screened. After placement, the obtained poses are evaluated 

by “scoring functions”. Those scoring functions should find low energy poses and 

distinguish between the experimental determined binding mode and all other generated 

poses.20 Scoring is used to select hits for synthesis, testing and further optimization.2,8,21,22 

Li et al. were able to show that reproducing the bioactive conformation is achieved in up 

to 60 – 80% of the cases.23,24 These results are promising, but several studies show that 

the ultimate goal of scoring docked compounds in correspondence to their actual binding 
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affinity is not yet achieved.23–25 Nevertheless, virtual screening is a key technique in the 

process of computer-aided drug design.  

 

1.2 Molecular representation 
 

Fingerprints are an efficient way of representing molecules. Fingerprints are binary 

strings representing chemical structures and properties. They can, for example, code the 

presence or absence of substructure features (e.g. MACCS fingerprint26–28) or extract 

chemical patterns within a specific diameter from a chemical graph (e.g. Morgan 

fingerprint26,29–31). Originally fingerprints were used for substructure or similarity search. 

In a fingerprint scheme, every bit of substructure feature is either on (=1) or off (=0). Such 

a binary fingerprint scheme is easy to generate, manipulate and compare. Therefore, the 

systematic analysis of large data sets is possible.32,33 To compare two molecules based on 

their generated fingerprint, the Tanimoto coefficient34 is the similarity measure of choice. 

If two molecules have a and b bits set on in their fingerprint, with c of these bits set on in 

both fingerprints, then the Tanimoto coefficient is defined as: 

𝑇𝑎𝑛𝑖𝑚𝑜𝑡𝑜 =  
𝑐

𝑎 + 𝑏 − 𝑐
 

The Tanimoto coefficient ranges between zero, no bits in common, and one, all bits are 

the same. 33 The Tanimoto coefficient was used in this work to find the most likely active 

pose of the docked compounds for the used data sets. In this work, 2D- and 3D-

fingerprints were used to describe molecules in the data sets (see section  2.3 and 

section 2.4).  

2D-fingerprints are the most frequent type of molecular representation reported in 

literature.33,35 They aggregate information like number of hydrogen bond 

donors/acceptors, number of ring systems and connectivity indices.36,37 In addition to 2D-

fingerprints, pharmacophoric patterns, surface properties, molecular volumes or 

molecular interaction fields are included in 3D-fingerprints. Those fingerprints are 

frequently used in 3D-QSAR studies. The complexity of 3D-fingerprints can range from 

single spatial patterns in a molecule to the presence or absence of many potential 

pharmacophore arrangements in a molecule. The fundamental assumption, that there is 

an underlying relationship between the molecular structure and its bioactivity, forms the 

basis of QSAR and the development of 2D- and 3D-fingerprint representation.37–39 
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1.3 Machine learning 

 

Many different machine learning algorithms are described in literature, in this 

introduction only those used in this work are going to be described. Predictive modeling 

always deals with the task to develop a model based on known data to make an accurate 

prediction on new/unknown data. Predictions are always based on the available input 

data. Describing predictive modeling as a mathematical problem means to find a function 

f from input variables x to an output variable y.  

𝑦 = 𝑓(𝑥) 

The function f is not known, therefore machine learning algorithms are trained to find the 

best function of mapping input variables to output variables. All functions found by 

machine learning algorithms are only the best possible approximation, since there is an 

irreducible error e that is independent of the input variables x. 

𝑦 = 𝑓(𝑥) + 𝑒 

This error might be the fact, that there are not enough attributes to sufficiently 

characterize the best mapping function from x to y or the provided data is noisy with many 

outliers. The estimated mapping function always relies on the input data we can provide, 

and therefore, the estimations will have an error. Different machine learning algorithms 

make different assumptions about shape and structure of the function to learn. They differ 

in the way on how to best optimize a function. It is important to try different machine 

learning algorithms, since it is not known beforehand which approach will be best suited 

for the problem at hand.40  

Machine learning algorithms can be classified into two groups based on the way they learn 

a mapping function to predict unknown data: supervised and unsupervised learning. 

Supervised learning means, as described above, to find a function f to map input variables 

x to output variables y. Labels for the input data have to be provided for supervised 

learning. The learning algorithm iteratively makes predictions and is corrected by altering 

settings in the learning algorithm. The learning stops when a mapping function is found 

that achieves acceptable prediction accuracy.41 
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Supervised learning algorithms can further be classified into regression and classification 

problems. In both cases, the task is to find specific relationships or structures in the 

available input data set to make accurate predictions about the output data. A regression 

problem is defined when the output variable to predict is a real or continuous value 

(Figure 2). Regression problems can be evaluated using root mean squared error. 

Different regression algorithms are used to solve various regression problems, for 

example linear regression, regression trees or support vector regression. Classification 

problems are described if the task is to predict discrete values. Those values correspond 

to a finite discrete number of class labels. A classification problem is solved by drawing 

conclusions from the input data. A trained classification model tries to predict the class 

label of the output data (Figure 3). Classification problems can be evaluated using 

accuracy calculation.42,43 Different classification algorithms can be used to solve a present 

problem, for example decision trees, naive Bayes, k-nearest neighbors or support vector 

classifier.44 All classification tasks generally start with the separation of the input data 

 

Figure 2: Simple regression problem. Linear regression tries to fit data with the best hyper-

plane to make a prediction. 

 

Figure 3: Simple classification problem. Binary classification of a data set is shown, where 

two classes are predicted. 
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into training and test sets. For the input data, the class labels are known. The training set 

is used to train the model, afterwards this model is used to predict the class labels for the 

test set. By doing so, the model accuracy can be calculated. If the accuracy reaches a 

satisfying level, the model can be used to predict the class labels of new/unknown data.  

In unsupervised learning on the other hand, only the input variable x is present but no 

corresponding output variable y or labels. 42,43 The goal in this class of machine learning 

algorithms is to discover the fundamental structure of a given data set. The most common 

task in unsupervised learning is clustering and reduction in dimensionality. The 

algorithms are left on their own devices (unsupervised) to identify and present the 

structure of the given data. In most unsupervised learning methods there is no way of 

comparing model performance, since no labels are provided in the input variable.41  

1.3.1 Support Vector Classification 

Support Vector Classification (SVC)45 belongs to the machine learning methods of Support 

Vector Machines (SVM). Besides SVC, Support Vector Regression is also possible.45,46 Like 

all supervised classification methods, SVC tries to find the best possible model based on 

the input data. In a two class or binary classification problem, the goal of an SVC model is 

to separate the two input classes by a mapping function. The model also has to be 

generalizable to work on new/unknown data. Kernel functions are used to transform the 

input data into high-dimensional space. SVCs handle non-linear data and successfully 

finds relations to successful predict the class labels of interest.47 There are four basic 

kernels which can be used to train a SVC model: linear, polynomial, radial basis function 

(RBF) and sigmoid. Choosing the appropriate kernel function is necessary to produce a 

model, which is able to separate the input data into the desired classes. The generalizable 

 

Figure 4: Optimal separation hyperplane. Shown are many possible linear classifier (yellow 

lines) to separate the binary data set, but only one that maximizes the margin (dashed red line). 
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model has to maximize the margin between the data points. This optimal separating 

hyperplane maximizes the distance between the linear classifier and the nearest data 

point of each class label (Figure 4). 

1.3.2 Random Forest 

Random Forest49 is an ensemble method based on decision trees using a bagging 

technique. Decision trees are used to split the features of the input data into root, internal 

and leaf nodes, until all data is sorted into one of the desired classes. At each internal node 

in a decision tree, an impurity measure is used to split the data further down the tree.50 

The feature that best splits the input data is set as the root node.51 If a large number of 

decision trees is generated, and a majority vote of those trees gives a final class label, it is 

called a random forest (Figure 5). A random forest model is trained on data of n molecules 

with corresponding descriptors and class labels. The training algorithm obeys the 

following procedure:  

1. A large number of random subsets of the training data is selected (with replacement: 

molecules from the training data can be selected more than once). Such a selection is 

called bootstrapping.  

2. For each random subset, a decision tree is grown. At each internal node the best split is 

chosen among a randomly selected subset of descriptors. The trees are grown until no 

further splits are possible.  

3. Repeat step 1 and 2 until an adequate number of trees is grown. The trees are generated 

in parallel and grown to their maximum extent, which is called bagging. For each of the n 

 

Figure 5: Schematic representation of a Random Forest model. Random Forest build of 

three decision trees. The majority vote of all trees leads to the final class. (Figure after 

Gray et al.)48 

Root node

Tree 1 Tree 2

Class A Class B

Tree 3

Class B
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molecules in the data set a class label is predicted using the majority vote of all grown 

trees.52  

1.3.3 Gradient boosting 

The foundation of gradient boosting is additive modeling. The idea of additive modeling 

is to add many simple terms together to receive a more complicated expression. In 

gradient boosting this concept is used to gradually adapt an approximated function to 

obtain a satisfying function FM(x). This is achieved by adding up sub-functions to the initial 

function f0(x). The target function FM(x) is built up in the following way: 

𝑦̂ = 𝐹𝑀(𝑥) =  𝑓0(𝑥) + ∆1(𝑥) + ⋯ +  ∆𝑀(𝑥) =  𝑓0(𝑥) + ∑ ∆𝑚(𝑥)

𝑀

𝑚=1

 

FM(x) accumulates the sum of Δm sub-functions from m=1 to M starting from an initial 

function f0(x). Those sub-functions are called weak models or weak learners in boosting 

terminology. In tree boosting, weak models are constructed and added in a gradual 

fashion, each one built to improve the overall model performance and reducing the error 

of the function. By building fm(x) the previous function is not altered. The hyper-

parameter M (number of stages) is defined since arbitrary growth of M leads to the risk 

of overfitting. Overfitting refers to a model, which models the training data too accurately. 

Details and noise in the training data is learned to an extent that predicting new data is 

negatively influenced. Boosting itself makes no determination on how to choose the weak 

learners or the form of the weak learners. However, for example, if all weak learners are 

linear models, the resulting model is also a linear model. Another hyper-parameter is η, 

the learning rate. The learning rate speeds up or slows down the overall approach of 𝑦̂ to 

y, which reduces the risk of overfitting.53–55 

𝑦̂ =  𝐹𝑀(𝑥) =  𝐹𝑀−1(𝑥) +  𝜂 ∗ 𝑓𝑚(𝑥) 

XGBoost (Extreme Gradient Boosting) 54–56 and AdaBoost (Adaptive Boosting)54,55,57 are 

machine learning algorithms based on boosting.  

AdaBoost generates decision models trying to classify the input data. In the next model 

the weights of misclassified data are exaggerated to give those data points a better chance 

of being classified correctly in the following models. The building of new models and 

adapting the weights of misclassified data is repeated several times to generate an 

ensemble of decision models. This ensemble should best classify the input data with as 
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few misclassified data points as possible. The goal of this machine learning algorithm is to 

classify every data point perfectly. Thereby AdaBoost is vulnerable to noisy data and 

outliers.54,55,57  

XGBoost is a gradient boosting ensemble machine learning algorithm, which was designed 

with attention to computational speed, model performance and enables parallel 

computing. XGBoost is very flexible, efficient and scalable, and can be used for regression, 

classification and ranking. The algorithm is based on the gradient boosting framework by 

J. Friedman et al.56,54. In XGBoost it starts with one naïve model, for which the errors are 

calculated for each data point in the input data. After that a model is built to predict those 

errors. This last model is then added to the ensemble of models. This cycle is repeated 

several times leading to the final prediction class. The model can be tuned with a few 

parameters. First, the number of estimators (n_estimators) specifies how many model 

cycles are generated, typical values range from 100-1,000. Second, the maximum depth of 

a tree (max_depth) can be tuned. Higher depth will allow the model to learn relations very 

precisely, which can lead to overfitting. The learning rate determines the impact of each 

tree on the final prediction. Lower values for learning rate are preferred since it makes 

the model robust and therefore makes the model generalize well. 

 

1.4 Arachidonic acid cascade 

 

A complex network of cellular factors controls inflammation. One main player in that 

network is the oxidative metabolism of arachidonic acid, the so-called arachidonic acid 

cascade. Arachidonic acid (AA) is a polyunsaturated fatty acid, which in its inactive form 

is located in membrane phospholipids. Ca2+ influx activates cytosolic phospholipase A2 

(cPLA2), which releases AA from the phospholipids in the membrane. Free AA is then 

available for oxidative metabolism by three main enzymatic pathways.58–60 Those 

pathways are the cyclooxygenase pathway, lipoxygenase pathway and cytochrome P-450 

pathway (Figure 6). 



11 

In the cyclooxygenase pathway, cyclooxygenase (COX) (or prostaglandin G/H synthase, 

PGHS) catalyzes the transformation from AA into the reactive intermediate prostaglandin 

H2 (PGH2). PGH2 is converted into the biologically active prostaglandins, prostacyclin and 

thromboxane.58,61 Prostaglandins play an important role in inflammation and 

thrombocyte aggregation. Well-established COX inhibitors, like the non-steroidal 

analgesics Aspirin and Ibuprofen, inhibit the biosynthesis of prostaglandins in the 

treatment of inflammation.62  

In the lipoxygenase pathway, 5-lipoxygenase (5-LO) transforms AA into the 

hydroperoxide 5-HPETE (hydroperoxyeicosatetraenoic acid). In the next step, 5-HPETE 

is transformed into the instable intermediate leukotriene A4 (LTA4) by the 5-LO. LTA4 is 

further metabolized either by leukotriene A4 hydrolase (LTA4H) to LTB4 or by the 

integral membrane protein leukotriene C4 synthase to LTC4. Many acute and chronic 

inflammation diseases are connected with leukotrienes. These include asthma, 

rheumatoid arthritis, dermatitis and atherosclerosis.63  

In the cytochrome P-450 (CYP450) pathway, CYP450 transforms AA into 20-

hydroxyeicosatetraenoic acid (20-HETE) and epoxyeicosatrienoic acids (EETs). EETs 

have been determined to have anti-inflammatory effects. Transformation of EETs by 

 

Figure 6: Arachidonic acid cascade. Arachidonic acid is released from the membrane and 

metabolized via three enzymatic pathways, cyclooxygenase pathway, lipoxygenase pathway 

and cytochrome P-450 pathway.  
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soluble epoxide hydrolase (sEH) into corresponding dihydroxyeicosatrienoic acids 

(DHETs) diminishes the positive anti-inflammatory effect of EETs.62 

1.4.1 Leukotriene A4 hydrolase 

Leukotriene A4 hydrolase (LTA4H) (Figure 7 A) is a soluble zinc metalloenzyme, that 

catalyzes the hydration of LTA4 into LTB4 (Figure 8).61 LTA4H has been found virtually in 

all cells, organs and tissues.64 According to PDB code 3CHP, the zinc ion is bound by the 

amino acids His295, His299 and Glu318 (Figure 7 B). Haeggström et al. 61 were able to 

show that the zinc ion is essential for the LTA4H functionality. Besides the described 

hydrolase function, LTA4H also shows a peptidase function which is located left to zinc 

ion in Figure 7 B. This was first proposed by Haeggström et al. due to the sequence 

similarity to certain aminopeptidases.61 Snelgrove et al. identified the tripeptide and 

neutrophil chemoattractant Pro-Gly-Pro (PGP) as the physiological substrate. PGP, which 

is a biomarker for COPD (chronic obstructive pulmonary disease), is hydrolyzed by 

extracellular LTA4H. This degradation promotes the resolution of inflammation in the 

lung.65 Therefore, inhibition of the peptidase functionality of LTA4H has a negative effect 

on inflammation. On the other hand, inhibition of the hydrolase function has anti-

 

Figure 7: Crystal structure of LTA4H, PDB code 3CHP. (A) Crystal structure of LTA4H with 

bound ligand colored in green. Shown are the catalytic zinc ion and the amino acids His295, 

His299 and Glu318. (B) Binding pocket showing the location of the Zn2+ ion (cyan sphere) as 

well as hydrophilic surface areas (purple), neutral areas (white) and hydrophobic areas (green). 

 

Figure 8: Transformation from LTA4 into LTB4. LTA4H transforms LTA4 into LTB4. 
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inflammatory effects. In the treatment of inflammation, the inhibition of LTA4H 

(preferably only the hydrolase functionality) is a promising strategy.  

1.4.2 Soluble epoxide hydrolase 

The human soluble epoxide hydrolase (sEH) is a bifunctional homodimeric enzyme with 

a hydrolase and phosphatase function. Each monomer consists of two structural domains 

linked by a proline-rich segment (Figure 9 A). sEH can be found in the cytosol and 

peroxisomes and preferably hydrates aliphatic epoxides and fatty acid epoxides.66,67 The 

catalytic activity is promoted by two tyrosine and an aspartic acid residue (Tyr383, 

Tyr466 and Asp335) (Figure 9 B). Epoxyeicosatrienoic acids (EETs) are catalytically 

hydrated into dihydroxyeicosatrienoic acids (DHETs) by sEH (Figure 10). The inhibition 

of sEH and therefore the increased levels of EETs have a positive biological effect and can 

be used in the treatment of diabetes, pain and inflammation.66  

 

 

 

Figure 9: Crystal structure of sEH, PDB code 4Y2T. (A) Crystal structure of sEH with bound 

ligand colored in green. The phosphatase function is colored in red, the proline-rich linker is 

colored in light red and the hydrolase function is colored in blue. (B) Binding pocket showing 

the hydrophilic surface areas (purple), neutral areas (white) and hydrophobic areas (green). 

 

Figure 10: Hydration of EETs into DHETs by the sEH. Shown is the catalytic hydration of an 

exemplary EET into its corresponding DHET. 

A

B

Tyr383

Tyr466

Trp336

Asp335 His524
A B

sEH



14 

1.5 Multitarget drug design 

 

Therapeutic drugs not only interact with their target of interest but show interactions to 

a variety of proteins leading to a multitarget activity profile. Those multitarget activities 

are mostly unintentional and can lead to negative side effects and risks. Although the 

unintentional interactions can be used as a chance to contribute to the overall efficacy of 

a drug if acknowledged within the drug design process. Complementary signaling 

pathways or enzymatic cascades can be modulated and increase drug effectiveness.68–70  

Modern drug discovery deliberately designs small molecules with a multitarget activity 

profile. A beneficial multitarget activity profile is derived from additive or synergistic 

efficacy by modulating complementary signaling pathways or enzymatic cascades. 

Diseases of multifactorial nature are predestined to be targeted in a multitarget drug 

design. Multifactorial disorders are associated with the effect of multiple enzymes in 

combination with lifestyle and environmental factors. Metabolic syndrome, psychiatric or 

degenerative CNS disorders, infectious diseases and cancer are targeted with a 

multitarget approach in drug design projects. These multifunctional diseases require a 

treatment with a cocktail of multiple drugs due to their multifunctional nature.71–76  

The classical way of therapy is to administer several target specific drugs to achieve the 

desired effect. Co-administration of two drugs raise safety concerns and challenges in 

optimizing dosage. It cannot be assumed, that two safe drugs also have a good safety 

profile in co-administration. Intensive safety studies, dosage ranging investigation and 

drug-drug interaction analysis have to be performed, which rises cost and complexity of 

developing combination therapy drugs.72 Well-designed multitarget drugs show a range 

of advantages, which makes multitarget drugs a worthy field of study. Replacing several 

drugs with a multitarget drug reduces treatment complexity, drug side effects, 

pharmacokinetic complexity and drug-drug interactions. Therapeutic efficacy can be 

increased due to synergetic effects leading to lower drug dosages. In addition, the 

economic advantage of less clinical trials for a multitarget drug compared to multiple 

specific drugs speaks for the promising field of multitarget drug design.71–76  

In this work we will demonstrate how to predict multitarget drugs. The method is applied 

to the drug targets LTA4H and sEH. Those enzymes are, as described above, located in the 

arachidonic acid cascade (section 1.4). A single-target drug can have a complex effect on 
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a disease network like the AA cascade (Figure 6). Studies have shown that the inhibition 

of a single pathway may lead to shunting of AA metabolites into another untargeted 

pathways within the AA cascade. This shunting diminishes the beneficial effects of 

inhibiting one pathway in the cascade.71–75,77 In addition, a complex communication 

between different metabolizing pathways (crosstalk) could be shown.72 Single-target 

drugs may not only lack efficacy due to this crosstalk but also show safety concerns due 

to unexpected target-drug interactions within the AA cascade.77 Overcoming the shunting 

problem with a combination therapy of two drugs (combining two drugs in one single 

tablet) raises safety concerns (safety profile of drugs may be altered in combination 

therapy).78,79 The design of multitarget drugs can help to solve these challenges and aims 

for the following improvements:  

- Enhancing drug efficacy 

- Improving drug safety 

- Increasing patient compliance  

- Eliminating drug-drug interactions 

Using multitarget drugs in the AA cascade can overcome the shunting problem and 

improve the treatment of inflammation.71–75,77  

 

1.6 Aim of the work 

 

In this work, we describe a new method for in silico design of dual target compounds by 

combining molecular fingerprints with state-of-the-art machine learning algorithms.  

Representing molecular structures using a fingerprint scheme has been done for many 

years (e.g. Morgan fingerprint from 196526,29–31). Classical 2D-fingerprints are mainly 

used for fast similarity search in large databases. There are different types of 2D-

fingerprints, which are used to describe molecular structures (section 2.3). The basic bit 

string scheme is the most simplified fingerprint scheme. A bit string is an array mapping 

the presence of a feature domain to the values 0 and 1. These values can be interpreted as 

on/off, valid/invalid, absent/present etc. Since there are only two possible values, they 

can be stored in one bit. 2D-fingerprints were developed further to include the available 

3D-information of protein-ligand complexes. Those 3D-fingerprints represent the 3D-
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features of molecular structures. The fundamental assumption, that there is an underlying 

relationship between the molecular structure and its bioactivity is the basic concept of 

2D- and 3D-fingerprint similarity search.  

Predictive modeling generates data-based models and extrapolates onto new and 

unknown data. A variety of well-established machine learning algorithms is used in this 

work to investigate their applicability in the process of drug design and development. 

The goal is not simply to predict novel compounds, which inhibit one protein, but to 

predict compounds, which inhibit two different proteins at the same time. The proteins 

targeted in this work (LTA4H and sEH) are located in the arachidonic acid (AA) cascade 

and are associated with several inflammatory diseases (for example asthma, rheumatoid 

arthritis, dermatitis and atherosclerosis).63 The AA cascade displays a strong cross-talk 

between the metabolic pathways. Inhibiting only one pathway may lead to AA 

degradation in another pathway (shunting). This shunting diminishes the beneficial 

effects of the administered drug. Targeting two different pathways with a single drug can 

overcome this phenomenon and lowers the risks of unexpected side effects or drug-drug 

interactions resulting from administering two different drugs.  

First part of this work contains the compilation of data sets containing known-active 

compounds, inactive compounds and newly designed compounds from a combinatorial 

library. In the second part, the compiled compound data sets are represented using 

different fingerprints (2D and 3D). In the third part, those fingerprints are used with a 

variety of machine learning algorithms to predict novel active compounds against two 

different targets (dual active compounds). Prospective evaluation of the new method is 

established by synthesis and determination of the biological activity of cherry-picked 

compound candidates. 
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2 Methodology 

 

2.1 Docking software 

 

There are many different docking software on the market, aiming at prediction of the 

ligand conformation in the binding site, which correspond to the experimentally 

determined binding mode. This pose is often the global minimum energy structure. The 

optimization problem of finding the global minimum energy structure is defined by an 

objective function and the search space. The objective function f is called “scoring 

function”. Scoring functions estimate the binding energy between the ligand and the 

receptor. The search space is defined by the degrees of freedom of the ligand (rl) and the 

receptor (rp). In most approaches solving the optimization problem, the receptor 

structure is kept rigid. Therefore, to find the optimal solution, the optimal orientation and 

position of the ligand in respect to the receptor must be found by changing the ligands 

translation, rotation, and torsion angles of single bonds. It comprises three translational, 

three rotational and rl torsional degrees of freedom. The dimension of the optimization 

problem equals n = 6 + rl. Small changes of amino-acid sidechains in the binding site are 

considered by adding one torsional degree of freedom for each rotational bond in those 

sidechains (rp). This extension rises the dimension of the optimization problem to 

n = 6 + rl + rp. If this sidechain flexibility is not specified in the docking configuration, 

optimization of hydrogen atom position involved in hydrogen bonding is included in the 

computation. This results in rp = rdon torsional degrees of freedom, where rdon is the 

number of rotatable hydrogen bond donor groups, like hydroxide and ammonium ions in 

the binding site.80 The additional degrees of freedom increases the number of 

computations that need to be made and therefore increases computation time. 

In the following, the two docking software (MOE81 and PLANTS82) used in this work are 

described in their theory. In section 3.1 the docking validation can be found and in 

sections 3.3-3.5 the docking procedure of the different compound batches.  

2.1.1 Molecular Operation Environment (MOE2018.0101)  

MOE’s Dock application predicts poses of small molecules in complex with their 

respective protein target (receptor). For each ligand, several poses are generated and 

scored. The ligands are placed in a small region of the receptor, called the active or binding 



18 

site. The binding site has to be defined either by a co-crystallized ligand in the complex 

structure or by dummy atoms placed by the site finder tool in MOE. 

The docking algorithm is divided into different steps:  

- Conformational Analysis,  

- Placement,  

- Initial Scoring,  

- Refinement,  

- Pharmacophore Constraints, and  

- Final Scoring.  

The theory of all docking algorithm steps is described in the following. 

Conformational Analysis:  

Ligand conformations can be supplied via a conformation database. If ligand 

conformations are not available, conformations from a single 3D-conformer can be 

generated by bond rotation (A set of rules for dihedral angles is based on atom types and 

position, with a strain energy value for each bond; bond length are kept constant). 

Placement: 

A number of poses (1,000 poses, default) is generated from the conformational input 

using one of the available placement methods (Triangle Matcher, Alpha PMI, Alpha 

Triangle, Pharmacophore, Proxy Triangle83). In this work, only the Triangle Matcher was 

used. 

Triangle Matcher (default): Poses are generated by aligning ligand triplets of atoms on 

triplets of alpha spheres in a systematic way. The concept of alpha spheres was first 

introduced by Liang and Edelsbrunner.84 An alpha sphere is a sphere, that contacts four 

atoms on its borderline and contains no atom. The four atoms are equidistant from the 

center of the alpha sphere. Alpha sphere radii mirror the local concavity specified by the 

four atoms. In a protein, different alpha sphere radii represent various parts of the 

protein: small spheres are located inside the protein, large spheres outside of the protein 

and medium spheres represent clefts and cavities.85  

 

 



19 

Initial Scoring:  

All poses generated by the placement method are scored, using one of the available 

scoring functions (London dG86, ASE87, Affinity dG, Alpha HB, Electron Density (neglected 

in this work), GBVI/WSA dG). Scoring functions can be classified into three different 

classes: force field based, knowledge based and empirical.  

Force field based scoring functions are based on classical molecular mechanics. Contacts 

between ligand and receptor are calculated in a pairwise manner using a Lennard-Jones 

potential and a Coulomb term: 

∆𝐺𝑏𝑖𝑛𝑑 = ∑ ∑ (
𝐴𝑖𝑗

𝑅𝑖𝑗
12 −

𝐵𝑖𝑗

𝑅𝑖𝑗
6 +

𝑞𝑖𝑞𝑗

𝜀𝑅𝑖𝑗
)

𝑝𝑟𝑜𝑡𝑒𝑖𝑛

𝑗=1

𝑙𝑖𝑔𝑎𝑛𝑑

𝑖=1

 

The parameters A and B are defined for each individual pair of different atom type 

combinations, R is defined as the atomic center distance, q is defined as the partial charge 

on each individual atom and ε is the dielectric constant.88  

Knowledge based scoring functions are based on statistical observation on intermolecular 

ligand-receptor contacts to derive a potential, that describes the observed contact 

distribution. The underlying assumption is, that intermolecular contacts between certain 

atom types, which occur more often are energetically favorable and may contribute 

positively to binding affinity. The derived potentials express statistical preferences, which 

are collected from the knowledge base of protein-ligand complexes.89  

Empirical scoring functions are not derived from any physics based energetic formulation, 

like the other two types of scoring functions. The underlying idea is to define a function 

consisting of terms related to the physical processes described with ΔGbind and estimate 

the functions parameters based on known affinities of protein-ligand complexes. The 

functional form of empirical scoring functions are generally the same, but the data used 

for parameterization and optimization of parameters differ.88 

Which scoring function in the initial scoring leads to the best poses can be found in the 

docking validation section 3.1.1. 
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London dG: As an empirical scoring function, London dG estimates binding free energy of 

ligands using a set of energy and assessment terms that are generated from datasets of 

measured ligands: 

∆𝐺 = 𝑐 +  𝐸𝑓𝑙𝑒𝑥 + ∑ 𝑐𝐻𝐵𝑓𝐻𝐵 +  ∑ 𝑐𝑀𝑓𝑀 + ∑ ∆𝐷𝑖

𝑎𝑡𝑜𝑚𝑠 𝑖𝑚−𝑙𝑖𝑔ℎ−𝑏𝑜𝑛𝑑𝑠

 

where c accounts the average gain or loss of rotational and translational entropy; Eflex is 

the energy lost due to ligand flexibility; cHB is the energy of an ideal hydrogen bond; fHB 

measures geometric imperfections of hydrogen bonds; cM is the energy of an ideal metal 

ligation; fM measures geometric imperfections of metal ligations and Di describes the 

desolvation energy of atom i. 

ASE: As an empirical scoring function, ASE accumulates the Gaussian function of all atom-

receptor pairs and atom-alpha sphere pairs of each complex.  

Affinity dG: As an empirical scoring function, Affinity dG uses a linear function to calculate 

the enthalpy contribution to the binding free energy (G):  

∆𝐺 =  𝐶ℎ𝑏𝑓ℎ𝑏 + 𝐶𝑖𝑜𝑛𝑓𝑖𝑜𝑛 + 𝐶𝑚𝑙𝑖𝑔𝑓𝑚𝑙𝑖𝑔 + 𝐶ℎℎ𝑓ℎℎ + 𝐶ℎ𝑝𝑓ℎ𝑝 + 𝐶𝑎𝑎𝑓𝑎𝑎 

where the f terms fractionally count atomic contacts of specific types and the C terms are 

coefficients that weight the term contributions to the affinity estimate; hb describes the 

interaction between hydrogen bond donor-acceptor pairs; ion accounts ionic 

interactions; mlig accounts metal ligation; hh describes hydrophobic interactions; hp 

describes interactions between hydrophobic and polar atoms; aa accounts interactions 

between any two atoms not described by any other term.  

Alpha HB: As an empirical scoring function, Alpha HB is a linear combination of two terms. 

The first term measures the geometric fit of the ligand to the binding site. The second term 

measures hydrogen bond effects. A sum over all ligand atoms results in the final score.  

GBVI/WSA dG: As a force field scoring function, GBVI/WSA dG estimates the free binding 

energy with weighted terms for the Coulomb energy, solvation energy and van-der-Waals 

contributions. GBVI/WSA dG was trained using the MMFF94x90 and AMBER9991,92 force 

field on the 99 protein-ligand complexes of the SIE training set.93 The functional form of 

GBVI/WSA dG is a sum of terms: 

∆𝐺 ≈ 𝑐 + 𝛼 [
2

3
(∆𝐸𝐶𝑜𝑢𝑙 + ∆𝐸𝑠𝑜𝑙) + ∆𝐸𝑣𝑑𝑤 + 𝛽∆𝑆𝐴𝑤𝑒𝑖𝑔ℎ𝑡𝑒𝑑] 
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where c accounts the average gain or loss of rotational and translational entropy; α and β 

are constants which were determined during training; Ecoul is the coulombic electrostatic 

term; Esol is the solvation electrostatic term; Evdw is the van der Waals contribution to 

binding; SAweighted is the surface area, weighted by exposure.  

Refinement:  

The Induced Fit method94 or the Rigid Receptor method can further refine the poses 

generated by the placement method. Induced Fit adds additional computation steps to 

recompute conformations of flexible protein sidechains in the refinement. 

By default, backbone atoms are held fixed during refinement. With rigid receptor, 

sidechains are also constrained. Solvation effects are calculated using the electrostatic 

energy term (Eele, consists of a Coulomb term, a distance dependent dielectric term and a 

reaction field term) and a dielectric constant of 4.95 The final energy is evaluated using the 

Generalized Born solvation model (GB/VI).96 

Final Scoring:  

One of the available scoring functions (London dG, ASE, Affinity dG, Alpha HB, Electron 

Density (neglected in this work), GBVI/WSA dG) is used to score all remaining poses. All 

poses are ranked according to their final score and a defined number of poses is selected 

for output.  

All steps of the MOE docking algorithm were carried out in a KINME workflow to validate 

MOE docking. All possible combinations of scoring functions (Electron Density was 

neglected in this work) in the initial and final scoring step were analyzed. The description 

of the MOE docking validation can be found in section 3.1.1. 

2.1.2 PLANTS 

The Protein-Ligand ANT System (PLANTS)97 was developed as the first Ant colony 

optimization (ACO) algorithm for predicting the pose of a ligand in its receptor. The ACO 

is inspired by the behavior of real ants finding a shortest path between their nest and a 

food source. In nature, ants use pheromone trails for communicating the path between 

the nest and the food source. In PLANTS, an artificial ant colony is used to find a minimum 

energy conformation of a ligand in its binding site. These ants mimic the behavior of real 

ants and mark the low energy ligand conformation with a pheromone trial.  
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In PLANTS, the ligand flexibility is treated with 6 + r degrees of freedom, which was 

described in section 2.1. Protein flexibility is only partially considered by allowing the 

optimization of hydrogen atom positions that could be involved in hydrogen bonding. The 

search space in PLANTS is defined by the binding site size and the ligand’s translational 

degree of freedom. Each degree of freedom is associated with a pheromone vector. Each 

pheromone vector of rotational and torsional degrees of freedom has 360 entries, 

resulting from an interval of 1°. The number of entries of the pheromone vector of 

translational degree of freedom depends on the size of the binding site. PLANTS is based 

on the MAX-MIN ant system, where only the best ants add to the pheromone trails and the 

maximum and minimum values of the pheromone are explicitly limited. 

After searching the complete search space, all generated conformations (solutions) are 

post-processed. The set of all solutions are first sorted by increasing scoring function 

values. A specific number of ligand conformations (in this work 5 conformations) is 

selected, such that the minimal root mean square deviation (RMSD) between any of the 

selected conformations is larger than 2 Å. These solutions can be rescored with more 

advanced and computationally more demanding scoring functions to increase the chance 

of finding the best ligand conformation. The best ligand conformation is defined as the 

conformation most similar to the experimentally determined binding mode.80,97  

Three empirical scoring functions are implemented in PLANTS: a modified piecewise 

linear potential (PLP)98 version (as well as a modified version PLP95) and a scoring 

function combining parts of already published scoring functions (CHEMPLP)99,100. The 

scoring function PLP (fPLP) uses distance-based potential and is based on scoring functions 

described in literature.98,101  

fPLP = fplp + fclash-lig + ftors-lig + 0.3*fscore-prot – 20.0 

fplp describes steric interactions between the ligand and the receptor. Metal ions in the 

binding site are considered as well as the occlusion of polar atoms by nonpolar ones by 

distance-based potentials. fclash-lig describes a simple clash term, which avoids ligand 

atoms to come too close to each other. ftors-lig describes a torsional potential.100 fscore-prot 

describes intramolecular protein-interactions, the same distance-based potential as in 

PLP, with an additional intra-side-chain clash term.97 
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The scoring function CHEMPLP has the following functional form: 

fCHEMPLP = fplp + fchem-hb + ftors-lig + fclash-lig + 0.3*fscore-prot -20.0 

fplp describes the same steric interactions as characterized above, although with different 

parameter settings. fchem-hb describes hydrogen bonding and metal-acceptor interaction 

between ligand and protein as implemented in GOLDs CHEMSCORE.102 ftors-lig and fscore-prot 

are the same as characterized above. In both scoring functions a penalty term (-20.0) is 

added if the ligands reference point falls outside the predefined binding site.80 Excluding 

these ligands prevents the algorithm from finding random solutions that don’t lead to 

active compounds, which don’t interact with the binding site.  

 

2.2 Compound preparation 

 

Collecting a large set of compounds is required for constructing and training a machine 

learning model. For a predictive model, the more input data one can provide the better. 

Since machine learning models will be used for classification, data belonging to both 

classes (active and inactive) had to be collected. The first batch of active compounds was 

collected from PDB12 (crystalized ligands). The second batch of active compounds 

weredownloaded from ChEMBL database103 (LTA4H ChEMBL ID: CHEMBL4618, 

sEH: ChEMBL ID: CHEMBL2409). In addition, a randomly picked third batch of inactive 

compounds came from the ChEMBL23 data set. The first, second and third batch of 

compounds form the basis for training machine learning models (section 3.6). 

Compounds, for which a prediction of activity will be done with the trained models, were 

generated using a combinatorial library (referred to as batch number four). In the 

following section all relevant sets are described, Figure 11 summarizes the compilation 

of all four compound sets.  
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2.2.1 Crystalized ligands 

All available complex structures for LTA4H and sEH were collected from PDB (Figure 12). 

The Protonate 3D node (provided by Chemical Computing Group Inc.)81 was used to add 

hydrogen atoms to the complex structures. Complex structures for LTA4H and sEH were 

superposed in the MOE GUI (section 3.1.1). The ligands were separated from their 

receptor using the Complex Splitter node (provided by Chemical Computing Group Inc.)81 

in KNIME.104 Hydrogen atoms were added to the ligands using the Wash node (provided 

by Chemical Computing Group Inc.; settings: remove lone pairs, deprotonate strong acids, 

protonate strong bases, add hydrogens)81. The 3D-conformation was kept constant since 

 

Figure 11: Compilation of data sets.  

 

Figure 12: KNIME workflow for crystalized ligand preparation. 
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it is presumed to be the active conformation. The final data set of crystalized ligands 

contains 43 LTA4H crystalized ligands and 94 sEH crystalized ligands. 

2.2.2 Active ChEMBL compounds 

The second batch of active compounds were collected from the ChEMBL database. 

ChEMBL database provides an open access collection of large-scale bioactivities of small 

molecules.103 All compounds tested on our two targets were downloaded in SMILES 

format105 with corresponding binding affinity. For LTA4H 1,022 compounds (status 2017- 

08-10) and 2,453 sEH compounds (status 2017-08-15) were downloaded from source 

(Figure 13). SMILES format was translated into sdf format. Hydrogens were added using 

the Wash node (provided by Chemical Computing Group Inc.; settings: remove lone pairs, 

deprotonate strong acids, remove minor components, protonate strong bases, add 

hydrogens)81. Duplicates of compounds were filtered, leaving 546 LTA4H compounds and 

2,012 sEH compounds. As true active only compounds with a binding affinity smaller than 

1.0 µM were selected (LTA4H: 382 compounds, sEH: 1,384 compounds). To generate 

potential active poses of those compounds, molecular docking was conducted 

(sections 3.3 and 3.5).  

2.2.3 Inctive ChEMBL compounds 

The ChEMBL23 data set built the foundation of inactive compounds, which are required 

for the classification data set. The entire ChEMBL23 data set, containing 

1,727,112 molecules (status 2017-05-30), was downloaded into KNIME (Figure 14). A 

molecule property filter was applied to restrict the molecular weight between 200 g/mol 

and 500 g/mol, comparable to the active compounds. Hydrogens were added using the 

Wash node (provided by Chemical Computing Group Inc.)81. From the filtered 1,371,762 

molecules, 1,000 were randomly selected using the Row Sampling node (provided by 

KNIME AG).104 3D-conformations were generated using the docking procedure described  

 

Figure 13: KNIME workflow for active ChEMBL compound preparation. 

µM
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in section 3.3. 4,768 poses were generated for LTA4H, for sEH, 4,792 poses were 

generated. 

2.2.4 Combinatorial library 

In general, a combinatorial library is the result of combinatorial chemistry, where a 

chemical reaction generates many related compounds.106 These libraries can be 

generated via chemical synthesis or as in this case virtually by computer software.  

We designed a combinatorial library specially to identify new dual active compounds for 

LTA4H and sEH. The key fragment used as the constant reaction partner was 3-[4-

(benzyloxy)phenyl]propionic acid C1. The corresponding alcohol (3-[4-

(benzyloxy)phenyl]propanol) was initially identified by Amano et al.107 as a fragment 

which binds to sEH and exhibits moderate potency and ligand efficacy. Using this 

fragment, the combinatorial library was focused on generating possible lead compounds 

inhibiting the targets of interest LTA4H and sEH. As reaction partners, amine building 

blocks were downloaded from ZINC database.108 From six vendors (Acros, Alfa-Aesar, 

Apollo Scientific, Fluorochem, Sigma Aldrich, TCI) purchasable amine building blocks 

were downloaded (status 2017-10-13). 354,510 fragments in SMILE format were 

collected from the libraries and loaded into KNIME. After that, several filtering steps 

wereperformed. First, compounds with potential reactive groups were excluded (metals, 

phosphor-, N/O/S-N/O/S single bonds, thiols, acyl halide, Michael Acceptors, azides and 

esters)81 using the MOE Descriptors node (provided by Chemical Computing Group Inc.)81, 

reducing the number of building blocks to 242,305. Amides and sulfonamides were 

filtered out, as well as duplicate structures reducing the number to 27,768 building blocks. 

The library was generated using the Combinatorial Library application in the MOE GUI. 

The reaction amide/condensation was selected. For compound 1 (C1) the key fragment 

3-[4-(Benzyloxy)phenyl]propionic acid was selected. For reaction partner 

compound 2 (C2) the amine building blocks were set (Figure 15). The resulting 

 

Figure 14: KNIME workflow for inactive ChEMBL compound preparation.  
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combinatorial library contained 25,153 compounds. A molecular weight filter was applied 

to limit the molecular weight to smaller than 500 g/mol. Tertiary amides, which were 

generated through the condensation reaction, were excluded. The final combinatorial 

library contains 20,630 related but unique compounds.  

 

2.3 2D-fingerprints 

 

2D-fingerprints were originally developed for similarity search in large chemical libraries. 

The 2D-fingerprint is an abstraction of the ligand whereby information is lost, however it 

allows it to make compounds comparable.109 Information coded into 2D-fingerprints are 

extracted from atom and bond types, and graph distances derived from chemical graphs. 

This information is stored as bits in a Bit-String that serves as a fingerprint scheme. Each 

bit in the fingerprint corresponds to a chemical property, for example a substructure 

feature. If the feature is present in the chemical structure, the corresponding bit is set on 

(=1). Based on fingerprint similarity (Tanimoto coefficient110) to a biologically active 

compound, those fingerprints can be used to identify new active compounds or more 

potent compounds to a target of interest.32,111,112 In this work, four different 2D-

fingerprints (AtomPair113, FeatMorgan29, Morgan114 and MACCS28) have been used to 

describe the compounds in the assembled data sets found in section 2.2.  

The AtomPair fingerprint (RDKit) describes two atoms with atom descriptions and the 

distance between the two atoms. The atom description includes its chemical atom type, 

the number of non-hydrogen atoms and the number of bonding π electrons  

(Figure 16).26,113,115 The following steps are conducted for every pair of heavy atoms 

 

Figure 15: Condensation reaction between C1 and C2. (A) MOE GUI for building the 

combinatorial library. (B) C1, key fragment 3-[4-(benzyloxy)phenyl]propionic acid. C2, 

exemplary amine building block. 
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when creating an AtomPair fingerprint: 1) Extraction of given pair of heavy atoms; 

2) encoding of descriptors, atom type, number of bonds for both atoms and their 

topological distance; 3) encoded descriptors are converted into a bit string; 4) bit string 

is concatenated into one number; 5) The number is hashed into the index space; 6) bit in 

the corresponding fingerprint scheme is set on (=1). 

The Morgan fingerprint (RDKit) is an ECFP-like circular fingerprint (Extended-

connectivity fingerprints). Structures are represented by assigning numbers to heavy 

atoms combining several connectivity features (element type, number of heavy atoms, 

number of hydrogens, charge etc.). Those substructure features are translated into a 

fingerprint scheme (Figure 17).26,29–31 First, every heavy atom is assigned a hashed 

integer identifier register various atom properties. Second, iteration captures the circular 

neighborhood around each heavy atom and is encoded into a hashed integer number. The 

diameter specifies the maximum diameter of the circular neighborhood considered for 

every heavy atom of the molecular structure. 

The FeatMorgan fingerprint (RDKit) is a FCFP-like (functional-class fingerprint) circular 

fingerprint based on the Morgan algorithm. The FCFP is an abstraction of the ECFP 

fingerprint, where atom identifiers are a set of pharmacophoric identifiers (hydrogen-

bond acceptor and donor, negatively and positively ionizable, aromatic, halogen). 26,29  

 

Figure 16: General construction of the AtomPair fingerprint. (Figure after 

Jelínek et al.)115 

 

Figure 17: General construction of the Morgan fingerprint. (Figure after Rogers et al.29) 
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The MACCS fingerprint (Molecular ACCess System) (RDKit) is translated into SMARTS 

pattern, corresponding to 166 MACCS keys describing possible substructures. The 

SMARTS pattern are used to describe a molecular structure in a fingerprint scheme 

(Figure 18). 26–28 

 

2.4 3D-fingerprints 

 

3D-fingerprints are derived from 2D-fingerprints and include three-dimensional 

information (pharmacophoric patterns, surface properties, molecular volumes or 

molecular interaction fields) with the purpose to better represent the actual 3D- 

conformation. In this work, the 3D-fingerprint Protein-Ligand Interaction Fingerprint 

(PLIF)116 was used to represent the compounds in the assembled data sets found in 

section 2.2. The PLIF from MOE2018.0101 summarizes the interaction between ligands 

and receptors using a fingerprint scheme. Ten potential contacts (sidechain hydrogen 

bonds (donor or acceptor), backbone hydrogen bonds (donor or acceptor), solvent 

hydrogen bonds (donor or acceptor), ionic attraction, metal ligation and arene contacts) 

and surface contacts) are integrated in the current PLIF version (Figure 19). The 

algorithm analyses the compound poses in the receptor structure and records all 

occurring interactions. Each amino acid residue involved in any of the collected 

interactions is classified into categories by following a general scheme, which is shown in 

Figure 19. If a fingerprint for a specific pose has less than 50 bits set all interactions of 

this pose are included in the fingerprint. If the aforementioned fingerprint exceeds 50 bits  

 

Figure 18: General construction of the MACCS fingerprint. A hypothetical 15-bit fingerprint 

representing a MAACS fingerprint. Three bits are set on (=1) because the substructures they 

represent are present in the hypothetical molecular structure. (Figure after Cereto-

Massagué et al.28) 

0 0 0 0 1 0 0 0 1 0 0 0 1 0 0
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interactions will only make it into the fingerprint, if at least two compounds in the docking 

show that interaction. This restriction is applied to emphasize bits belonging to a common 

binding mode. For each interaction type a low and high bit can be set. The minimum 

thresholds for low and high bits are by default 0.5 kcal/mol and 1.5 kcal/mol, 

respectively. If the occurring interaction outreaches the low bit threshold, the bit is 

set (1). If the occurring interaction also outreaches the high bit threshold, the bit is also 

set (1). This results in possible bit patterns of 00 (nether low or high threshold is reached), 

10 (only low threshold is reached), or 11 (both low and high thresholds are reached), 

respectivly.81,117 

 

2.5 Fingerprint calculation 

 

The five fingerprints described in sections 2.3 and 2.4 were used to represent the 

molecular structure of the compounds described in section 2.2. Calculation of the 

fingerprints was carried out in a KNIME workflow (version KNIME 3.6.1104). 

The four compound data sets include the crystalized ligands (43 LTA4H ligands, 94 sEH 

ligands), active ChEMBL compounds (382 LTA4H compounds, 1,384 sEH compounds), 

inactive ChEMBL compounds (1,000 compounds) and the combinatorial library (20,631 

compounds). All ligands and compounds were combined into one data set for LTA4H 

(22,056 compounds) and one data set for sEH (23,107 compounds) as preparation for the 

fingerprint calculation.  

 

Figure 19: General scheme of the Protein-Ligand Interaction Fingerprint. The scheme 

shows sample interactions taken from the MOE2018 manual. 
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The RDKit Fingerprint node was used to calculate the AtomPair, Morgan, FeatMorgan and 

MACCS fingerprint. The following settings were set for the different types of fingerprints. 

For the AtomPair fingerprint, the fixed-length bit string was set to 1,024, which is the 

standard bit string length. The maximum path length (distance between atoms) for an 

atom pair was set to default 30. For the Morgan and FeatMorgan fingerprint, the bit string 

length was set to 1,024, with a radius of 2. For the MACCS fingerprint, the RDKit 

implementation of the 166 public MACCS keys were used. Afterwards, the bit string 

fingerprints were expanded into individual columns with one column for each bit in the 

bit sting (Fingerprints Expander node provided by Erlwood Cheminformatics). This step 

was necessary for the following predictions of new active compounds using machine 

learning models (sections 3.7-3.9). 

The PLIF Scores node (provided by Chemical Computing Group Inc.)81 was used to 

calculate the PLIF fingerprint. Default settings were used for calculation. The minimum 

thresholds for low and high bits are the following: 

- Sidechain H-bond donor/acceptor: low: 0.5 kcal/mol, high: 1.5 kcal/mol 

- Backbone H-bond donor/acceptor: low: 0.5 kcal/mol, high: 1.5 kcal/mol 

- Solvent H-bond donor/acceptor: low: 0.5 kcal/mol, high: 1.5 kcal/mol 

- Ionic attraction: low: 0.5 kcal/mol, high: 1.5 kcal/mol 

- Surface contacts: low: 20 Å2, high: 50 Å2 

- Metal ligation: low: 0.5 kcal/mol, high: 3.5 kcal/mol  

- Arene contacts: low: 0.5 kcal/mol, high: 1.5 kcal/mol 

The bit length is set to a maximum of 250 bits, if this number is exceeded following bits 

will be discarded.  

The PLIF fingerprint requires 3D-conformations of all compounds. Except for co-

crystalized ligands, docking had to be performed to generate docking poses of all 

compounds. The docking procedure is described in sections 3.3-3.5. Resulting from this 

procedure five poses for each compound were generated. PLIF similarity between the 

crystalized ligands and the compound poses was used to select one pose per compound. 

The pose with the highest similarity to any of the crystalized ligands was chosen. Noise in 

the following machine learning step was reduced, since potentially incorrect docking 

poses were eliminated.  
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2.6 Machine learning prediction 

 

For each target of interest (LTA4H and sEH), fingerprint (PLIF, AtomPair, FeatMorgan, 

Morgan and MACCS) and machine learning algorithm (SVC, RF, XGB and ADA) a prediction 

model was built. Optimized parameters and partitioning schemes (splitting data set into 

training and test set) were used for model building. Parameters were optimized to achieve 

best possible prediction accuracies. A description of the optimization process can be 

found in section 3.6. The optimized models were used to predict the class labels (active or 

inactive) of the combinatorial library compounds containing the five calculated 

fingerprints (2D and 3D). All optimizations and predictions were made in Jupyter 

notebook118 using the scikit-learn python package.119 Jupyter notebook is an open source 

web application to create code, equations and visualizations. Scikit-learn is an open 

source machine learning library for the python programming language. The library 

contains applications for supervised and unsupervised learning, model selection and 

evaluation, visualization and many more in the context of machine learning. The code 

used in this work for all optimization steps and the final predictions can be found in the 

appendix section 7.1 - 7.3. 

 

2.7 General synthesis route 

 

The results of the machine learning predictions are data sets of compounds, which are 

predicted to be active on the targets of interest using different fingerprints and machine 

learning algorithms. For each molecular representation type (2D and 3D) one fingerprint 

with one machine learning method was selected. From those compounds predicted to be 

active (section 3.7 and 3.9), a selection of compounds was cherry picked for synthesis to 

validate the method developed in this work. Feasibility of synthesis, estimated solubility 

and uniqueness of the compounds (amongst the selected compounds and compared to 

known inhibitors) were used as guidelines for cherry picking. The synthesis of the 

compounds was conducted by Kerstin Hiesinger. The reagent 3-(4-

(benzyloxy)phenyl)propionic acid was synthesized by Felix Zhu. Three different 

procedures form the base of the synthesis of the 14 selected compounds (sections 3.7 

and 3.9).  
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Procedure A: 

1.1 eq 3-(4-(benzyloxy)phenyl)propionic acid, 1.1 eq PyBOP (benzotriazol-1-yl-

oxytripyrrolidinophosphonium hexafluorophosphate) as the coupling reagent, 0.5-1.1 eq 

HOBt·H2O (hydroxy benzotriazole) to improve efficiency of the synthesis and 1.0 eq 

corresponding amine were dissolved in absolute THF (Tetrahydrofuran). Further, 1.5-

3.0 eq DIPEA (N,N-diisopropylethylamine) was added and the mixture stirred either 

for16 hour at room temperature or 1 hour at 60 °C under microwave irradiation 

(Scheme 1). After solvent removal, the residue was dissolved in ethyl acetate and was 

washed three times with demineralized water and one time with brine. The organic phase 

was dried over MgSO4 (magnesium sulfate) and filtered. Under reduced pressure the 

solvent was removed, and the obtained oil was purified via column chromatography. A 

solid was obtained as the final product. 

Procedure B: 

1.0 eq 3-(4-(benzyloxy)phenyl)propionic acid, 1.0-1.3 eq amine derivative, 1.2 eq 

EDC∙HCl (1-Ethyl-3-(3-dimethylaminopropyl)carbodiimide) as the coupling reagent and 

a catalytic amount of 4-DMAP (4-Dimethylaminopyridine) were dissolved in absolute 

DCM (dichloromethane). The mixture was heated to 60 °C for 1 hour under microwave 

irradiation (Scheme 2). Under reduced pressure the solvent was removed, and the 

residue was purified via column chromatography. The obtained solid was purified further 

with preparative HPLC (high-performance liquid chromatography) to gain purities over 

95%. 

 

 

Scheme 1: General synthesis rout of procedure A. 

 

Scheme 2: General synthesis rout of procedure B. 
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Procedure C: 

Under argon atmosphere 1.5 eq 3-(4-(benzyloxy)phenyl)propionic acid, 1.5 eq BTFFH 

(Fluoro-N,N,N′,N′-bis(tetramethylen)formamidinium hexafluorophosphate) as the 

coupling reagent and 4.5 eq DIPEA (N,N-diisopropylethylamine) were dissolved in 3 mL 

absolute DCM (dichloromethane). The mixture was heated to 50 °C for 4 hours under 

microwave irradiation. Additionally, 1.0 eq 4-trifluoromethyl-oxazol-2-ylamine, 

dissolved in 3 mL absolute DCM, was added and heated to 50 °C for 72 hours under 

microwave irradiation (Scheme 3). The reaction mixture was diluted with ethyl acetate 

and washed three times with demineralized water. The precipitate, which was generated 

during the washing steps, was filtered. The organic phase was dried over MgSO4 

(magnesium sulfate), filtered and the solvent was evaporated. The residue was purified 

with column chromatography and further with preparative HPLC. 

The results of the synthesis can be found in section 3.10. 

 

2.8 Fluorescence based LTA4H assay 

 

The inhibitory activity of the synthesized compounds was tested for method validation on 

the target receptor LTA4H. All biochemical testing was carried out by Kerstin Hiesinger 

and Lilia Weizel. 

Besides the identified tripeptide PGP from Snelgrove et al.65, Orning et al.120 could show 

that LTA4H preferential hydrolyzes tripeptides with an arginine residue on the N-

terminal end. This knowledge was used to design a fluorescence-based assay to determine 

IC50 values for the synthesized compounds. The activity assay was performed according 

to the protocol published by Wittmann et al.121 with minor modifications (Figure 20). The 

assay is based on the hydrolyzation of the non-fluorescent substrate L-Arginine-7-amido- 

 

Scheme 3: General synthesis rout of procedure C. 
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4-methylcoumarine by LTA4H into the fluorescent substrate 7-amido-4-

methylcoumarine. The assay is conducted in a 96-well plate where the protein as well as 

the compound that is to be examined are pre-incubated. An increase of fluorescence with 

an extinction of 360 nm and an emission of 465 nm is detected after admitting the 

substrate. If the compound inhibits the protein, the fluorogenic substrate hydrolysis is 

blocked. Therefore, the increase in fluorescence should be lower. The hydrolysis of the 

substrate is detected over a period of 30 minutes. For reference a buffer control (without 

protein and without inhibitor) and a protein control (without inhibitor) was placed on 

each plate. To determine inhibitory activities of the compounds, the assay was conducted 

using at least five different compound concentrations. The optimal protein concentration 

of 0.3 µM (50 mM Tris (tris(hydroxymethyl)aminomethane; component of buffer 

solution), 500 mM NaCl, pH 8 with 0.01% Triton-X 100 (detergent to prevent compound 

aggregation)) and 200 µM of the substrate was used. A blank control (1% pure DMSO) as 

well as a positive control (1% pure DMSO with protein) was used. All measurements were 

performed in three independent experiments and in triplicates. Percent inhibition was 

calculated by referencing the slope in the linear phase of the reactions to the slopes of 

buffer and protein controls in MS Excel. For further fitting GraphPad Prism 7 was used 

(sigmoidal dose response curve fit, variable slope with 4 parameters). 

Results of the activity assay can be found in section 3.11. 

 

 

 

 

Figure 20: Schematic representation of the fluorescence based LTA4H assay. Protein and 

compound are incubated for 30 minutes, afterwards the substrate is added. Fluorescence is 

detected, inhibitory activities are determined. 

Protein + compound Incubation Adding substrate Fluorescence detection
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2.9 sEH activity assay 

 

The inhibitory activity of the synthesized compounds was test for method validation on 

the target receptor sEH. All biochemical testing was carried out by Kerstin Hiesinger and 

Lilia Weizel. 

Hydrolase activity of sEH was experimentally determined using an adaption of the 

fluorescence-based assay described by Lukin et al.122 and Hahn et al.123 (Figure 21). It is 

based on the hydrolysis of the non-fluorescent substrate PHOME (3-phenyl-cyano- (6-

methoxy-2-naphthalenyl) methylester-2-oxiran-acetic acid) by sEH into the fluorescent 

substance 6-methoxy-2-naphthaldehyde. The substrate hydrolysis is monitored via 

fluorescence change at an extinction of 330 nm and an emission of 465 nm using a Tecan 

Infinite F200 Pro plate reader. A dilution series of the compounds to be tested in DMSO 

was generated. For each concentration 1 µL of the compound and a mixture of 

recombinant human full length sEH (3 nM) in Bis-Tris buffer (pH 7) with 0.1 mg/ml BSA 

and 0.01% Triton-X 100 was added into the wells. The plates were incubated for 45 

minutes at room temperature. The reaction was started by adding 10 µL PHOME solution 

(50 µL) and monitored for 45 minutes. A blank control (1% pure DMSO) as well as a 

positive control (1% pure DMSO with protein) was used. All measurements were 

performed in three independent experiments and in triplicates. The termination of 

inhibitory activities was described above in the LTA4H activity assay (section 2.8). 

Results of the activity assay can be found in section 3.11. 

 

 

Figure 21: Schematic representation of the fluorescence based sEH assay. Protein and 

compound are incubated for 45 minutes, afterwards the substrate PHOME is added. 

Fluorescence is detected, inhibitory activities are determined. 

Protein + compound Incubation Adding substrate Fluorescence detection
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3 Results and Discussion 

 

3.1 Docking validation 

 

Two docking software (MOE and PLANTS) were validated in the following section. The 

use of various docking software to generate docking poses is used to analyze the influence 

of docking poses on the way to predict novel dual active compounds. The general function 

for the docking software can be found in section 2.1. The generation of docking poses was 

necessary since the 3D-fingerprint called Protein-Ligand Interaction Fingerprint (PLIF; 

provided in the drug discovery software package MOE 2018.010181) requires poses of the 

compounds in the targets of interest. This fingerprint was used as an example of 3D-

fingerprints. The results of 3D-fingerprints as a molecular representation were compared 

to the simpler 2D-fingerprint molecular representation.  

For validation, a re-docking was conducted, where the crystallized ligands are docked into 

their corresponding receptors. Since the binding modes of the ligands are known, the 

accuracy of the docking software was evaluated based on the RMSD between the 

crystallized ligand and the top five ranked docking poses. A pose with an RMSD smaller 

than 1.0 Å was defined as accurate in this work. This is a stricter criterion for the 

validation of docking poses than the general standard of an RMSD of less than 2.0 Å.124,125  

3.1.1 MOE 

MOE81 docking validation was implemented in a KNIME workflow. The PDB Downloader 

node (provided by Vernalis)126 was used to download 45 LTA4H and 94 sEH PDB 

structures from the Protein Data Bank12 (section 2.2.1). Superposition of crystal 

structures was conducted with the MOE GUI. The structures were loaded into MOE as an 

MDB file.  

First, sequence and structural alignment using default setting was conducted. In a second 

step, the current alignment was used to superpose all residues and ligands from the 43 

LTA4H crystal structures (apo-structures with PDB code 3B7S and 3B7T were removed) 

and 94 sEH crystal structures. In MOE 2018 the default sequence alignment settings are 

the following: 
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Blosum62 scoring matrix was used to score the alignments between the protein 

sequences. Penalty parameters for “gap start” and “extend” (10 and 2 respectively) are 

taken from low-level group-to-group Needleman-Wunsch calculations. The alignment is 

built up using the tree-based method, which is an all-against-all strategy to build the initial 

alignment.127  

The structural superposition used only alpha carbon atoms for the calculation of the 

superposition. After alignment and superposition, the average RMSD between all LTA4H 

structures was 0.271 Å. The structures had an overall sequence identity of 96% and only 

differ in the first 23 places. The average RMSD between all sEH structures was 0.368 Å. 

PDB code 3CHP128 was chosen as the structure for LTA4H docking. The structure has a 

resolution of 2.1 Å and is co-crystalized with the ligand 4BO (Figure 22 A). For sEH, PDB 

code 4Y2T107 was chosen as the structure for docking. The structure has a resolution of 

2.4 Å and is co-crystalized with the ligand 49Q (Figure 22 B). 

Figure 23 shows the KNIME workflow of the following docking validation steps. The 

superposed structures were reloaded into KNIME in mol2 format. The binding site was 

defined with dummy atoms using the position of all crystalized ligands.  

Using the Complex Splitter node (provided by Chemical Computing Group Inc.)81, receptor 

and ligands were split from the complex structure.  

 

Figure 22: Co-crystalized ligands of LTA4H and sEH. (A) Ligand 4BO of crystal structure 

3CHP (LTA4H). (B) Ligand 49Q of crystal structure 4Y2T (sEH). 

 

Figure 23: KNIME workflow describing the MOE docking validation. 

Superposed

PDB structures
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Before docking, a maximum of 100 conformations of every ligand was generated with the 

Conformations node (provided by Chemical Computing Group Inc.)81 using the 

LowModeMD method. The LowModeMD search method generates conformations using a 

short ~0.5 ps molecular dynamics run.129,130 All settings were left at default with an 

energy window of 7.0 kcal/mol (conformations will be discarded if their potential energy 

is greater than Emin + s, where Emin is the lowest energy among the generated 

conformations and s is the specified energy window) and an RMSD limit of 0.25 Å 

(conformations with a RMSD less than the specified RMSD limit are considered duplicates 

and will be discarded). 722 conformations were generated for LTA4H ligands and 1,391 

conformations for sEH ligands. For LTA4H an average of 16.8 conformers per compound 

and 14.8 conformers per compound for sEH were obtained.  

The generated conformers were docked into their corresponding receptor structure using 

the Docking placement node (provided by Chemical Computing Group Inc.)81. For each 

receptor 20 poses were generated using the Triangle Matcher placement method 

(section 2.1.1).  

In the next step all generated poses were scored using the Complex Scoring node 

(provided by Chemical Computing Group Inc.)81. All five MOE scoring functions 

(London dG, ASE, Affinity dG, Alpha HB, GBVI/WSA dG) were used for scoring. The 10 best 

scoring poses (highest ranked) for each receptor and scoring function were filtered 

(Top N node, provided by Chemical Computing Group Inc.)81 for further processing. 

The generated poses may still be strained and hydrogen bonds not optimally oriented. 

Therefore the remaining poses were refined using the Pose Refinement node (provided by 

Chemical Computing Group Inc.)81. Pose refinement uses a force field minimization of the 

poses generated in the docking placement. All settings were set as default using the 

Amber 10:EHT force field95 and fixed receptor atoms (see section 2.1.1 for more details). 

The refined poses needed to be re-scored (since a pose minimization was conducted in 

the previous step) using the Complex scoring node. All five scoring functions were used 

for scoring. The number of poses was further reduced to the five best scoring poses using 

the Top N node.  

Applying this workflow consisting of conformer generation, docking placement, complex 

scoring, Top N filter, pose refinement, complex scoring and Top N filter (Figure 23), all 

possible combinations of scoring functions for placement and refinement provided in 
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MOE could be validated. The scoring functions used in the placement and refinement step 

have great impact on the resulting selection of re-docked poses. For this reason, all 

possible combinations of scoring functions were analyzed by calculating the RMSD 

between crystalized ligand and the top five re-docked ligand poses. Of the top five re-

docked poses, the one with the smallest RMSD to its crystalized ligand was used in the 

final assessment. Those results are shown in Figure 24 for a selection of scoring function 

combinations. 

For each protein-ligand complex (43 for LTA4H and 94 for sEH) 25 poses, one for each 

scoring function combination, were collected. As the final validation step, the number of 

poses within a RMSD of 1.0 Å and 2.0 Å to the crystallized ligands were analyzed for each 

scoring function combination to identify the optimal combination for both target 

receptors (LTA4H and sEH). In both cases the default settings with London dG for 

placement and GBVI/WSA dG for refinement resulted in poses with a minimum RMSD in 

the re-docking. In case of LTA4H, 46.5% of the re-docked ligands have an RMSD ≤ 1.0 Å 

(Figure 24 A). In the re-docking of sEH, 55.4% of the ligands have an RMSD ≤ 1.0 Å 

(Figure 24 B). Within an RMSD ≤ 2.0 Å, 69.8% (LTA4H) to 79.4% (sEH) of the bioactive 

ligand conformations can be reproduced in the re-docking. Results for all scoring function 

combinations tested can be found in the appendix Tables A1 and A2. 

 

Figure 24: MOE docking validation for LTA4H and sEH. Percentage of docking poses for (A) 

LTA4H and (B) sEH within different RMSDs of the crystalized ligand position. Results for a 

selection of scoring function combinations is shown. 



41 

3.1.2 PLANTS 

The PLANTS docking algorithm was validated as a second docking tool. PLANTS docking 

was included in a KNIME Workflow. The 43 LTA4H crystal structures and 93 sEH crystal 

structures were used for docking validation. Each crystalized ligand was re-docked into 

the corresponding receptor. For each crystal structure, an individual configuration file 

had to be created. In these configuration files the input protein and ligand file, the binding 

site center and radius, number of output poses and the scoring function had to be defined.  

For LTA4H the zinc ion in the binding site was chosen as the center of the binding site for 

each individual receptor structure. For sEH a manually selected dummy atom in the 

approximated center of the binding site was chosen. 

Different binding site radii were set (10, 15, 20 and 25Å) and all three available scoring 

functions were tested (CHEMPLP, PLP, PLP95). For each crystalized ligand, five docking 

poses were generated. This led to 12 different docking set ups which had to be defined in 

the configuration file.  

A KNIME workflow was used for the configuration file generation. The RMSD between 

crystalized ligand and the five re-docked ligand poses was calculated for each 

combination of scoring function and binding site radius. Following the MOE docking 

validation, of the top five re-docked poses, the one with the smallest RMSD to its 

crystalized ligand was used in the final assessment. Figure 25 A shows a selection of 

results for the target LTA4H. The scoring function CHEMPLP with a binding site radius of 

 

Figure 25: PLANTS docking validation for LTA4H and sEH. Percentage of docking poses for 

(A) LTA4H and (B) sEH within different RMSDs of the crystalized ligand position. Given are the 

three different scoring functions with the binding site radius after the underline. 
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15 Å resulted in a docking pose with a minimal RMSD. 48.8% of the re-docked ligands can 

be found within an RMSD of 1.0 Å. Within an RMSD of 2.0 Å, 90.7% of the re-docked 

ligands can be found. 

The same combination of scoring function and binding site radius (CHEMPLP with a 

radius of 15Å) led to the best results for sEH (Figure 25 B). Results for all tested scoring 

function and binding site radii can be found in appendix Tables A3 and A4.  

 

3.2 Comparison of docking tools MOE and PLANTS 

 

The accuracies of the docking tools MOE and PLANTS were validated by re-docking the 

crystalized ligands in the binding sites of LTA4H and sEH. The accuracies were 

determined by how often the re-docked structures were found in a 1.0 Å and 2.0 Å radius 

of the crystalized ligands. Table 1 shows the results of the docking accuracies for MOE 

and PLANTS docking.  

Comparing both targets, it can be said that docking into the LTA4H binding site is more 

difficult than docking in the sEH binding site. When using MOE docking, ~9% more 

ligands are found within an RMSD of 1.0 Å (compared to the crystalized ligands) for sEH 

compared to LTA4H (Table 1, columns 1 and 3). In PLANTS docking the difference is even 

greater with ~30% (Table 1, columns 2 and 4). 

MOE and PLANTS perform nearly with the same docking accuracy on LTA4H and an RMSD 

smaller 1.0 Å (Table 1, columns 1 and 2). Looking at an RMSD of smaller 2.0 Å PLANTS 

docking leads to 90% correct docking poses, where on the other hand MOE docking only 

Table 1: Comparison of docking accuracy between MOE and PLANTS. The docking accuracy 

(RMSD between crystalized ligands and re-docked ligands) of MOE and PLANTS are shown. The 

percentage of re-docked ligands with an RMSD of smaller 1.0 and 2.0 Å are shown 

LTA4H sEH 

MOE PLANTS MOE PLANTS 

RMSD ≤ 1.0 Å RMSD ≤ 1.0 Å 

46.5% 48.8% 55.4% 77.2% 

RMSD ≤ 2.0 Å RMSD ≤ 2.0 Å 

69.8% 90.7% 79.4% 95.7% 
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reached 70% correct docking poses (Table 1, columns 1 and 2). The differences between 

MOE and PLANTS are even more pronounced when looking at the sEH docking accuracies.  

PLANTS produced correct poses in 77% of the cases with an RMDS smaller 1.0 Å, MOE 

reaches 55% (Table 1, columns 3 and 4). 

One explanation for the large docking accuracy differences between LTA4H and sEH lies 

in analyzing the different binding sites. Both binding sites have approximately the same 

volume (LTA4H: 4,298 Å3, sEH: 4,258 Å3). The main difference is the shape of the binding 

sites. The LTA4H binding site has an L-shape form which seems to be more difficult to 

dock the compounds into (Figure 26 A). The sEH binding site is nearly linear, which 

makes it easier to dock the compounds into the binding site (Figure 26 B). 

The validation of MOE and PLANTS docking tools lead to the statement, that PLANTS is 

the better docking tool taking docking accuracy (Table 1) and calculation time 

(sections 3.3-3.5) into account. Docking the combinatorial library of 20,630 compounds 

is two times faster in PLANTS (14 days) than in MOE (30 days). 

 

3.3 MOE docking procedure of compound batches 2 and 3 

 

All compounds were docked using the batch docking function in MOE. A batch file 

generated in MOE is an SVL (Scientific Vector Language) source code containing the 

docking configurations. The configurations were defined in the MOE GUI docking tool. The 

general docking settings were set as follows: The receptor was defined using the prepared 

receptor structure for 3CHP (LTA4H) and 4Y2T (sEH). The binding site was defined by 

 

Figure 26: Binding site shape of LTA4H and sEH. (A) L-shaped binding site of LTA4H (PDB: 

3CHP). (B) Linear shaped binding site of sEH (PDB: 4Y2T). 

A B
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the volume occupied by all crystalized ligands (after superposing all available complex 

structures, see section 2.2.1). This space was filled with dummy atoms using the Site 

Finder function in the MOE GUI (section 2.1.1). Ligand structures were loaded as an MDB 

file. The method for placement and refinement, as well as the corresponding scoring 

functions were set according to the results of the docking validation (section 3.1.1): 

- Triangle Matcher as placement method with the scoring function London dG, 

generation of 10 poses.  

- Rigid receptor as refinement method with the scoring function GBVI/WSA dG, 

generation of 5 poses.  

Following specified docking time corresponds to a working machine with an i7 core, 

3.30GHz CPU and 64 GB RAM. 

Docking of the ChEMBL active compounds resulted in 1,910 poses for 382 LTA4H 

compounds with an approximated calculation time of four days. Docking of 1,384 sEH 

active ChEMBL compounds resulted in 6,920 docking poses. Calculation time for sEH was 

approximately eight days. 

Docking of 1,000 inactive ChEMBL compounds in the LTA4H receptor resulted in 4,768 

poses. For 21 compounds, less than five poses were obtained after pose refinement. For 

sEH, 4,792 poses were generated, after pose refinement two compounds obtained less 

than five poses. Calculation time was approximately seven days for each receptor. 

 

3.4 MOE docking of compound batch 4 

 

After designing the focused combinatorial library containing 20,630 compounds, poses 

were generated in a docking procedure. Since the combinatorial library contained a 

common (phenoxymethyl)benzene key fragment, a different docking approach was 

applied (compared to the docking of batches 2 and 3). Both ligands in the used receptor 

structures (3CHP, 4Y2T) contained the same fragment, see Figure 15 B (C1). Therefore, 

a template-based docking procedure was conducted. 

In a template-based docking one part of the compounds to dock is fixed according to the 

position and orientation of the overlapping structural part found in the crystal structure. 
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Template based docking saves computation time because the complexity of the 

optimization problem is dramatically reduced. 

In our case, the key fragment C1 was selected as the template. The position and 

orientation of the amine building blocks C2 were optimized during docking. An MOE batch 

file was generated for each of the receptors. According to the result of the MOE docking 

performance study settings were set as follows:  

The substructure placement method was combined with the scoring function London dG 

(maximum of 30 poses) and rigid receptor refinement method with the scoring function 

GBVI/WSA dG (maximum of 5 poses). As a result, 103,107 poses were generated for 

LTA4H and 103,100 poses for sEH. Calculation time was approximately four weeks for 

each receptor.  

 

3.5 PLANTS docking procedure of compound batches 2-4 

 

For PLANTS docking a configuration file (confic.txt) containing all settings for docking 

was generated for both targets of interest (LTA4H and sEH) and data set batches 2-4 

(ChEMBL active and inactive compounds, as well as compounds from the combinatorial 

library). According to the results of PLANTS docking validation (section 3.1.2) the scoring 

function CHEMPLP with a binding site radius of 15Å was chosen. The configuration file 

contains input location for the receptor and the compounds to be docked, an output file 

location and binding site center (LTA4H: zinc ion in the binding pocket; sEH: manually 

selected dummy atom). The docking settings defined in the configuration (binding site 

radius, number of output poses and the scoring function) were identical in each 

configuration file. All PLANTS dockings were executed using the following command in 

the command line:  

PLANTS1.1_mingwm --mode screen config.txt.  

Following specified docking time corresponds to a working machine with an i7 core, 

3.30GHz CPU and 64 GB RAM. 

The prepared active ChEMBL compounds (section 2.2.2) for LTA4H (382 compounds) and 

sEH (1,384 compounds) were docked into their respective receptors using individual 
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configuration files. Calculation time was approximately 5 hours for LTA4H and 17 hours 

for sEH. 

The 1,000 prepared inactive ChEMBL compounds (section 2.2.3) were docked into their 

respective receptor using individual configuration files. For each compound, 5 poses were 

generated by the PLANTS docking algorithm, leading to 5,000 compound poses for LTA4H 

and sEH. Calculation time was approximately 12 hours for each receptor.  

The generated combinatorial library containing 20,630 related and unique compounds 

(section 2.2.4) was docked in each receptor of interest (LTA4H and sEH). For each 

compound, 5 poses were generated by the PLANTS docking algorithm, leading to 103,155 

compound poses for LTA4H and sEH. Calculation time was approximately 2 weeks for 

each receptor. 

 

3.6 Machine learning optimization  

 

Each of the four machine learning algorithms (SVC, Random Forest, XGBoost, AdaBoost) 

were optimized for each of the five fingerprints (PLIF, AtomPair, Morgan, FeatMorgan, 

MACCS) and the two targets of interest (LTA4H and sEH). This resulted in 48 model 

optimizations (Figure 27). All models were built using the scikit-learn python package in 

a Jupyter notebook. 118,119  

 

Figure 27: Scheme of the models built and used for prediction. 
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RF      ADA

PLIF (MOE)

PLIF (PLANTS)

SVC    XGB
RF      ADA

SVC    XGB
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Machine learning
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Target
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The models were evaluated by 10-fold cross validation and accuracy was used as the 

primary measure of model performance. Model optimization was conducted on the data 

set containing the crystalized ligands, active and inactive ChEMBL compounds (in total 

1,425 LTA4H compounds and 2,476 sEH compounds).  

The data set was split into training- and test sets. This partitioning scheme was evaluated 

in a grid search between 75% and 95% of the training set size. Since classification for all 

compounds is available in this data set the different machine learning algorithms could be 

optimized by maximizing the accuracy of the model. Accuracy was calculated using default 

Table 2: Optimal partitioning scheme for LTA4H and sEH. Partitioning between 75% and 

95% training set size was optimized to achieve maximal accuracy. The range of accuracy for the 

four tested machine learning algorithms (SVC, Random Forest, XGBoost, AdaBoost) is shown. 

LTA4H 
Training set 

size [%] 

Test set  

size [%] 
Accuracy 

Mean 

accuracies 

PLIF | MOE 90 10 0.76 – 0.84 0.77 

PLIF | PLANTS 80 20 0.77 – 0.80 0.78 

AtomPair 75 25 0.96 – 0.98 0.97 

Morgan 85 15 0.98 – 0.99 0.98 

FeatMorgan 75 25 0.95 – 0.98 0.97 

MACCS 85 15 0.97 – 0.99 0.98 

sEH     

PLIF | MOE 90 10 0.62 – 0.65 0.63 

PLIF | PLANTS 80 20 0.62 – 0.67 0.64 

AtomPair 85 15 0.90 – 0.97 0.94 

Morgan 75 25 0.93 – 0.96 0.94 

FeatMorgan 80 20 0.89 – 0.94 0.92 

MACCS 80 20 0.92 – 0.95 0.93 
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settings for the four machine learning algorithms. The results of the partitioning scheme 

optimizations are shown in Table 2. For each of the four machine learning algorithms 

individual parameters were optimized in a grid search to achieve maximal accuracy. The 

parameter for SVC were left default. For Random Forest classification the number of 

estimators (number of trees) was optimized. 

For XGBoost classification the parameters,  

- max depth (maximum tree depth, increasing this value will make the model more 

complex and more likely to overfit),  

- learning rate (learning rate regulates the contribution of each tree),  

- number of estimators (number of boosting stages) and  

- alpha (L1 regularization term on weights, increasing this value will make the 

model more conservative)  

were optimized. For AdaBoost classification, the number of estimators (maximum 

number of estimators at which boosting is terminated) was optimized. Parameters 

optimized for the machine learning algorithms by the grid search can be found in           

Table 3. 

Optimal model parameters were chosen empirically based on maximal accuracy and 

computational cost. Optimized parameters and accuracy results can be found in Table 4. 

Table 3: Parameters optimized by grid search. Parameters and range of tested values with 

step size are specified. 

Machine learning algorithm Parameter Tested values 

XGBoost 

Max depth 10 – 200 | 10 

Learning rate 0.01, 0.001 

Estimators 100 – 1,000 | 100 

Alpha 0.0, 0.005 

Random Forest Estimators 10 – 1,000 | 10 

AdaBoost Estimators 10 – 200 | 10 



49 

Table 4: Optimized parameters for the used machine learning algorithms. RF: number of estimators; XGB: max depth, learning rate, number of 

estimators, alpha; ADA: number of estimators. SVC default parameters not shown. Accuracy shows the mean value from 10-fold cross validation and the 

standard deviation. 

LTA4H sEH 

Fingerprint 
Optimized 
parameters 

Accuracy Fingerprint 
Optimized 
parameters 

Accuracy 

PLIF|MOE     PLIF|MOE     

SVC Default 0.75 ± 0.02 SVC Default 0.610 ± 0.004 

RF 130 0.77 ± 0.03 RF 130 0.60 ± 0.03 

XGB 10, 0.01, 600, 0.005 0.78 ± 0.04 XGB 20, 0.01, 800, 0.0 0.60 ± 0.03 

ADA 190 0.77 ± 0.03 ADA 50 0.63 ± 0.01 

PLIF|PLANTS     PLIF|PLANTS     

SVC Default 0.68 ± 0.02 SVC Default 0.59 ± 0.01 

RF 30 0.76 ± 0.03 RF 190 0.59 ± 0.03 

XGB 40, 0.01, 500, 0.005 0.75 ± 0.03 XGB 30, 0.01, 700, 0.005 0.58 ± 0.03 

ADA 80 0.74 ± 0.03 ADA 70 0.63 ± 0.03 

AtomPair     AtomPair     

SVC Default 0.95 ± 0.02 SVC Default 0.93 ± 0.01 

RF 30 0.96 ± 0.02 RF 490 0.94 ± 0.01 
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XGB 10, 0.01, 700, 0.005 0.97 ± 0.02 XGB 10, 0.01, 900, 0.005 0.95 ± 0.01 

ADA 180 0.97 ± 0.02 ADA 180 0.93 ± 0.02 

FeatMorgan     FeatMorgan     

SVC Default 0.95 ± 0.01 SVC Default 0.90 ± 0.02 

RF 240 0.98 ± 0.01 RF 600 0.95 ± 0.01 

XGB 10, 0.01 ,800, 0.005 0.98 ± 0.01 XGB 20, 0.01, 800, 0.005 0.95 ± 0.01 

ADA 90 0.95 ± 0.02 ADA 200 0.93 ± 0.01 

Morgan     Morgan     

SVC Default 0.96 ± 0.02 SVC Default 0.92 ± 0.02 

RF 180 0.98 ± 0.01 RF 520 0.95 ± 0.01 

XGB 10, 0.01, 1,000, 0.005 0.98 ± 0.01 XGB 10, 0.01, 1,000, 0.005 0.95 ± 0.01 

ADA 110 0.98 ± 0.02 ADA 60 0.91 ± 0.02 

MACCS     MACCS     

SVC Default 0.96 ± 0.02 SVC Default 0.93 ±0.02 

RF 60 0.97 ± 0.02 RF 220 0.94 ± 0.02 

XGB 10, 0.01, 300, 0.005 0.96 ± 0.02 XGB 10, 0.01, 1.000, 0.005 0.95 ± 0.02 

ADA 30 0.94 ± 0.02 ADA 200 0.91 ± 0.02 
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Overall, regardless of used fingerprint and machine learning algorithm, the prediction 

accuracy for LTA4H is slightly better than for sEH. Comparing the accuracy of the PLIF 

fingerprint with the 2D-fingerprints, an accuracy difference of approximately 0.2 (for 

LTA4H) and 0.3 (for sEH) was obtained (Table 4).  

These results show that using the 2D-fingerprints to distinguish between active and 

inactive compounds results in 20% to 30% better results compared to the 3D-fingerprint. 

For the PLIF fingerprint, a maximal accuracy of 0.78 with the machine learning algorithm 

XGBoost for LTA4H is achieved. For sEH, the machine learning algorithm AdaBoost gives 

the maximal accuracy of 0.63. In general, accuracies using the different machine learning 

algorithms hardly differ. They range from a minimal difference in accuracy of 0.02 

(LTA4H|AtomPair, LTA4H|Morgan, sEH|AtomPair) to a maximum difference of 0.08 for 

LTA4H|PLIF PLANTS. 

Comparing the accuracy results between the targets LTA4H and sEH using the 3D-

fingerprint and the two different docking software (PLIF|MOE and PLIF|PLANTS). 

Accuracies are on average almost 20% better for LTA4H compared to sEH. The average 

accuracy difference for LTA4H between MOE and PLANTS with 4.56% and for sEH with 

2.05% is comparatively smaller. 

The results show that there is a significant difference in 2D- and 3D-fingerprints 

accuracies but no significant difference using various docking software and various 

machine learning algorithms.  

 

3.7 Machine learning prediction from PLIF/MOE docking 

 

The optimized models (section 3.6) were used to predict the class labels (active or 

inactive) of the combinatorial library compounds containing the calculated PLIF 

fingerprint. The results for the prediction of novel dual active compounds using PLIF 

fingerprint and MOE docking poses can be found in Table 5.  
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For sEH, the number of predicted active compounds includes almost the entire 

combinatorial data set (20,630). The search was focused by restricting the fingerprint 

similarity against the crystalized ligands to a Tanimoto similarity minimum of 0.5. This 

led to a reduction of the number of compounds of 29.9% for LTA4H and 9.6% for sEH 

(Table 5, column 3 and 7). Since the reduction of compounds via Tanimoto similarity is 

smaller for sEH compared to LTA4H the following statement can be made: compounds 

predicted to be active on sEH are very similar to the crystalized sEH ligands but 

compounds predicted to be active on LTA4H are less similar to the crystalized LTA4H 

ligands. The confidence of the prediction for the Random Forest model was restricted to 

be a minimum of 0.7. Results can be found in Table 5, column 4 and 8 for Random Forest. 

This restriction led to a compound reduction for LTA4H of 45.4% and 6.6% for sEH. These 

reduction results show that the Random Forest prediction for LTA4H generates many 

assumed to be active compounds with a low prediction confidence. The predictions made 

for sEH resulted in fewer assumed to be active compounds with a low prediction 

confidence since the compound reduction is less severe. To extract novel dual active 

compounds, the sets of compounds predicted to be active for LTA4H and sEH were 

compared. Compounds predicted to be active on both targets were collected. Those 

counts can be found in Table 5 in the rightmost column. The result of the PLIF fingerprint 

using Random Forest for dual active prediction resulted in 115 compounds. From those 

115 compounds a manual selection (cherry picking) of six compounds was made for 

Table 5: Number of compounds predicted to be active using PLIF fingerprint and MOE 

docking. For the target of interest (LTA4H and sEH) each fingerprint and each machine 

learning algorithm, the number of compounds to be predicted active, number of compounds to 

be predicted active with a fingerprint similarity of ≥ 0.5 against the crystalized ligands and the 

number of compounds predicted to be dual active are given. 

LTA4H sEH  

FP 
Pred. 

active 

Pred. 

active 

FP sim. 

Pred. 

active 

conf. 

FP 
Pred. 

active 

Pred. 

active 

FP sim. 

Pred. 

active 

conf 

Pred. 

dual 

activity 

PLIF    PLIF     

SVC 73 42 - SVC 20,601 18,360 - 39 

RF 659 462 163 RF 17,134 15,482 14,353 115 

XGB 1,475 812 - XGB 17,378 15,476 - 601 

ADA 1,821 1,041 - ADA 19,206 17,273 - 874 
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chemical synthesis and biological testing (Figure 28). Feasibility of synthesis, estimated 

solubility and uniqueness of the compounds (amongst the selected compounds and 

compared to known inhibitors) were used as guidelines for cherry picking. The synthesis 

(section 3.10) and following testing (section 3.11) of the selected compounds was used to 

validate the new method presented in this work. 

 

Molecular properties are used as a first assessment to evaluate the lead likeness of the 

predicted and synthesized compounds. The six synthesized compounds are structurally 

heterogeneous but show some shared structural features. All compounds have a 

minimum of three aromatic rings, whereas two aromatic rings originate from the key 

fragment C1. All compounds share an aromatic ring directly attached to the amide   

(Figure 28). The molecular weight ranges from 390 g/mol to 490 g/mol (a limit of 

500 g/mol was set in the design of the combinatorial library, see section 2.2.4). 

Compounds 4 and 5 contain an aliphatic ring system. All compounds incorporate at least 

five heteroatoms (O, N, S, F or P) (Figure 28). Table 6 shows the properties of the 

Lipinski’s rule of five, which serves as a rule of thumb to evaluate the compounds 

pharmacokinetic (molecular weight < 500 g/mol, cLogP < 5.0, H-bond donors < 5, H-bond 

 

Figure 28: Selection of six compounds for chemical synthesis using PLIF fingerprint and 

Random Forest. The red part of the structures is the key fragment C1. The coupled black part 

derives from the amine building blocks. Those building blocks correspond to the following ZINC 

compounds: (1) ZINC03888838, (2) ZINC05908671, (3) ZINC04198753, (4) ZINC19623909, 

(5) ZINC04938424, (6) ZINC01708144 

(1)
(2)

(3)
(4)

(5) (6)
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acceptors < 10). Further, the number of rotatable bonds (< 10) is listed, which was defined 

by Veber et al.131 as an additional criterion for oral bioavailability of compounds. The 

rightmost column in Table 6 shows the count of rule violation. Those calculated 

properties do not predict if a compound is pharmacologically active, but if the compound 

has possible favorable pharmacokinetic properties. Compound 5 has two violations 

coming from cLogP and the number of rotational bonds. Compounds 2 and 4 have no 

violations concerning the number of rotatable bonds. Veber et al.131 could show, that a 

low number of rotational bonds has a positive impact on bioavailability. 

In Figure 29 the pose of the six synthesized compounds docked with MOE in the LTA4H 

binding site are shown. Compounds 1,2, 4, 5 and 6 form hydrogen bonds to Met270 over 

the nitrogen atom of the amid bond. Further, all three aromatic rings are forming pi 

interactions with receptor amino acids. Only compound 3 forms an interaction to the zinc 

ion, although nearly 50% of the crystalized ligands form a strong interaction to the 

catalytic zinc ion. All docking poses pictured in this work have to be considered with care. 

In the process of docking many restrictions and simplifications are made (e.g. rigid 

receptor, scoring functions; section 2.1). Therefore, the presented docking poses are 

merely a suggestion on how the compounds may bind in the binding site. Slight 

differences in orientation and location of the compounds can lead to different interactions 

between compound and receptor. To give more information about the actual binding 

mode and formed interactions, crystallization of those compounds would have to be 

performed, which is out of scope of this work. Currently, only inhibitory activity can give 

more insights in the SAR. 

Table 6: Molecule properties of six selected compounds for synthesis using PLIF 

fingerprint and Random Forest. Compounds 1 to 6; molecular weight in Da; calculated LogP; 

Number of hydrogen bond donors; number of hydrogen bond acceptors; number of rotatable 

bonds. 

Cmp. MW [Da] cLogP 
H-bond 

donors 

H-bond 

acceptors 

Rotatable 

bond 

Rule 

violation 

1 492.5 4.87 2 5 14 1 

2 397.5 5.72 2 3 8 1 

3 390.4 4.17 1 3 11 1 

4 444.6 4.11 1 4 10 0 

5 472.6 5.59 1 3 11 2 

6 467.5 4.66 1 5 14 1 
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Figure 29: Binding poses (MOE docking) of synthesized compounds using PLIF and 

Random Forest in the receptor structure LTA4H. The right part of the structures is the key 

fragment C1. The coupled left part derives from the amine building blocks. Those building 

blocks correspond to the following ZINC compounds: (1) ZINC03888838, (2) ZINC05908671, 

(3) ZINC04198753, (4) ZINC19623909, (5) ZINC04938424, (6) ZINC01708144. Image (7) 

show the overlay of all 6 compounds in the sEH binding site, the key fragment is colored in light 

gray, the building blocks are colored as follows: orange: compound (1), green: compound (2), 

magenta: compound (3), light red: compound (4) yellow: compound (5), azure: compound. (6). 
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In Figure 30 the docking poses of the same synthesized compounds (1-6) are shown in 

the binding site of sEH. The key fragment C1 is located to the left of the binding site, 

according to the crystalized ligand in receptor PDB 4Y2T (Figure 9). The amide bond of 

the compounds is in the catalytic region of the amino acid residues Tyr383, Tyr466 and 

 

Figure 30: Binding poses (MOE docking) of synthesized compounds using PLIF and 

Random Forest in the receptor structure sEH. The left part of the structures is the key 

fragment C1. The coupled right part derives from the amine building blocks. Those building 

blocks correspond to the following ZINC compounds: (1) ZINC03888838, (2) ZINC05908671, 

(3) ZINC04198753, (4) ZINC19623909, (5) ZINC04938424, (6) ZINC01708144. Image (7) 

show the overlay of all 6 compounds in the sEH binding site, the key fragment is colored in light 

gray, the building blocks are colored as follows: orange: compound (1), green: compound (2), 

magenta: compound (3), light red: compound (4) yellow: compound (5), azure: compound (6). 
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Asp355. The amine building blocks extend to the right. Compounds 1-3 and compounds 

5 and 6 form an arene-hydrogen bond from the amino acid residue Trp336 to a CH2-group 

of the key fragment. Compound 4 forms arene-hydrogen interaction with Trp336 with 

one of the benzene rings of the key fragment C1. Compounds 2-6 form an arene-arene 

interaction of one aromatic group of their amine building block with the amino acid 

residue His524. 

 

3.8 Machine learning prediction from PLIF/PLANTS docking 

 

The results for the prediction of novel dual active compounds using PLIF fingerprint and 

PLANTS docking poses can be found in Table 7. The number of compounds predicted to 

be active by the different machine learning algorithms is listed in column 2 and 5 of    

Table 7. The number of compounds was restricted by fingerprint similarity (Table 7, 

column 6). A minimal Tanimoto similarity of 0.5 was set as a limit. 

 

 

Table 7: Number of compounds predicted to be active using PLIF fingerprint and PLANTS 

docking. For the target of interest (LTA4H and sEH) each fingerprint and each machine learning 

algorithm, the number of compounds to be predicted active, number of compounds to be 

predicted active with a fingerprint similarity of ≥ 0.5 against the crystalized ligands and the 

number of compounds predicted to be dual active are given. 

LTA4H sEH  

Fingerprint 
Predicted 

active 

Predicted 

active 

fingerprint 

sim. 

Fingerprint 
Predicted 

active 

Predicted 

active 

fingerprint 

sim. 

Predicted 

dual 

activity 

PLIF   PLIF    

SVC 168 90 SVC 18,038 13,890 52 

RF 6,030 2,856 RF 9,609 7,210 982 

XGB 5,900 3,148 XGB 8,952 6,807 977 

ADA 5,633 3,729 ADA 10,019 7,708 1,304 
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When comparing the results of the MOE and PLANTS docking some differences can be 

observed.  

The docking accuracy was already discussed in section 3.2. The number of compounds 

predicted to be active is higher for LTA4H in the PLANTS docking compared to the MOE 

docking. For sEH, the number of compounds predicted to be active is smaller by using the 

PLANTS docking compared to the MOE docking. The restriction of fingerprint similarity 

led to a reduction of predicted active compounds for LTA4H of 55% and 76% for sEH. The 

number of compounds of predicted dual activity is larger compared to the MOE docking. 

Around 1,000 compounds are predicted to be dual active using Random Forest, XGBoost 

and ADABoost (MOE in comparison: RF 115 compounds, XGB 601 compounds, ADA 874 

compounds). A manual selection of compounds for synthesis is difficult. Further 

restrictions or grouping scaffolds would be advisable to reduce this number.  

 

3.9 Machine learning prediction from 2D-fingerprints 

 

Optimized machine learning models (section 3.6) were used to predict the class labels 

(active or inactive) of the compounds in the combinatorial library. In Table 8, the results 

for the 2D-fingerprints can be found. The table is built the same way as Table 5 and   

Table 7. The fingerprint similarity was also restricted to a minimum of 0.5. Those results 

can be found in column 3 and 6 in Table 8. This restriction led to a compound reduction 

for LTA4H of 69% and 79% for sEH. To extract novel dual active compounds, the sets of 

compounds predicted to be active for LTA4H and sEH were compared. Compounds 

predicted to be active on both targets were collected. Those results can be found in 

column 7 in Table 8. For the Morgan and FeatMorgan fingerprints no dual active 

compounds were obtained. For the MACCS fingerprint in combination with the machine 

learning algorithm SVC and ADA, more than 2,000 dual active compounds were predicted. 

It is not feasible to manually inspect and cherry pick candidates for synthesis from these 

amounts of compounds. For the AtomPair fingerprint, a reasonable number of dual active 

compounds was obtained. Looking at the different machine learning algorithms:  

- SVC: 422 compounds - XGB: 53 compounds 

- RF: 116 compounds  - ADA: 107 compounds 
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LTA4H sEH   

Fingerprint Predicted active 
Predicted active 
fingerprint sim. 

Fingerprint Predicted active 
Predicted active 
fingerprint sim. 

Predicted 
dual activity 

AtomPair     AtomPair       

SVC 6,187 2,004 SVC 4,434 2,297 422 

RF 3,046 1,157 RF 2,203 864 116 

XGB 2,774 1,129 XGB 1,832 641 53 

ADA 6,739 1,726 ADA 2,434 1,173 107 

FeatMorgan   FeatMorgan    

SVC 20 15 SVC 4,320 836 2 

RF 38 27 RF 338 90 0 

XGB 301 92 XGB 640 109 0 

ADA 275 71 ADA 2,861 294 0 

Table 8: Number of compounds predicted to be active using 2D-fingerprints. For the target of interest (LTA4H and sEH) each fingerprint 

and each machine learning algorithm, the number of compounds to be predicted active, number of compounds to be predicted active with a 

fingerprint similarity of ≥ 0.5 against the crystalized ligands and the number of compounds predicted to be dual active are given. 
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Morgan   Morgan    

SVC 16,986 1,399 SVC 818 7 0 

RF 10,890 1,208 RF 626 3 1 

XGB 6,525 899 XGB 457 4 0 

ADA 7,387 880 ADA 818 7 0 

MACCS   MACCS    

SVC 7,344 7,344 SVC 8,469 8,456 3,389 

RF 619 619 RF 2,910 2,910 68 

XGB 337 337 XGB 4,151 4,151 5 

ADA 5,175 5,175 ADA 9,887 9,875 2,783 
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From the set of 116 compounds predicted to be active with Random Forest, eight 

compounds were cherry picked for synthesis. This set was chosen for a better comparison 

to the results of the selected compounds from the 3D-fingerprint. Feasibility of synthesis, 

estimated solubility and uniqueness of the compounds (amongst the selected compounds 

and compared to known inhibitors) were used as guidelines for cherry picking. The 

structure of the selected eight compounds can be found in Figure 31. Six of the eight 

compounds (compound 7, 9, 11-14) exhibit an N-substituted piperidine or pyrrolidine 

moiety. These saturated heterocycles are common elements in diverse series of LTA4H132 

and sEH133 inhibitors. All compounds incorporate three aromatic rings, two aromatic 

rings originate from the key fragment C1, the third aromatic ring is located on the opposite 

end (Figure 31). In addition, all compounds incorporate at least four heteroatoms (O, N, 

S, F or Br). Table 9 shows the molecular properties of the Lipinski’s rule of five 

(comparable to Table 9). The calculated LogP values lead to most rule violations. Only 

compounds 8, 10 and 12 have a cLogP value smaller than 5.0. Further, compounds 8 and 

12 have no rule violations at all. Whether there is a correlation between the molecular 

properties analyzed in this section and the experimentally determined inhibitory activity 

will be discussed in section 3.11.  

 

Figure 31: Selection of eight compounds for chemical synthesis using AtomPair 

fingerprint and Random Forest. The left part of the molecules is the key fragment C1. The 

right part of the structures derives from the amine building blocks from ZINC. Those building 

blocks correspond to the following ZINC compounds: (7) ZINC19481317, (8) ZINC49585019, 

(9) ZINC04384302, (10) ZINC32919586, (11) ZINC11889049, (12) ZINC11888991, 

(13) ZINC55363946, (14) ZINC02511731 

(7)

(8)

(9)

(10)

(11)

(12)

(13)

(14)

Br
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After synthesis and testing, those results are compared with the results of the tested 

compounds from the PLIF fingerprint (section 3.12). 

 

3.10 Synthesis and testing of selected compounds 

 

The general synthesis procedures A, B and C, carried out by Kerstin Hiesinger, are 

described in section 2.7. In Table 10 synthesized compounds with synthesis procedure 

and yields are listed.  

Not all of the 14 cherry picked compounds using the two different kinds of fingerprints 

could be synthesized. Compound 2 could not be isolated from the reaction mixture, 

compound 8 interfered with assay reagents and for compound 10 the reactant was not 

purchasable in a reasonable time period.  

 

Table 9: Molecule properties of eight selected compounds for synthesis using AtomPair 

fingerprint and Random Forest. Compounds 7 to 14; molecular weight in Da; calculated LogP; 

Number of hydrogen bond donors; number of hydrogen bond acceptors; number of rotatable 

bonds. 

Cmp. MW [Da] cLogP 
H-bond 

donors 

H-bond 

acceptors 

Rotatable 

bond 

Rule 

violation 

7 492.1 6.35 1 3 10 1 

8 390.2 3.91 1 3 10 0 

9 456.3 5.49 1 3 11 2 

10 406.2 4.52 2 3 12 1 

11 470.3 5.85 1 3 12 2 

12 448.2 4.40 1 3 10 0 

13 442.3 5.13 1 3 11 2 

14 442.3 5.33 1 3 11 2 
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3.11 Biological testing results 

 

For the 11 synthesized compounds binding activity values were determined for the 

targets of interest, LTA4H and sEH. The testing procedure is described in sections 2.8 

and 2.9 and was performed by Kerstin Hiesinger and Lilia Weizel. Compounds 1-6 from 

the PLIF fingerprint and compounds 7-14 from the 2D-fingerprint calculations are listed 

in Table 11 with their established binding affinity values for LTA4H and sEH. In the 

following, three predicted and found to be dual active compounds are discussed based on 

the generated docking poses.  

 

 

Table 10: List of synthesized compounds. Listed are the synthesized compounds 1 to 14 

with the corresponding synthesis procedures and yield [%]. For * different coupling reagents 

were tested, the coupling reagent CDI (1,1'-Carbonyldiimidazole) yielded 80% conversion but 

the product could not be isolated.  

Compound Procedure Yield [%] 

1 B 20% 

2 * could not be isolated 

3 C 35% 

4 A 71% 

5 B 60% 

6 A 23% 

7 B 35% 

8 A interference with assay 

9 B 75% 

10 - reactant not purchasable 

11 A 76% 

12 B 87% 

13 A 54% 

14 B 28% 
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Table 11: Inhibitory activity values of synthesized compounds. Shown are the compound 

number, the compound structure and the IC50 or % inhibition values on LTA4H and sEH. 

 

Compound 

nr. 
R 

LTA4H (IC50 or 

% inhibition) 

sEH (IC50 or 

% inhibition) 

1 

 

9% at 10 µM 3% at 10 µM 

3 
 

0.57 ± 0.08 µM 0.32 ± 0.01 µM 

4 

 

30% at 100 µM 54% at 100 µM 

5 
 

16% at 10 µM 1.3 ± 0.1 µM 

6 

 

4.7 ± 0.9 µM 4.2 ± 0.8 µM 

7 

 

4% at 10 µM 9.7 ± 3.5 µM 

9 
 

0.69 ± 0.08 µM 16.75 ± 1.11 µM 

11 
 

18.3 ± 0.8 µM 7% at 10 µM 

12 
 

0.75 ± 0.09 µM 0.5 ± 0.2 µM 

13  0.67 ± 0.04 µM 4% at 10 µM 

14  3.2 ± 0.6 µM 28.40 ± 0.97 µM 
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Receptor atoms and secondary structure elements are colored in grey, docked 

compounds are colored in dark magenta, compound surfaces are colored by lipophilicity 

(hydrophilic: magenta, neutral: white, hydrophobic: green) and the zinc ion in the LTA4H 

structures is colored in cyan. Contacts/interactions between receptor residues and the 

docked compounds are indicated by dashed lines (with an energy minimum of 

0.2 kcal/mol). Interaction strength are calculated in MOE, they range from weak 

(< 0,5 kcal/mol) to medium (< 1,0 kcal/mol) and strong (> 1,0 kcal/mol) interactions. 

Hydrophobic contacts are calculated based on a geometric model, ionic interactions are 

calculated using R-Field electrostatics and hydrogen bonds are calculated by first 

determining donor and acceptor heavy atoms followed by analyzing the 3D-geometry 

between donor and acceptor heavy atoms. 

Using the 3D-fingerprint PLIF for the prediction of novel dual active compounds, two 

selected and synthesized compounds show dual activity on the targets of interest 

(compound 3 and 6). In general, the binding activity results show, that LTA4H is more 

tolerable concerning different variations of ring, substitution patterns and N-coupled 

lipophilic moiety as long it contains an ionizable tertiary amine. 

Compound 3 shows very good dual activity of 0.57 µM on LTA4H and 0.32 µM on sEH. The 

docking poses of compound 3 in receptor LTA4H and sEH are shown in Figure 32. 

Interactions with an energy minimum of 0.2 kcal/mol between compound and receptor 

are indicated by dashed lines. In receptor LTA4H, compound 3 forms a strong interaction 

 

Figure 32: Compound 3 docked in target structures LTA4H and sEH. (A) LTA4H binding 

pocket showing the location of the Zn2+ ion (cyan sphere), docked compound 3 colored in dark 

magenta as well as the lipophilicity surface area of compound 3 (hydrophilic: magenta, neutral: 

white, hydrophobic: green); interactions between compound and receptor indicated by dashed 

line. (B) sEH binding pocket with docked compound 6 colored in dark magenta as well as the 

lipophilic surface area of compound 3 (hydrophilic: magenta, neutral: white, hydrophobic: 

green); interactions between compound and receptor indicated by dashed line. 
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between the amide nitrogen atom and amino acid Met270 as well as a strong pi 

interaction between one of the aromatic rings of the key fragment C1 and amino acid 

Ala137 (Figure 32 A). A weak interaction between the CF3 moiety and the zinc ion134 and 

a weak interaction between residue Trp311 and the key fragment is recognized in the 

docking pose. Compound 3 is located deep in the hydrophobic pocket with the 

hydrophobic key fragment C1 (Figure 32 A, on the right). In receptor sEH (Figure 32 B), 

compound 3 forms one medium-strength pi interaction to amino acid Trp336. 

Compound 3 with its oxazole moiety shows, a previously unknown chemotype for LTA4H 

and sEH. This novel scaffold shows the great value and the potential this new method 

holds in the field of drug discovery.  

Compound 6 has a moderate dual activity of 4.7 µM on LTA4H and 4.2 µM on sEH, 

respectively. The phosphonate ester moiety of compound 6 was already identified by Kim 

et al.135 to be tolerated by sEH especially with alkyl groups on the phosphonate function, 

as existing in compound 6. In receptor LTA4H, compound 6 forms a strong hydrogen bond 

to amino acid Met270 over the nitrogen atom of the amid bond. Further, all three aromatic 

rings form pi hydrogen bonds to different amino acids (weak: Tyr267, Glu318, Trp311; 

strong: Ala137). Analyzing the lipophilic surface of compound 6 in the LTA4H receptor 

structure (Figure 33 A), shows how well the compound fills the hydrophobic pocket on 

the right (see Figure 7 for binding pocket surface) with the hydrophobic key fragment C1. 

The lipophilic part of the phosphonate moiety fits in the slightly lipophilic peptidase 

 

Figure 33: Compound 6 docked in target structures LTA4H and sEH. (A) LTA4H binding 

pocket showing the location of the Zn2+ ion (cyan sphere), docked compound 6 colored in dark 

magenta as well as the lipophilicity surface area of compound 6 (hydrophilic: magenta, neutral: 

white, hydrophobic: green); interactions between compound and receptor indicated by dashed 

line. (B) sEH binding pocket with docked compound 6 colored in dark magenta as well as the 

lipophilic surface area of compound 6 (hydrophilic: magenta, neutral: white, hydrophobic: 

green); interactions between compound and receptor indicated by dashed line. 
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pocket on the left. Figure 33 B shows compound 6 docked in receptor structure sEH.  

A medium-strength pi interaction between compound 6 and amino acid residue Trp336 

is recognized. 

Using the 2D-AtomPair fingerprint for the prediction of novel dual active compounds, one 

selected and synthesized compound (compound 12) shows dual activity on the targets of 

interest. Binding affinity data for sEH indicate, that sEH is more restrictive in hosting 

different ring and substitution patterns.  

Compound 12 shows good dual activity of 0.75 µM on LTA4H and 0.5 µM on sEH. The 

docked pose of compound 12 in target LTA4H shows a strong interaction of the amide 

carbonyl to the zinc ion and amino acid residues His295 and Tyr383 (Figure 34 A). A 

weak pi interaction between the compound and amino acid Gln136 and a weak 

interaction to amino acid Met270 is recognized. The hydrophobic key fragment C1 is 

located in the hydrophobic pocket on the right (see Figure 7 for binding pocket surface). 

Figure 34 B shows compound 12 in the target sEH. Both aromatic rings of the key 

fragment C1 form pi interactions to different amino acids (weak: Met469 and Phe381; 

medium: Gln384; strong: Trp336). The piperidine moiety shows a strong pi-hydrogen 

interaction with amino acid His524 and several weak interactions with residues Phe381, 

Met419 and Trp525 (Figure 34 B). A strong interaction between the amide nitrogen and 

Asp335 is recognized in the docking pose. The lipophilic surface area of compound 12 fits 

 

Figure 34: Compound 12 docked in target structures LTA4H and sEH. (A) LTA4H binding 

pocket showing the location of the Zn2+ ion (cyan sphere), docked compound 12 colored in dark 

magenta as well as the lipophilicity surface area of compound 12 (hydrophilic: magenta, 

neutral: white, hydrophobic: green); interactions between compound and receptor indicated 

by dashed line. (B) sEH binding pocket with docked compound 6 colored in dark magenta as 

well as the lipophilic surface area of compound 12 (hydrophilic: magenta, neutral: white, 

hydrophobic: green); interactions between compound and receptor indicated by dashed line. 
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perfectly in the lipophilic surface area of the receptor (see Figure 7 for binding pocket 

surface). 

Comparing the results of the two different fingerprint strategies was one of the goals of 

this work. Both strategies (2D-fingerprints and 3D-fingerprints) result in the 

identification of novel dual active compounds. Compound 3 using the PLIF fingerprint and 

compound 12 using the AtomPair fingerprint show very good dual activity on both targets 

of interest, LTA4H and sEH. Binding affinities of 0.57 µM on LTA4H and 0.32 µM on sEH 

for compound 3 and 0.75 µM on LTA4H and 0.5 µM on sEH for compound 12 still offer 

room for optimization. The oxazole moiety of compound 3 is a previously unknown 

scaffold in LTA4H and sEH inhibition. 

 

4 Conclusion 

 

The goal of this work was to predict novel dual active compounds for the targets LTA4H 

and sEH. The prediction was realized using 2D- and 3D-fingerprints in combination with 

machine learning algorithms. 

2D-fingerprints are solely based on the information of previously published active 

ligands. This ligand-based strategy is dependent on a large set of diverse active ligand 

structures. In case of this study, the data availability was adequate for LTA4H and sEH. 

Results are biased towards the previously identified chemotypes. A careful investigation 

is necessary to overcome this bias. We created a model that generalizes adequately using 

expert knowledge and manual investigation.   

Using 2D-fingerprints has a major advantage over 3D-fingerprints regarding calculation 

time. The ligand-based strategy is very fast in generating results since only the ligand 

structure information is needed. 3D-fingerprints are based on the information contained 

in X-ray structures with various ligands. This structure-based strategy is less biased by 

chemotypes compared to 2D-fingerprints. The results of the 3D-fingerprint (PLIF) show 

that 3D-fingerprints open up the possibility to identify novel scaffolds (compound 3). The 

structurally diverse compounds predicted in this work demonstrate this advantage in 

favor of 3D-fingerprints. 3D-fingerprints are limited by the requirement of 3D-poses of 

the ligands in the targets of interest, since docking introduces a multitude of error sources. 
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These error sources propagate through the following steps. The identification of docking 

poses, which are close to the experimentally determined binding mode is greatly flawed 

due to restrictions and simplifications of currently available docking software (e.g. rigid 

receptor, scoring functions; section 2.1)25 Docking is a very time consuming process, 

which counts among the disadvantages of using the structure-based approach.  

Machine learning algorithms profit from a large amount of data. In the case of drug 

discovery the availability of active ligands is required to generate good and reliable 

results. Without numerous published active compounds, machine learning algorithms 

will possibly fail to predict novel active compounds.136  

Target selection is a crucial step in the presented method. As described in the introduction 

(section 1.4), LTA4H and sEH interact with similar ligands (arachidonic acid epoxides), 

which leads to similar binding sites concerning the hydrophobicity patterns. It is unclear 

whether this new method is applicable to completely dissimilar targets. The analysis of 

abstraction to dissimilar targets is subject of further research. 

The method developed in this work resulted in the identification of three novel dual 

potential lead compounds. Those compounds can serve as a starting point for further 

optimization regarding binding affinity, solubility and other pharmacological and 

physicochemical properties. Especially the identification of a novel scaffold (compound 3) 

as a dual active compound inhibiting LTA4H and sEH shows the potential this method 

holds. 

 

5 Summary 

 

The aim of this work was to establish a new way of predicting novel dual active 

compounds by combining classical fingerprint representation with state-of-the-art 

machine learning algorithms. Advantages and disadvantages of the applied 2D- and 3D-

fingerprints were investigated. Further, the impact of various machine learning 

algorithms was analyzed. The new method developed in this work was used to predict 

compounds, which inhibit two different targets (LTA4H61 and sEH66) involved in the same 

disease pattern (inflammation). The development of multitarget drugs has become more 

important in recent years. Many widespread diseases like metabolic syndrome, or cancer 
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are of a multifactorial nature, which makes them hard to be treated effectively with a 

single drug.71–76 The new in silico method presented in this work can help to accelerate 

the design and development of multitarget drugs, saving time and efforts. 

The nowadays readily available access to a large number of 3D-structures of biological 

targets and published activity data of millions of synthesized compounds enabled this 

study and was used as a starting point for this work. Four different data sets were 

compiled: 

- crystalized ligands from the PDB12 (LTA4H: 43 ligands, sEH: 94 ligands),  

- active compounds from ChEMBL23103 (LTA4H: 382 compounds, 

sEH: 1,384 compounds), 

- inactive compounds from ChEMBL23103 (LTA4H/sEH: 1,000 compounds), 

- as well as newly designed compounds using a combinatorial library 

(20,630  compounds).  

Those data sets were collected and processed using an automated KNIME104 workflow. 

This automation has the advantage of allowing easy change and update of compound 

sources and adapted processing ways.  

In a next step, the compounds from the compiled data sets were represented using a 

variety of well-established 2D- and 3D-fingerprints. All those fingerprints share the same 

underlying bit string scheme but vary in the way they describe the molecular structure. 

Especially the difference between 2D- and 3D-fingerprints was investigated. 2D-

fingerprints are solely based on ligand information. 3D-fingerprints, on the other hand, 

are based on X-ray structure information of protein-ligand complexes. One major 

difference between 2D- and 3D-fingerprints usage is the need for a 3D-conformation 

(pose) of the compound in the targets of interest when using 3D-fingerprints.33,37 This 

additional step is time-consuming and brings further uncertainties to the method. To 

investigate the impact of pose generation on the predictions made in the final step, two 

different docking software were used for the pose generation. The two docking software, 

MOE81 and PLANTS80,97, were first validated on the crystalized ligands by conducting a re-

docking of the ligands into their corresponding receptor structure. Overall, PLANTS 

docking had a higher docking accuracy compared to MOE. Looking at the targets of 

interest, PLANTS docking leads to 48.4% (LTA4H)/ 77.2% (sEH) correct docking poses, 

where on the other hand MOE docking reaches 46.5% (LTA4H)/ 55.4% (sEH). 
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Furthermore, calculation time speaks in favor of PLANTS docking, since docking the large 

combinatorial library is two times faster compared to MOE docking. Not only the time-

consuming docking step, but also the actual fingerprint calculation is much slower for the 

3D-fingerprint (PLIF)116 compared to the 2D-fingerprints used in this work (AtomPair113, 

Morgan114, FeatMorgan29 and MACCS28).  

Based on the calculated fingerprints state-of-the-art machine learning algorithms were 

used to predict novel dual active compounds. Prior to the predictions, machine learning 

parameters were optimized. Parameter optimization was conducted on the data sets of 

crystalized ligands and active and inactive ChEMBL compounds (1,425 LTA4H 

compounds and 2,476 sEH compounds in total). First, the partitioning scheme was 

optimized (splitting the data set into training- and test sets) for each target and each 

fingerprint (PLIF (MOE, PLANTS), AtomPair, Morgan, FeatMorgan, MACCS) with each of 

the four machine learning algorithms (SVC45, RF49, XGB54–56 and ADA54,55,57) resulting in 

48 individual model optimizations. The models were evaluated by 10-fold cross validation 

and accuracy as the primary measure of model performance was maximized. Second, 

individual parameters of the four machine learning algorithms were optimized in a grid 

search to achieve maximal accuracy using the optimized partitioning scheme. Overall 

accuracies, regardless of fingerprint and machine learning algorithm, are slightly better 

for LTA4H than for sEH.  

The results show that 2D-fingerprints can generally better distinguish between active and 

inactive compounds in 20% to 30% of the cases. Summarizing all the results show that 

there is a significant difference between 2D- and 3D-fingerprints but no significant 

difference using various machine learning algorithms. After optimization, the optimized 

partitioning schemes and parameters were used to predict possible active compounds for 

LTA4H and sEH from the combinatorial library data set. For each of the two targets, five 

fingerprints, two types of docking software and four machine learning algorithms 

optimized models were built and used for prediction, resulting in 48 different models.  

The goal to predict dual active compounds was realized by comparing the set of predicted 

to be active compounds for LTA4H and sEH. For the 3D-fingerprint PLIF (MOE docking) 

the machine learning algorithm Random Forest was chosen, from which compounds for 

synthesis and testing were selected. Of 115 predicted to be active compounds, six 

compounds were cherry picked. Feasibility of synthesis, estimated solubility and 
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uniqueness of compounds were used as guidelines for cherry picking. The six synthesized 

compounds are structurally heterogeneous, but share an aromatic ring directly attached 

to the amide. From the six selected compounds one compound (compound 2) could not 

be isolated from the reaction mixture. From the remaining five compounds, two 

compounds (compounds 3 and 6) showed very good/moderate dual inhibitory activity 

(Table 12). Compound 3 contains an oxazole moiety, a previously unknown scaffold in 

LTA4H and sEH inhibition. 

Of the 2D-fingerprints, the AtomPair fingerprint in combination with the machine 

learning algorithm Random Forest was chosen from which compounds were selected for 

synthesis and testing. The AtomPair fingerprint generated a reasonable number of 

predicted to be active compounds. Random Forest was chosen for better comparison with 

the 3D-fingerprint. 116 compounds were predicted to be dual active against LTA4H and 

sEH. Eight compounds were cherry picked for synthesis and testing. Two of those 

compounds could not be realized (compound 8 interfered with assay reagents; for 

compound 10 the reactant was not purchasable in a reasonable time period). All 

remaining compounds exhibit an N-substituted piperidine or pyrrolidine moiety, which 

are common elements in diverse series of LTA4H and sEH inhibitors. One of those 

compounds (compound 12) showed good dual inhibitory activity (Table 12).  

The three predicted novel dual active compounds were analyzed in detail using the 

generated docking poses in the receptor structures of LTA4H and sEH. All compounds 

Table 12: Inhibitory activity values of dual active compounds. Shown are the compound 

number, the compound structure and the IC50 values on LTA4H and sEH. 

 

Compound nr. R LTA4H (IC50) sEH (IC50) 

Compound 3 
 

0.57 ± 0.08 µM 0.32 ± 0.01 µM 

Compound 6 

 

4.7 ± 0.9 µM 4.2 ± 0.8 µM 

Compound 12 
 

0.75 ± 0.09 µM 0.5 ± 0.2 µM 
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form strong interactions between the amide group and various amino acids. Further, 

compound 3 forms a strong pi interaction between one of the aromatic rings of the key 

fragment C1 and amino acid Ala137 (LTA4H) (Figure 32 A). Compound 6 forms a 

medium-strength pi interaction to amino acid Trp336 (sEH) (Figure 33 B). Compound 12 

forms one strong interaction from the amide carbonyl to the zinc ion (Figure 34 A). 

In this work it was possible to show advantages and disadvantages of using 2D- and 3D-

fingerprints in combination with machine learning algorithms. Both strategies 

(2D: ligand-based, 3D: structure-based) lead to the prediction of novel dual active 

compounds with moderate to very good inhibitory activity (compounds 3,6 and 12). 2D-

fingerprints have an advantage in calculation time and solely the need of ligand 

structures. On the other hand, this ligand-based strategy is biased towards chemotypes 

and did not generate novel scaffolds. 3D-fingerprints are time consuming since a docking 

needs to be performed. However, 3D-fingerprints generated diverse dual active 

compounds with novel scaffolds and a compound with very good activity on both targets 

(compound 3).  

Regarding the machine learning algorithms, these show almost identical prediction 

accuracies but vary in amount of predicted active compounds. The Random Forest 

algorithm, as a very simple machine learning algorithm, generated a manually 

manageable number of dual active compound and led to the prediction of three novel dual 

active compounds. In general, machine learning algorithms profit form large data sets. 

Without enough data machine learning algorithms will possibly fail due to lack of 

diverseness in the data set.  

The targets used in this work interact with similar ligands, which leads to similar binding 

sites concerning the hydrophobic patterns. Whether this method will work with two 

completely different targets is unclear and was out of scope of this work.  

The method developed in this work is able to predict dual active compounds with very 

good inhibitory activity and novel (previously unknown) scaffolds inhibiting the targets 

LTA4H and sEH. This contribution to in silico drug design is promising and can be used 

for the prediction of novel dual active compounds. Those compounds can further be 

optimized regarding binding affinity, solubility and further pharmacological and 

physicochemical properties. 
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6 German Summary  

 

Ziel dieser Arbeit ist es neuartige Verbindungen vorherzusagen, die nicht nur ein 

Einzelnes, sondern zugleich zwei unterschiedliche Proteine inhibieren. Die Zielproteine 

dieser Arbeit (Leukotrien A4 Hydrolase (LTA4H)61 und lösliche Epoxid 

Hydrolase (sEH)66) befinden sich in der Arachidonsäure (AA) Kaskade und werden mit 

verschiedenen inflammatorischen Erkrankungen in Verbindung gebracht (z.B. Asthma, 

Rheumatoide Arthritis, Dermatitis und Atherosklerose).63 Die AA Kaskade zeigt eine 

intensive Kommunikation zwischen den einzelnen Metabolisierungswegen. Die 

Inhibition von nur einem Metabolisierungsweg lässt den metabolischen Abbau von AA 

über die anderen beiden Metabolisierungswege zu. Dadurch werden positive 

Auswirkungen von verabreichten Wirkstoffen verringert. Werden jedoch zwei 

verschiedene Metabolisierungswege gleichzeitig von einem Wirkstoff inhibiert kann 

dieses Phänomen überwunden werden. Dies kann über die Gabe von mehreren 

Wirkstoffen oder einen Wirkstoff, der mehrere Proteine inhibiert erreicht werden (dualer 

Wirkstoff). Ein dualer Wirkstoff minimiert die Gefahr unvorhersehbarer 

Wirkstoffinteraktionen, die durch die Gabe von zwei verschiedenen Wirkstoffen 

hervorgerufen werden können.71–76  

Mögliche Wirkstoff-Kandidaten sollen in dieser Arbeit durch eine neue in silico Methode 

vorhergesagt werden, wobei molekulare Fingerabdrücke mit Algorithmen des 

Maschinellen Lernens (ML) kombiniert werden. 

Der heutzutage leichte Zugang zu einer großen Anzahl von biologischen 3D Strukturen 

(Proteine, RNA und DNA), sowie veröffentlichter Aktivitätsdaten von Millionen von 

synthetisierten Verbindungen, ermöglichten diese Arbeit und wurden als Ausgangspunkt 

verwendet. Aus öffentlich zugänglichen Datenbanken wurden folgende Datensätze 

zusammengestellt: 

- Co-kristallisierte Liganden aus der PDB12 (LTA4H: 43 Liganden, sEH: 94 Liganden), 

- Aktive Verbindungen aus der ChEMBL23103 (LTA4H: 382 Verbindungen, 

sEH: 1.384 Verbindungen), 

- Inaktive Verbindungen aus der ChEBML23103 (LTA4H/sEH: 1.000 Verbindungen), 
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- Neu designte Verbindungen aus einer kombinatorischen Bibliothek 

(20.630 Verbindungen). 

Über einen automatisierten KNIME104 Workflow wurden diese Datensätze 

zusammengestellt und weiterverarbeitet. Die Automatisierung hat den Vorteil, dass 

Änderungen und Updates von Datenquellen einfach zu integrieren sind. Des Weiteren ist 

ein Anpassen des Bearbeitungsprozesses möglich.  

Neu designte Verbindungen wurden über eine kombinatorische Bibliothek generiert. Eine 

kombinatorische Bibliothek ist das Ergebnis kombinatorischer Chemie, wobei über eine 

chemische Reaktion eine Vielzahl von strukturähnlichen Verbindungen erzeugt wird. 

Diese Bibliotheken können durch chemische Synthese, oder wie in diesem Fall virtuell, 

mit Hilfe einer Software generiert werden. In dieser Arbeit wurde eine kombinatorische 

Bibliothek speziell zur Identifizierung neuer dual aktiver Verbindungen für LTA4H und 

sEH aufgebaut. Ein Schlüsselfragment, (3-[4-(Benzyloxy)Phenyl]Propionsäure), wurde 

konstant gehalten und mit Amin-Bindungspartnern über eine Amid-Kondensation 

kombiniert. Die resultierende Bibliothek an strukturverwandten Amiden beinhaltet 

20,630 einzigartige Verbindungen.  

Im nächsten Schritt wurden die Verbindungen in den zusammengestellten Datensätzen 

mit Hilfe einer Auswahl an 2D- und 3D-Fingerabdrücken dargestellt. Das heißt, die 

molekularen Strukturen der Verbindungen wurden in ein Bit-String Schema übersetzt. 

Die 2D- und 3D-Fingerabdrücke unterscheiden sich in der Art und Weise wie sie die 

molekularen Strukturen beschreiben. In dieser Arbeit wurden speziell die Unterschiede 

zwischen 2D- und 3D-Fingerabdrücken untersucht. 2D-Fingerabdrücke basieren 

ausschließlich auf Ligandinformationen (Ligand-basierter Ansatz); 3D-Fingerabdrücke 

basieren auf 3D-Strukturinformationen von Protein-Ligand Komplexen 

(strukturbasierter Ansatz). 3D-Fingerabdrücke benötigen also eine 3D-Konformation 

(Pose) der Verbindungen in den Zielproteinen.33,37 Die Erstellung von 3D-

Konformationen wird mit Hilfe von Docking (virtuelles Platzieren der Verbindungen in 

den Zielproteinen) realisiert, was jedoch ein zeitaufwändiger und fehleranfälliger Schritt 

ist. Um den Einfluss der generierten 3D-Konformationen auf die abschließende 

Vorhersage neuer Verbindungen zu analysieren, wurden zwei unterschiedliche Docking- 

Programme (MOE81 und PLANTS80,97) für die Generierung der Posen verwendet und 

verglichen. Diese Docking-Programme wurden zunächst validiert, indem ein sogenanntes 
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Re-Docking durchgeführt wurde. Dabei werden die bereits Co-kristallisierten Liganden 

mit Hilfe der Docking-Programme in ihre entsprechenden Proteine gedockt und die 

Reproduktion der experimentell bestimmten Bindemodi ausgewertet. Insgesamt hat 

PLANTS eine höhere Docking-Genauigkeit im Vergleich zu MOE. PLANTS Docking führte 

zu 48,4 % (LTA4H)/ 77,2 % (sEH) richtiger Docking-Posen (innerhalb eines RMSD 

von 1Å), wohingegen MOE lediglich 46,5 % (LTA4H)/ 55,4 % (sEH) erreicht. Auch die 

Berechnungszeit der Docking-Posen spricht für das PLANTS- Docking, da die Generierung 

von 3D-Konformationen der kombinatorischen Bibliothek doppelt so schnell wie MOE-

Docking ist. Des Weiteren ist auch die eigentliche Berechnung des 3D-Fingerabdrucks 

(PLIF)116 zeitaufwändiger als die Berechnung der verschiedenen 2D-Fingerabdrücke 

(AtomPair113, Morgan114, FeatMorgan29 und MACCS28). 

Nach der Generierung der Fingerabdrücke (KNIME Workflow) wurden Algorithmen des 

Maschinellen Lernens verwendet, um neue dual aktive Verbindungen vorherzusagen. 

Zunächst wurden die Parameter für jeden der verwendeten Algorithmen (SVC45, RF49, 

XGB54–56 und ADA54,55,57) optimiert. Die Optimierung wurde mit den Datensätzen der 

kristallisierten Liganden, sowie aktiven und inaktiven ChEMBL Verbindungen 

durchgeführt (Gesamt: 1.425 LTA4H Verbindungen, 2.476 sEH Verbindungen). Als erstes 

wurde das Teilungsschema (Teilung des Datensatzes in Trainings- und Testdatensatz) für 

jedes Zielprotein und jeden Fingerabdruck (PLIF|MOE, PLIF|PLANTS, AtomPair, Morgan, 

FeatMorgan, MACCS) mit jedem der vier verwendeten ML Algorithmen optimiert. Daraus 

resultieren 48 individuelle Modell-Optimierungen. Die Modelle wurden mittels 10-facher 

Überkreuzvalidierung evaluiert. Der Grad der Genauigkeit als primärer Leistungsmesser 

wurde durch die Modell-Optimierung maximiert. Als zweites wurden individuelle 

Parameter der verwendeten ML Algorithmen optimiert. Eine Rastersuche wurde 

durchgeführt, um eine maximale Leistungsfähigkeit der Modelle zu erreichen. Allgemein 

kann festgestellt werden, dass unabhängig von Fingerabdruck und ML Algorithmen, 

bessere Ergebnisse für das Zielprotein LTA4H erzielt werden.  

Weiterhin zeigen die Resultate, dass in 20-30 % der Fälle, 2D-Fingerabdrücke besser 

zwischen aktiven und inaktiven Verbindungen unterscheiden können. Zusammenfassend 

lässt sich sagen, dass es einen signifikanten Unterschied in der Vorhersagegenauigkeit 

zwischen 2D- und 3D-Fingerabdrücken gibt, jedoch keinen signifikanten Unterschied 

unter den verschiedenen ML Algorithmen.  
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Anhand der Fingerabdrücke wurden die Modelle trainiert aktive Verbindungen von 

inaktiven zu unterschieden.  Die optimierten Teilungsschemata und Parameter wurden 

für die Vorhersage neuer möglicher aktiver Verbindungen genutzt. Dazu wurden die neu 

designten Verbindungen der kombinatorischen Bibliothek genutzt. Für die zwei 

Zielproteine, die fünf Fingerabdrücke, die zwei Docking-Programme und die vier ML 

Algorithmen wurde jeweils ein Modell aufgebaut (48 unterschiedliche Modelle).  

Das Ziel, dual aktive Verbindungen vorherzusagen, wurde erreicht, indem die Sets von 

aktiv vorhergesagten Verbindungen für LTA4H und sEH miteinander verglichen wurden. 

Für den 3D-Fingerabdruck PLIF (MOE Docking) wurde der ML Algorithmus Random 

Forest ausgewählt. Von den dual aktiv vorhergesagten Verbindungen (insgesamt 115 

Verbindungen) wurden sechs Verbindungen für die Synthese und biologische Testung 

ausgewählt. Die Kriterien der Auswahl waren: Durchführbarkeit der Synthese, 

abgeschätzte Löslichkeit und Einzigartigkeit der Verbindung. Die sechs ausgewählten 

Verbindungen sind strukturell heterogen. Alle Verbindungen verfügen jedoch über einen 

aromatischen Ring, welcher direkt mit dem Amid verbunden ist. Eine der Verbindungen 

konnte nicht vom Reaktionsgemisch isoliert werden, für die restlichen fünf Verbindungen 

wurden inhibitorische Aktivitäten gemessen. Zwei dieser Verbindungen (Verbindung 3 

und 6) zeigen auf beiden Zielproteinen eine sehr gute/moderate inhibitorische Aktivität 

(Table 12). Zudem enthält Verbindung 3 ein Oxazol-Motiv, ein bis dato unbekanntes 

Strukturelement in der Inhibition von LTA4H und sEH. Von den 2D-Fingerabdrücken 

wurde der AtomPair-Fingerabdruck in Kombination mit dem ML Algorithmus Random 

Table 132: Inhibitory activity values of dual active compounds. Shown are the compound 

number, the compound structure and the IC50 values on LTA4H and sEH. 

 

Compound nr. R LTA4H (IC50) sEH (IC50) 

Compound 3 
 

0.57 ± 0.08 µM 0.32 ± 0.01 µM 

Compound 6 

 

4.7 ± 0.9 µM 4.2 ± 0.8 µM 
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Forest ausgewählt. Von den dual aktiv vorhergesagten Verbindungen (insgesamt 116 

Verbindungen) wurden acht Verbindungen für Synthese und biologische Testung 

ausgewählt. Zwei der Verbindungen konnten nicht synthetisiert werden (Verbindung 8 

und 10). Alle verbleibenden Verbindungen beinhalten ein N-substituiertes Piperidin oder 

Pyrrolidin-Motiv, welche bekannte Elemente in verschiedenen LTA4H und sEH 

Inhibitoren sind. Einer der synthetisierten Verbindungen (Verbindung 12) zeigt gute 

inhibitorische Aktivität auf LTA4H und sEH. Die drei neu vorhergesagten dual aktiven 

Verbindungen wurden anhand der generierten Docking-Posen in den Zielproteinen 

LTA4H und sEH genauer analysiert. Alle Verbindungen formen starke Interaktionen 

zwischen der Amid-Gruppe und unterschiedlichen Aminosäuren innerhalb der 

Zielproteine. Weitere geformte Interaktionen stellen sich wie folgt dar: 

- Verbindung 3 formt eine starke Pi Interaktion zwischen einem der aromatischen 

Ringe des Schlüsselfragment C1 und der Aminosäure Ala137 (LTA4H) 

(Figure 32 A), 

- Verbindung 6 formt eine mittelstarke Pi Interaktion zu Aminosäure Trp336 (sEH) 

(Figure 33 B), 

- Verbindung 12 formt eine starke Interaktion vom Amid Carbonyl zu dem Zink Ion 

in der Proteinstruktur LTA4H (Figure 34 A). 

Durch diese Arbeit war es möglich Vor- und Nachteile der 2D- und 3D-Fingerabdrücke in 

Kombination mit ML Algorithmen aufzuzeigen. Beide Strategien (2D: Ligand-basiert, 

3D: strukturbasiert) resultieren in der Vorhersage von neuartigen dual aktiven 

Verbindungen mit moderater bis sehr guter inhibitorischer Aktivität (Verbindung 3, 6 

und 12) auf den Zielproteinen (LTA4H und sEH). 2D-Fingerabdrücke haben den Vorteil, 

dass nur Ligand-Strukturen benötigt werden und eine schnelle Berechnung möglich ist. 

Auf der anderen Seite ist die Ligand-basierte Strategie voreingenommen gegenüber 

bestimmter Chemotypen und erzeugte keine neuartigen Strukturmerkmale in den 

vorhergesagten Verbindungen. Das Verwenden von 3D-Fingerabdrücken ist sehr 

zeitaufwändig, da ein Docking zur Generierung von Docking-Posen durchgeführt werden 

muss. Jedoch resultieren aus den 3D-Fingerabdrücken diverse dual aktive Verbindungen 

mit neuen Strukturelementen und sehr guter inhibitorischer Aktivität auf beiden 

Zielproteinen (Verbindung 3). 
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Die unterschiedlichen ML Algorithmen zeigen kaum Unterschiede in der Genauigkeit der 

Vorhersagen, jedoch hatten sie große Differenzen in Bezug auf die Anzahl an aktiv 

vorhergesagten Verbindungen (Variation zwischen 0 Verbindungen und 20.000 

Verbindungen). Random Forest, als ein sehr einfacher ML Algorithmus generierte eine 

manuell verarbeitbare Anzahl an aktiv vorhergesagten Verbindungen und resultierte in 

der Vorhersage von drei neuartigen dual aktiven Verbindungen. Allgemein profitieren 

alle ML Algorithmen von großen Datensätzen. Eine zu geringe Datenmenge führt 

wahrscheinlich zu einem Versagen der ML Algorithmen.  

Die in dieser Arbeit verwendeten Zielproteine interagieren mit ähnlichen natürlichen 

Liganden, was zu einer ähnlichen Bindetasche führt (in Bezug auf hydrophobe Muster in 

der Bindetasche). Ob die hier vorgestellte Methode auch mit sehr unterschiedlichen 

Zielproteinen funktioniert lag außerhalb des Umfangs dieser Arbeit. 

Die hier entwickelte in silico Methode ist in der Lage dual aktive Verbindungen mit sehr 

guter inhibitorischer Aktivität vorherzusagen. Auch zuvor unbekannte Strukturelemente 

in Bezug auf die Inhibition von LTA4H und sEH konnten generiert werden. Dieser Beitrag 

zu in silico Wirkstoffdesign ist vielversprechend und kann für die weiteren Vorhersagen 

dual aktiver Verbindungen genutzt werden. Die hier vorhergesagten Verbindungen 

können in weiteren Studien in Bezug auf ihre Bindungsaffinität, Löslichkeit und weiterer 

pharmakologischer und physikalisch-chemischer Eigenschaften optimiert werden. 
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7 Appendix 

 

7.1 Python code for ML partitioning scheme optimization 

 

#Open data set with active and inactive compounds (LTA4H: 1,425 compounds; 

sEH: 2,476 compounds) 

data = pd.read_csv(target_fp.csv) 

#Split data set into training and test set. x_train contains fingerprints of training data 

set; x_test contains fingerprints of test data set; y_train contains class labels of 

training data set; y_test contains class labels of test data set; test_size specifies size 

of test data set to be between 5% and 25% 

x_train, x_test, y_train, y_test = train_test_split(data, 

test_size=0.05-0.25) 

#mla (machine learning algorithm) specifies the machine learning algorithm used to train 

the model 

mla=SVC()/RandomForestClassifier()/XGBClassifier()/AdaBoostCla

ssifier() 

#Model is build using the training data set (containing fingerprints and class labels) 

mla.fit(x_train,y_train) 

#Build model uses fingerprints of test set (x_test) to make class label prediction 

predict = mla.predict(x_test) 

#Model accuracy is calculated. Class label predictions (predict) are compared with true 

class labels of the test data set (y_test) 

acc_mla = accuracy_score(y_test, predict) 
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7.2 Python code for ML parameter optimization 

 

Random Forest parameter optimization: 

Number of estimators corresponds to the number of trees in the forest. 

 

(1) #Dictionary is generated 
(2) #Grid search range for number of estimators is defined starting from 10 to 1000 

in steps of 10 
(3) #Random Forest model is trained using training data set 
(4) #Model is used to predict class labels of test data set 
(5) #Model accuracy is calculated 
(6) #Model accuracy is written into dictionary 
 

(1) dic = {} 

(2) for n in range(10,1001,10): 

  rfc = RandomForestClassifier(n_estimators = n) 

(3)  rfc.fit(x_train, y_train) 

(4)  predict = rfc.predict(x_test) 

(5)  acc_rfc = accuracy_score(y_test, predict) 

(6)  dic[(n)] = acc_rfc 

 

XGBoost parameter optimization: 

The maximum depth limits the number of nodes in the tree. Number of estimators defines 

the number of boosting stages to perform. 

(1) #Dictionary is generated 
(2) #Grid search range for maximum depth limits is defined starting from 10 to 200 in 

steps of 10. Grid search range for number of estimators is defined starting from 
100 to 1000 in steps of 100. Learning rate values were set to 0.01 and 0.001. Alpha 
regulates the weights, values were set to 0.0 (default) and 0.005. 

(3) #XGBoost model is trained using training data set 
(4) #Model is used to predict class labels of test data set 
(5) #Model accuracy is calculated 
(6) #Model accuracy is written into dictionary 
 

(1) dic = {} 

(2) for n in range(10,201,10): 

  for esti in range(100,1001,100): 

  xgb = XGBClassifier(max_depth = n, 

learning_rate=0.01/0.001, n_estimators=esti, 

reg_alpha=0.0/0.005) 

(3)    xgb.fit(X_train, y_train)  

(4)   predict = xgb.predict(x_test) 

(5)   acc_xgb = accuracy_score(y_test, predict) 

(6)   dic[(n)] = acc_xgb 
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AdaBoost parameter optimization: 

Number of estimators defines when boosting is terminated. 

(1) #Dictionary is generated 
(2) #Grid search range for number of estimators is defined starting from 10 to 1000 

in steps of 10 
(3) #Random Forest model is trained using training data set 
(4) #Model is used to predict class labels of test data set 
(5) #Model accuracy is calculated 
(6) #Model accuracy is written into dictionary 
 

(1) dic = {} 

(2) for n in range(10,1001,10): 

  ada = AdaBoostClassifier(n_estimators = n) 

(3)  ada.fit(x_train, y_train) 

(4)  predict = ada.predict(x_test) 

(5)  acc_ada = accuracy_score(y_test, predict) 

(6)  dic[(n)] = acc_ada 

 

7.3 Python code for ML prediction 

 

#Models are trained using the training set (optimized parameters), predictions are made 

on test set and accuracy is calculated. 

mla=SVC()/RandomForestClassifier()/XGBClassifier()/AdaBoostCla

ssifier() 

mla.fit(x_train,y_train) 

pred = mla.pred(x_test) 

acc_mla = accuracy_score(y_test, pred) 

 

#10-fold cross validation is conducted on trained models. Mean and standard deviation is 

calculated on 10-fold cross validation. 

cv_mla = cross_val_score(mla, x_train, y_train, cv=10, 

scoring=”accuracy”) 

mean_cv_mla = cv_score_mla.mean() 

sd_cv_mla = cv_score_mla.std() 

 

#Trained models are used to predict class labels on combinatorial library compounds. 

Predictions are labeled active and inactive and converted into a panda DataFrame. 

predict = picle_model.predict(combi_lib) 

predict.pred_activity[predict.pred_activity == 1] = ‘inactive’ 
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predict.pred_activity[predict.pred_activity == 0] = ‘active’ 

predicted_mla = pd.DataFrame(predict) 

predict_mla.to_excel(path) 
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Table A1: MOE docking validation results LTA4H. 

Scoring function combination RMSD [Å] % RMSD [Å] % 

ASE_ASE <1 41.9 <2 67.4 

ASE_Affinity dG <1 32.6 <2 55.8 

ASE_Alpha HB <1 41.9 <2 67.4 

ASE_GBVI/WSA dG <1 46.5 <2 69.8 

ASE_London dG <1 46.5 <2 69.8 

Affinity dG_ASE <1 34.9 <2 62.8 

AffinitydG_Affinity dG <1 20.9 <2 46.5 

Affinity dG_Alpha HB <1 32.6 <2 62.8 

Affinity dG_GBVI/WSA dG <1 37.2 <2 60.5 

Affinity dG_London dG <1 37.2 <2 60.5 

Alpha HB_ASE <1 32.6 <2 60.5 

Alpha HB_Affinity dG <1 23.3 <2 44.2 

Alpha HB_Alpha HB <1 34.9 <2 62.8 

Alpha HB_GBVI/WSA dG <1 37.2 <2 60.5 

Alpha HB_London dG <1 37.2 <2 62.8 

GBVI/WSA dG_ASE <1 41.9 <2 65.1 

GBVI/WSA dG_Affinity dG <1 27.9 <2 48.8 

GBVI/WSA dG_Alpha HB <1 39.5 <2 67.4 

GBVI/WSA dG_GBVI/WSA dG <1 44.2 <2 65.1 

GBVI/WSA dG_London dG <1 46.5 <2 60.5 

London dG_ASE <1 41.9 <2 72.1 

London dG_Affinity dG <1 32.6 <2 55.8 

London dG_Alpha HB <1 44.2 <2 72.1 

London dG_GBVI/WSA dG <1 46.5 <2 69.8 

London dG_London dG <1 44.2 <2 65.1 
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Table A2: MOE docking validation results sEH. 

Scoring function combination RMSD [Å] % RMSD [Å] % 

ASE_ASE <1 48.9 <2 71.1 

ASE_Affinity dG <1 43.5 <2 67.4 

ASE_Alpha HB <1 46.7 <2 70.7 

ASE_GBVI/WSA dG <1 50 <2 77.2 

ASE_London dG <1 52.2 <2 72.8 

Affinity dG_ASE <1 45.7 <2 66.3 

AffinitydG_Affinity dG <1 41.3 <2 65.2 

Affinity dG_Alpha HB <1 42.4 <2 60.9 

Affinity dG_GBVI/WSA dG <1 50 <2 73.9 

Affinity dG_London dG <1 48.9 <2 69.6 

Alpha HB_ASE <1 46.7 <2 65.2 

Alpha HB_Affinity dG <1 41.3 <2 58.7 

Alpha HB_Alpha HB <1 46.7 <2 64.1 

Alpha HB_GBVI/WSA dG <1 45.7 <2 64.1 

Alpha HB_London dG <1 48.9 <2 66.3 

GBVI/WSA dG_ASE <1 47.8 <2 70.7 

GBVI/WSA dG_Affinity dG <1 44.6 <2 64.1 

GBVI/WSA dG_Alpha HB <1 50 <2 70.7 

GBVI/WSA dG_GBVI/WSA dG <1 52.2 <2 73.9 

GBVI/WSA dG_London dG <1 52.2 <2 72.8 

London dG_ASE <1 53.3 <2 73.9 

London dG_Affinity dG <1 47.8 <2 72.8 

London dG_Alpha HB <1 51.1 <2 71.7 

London dG_GBVI/WSA dG <1 55.4 <2 79.3 

London dG_London dG <1 56.5 <2 73.9 
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Table A3: PLANTS docking validation result LTA4H. 

 

 

Table A4: PLANTS docking validation result sEH. 

 

  

Scoring function Radius [Å] RMSD [Å] % RMSD [Å] % 

CHEMPLP 10 ≤ 1 9.3 ≤ 2 27.9 

 15 ≤ 1 48.8 ≤ 2 90.7 

 20 ≤ 1 44.2 ≤ 2 83.7 

 25 ≤ 1 30.2 ≤ 2 69.8 

PLP 10 ≤ 1 7.0 ≤ 2 20.9 

 15 ≤ 1 44.2 ≤ 2 86.1 

 20 ≤ 1 30.2 ≤ 2 83.7 

 25 ≤ 1 27.9 ≤ 2 83.1 

PLP95 10 ≤ 1 9.3 ≤ 2 25.6 

 15 ≤ 1 30.2 ≤ 2 86.1 

 20 ≤ 1 25.6 ≤ 2 93.0 

 25 ≤ 1 30.2 ≤ 2 88.4 
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