
Introduction

In order to effectively leverage their data, DBMS

users are required to not only have prior knowl-

edge about the database schema (e.g., table and

column names, entity relationships) but also

a working understanding of the syntax and

semantics of SQL. Unfortunately, despite its

expressiveness, SQL can often hinder non-tech-

nical users from exploring and making use of

data stored in a database. These requirements

set “a high barrier to entry” for data exploration

and have, therefore, triggered new efforts to

develop alternative interfaces that allow non-

technical users to explore and interact with their

data conveniently. For example, imagine a doc-

tor wants to look at the age distribution of

patients with the longest stays in a hospital. To

answer this question, the doctor would either

need to write a complex nested SQL query or

work with an analyst to craft the query. Even with

a visual exploration tool (e.g., Tableau, Vizdom),

posing such a query is nontrivial, since it re -

quires the user to perform multiple interactions

with an understanding of the nested query

semantics. Alternatively, with an NL interface,

the query is as simple as stating: “What is the

age distribution of patients who stayed longest

in the hospital?”

Based on this observation, a number of “natural

language interfaces to databases” tools (NLIDBs)

have been proposed that aim to translate natural

language to SQL (NL2SQL). The first category of

solutions are rule-based systems, e.g., NaLIR (Li

and Jagadish, 2014), which use fixed rules for per-

forming translations. Although effective in specif-

ic instances, these approaches are brittle and do

not generalize well without substantial additional

effort to support new use cases. More recently,

deep learning techniques have gained traction for

NL2SQL, since similar ideas have achieved suc-

cess in the related domain of machine translation.

For example, generic sequence-to-sequence

(seq2seq) (Zhong et al., 2017) models have been

successfully used in practice for NL2SQL transla-

tion, and more advanced approaches like Syntax

SQLNet (Yu et al., 2018), which augments deep

learning models with a structured model that

considers the syntax and semantics of SQL, have

also been proposed.

However, a crucial problem with deep learning

approaches is that they require an enormous

amount of training data in order to build accurate

models. The aforementioned approaches have

largely ignored this problem and assumed the

availability of large, manually-curated training

datasets (e.g., using crowd-sourcing). In almost

all cases, however, gathering and cleaning such

data is a substantial undertaking that requires a

significant amount of time, effort, and money.

Moreover, existing approaches for NL2SQL trans-

lation attempt to build models that generalize to

new and unseen databases, yielding performance

that is generally decent but does not perform as

well as running new queries on the databases

used for training. That is, the training data used to

translate queries for one specific database, such

as queries containing words and phrases pertain-

ing to patients in a hospital, does not always allow

the model to generalize to queries in other do -

mains, such as databases of geographical loca-

tions or flights.

In order to address these fundamental limita-

tions, in a recent SIGMOD 2020 paper (Weir et al.,

2020), we proposed DBPal, a fully pluggable

NL2SQL training pipeline that can be used with

any existing NL2SQL deep learning model to

improve translation accuracy. DBPal implements

a novel training pipeline for NLIDBs that synthe-

sizes its training data using the principle of weak

supervision.

The basic idea is to leverage various heuristics

and existing datasets to automatically generate

large (and potentially noisy) training data instead

of manually handcrafting training examples.

In its basic form, only the database schema is

required as input to generate a large collection of

pairs of NL queries and their corresponding SQL

statements that can be used to train any NL2SQL

deep learning model.

In order to maximize our coverage across natu-

ral-linguistic variations, DBPal also uses addi-

tional input sources to automatically augment

the training data through a variety of techniques.

One such augmentation step, as an example, is

an automatic paraphrasing process. The goal of

these augmentation steps is to make the model

robust to different linguistic variations of the

06 efl | insights 02 | 2020

DBPal: A Novel Lightweight NL2SQL
Training Pipeline
NATURAL LANGUAGE (NL) IS A PROMISING ALTERNATIVE INTERFACE TO DATABASE

MANAGEMENT SYSTEMS (DBMSs) BECAUSE IT ENABLES NON-TECHNICAL USERS TO

FORMULATE COMPLEX QUESTIONS. RECENTLY, DEEP LEARNING HAS GAINED TRAC-

TION FOR TRANSLATING NATURAL LANGUAGE TO SQL. HOWEVER, THE CORE PROBLEM

WITH EXISTING DEEP LEARNING APPROACHES IS THAT THEY REQUIRE AN ENORMOUS

AMOUNT OF MANUALLY CURATED TRAINING DATA IN ORDER TO PROVIDE ACCURATE

TRANSLATIONS. WE PRESENT DBPAL THAT USES A NOVEL TRAINING PIPELINE TO

LEARN NL2SQL INTERFACES WHICH SYNTHESIZES TRAINING DATA AND, THUS, DOES

NOT RELY ON MANUALLY CURATED TRAINING DATA.

Benjamin Hättasch Nadja Geisler

Carsten Binnig

Research Report

Q-02_2020_efl-News_17 01.07.20 09:38 Seite 6

same question (e.g., “What is the age distribution

of patients who stayed longest in the hospital?”

and “For patients with the longest hospital stay,

what is the distribution of age?”).

In the evaluation of our SIGMOD publication, we

show that DBPal, which requires no manually

crafted training data, can effectively improve the

performance of a state-of-the-art deep learning

model for NL2SQL translation. Our results de -

monstrate that an NLIDB can be effectively boot-

strapped without requiring manual training data

for each new database schema or target domain.

Furthermore, if manually curated training data is

available, such data can still be used to comple-

ment our proposed data generation pipeline.

Overview of DBPal

In the following, we first discuss the overall archi-

tecture of a NLIDB and, then, discuss DBPal, our

proposed training pipeline based on weak super-

vision that synthesizes the training data from a

given database schema.

Figure 1 shows an overview of the architecture of

our fully functional prototype NLIDB, which con-

sists of multiple components, including a user-

interface that allows users to pose NL questions

that are automatically translated into SQL. The re -

sults from the user’s NL query are then returned to

the user in an easy-to-read tabular visualization.

At the core of our prototype is a neural translator,

which is trained by DBPal’s pipeline, that trans-

lates incoming NL queries coming from a user

into SQL queries. Importantly, our fully pluggable

training pipeline is agnostic to the actual transla-

tion model; that is, DBPal is designed to improve

the accuracy of existing NL2SQL deep learning

models (e.g., SyntaxSQLNet) by generating train-

ing data for a given database schema.

Training Phase. During the training phase,

DBPal’s training pipeline provides existing NL2

SQL deep learning models with large corpora of

synthesized training data (Figure 2). This training

pipeline consists of three steps to synthesize the

training data: (1) generator, (2) augmentation,

and (3) lemmatizer. Once training data is synthe-

sized by DBPal’s pipeline, it can then be used

(potentially together with existing manually

curated training data) to train existing neural

translation models that can be plugged into the

training pipeline.

Runtime Phase. The runtime phase can leverage

a model (neural translator) that was trained by

DBPal, as shown on the right-hand side of

Figure 2. The parameter handler is responsible

for re placing the constants in the input NL query

with placeholders to make the translation model

independent from the actual database and help to

avoid retraining the model if the underlying data-

base is updated. For example, for the input query

shown in Figure 2 (i.e., “What are cities whose

state is Massachusetts?”), the parameter handler

re places “Massachusetts” with the appropriate

schema element using the placeholder @STATE.

The lemmatizer then combines different variants

of the same word to a single root. For example,

the words “is”, “are”, and “am” are all mapped to

the root word “be”. Then, the neural translator

works on these anonymized NL input queries and

creates output SQL queries, which also contain

placeholders. In the example shown in Figure 2,

the output of the neural translator is: SELECT

name FROM cities WHERE state = @STATE.

Finally, the post-processor replaces the place-

holders with the actual constants such that the

SQL query can be executed.

DBPal’s Training Pipeline

The basic flow of the training pipeline is shown

on the left-hand side of Figure 2. In the following,

we describe the training pipeline and focus in

particular on the data generation framework.

Generator. In the first step, the generator uses

the database schema along with a set of seed

templates that describe typical NL-SQL pairs to

generate an initial training set. In the second

step, augmentation, the training data generation

pipeline then automatically adds to the initial

training set of NL-SQL pairs by leveraging exist-

ing general-purpose data sources and models to

linguistically modify the NL part of each pair.

The main idea is that each seed template covers a

typical class of SQL queries (e.g., a SELECT-

07efl | insights 02 | 2020

Figure 1: Overview of DBPal’s Architecture

Figure 2: Training and Runtime Phase

Training Phase Runtime Phase

Generated Training Set:

“What are cities whose
state is Massachusetts?”

SELECT name FROM
cities WHERE state =
‘Massachusetts’

“Show me average
population of cities for
each state.”

SELECT state, AVG
(population) FROM
cities GROUP By state

...

DBMS

Generator NL Query

Parameter
HandlerAugmentation

LemmatizerLemmatizer

Neural Translator

Post-
Processor

Slot-Fill
Lexicons

SQL-NL Pairs
Templates

Schema

DBMS
Query

Post-Processor

Neural
Translator

Frontend
Interface

User Side Server Side

SELECT * FROM city WHERE
city.state_name = @STATE

Index Lockup

SELECT * FROM city WHERE
city.state_name = ‘Massachusetts’

visualization

type in

Query
Pre-Processor

Tabular Visualization

“Show me all cities in
Massachusetts!”

Q-02_2020_efl-News_17 01.07.20 09:38 Seite 7

08 efl | insights 02 | 2020

FROM-WHERE query with a simple predicate).

Composing the seed templates is only a minimal,

one-time overhead, and all templates are in -

dependent of the target database, i.e., they can

be reused for other schemas. Furthermore, in

DBPal, we assume that the database schema

provides human-understandable table and attrib-

ute names, but the user can optionally annotate

the schema to provide more readable names if re -

quired. Deriving readable schema names auto-

matically is an orthogonal issue.

The schema information is, then, used to instan -

tiate these templates using table and attribute

names. Additionally, manually predefined diction-

aries (e.g., to cover synonyms) can be used to

instantiate simple variations of NL words and

phrases (e.g., “Show me” and “What is” for the

SELECT clause). Currently, DBPal contains ap -

pro ximately 100 seed templates. A typical training

set that can be generated from these templates

contains around one million NL-SQL pairs for

a simple, single-table database schema and

around two to three million for more complicated

schemas.

Augmentation. A core aspect of our pipeline is the

augmentation step that automatically expands

the training data produced by our generator in

order to offer more accurate and linguistically

robust translations. During augmentation, the

training data generation pipeline automatically

adds new NL-SQL pairs by leveraging existing

general-purpose data sources and models to lin-

guistically vary the NL part of each pair. The goal

of the augmentation phase is to cover a wide

spectrum of linguistic variations for the same SQL

query, which represent different versions of how

users might phrase the query in NL. This aug-

mentation is the key to make the translation

model robust and allows DBPal to provide better

query understanding capabilities than existing

standalone approaches.

Lemmatization. Finally, in the last step of the data

generation procedure, the resulting NL-SQL pairs

are lemmatized to normalize the representation

of individual words. During this process, different

forms of the same word are mapped to the word’s

root in order to simplify the analysis (e.g., “cars”

and “car’s” are replaced with “car”). The same

lemmatization is applied at runtime during the

aforementioned pre-processing step.

Conclusions and Future Work

We presented DBPal, a fully pluggable natural

language to SQL (NL2SQL) training pipeline that

generates synthetic training data to improve both

the accuracy and robustness to linguistic varia-

tion of existing deep learning models. In combina-

tion with our presented data augmentation tech-

niques, which help improve the translational

robustness of the underlying models, DBPal is

able to improve the accuracy of state-of-the-art

deep learning models by up to almost 40%.

Longer term, we believe that an exciting opportu-

nity exists to expand DBPal’s techniques to tackle

broader data science use cases, ultimately allow-

ing domain experts to interactively explore large

datasets using only natural language (Rogers et

al., 2017). In contrast to the typical notion of one-

shot SQL queries currently taken by DBPal, data

science is an iterative, session-driven process,

where a user repeatedly modifies a query or

machine learning model after examining inter-

mediate results until finally arriving at some

desired insight, which will, therefore, necessitate

a more conversational interface. These exten-

sions would require the development of new tech-

niques for providing progressive results (Turkay et

al., 2018) by extending past work on traditional

SQL-style queries and machine learning models.

Finally, we believe there are also interesting

opportunities related to different data models,

e.g., time series (Eichmann et al., 2017) and new

user interfaces, e.g., query-by-voice (Lyons et al.,

2016).

References

Eichmann, P.; Crotty, A.; Galakatos, A.;

Zgraggen, E.:

Discrete Time Specifications in Temporal Queries.

In: CHI Extended Abstracts; Denver (CO), US, 2017.

Li, F.; Jagadish, H.:

NaLIR: An Interactive Natural Language Inter -

face for Querying Relational Databases.

In: Proceedings of the ACM SIGMOD Conference;

Snowbird (UT), US, 2014.

Lyons, G.; Tran, V.; Binnig, C.; Çetintemel, U.;

Kraska, T.:

Making the Case for Query-by-Voice with Echo -

Query.

In: Proceedings of the ACM SIGMOD Conference;

San Francisco (CA), US, 2016.

Rogers, J. L. J.; Potti, N.; Patel, J.:

Ava: From Data to Insights Through Conver -

sations.

In: Proceedings of the 8th Biennial Conference

on Innovative Data Systems Research (CIDR);

Chaminade (CA), US, 2017.

Turkay, C.; Pezzotti, N.; Binnig, C.; Strobelt, H.;

Hammer, B.; Keim, D.; Fekete, D.; Palpanas, T.;

Wang, Y.; Rusu, F.:

Progressive Data Science: Potential and Chal -

lenges.

In: Working Paper, 2018.

Weir, N.; Utama, P.; Galakatos, A.; Crotty, A.;

Ilkhechi, A.; Ramaswamy, S.; Bhushan, R.;

Geisler, N.; Hättasch, B.; Eger, S.; Cetintemel,

U.; Binnig, C.:

DBPal: A Fully Pluggable NL2SQL Training

Pipeline.

In: Proceedings of the ACM SIGMOD Conference;

Portland (OR), US, 2020.

Yu, T.; Yasunaga, M.; Yang, K.; Zhang, R.; Wang,

D.; Li, Z.; Radev, D.:

SyntaxSQLNet: Syntax Tree Networks for Com -

plex and Cross-Domain Text-to-SQL Task.

In: Proceedings of the Conference on Empirical

Methods in Natural Language Processing

(EMNLP); Brussels, Belgium, 2018.

Zhong, V.; Xiong, C.; Socher, R.:

Seq2SQL: Generating Structured Queries

from Natural Language using Reinforcement

Learning.

In: Working Paper, 2017.

Q-02_2020_efl-News_17 01.07.20 09:38 Seite 8

