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1 |  INTRODUCTION

Computer-aided decision making has become common in bi-
omedical research and clinical practice, including the imple-
mentation of artificial intelligence (AI) techniques, most often 

as machine-learning algorithms referred to as a set of meth-
ods that can automatically detect patterns in data and then use 
the uncovered patterns to predict or classify future data, to 
observe structures such as subgroups in the data or to extract 
information from the data suitable to derive new knowledge 
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Abstract
Background: In pain research and clinics, it is common practice to subgroup sub-
jects according to shared pain characteristics. This is often achieved by computer-
aided clustering. In response to a recent EU recommendation that computer-aided 
decision making should be transparent, we propose an approach that uses machine 
learning to provide (1) an understandable interpretation of a cluster structure to (2) 
enable a transparent decision process about why a person concerned is placed in a 
particular cluster.
Methods: Comprehensibility was achieved by transforming the interpretation prob-
lem into a classification problem: A sub-symbolic algorithm was used to estimate 
the importance of each pain measure for cluster assignment, followed by an item 
categorization technique to select the relevant variables. Subsequently, a symbolic 
algorithm as explainable artificial intelligence (XAI) provided understandable rules 
of cluster assignment. The approach was tested using 100-fold cross-validation.
Results: The importance of the variables of the data set (6 pain-related character-
istics of 82 healthy subjects) changed with the clustering scenarios. The highest 
median accuracy was achieved by sub-symbolic classifiers. A generalized post-hoc 
interpretation of clustering strategies of the model led to a loss of median accuracy. 
XAI models were able to interpret the cluster structure almost as correctly, but with 
a slight loss of accuracy.
Conclusions: Assessing the variables importance in clustering is important for un-
derstanding any cluster structure. XAI models are able to provide a human-under-
standable interpretation of the cluster structure. Model selection must be adapted 
individually to the clustering problem. The advantage of comprehensibility comes at 
an expense of accuracy.
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(Dhar,  2013; Murphy,  2012). Machine-learning algorithms 
appear in medicine in two different flavors: sub-symbolic, 
which function like a black box, and symbolic, which pro-
vide comprehensible decision-making processes. Recent ad-
vances in machine learning have triggered the publication by 
the European Union (EU) of landmark papers emphasizing 
the need for computer-based decisions to be transparent so 
that they can be communicated in an understandable way to 
the patients they affect (Hamon et al., 2020). To address this 
problem, the concept of explainable AI (XAI) is attracting 
increasing scientific interest (Arrieta et al., 2019).

Among computer-assisted methods in pain research, the 
detection of subgroups in patients has long been used. Given 
the current efforts towards precision medicine in pain, it is 
expected that treatments tailored to the individual needs of 
patients will provide clinical guidance with positive effects 
on outcomes (Fillingim et  al.,  2014) based on knowledge 
of various factors relevant to the individual development of 
pain and its impact on life (Kaiser et  al.,  2018; Vartiainen 
et al., 2016), such as comorbidities, neurobiological or psy-
chological factors. This requires an assessment of whether 
the patients represent a heterogeneous cohort, and by which 
features possible subgroups are characterized. For this pur-
pose, methods of data projection (Lötsch & Ultsch, 2019) and 
cluster identification (Ultsch & Lötsch, 2017) are available. 
Clustering is widely used in pain research. A PubMed da-
tabase search on https://pubmed.ncbi.nlm.nih.gov for “(pain 
AND (clustering OR "cluster analysis")) NOT (review[Pub-
lication Type]) NOT ("cluster trial" OR "cluster randomized 
trial" OR "cluster randomized controlled trial" OR “cluster 
headache”)” produced 4,954 results on 8 October 2020.

Variable importance is a key to the understanding of a 
cluster structure. In order to take into account the EU advice 
mentioned above, there is a need for (1) a comprehensible 
interpretation of a cluster structure up to (2) a transparent 
decision process that can be communicated to the person 
concerned explaining why the particular person is placed 
in a particular cluster. Classical approaches such as the in-
terpretation of the results of a principal component analysis 
(PCA) can only partially achieve this. Therefore, the present 
report proposes a machine-learning–based approach that uses 
XAI methods (Ribeiro et al., 2016) for the interpretation of 
pain-related cluster structures that may have been detected by 
various methods, some of which have been discussed previ-
ously in a pain context (Ultsch & Lötsch, 2017).

2 |  METHODS

2.1 | Data sets

A suitable pain-related data set was available from a re-
cent study on patterns in parameters of quantitative sensory 

testing (QST) in response to harmful thermal stimuli (Lötsch 
et  al.,  2017, 2020). However, its cluster structure was ini-
tially unknown and had to be determined using a clustering 
method. In order to evaluate the correct functioning of clus-
ter interpretation methods, the true cluster structure should 
be known, which is difficult to obtain with pain-related data 
sets. Therefore, two other data sets providing such known 
cluster or subgroup structures were included; both have 
been widely used for pattern recognition problems in any 
context, namely, the iris flower data set (Fisher, 1936) and 
the "Fundamental Clustering and Projection Suite" (FCPS 
(Ultsch & Lötsch, 2020)).

2.1.1 | Pain thresholds to thermal stimuli

Pain thresholds to thermal stimuli were acquired in a co-
hort that originally consisted of n = 100 healthy volunteers 
(46 men) of Caucasian ethnicity, after self-assignment, 
aged between 19 and 42 years (mean ± standard deviation 
25 ± 3.5 years). All volunteers were pain free when the exper-
iments started. Due to missing data and deviations from the 
original study protocol, the pain-related data of n = 82 vol-
unteers were complete. The study followed the Declaration 
of Helsinki on biomedical research in humans and was ap-
proved by the Ethics Committee of the Medical Faculty of 
the Goethe University Frankfurt am Main, Germany. All test 
persons had given written consent to the study procedures 
including genotyping. The details of the study have already 
been reported in detail (Lötsch et al., 2017, 2020).

As described previously (Lötsch et al., 2017), the record-
ing of sensory thresholds for different stimuli was performed 
in strict compliance with a standard procedure developed by 
the German Research Network for Neuropathic Pain (Rolke, 
et al., 2006; Rolke, et al., 2006). Pain thresholds for harmful 
heat and cold were selected for the present analyses. They 
were assessed with a 3 × 3 cm2 thermode (TSA 2001 - II, 
Ramat Yishai, Israel) placed on a 9 cm2 skin area on the in-
side of the forearm without superficial veins or birthmarks. 
The heat pain thresholds (HPT) were measured by increasing 
the temperature of the thermode by 1°C/s, starting at 32°C, 
until the subject indicated pain, which triggered the reversal 
of the temperature ramp back to baseline. HPT was defined 
as the mean value of three repeated measurements. Cold pain 

Significance
Explainable artificial intelligence is a suitable 
method for the interpreation of clusters or subgroups 
emerging from complex hogh-dimensional pain-
related data.
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thresholds (CPT) were recorded analogously, except that 
the temperature of the thermode was lowered from 32°C at 
−1°C/s to a shut-off temperature of 0°C. In addition, a hyper-
sensitization procedure was applied consisting of ultraviolet 
(UV-B) light applied to the inner side (Gustorff et al., 2004; 
Harrison et  al.,  2004; Hoffmann & Schmelz,  1999). After 
calibration of the UV-B intensity for the individual skin type 
by determining the minimum erythema dose (MED), a cu-
mulative UV-B dose between 200  mW/cm2 and 600 mW/
cm2 (UV-B lamp UV 109 from Waldmann Medizintechnik, 
Villingen-Schwenningen, Germany) corresponding to 2 
MED was administered to the inner side of the forearm 24 h 
before the actual experiments.

The acquired pain thresholds were z-transformed into a 
reference group, comprising 180 healthy subjects (Rolke, 
et al., 2006), separately for test area, gender and age of the 
subjects. Specifically, the acquired parameter values were 

z-transformed as zQST,individual =
QSTindividual−QSTreference

Standarddeviationreference

, where the 

QST mean reference values and standard deviations were the 
published values (Magerl et al., 2010), with respect to gender, 
age and tested body part (Appendix 2 in (Rolke, et al., 2006)) 
of the actual subject. This is possible for individual subjects, 
i.e. mean values and standard deviations are taken from the 
reference groups according to the established protocol of the 
current QST system. It, therefore, allows to analyze the oc-
currence of pathological values of an individual patient when 
used in clinical settings for diagnostic purposes of neuro-
pathic pain. The signs of the z-scores were adjusted accord-
ing to the standard instructions in such a way that a z-score > 0 
indicates high sensitivity and a z-score < 0 indicates low sen-
sitivity. These z-scores served as a basis for further analyses.

The z-transformed QST parameters were checked for the 
tolerable amount of abnormal values (|x_z |≥ 1.96) in a rou-
tine quality control based on a binomial distribution (Dimova 
et al., 2016) according to the standard procedure defined by 
the German Research Network for Neuropathic Pain for the 
present standardized QST test system. For a set of 82 sam-
ples, the procedure tolerates 18 abnormal values (mild sus-
picion of measuring errors) and for a one-sided 5% quantile 
and 21 abnormal values for a one-sided 1% quantile (strong 
suspicion of measuring errors) (Vollert et al., 2015). Both of 
the above-mentioned quality assurance requirements were 
met by the presented QST parameters.

The thresholds for heat stimuli were multiplied by 
a value of −1 to obtain a uniform direction with larger 
values indicating high pain sensitivity. The effect of 
UV-B on the thresholds was quantified as the differ-
ence between the measurement after UV-B application 
and the measurement without UV-B application, i.e. 
UVBEffHeat = zHPTUVB−zHPTbaseline for heat pain and 
UVBEffCold = zCPTUVB−zCPTbaseline for cold pain.

2.1.2 | Standard non-pain data sets with 
known cluster structure

In order to test the correct functioning of the present ap-
proach to cluster interpretation, standard data sets not re-
lated to pain but often used for similar methodological 
testing purposes were included. The iris flower data set 
(Anderson,  1935; Fisher,  1936) has often been used for 
pattern recognition problems. It gives the measurements in 
centimetres of the variables sepal length and width or petal 
length and width for 50 flowers each of the three species iris 
setosa, versicolor and virginica. As there are apparently at 
least half a dozen different versions of this data set (Bezdek 
et  al.,  1999), it is necessary to specify that in the present 
analysis, the version implemented in R software package (R 
Development Core Team, 2008) as “data(iris)” was used. 
The "Fundamental Clustering and Projection Suite" (FCPS 
(Ultsch & Lötsch, 2020)) provides 10 data sets with one to 
seven classes with various degrees of separability. One data 
set, "Golfball", has only one class and was therefore omit-
ted. The FCSP data set collection is freely available at http://
www.mdpi.com/2306-5729/5/1/13/s1.

2.2 | Data analysis

Data were analysed using the R software package (version 
4.0.2 for Linux; http://CRAN.R-proje ct.org/ (R Development 
Core Team, 2008) concomitantly on three computers running 
Ubuntu Linux 20.04 LTS 64-bit (Canonical, London, UK)). 
The data analysis focused on the evaluation of an approach to 
understandable cluster interpretation including a transparent 
process of cluster assignment of a given subject.

2.2.1 | Quantitative variables

Pain-related data comprised z-transformed pain thresholds to 
heat or cold stimuli recorded under control conditions, after 
UV-B irradiation and the UV-B effects calculated as the dif-
ference between the z-transformed thresholds before and 
after the irradiation. This provided an 82 × 6 (n × d) sized 
input data space D=

{(
xi

)
|xi ∈ X, i=1,…, n

}
, which in-

cluded vectors xi = <xi,1,...,xi,d > with d = 6 different param-
eters representing the six different pain thresholds or UV-B 
effect-related variables (zHPTbaseline, zHPTUVB, zCPTbaseline, 
zCPTUVB, UVBEffHeat, and UVBEffcold) acquired from n = 82 
subjects.

The iris flower data set includes 150 cases and five vari-
ables named Sepal.Length, Sepal.Width, Petal.Length, Petal.
Width and Species. To test the feature selection capabilities 
of the present approach, the input variables were duplicated, 
and the duplicates were randomly permuted. The expectation 

http://www.mdpi.com/2306-5729/5/1/13/s1
http://www.mdpi.com/2306-5729/5/1/13/s1
http://CRAN.R-project.org/
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was that the algorithm would not select the permuted fea-
tures. This resulted in a 150 x 8 input data space with d = 8 
different features representing the four measurements of iris 
flowers, either original or randomly permuted, obtained from 
n = 150 flowers. From the FCPS data set collection, nine data 
sets were used comprising d = 2,…,7 classes and n = 400 to 
4,096 instances. The data set has been exhaustively described 
in a separate paper (Ultsch & Lötsch, 2020).

2.2.2 | Interpretation of clusters of pain-
related phenotypes

Cluster interpretation by examination of PCA and 
k-means clustering results
A common clustering approach in pain research includes 
the creation of uncorrelated variables by orthogonal projec-
tion onto a low-dimensional linear space named the principal 
subspace by means of PCA (Hotelling, 1933; Pearson, 1901), 
followed by a clustering procedure applied to the cases’ pro-
jection on the relevant principal components (PCs). Hence, 
PCA was performed with the d = 6 centred, normalized pain-
related variables, using the R-library "FactoMineR" (https://
cran.r-proje ct.org/packa ge=Facto MineR (Le et  al.,  2008)). 
Of the resulting main PCs, those with eigenvalues >1 were 
retained for clustering (Guttman, 1954; Kaiser, 1958), which 
was subsequently performed using the k-means method 
(MacQueen,  1967) and the Euclidean distance. The number 
of clusters was obtained as the majority vote among 30 differ-
ent indices for determining the number of clusters, calculated 
using the R library “NbClust” (https://cran.r-proje ct.org/packa 
ge=NbClust). Cluster quality was evaluated by calculating the 
Silhouette index (Rousseeuw, 1987). The clustering was per-
formed using the R-libraries “flexclust” (https://cran.r-proje 
ct.org/packa ge=flexc lust (Leisch, 2006)) and “cluster” (https://
cran.r-proje ct.org/packa ge=cluster (Maechler et al., 2017)).

For cluster interpretation, the contribution of the relevant 
PCs to the overall variance of the data set and the contribu-
tions of each pain-related feature to the PC were calculated 
by summing up the respective factor loadings. Subsequently, 
the contribution of PCs to the clusters was addressed directly 
using an algorithm built to find the variables that control 
cluster allocation and to evaluate them according to their rel-
evance. It is based on the permutation misclassification rate 
for each variable, using the mean misclassification rate over 
all iterations as a measure of the importance of the variables. 
The algorithm is implemented as "FeatureImpCluster" func-
tion in the R library of the same name (https://cran.r-proje 
ct.org/packa ge=Featu reImp Cluster (Pfaffel,  2020)). Cluster 
interpretation also included standard statistics comprising t-
tests (Student, 1908) or univariate analyses of variance after 
non-significant Kolmogorov-Smirnov tests (Smirnov, 1948) 
against normal distribution; the α level was set at 0.05 and 

corrected for multiple testing as proposed by Bonferroni 
(Bonferroni, 1936).

Machine-learning–based cluster interpretation
Methods of supervised machine learning were used for clus-
ter interpretation by transforming the problem of determin-
ing the meaning of the cluster into a classification problem. 
This means that by analyzing which features are needed to 
assign a case to the correct cluster, the characteristics rel-
evant to the cluster structures become known. Furthermore, 
by analyzing the decision process of the successful algo-
rithm, the individual cluster assignment becomes transpar-
ent. The more successful the correct cluster assignment by 
the algorithm is, the more valid is the interpretation of the 
entire cluster substructure of the data set. For this purpose, 
cluster-relevant pain variables were identified by analyzing 
on which characteristics the successful class assignment was 
based by using sub-symbolic classifiers (Smolensky, 2010). 
Sub-symbolic classifiers usually achieve the highest clas-
sification performance by waiving comprehensibility of 
the process. Subsequently, symbolic classifiers (Newell 
& Simon,  1976), which include XAI methods, were used 
to make the decision process of class assignment under-
standable as a combination of comprehensible rules. It is 
noteworthy that comprehensibility may be bought with a 
reduced classification performance (Arrieta et  al.,  2019). 
Therefore, the present study exploited the strengths of both 
types of machine-learning algorithms, Sub-symbolic classi-
fiers (non-XAI type machine learning) for feature selection 
and symbolic classifiers (XAI-type machine learning) that 
provide an understandable cluster interpretation based on 
the selected features. The optimal XAI is chosen from sev-
eral types of XAI based on their comparative classification 
performance.

2.2.3 | Selection of cluster-relevant pain-
related features using non-XAI type machine-
learning methods

Feature selection was approached using a recently proposed 
method of random forest classification followed by computed 
ABC analysis (Lötsch & Ultsch, 2020). The selection of ran-
dom forests was further suggested by its tree-based struc-
ture, which it shares with the majority of the XAI methods 
included in the present analysis. Specifically, random forest 
classifiers (Breiman, 2001; Ho, 1995) generate sets of differ-
ent, uncorrelated and often very simple decision trees. The 
class assignment is achieved as a majority vote across many 
well-performing trees. Hyperparameters were set after a grid 
search to forest sizes of 1,500 trees and √(d) parameters for 
each tree. The calculations were done using the R libraries 
“randomForest” (https://cran.r-proje ct.org/packa ge=rando 

https://cran.r-project.org/package=FactoMineR
https://cran.r-project.org/package=FactoMineR
https://cran.r-project.org/package=NbClust
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https://cran.r-project.org/package=flexclust
https://cran.r-project.org/package=flexclust
https://cran.r-project.org/package=cluster
https://cran.r-project.org/package=cluster
https://cran.r-project.org/package=FeatureImpCluster
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mForest (Liaw & Wiener,  2002)) or “caret” (https://cran.r-
proje ct.org/packa ge=caret (Kuhn, 2018)).

In order to identify the features relevant to cluster assign-
ment, random forests were first trained on 100 data subsets 
obtained by class-proportional Monte Carlo random resam-
pling of 2/3 of the original data. The trained algorithm was 
then applied to the remaining 1/3 of the data. The performance 
of class assignment was quantified using the balanced accu-
racy (Brodersen et al., 2010) as the main criterion. This was 
preferred to alternatives such as the area under the receiver 
operator curve (AUC-ROC (Peterson et al., 1954)) based on 
the assessments in Brodersen et al. (2010). Moreover, the bal-
anced accuracy as the mean of sensitivity and specificity is 
half of the Youden index (Youden, 1950), calculated as the 
sum of the two measures, which is often used as a perfor-
mance measure in machine learning.

The procedure was then repeated, successively leaving out 
one of the features from the analysis. For each feature, the 
decrease in balanced classification accuracy when left out of 
the analysis was maintained providing a quantitative measure 
of its importance. Using computed ABC analysis (Ultsch 
& Lötsch, 2015), in each run, the features were categorized 
into three non-overlapping subsets called "A", "B" and "C" 
(Juran, 1975; Pareto, 1909). Subset "A" contains the "import-
ant few", subset "C" contains the "trivial many" of negligible 
information value and subset "B" contains items with bal-
anced profit and loss when selected. In the present analyses, 
the elements placed in subsets "A" and "B" were retained. 
The final size of the feature set corresponded to the most 
common size of subsets "A" + "B" in the 100 runs, and the 
members of the feature set were selected in descending order 
of their appearances in the retained ABC sets. These calcu-
lations were performed using our R package “ABCanalysis” 
(http://cran.r-proje ct.org/packa ge=ABCan alysis (Ultsch & 
Lötsch, 2015)).

2.2.4 | Interpretation of cluster-relevant 
pain-related features using symbolic XAI-type 
machine-learning methods

In order to adhere to the concept of XAI, algorithm types 
were chosen that create simple recipes, usually in the form of 
rules or rule sets that make the class assignment transparent 
(Gigerenzer & Todd, 1999). Classification tree-based decision 
making is a traceable procedure compared to more complex 
classification models like random forests or deep artificial 
neural networks. However, growing the optimal tree is intrac-
table even for small data sets, tree-based classification will 
most likely not find the optimal but rather a reasonably good 
solution. Therefore, it is not possible to say in advance which 
training algorithm will lead to the best result. In context of this 
study, several decision trees were used to solve a classification 

problem. All of these classification trees have in common that 
they consist of leaves representing class labels and branches 
representing conjunctions of observations that lead to distinct 
class labels. They differ in their structure and the way they are 
grown. For a detailed comparison of tree-based decision rules, 
please refer to Loh (2011, 2014). The main differences of the 
algorithms are summarized in Table 1.

Simple-tree–based hierarchical decision rules were deter-
mined using hierarchical classification and regression trees 
(CART (Breimann et  al.,  1993)), the recursive partitioning 
decision tree method, conditional inference trees (CTREE 
(Hothorn et  al.,  2006)) and decision trees created with the 
algorithms C4.5 (Salzberg, 1994) or C5.0 (Quinlan, 1986). In 
addition, non-hierarchical decision rules were created from 
analyses of the decision process in the random forests, using 
the Local Interpretable Model-Agnostic Explanations (LIME) 
method (Ribeiro et al., 2016) implemented in the R library 
“lime” (https://cran.r-proje ct.org/packa ge=lime (Pedersen 
& Benesty,  2019)) in combination with the “caret” imple-
mentation of random forests. Lime generates instance-wise 
explanations of classifier predictions by locally approximat-
ing the underlying model by a simple linear one. It creates 
a data set comprising permutated versions of the instance. 
The linear model is learned on this data set and weighted in 
favour of mistakes in perturbed instances that are close to the 
original one. The result is a list of individual decision rules 
per instance that locally interpret the classifier's prediction 
(Ribeiro et al., 2016).

Furthermore, non-hierarchical decision rules were gen-
erated based on partial decision trees (PART (Frank & 
Witten,  1998)), on repeated incremental clipping for error 
reduction (RIPPER (Cohen,  1995)) and on the rule-based 
variant of the C5.0 algorithm (Rizopoulos,  2018). As a 
basis for the interpretation of the recognized phenotypes 
of thermal pain, the rule set was chosen that most accu-
rately assigns the subjects to the correct clusters. These 
calculations were performed with the R libraries "rpart" 
(https://cran.r-proje ct.org/packa ge=rpart (Therneau & 
Atkinson,  2019)), “party” (https://cran.r-proje ct.org/packa 
ge=party (Hothorn et  al.,  2006)), “RWeka” (https://cran.r-
proje ct.org/packa ge=RWeka (Hornik et  al.,  2009)) and 
“C50” (https://CRAN.R-proje ct.org/packa ge=C50 (Kuhn & 
Quinlan,  2018)). Hyperparameter tuning included, but was 
not limited to, reducing the minimum number of observations 
that must be present in a node from the default of 20 to only 
5 in Ctree or Rpart to accommodate small subgroups in the 
present data. In Rpart, the Gini impurity was used as splitting 
criterion.

In 100 runs on disjoint training and test data subsets as 
described above, standard measures of classification perfor-
mance were used to compare the algorithms. This comprised 
the balanced classification accuracy and, additionally, sen-
sitivity, specificity, precision, recall, positive and negative 

https://cran.r-project.org/package=randomForest
https://cran.r-project.org/package=caret
https://cran.r-project.org/package=caret
http://cran.r-project.org/package=ABCanalysis
https://cran.r-project.org/package=lime
https://cran.r-project.org/package=rpart
https://cran.r-project.org/package=party
https://cran.r-project.org/package=party
https://cran.r-project.org/package=RWeka
https://cran.r-project.org/package=RWeka
https://CRAN.R-project.org/package=C50
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predictive value (Altman & Bland, 1994a,b) and the area 
under the AUC-ROC. These calculations were performed 
with the R libraries “caret” and “pROC” (https://cran.r-proje 
ct.org/packa ge=pROC (Robin et al., 2011)). In order to con-
trol possible overfitting, all machine-learning algorithms 
were additionally trained with randomly permuted features. 
The classifier trained with these data should not perform bet-
ter than guessing, i.e. should give a balanced accuracy and 
an AUC-ROC equal or close to 0.5. The non-parametric 95% 
confidence intervals (CI) of the performance measures were 
obtained as the 2.5th and 97.5th percentiles of the values ob-
tained in the 100 runs.

2.2.5 | Selection of the most accurate XAI 
for the particular data set

The algorithms were finally ranked according to their 
suitability for a comprehensible cluster interpretation. 
Specifically, algorithms were used in 100 cross-validation 
runs with the full feature set and with the reduced feature 
set, and were trained either with the original or with ran-
domly permuted features. Algorithms that provided better 
classification accuracy than guessing when trained with the 
permuted features were discarded due to possible overfit-
ting. Algorithms where the 95% CI of the balanced accuracy 
touched or included the value of 50% were not considered 
because it was doubtful whether they were able to provide a 
valid cluster assignment. To choose the XAI for cluster in-
terpretation, the algorithms were scored in terms of archived 
median balanced classification accuracy, corrected for reduc-
tion in classification accuracy from the full feature set, i.e., 
Classifierscore=BAReducedfeatureset] ⋅

(
1− (BAFullfeatureset−BAReducedfeatureset

), 
where BA denotes balanced accuracy. This favours the most 
accurate XAI as the basis for cluster interpretation, but dis-
criminates against the algorithm if its performance declines 
when trained with preselected characteristics, which would 
indicate that the preselection was not appropriate for the par-
ticular algorithm.

2.2.6 | Creation of a rule-based clustering 
with known structure

Machine-learning algorithms provided sets of rules from 
which the variable significance for cluster formation and, 
thus, cluster interpretation could be derived. However, in 
order to assess whether the provided rules reflect true clus-
tering, a clustering solution was required in which these 
rules were known. This cannot be obtained from PCA re-
sults or k-means clustering. Therefore, a rule-based cluster-
ing was created for methodological testing purposes. The 

rules were derived from the present data and not arbitrar-
ily selected, according to the following approach. First, a 
group structure was searched for separately in each of the 
d  =  6 features by analyzing their modal distribution. For 
this purpose, their probability density distributions were 
described by the Pareto density estimation (PDE), which 
is a kernel density estimator particularly suited for group 
discovery (Ultsch,  2003). Modal structures were analysed 
by fitting Gaussian mixture models (GMM) to the PDE 
asp (x)=

∑M

i= 0
wiN

�
x�mi, si

�
, where N(x|mi,si) denotes 

Gaussian probability densities with expectation values 
mi and standard deviations si. The wi denotes the mixture 
weights indicating the relative contribution of each of the 
M Gaussian components to the overall distribution. Models 
with M = 1,...,5 Gaussian modes were tested and the final 
model was selected on the basis of the Akaike Information 
Criterion (AIC (Akaike, 1974)) and on likelihood ratio tests 
(Swets,  1973) comparing the goodness of fit between the 
GMM with the lowest value of AIC versus the correspond-
ing simpler model, i.e. GMM with modes M versus GMM 
with modes M – 1, and on visual inspection of the quantile–
quantile plots of the predicted versus observed data.

The assignment of subjects to the identified sub-
groups was determined using Bayesian Theorem (Bayes 
& Price, 1763), which provides the decision limits for as-
signing a single observation to mode Mi based on the cal-
culation of posterior probabilities. An automated genetic 
algorithm was used for this purpose as implemented in 
our R library "DistributionOptimization" (https://cran.r-
proje ct.org/packa ge=Distr ibuti onOpt imiza tion (Lerch 
et  al.,  2020)). Finally, rule-based pain-related phenotypes 
were established by combining the one-dimensional GMM-
based phenotype groups across the pain-related parameters. 
The Gaussian modes in the one-dimensional phenotypes 
were numbered in the order of increasing pain sensitivity 
and, thus, followed an ordinal scale with "low", "medium" 
or "high" pain sensitivity (Diatchenko et  al.,  2005). This 
initially resulted in 17 groups with different combinations 
of mode affiliations, but only groups with n ≥ 10 members 
were retained, while rarer combinations were combined 
into a common group.

2.2.7 | Evaluations of the functioning of the 
cluster interpretation approach in non-pain 
data sets

To assess the correct functioning of the approach described 
above for selecting the variables relevant for clustering and 
choosing the XAI best suited for this purpose, selected evalu-
ations were applied to the standard non-pain data sets. In par-
ticular, the iris data set extended by the permuted features 

https://cran.r-project.org/package=pROC
https://cran.r-project.org/package=pROC
https://cran.r-project.org/package=DistributionOptimization
https://cran.r-project.org/package=DistributionOptimization
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was subjected to feature selection to verify the reliability of 
the process by monitoring that the permuted features were 
not selected as relevant. The FCPS data set was used to read-
dress the need to select XAI algorithms based on their actual 
performance on the particular data set rather than using a pre-
defined algorithm.

3 |  RESULTS

3.1 | Participants and descriptive data

Phenotype data (pain thresholds acquired at the control side 
or following UV-B irradiation) were acquired from 82 sub-
jects (age: range 19–33  years, mean  ±  standard deviation, 
SD: 24.7 ± 2.7 years, gender: 45 women). In the remaining 
subjects, the test had not taken place for all experimental 
conditions.

3.2 | Main results

3.2.1 | Cluster interpretation in pain 
thresholds to thermal stimuli

Cluster interpretation by examination of PCA and 
k-means clustering results
PCA revealed two PCs with eigenvalues >1 (Figure  1a), 
which explained 49.5% and 26.6% of the variance of the entire 
data set respectively. PC1 mainly carried loadings from zHPT-
baseline (25.3%), zCPTbaseline (26.1%) and zCPTUVB (24.9%) and 
to a lesser extent to zHPTUVB (20.7%), while the UVB effects 
played almost no role (Figure 1b). PC2 mainly carried load-
ings from the UVB effects (UVBEffheat: 40.4%, UVBEffcold: 
35.6%) and to a lesser degree from zHPTUVB (10.8%).

A cluster count of k  =  2 was proposed by the largest 
number of indices available for this purpose. The result-
ing k-means clusters included n = 47 and n = 35 subjects 

F I G U R E  1  Results of principal component analysis (PCA) and k-means based clustering of the d = 6 pain-related parameters. (a) Scree-
plot of the amount of variation of the data captured by each PC. (b) Barplot of the contribution of each pain-related parameter to PC1 as the most 
relevant PC and the by far main component important to the clustering. The dashed horizontal reference line corresponds to the expected value 
if the contribution where uniform. (c) Box plots of original data of the pain-related parameters, shown separately for the two clusters that have 
resulted from the k-means–based clustering. The boxes have been constructed using the minimum, quartiles, median (solid line within the box) and 
maximum. The whiskers add 1.5 times the interquartile range (IQR) to the 75th percentile or subtract 1.5 times the IQR from the 25th percentile. 
The arithmetic mean values are additional shown as yellow dots. (d) Factorial plot of the individual data points on the principal component map, 
obtained following k-means clustering. The coloured areas visualize the cluster separation. (e) Silhouette plot (Rousseeuw, 1987) for the two-
cluster solution. Positive values indicate that the sample is away from the neighbouring cluster while negative values indicate that those samples 
might have been assigned to the wrong cluster because they are closer to neighbouring than to their own cluster. (f) Boxplot of the importance 
of data submitted to k-means clustering for the cluster solution. The values have been obtained in 100 cross-validation runs using the mean 
misclassification rate over all iterations as a measure of the importance of the variables. The figure has been created using the R software package 
(version 4.0.2 for Linux; http://CRAN.R-proje ct.org/ (R Development Core Team, 2008)) and the R packages “ggplot2” (https://cran.r-proje ct.org/
packa ge=ggplot2) and “FactoMineR“ (https://cran.r-proje ct.org/packa ge=Facto MineR (Le et al., 2008)). The colours were selected from the 
“colorblind_pal” palette provided with the R library “ggthemes” (https://cran.r-proje ct.org/packa ge=ggthemes (Arnold, 2019)). Variable names: 
HPT_Z_Control = zHPTbaseline, HPT_Z_UVB = zHPTUVB, CPT_Z_Control = zCPTbaseline, CPT_Z_UVB = zCPTUVB, UVBheatEff = UVBEffHeat, 
UVBcoldEff = UVBEffcold

(a) (b) (c)

(d) (e) (f)

http://CRAN.R-project.org/
https://cran.r-project.org/package=ggplot2
https://cran.r-project.org/package=ggplot2
https://cran.r-project.org/package=FactoMineR
https://cran.r-project.org/package=ggthemes
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(Figure 1c and d). The cluster solution was satisfactory, as 
indicated by a mean Silhouette index of 0.39 (Figure 1e). 
Statistical comparisons of the QST parameters between 
clusters by means of t-tests resulted in significances of 
p = 2.14 · 10–14 for zHPTbaseline, p = 1.27 · 10–9 for zHP-
TUVB, p = 4.07 · 10–14 for zCPTbaseline, p = 2.25 · 10–14 for 
zCPTUVB, p  =  0.014 for UVBEffheat and p  =  0.7931 for 
UVBEffcold. After α correction, the first four remained sta-
tistically significant.

The analysis of the significance of PCs for cluster for-
mation showed that it was mainly based on PC1 (Figure 1f). 
Thus, the cluster interpretation based on the PCA results led 
to the above-mentioned d = 4 pain-related features, which 
characterize the two subgroups of subjects in terms of their 
sensitivity to thermal pain. According to the values of the 
features (Figure 1c), the two clusters can be interpreted as 
containing either subjects with high or low thermal pain 
sensitivity.

Non-XAI type machine-learning–based cluster 
interpretation
Using d = 6 pain-related features, random forests provided 
a median balanced accuracy of the assignment to the two 
k-means clusters of 92.7% (95% CI of 100 cross-validation 
runs: 82.–100%; further details of performance measures 
obtained with full feature sets not shown). In 100 cross-
validation runs on disjoint training and test data sets ran-
domly drawn from the original data, the most frequent size 
of ABC subsets "A" and "B" was d = 3 items (Figure 2b). 
The three most frequent items in these subsets were, in de-
creasing order of occurrence count, zHPTbaseline, zCPTUVB 
and zCPTbaseline, whereas zHPTUVB was present as frequent 
as zCPTbaseline (Figure 2a). With the same probability of im-
portance, the choice of one of the two was appropriate. The 
decision could be made when 200 cross-validation runs were 
performed instead of 100. Then, zHPTUVB only achieved 62 
inclusions in the relevant ABC subsets, while zCPTbaseline 
was included 81 times. Training of random forests on the re-
duced variable space (d = 3) comprising features from sub-
sets "A" and "B" resulted in a median balanced accuracy of 
92.7% (95% CI of 100 cross-validation runs: 83.3%–100%; 
Table 2 and Figure 2c).

The extraction of simple combined rules from random 
forests using the LIME approach (RFlime) provided ac-
cess to the decision on class assignment at subject level. 
For example, a subject belonging to cluster 1 was cor-
rectly assigned by random forests based on the conditions 
−0.523  <  zHPTbaseline ≤0.103 AND 0.952  <  zCPTbaseline 
≤1.539 AND 0.578 < zCPTUVB <= 1.501. Another subject 
was correctly assigned to the same class on the conditions 
0.103  <  zHPTbaseline ≤0.937 AND 0.952  <  zCPTbaseline 
≤1.539 AND −0.235  <  zCPTUVB ≤0.578. However, the 

median accuracy of these class assignments was only 50% 
(95% CI of 100 cross-validation runs: 50%–71.4%; Table 2). 
Complete results of the RFlime extraction of single rules are 
provided in the Tables S1 and S2.

XAI-type machine-learning–based cluster interpretation
When training algorithms that create simpler hierarchical or 
non-hierarchical rule sets for class assignment with the d = 3 
features selected by random forests and ABC analysis, C4.5 
scored the best (Figure 2c and d). Its median balanced accuracy 
of class assignment of 90.6% (95% CI of 100 cross-validation 
runs: 76.5%–100%; Table 2) was only slightly lower than the 
accuracy achieved by random forests 92.7% (95% CI of 100 
cross-validation runs: 83.3%–100%; Table 2). PART even pro-
vided a higher balanced accuracy 91.1% (95% CI of 100 cross-
validation runs: 75.4%–96.9%; Table 2), but was penalized for 
the decrease from the performance achieved with the full feature 
set (Figure 2c). It is noteworthy that all algorithms delivered 
balanced accuracies of 50% or close to this value when trained 
with randomly permuted data, which supports the conclusion 
that the above results were not due to overfitting (Table 2).

Ability of the machine-learning–based cluster 
interpretation to capture rules underlying the clustering
Analysis of the probability density distribution of the d = 6 
pain measures found multimodality in zHPTbaseline, zCPTbase-

line, zCPTUVB and UVBEffcold (Figure 3). This was statistically 
supported by the lowest values of AIC (Table  S3) and by 
the results of the likelihood ratio tests indicating statistically 
significantly better fits when using M modes than when using 
M – 1 modes, but no further improvement when using M + 1 
modes (Table 3). Combination individual mode assignments 
based on the Bayesian boundaries initially led to 17 different 
vectors of each 4 modes, which after applying a cut off of 10 
members led to 5 subgroups of size n = 24, 15, 10, 16 and 17 
(for details, see Table S4). The cluster structure was based on 
the rules shown in Table 4.

Feature selection based on random forests and ABC 
analysis indicated d = 3 pain-related measures, zHPTbaseline, 
zCPTUVB and UVBEffcold, as relevant for the cluster structure, 
while the fourth cluster-defining feature, zCPTbaseline, ob-
tained the next best score but was not part of the final feature 
set (Figure 4a and b). With this three-feature set, random for-
ests obtained a median balanced accuracy of class assignment 
of 95.2% (95% CI in 100 cross-validation runs: 66.4%–100%; 
Table  5), which outperformed random forests that were 
trained on the full variable space and resulted in a median 
balanced accuracy of 91.4% (95% CI in 100 cross-validation 
runs: 66.7%–100%). Furthermore, omitting zCPTbaseline from 
the rules shown in Table 4 resulted in just n = 3 misclassifica-
tions, with balanced accuracies of class assignment of 93.75, 
100, 97.92, 100 and 100% for subgroups #1,…,5 respectively.
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F I G U R E  2  Machine-learning–based analyses of the cluster structure obtained via PCA-based projection of the data and subsequent k-means–
based clustering. (a) Feature selection based on random forests, followed by computed ABC analysis. The bar graph shows the significance of the 
features in descending order of their occurrence in the ABC subsets "A" or "B" during 100 cross-validation runs on disjoint training and test data 
subsets randomly drawn from the original data set. (b) Bar plot of the size of ABC subsets. ABC subsets "A" + "B" most often had a size of d = 3 
items, which caused the selection of the three most frequently included items as the final feature set important for the cluster structure. (c) Boxplots 
of the performance of different types of machine-learning algorithms in the assignment of subjects to the k-means–based clusters when trained with 
the selected features. The left panel shows the balanced accuracies of the classification obtained by the different algorithms. The middle field shows 
the difference in the balanced accuracy between the classification based on the full set of d = 6 pain-related features and the classification based 
on the selected set of d = 3 features. The right panel shows the final classifier score calculated from the values shown in the previous two panels 
asClassifierscore=BAReducedfeatureset ⋅

(
1− (BAFullfeatureset −BAReducedfeatureset

)
, where BA denotes balanced accuracy. The boxes have been constructed 

using the minimum, quartiles, median (solid line within the box) and maximum. The whiskers add 1.5 times the interquartile range (IQR) to the 
75th percentile or subtract 1.5 times the IQR from the 25th percentile. The arithmetic mean values are additionally shown as yellow dots. (d) Plot of 
the decision tree built by the C4.5 algorithm using the features that had passed the feature selection procedure. The panel shows the trees along with 
the decision limits as the basis for the assignment to either cluster. Each coloured node shows the node number (counted from top), the predicted 
class, the number of cases in this node and the percentage of wrongly assigned cases per node. The figure has been created using the R software 
package (version 4.0.2 for Linux; http://CRAN.R-proje ct.org/ (R Development Core Team, 2008)) and the R packages “ggplot2” (https://cran.r-
proje ct.org/packa ge=ggplot2) and “RWeka” (https://cran.r-proje ct.org/packa ge=RWeka (Hornik et al., 2009)). The colours were selected from the 
“colorblind_pal” palette provided with the R library “ggthemes” (https://cran.r-proje ct.org/packa ge=ggthemes (Arnold, 2019)). Variable names: 
HPT_Z_Control = zHPTbaseline, HPT_Z_UVB = zHPTUVB, CPT_Z_Control = zCPTbaseline, CPT_Z_UVB = zCPTUVB, UVBheatEff = UVBEffHeat, 
UVBcoldEff = UVBEffcold. RF: random forests, RFlime: Local Interpretable Model-Agnostic Explanations applied on random forests, CTREE: 
conditional inference trees, Rpart: classification and regression trees (= CART), PART: partial decision trees, RIPPER: repeated incremental 
clipping for error reduction

http://CRAN.R-project.org/
https://cran.r-project.org/package=ggplot2
https://cran.r-project.org/package=ggplot2
https://cran.r-project.org/package=RWeka
https://cran.r-project.org/package=ggthemes
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With a median balanced accuracy of 93.8% (95% CI in 
100 cross-validation runs: 62.5%–100%) and no penalty 
from its performance when run with the full feature set, 
Rpart achieved the best score among XAI algorithms for 
interpreting the cluster structure (Figure  4c). The rules by 
which Rpart performed the cluster assignment are shown in 
Figure 4d and, for a more convenient comparison with the 
class-defining rules, in Table 4. The one-dimensional proba-
bility density distributions of the respective variables’ split-
ting criteria as estimated from resampling experiments over 
100 Rpart models (Figure 4e), as well as the splitting criteria 
extracted from the rules of a Rpart model that was trained 
on all instances (Figure 4e, dashed lines), indicate that the 

determined maxima mostly superimpose with the splitting 
criteria from the GMM-based clustering model (Figure 4e, 
solid lines). The only exception is a split at UVBEffcold at 0.24 
that is indicated by a slight shoulder in the distribution.

3.2.2 | Evaluations of the cluster 
interpretation approach in non-pain data sets

The most relevant result from the analysis of the classical iris 
flower data set was that the current approach to feature selec-
tion, which was based on random forests for feature ranking 
and computed ABC analysis for the categorization of items into 

F I G U R E  3  Clustering based on the modal distribution of single pain-related parameters. (a): Density plot of the QST parameters, showing 
the results of fitting Gaussian mixture models (GMM) to the distribution of pain thresholds to heat or cold stimuli and of the effects of UV-B 
irradiation on these thresholds. M = 1,…,5 modes were tested. The final model is shown, selected based on the lowest AIC (Akaike, 1974) and 
on a significant likelihood ratio test indicating that it fit the data better than a model with M – 1 Gaussian mode. The distribution of pain-related 
parameters is shown as probability density function (PDF) estimated by means of the Pareto density estimation (PDE (Ultsch, 2003); black 
line) and overlaid on a histogram. The GMM fit is shown as a red line and the M = 2,…,5 single mixes, if M > 1, are indicated as differently 
coloured dashed lines. The Bayesian boundaries between the Gaussians for M > 1 are indicated as perpendicular magenta lines. (b): Box plots 
showing the pattern of pain thresholds among the five different phenotypes resulting from the combination of the individual memberships to 
Gaussian modes 1, 2 or 3, depending on the modal distribution of thresholds to heat or cold stimuli or of the effects of UV-B irradiation on these 
thresholds, in the succession zHPTbaseline, zHPTUVB, zCPTbaseline, zCPTUVB, UVBEffHeat and UVBEffcold. The boxes have been constructed using 
the minimum, quartiles, median (solid line within the box) and maximum. The whiskers add 1.5 times the interquartile range (IQR) to the 75th 
percentile or subtract 1.5 times the IQR from the 25th percentile. The arithmetic mean values are additional shown as yellow dots. The figure 
has been created using the R software package (version 4.0.2 for Linux; http://CRAN.R-proje ct.org/ (R Development Core Team, 2008)) and 
the library “ggplot2” (https://cran.r-proje ct.org/packa ge=ggplot2 (Wickham, 2009)). An automated genetic algorithm was used implemented in 
our R library “DistributionOptimization” (https://cran.r-proje ct.org/packa ge=Distr ibuti onOpt imiza tion (Lerch et al., 2020)). Variable names: 
HPT_Z_Control = zHPTbaseline, HPT_Z_UVB = zHPTUVB, CPT_Z_Control = zCPTbaseline, CPT_Z_UVB = zCPTUVB, UVBheatEff = UVBEffHeat, 
UVBcoldEff = UVBEffcold. RF: random forests, RFlime: Local Interpretable Model-Agnostic Explanations applied on random forests, CTREE: 
conditional inference trees, Rpart: classification and regression trees (= CART), PART: partial decision trees, RIPPER: repeated incremental 
clipping for error reduction

http://CRAN.R-project.org/
https://cran.r-project.org/package=ggplot2
https://cran.r-project.org/package=DistributionOptimization
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informative features to be retained or uninformative features 
to be dropped, did not select the permuted measures added to 
the data set (Figure 5a). This supports the correct functioning 
of the proposed approach. The algorithm selected the measure 
"Petal.Width" as the only relevant feature to correctly iden-
tify the iris flower species (Figure 5a and b). In fact, random 
forests achieved an identical balanced classification accuracy 
with this single feature (96.9% CI of 100 cross-validation runs: 
88.2%–100%) as with the full feature set (Figure 5c). Of note, 
combining rules extracted by the RFlime method from the 
forest obtained a balanced accuracy of 87.5% in the iris data 
set (95% CI of 100 cross-validation runs: 68.8%–98.5%). The 
other algorithms achieved similarly high classification accura-
cies (Table 6). By contrast, the algorithms performed more het-
erogeneously in some of the data sets from the FCPS collection 

(Figure 6). Especially for the "target" data set, which comprises 
four classes with only three members, some of the hierarchical 
tree-based algorithms performed poorly. An important finding 
from the FCPS collection was also that random forests always 
and consistently performed best, near the optimum of 100% 
balanced accuracy.

4 |  DISCUSSION

In this report, we propose an approach for the compre-
hensible interpretation of subgroup structures that arise 
in pain-related data from unsupervised analyses, such as 
from clustering methods that are commonly used in pain 
research. The approach was designed to enable clinical pain 

T A B L E  3  Number of Gaussian modes and parameter values of the Gaussian mixture models (GMMs) fitted to the probability density 
functions describing the distribution of thresholds to heat or cold stimuli or of the effects of UV-B irradiation on these thresholds

Parameter
# 
Modes

Gaussian #1 Gaussian #2 Gaussian #3
Bayes 
boundaries

w1 m1 s1 w2 m2 s2 w3 m3 s3 M1/M2 M2/M3

zHPTbaseline 2 0.73 −0.319 0.78 0.27 1.554 0.722 – – – 0.932 –

zHPTUVB 1 1 1.264 0.963 – – – – – – – –

zCPTbaseline 2 0.296 −0.719 0.556 0.704 1.349 0.604 – – – 0.144 –

zCPTUVB 3 0.253 −0.881 0.44 0.265 0.319 0.256 0.482 1.529 0.357 −0.177 0.804

UVBEffHeat 1 1 1.024 0.877 – – – – – – – –

UVBEffcold 3 0.153 −1.035 0.475 0.71 −0.118 0.316 0.138 0.841 0.376 −0.767 0.536

Note: The GMM were implemented as p (x)=
∑M

i= 1
wi ⋅

1√
2�si

⋅e
−
(x−mi)

2

2s2
i , with means mi and standard deviations si. The wi denotes the mixture weights indicating the 

relative contribution of each Gaussian component to the overall distribution, which add up to a value of 1. Quantitative component populations can be accessed via 
ni =wi ∗82. M denotes the number of components in the mixture.

T A B L E  4  Sets of rules to assign an individual subject to the rule-based clustering

Phenotype
Rules based on GMM mode membership with known 
limits: Class-definitory rules

Rules based on the RPART algorithm trained with 
features and instance labels suggested by GMM 
clustering

#2 IF (zHPTbaseline < 0.93 AND zCPTbaseline < 0.14 AND 
zCPTUVB < −0.18 AND UVBEffcold ≥ −0.77 AND 
UVBEffcold < 0.54) THEN Group #2

IF (zCPTUVB < −0.15 AND UVBEffcold ≥ −0.76 AND 
UVBEffcold < 0.49) THEN Group #2

#3 IF (zHPTbaseline < 0.93 AND zCPTbaseline ≥ 0.14 AND 
zCPTUVB ≥ −0.18 AND zCPTUVB < 0.8 AND UVBEffcold ≥ 
−0.77 AND UVBEffcold < 0.54) THEN Group #3

IF (zCPTUVB ≥ −0.15 AND zCPTUVB < 0.82 AND 
UVBEffcold ≥ −0.81 AND UVBEffcold < 0.24) THEN 
Group #3

#4 IF (zHPTbaseline < 0.93 AND zCPTbaseline ≥ 0.14 AND 
zCPTUVB ≥ 0.8 AND UVBEffcold ≥ −0.77 AND 
UVBEffcold < 0.54) THEN Group #4

IF (zHPTbaseline < 0.87 AND zCPTUVB ≥ 0.82 AND 
UVBEffcold < 0.59) THEN Group #4

#5 IF (zHPTbaseline ≥ 0.93 AND zCPTbaseline ≥ 0.14 AND 
zCPTUVB ≥ 0.8 AND UVBEffcold ≥ −0.77 AND 
UVBEffcold < 0.54) THEN Group #5

IF (zHPTbaseline ≥ 0.87 AND zCPTUVB ≥ 0.82) THEN 
Group #5

#1 ELSE Group #1
i.e., all others than those captured by the four rules above

ELSE Group #1

Note: The definitory rules have derived from the Bayesian boundaries between Gaussian modes obtained from the fitted Gaussian mixture model (GMM) (Table 3). 
For comparison, the rules obtained with the Rpart algorithm as the best scoring XAI in the analysis of the GMM-based subgrouping are shown.
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researchers to meet the increasing demands of authorities 
such as the EU to communicate computer-aided decisions 
to the subjects they affect in an understandable way, i.e. to 
transfer the details of group membership from the scientific 
field to clinical practice. The approach included a feature 
selection based on variable importance for clustering and 
the training of supervised algorithms to generate assignment 
rules. We validated the approach on two different ways of 
clustering the same pain-related data set and on a classical 
PCA-based approach to data structure interpretation. We 
have further validated the approach of feature selection on 
independent data in the form of the iris flower data set, and 
we have validated the selection of a strong algorithm as a 
reference on a collection of artificial data sets. It is impor-
tant to note that the present approach aims at the interpreta-
tion of data-based clusters once a cluster structure has been 
created. Therefore, it was not the aim of the present analysis 

to evaluate different clustering approaches or subgroup 
characteristics of pain neither to analyze the pain pheno-
types in-depth; in fact, clustering only was performed be-
cause clusters were needed as a basis for the development of 
the interpretation approach presented in this report.

Thus, an approach for the interpretation of pain-related 
clusters is presented, which identifies the clustering rele-
vant variables among the variables that have been subjected 
to the clustering procedure. This identification is a prereq-
uisite for understanding the cluster structure and enables a 
transparent decision-making process that can tell the person 
concerned why he or she is placed in a particular cluster. 
The approach uses a combination of different types of ma-
chine learning and data science methods. A well-functioning 
type of machine learning algorithms is used to estimate how 
well a given cluster structure can be automatically captured 
in terms of accuracy of class assignment. The variables are 
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then categorized in terms of their relevance for successful 
class assignment, and key features are automatically selected 
using a mathematically based item categorization technique. 
Multiple XAI methods are then trained on the selected fea-
tures, among which one with a classification performance 
close to the initial algorithm is selected to extract the exact 
decision rules upon which the class assignment is based, pro-
vided that the XAI is capable of performing the assignment 
with the selected features as accurately as with all features.

The use of random forests followed by a computed ABC 
analysis for feature selection (Lötsch & Ultsch, 2020) proved 
successful in situations where the variables on which clus-
tering depended were known, such as rule-based cluster-
ing of pain-related data, which was created specifically for 
this test purpose. In addition, the present approach led to a 
rule-generation algorithm that identified the true criteria of 
cluster assignment, i.e. the divisions of the variables based 
on Bayesian decision boundaries, with considerable accu-
racy. The correct functioning of the feature selection pro-
cedure could also be verified in the iris flower data set, for 
which others also identified the variable "Petal.Width" as the 
only relevant measure from which the assignment to the three 
species can be made correctly, except for a few single cases 
(Badih et  al.,  2019; Palczewska et  al.,  2014). Furthermore, 
a consistent observation during the analyses on pain-related 
and other data sets was that random forests always performed 
best among the machine-learning algorithms, which verified 
the assumed basis for their selection as the initial algorithm 
for feature selection.

Given the strong indications above that the proposed ap-
proach to cluster interpretation works correctly, its results ob-
tained in a common clustering scenario of pain-related data 
could be considered. In the k-means clustering of the individ-
ual coordinates on the two-dimensional principal component 
subspace onto which the present six-dimensional pain-related 
data set was projected by means of a PCA, variables mainly 
captured in PC1 were identified as most relevant for the sub-
sequent clustering. The present feature selection procedure 
succeeded in identifying these variables. Therefore, PCA and 
random forests followed by ABC analysis supported each 
other in finding the variables important for the clustering. 
However, the classical method failed to understand the de-
cisions that led to the assignment of a person to a particular 
cluster, whereas the XAI-based approach provided rules that 
could be used to explain to the person concerned the exact 
decisions that led to the assignment to a particular cluster.

Current scientific efforts try to directly interpret sub-sym-
bolic machine-learned algorithms without using XAIs for this 
task, such as the presently implemented Local Interpretable 
Model-Agnostic Explanations method (Ribeiro et  al.,  2016). 
The present experiments show that this indeed allows to track 
the decision process of cluster assignment in a fraction of the 
subjects, which could be used for the great clinical benefit of 
patients. However, this is not possible for all subjects, perhaps 
often not even for half of the subjects. The method succeeded 
better in the iris flower data set, which indicates that the modest 
success in the pain-related data set was not due to poor imple-
mentation. Moreover, the extracted rules are highly individual, 

F I G U R E  4  Machine-learning–based analyses of the cluster structure obtained via rules based on the Bayesian decision limits obtained by 
Gaussian mixture modelling of the probability density distribution of pain-related parameters. (a) Bar plot of the results of feature selection based 
on random forests, followed by computed ABC analysis. The graph shows the significance of the features in descending order of their occurrence 
in the ABC subsets "A" or "B" during 100 cross-validation runs on disjoint training and test data subsets randomly drawn from the original data set. 
(b) Bar plot of the size of ABC subsets "A" + "B" that most often was d = 3 items, which caused the selection of the three most frequently included 
items as the final feature set important for the cluster structure. (c) Boxplots of the performance of different types of machine-learning algorithms 
in the assignment of subjects to the rule-based clusters when trained with the selected features. The left panel shows the balanced accuracies of 
the classification obtained by the different algorithms. The middle field shows the difference in the balanced accuracy between the classification 
based on the full set of d = 6 pain-related features and the classification based on the selected set of d = 3 features. The right panel shows the final 
classifier score calculated from the values shown in the previous two panels asClassifierscore=BAReducedfeatureset ⋅

(
1− (BAFullfeatureset −BAReducedfeatureset

)

, where BA denotes balanced accuracy. The boxes have been constructed using the minimum, quartiles, median (solid line within the box) and 
maximum. The whiskers add 1.5 times the interquartile range (IQR) to the 75th percentile or subtract 1.5 times the IQR from the 25th percentile. 
The arithmetic mean values are additional shown as yellow dots. (d) Decision tree built by the Rpart algorithm using the features that had passed 
the feature selection procedure. The panel shows the trees along with the decision limits as the basis for the assignment to either cluster. Each 
coloured node shows the predicted class, the predicted probability of each class, and the percentage of observations in the node. (e) Probability 
density distributions of the splitting criteria as determined by 100 Rpart models trained on resampled data comprising 2/3 of the original 
instances. The dashed vertical lines indicate the splitting criteria suggested by a Rpart model trained on the complete data set. The solid vertical 
lines indicate the true splitting criteria as set by the GMM-based clustering method. The figure has been created using the R software package 
(version 4.0.2 for Linux; http://CRAN.R-proje ct.org/ (R Development Core Team, 2008)) and the R packages “ggplot2” (https://cran.r-proje 
ct.org/packa ge=ggplot2) and “rpart.plot” (https://cran.r-proje ct.org/packa ge=rpart.plot (Milborrow, 2018)). The colours were selected from the 
“colorblind_pal” palette provided with the R library “ggthemes” (https://cran.r-proje ct.org/packa ge=ggthemes (Arnold, 2019)). Variable names: 
HPT_Z_Control = zHPTbaseline, HPT_Z_UVB = zHPTUVB, CPT_Z_Control = zCPTbaseline, CPT_Z_UVB = zCPTUVB, UVBheatEff = UVBEffHeat, 
UVBcoldEff = UVBEffcold. RF: random forests, RFlime: Local Interpretable Model-Agnostic Explanations applied on random forests, CTREE: 
conditional inference trees, Rpart: classification and regression trees (= CART), PART: partial decision trees, RIPPER: repeated incremental 
clipping for error reduction

http://CRAN.R-project.org/
https://cran.r-project.org/package=ggplot2
https://cran.r-project.org/package=ggplot2
https://cran.r-project.org/package=rpart.plot
https://cran.r-project.org/package=ggthemes
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vary from subject to subject and, therefore, hardly give a clear 
interpretation of the characteristics of the cluster as a whole.

The present k-means–based clustering divided the co-
hort into two subgroups. Relevant for the subgrouping were 
the pain thresholds for heat and cold stimuli and addition-
ally the individual pain thresholds for cold stimuli applied to 
sensitized skin. An effect of topical capsaicin sensitization 
on the perception of cold stimuli reproduces an observation 
recently made in the same laboratory (Weyer-Menkhoff & 
Lotsch,  2019) and in independent research units (Callsen 

et  al.,  2008; Mohr et  al.,  2008). The two-cluster solution 
separated the subjects according to either high (cluster #1) 
or low (cluster #2) pain sensitivity. Following the cluster 
interpretation from the contribution of the variables sub-
mitted to clustering, which was the aim of the present 
analyses, the clusters are open for further scientific inves-
tigations, e.g. on the role of genetic factors, which was an-
alysed on another clustering in the same data set (Lötsch 
et al., 2020), or on gender differences. The latter were not 
statistically significant in the present cluster solution, as 

F I G U R E  5  Machine-learning–based analyses of the iris flower species (Fisher, 1936). (a) Bar plot of the results of feature selection 
based on random forests, followed by computed ABC analysis. The graph shows the significance of the features in descending order of their 
occurrence in the ABC subsets "A" or "B" during 100 cross-validation runs on disjoint training and test data subsets randomly drawn from 
the original data set. (b) Bar plot of the size of ABC subsets "A" + "B", which most often was d = 3 items, which caused the selection of the 
three most frequently included items as the final feature set important for the species assignment structure. (c) Boxplots of the performance of 
different types of machine learning algorithms in the assignment of subjects to the rule-based clusters when trained with the selected feature. 
The left panel shows the balanced accuracies of the classification obtained by the different algorithms. The middle field shows the difference 
in the balanced accuracy between the classification based on the full set of 8 features (4 original and 4 permuted) and the classification based 
on the selected d = 1 feature. The right panel shows the final classifier score calculated from the values shown in the previous two panels 
asClassifierscore=BAReducedfeatureset ⋅

(
1− (BAFullfeatureset −BAReducedfeatureset

)
, where BA denotes balanced accuracy. The boxes have been constructed 

using the minimum, quartiles, median (solid line within the box) and maximum. The whiskers add 1.5 times the interquartile range (IQR) to the 
75th percentile or subtract 1.5 times the IQR from the 25th percentile. The arithmetic mean values are additional shown as yellow dots. The figure 
has been created using the R software package (version 4.0.2 for Linux; http://CRAN.R-proje ct.org/ (R Development Core Team, 2008)) and the R 
packages “ggplot2” (https://cran.r-proje ct.org/packa ge=ggplot2) and “rpart.plot” (https://cran.r-proje ct.org/packa ge=rpart.plot (Milborrow, 2018)). 
The colours were selected from the “colorblind_pal” palette provided with the R library “ggthemes” (https://cran.r-proje ct.org/packa ge=ggthemes 
(Arnold, 2019)). RF: random forests, RFlime: Local Interpretable Model-Agnostic Explanations applied on random forests, CTREE: conditional 
inference trees, Rpart: classification and regression trees (= CART), PART: partial decision trees, RIPPER: repeated incremental clipping for error 
reduction

http://CRAN.R-project.org/
https://cran.r-project.org/package=ggplot2
https://cran.r-project.org/package=rpart.plot
https://cran.r-project.org/package=ggthemes
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a χ2 test (Pearson,  1900) showed (χ2  =  0.33639, df  =  1, 
p  =  0.5619). Indeed, a previous analysis of an extended 
version of the present pain data set had identified gender 
differences mainly in pain induced by blunt pressure stim-
uli, which in an independent cohort showed the largest 
effect size, expressed as Cohen's d (Cohen, 1992), of the 
gender of the subjects among different experimental pain 
measures (Doehring et al., 2011).

Cluster interpretation based on the variable importance 
for cluster formation is an active research topic. The cur-
rently proposed approach goes beyond alternatives such as 
(Badih et al., 2019) by implementing XAI methods that lead 
directly from the identification of the relevant variables to an 
understandable interpretation of the cluster structure, includ-
ing access to the decision process leading to the assignment 
of a case to a particular cluster. The method of feature se-
lection using random forests with downstream item catego-
rization is flexible and can be applied to many problems that 
can be translated into a classification problem, and has al-
ready proven successful in other biomedical context (Lötsch 
& Ultsch, 2020). In addition, random forests can be replaced 

by another method, including alternative high-performance 
machine-learning algorithms or other feature selection ap-
proaches such as regularization approaches implemented 
as, e.g. Least Absolute Shrinkage and Selection Operators 
(LASSO (Fonti & Belitser, 2017)).

Usually it is more difficult to interpret complex models 
like random forests or artificial neural networks than simpler 
models like decision trees or rule-based decision makers. For 
a better understanding, the choice of a model should, there-
fore, always tend towards simpler models. However, with the 
exception of well-structured and highly correlated data, which 
can sometimes be collected under laboratory conditions, it can 
be said that more complex models are more accurate (Arrieta 
et al., 2019). This is reflected in the higher performance of ran-
dom forest models in pain data compared to the XAI models 
used. Solving this approximation dilemma is beyond the scope 
of this report and is the subject of current research elsewhere 
in algorithm development. It is approached from two sides: On 
the one hand, post-hoc explanatory techniques (e.g. LIME) are 
developed to explain complex models by simplifications. On 
the other hand, an attempt is made to increase the complexity 

F I G U R E  6  Class assignment performance of (X)AIs applied to artificial data sets from the Fundamental Clustering and Projection Suite 
(FCPS) Suite (Ultsch & Lötsch, 2020). Each data set is plotted, and below box plots of the classification accuracies obtained by different types of 
machine-learning algorithms are shown. The boxes have been constructed using the minimum, quartiles, median (solid line within the box) and 
maximum. The whiskers add 1.5 times the interquartile range (IQR) to the 75th percentile or subtract 1.5 times the IQR from the 25th percentile. 
The arithmetic mean values are additional shown as yellow dots. Please note the different scaling of the ordinates. The figure has been created 
using the R software package (version 4.0.2 for Linux; http://CRAN.R-proje ct.org/ (R Development Core Team, 2008)) and the R packages 
“ggplot2” (https://cran.r-proje ct.org/packa ge=ggplot2) and “plotrix” (https://cran.r-proje ct.org/packa ge=plotrix (Lemon, 2006)). The colours were 
selected from the “colorblind_pal” palette provided with the R library “ggthemes” (https://cran.r-proje ct.org/packa ge=ggthemes (Arnold, 2019)). 
RF: random forests, RFlime: Local Interpretable Model-Agnostic Explanations applied on random forests, CTREE: conditional inference trees, 
Rpart: classification and regression trees (= CART), PART: partial decision trees, RIPPER: repeated incremental clipping for error reduction

http://CRAN.R-project.org/
https://cran.r-project.org/package=ggplot2
https://cran.r-project.org/package=plotrix
https://cran.r-project.org/package=ggthemes
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of XAI models (Arrieta et  al.,  2019). However, biomedical 
studies that compare different existing models and provide 
meaningful conclusions about their interpretability contribute 
to this research area (Tjoa & Guan, 2019). The present report 
contributes to this by proposing a comparative scenario for 
the selection of a suitable XAI, since no prior selection can be 
recommended, considering that the XAIs already in a limited 
number of data sets did not show a consistent order of classifi-
cation performance.

In this context, it is perhaps worth mentioning that the 
presented XAI-based rules for cluster allocation have been 
derived from the full data set. This probably best sum-
marizes the splits in total data set, which is the clinically 
relevant setting after clustering, since all subjects must be 
included. An alternative would be to present the model with 
the best performance from the cross-validation runs or the 
model with exactly median performance. However, this 
would lead to a distraction and respective tests indeed have 
not shown any benefit of those alternatives. In contrast, pre-
senting all the models used in the cross-validation process 
would result in the XAI approach being equivalent to ran-
dom forests at the end, since many trees would have to be 
presented. The feature selection procedure that preceded the 
XAI training ensured that no feature other than the selected 
ones, and the ones presented in the final rules set, was in-
cluded during the cross-validation runs. The remaining un-
certainty as to the extent to which the individual trees, i.e. 
trees built from a subset of data and applied to the remaining 
cases unseen during training, differ from the presented tree 
can be estimated using the experiment shown in Figure 4 E, 
which shows the distribution of splits during the cross-val-
idation runs. It indicates that the central tendency of the 
splits reflected the truth quite well, but with considerable 
variance, and this uncertainty can be estimated using the 
classification accuracy achieved by the XAI, as shown, e.g. 
in Table 5. This can be reported to a patient along with the 
rule-based reasons for the subgroup assignments. Finally, it 
should be remembered that the present approach is related 
to clustering results, i.e. it cannot be applied to an individual 
patient without prior evaluating a cohort to obtain the clus-
ter structure and assignment rules. Once this is available, a 
prospective patient can be assigned based on the rules, and 
the accuracy with which this applies to the case in question 
can also be communicated.

4.1 | Limitations

An intended limitation of the present report was to limit the 
clustering of pain data to a straight-forward approach consist-
ing of PCA projection of the data and submission of the pro-
jected data to k-means clustering using a standard Euclidean 
distance. The reason for this was that for the evaluation of 

the present novel method, the results must be known as far as 
possible. In the chosen approach, the clustering was closely 
based on PCA and could be interpreted together with the 
PCA results. This would become increasingly difficult with 
more complex clustering methods. In fact, the data set was 
published previously with a clustering solution obtained with 
the help of emergent self-organizing maps (ESOM (Ultsch 
& Moerchen,  2005)) of artificial neurons, which provided 
a similarly good clustering (Silhouette index 0.37), but was 
preferred due to a comparison with hierarchical clustering 
(Silhouette index 0.32) and on the grounds that in several 
test scenarios it proved to be more reliable for clustering so-
lutions than classical methods (Ultsch & Lötsch,  2017) be-
cause ESOM does not make such an assumption unlike, e.g. 
k-means, which assumes a hyperspherical form of clusters 
that may be inadequate. However, as mentioned above, the 
focus of this report was not a detailed evaluation of cluster-
ing of pain data, but the interpretation of cluster assignment 
once clusters have been found or alternatively an approach 
to create simple rules for assigning future subjects to relevant 
subgroups.

A second limitation of the report is the lack of comparative 
benchmark experiments of different machine-learning meth-
ods used for the feature selection, which was mentioned above 
as a sign of the flexibility of the present approach. The reason 
for this was that random forests worked very well in pain-re-
lated and other data sets with achieved median balanced ac-
curacies in a range of 92.7% to 96.9%. It should be noted, 
however, that this may not always be the case, and since the 
present approach, by translating the cluster interpretation into 
a classification problem, relies on excellent classifier perfor-
mance, the inclusion of alternative types of machine-learning 
algorithms may be triggered when random forests provide 
unsatisfactory results. Therefore, alternative feature selec-
tion methods such as the regression-based LASSO (Fonti & 
Belitser, 2017) or an alternative random-forests based known 
as "Boruta" (Kursa & Rudnicki, 2010) were not included.

Furthermore, this report did not include all types of XAI 
listed in the overview given in Table 1. The reason for this was 
the lack of R implementations of some methods. While the ex-
traction of combined rules using the LIME approach to test it 
against the other algorithms (“RFlime” columns in Tables 2,5 
and 6) was implemented for the purposes of this report, the 
implementation of additional algorithms in novel R libraries 
was considered to be beyond the scope of the present analyses. 
The use of alternative software was not considered as an option 
because differences in the software packages would have dis-
tracted the focus from comparing the algorithms by requiring.

Finally, the focus was on the variable importance for 
cluster interpretation after the establishment of clusters. The 
clustering structure itself was chosen as a basic k-means algo-
rithm, as discussed above. Whether the two clusters represent 
a general finding or only characterize the current patient group 
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could not be investigated due to the lack of a similar data set, 
i.e. data collected in exactly the same way as in the present 
analysis. The number of samples was considered insufficient 
for a split into two sets, as this would have jeopardized the 
validation of the current cluster interpretation, which involved 
massive resampling procedures that already split the data set 
into disjoint subsets. Nevertheless, the finding of subjects with 
a tendency to high or low pain sensitivity seems to be undis-
puted and has often been reported as a subgroup structure in 
pain-related data (Diatchenko et al., 2005).

4.2 | Transfer learning remarks

The present report proposes a bioinformatics approach to al-
locate clusters/subgroups transparently; it is therefore methodo-
logically located in data science, while thematically it is located 
in pain research. This is a typical setting in current methods of 
data science, which increasingly allow for data-driven research 
approaches and the extraction of information and the generation 
of knowledge from these data, and which are predominantly 
multidisciplinary, cross-agency, cross-sector and coopera-
tive (President's Information Technology Advisory, 2005). In 
this report, this has been exploited by applying the proposed 
computational approach to pain-related data together with non-
pain–related data. Complex high-dimensional pain data often 
have the disadvantage that an eventual subgroup structure is 
unknown, except for simple settings such as patients with pain 
versus pain-free subjects where the present approach would be 
unnecessary. However, if the subgroup structure is determined 
on the basis of the data and not by following predefined clinical 
definitions, the full truth may not be known.

It is a standard procedure in data science to test the correct 
functioning of an approach on data sets where the ground 
truth is known. Hence, the current use of the iris flower data 
set, where the group structure consists of three biological de-
fined iris species. This data set was used for method develop-
ment in statistics when Fisher introduced linear discriminant 
analysis (Fisher, 1936), and it has been widely used in com-
puter science for testing algorithms. Here, it has been used 
to assess whether the proposed method can select the rele-
vant variables that allow for subgroup assignment. The FCPS 
collection (Ultsch & Lötsch, 2020) was developed for testing 
clustering methods and, therefore, provided several data sets 
with a defined subgroup structure to evaluate the comparative 
performance of machine-learning algorithms for group as-
signment. The FCPS results support the selection of random 
forests as a strong classifier, which serves as a reference for 
the other classifiers with regard to the maximum achievable 
performance of subgroup allocation. On the one hand, these 
data sets provide a reference for XAI by allowing weak clas-
sification performance to be attributed to weaknesses in the 
XAI implementation or weaknesses in the data set. On the 

other hand, these data sets are not pain related, so it was nec-
essary to develop the method in a real pain data set to ensure 
that the crossing of the research areas was successful.

Taken together, computational approaches cross the bor-
der of a particular research area and require collaborative 
knowledge of both areas, the topic itself to judge whether 
the obtained results are plausible and the methods assuring 
technical correct results. The authors propose that the final 
explanation of a cluster structure may be best placed with the 
topical pain expert who can judge its clinical relevance, as 
long as the selection does not collide with the data analysis 
results.

5 |  CONCLUSIONS

An XAI-based approach to interpreting cluster structures 
found in pain-related data is proposed, based on assessments 
of variable importance. The approach uses different types of 
machine-learning and data science methods to (1) identify 
the relevant features on which the cluster structure is based 
and (2) track the precise decision-making process of clus-
ter assignment. It uses high-performance machine-learning 
algorithms for feature selection and passes the results to an 
XAI algorithm to generate understandable class assignment 
rules. A score is proposed for the XAI selection that con-
siders both the absolute cluster allocation performance and 
the algorithm's ability to achieve this maximum with the 
pre-selected variables. The approach was compared with 
the interpretation of cluster structures based on PCA results 
as a common procedure in pain research. Further experi-
ments with standard data sets with known class structures 
emphasized the correct functioning of the selection of im-
portant variables on which the clustering is based, and the 
selection of random forests machine learning as a consist-
ently well-performing type of machine-learning algorithms. 
The proposed approach to the interpretation of clusters in 
pain-related data makes it possible to follow the Council 
of the European Union's view that computer-assisted de-
cisions must be transparent so that they can be communi-
cated to affected patients in an understandable way (Hamon 
et al., 2020). Finally, it is stressed that it is crucial for cluster 
interpretation to understand clustering from the importance 
of the variables used in this process before the relevance of 
other factors not used in cluster identification can be ana-
lysed in the context of the clustering.

6 |  SUPPLEMENTARY 
INFORMATION

Supplementary information includes a detailed descrip-
tion of the rule-generating XAI algorithms used in the 
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present analyses (XAI_SI_05.pdf) and 4 Supplementary 
Tables displaying (1) the case-wise rules for the assign-
ment to k-means–based clusters extracted from ran-
dom forests using the LIME approach (Table  S1; file 
“RFlime_PCAkmeansClusters_Casewise.xlsx”) and (2) 
the combined rules derived from that analysis (Table  S2; 
RFlime_PCAkmeansClusters_CombinedRules.xlsx), 
(3) statistical details of the Gaussian mixture modelling 
(Table  S1 Table  1; file “SupplementaryTables.docx”) 
and (4) details of the subjects grouping according to 
Gaussian mode membership of the pain data (Table S2; file 
“SupplementaryTables.docx”).
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