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Chapter 1

Explainable artificial intelligence

The operations performed by artificial intelligence (AI) during classification are often com-
plex. Therefore, the procedure of AI-based decision making remain a black-box. The aim
of explainable artificial intelligence is the traceability of the mechanisms that underly the
procedure of AI-based classification. The difficulty in designing an explainable artificial
intelligence (XAI) is finding a compromise between intelligibility and performance. Unfor-
tunately, high classification accuracies are often achieved using complex AI models such as
random forests and deep artificial neural networks which decisions are hard to understand.
Here we focus on simpler AI models based on a single decision tree to make their process
of classification understandable by generating a set of classification rules that reproduce
their decisions
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Chapter 2

Metrics

Tree learning is mainly a top-down approach. It is realized by identifying the observation
parameter that best splits the set of observations. However, the definition of the split
quality can be defined in multiple ways based upon the metrics used for tree learning. The
most prominent metrics are introduced in the following.

2.1 Gini impurity

The Gini Impurity is defined as the probability of choosing an element in the dataset
by random times the probability of falsely classifying this element based on the class
distribution in the dataset.

G(p) =
Ĉ∑
i=1

pi
∑
k 6=i

pk (2.1)

With Ĉ being the number of unique values within the class attribute C and pi the fraction
of elements labeled with class i within the training data. The probability of falsely labeling
the chosen element is calculated as ∑

k 6=i
pk = 1− pi (2.2)

which leads to a Gini impurity of

G(p) =
Ĉ∑
i=1

pi (1− pi) (2.3)
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For the case that
∑Ĉ
i=1 pi = 1 the Gini impurity simplifies to:

G(p) = 1−
Ĉ∑
i=1

p2
i,k (2.4)

2.2 Entropy

By definition entropy is a measure of disorder. It calculates to

H(S) =
Ĉ∑
i=1
−pi log2 pi (2.5)

Here, pi defines the probability of drawing an instance with the classification value i from
the data set S.

2.2.1 Information

The information content I of a data subset after splitting by attribute α is defined as the
weighted average Entropy of all features.

I(S, α) =
∑
i

p (i | α)H (S | α) (2.6)

Here, the weighting factor p (i | α) is defined as probability of randomly drawing an instance
with a class value i from the data subset resulting from the split α. Alternatively, it can
be rewritten using the weighted size:

p (i | α) = Ŝi (α)
Ŝ (α)

(2.7)

Here, Ŝi(α) defines the number of instances from the data set S after a split by attribute
α that are classified with a class value i and Ŝ(α) defines the total number of instances in
the data set S after a split by attribute α .

2.2.2 Information gain

In tree-based machine learning the information gain IG, also termed Kullback-Leibler
divergence, defines the amount of information that is gained about the system after splitting
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the observations by a specific observation parameter. It is therefore also termed mutual
information. It is defined as the difference in information entropy from the state before the
split to the weighted sum of the conditional information entropy of all children after the
split by attribute α.

IG (S, α) = H (S)−
∑
v∈α

p(v)H (S | α) (2.8)

=
Ĉ∑
i=1
−pi log2 pi −

∑
v∈α

p(v)
Ĉ∑
j=1
−p (j | α) log2 p (j | α) (2.9)

2.2.3 Intrinsic Attribute Information

The intrinsic attribute information holds the share of an attribute on a splitting procedure.
For the splitting attributeα it calculates to:

IntI (S, α) = −
∑
v∈α

| Sα=v |
| S |

log2

( | Sα=v |
| S |

)
(2.10)

Attributes that are characterized by high intrinsic information consist of partitions that are
evenly distributed in size. Attributes that are characterized by low intrinsic information,
on the other hand, have a heterogeneous distribution of partitions, within which a few
partitions contain the most tuples. Therefore, the proportion of attributes with higher
intrinsic information about the classification is generally low.

2.2.4 Information Gain Ratio

The information gain ratio defines the ratio of the information gain to the intrinsic infor-
mation.

IGR = IG (S, α)
IntI (S, α) (2.11)

It reduces the bias against multi-value attributes by taking into account the number and
size of the branches when selecting an attribute. As the intrinsic attribute information can
be zero the information gain ration may not always be defined.

2.3 Misclassification error

With p being the frequencies of k observation parameters at node t are defined as:

Pt = (p1,t, ..., pk,t) (2.12)
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so that

k∑
i=1

pi,t = 1 (2.13)

the misclassification error (MCE) is defined as

M = 1− pk̂(t),t (2.14)

with

k̂(t) = argmax (Pt) (2.15)

2.4 Metrics comparison

The introduced metrics shall be compared upon the example of a binary problem with p
being the frequency of class label 1 and 1− p being the frequency of class label 2. For the
example the metrics calculate to:

• misclassification error:

M = 1− argmax (p, 1− p)

• Entorpy:

H(S) = −p log2 p− ((1− p) log2 (1− p))

• Gini impurity

G(p) = p (1− p) + (1− p) (1− (1− p))
= 2p (1− p)

Compared to the misclassification error, the entropy and the Gini impurity are differen-
tiable. Therefore, both entropy and the Gini impurity lead to similar trees. However,
Gini impurity is faster to compute, while entropy based trees tend to be slightly more
balanced.
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Figure 2.1: Metrics comparison for the case of a binary split, with p being the frequency
of class one. Red: Entropy, Green: Gini impurity, Blue: MCE
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Chapter 3

Pruning

A main problem that arises with decision tree based classification is the determination
of the right tree size for a distinct classification problem. If the decision tree grows too
large it will overfit the data. On the other hand, if growing ist stopped too early the tree
will lack nodes that are necessary for high accuracy classification. A phenomenon termed
underfitting of the data. A second disadvantage of large trees is the fact, that they become
hard to interpret by humans which will directly reduce their value for XAI. This problem
can be handled by the usage of pruning algorithms. Pruning is defined as the reduction
of the decision tree size by the termination of unnecessary sub-trees and transformation of
splitting-nodes into leaf-nodes. Depending on the time of execution, Pruning is classified
either as pre- or post-pruning.

3.1 Pre Pruning

Pre-Pruning takes place during the growing process of the decision tree. It aims at the
termination of possible sub-trees, that would lead to overfitting, before they are grown.
This way, pre-pruning reduces the training time of the algorithm. A main disadvantage of
using pre-pruning is the risk of missing splits that would increase classification accuracy.
This could happen if a sub-tree is cut during pre-pruning because the split deteriorates
the tree model but the subtree would improve the accuracy of the tree in later splits. This
phenomenon is also termed horizon effect. A list of simple top-down pre-pruning rules
are:

• Stop if all indices belong to the same class.

• Stop if all attribute values are the same
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• Stop if a user defined threshold of splittings is reached.

• Stop if splitting would not increase the purity.

(Qui93, Ber73)

3.2 Post Pruning

Post-Pruning takes place after the decision tree is fully grown. By which means the leaf
notes are the product of the native decision tree termination rules. Therefore, they are
not prone to horizon effect induced loss of accuracy. However, as the tree needs to be fully
grown for post-pruning, this advantage comes at the cost of longer training times.

3.2.1 REP

One of the most simple pruning algorithms is termed Reduced Error Pruning (REP) and
was introduces by Quinlan 1987. It is a bottom up approach that prohibits overfitting by
replacing complex sub trees with leaf-nodes. The checking procedure is done using an extra
testing data set. The REP algorithm starts from the leaf nodes and checks iteratively for
each higher internal node whether the replacement of the sub-tree by the majority vote
based classification of the internal node would lead to an increase in classification accuracy.
If so, the sub-tree is pruned. The pruning-procedure continues until no further increase in
classification accuracy is achieved by further pruning steps.

3.2.2 EBP

Another bottom up pruning approach by Quinlan (1993) is the Error?based Pruning (EBP)
algorithm. It differs from the REP algorithm by two facts: First, no separate test data set
is needed to calculate the necessity of pruning. Second, sub trees can either be replaced by
leaf nodes or by the sub tree with the strongest instance population. The EBP algorithm
estimates the classification error by calculating the error rate of a node. The error rate
is estimated to follow a binomial distribution. The pruning is controlled by a threshold
that is termed certainty factor (CF). The CF is introduced as the confidence limit of the
error rate. It can therefore be used to estimate the upper limit of the probability that a
classification error will occur at the node. Therefore, the EBP algorithm is also classified
as a pessimistic approach. The EBP algorithm calculates the classification error of a sub
tree as the sum of estimated classification errors of its leave nodes. Similar to the REP
algorithm the EBP algorithm substitutes an internal node by a leaf node if its majority vote
based classification error is exceeded by the cumulative estimated classification error of its
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sub tree’s leaf nodes. In an additional step the EBP algorithm tests whether the estimated
classification error of an internal node and the estimated classification errors of its leave
nodes exceeds the estimated classification error of its sub tree with the strongest instance
population, the internal node is replaced by its strongest populated sub tree.

3.2.3 MCCP

The Minimum Cost-Complexity-Pruning (MCCP) is a post pruning algorithm that mini-
mizes the cost-complexity measure Rα(T ) of a decision tree T . It is parameterized by the
complexity parameter α ≥ 0 and calculates to:

Rα (T ) = R(T ) + α|T | (3.1)

With R(T ) being the total classification error rate of all leaf nodes of the tree T and |T |
being the absolute number of leaf nodes within the tree T . For a single leaf node t the
complexity measure would simplify to:

Rα (T ) = R(t) + α (3.2)

A subtree that has its origin at the internal node t is defined as Tt. Therefore, the com-
plexity measure of a sub tree Tt which root node is indicated by the suffix t is calculated
by:

Rα (Tt) = R (Tt) + α|Tt| (3.3)

With |Tt| being the absolute number of leaf nodes within the sub tree Tt. As defined before,
the impurity of an internal node R(t) always exceeds the cumulative impurity of its sub
tree leaf nodes R(Tt).

R (Tt) < R(t) (3.4)

Thus, there exist an effective complexity parameter αeff that satisfies the condition:

Rα (Tt) = Rα(t) (3.5)
R (Tt) + αeff|Tt| = R(t) + αeff (3.6)

αeff = R (t)−R (Tt)
|Tt| − 1 (3.7)

At the beginning of MCCP a threshold value for the effective complexity parameter αeff
is defined. The MCCP algorithm starts at the leaf nodes of the tree and walks through
the decision tree in a bottom up manner and calculates the effective complexity parameter
for every inner node. If the inner node with the smallest effective complexity parameter
αeff(t) is smaller than the pre defined threshold value the sub tree Tt will be pruned by
substituting the inner node t with a leaf node that classifies the instances by majority vote.
This procedure is applied recursively until the the smallest effective complexity parameter
αeff(t) exceeds the threshold value.
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Chapter 4

Decision Trees

A decision tree is a visualization of an algorithm that consist from conditional control state-
ments only. In machine learning it is for example used to solve classification problems, by
which means as a predictive model to draw discrete conclusions from multi-dimensional
observation parameters. These classification trees consist of leaves representing class labels
and branches representing conjunctions of observations that lead to distinct class labels.
Due to their simple structure classification tree-based decision making is a traceable proce-
dure compared to more complex classification models like random forests or deep artificial
neural networks. Therefore, classification trees are very popular in the arising field of ex-
plainable artificial intelligence although they are sometimes inferior to the more complex
models in terms of accuracy. The construction of decision trees from class-labeled training
observations is termed learning. Tree learning is a complex problem that misses an absolute
solution until now. Therefore, several tree learning algorithms have been invented during
the last decades. The decision tree models used within this research article are

• iterative Dichotomiser 3 (ID3)

• c4.5 trees

• c5.0 trees

• classification and regression tree (CART)

• conditional inference tree (ctree)

• partial decision trees (PART)

and shall be introduced in more detail in the following.
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4.1 Growing decision trees

Growing the optimal tree is an NP-Complete problem. It requires O(exp(m)) time. Thus,
the problem is intractable even for small data sets. Therefore, tree-based classification
will most likely not find the optimal but rather a reasonably good solution. As it is not
possible to say in advance which training algorithm will lead to the best result it is always
mandatory to compare the performance of different learning algorithms applied to the same
classification problem. Once trained the prediction complexity of the tree is O(log2(m))
which is independent of the number of features.

4.1.1 Top Down Induction of decision trees

One of the most common category of decision tree-based machine learning algorithms is
known by the terminus of Top Down Induction of decision trees (TDIDT). All of the
TDIDT are characterized by a similar growing procedure during training. Their growing
procedure is:

• based upon the Top-Down Principle, stating at the root node.

• sensitive to the frequency of information in the training data.

• not influenced by the order of the data.

• is not incremental.

During TDIDT the tree is grown from the root node and branches into further child nodes
until finally leaf nodes are constructed. As this procedure is influenced by the frequency
of information, TDIDT algorithms need full access to the training data set at any time.
therefore TDIDT algorithms are not incremental.

4.1.2 Recursive Partitioning Procedure

The growing of decision trees follows the recursive partitioning procedure. Lets consider
a data set with j instances. Each instance is characterized by i attributes and in case of
the training data set by a classification attribute c. Tree growing is started by identifying
the attribute x that splits the complete data best with respect to a given metrics. In
case x being categorial the split will result in n child nodes. With n being the number
if individual categorical values within attribute k. In the case of x being a continuous
numerical attribute splitting is performed upon a threshold parameter that is defined with
respect to the metrics. The splitting procedure results in two data subsets subsets with
i(x, y) < y and i(x, y) > y. The node produced by the first split is termed the root node of
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the tree. Starting at the root node, splitting is recursively repeated on all emerging data
subsets until a stop criteria is reached.

4.2 Iterative Dichotomiser 3

The ID3 is a decision tree algorithm that was introduced in 1986 by J. Ross Quinlan [1].
The ID3 algorithm is entropy-based. It handles feature attributes as categorical values
and does not tolerate missing values. It splits the root node by the feature k that results
in the largest information gain (see equation (2.8)). During the splitting procedure ID3
creates n child nodes. With n being the number if individual categorical values within
attribute k. After the split the feature k is removed from the list of possible splitting
features, thus guaranteeing that each feature is only used once for splitting. The process
is recursed on the child nodes using the remaining features until the node is pure and
therefore, transformed into a leaf or until each feature is used for classification. The ID3
algorithm has the following termination criteria:

• The node is pure (it comprises only instances of the same class).

• The node is empty.

• There are no attributes left for splitting.

If one of the termination criteria is met, it creates a leaf. If the leaf node is pure, it is
characterized by the class of its instances. If the leaf node contains instances of several
classes it is characterized by a majority vote. If it is empty it is not able to characterize
its instances correctly. Therefore, it will be classified as null. The ID3 algorithm tends to
preference attributes with many choices (> 2) which results in the growing of predominantly
small and wide trees.

4.3 C4.5

The C4.5 algorithm is the improved successor of the ID3 algorithm [2]. In comparison to
the ID3 algorithm, the C4.5 algorithm can handle more generalized data including contin-
uous numeric values and missing values. The C4.5 algorithm uses gain ratios instead of
gains to quantify the information gain of a split. It handles categorical attribute values
similar to the ID3 algorithm by splitting an attribute k that contains n individual cate-
gorical values into n child nodes. This results into broad trees if the parameter space of
nominal attributes is large. The algorithm transforms continuous numerical attributes to
categorical ones by performing a threshold-based binary split. The optimal splitting pa-
rameter is found by maximizing the information gain ratio for the splitting attribute with
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respect to the splitting threshold. Missing values are handled by the C4.5 algorithm by
simply ignoring them during information gain ratio calculation. Like its predecessor C4.5
starts with splitting the data at the root node by the attribute that results in the highest
information gain ratio. It recurses the splitting procedure at the subordinate nodes until a
further splitting of the nodes would not lead to a further increase in the information gain
ratio. At these end points a leaf is finally created. The C4.5 algorithm has similar termi-
nation criteria as its predecessor, except for the case of an empty node. For the latter the
leaf node is not characterized as null but by the majority voting of its parental node.

4.4 C5.0

The C5.0 algorithm is an optimizes version of the C4.5 algorithm [3, 4]. It brings several
improvements on C4.5:

• It is faster than C4.5.

• It is more memory efficient than C4.5.

• It produces smaller trees compared to C4.5.

• It supports boosting.

• It supports weighting.

• It supports winnowing.

4.5 Classification and regression trees

The CART algorithm was first introduced by Breiman in 1984 [5]. It is Gini impurity-based
and can handle categorical as well as continuous numerical values. It produces binary trees
only. By which means, that non-leaf nodes will always have two children. During training,
the algorithm splits the data into two subsets based upon a single attribute k. In the case
of categorical attributes the split is performed by answering the question whether k ∈ tk.
With tk being defined as the attribute threshold. In the case of continuous numerical
attributes the split is performed by answering the question whether k ≤ tk. The algorithm
identifies the optimal split by screening for the pair (k, tk) that results in the purest
children.

J (k, tk) = mtrue
m

Gtrue + mfalse
m

Gfalse (4.1)
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Equation (4.1) ist termed the CART cost function. With m being the total number of
instances at the node before splitting and mtrue being the number of instances that fulfill
the threshold criterion tk and nmfalse being the number of instances that do not. Once the
optimal pair (k, tk) for the node split is found, the procedure is repeated on both of the
child nodes until one of the following termination criterions is reached:

• the child node is pure

• the split does not lead to a significant increase in purity

If one of the termination criteria is met, it creates a leaf. If the leaf node is pure, it is
characterized by the class of its instances. If the leaf node contains instances of several
classes it is characterized by a majority vote.
As suggested by its name, the CART algorithm is also capable of growing regression trees.
The CART cost function for regression calculates similar to CART cost function for clas-
sification (see eq. (4.1)).

J (k, tk) = mtrue
m

MSEtrue + mfalse
m

MSEfalse (4.2)

4.6 Conditional Inference Trees

Conditional inference trees [6] differ from the decision trees introduced so far by separating
the identification of a suitable split attribute from the procedure of threshold optimization.
The learning procedure of a ctree can be described in three steps. In a first step, The
optimal splitting attribute is identified from the set of available attributes. The ctree
performs a hypothesis test for each available attribute against the null hypothesis of being
independent from the classification attribute. The procedure will stop here, if the null
hypothesis cannot be rejected. Otherwise, the ctree will select the attribute with the
strongest association to the classification attribute based on the attributes’ p-values. In
the second step, the splitting is performed. This can be done by any metrics. Finally the
third step ist the recursive repeat of steps one and two on the data subsets emerged from
former splittings until a stop criterion is reached.

4.7 Partial Decision Trees

Sometimes it is not necessary to let a complete tree grow completely to get the information
that is sought. In such a case a PART is a resource-saving alternative. A PART contains
nodes that split up into undefined sub trees. In this way, sub trees of interest can be grown
quickly without constructing a whole tree. In order to quickly identify a subtree that
cannot be further simplified within a PART, the construction procedure and the pruning
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need to take place at the same time. The growing procedure of the tree is then terminated
as soon as the sub tree of interest has been identified.

4.8 Algorithm Comparison

The main differences between the presented algorithms are summarized in table 4.1

Table 4.1: Algorithm Comparison

Algorithm ID3 C4.5 CART
categorical attributes + + +
continuousl attributes - + +

Metrics Entropy Entropy Gini impurity
Split Criterium information gain information gain ratio CART cost function∑

child nodes (categorical)
∑

attribute values
∑

attribute values 2∑
child nodes (continuous) - 2 2

missing values - + +
post-pruning - EBP MCCP

empty leaf node handling null parental majority vote no empty leafs
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Chapter 5

Rule Based Learners

In general machine learning (ML) algorithms that learn a set of conditional rules from
a data set are summarized under the heading of rule based machine learning (RBML).
The rule set identified by the RBML algorithm represents the total amount of contextual
knowledge learned from the training data.

5.1 Decision rules

Decision rules as used for RBML are in the form of if(condition) → then(prediction) ex-
pressions. In this way, decision rules structure a classifier’s split decision in a similar way
to human thinking. If the set of rules used for classification is small enough and the under-
lying attributes have a comprehensible meaning, RBML can therefore create models that
are easy to explain.

The usefulness of a decision rule can be defined quantitatively by two characteristics: The
support and the accuracy. The support defines the coverage of a rule. It is calculated as
a fraction of the number of instances that are checked positively under the conditions, in
relation to the total number of instances checked. The accuracy defines the confidence of
the rule. It is calculated as the fraction of the number of classes that are predicted correctly
by the rule in relation to the number of instances that are checked positively under the
conditions.

A decision rule set comprises multiple decision rules. The combination of decision rules
can lead to several problems. A prominent problem is the case that for a certain instance
no decision rule from the set applies. This problem can be solved by introducing a default
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rule that for example classifies the instance simply by a majority vote. Another common
problem that may arise is the case of overlapping rules, by which means that two or more
rules apply to a certain instance. Rule combinations strategies can be used to clarify which
decision rule applies in such a case. Two prominent rule combination strategies are the
organization of a rule set in the form of a decision list and a decision set. Rules organized
in a list are applied in order in case of an overlap. The first rule whose condition is true
is applied. Within a decision set overlapping applicable rules are handled by multiple
strategies. A simple example would be a majority based classification that is weighted by
the rule accuracy. A main drawback of this approach is that the explainability suffers if
multiple rules are are applied in combination.

5.1.1 Sequential Covering

Sequential covering comprises algorithms that iteratively learn single rules to create a
decision list or set. It is based upon the concept of divide and conquer. At the beginning,
the whole data set is covered by the algorithm in order to learn the first rule. Subsequently,
all instances covered by the introduced decision rule are removed from the data set. This
procedure of rule learning is repeated on the remaining data until no more instances are left
or alternative stop criteria are met. A prominent representative of this superior class is the
repeated incremental pruning to produce error reduction (RIPPER) algorithm. Sequential
covering can also be utilized in order to learn rules from decision trees.

5.2 Learning Rules from Trees

Next to RBML algorithms, decision rules can also be learned from all kind of decision
trees using the method of sequential covering. For this purpose a decision tree is grown by
its learning procedure. Post processing algorithms like pruning may be applied. The rule
learning procedure starts at the root node of the tree by selecting recursively the purest
node which is classified by the lowest misclassification error until a leaf node is reached.
The resulting path throughout the tree from root node to leaf node represents a single rule.
The prediction of the rule is calculated from the majority-based classification of the leaf
node. The conditions consist of the split parameters of the individual inner nodes. This
procedure is repeated until each leaf node has been covered by a rule.
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5.3 RBML Algorithms

Next to the possibility to rules from fully grown decision trees there are several rule based
classification algorithms invented within the last decades.

5.3.1 OneR

Probably the most simple rule indication algorithm is the one rule (OneR) algorithm [7].
It creates a set of decision rules for the attribute that is most predictive in classification.
In order to identify this attribute it learns rules from every single attribute. It starts with
selecting an attribute and creates one rule per unique attribute value, which predicts the
class that is most often populated by the instances with that particular attribute value.
This procedure is repeated iteratively through all attributes. Finally, the OneR algorithm
selects the attribute which rules are that is characterized by the optimal accuracy.

If accuracy comparison ends up in tie, the OneR algorithm either selects an attribute by
choice or favors the attribute whose rule set yields the lowest p-value in a Chi-square test.

Due to its simplicity, the OneR algorithm is easy to interpret and often serves as a bench-
mark for more complex RBML algorithms. The simplicity has its price. The OneR algo-
rithm can only handle categorical data and does not tolerate missing values. Therefore,
continuous values need to be transformed to categorical and missing values need to be
imputed before decision rules can be learned by the OneR algorithm.

5.3.2 RIPPER

The RIPPER method [8] is actually a combination of multiple RBML algorithms that can
be used to create either a decision list or set. The approach can be divided into three
phases: Growing phase, pruning phase, and optimization phase. During the grow phase
the algorithm uses the method of sequential covering. It identifies the optimal splitting
attribute by the increase in information gain and splits the data in order to add a condition
to a rule. Each growth step is followed by a pruning step. If the additional condition does
not reduce the entropy any more, the procedure is stopped and the rule is pruned. This
procedure is repeated on the remaining instances until the remaining data are classified
perfectly or the RIPPER runs out of possible splitting attributes. In the latter case, the
rule prediction is calculated by the majority vote of the remaining instances. The growing
and pruning circle is followed by an optimization phase. This way the RIPPER generates
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one rule at a time. Instances that are covered by an invented rule are removed. The rule
set is iteratively enlarged until no instances remain in the training set.

5.3.3 PART

The PART algorithm [9] combines the divide and conquer strategy with decision tree
approaches. Like the RIPPER it iteratively invents a rules and subsequently removes the
instances that are covered by the rule until no instances are left. It differs from the RIPPER
in the way the rules are created: PART grows a partial decision tree on the current set of
instances. The rule is then learned from the leaf node of the partial decision tree with the
greatest coverage. After rule definition, the tree is discarded and the instance continuum
is reduced upon the the rules of the divide and conquer method. New rules are iteratively
created until no instances are left.
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Chapter 6

Parameter Definition

• C: class attribute (a set of discrete class values)

• Ĉ: number of unique class values in C

• A: set of attributes

• α: splitting attribute

• S: set of instances

• V (x): value of variable x

• p: probability

• G(p): Gini impurity

• H: entropy

• I: information content

• IG: information gain

• IntI: intrinsic attribute information

• M : misclassification error

• i, j, k: running parameter
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Chapter 7

Abbreviations

AI artificial intelligence

CART classification and regression tree

CF certainty factor

ctree conditional inference tree

EBP Error?based Pruning

ID3 iterative Dichotomiser 3

MCCP Minimum Cost-Complexity-Pruning

MCE misclassification error

ML machine learning

OneR one rule

PART partial decision trees

RBML rule based machine learning

REP Reduced Error Pruning

RIPPER repeated incremental pruning to produce error reduction

TDIDT Top Down Induction of decision trees

XAI explainable artificial intelligence
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