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Abstract

Efficient algorithms for object recognition are crucial for the newly robotics
and computer vision applications that demand real-time and on-line methods.
Some examples are autonomous systems, navigating robots, autonomous driv-
ing. In this work, we focus on efficient semantic segmentation, which is the
problem of labeling each pixel of an image with a semantic class.

Our aim is to speed-up all of the parts of the semantic segmentation pipeline.
We also aim at delivering a labeling solution on a time budget, that can be
decided on-the-fly. For this purpose, we analyze all the components of the
semantic segmentation pipeline, and identify the computational bottleneck of
each of them. The different components of the pipeline are over-segmenting
the image with local regions, extracting features and classify the local regions,
and the final inference of the image labeling with semantic classes. We focus
on each of these steps.

First, we introduce a new superpixel algorithm to over-segment the image. Our
superpixel method runs in real-time and can deliver a solution at any time bud-
get. Then, for feature extraction, we focus on the framework that computes
descriptors and encodes them, followed by a pooling step. We see that the en-
coding step is the bottleneck, for computational efficiency and performance.
We present a novel assignment-based encoding formulation, that allows for the
design of a new, very efficient, encoding. Finally, the image labeling output is
obtained modeling the dependencies with a Conditional Random Field (CRF).
In semantic image segmentation, the computational cost of instantiating the
potentials is much higher than MAP inference. We introduce Active MAP in-
ference to on-the-fly select a subset of potentials to be instantiated in the energy
function, leaving the rest as unknown, and to estimate the MAP labeling from
such incomplete energy function.

We perform experiments on all proposed methods for the different parts of
the semantic segmentation pipeline. We show that our superpixel extraction
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achieves higher accuracy than state-of-the-art on standard superpixel bench-
mark, while it runs in real-time. We test our feature encoding on standard im-
age classification and segmentation benchmarks, and we show that our method
achieves competitive results with the state-of-the-art, and requires less time
and memory. Finally, results for semantic segmentation benchmark show that
Active MAP inference achieves similar levels of accuracy but with major effi-
ciency gains.



Zusammenfassung

Effiziente Algorithmen zur Objekterkennung sind essentiell für neue Anwen-
dungen im Bereich der Robotik und Bildererkennung, die Echtzeit- und Online-
Methoden verlangen. Einige Beispiele sind autonome Systeme, mobile Robo-
tik, und autonomes Autofahren. In dieser Arbeit konzentrieren wir uns auf effi-
ziente semantische Segmentierung, das ein Problem der Kennzeichnung jedes
Pixel eines Bildes mit einer semantischen Klasse ist.

Unser Ziel ist die Beschleunigung aller Komponenten des Ablaufs der semanti-
schen Segmentierung. Zudem wollen wir eine zeit-effiziente Lösung zur Pixel-
Kennzeichnung bieten, die spontan abgerufen werden kann. Hierzu analysie-
ren wir alle Komponenten des Segmentierungs-Ablaufes, und identifizieren die
rechnerischen Engpässe jedes einzelnen. Die verschiedenen Komponenten die-
ses Ablaufs sind Segmentierung des Bildes in Superpixel, Extrahierung von
Merkmalen und Klassifizierung der Superpixel, und letztendlich die Ableitung
von den Bildmarkierungen zu semantischen Klassen. Wir gehen auf jeden die-
ser Schritte genauer ein.

Zunächst führen wir einen neuen Super-Pixel Algorithmus zur Segmentierung
des Bildes ein. Unser Superpixel Verfahren läuft in Echtzeit ab und ist in der
Lage zu jedem Zeitpunkt eine Lösung zu liefern. Beim Extrahieren der Merk-
male konzentrieren wir uns auf das Programmiergerüst, das die Deskriptoren
berechnet und codiert, gefolgt von einem Bündelungs-Schritt. Wir erkennen,
dass der Schritt der Kodierung den Engpass für Recheneffizienz und Leistung
darstellt. Wir präsentieren hier eine neue Zuordnungs-basierte Formulierung,
das die Konstruktion einer neuartigen sehr effizienten Codierung ermöglicht.
Die Ausgabe der Bilder-Kennzeichnung schliesslich wird durch Modellierung
der Abhängigkeiten mit Conditional Random Field (CRF) erhalten. In seman-
tischer Bildsegmentierung ist der Rechenaufwand der Instanziierung der Po-
tentiale viel höher als MAP Inferenz. Wir führen eine Active MAP Inferenz
ein, die zu jedem Zeitpunkt eine Teilmenge der Potentiale in der Energiefunk-
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tion instanziert, während der Rest als unbekannt angenommen wird, und zu-
gleich die MAP Kennzeichnung von solch unvollständigen Energiefunktionen
abschätzt.

Wir testen jede einzelne der vorgeschlagenen Methoden zu den verschiedenen
Komponenten des semantischen Segmentierungsvorgangs und zeigen, dass un-
sere Superpixel Extrahierung höhere Genauigkeit erzielt als Stand der Technik
Superpixel Methoden, abgesehen davon, dass sie noch dazu in Echtzeit aus-
geführt wird. Wir testen unsere Codierung an Standard Bildklassifikations- und
Segmentierungsmethoden, und zeigen, dass unsere Methode wettbewerbsfähige
Ergebnisse erzielt, während sie Zeit- und Speicherplatz-effizienter ist. Zuletzt
können wir zeigen, dass Active MAP Inferenz ähnliche Genauigkeiten erzielt
wie andere Stand der Technik Segmentierungsmethoden, aber mit wesentli-
chem Gewinn an Effizienz.
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1
Introduction

Scene understanding has been one of the central goals in Computer Vision for
many decades, and it is considered a key for the success of applications, such
as autonomous driving, robot navigation, autonomous systems. Recognizing
and localizing both objects and background is important for robotic systems,
which may require a full understanding of their surrounding, for instance, to
compute which is a good path to navigate. The computational resources in
robotic applications are usually limited, and may vary in time. For these reason,
efficient algorithms for scene understanding that are able to deliver an output
on a time budget, which may be decided on-the-fly, are of crucial importance.

In this work, we focus on efficient semantic image segmentation, which aims
at labeling each pixel of an image with a semantic class, from a predetermined
set of classes. Semantic segmentation allows recognizing and localizing in the
scene objects, such as people, cars, bicycles, animals; and also background,
such as road, building, vegetation, water. The background usually maps groups
of pixels in the image with undefined shape, and not necessarily with closed
boundaries. This motivates us to focus on semantic segmentation, because the
recognition is at pixel level, which gives information about the boundaries of
the objects and background. Note that, object detection frameworks are more
limited and not particularly suited for localizing background. This is because
object detection is generally based on rectangular bounding-boxes to localize
objects in the image.

Our semantic segmentation framework is able to deliver a solution in a time
budget. In scenarios in which the resources may vary, such as as in autonomous
navigation systems and mobile platforms, where an output solution may be
needed at any time, and therefore, algorithms that are able to deliver a solution
given a time budget are essential. This kinds of algorithms are also called
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Figure 1.1: RADHAR: Robotic ADaptation to Humans Adapting to Robots. It
is an autonomous wheelchair to assist disable people and help them navigating.

timely, as they are able to deliver a valid output solution given any time budget,
which may be decided on-the-fly. Thus, the algorithms decide where to spend
the computational resources to obtain the most accurate solution as possible for
a restricted time budget. Such algorithms mostly rely on uncertainty measures
and expected information gains of the desired solution, and are inspired from
the decision making algorithms for robotics systems.

For this purpose, we identify the different steps involved in a typical seman-
tic image segmentation pipeline, and analyze their computational bottlenecks.
There are mainly three different steps: over-segmentation of the image, feature
extraction and classification, and inference of the most likely image labeling.
We propose new efficient algorithms for all of these steps, that are able to work
on a time budget that may be decided on-the-fly. We introduce a new image
over-segmentation method with superpixels in Chapter 3, an efficient feature
extraction and classification in Chapter 4, and in Chapter 5 the Active MAP
inference of the most likely image labeling, which actively decides where to
spend computational efforts, on a time budget.

We have developed the contributions of this work in the framework of three
robotic projects. The projects are:

• Robotic ADaptation to Humans Adapting to Robots (RADHAR) [De-
meester et al., 2012; Commission, 2010–2013b].

• Interactive Urban Robot (IURO) [Commission, 2010–2013a].
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Figure 1.2: IURO: Interactive Urban Robot.

Figure 1.3: NAO robots used in the standard platform league of the Robocup,
in which the robots play soccer against each other.

• Robocup team of ETH Zurich [Nguyen et al., 2011].

RADHAR project aimed at developing a driving assistance system in a smart
wheel-chair, involving algorithms for environment perception, driver percep-
tion and modeling, and robot decision making. In Figure 1.1 we illustrate the
RADHAR smart wheel-chair.

The main goal of the IURO project was to develop algorithms for enabling
robots to navigate in the street and interact with people with robot-user inter-
action techniques. In Figure 1.2 we show a picture of the IURO robot.

The Robocup project at ETH aims at developing algorithms to give capabil-
ities to the NAO robots to play soccer in the standard platform league of the
Robocup tournament. We show some pictures in Figure 1.3 of the standard
NAO robots from Aldebaran that are used to play soccer in the Robocup stan-
dard platform league [RoboCup, 2014].
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Our contributions to these robotic projects are on the environment perception,
providing semantic information of all locations in the environment that the
robots are perceiving. This allows inferring the semantics of the environment
and localization of people and objects, which is used for robot navigation as
well as robot-human interaction purposes in the RADHAR and IURO projects.
Also, the algorithms that we present in this work, have been integrated and
adapted to the framework of the NAO robots for the ETH Robocup team. In the
Robocup project, we use the superpixel algorithm and binary features to detect
other robots in the soccer field, and the active MAP inference for deciding
where to compute features and classifiers for self-localization and detection of
other robots and the ball in the field.

In the following Chapter we revisit the related work and describe our semantic
segmentation framework.



2
Overview of our Efficient Semantic
Segmentation Framework

In this Chapter, we first revisit previous work on semantic image segmentation,
and on efficient object recognition algorithms, both related to our work. Then,
we present our efficient semantic segmentation framework, which also serves
as outline of the remaining Chapters of this thesis.

2.1 Semantic Image Segmentation

Semantic image segmentation aims at assigning predefined class labels to every
pixel in an image, and is a crucial step for automatic understanding of an image,
cf. [Shotton & Kohli, 2014]. There are standard benchmarks to evaluate the
performance of semantic image segmentation methods, and the most used in
the computer vision community are the MSRC-21 and PASCAL VOC datasets.
In Figure 2.1 and Figure 2.2 we show examples of images and their groundtruth
of MSRC-21 and PASCAL VOC, respectively.

Semantic segmentation has been intensively studied in recent years. In this
Section, we discuss the most relevant methods. We distinguish between ap-
proaches that propose candidate regions in the image to be an object, and then
label the region as one entity, and approaches that first label local regions, ei-
ther pixels or superpixels, and then obtain the object regions by grouping the
labels of the same object instance.

Extracting regions for object candidates is mainly based on global knowledge
of an object, which helps to lead to the semantic object boundaries. These
methods usually use some a priori knowledge about the global object in order
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to guide the segmentation. This information can be extracted from different
sources. For instance, Kumar et al. [2005] use the global shape of the object,
which provides a meaningful approximation about boundaries of the object.
In [Kumar et al., 2005], the shape of the object is encoded with the relative
position of the parts. The method by Carreira et al. [2012b] proposes regions
in the image to be object candidates, without using class-specific information.
Then, those regions are ranked to do a pruning of object candidates, and only
classify the most likely ones to be an object. This work was later extended by
the same authors with the use of more powerful features for semantic segmen-
tation in [Carreira et al., 2012a]. A similar approach by Arbelaez et al. [2012],
proposes candidates building a hierarchy of regions. Then they classify the
regions and combine the obtained semantics in the hierarchy to deliver the fi-
nal labeling. In [Hariharan et al., 2014], they use the framework by Arbelaez
et al. [2012] and propose to use more powerful features, and a refinement to
also obtain bounding-boxes for object detection task. The main drawback of
these approaches is the lack of a multi-class classification in the regions pro-
posals, and the restricted variability of the object candidates. A similar idea,
but more restrictive, is to use the bounding-box of a detection method, such as
the method by Leibe et al. [2007] and by Lempitsky et al. [2009]. However,
since these approaches can be understood as a refinement of the detection, the
method is restricted to the detection accuracy. Other works are based on a
coarse-to-fine approach based on hierarchical representation [Ladicky et al.,
2009; Floros et al., 2011]. The main strengths of those methods are their abil-
ity of encoding the context of the region. However, it usually fails when back-
ground classes are not labeled for the training data and this semantic context
can not be retrieved.

Other approaches label an image by only using information around each pixel
or superpixel, and thus, they intrinsically do not take into account the whole
structure of the object. Traditionally, the community has been divided into au-
thors that encouraged to either use superpixels or pixels as the basic entity to
be labeled. The generic state-of-the-art pixel-based approaches build upon the
description of a patch around each pixel using several cues, and then apply a
classifier to obtain the labeling [Jiang & Tu, 2009; Shotton et al., 2009]. In
many state-of-the-art methods for semantic scene segmentation, the labeling
of different regions in an image is usually done making use of contextual infor-
mation [Oliva & Torralba, 2007]. A way of exploiting contextual information
in such approaches is to include it at the feature level. This context can be
encoded directly into the image descriptors by extending them with contextual
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cues. For instance, Pantofaru et al. [2008] proposed to use several segmenta-
tions and to combine them. Other authors propose to construct the model from
a superpixel based approach , e.g. [Fulkerson et al., 2009; Jiang & Tu, 2009;
Boix et al., 2012]. Another strand of research focused on combining the se-
mantic labels estimated by different contextual features [Csurka & Perronnin,
2010; Munoz et al., 2010; Maire et al., 2011]. Similarly, prior knowledge can
be provided from the use of a categorization method that infers whether the
object is present in the image or not, e.g. [Plath et al., 2009]. In [Li et al.,
2009] this information is extracted from the set of Flickr tags that the user had
uploaded, and combined with a generative graphical model.

Many semantic image segmentation approaches use Markov Random Fields
(MRF) and Conditional Random Fields (CRF), the success of which stems
from their ability to infer the most likely scene configuration. Methods that are
based on CRFs include the contextual information with the use of smoothness
potentials between neighboring nodes, e.g. [Galleguillos et al., 2008; Gould
et al., 2008], to exploit the inter-dependencies between regions. Since more
sophisticated constraints are needed to encode higher level context, methods in-
cluding interactions between regions at different scales have appeared. Verbeek
& Triggs [2007] pioneered including the global scale information in a CRF to
improve estimation at local scales. Then, a number of recent approaches have
introduced sophisticated graphical models that include constraints on both lo-
cal spatial smoothness and global consistency with the use of hierarchical CRFs
and high-order potentials, which interact with local variables either directly
or through intermediate hierarchies, e.g. [Kohli et al., 2009; Ladicky et al.,
2010a,b; Boix et al., 2012]. In [Ion et al., 2011] a probabilistic model is used
to find an agreement of labeled objects obtained by the method of Carreira et al.
[2012b] to obtain the complete labeling of the image, and not only of an object.

Using a CRF allows modeling the dependencies between object and region
classifiers. Yet, the uncertainty measure of the final labeling, which may be im-
portant to have in some applications, e.g. in robotic applications, is not straight-
forward to compute, since the solution is obtained with the Maximum a Pos-
teriori (MAP) labeling. For estimating the uncertainty of the labeling there
are various alternatives that can be used. For instance, one possibility is di-
rectly taking the scores of individual semantic classifiers, without the CRF. A
higher score means a higher confidence about the object being detected, allow-
ing to associate a confidence value to the detection. However, the individual
semantic classifiers are not able to encode the structure of the labeling, which is
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necessary to encode contextual dependencies. Another way is to use methods
that estimate the CRF density function, e.g., max-sum loopy belief propaga-
tion, which is able to approximate the marginals [Yedidia et al., 2001]. Also,
Markov Chain Monte Carlo (MCMC) sampling could be used, which in theory
is able to deliver any distribution of interest. However, these techniques are
often avoided because belief propagation on loopy, densely connected, graphs
has no guarantee on convergence nor quality of the results, and MCMC sam-
pling in a CRF needs many iterations to guarantee a good mixing of the chain.
Remarkably, Kohli & Torr [2006] introduced a method to estimate the uncer-
tainty of the max-marginals with graph-cuts, but these do not correspond to the
marginals.

In our work, we use a CRF to model the neighboring interaction of the im-
age regions, similarly to previous works based on CRFs. Since we focus on
efficient semantic image segmentation on a time budget, we not only aim at
speeding-up the final inference, but all the components of the semantic seg-
mentation pipeline. The bottleneck of the semantic segmentation pipeline is
usually extracting the features and computing the classifiers in all the image
regions. Thus, we do not compute the features and classifiers everywhere in the
image. The CRF allows for propagating the label information based on similar-
ity of adjacent regions in the image. We employ a Perturb-and-MAP Random
Field, that allows performing fast approximate sampling from its probability
density function. This allows to effectively compute the uncertainty of the so-
lution, indicating the uncertainty of the most likely labeling in each region of
the image. We exploit the uncertainty by putting more computational effort
on the regions of the image that are less certain, and that we expect that will
provide more information for understanding the whole scene.

After describing in the next section previous works on efficient object recogni-
tion methods and other approaches that work on a time budget, in Section 2.3
we describe our semantic segmentation framework, and how we speed it up to
make it efficient and able to deliver an output, on a time budget.

2.2 Towards Efficient Object Recognition on a Time
Budget

The increase of computer vision applications that demand real-time or any-
time capabilities, has moved the interest of researches to study efficient object



2.2. TOWARDS EFFICIENT OBJECT RECOGNITION ON A TIME BUDGET 11

recognition algorithms. Timely applications are also becoming very popular.
They consist on methods that are able to deliver an output solution on a time
budget, which can be decided on-the-fly. The estimated output is expected to
be the best possible solution for that time budget.

Among the initiating methods that emphasized efficiency, are the systems for
object detection with early rejection. Such algorithms are based on the use of
classifiers in cascades and use very efficient feature descriptors in all possible
locations of the image. The most well-know method was presented by Viola
& Jones [2004], in which they propose a cascade of classifiers based on Haar
features for object detection. Their framework discards in very early stages of
the cascade the candidates of being an instance of an object if it is classified
as not being such object. There have been many follow-up works, in which
authors propose more robust and efficient cascades of classifiers and adding
more discriminant descriptors, e.g. [Chen & Yuille, 2005; Luo, 2005; Brubaker
et al., 2008].

Methods based on cascades of classifiers imply classifying all images or pos-
sible regions of the images taking all the different classes into account. This
does not scale well in general object detection problems, in which all possible
regions of rectangle shape in the image are taken into account. Usually, this is
of orders of millions of bounding-boxes per image. To address this scalability
problem, there have been many attempts to alleviate the search. Some methods
for efficient object detection are based on implicit shape models with voting
schemes [Leibe et al., 2007; Maji & Malik, 2009; Gall et al., 2011; Lehmann
et al., 2011]. Some tackle it with a coarse-to-fine approach, e.g. [Pedersoli
et al., 2011; Lehmann et al., 2014], by exploring the image from broader re-
gions and refining the area of search.

Another way to address the scalability issue has been with the object proposals
using the so called objectness measure. The objectness measure was introduced
by Alexe et al. [2012a]. It ranks regions of the image to be object candidates,
without specifying their semantic class. The goal is to keep the best candidate
regions, which it is shown to be sufficient with about thousands of candidates,
and discard the rest. This allows to classify fewer regions of the image, which
otherwise would be of orders of millions of image regions. There have been
some follow-ups of this work which introduced new cues to boost the per-
formance of the objectness, e.g. [Chang et al., 2011], but that demand more
computational time. All this methods still demand on the orders of seconds to
obtain the candidate regions, which is still not enough for real-time applica-
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tions. Recently, there have appeared very efficient objectness methods, e.g. by
Cheng et al. [2014] which uses binary representations and efficient computa-
tions. We also proposed an objectness measure in [Van den Bergh et al., 2013]
based on a real-time superpixel algorithm.

Lately, there have been more attention on methods that are able to deliver an
output on a time budget. This kind of algorithms are specially suited for robotic
applications, in which in a certain amount of time, an output solution might be
necessary, even if it is not the best one that it would be obtained with the full
computation. The amount of time available can also be decided on-the-fly. One
of the first works in this lines, was presented by Gao & Koller [2011]. They se-
lect which classifiers to compute in an ensemble of classifiers in a time budget,
taking into account the expected gain in classification accuracy. They applied
this method on image classification. In the same spirit, Karayev et al. [2014]
introduced a method with decision making processes for learning a policy for
selecting the features and classifiers on a time budget. The same authors, in-
troduced in [Karayev et al., 2012] a system for object detection which selects
which classes to compute in all possible bounding-boxes of the image. They
use Reinforcement Learning to learn from data which classes to discriminate.
A similar approach by Alexe et al. [2012b] on object detection, selects in which
region of the image to compute the classifiers, taking into account the previous
image locations already visited. It is based on a decision making system with
a voting scheme.

The focus of this work is on efficient image semantic segmentation on a time
budget. In image semantic segmentation we need a structured labeling output,
which is in contrast to the previous methods described above, which aim is at
predicting a single output at a time: which feature to use, which classifier to
compute, or in which location of the image.

2.3 Efficient Semantic Segmentation Pipeline

We use the typical framework for semantic segmentation modeled with a Con-
ditional Random Field (CRF). Using a CRF allows naturally encoding depen-
dencies without the need of proposing a pool of candidate regions as a first
step. Extracting the candidate regions might be a very tedious task and expen-
sive to compute. Also, a CRF facilitates the propagation of the information
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from neighboring regions, with cheap to compute cues, and thus, the computa-
tion of features and classifiers everywhere in the image may not be necessary.
Not computing features and classifiers everywhere in the image yields dramatic
speed-ups, because computing features and classifiers is usually more expen-
sive than doing MAP inference of the labeling. There have been many attempts
in the literature to speed-up semantic segmentation by making the inference al-
gorithms faster. In this work, we focus on all the different steps of the semantic
segmentation pipeline to make it more efficient, and not only on the labeling
inference, which is the last step of the pipeline.

The semantic segmentation pipeline that we use consist in three steps:

1. Over-segmentation of the image with superpixels (see Figure 2.3a).

2. Computation of features and classifier of all the local regions (see Fig-
ure 2.3b).

3. MAP inference to obtain the final labeling (see Figure 2.3c).

Our aim is to build an efficient semantic segmentation framework, that is able
to deliver an output within a time budget. We make a contribution in each of
the above three steps of the semantic segmentation pipeline with the aim of
efficiency and computing it on a time budget: over-segmentation with super-
pixels, feature extraction and classification and the Active MAP inference of
the most likely image labeling. In Figure 2.4 we depict our semantic segmen-
tation pipeline.

As first step we use an over-segmentation of the image. We introduce an al-
gorithm for efficient image over-segmentation, which is a pre-processing step
that is usually used before image semantic segmentation, in which pixels of the
image of similar appearance, in color and/or texture, are grouped together. The
groups of perceptually similar pixels are called superpixels. Using superpixels
allows reducing the number of instances to label from hundreds of thousands
of pixels to few hundreds of superpixels. Since superpixels are used for effi-
ciency reasons, they should not be computational demanding. We introduce an
efficient superpixel algorithm that runs in real-time, which is based on a simple
hill-climbing optimization. Starting from an initial superpixel partitioning, it
continuously refines the superpixels by modifying the boundaries. We define
a robust and fast to evaluate energy function, based on enforcing a similarity
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between the descriptors of the boundaries and the superpixel descriptor his-
togram. We also use new descriptors that encode both texture and color, and
that are learned with spectral clustering techniques. We use a binary quanti-
zation based on sparse quantization, to reduce the computational cost of the
descriptors distance to negligible, compared to the cost of using some color
space. Thus, our approach avoids initial color conversions, reducing the com-
putational cost to half, and achieves better performance than state-of-the-art on
standard superpixel benchmarks.

In the second step of the pipeline, features and classifiers are computed in the
superpixels to obtain a local probability for each class. We explore feature en-
coding methods and classification for visual object recognition, putting special
focus on efficiency. We present an extremely efficient image encoding with
binary representations. Using efficient image representation and classification
methods is of crucial importance because it may become the bottleneck of the
semantic image segmentation framework. Many state-of-the-art methods in
object recognition extract features from an image and encode them, followed
by a pooling step and classification. At the heart of our formulation lies a
quantization into a set of k-sparse vectors, which we denote as sparse quanti-
zation. We design the new encoding as two nested, sparse quantizations. Its ef-
ficiency stems from leveraging bit-wise representations. We successfully apply
our new feature encoding to image classification and semantic segmentation.
We perform experiments and show that our feature encoding is competitive to
state-of-the-art methods in terms of accuracy, and our method requires orders
of magnitude less time and memory.

Finally, in the third step we do MAP inference by building a graph with a
node per superpixel, and edges between neighboring superpixels that encode
the similarity between such superpixels. We introduce a method that allows
actively deciding where to put more emphasis on the calculation of the features
and classifiers in the image, and then infer the labeling of the whole image. We
compute features and classifiers in some regions of the image, and not in all
image, depending on the amount of time available. Computing the features and
classifiers in fewer places of the image may cause the accuracy to suffer. The
effect of computing less features and classifiers is illustrated in Figure 2.5. We
select which places are best to compute features and classifiers, such that the
semantic segmentation does not suffer from a significant decrease in accuracy
performance. Our framework is based on a CRF that encodes the relations
of neighboring superpixels based on appearance similarity. Most Maximum a
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Posteriori (MAP) inference algorithms for CRFs optimize an energy function
knowing all the potentials. In semantic image segmentation, instantiating the
potentials by classifiers fed with features is computationally more expensive
than doing MAP inference. We introduce Active MAP inference 1) to on-
the-fly select a subset of potentials to be instantiated in the energy function,
leaving the rest of the parameters of the potentials unknown, and 2) to estimate
the MAP labeling from such incomplete energy function. Results for semantic
segmentation benchmarks show that Active MAP inference achieves similar
levels of accuracy as instantiating all potentials of the CRF, but with major
efficiency gains.

Our active semantic segmentation framework can also deliver the uncertainty
of the labeling solution. Our work has been developed in the context of robotic
projects, in which it is often desirable to have a measure of uncertainty of the
perceptual solution. Awareness of the uncertainty of perception is fundamen-
tal for proper high level decision making systems, for fusing computer vision
algorithms and robotics systems. This is because computer visual perception
capabilities are still highly unreliable in unconstrained settings, and solutions
might not be accurate in all image regions.

2.4 Outline of the Thesis

We first introduce in Chapter 3 a method for real-time over-segmentation of im-
ages, also known as superpixels, that will provide the local regions in which to
compute the features and classifiers, which correspond to the unary potentials
of the graphical model. Then, in Chapter 4 we introduce a method to speed up
the computation of the features to obtain the semantic evidence of the super-
pixels of the image. Then, in Chapter 5, we introduce active MAP inference,
which selects which regions of the image should be observed to obtain the most
accurate semantic segmentation of the image given a time budget and how to
do inference on a incomplete energy function. We depict the pipeline of our
efficient semantic segmentation framework in Figure 2.6, and their respective
Chapter in this thesis. Finally, we conclude and give future directions of this
work in Chapter 6 and 7, respectively.



16 2. OVERVIEW OF OUR EFFICIENT SEMANTIC SEGMENTATION FRAMEWORK

Figure 2.1: Examples of images and groundtruth of MSRC-21 for semantic
image segmentation. Each color of the groundtruth corresponds to a semantic
class.
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Figure 2.2: Examples of images and groundtruth of PASCAL VOC for se-
mantic image segmentation. Each color of the groundtruth corresponds to a
semantic class.
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Figure 2.3: Pipeline of image semantic segmentation with CRF: (a) superpix-
els, which boundaries are in yellow, (b) compute features and classifiers for
each superpixel, marked with the white cross on the left image, and the gray
circle in the graph, and (c) MAP inference.
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Figure 2.4: Pipeline of image semantic segmentation for efficiency, with Ac-
tive MAP inference for CRF: (a) superpixels, which boundaries are in yel-
low, (b) compute features and classifiers for some superpixels, marked with
the white cross on the left image, and the gray circle in the graph, and then, (c)
Active MAP inference, in which the graph is fully labeled, but the labels have
an uncertainty associated. In the graph, if the features and classifiers are not
computed is denoted with a ’?’.
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Figure 2.5: The performance accuracy may decrease if less superpixels are
instantiated. The goal is to select the superpixels that are best such that the
accuracy decreases the minimum amount, given a budget of time.
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Figure 2.6: Semantic Segmentation Pipeline, and outline of this work.
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Efficient Image Over-Segmentation

3.1 Introduction

Many computer vision applications benefit from working with superpixels in-
stead of just pixels, e.g. [Fulkerson et al., 2009; Wang et al., 2011; Alexe et al.,
2012a; Boix et al., 2012]. Superpixels reduce the number of entities to be pro-
cessed by the computer vision algorithms, and enable feature computation on
bigger, more meaningful regions than pixels. Superpixels are of special in-
terest for semantic segmentation, in which they are reported to bring major
advantages. They reduce the number of entities to be labeled semantically and
enable feature computation on bigger, more meaningful regions.

There is a surfeit of superpixel algorithms by now. Many superpixel algorithms
are posed as a clustering problem with some additional constraints, that enforce
that the superpixels form a continuous blob of pixels. Since superpixels are of-
ten used as a pre-processing step to reduce the computational cost of computer
vision applications, some authors stressed the need that the computational cost
of the superpixel extraction should be orders of magnitude lower than the fi-
nal application [Felzenszwalb & Huttenlocher, 2004; Levinshtein et al., 2009].
It was not until recently that a superpixel algorithm running in real-time in a
single CPU without the need of additional hardware, achieved state-of-the-art
performance accuracy. This is the SEEDS superpixels, which we proposed in
[Van den Bergh et al., 2012, 2014].

In SEEDS, we start from a complete superpixel partitioning, and we iteratively
refine it. The refinement is done by moving the boundaries of the superpix-
els, or equivalently, by exchanging pixels between neighboring superpixels.
The objective function of SEEDS can be maximized efficiently, and is based
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on enforcing homogeneity of the color distribution of the superpixels, plus an
optional term that encourages smooth boundary shapes. The optimization is
based on a hill-climbing algorithm, in which a proposed movement for refin-
ing the superpixels is accepted if the objective function increases. The SEEDS
superpixel algorithm can be easily extended to work on videos and take into
account spatio-temporal information [Van den Bergh et al., 2013], delivering
an on-line partitioning.

A crucial step for the success of superpixel extraction are the pixel descriptors,
because they determine the similarity between pixels, and may have a non-
negligible cost. Typically, the pixel descriptors are simply a 3-dimensional
vector that represents the pixel color, in a color space selected at hand, and
may become the computational bottleneck (e.g. in SEEDS the color conversion
takes half of the computational cost). Thus, we also investigate the learning of
pixel descriptors for superpixel extraction, which has received little attention
in the Computer Vision literature. We use SEEDS superpixels, and Spectral
Clustering techniques [Rahimi & Recht, 2004; Zhang & Jordan, 2008] to learn
descriptors from patches extracted around each pixel. We coin our method
Spectral SEEDS. The learned descriptors allow to circumvent the color con-
version used in SEEDS, and exploit the texture around the pixels. Also, we
introduce binary quantization that allow to compute the pixel descriptors with
a negligible cost compared to the rest of SEEDS algorithm.

In the experiments, we show that Spectral SEEDS reduces the computational
cost of SEEDS to half, and both, SEEDS and Spectral SEEDS, achieve higher
accuracy than state-of-the-art on the BSD500 dataset [Martin et al., 2001].

3.2 Towards Efficiently Extracted Superpixels

In this Section, we revisit the literature on superpixel extraction. The concept
of superpixels as a pre-processing step was first introduced by Ren & Malik
[2003]. They defined the superpixels as an over-segmentation of the image
based on the principles of grouping developed by the classical Gestalt theory
by Wertheimer [1938]. We divide the existing superpixel methods in two fam-
ilies, putting special emphasis on their compromise between accuracy and run-
time. In the first one, the methods are based on graphs and work by gradually
adding cuts. In the other, they gradually grow superpixels starting from an ini-
tial set. We add a third approach, which we introduced in [Van den Bergh et al.,
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Adding cuts

Growing from assigned centers

SEEDS

Figure 3.1: Comparison of different strategies to build superpixels. Top: the
image is progressively cut. Middle: the superpixels grow from assigned cen-
ters. Bottom: the presented method (SEEDS) proposes a novel approach: it
initializes the superpixels in a gird, and continuously exchanges pixels on the
boundaries between neighboring superpixels.

2012], which moves the boundaries from an initial superpixel partitioning. We
illustrate the different methods in Figure 3.1.

3.2.1 Gradual Addition of Cuts

Typically, superpixel methods based on a gradual addition of cuts are built
upon an objective function that takes the similarities between neighboring pix-
els into account, and use a graph to represent them. Usually, the nodes of the
graph represent pixels, and the edges their similarities. Shi & Malik [2000]
introduced the seminal Normalized Cuts algorithm. It is based on the earlier
work by Wu & Leahy [1993], which globally minimizes a graph-based objec-
tive function, by finding the optimal partition in the graph recursively. In [Shi
& Malik, 2000], the cut cost is improved by normalizing it, taking into account
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all the nodes in the graph. In this way, they avoid favoring the cuts in small
sets of nodes in the graph. Normalized Cuts is computationally demanding, and
there have been attempts to speed it up by adding constraints [Eriksson et al.,
2007; Xu et al., 2009], or by decomposing the graph in multiple scales [Cour
et al., 2005].

Another strategy to improve the efficiency of graph-based methods was intro-
duced by Felzenszwalb & Huttenlocher [2004]. They presented an agglomera-
tive clustering of the nodes of the graph, which is faster than Normalized Cuts.
However, Levinshtein et al. [2009] and Veksler & Boykov [2010] showed that
it produces superpixels of irregular size and shapes which might not be de-
sirable. The algorithm by Moore et al. [2008, 2010] finds the optimal cuts by
using pre-computed boundary maps. Yet, the performance of this algorithm de-
pends on the quality of such boundary maps. Veksler & Boykov [2010] place
overlapping patches over the image and assign each pixel to one of those by
inferring a solution with graph-cuts. Based on this work, Zhang et al. [2011]
proposed an efficient algorithm that uses a pseudo-boolean optimization and
achieves 0.5 seconds per image.

Recently, Liu et al. [2011b] introduced a new graph-based energy function and
surpassed the previous results in terms of quality. Their method maximizes
the entropy rate of the cuts in the graph, plus a balancing term that encourages
superpixels of similar size. They show that maximizing the entropy rate favors
the formation of compact and homogeneous superpixels, and they optimize it
using a greedy algorithm. However, they also report that the algorithm takes
about 2.5 s to segment an image of size 480⇥ 320.

3.2.2 Growing superpixels from assigned centers

There are methods not based on graphs. Watersheds is among the pioneers [Vin-
cent & Soille, 1991; Meyer & Maragos, 1999]. It uses the gradient image,
which is seen as a topological surface, and the superpixels are created by flood-
ing the gradient image. A more recent method based on similar principles is
Turbopixels [Levinshtein et al., 2009], which grows regions following geomet-
ric flows, until the superpixels are formed.

Achanta et al. [2012] introduced SLIC algorithm, which substantially improves
the efficiency of superpixel extraction. SLIC starts from a regular grid of cen-
ters or segments, and grows the superpixels by clustering pixels around the cen-
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Superpixel boundary

SEEDS SLIC

Area of search

Figure 3.2: SEEDS vs SLIC. Area of search for the superpixel updates, which
have a great impact on the computational time. SEEDS is much more efficient
because it only updates superpixels at the boundary of superpixels.

ters. At each iteration, the centers are updated, and the superpixels are grown
again. Zeng et al. [2011] formulates this algorithm taking into account the
geodesic distances between pixels, and accepts adding new superpixel centers.
Consistent Segmentation by Zitnick et al. [2005] is based on similar principles,
but it also estimates the optical flow jointly with the segmentation in video
sequences using appearance and motion constraints.

A different strategy is followed by Quick-Shift [Vedaldi & Soatto, 2008]. It
performs fast mean-shift, which was introduced by Comaniciu & Meer [2002],
with a non-parametric clustering and with a non-iterative algorithm.

Even though all these methods are more efficient than graph-based alternatives,
they do not run in real-time, and in most cases they obtain inferior performance.
SLIC, being the fastest among them, is able to run at 5Hz.

3.2.3 Update the Boundaries

SEEDS is related to the methods that grow superpixels from an initial set in
the sense that it also starts from a regular grid. Yet, it does not share their
bottleneck of needing to iteratively grow superpixels. Growing might imply
computing some distance between the superpixel and all surrounding pixels in
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each iteration, which comes at a non-negligible cost. SEEDS bypasses growing
superpixels from a center, because it directly exchanges pixels between super-
pixels by moving only the boundaries. In Figure 3.2 we illustrate the updates
of SEEDS compared to SLIC. While SEEDS updates only on the superpixel’s
boundary, SLIC updates all pixels in a predefined area around the center of
the superpixel. In the experiments section, we show that SEEDS superpixels
achieve state-of-the-art accuracy performance, and superpixels are extracted in
real-time on a single CPU with no additional hardware.

After introducing SEEDS in more detail, in the sequel, we show that the pixel
descriptors for SEEDS can be learned with spectral clustering techniques. Also,
SEEDS superpixels extraction can be further speeded-up by using the learned
descriptors and binary quantizations.

3.3 SEEDS Superpixels

A superpixel segmentation is an over-segmentation that usually enforces a con-
sistent appearance inside superpixels and a regular shape of the superpixel
boundaries. The quality of a superpixel is measured by its property of grouping
similar pixels that belong to the same object, and by how well it follows ob-
ject boundaries. We introduce the superpixel segmentation as an energy max-
imization problem where each superpixel is defined as a region with a color
distribution and a shape of the boundary.

Let N be the number of pixels in the image, and K the number of superpixels
that we want to obtain. We represent a partitioning of the image into superpix-
els with the mapping

p : {1, . . . , N}! {1, . . . ,K}, (3.1)

where p(i) denotes the superpixel to which pixel i is assigned. Also, we can
represent an image partitioning by referring to the set of pixels in a superpixel,
which we denote as A

k

: A
k

= {i : p(i) = k}, and thus, A
k

contains the
pixels in superpixel k. The whole partitioning of the image is represented with
the sets {A

k

}. Since a pixel can only be assigned to a single superpixel, all
sets A

k

are restricted to be disjoint, and thus, the intersection between any
pair of superpixels is always the empty set: A

k

\ A
k

0
= ;. In the sequel,

we interchangeably use p or {A
k

} to represent a partitioning of the image into
superpixels.
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Figure 3.3: Left: an example partitioning in P , where the superpixels are con-
nected. Right: the partitioning is in C but not in P as it is an invalid superpixel
partitioning.

A superpixel is valid if it is spatially connected as an individual blob. We define
P as the set of all partitionings into valid superpixels, and ¯P as the set of invalid
partitionings, as shown in Figure 3.3. Also, we denote C as the more general
set that includes all possible partitions (valid and invalid).

The superpixel problem aims at finding the partitioning p 2 P that maximizes
an objective function, or so called energy function. We denote the energy func-
tion as H(s, I), where I is the input image. In the following, we will omit the
dependency of the energy function on I for simplicity of notation. Then, we
define p? as the partitioning that maximizes the energy function:

p? = argmax

p2P
H(p). (3.2)

This optimization problem is challenging because the cardinalities of P and C
are huge. In fact, |C| is the Stirling number of the second kind, which is of the
order of K

n

K! [Sharp, 1968]. What also renders the exploration of P difficult,
is how P is embedded into C. For each element in P there exists at least one
element in ¯P which only differs in one pixel. This means that from any valid
image partitioning, we are always one pixel away from an invalid solution.

In the following we introduce the energy function and the optimization algo-
rithm of SEEDS superpixels. Then, we describe the extension to obtain SEEDS
superpixels on videos, that are consistent over time.

3.3.1 Energy Function

The energy function, H(p), evaluates the color distribution of the superpixels.
We could also add an optional term for the prior of the shape of the superpixel
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boundaries. Yet, we found that the prior of the shape does not have an impact
on the accuracy performance, and hence, we do not use it for the development
of our algorithm. Superpixels should be perceptually consistent, in particular,
they should be as homogeneous in color as possible. Nonetheless, it is unclear
which is the best mathematical way to evaluate the homogeneity of color in
a region. Almost each paper on superpixels in the literature introduces a new
energy function to maximize, but none of them systematically outperforms the
others. We introduce a novel measure on the color density distribution in a
superpixel, that allows for efficient maximization with the hill-climbing ap-
proach.

Our energy function is built upon evaluating the color density distribution of
each superpixel. We assume that the color distribution of each superpixel is
independent from the rest. Let  (cAk) be a quality measure of a color distri-
bution, and we define H(p) as an evaluation of such quality in each superpixel
k, i.e.

H(p) =
X

k

 (cAk). (3.3)

 (cAk) is a function that enforces that the color distribution is concentrated
in one or few colors. A common way to approximate a density distribution is
discretizing the space into bins and building a histogram. Let � be an entry in
the color space, and H

j

be a closed subset of the color space. H
j

is a set of �’s
that defines the colors in a bin of the histogram. We denote cAk(j) as the color
histogram of the set of pixels in A

k

, and it is

cAk(j) =
1

Z

X

i2Ak

�(I(i) 2 H
j

). (3.4)

I(i) denotes the color of pixel i, and Z is the normalization factor of the his-
togram. �( · ) is the indicator function, which in this case returns 1 when the
color of the pixel falls in the bin j of the color histogram, which has B bins
in total. The pixels are represented using the Lab color space, which we found
that gives better accuracy results in practice. We can also build a histogram
based on learned texture filters, as we show in the sequel.
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Algorithm 1: Hill-climbing in SEEDS
p
t

= initialize();
while t < t

stop

do
p = Propose(p

t

);

if H(p) < H(p
t

) then
p
t

= p;
end

end
p? = p

t

;

We define  (cAk) to enforce that the histogram is concentrated in few bins. A
valid measure could be the entropy of the histogram. Yet, we found that the
following measure is advantageous:

 (cAk) =

X

{Hj}
(cAk(j))

2. (3.5)

Next, we show that this objective function can be optimized very efficiently
by a hill-climbing algorithm, as histograms can be evaluated and updated ef-
ficiently. Observe that  (cAk) in Equation (3.5) encourages homogeneous
superpixels, since the maximum of  (cAk) is reached when the histogram is
concentrated in one bin, which gives  (cAk) = 1. In all the other cases, the
function is lower, and it reaches its minimum in case that all bins take the same
value. The main drawback of this energy function is that it does not take into
account whether the colors are placed in bins far apart in the histogram or not.
However, this is alleviated by the fact that we aim at over-segmenting the im-
age, and each superpixel might tend to cover an area with a single color (or
texture).

3.3.2 Superpixels via Hill-Climbing Optimization

We introduce a hill-climbing optimization for extracting superpixels. Hill-
climbing is an optimization algorithm that iteratively updates the solution by
proposing small local changes at each iteration. If the energy function of the
proposed partitioning increases, the solution is updated. We denote p 2 P as
the proposed partitioning, and p

t

2 P the lowest energy partitioning found at
the instant t. A new partitioning p is proposed by introducing local changes
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pixel-level updates         block-level updates

Figure 3.4: Illustration of the movements at pixel-level and at block-level in
the hill-climbing algorithm of SEEDS.

seed: smallest block size medium block size largest block size initial superpixels

Tuesday, September 18, 12

Figure 3.5: Initialization. Example of initialization with 12 superpixels and
blocks of different sizes. The initialization occurs from left to right: first the
smallest blocks are initialized, and then concatenated 2 ⇥ 2 to form larger
blocks. The largest blocks are concatenated 2⇥ 2 to create the initial superpix-
els. This rectangular grid (in this case 4⇥ 3) is the starting point of the SEEDS
algorithm.

at p
t

, which in our case consists of moving some pixels from one superpixel
to its neighbors. An iteration of the hill-climbing algorithm can be extremely
efficient, because small changes to the partitioning can be evaluated very fast
in practice.

An overview of the hill-climbing algorithm is shown in Algorithm 1. After
initialization, the algorithm proposes new partitionings at two levels of gran-
ularity: pixel-level and block-level. Pixel-level updates move a superpixel
boundary by 1 pixel, while block-level updates move a block of pixels from
one superpixel to another. We illustrate the pixel-level and block-level updates
in Figure 3.4. We will show that both types of updates can be seen as the same
operation, at a different scale.
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initalization largest block update medium block update smallest block update pixel-level update

Tuesday, September 18, 12

Figure 3.6: Block and pixel movements. This figure shows an example of the
evolution of the superpixel boundaries while going through the iterations of
the SEEDS algorithm (in the case of 12 superpixels). From left to right: The
first image shows the initialization as a grid. The subsequent images show the
block updates from large to small. The last image shows the pixel-level update
of the superpixel boundaries.

Initialization

In hill-climbing, in order to converge to a solution close to the global optimum
(p?), it is important to start from a good initial partitioning. We propose a reg-
ular grid as a first rough partitioning, which obeys the spatial constraints of the
superpixels to form a partitioning in P . We found that when evaluating a grid
against the standard evaluation metrics, the performance is respectable: the
grid achieves a reasonable over-segmentation, but of course fails at recovering
the object boundaries. Observe that object boundaries are maximally half of the
grid size away from the grid boundaries. This justifies using hill-climbing op-
timization for extracting superpixels, since the initialization is relatively close
to the optimal solution.

Besides, we initialize the blocks of pixels (for the block movements) at differ-
ent sizes, and compute the color histogram for each block. First, we generate
the smallest block size, which is a block of 2 ⇥ 2 or 3 ⇥ 3 pixels. In order
to generate larger block sizes, the small blocks are hierarchically joined in a
2⇥ 2 fashion. The corresponding histograms can be obtained by summing the
histograms of the composing blocks, as shown in Figure 3.5.

The largest block size in the algorithm is a quarter of the target superpixel size.
Thus, the superpixels are initialized as the concatenation of 2 ⇥ 2 blocks of
the largest block size. This results in superpixels of a consistent size, inde-
pendent from the size of the input image. The desired number of superpixels
can be obtained by choosing the initial block size and number of block levels
accordingly.
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Proposing Pixel-level and Block-level Movements

In each iteration, the algorithm proposes a new partitioning p based on the pre-
vious one, p

t

. The elements that are changed from p
t

to p are either single
pixels or blocks of pixels that are moved to a neighboring superpixel. We de-
note Al

k

as a candidate set of one or more pixels to be exchanged from the
superpixel A

k

to its neighbor A
n

. In the case of pixel-level updates Al

k

con-
tains one pixel, and in the case of block-level updates Al

k

contains a small set
of pixels, as illustrated in Figure 3.4. At each iteration of the hill-climbing, we
generate a new partitioning by randomly picking Al

k

from all boundary pixels
or blocks with equal probability, and we assign the chosen Al

k

to a random
superpixel neighbor A

n

. In case it generates an invalid partitioning, which can
only happen when a boundary movement splits a superpixel in two parts, it is
discarded.

Block-level updates are used for reasons of efficiency, as they allow for faster
convergence, and help to avoid local maxima. Note that block-level updates are
more expensive, but move more pixels at the same time. Therefore, it is bet-
ter to do large block-level updates at the beginning of the algorithm, and then
smaller blocks, and finish the algorithm with pixel-level tuning of the bound-
aries. Thus, the algorithm first starts updating the larger blocks in the hierarchy,
and then goes down one level in the hierarchy to update smaller blocks, and so
on, until the pixel level. Once the pixel level is reached, there are not further
updates in upper levels of the hierarchy. This is illustrated in Figure 3.6. The
longer the individual pixel updating is running, the more accurate the resulting
superpixels will be.

Evaluating Pixel-level and Block-level Movements

The proposed partitioning p is evaluated using the energy function, H(p). In
the following we describe the efficient evaluation of H(p), and the efficient
updating of the color distributions in case p is accepted.

We introduce an efficient way to evaluate H(p) based on the intersection dis-
tance. Recall that the intersection distance between two histograms is

int(cAa , cAb) =

X

j

min{cAa(j), cAb(j)}, (3.6)
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where j is a bin in the histogram. Observe that it only involves |{H
j

}| compar-
isons and sums, where |{H

j

}| is the number of bins of the histogram. Recall
that Al

k

is the set of pixels that are candidates to be moved from the super-
pixel A

k

to A
n

. We base the evaluation of H(p) > H(p
t

) on the following
observation. More details of the observation are provided in the appendix.

Observation 1. Let the sizes of A
k

and A
n

be similar, and Al

k

much smaller,
i.e. |A

k

| ⇡ |A
n

| � |Al

k

|. If the histogram of Al

k

is concentrated in a single
bin, then

int(cAn , cAl
k
) � int(cAk\Al

k
, cAl

k
) () H(p) � H(p

t

). (3.7)

Observation 1 can be used to evaluate whether the energy function increases
or not by simply computing two intersection distances. However, it makes two
assumptions about the superpixels. The first is that the size of Al

k

is much
smaller than the size of the superpixel, and that both superpixels have a similar
size. When Al

k

is a single pixel or a small block of pixels, it is reasonable
to assume that this is true for most cases. The second assumption is that the
histogram of Al

k

is concentrated in a single bin. This is always the case if Al

k

is a single pixel, because there is only one color. In the block-level case it
is reasonable to expect that the colors in each block are concentrated in few
bins. When running the algorithm on the standard superpixels benchmark,
these assumptions hold in 93% of the cases, and likely this is not true when the
largest block updates are made.

Interestingly, in the case of evaluating a pixel-level update, the computation of
the intersection can be achieved with a single access to memory, as depicted in
Figure 3.7. This is because the histogram of a pixel has a single bin activated
with a 1, and hence, the intersection distance is the value of the histogram of the
superpixel. Note that without Observation 1, the evaluation of H(p) � H(p

t

)

would be much more expensive to compute: it would require evaluating Equa-
tion (3.5) for superpixel n and k with and without the update, which involves
for each side of the inequality |{H

j

}| products and |{H
j

}| sums.

Updating the Color Distributions

Once a new partition has been accepted, the histograms of A
k

and A
n

have to
be updated efficiently. In the pixel-level case, this update can be achieved with
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bins bins

=
bins

Figure 3.7: The intersection between two histograms, when one is the color
distribution of a single pixel, can be computed with a single access to memory.

a single increment and decrement of bin j of the the respective histograms. In
the block-level case, this update is achieved by subtracting cAl

k
from cAk and

adding it to cAn .

Termination

When stopping the algorithm, one obtains a valid image partitioning with a
quality depending on the allowed run-time. The longer the algorithm is al-
lowed to run, the higher the value of the objective function will get. The algo-
rithm will usually be terminated during pixel-level updating of the boundaries.
However, should one choose to terminate the algorithm very early on in the
algorithm during the block-level updates, the algorithm still returns a valid
partitioning.

We can set t
stop

depending on the application, or we can even assign a time
budget on-the-fly. We believe this to be a crucial property for on-line appli-
cations, but nonetheless one that has received little attention in the context of
superpixel extraction so far. In graph-based superpixel algorithms, one has to
wait until all cuts have been added to the graph, and in methods that grow
superpixels, one has to wait until the growing is done, the cost of which is
not negligible. The hill-climbing approach uses more iterations than previous
methods, but each iteration is done extremely fast. Since the time to finish the
current iteration in the hill-climbing is negligible, the algorithm can be stopped
at any given time.

3.3.3 SEEDS for Videos

SEEDS algorithm can be easily extended to work on video, taking into account
the temporal consistency, as we showed in [Van den Bergh et al., 2013]. Our
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video approach propagates superpixels over multiple frames to build 3D spatio-
temporal constructs. As time goes on, new video superpixels can appear and
others may terminate. In the literature, this is controlled by constraining the
number of superpixel tubes in the sequence. For online applications this is not
possible however, since the upcoming length and content of the sequence are
unknown. Thus, we use alternative constraints defined through 2 parameters:

- Superpixels per frame: number of superpixels in which each single frame
is partitioned.

- Superpixel rate: the rate of creating/terminating superpixels over time.

In order to fulfill both constraints, the termination of a superpixel implies the
creation of a new one in the same frame.

We now define P as the set of valid partitions of a video. These are the par-
titions for which the superpixels are contiguous blobs in all frames and that
exhibit the correct superpixel-per-frame and superpixel-rate behavior. We de-
note At

k

as the set of pixels that belong to superpixel k, at frame t. To indicate
all pixels of the video superpixel up to frame t, we use At:0

k

.

Similarly to SEEDS superpixels, the energy function encourages color homo-
geneity within the 3D superpixels. We use a color histogram of each superpixel
to evaluate this. The color histogram of At:0

k

is written as cAt:0
k

. Recall that H
j

is a subset of the color space which determines the colors in a bin of the his-
togram. Then the energy function is

H(p) =
X

k

X

{Hj}
(cAt:0

k
(j))2, (3.8)

which is maximal when the histograms have only one non-zero bin for each
video superpixel.

The optimization algorithm is designed to maximize the energy function in
an online fashion (i.e. only using past frames and at video rate). It computes
the partition of the current frame, starting from an approximation of the last
partition. Once the partition of the current frame is delivered, it remains fixed.
We use a similar hill-climbing algorithm as in SEEDS for stills, that runs in
real-time. See Fig. 3.8 for an overview of the algorithm. We now describe
the differences between the hill-climbing optimization in SEEDS in still and in
Videos, which are the pixel and block-level updates, creating and terminating
video superpixels, and the propagation of the video superpixels over time.
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Figure 3.8: Overview of the Video SEEDS algorithm: The superpixel labels
are propagated at an intermediary step of block-level updates. The result is
fine-tuned for each frame individually.

Pixel and block-level updates

The hill-climbing optimization proposes block-level updates to pixel-level up-
dates, as described in SEEDS for stills, with the difference that takes into ac-
count the temporal information. Let Bt

n

be a block of pixels of the current
frame that belongs to the superpixel n, i.e. Bt

n

⇢ At

n

⇢ At:0
n

. To evaluate
whether exchanging the block Bt

n

from superpixel n to m increases the objec-
tive function, we can use one histogram intersection computation, rather than
evaluating the complete energy function. This is int(cBt

n
, cAt:0

m
) � int(cBt

n
, cAt:0

n \Bt
n
).

Thus, if the intersection of Bt

n

to the video superpixel At:0
m

is higher than the
intersection to the superpixel it currently belongs to, the exchange is accepted,
otherwise it is discarded, similarly to the optimization of SEEDS for stills.

The inequality of intersection distances, maximizes the energy under the as-
sumptions that |At:0

m

| ⇡ |At:0
n

|, |Bt

n

| ⌧ |At:0
n

|, where | · | is the cardinality of
the set. Also, it assumes that the histogram of Bt

n

is concentrated in a single
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bin. The first assumption is that video superpixels are of similar size and that
the blocks are much smaller than the video superpixels. This holds most of the
time, since superpixels indeed tend to be of the same size, and the blocks are
defined to be at most one fourth of a superpixel in a frame, and hence, are much
smaller than superpixels extending on multiple frames in the video. The second
assumption is that the block of pixels have homogeneous color histograms.

Creating and terminating video superpixels

According to the superpixel rate, some frames are selected to terminate and
create superpixels. When a frame is selected, we first terminate a superpixel,
and then we create a new one. To this aim, we introduce inequalities with
intersection distances. They allow to evaluate which termination and creation
of superpixels yield higher energy using efficient intersection distances.

When a superpixel is terminated, its pixels at frame t are incorporated to a
neighbor superpixel. Let At

n

⇢ At:0
n

and At

m

⇢ At:0
m

be two candidates of su-
perpixels to terminate at frame t. Let At:0

p

and At:0
q

be the superpixel candidate
to incorporate At

n

and At

m

, respectively. The superpixel with larger intersec-
tion with its neighbor is the one selected to terminate, i.e. int(cAt

n
, cAt:0

p
) �

int(cAt
m
, cAt:0

q
). We terminate the superpixel with higher intersection similar-

ity to its neighbor among all superpixels in the frame. The above equation
leads to the highest energy state, under the assumptions that |At:0

p

| ⇡ |At:0
q

|,
|At

n

| ⌧ |At:0
p

|, |At

m

| ⌧ |At:0
q

|, and that both At

n

and At

m

have histograms
concentrated into one bin. These are similar to the assumptions for the pre-
vious inequalities with intersection distances. Additionally, it is also assumed
that cAt:0

n
⇡ cA(t�1):0

n
and cAt:0

m
⇡ cA(t�1):0

m
. This is, the color histogram of the

temporal superpixel remains approximately the same including and excluding
the pixels at the current frame. This holds most of the time, given the fact that
|At

n

|⌧ |At:0
n

|.

If a superpixel is terminated, a new one should be created to fulfill the con-
straint of number of superpixels per frame. The candidates to form a new
superpixel are blocks of pixels that belong to an existing video superpixel. Let
Bt

n

⇢ At:0
n

and Bt

m

⇢ At:0
m

be blocks of superpixels candidates to create a new
superpixel. We select the block of pixels whose histogram minimally intersects
with its current superpixel. I.e., int(cBt

m
, cAt:0

m \Bt
m
)  int(cBt

n
, cAt:0

n \Bt
n
). We

select the block of pixels with minimum intersection in the frame. This yields
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the highest energy, assuming that |At:0
m

| ⇡ |At:0
n

|, |Bt

n

| ⌧ |At:0
n

|, |Bt

m

| ⌧
|At:0

m

|, and that both Bt

n

and Bt

m

have histograms concentrated into one bin.

Propagation

In the first frame of the video, the superpixels are initialized along a grid using
the hierarchy of blocks. In the subsequent frames, the block hierarchy is ex-
ploited to initialize the superpixels. Rather than re-initializing along a grid, the
new frame is initialized by taking an intermediary block-level result from the
previous frame (see Figure 3.8). Like this, the superpixel structure can be prop-
agated from the previous frame while discarding small details. In principle, the
algorithm can run for an infinitely long video, since it generates the partition
online, and in memory we only need the histograms of the video superpixels
that propagate to the current frame.

3.4 Spectral SEEDS

In this Section, we introduce a method for learning the descriptors used in
SEEDS, such that color and texture are taken into account. We first revisit
Spectral Clustering, because the descriptors are learned using Spectral Cluster-
ing techniques, and we also introduce an equivalent notation of SEEDS that is
convenient to incorporate the learned descriptors with Spectral Clustering, as
we will show later in this Section. We coin Spectral SEEDS the method with
SEEDS and learned descriptors.

3.4.1 Preliminaries

Spectral Clustering

We revisit Spectral Clustering (SC), which we use in Spectral SEEDS. For
notation convenience we denote the set of column vectors of a matrix M 2
RP⇥Q as {m

q

}
Q

, where q 2 {1, . . . , Q}. The sub-index in the set denotes its
cardinality, i.e. |{m

q

}
Q

| = Q. Also, m
qj

is the j entry of the vector m
q

2 RP .

Spectral Clustering (SC) is a popular approach to clustering, initially intro-
duced for graph partitioning problems [Donath & Hoffman, 1973; Fiedler,
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1973]. SC received a lot of attention for region extraction during the last
decade, e.g. [Malik et al., 2001; Maire et al., 2011; Shi & Malik, 2000; Yu
& Shi, 2003].

Let {v
i

}
N

, in which v

i

2 RD, be the set of N vectors to be clustered into K
groups. We use the N ⇥N similarity matrix, denoted as A, to characterize the
similarities between all pairs of vectors in {v

i

}
N

. The matrix A is normalized
to obtain the Laplacian matrix, which we call L. There are many ways we can
define L, cf. [Von Luxburg, 2007]. A common way is to use

L = D�A, (3.9)
where D = diag(A1

N

),

diag(s) is the diagonal matrix with s1, s2, . . . as its diagonal entries, and 1

N

is a column vector with N ones. We use the N ⇥ K indicator matrix E to
denote the assignment of the N input vectors to one of the K clusters. Each
row of E has one entry set to 1 to indicate the assignment, and the rest to 0.
Thus, E fulfills the following constraints: E 2 {0, 1}N⇥K and E1

K

= 1

N

.
The multiclass clustering criterion optimizes [Yu & Shi, 2003; Bach & Jordan,
2006]:

min

E

tr(Et

LE) (3.10)

s.t. E 2 {0, 1}N⇥K

E1

K

= 1

N

,

where the super-index t is the transpose operator, and tr( · ) is the trace of a
matrix.

SC relaxes the problem in Equation (3.10) to a continuous optimization by
dropping the constraint that forces E to be a binary matrix. The result of the
spectral relaxation, which we denote as Y, can take real values, but the con-
straint that the columns of Y form an orthonormal basis, still applies. Also, it is
common to introduce some user-defined weights for each input vector, denoted
by ⇡

i

, which form a diagonal matrix of weights ~
⇧ = diag(⇡1,⇡2, . . . ,⇡N

).
The constraints of the relaxed problem become ~

⇧Y1

K

= 1

N

and Y

t ~
⇧Y =
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Algorithm 2: SC
Input: {v

i

}
N

, K
Output: E
1. Laplacian:
A Similarity from {v

i

}
N

L Laplacian from A

2. Spectral Relaxation:
{y

i

}
N

 Eigenvectors(L)
3. Rounding:
E Rounding({y

i

}
N

,K)

I

K

where I

K

is the K ⇥ K identity matrix. Thus, the clustering objective in
Equation (3.10) becomes

min

Y

tr(Yt

LY) (3.11)

s.t. Y

t ~
⇧Y = I

K

~
⇧Y1

K

= 1

N

.

This relaxed optimization problem can be solved with a generalized eigenvec-
tor problem, i.e. Ly = �~⇧y, where y is a column of Yt and � an eigenvalue.
The name “spectral” comes from the fact that SC is an eigenvector problem.

Finally, a rounding heuristic is used to recover the solution, E, of the orig-
inal discrete problem from the eigenvalues, Y; cf. [Von Luxburg, 2007]. In
Algorithm 2 there is a summary of the SC algorithm.

Spectral Clustering in the Primal Form

The formulation in the primal form of SC was introduced by Rahimi & Recht
[2004], and further developed by Zhang & Jordan [2008]. It establishes a con-
nection between the representation of the input vectors, {v

i

}
N

, and the relaxed
solution to SC. Recall that V is the matrix which columns are the vectors to be
clustered, i.e. {v

i

2 RD}
N

, and let S be a D ⇥K matrix which corresponds
to the variables to optimize in the primal form of SC. S is related to Y through
the input data, i.e. Y = V

t

S. The columns of S can be seen as hyperplanes
that separate the different clusters, and the entries of Y the signed distance to
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Algorithm 3: SEEDS
Input: {v

i

}
N

, K
Output: p 2 P
1. Adaptative binning:
{H

j

}
B

 center color bins
2. Assignment:
y
ij

 similarity (v

i

,H
j

) 8i, j
{u

i

}
N

 max

j

y
ij

8i, j
3. Hill-climbing:
p optimize Equation (3.12)

the hyperplanes [Zhang & Jordan, 2008]. The optimization is the primal form
can be derived by replacing Y = V

t

S in Equation (3.11).

Observe that depending on the number of clusters, it may be advantageous to
do the optimization in the primal form of SC, which involves D⇥K variables,
rather than in the original form of SC, which scales quadratically with the num-
ber of input vectors. Next, we introduce a new notation of SEEDS that allows
for a relation to Spectral Clustering. Then, in the sequel, we show that the pri-
mal formulation of SC can be used to achieve speed-ups in the computation of
SC.

New notation of SEEDS Superpixels

We re-write the notation of SEEDS superpixels, which will be convenient for
our purposes, as we will see later in this Chapter. Recall that H

j

defines the
colors in a bin that form the histogram, and B is the number of bins of the
histogram. Each pixel of the image is assigned to one bin of the histogram. Let
u

i

be the vector that encodes the assignment of the pixel descriptor or pixel
color, v

i

, to the histogram bin. Thus, u
ij

is equal to �(v
i

2 H
j

), in which
�(x) = 1 if x is true, and 0 otherwise. Note that u

i

is a vector of 0’s and one
1, that indicates the bin to which the pixel descriptor has been assigned.

Recall that A
k

is the set of pixels inside a superpixel k. The objective function
of SEEDS with the new notation is

arg max

{Ak}K

X

k<K

X

j<B

(

1

Z

X

i2Ak

u
ij

)

2, (3.12)
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where Z is a normalization factor of the histogram. Observe that Equation (3.12)
is equivalent to Equation (3.2). Note that ( 1

Z

P
i2Ak

u
ij

)

2 is maximum when
all {u

i

}
i2Ak are assigned to the same color bin. In Algorithm 3 there is an

overview of the SEEDS algorithm using this notation.

3.4.2 Spectral SEEDS Algorithm

In the following, we first introduce the algorithm of Spectral SEEDS, and then,
show how it is related to SEEDS and to SC. After that, we analyze its compu-
tational cost.

Recall that the original version of SEEDS represents the pixels using the Lab
color space. We replace this color descriptor by 3⇥ 3 square patches extracted
around each pixel, in RGB. This allows to better capture the color and the
texture, and avoids the color conversion of SEEDS, which takes about half of
the computational time of SEEDS, as we show in the experiments section. We
could use bigger patch sizes, but were more expensive to compute and we did
not observe any improvement in the results. We denote as v

i

the descriptor
vector for a single pixel, which is of length 27, i.e. the RGB value of the 3⇥ 3

patch around the pixel.

Algorithm

Recall that Y is the result of the the spectral relaxation of SC. Y gives an idea
of how much each pixel belongs to the clusters inferred by SC. Also, recall
that in SEEDS, Y is defined as the similarity between the pixel color and the
color bins of the histogram, {H

j

}
B

. We propose to compute Y as in SC, and
then, continue as in SEEDS. We use SC to compute Y because it infers clus-
ters of the input descriptors that we can use as the bins to build the histograms
for SEEDS. In this way, we use an spectral embedding for extracting repre-
sentations that may be richer than just pre-fixed color histogram bins, and use
SEEDS for an efficient computation of the final superpixels. We could use an-
other clustering technique different from SC to compute Y. We show in the
sequel that SC is convenient in our case. Spectral SEEDS is the following 3
step-algorithm:

1. Spectral Embedding. It consists of extracting the spectral relaxation, Y,
from all the pixel descriptors of the image, {v

i

}
N

. SC extracts clus-
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ters from {v
i

}
N

, which in the following steps, are used as the bins for
building the histogram for SEEDS. Note that these bins are built from
the representation used in v

i

, which is more general than the Lab color
value of a pixel used in SEEDS. y

i

encodes how much v

i

belongs to the
color/texture bin extracted with SC.

2. Unconstrained Rounding. The vectors of the spectral embedding, y
i

, are
rounded, such that each pixel v

i

is assigned to only one bin, obtaining
u

i

in the same way as in SEEDS (i.e. u
ij

= 1 when v

i

is assigned to
bin j, and 0 otherwise). The rounded matrix for all pixels, U, is called
unconstrained rounding because it does not constrain the superpixels to
be continuous blobs of pixels.

3. Hill-Climbing from SEEDS for Constrained Rounding. We run the hill-
climbing optimization from SEEDS, taking as input the rounded assign-
ments, U. The hill-climbing enforces homogeneous superpixels by max-
imizing the objective function of SEEDS in Equation (3.12). The hill-
climbing of SEEDS guarantees that the resulting superpixels are contin-
uous blobs, i.e. the final partitioning is p 2 P .

Since the algorithm of Spectral SEEDS is built from SC and SEEDS, it can be
analyzed from both SC and SEEDS perspective.

From SC point of view, there is a spectral embedding, Y, and then, the final
rounding to obtain a valid superpixel partitioning, p 2 P , is done with SEEDS.
Thus, SEEDS is used as the heuristic to recover the constrained solution of
the discrete SC problem. In the literature, many sophisticated heuristics have
been proposed, e.g. [Malik et al., 2001; Yu & Shi, 2003; Bach & Jordan, 2006;
Zhang & Jordan, 2008]. Note that superpixel extraction is simpler than other
more general clustering algorithms, and a simple heuristics such as SEEDS can
achieve good performance for superpixel extraction, but may not be the case
for any clustering problem.

In SEEDS, the spectral embedding, Y, corresponds to the similarity between
the pixel color and the colors of the histogram bins. In Spectral SEEDS, the
pixel representation may be adapted to any descriptor using spectral embed-
dings. In the experiments we show that this allows to achieve higher perfor-
mance.
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Computational Cost Analysis

The bottleneck of the Spectral SEEDS algorithm is computing the spectral re-
laxation, Y, of Step 1. The spectral relaxation in SC is usually obtained from
the Laplacian matrix built from all the pixels of the image, which increases
quadratically with the number of pixels, and computing the eigenvalues of this
matrix may be very computationally expensive. In the following, we focus
on speeding-up this step of the algorithm, and reduce it to negligible cost. In
Subsection 3.4.3 we introduce a learning for the spectral embedding to fix it to
constant values, and in Subsection 3.4.4 how to make more efficient the simi-
larity computation in the spectral embedding using Sparse Quantization. The
computation of Y could be done by other clustering techniques different from
SC as well, but the optimisations that we present in the following are particular
for SC.

Note that Steps 2 and 3 of the Spectral SEEDS algorithm are the same as in
the original SEEDS algorithm. The assignment to obtain the unconstrained
rounding, U, is a trivial computation that involves the selection of the the max-
imum value for each column vector of Y, which has negligible cost. The hill-
climbing optimization is very efficient to compute, as reported in SEEDS [Van den
Bergh et al., 2012], and in the experiments section.

3.4.3 Learning the Spectral Embedding

We now introduce a method for learning the spectral embedding, Y, using the
primal form of SC. This yields significant computational savings. In the fol-
lowing, we first introduce the primal form of SC for Spectral SEEDS, and then
show how to reuse the same parameters for all images, and avoid computing
them for each new image.

Primal Form of the Spectral Embedding

Computing the spectral relaxation, Y, for superpixel extraction, may be pro-
hibitive when the number of pixels is large. This is because Y are the eigen-
values of the Laplacian matrix, which increases quadratically with the number
of pixels. A way around the Laplacian matrix is the primal form of SC, whose
formulation does not depend on the Laplacian matrix. Recall that the variables
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to optimize in the primal form of SC, S, are the hyperplanes that separate the
clusters (see Subsection 3.4.1). The amount of variables to optimize is the
number of clusters times the length of the pixel descriptor. Note that this is
orders of magnitude smaller than in the original form of SC, which are the
number of pixels times the number of clusters.

Another advantage of using the primal form of SC instead of the original form
of SC, is that S can be easily computed from a subset of pixels of the image.
Note that in the primal of SC, the spectral embedding, Y, is obtained by pro-
jecting all descriptors of the pixels, v

i

, to S, i.e. Y = V

t

S. In the original
form of SC, computing Y using a subset of pixels is not straightforward, be-
cause in the original form of SC Y is directly obtained for all pixels. In an
image, the colors and textures are highly redundant, and hence, it is reasonable
to expect that a subset of pixels is representative enough to compute S for all
image.

Learning the Parameters of the Spectral Embedding

To further speed-up the computation of Y, we learn a fixed set of parameters S
for all images, and avoid recomputing them for every image. We compute S a
priori from a collection of pixel descriptors, {v

i

}
N

, randomly extracted from
a training set of images. Then, these parameters S can be used for any image
since they are calculated from a set of representative pixels. In the experiments
we show that this approach achieves similar accuracy than adapting S to each
new image.

To learn S for all images, we optimize S with the original form of SC, rather
than in the primal. This is because we found that it is enough to randomly
select about 5000 pixels among all images, which makes the computation in
the original form of SC feasible. Note that in this case is more adequate the
original form of SC, because only 5000 pixels are involved, while SC for one
image involves hundreds of thousands. Thus, we learn the primal parameters
of SC by first calculating the Laplacian matrix from the randomly selected
pixels from a training set of images. For computing the Laplacian we use the
weights ~

⇧ = D, see Equation (3.9), which is common in the literature for
image region extraction, e.g. [Malik et al., 2001]. We calculate Y from the
Laplacian, and we obtain S using its relation to Y, i.e. S = (V

t

)

+
Y, where

V is a matrix which columns correspond to the randomly selected pixels, and
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Figure 3.9: Learned patterns for Spectral SEEDS. First 50 filters with highest
corresponding eigenvalues.

+ is the Moore-Penrose operator [Rahimi & Recht, 2004; Zhang & Jordan,
2008].

Note that we can choose the number of column vectors in S, which corresponds
to B (number of histogram bins in SEEDS), and we analyze its value in the
experiments section. In Figure 3.9, we show 50 vectors from {s

j

}
B

with the
highest corresponding eigenvalues from SC, learned from the training set of
BSD Dataset. We can see that {s

j

}
B

resemble color filters of 3 ⇥ 3 pixels.
From now on we refer to {s

j

}
B

as filters.

To calculate Y for a new image, we simply project the pixel descriptors of the
new image to the learned filters, i.e. y

ij

= v

t

i

s

j

, or equivalently Y = V

t

S.
The resulting Y is highly sparse, because S has been learned in general for any
image. Observe that the bottleneck of the algorithm becomes the projection of
the pixels to the primal parameters of the SC, S. In the next Subsection, we
introduce a method to make the projection more efficient.

3.4.4 Fast Embedding with Sparse Quantization

In the previous Subsection, we showed that Y can be computed by Y = V

t

S,
where S has been learned from all the dataset. Although this significantly
reduces the computational cost of SC, computing the similarities between the
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Figure 3.10: Learned patterns for Spectral SEEDS with SQ. First 50 filters
with highest corresponding eigenvalues of figure 3.9 quantised with SQ in B27

4 .

pixel descriptors and the leaned filters, Vt

S, has a higher computational cost
than computing similarities when using a color histogram. We propose to use
Sparse Quantization (SQ) to binarize the descriptors and the filters, and use
fast binary similarity computations. SQ is a quantization to the set of k-sparse
vectors. SQ is fast to compute, does not increase the dimensionality, and results
in binary representations that allow for fast computations of similarities. We
refer to Section 4.2 for a detailed explanation of SQ.

Sparse Quantization for Efficient Computation of Vt

S

Let Bm

k

= {0, 1}m
k

be the space of binary k-sparse vectors, with k ones and
(m � k) zeros. Bm

k

is composed of a finite amount of elements, in particular,
its cardinality is |Bm

k

| =
�
m

k

�
. Recall that {s

j

}
B

is the set of column vectors of
S which have the same length as the pixel descriptors. We apply binary SQ to
both the 3⇥ 3 patches, {v

i

}
N

, and the learned filters, {s
j

}
B

, in order to speed
up the calculation of the similarity measure. Thus, instead of computing v

t

i

s

j

,
we use the binary SQ version of v

i

and s

j

, and exploit fast binary similarities.
Recall that the length of the pixel descriptor vectors is 27. In the results, we
found by cross-validation that SQ to the set of 4-sparse binary vectors, yields
comparable performance as using the non-quantized version of the filters. In
Figure 3.10, we show the SQ version of the learned filters showed in Figure 3.9.
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The set of 4-sparse binary vectors is of relatively small cardinality, i.e. |B27
4 | =�27

4

�
= 17550. In order to compute vt

i

s

j

, we can store a look-up table in mem-
ory for the

�27
4

�
possible quantizations of v

i

. The look-up table, can relate the
quantized v

i

with y

i

for each learned s

j

. To further speed-up the pipeline, note
that we can directly relate v

i

to u

i

(Step 2 in the Spectral SEEDS algorithm in
Section 3.4), instead of first relating v

i

to y

i

and then computing u

i

.

In practice, the look-up table with input the SQ of v
i

and output which entry of
the vectors u

i

is activated, can be implemented with a list of arrays of pointers.
The first array of pointers is of length equal to the feature length, 27, and each
of the position of the array represents the index of the first feature dimension
activated in the binary vector. Each position of the first array points to another
array of again dimension 27, which represents the second dimension of the
binary vector, and so on. For a set of binary vectors in B27

4 , there are 3 layers
of stack arrays of pointers, as described, and the fourth layer of arrays contains
the value of the maximum of y

i

, i.e. the activated entry of u
i

. Note that there is
no need to fill all the arrays. For instance, if the index selected in the previous
array was the position 10, the following indexes can only be between the 11

and 27. This allows for great savings of memory, since rather than having a
table of 274 we have

�27
4

�
.

In summary, the calculation of the Vt

S can be avoided as well as Step 2 of the
Spectral SEEDS algorithm by using a look-up table. This has a computational
cost of a selection of the 4 higher elements in v

i

, and one memory access to
the look-up table, which is faster than the Lab color conversion, as we show
in the results. In Algorithm 4 we show the learning of Spectral SEEDS, and
in Algorithm 5 the testing. In Figure 3.11, we show the results of convolving
the image with some of the filters, {s

j

}
B

, with and without using SQ. Finally,
in Figure 3.12, we show the differences of {u

i

}
N

with and without SQ, using
the same filters as in Figure 3.11. We can see that when using SQ, more de-
tails of the image are thrown away due to the quantization effects, and region
extraction may even benefit from that.

3.5 Experiments

In this Section, we report results of SEEDS and Spectral SEEDS algorithms
on the BSD500 [Martin et al., 2001] dataset. The BSD500 dataset consist
on 481 ⇥ 321 images, and it is divided into 3 splits, in which there are 200
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Algorithm 4: Learning Spectral SEEDS
Input: {v

i

}
N

from all train. set
Output: ˆS, Look-up tables
1. Spectral Relaxation:
L Laplacian from {v

i

}
N

{y
i

}
N

 Eigenvectors of L
2. Filters:
S = (V

t

)

+
Y

3. emphSQ of filters:
ˆ

S SQ of {s
j

}
B

Prepare Look-up tables from ˆ

S

Algorithm 5: Testing Spectral SEEDS
Input: {v

i

}
N

, K
Output: p 2 P
1. SQ of pixel descriptors:
{ˆv

i

}
N

 SQ of {v
i

}
N

2. Assignment:
u
ij

 Look-up table (

ˆ

v

i

,ˆs
j

) 8i, j
3.Hill-climbing:
p optimize Equation (3.12)

images for training, 100 for validation, and 200 for testing. After describing
the evaluation metrics, we first evaluate the parameters of Spectral SEEDS, and
then we compare it to state-of-the-art superpixel algorithms.

3.5.1 Evaluation Metrics

We compute the standard metrics used to evaluate the performance of super-
pixel algorithms. These are the Undersegmentation Error (UE), the Boundary
Recall (BR) and the Achievable Segmentation Accuracy (ASA).



50 3. EFFICIENT IMAGE OVER-SEGMENTATION

(a) (b) (c)

Figure 3.11: Spectral SEEDS. (a) Original image. (b) Response to a learned
filter. A different filter is used for each image. (c) is analogous to (b), but using
SQ.

Undersegmentation Error (UE) measures that a superpixel should not over-
lap more than one object. The standard formulation is

UE(p) =

P
i

P
k:pk\gi 6=; |sk � g

i

|
P

i

|g
i

| , (3.13)

where g
i

are the ground truth segments, p
k

the output segments of the algo-
rithm, and |a| indicates the size of the segment. The borders of s

k

are removed
from the labeling before computing the UE.
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(a) (b) (c)

Figure 3.12: Spectral SEEDS. (a) Original image. (b) Unconstrained rounding
from the response to a learned filter. The filters are the same used in Fig. 3.11.
The colors (randomly selected) represent a different dominant filter. (c) is anal-
ogous to (b), but using SQ.

Boundary Recall (BR) evaluates the percentage of borders from the groundtruth
that coincide with the borders of the superpixels. It is formulated as

BR(p) =

P
i2B(g) I[min

j2B(p)ki� jk < ✏]

|B(g)| , (3.14)

where B(g) and B(p) are the union sets of superpixel boundaries of the groundtruth
and the computed superpixels, respectively. The function I[.], is an indicator
function that returns 1 if a boundary pixel of the output superpixel is within
✏ pixels of tolerance of the groundtruth boundaries. We set ✏ = 2, as in [Liu
et al., 2011b; Van den Bergh et al., 2012].
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Achievable Segmentation Accuracy (ASA) is an upper bound measure. It
gives the maximum performance when taking superpixels as units for object
segmentation, and is computed as

ASA(p) =

P
k

max

i

|p
k

\ g
i

|P
i

|g
i

| , (3.15)

where the superpixels are labeled with the label of the groundtruth segment
which has the largest overlap.

3.5.2 Number of filters

We report results of Spectral SEEDS learning the filters in the training set,
with and without SQ (denoted in the plots as Learned filters and Learned filters
+ SQ, respectively). We learn the filters by randomly selecting 5000 pixels
from all images. We also tried selecting more pixels, but we did not observe
a significant improvement in the performance. We compare this to Spectral
SEEDS computing the filters at each new image from a subset of 1000 pixels
of the image (denoted as Adaptative filters), and to SEEDS using Lab color
space (denoted as Lab space (SEEDS)). In all cases, the parameters of the hill-
climbing optimization are the same.

In Figure 3.13, we show the performance, on the validation set of BSD500, of
Spectral SEEDS for different number of filters, when using 400 superpixels,
200, 100 and 50 superpixels, respectively. Note that when using SQ, we need
less filters than without for having the same accuracy. This is because one
filter with SQ may capture the effect of multiple filters without SQ, due to the
coarsening effect of SQ. Also, observe that the adapted set needs less filters to
achieve the same performance as the learned set of filters. This is in accordance
with what we observe when using the learned filters, that only a small subset of
them are activated for the same image. Finally, note that with Spectral SEEDS,
there is no need of color space conversions, but it achieves similar levels of
performance as SEEDS with the Lab color space.

3.5.3 Computational Cost

We use one 2.8 GHz i7 CPU. In SEEDS, conversion to Lab space takes around
0.06 seconds, which is approximately the same as the cost of extracting the
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Figure 3.13: Results on BSD500 Dataset in the validation set. We compare
Spectral SEEDS with and without SQ, and learning the filters. Also, we com-
pare it with normal SEEDS. (a) Undersegmentation error, (b) Boundary Recall,
(d) Achievable segmentation.
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Figure 3.14: Results on BSD500 Dataset in the testing set. We compare Spec-
tral SEEDS with and without SQ, and learning the patterns. Also, we compare
it with normal SEEDS, for different number of superpixels. (a) Undersegmen-
tation error ( the lower the better), (b) Boundary Recall ( the higher the better),
(d) Achievable segmentation ( the higher the better).
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Figure 3.15: Results on BSD500 Dataset. We compare Spectral SEEDS with
and without SQ, and learning the patterns to state-of-the-art methods for dif-
ferent number of superpixels. We compare it to normal SEEDS Van den
Bergh et al. [2012], Felzenszwalb and Huttenlocher (FH) Felzenszwalb &
Huttenlocher [2004], Entropy Rate Superpixels (ERS) Liu et al. [2011b] and
SLIC Achanta et al. [2012]. (a) Undersegmentation error, (b) Boundary Recall,
(d) Achievable segmentation. Better seen in color.

superpixels with the parameters that report state-of-the-art results. In Spectral
SEEDS with SQ, there is no color conversion, and Step 1 and 2 are imple-
mented with the look-up table take less than 0.01 sec per image. Since the
number of filters is the same as in SEEDS, Step 3 has the same computational
cost.
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Figure 3.16: Example SEEDS segmentations with 200 superpixels. The
ground-truth segments are color coded and blended on the images. The su-
perpixel boundaries are shown in white.

3.5.4 Comparison to state-of-the-art

In Figure 3.14 we report results on the testing set for different number of super-
pixels. We compare Spectral SEEDS with 500 learned filters, Spectral SEEDS
with SQ with 64 filters, spectral SEEDS with 200 adapted filters for each im-
age and SEEDS with Lab space and a color histogram of length 125. Spectral
SEEDS with SQ with 64 filters achieves state-of-the-art performance, a bit bet-
ter than SEEDS, with half of the computational cost. Spectral SEEDS with 500

learned filters performs better than SEEDS (at the expense of higher computa-
tional cost).

In Figure 3.15 we compare our methods to state-of-the-art superpixels meth-
ods, namely Felzenszwalb & Huttenlocher [2004], Entropy Rate Superpixels
(ERS) [Liu et al., 2011b] and SLIC [Achanta et al., 2012]. Spectral SEEDS
with SQ with 64 filters achieves state-of-the-art performance with half of the
computational cost of the original SEEDS. Spectral SEEDS with 500 learned
filters performs better than SEEDS (at the expense of higher computational
cost). Finally, in Figures3.16 and 3.17 we show some examples of superpixels
extracted with SEEDS using Lab color space and Spectral SEEDS, respec-
tively. Note that the boundaries are shaky, because we do not use any boundary
term in SEEDS, but we could include it as in [Van den Bergh et al., 2012] (for
fair comparison, all SEEDS evaluated in this work have not used the boundary
term).

3.6 Conclusion

We presented a superpixel algorithm based on SC and SEEDS superpixels, that
can work on still images and also can take into account the spatio-temporal
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Figure 3.17: Examples of Spectral SEEDS with 200 superpixels. The bound-
aries are in red.

imformation on videos. Our algorithm is able to use color and texture filters,
more complex than the color bins of the histogram used in the original SEEDS.
We presented a method to speed-up the spectral embedding of the algorithm
by using the primal form of SC, and by learning the pixel descriptors from a
training set. To further speed-up our superpixel algorithm, we also introduced
the use of sparse quantization. Our algorithm achieves state-of-the-art results
and runs in real-time in a single CPU. Differents cues from color and texture
could be used, and we plan to incorporate depth in future work.



4
Efficient Feature Extraction with an
Efficient Feature Coding

4.1 Introduction

Recent research has led to important progress in visual object recognition and
classification. Many state-of-the-art object recognition schemes consist of a
feed-forward architecture, usually divided into feature extraction, feature en-
coding, spatial pooling, and a classifier [Boiman et al., 2008; Boureau et al.,
2010a; Chatfield et al., 2011]. Recently, sophisticated encoding and pooling
schemes have allowed for learning the different blocks in the pipeline [Zeiler
et al., 2011; Yu et al., 2011].

Feature encoding is one of the most intriguing blocks in a feed-forward archi-
tecture. Encoding aims at partitioning the feature descriptor space into infor-
mative regions, in order to both generalize towards intra-class variances and
discriminate between different categories. Many authors pointed out the sig-
nificant influence feature encoding has on object recognition performance, and
stressed the need for encodings with better generalization properties [Liu et al.,
2011a; Coates & Ng, 2011]. The trend has been to introduce refined encodings
that certainly generalize better and thus achieve higher levels of performance,
but that come at the cost of increasing computational complexity. Indeed, fea-
ture encoding can be orders of magnitude more demanding than feature extrac-
tion and pooling, and it can become the bottleneck of the whole pipeline. For
real-time and large scale applications, it is therefore crucial to design efficient
feature encoding methods.

In the literature, one finds a plethora of feature encoding techniques. One of
the most popular is assignment-based coding (AC). AC encodes a feature by
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assigning it to one or more codebook entries. When combined with average
pooling, this corresponds to Bag-of-Words (BoW) [Csurka et al., 2004; Sivic
& Zisserman, 2003]. Although simple in principle, it can be computationally
demanding, since it requires the calculation of distances between the descrip-
tors and the codebook entries. In particular, its computational cost increases
with the size of the codebook and the number of patches [Nowak et al., 2006].
Therefore, several methods were devised to speed up the BoW approach, e.g.
[Nister & Stewenius, 2006; Philbin et al., 2008; Moosmann et al., 2007].

Sparse Coding has emerged as a powerful alternative to AC, showing better
results than AC, especially, when combined with max-pooling [Boureau et al.,
2010a,b; Yang et al., 2009; Benoit et al., 2011]. In terms of efficiency, however,
Sparse Coding optimizes a convex problem of the size of the codebook length,
which makes it comparably slow. Locality-constrained Linear Coding (LLC)
by Wang et al. [2010] is an approximation of Sparse Coding, which speeds
it up without a significant loss in performance. The current state-of-the-art in
visual classification makes use of super-vector coding [Zhou et al., 2010] and
Fisher encoding [Perronin et al., 2010], cf. [Chatfield et al., 2011]. Yet, both
methods are memory-demanding. Using compression methods, e.g. [Perronin
et al., 2010], the Fisher kernel can be made tractable for large-scale applica-
tions, but the need for decompression before classification reduces the effi-
ciency again.

In this work, we focus on AC because it is a promising compromise in terms
of speed and performance [Liu et al., 2011a]. We introduce a new formulation
for AC, and from that, we design a new efficient feature encoding scheme. At
the heart of our formulation lies a quantization into a set of k-sparse vectors,
which we denote as sparse quantization. It offers a novel viewpoint of AC,
which, although algorithmically equivalent to AC, it allows for the unification
of AC and sparse coding. In fact, our formulation allows for the design of a
new efficient encoding. We coin it ‘Nested Sparse Quantization’ (NSQ), which
consists of two feature encodings, in a nested architecture. We first encode the
features, and the result is then fed to another feature encoder. Both encoders
follow the novel formulation of AC. The first one is instantiated in a way that
it is very fast to execute, and since it is build from a hard assignment encoder,
it yields a binary vector. The second encoder is fed with this binary vector and
thus also becomes very efficient to compute.

In the experimental part, we compare NSQ to state-of-the-art methods for ob-
ject recognition. As we show on various datasets, i.e. Caltech 101, PASCAL
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VOC 07 and ImageNet, our method demands orders of magnitude less time and
memory than those previous approaches, while achieving competitive levels of
performance. For instance, it is able to encode one million images in less than
24 hours using one laptop of 4 CPUs and 6GB of disk. We also report the accu-
racy performance in a standard semantic segmentation benchmark, MSRC-21,
and we observe the same conclusions.

4.2 Sparse Quantization

In this Section, we introduce the mathematical tools that we use, i.e. quantization,
sparsity and sparse quantization.

4.2.1 Quantization

Let x 2 Rq be a vector, and B 2 Rq⇥m the so called codebook matrix with m
entries b

i

2 Rq , i.e. B = [b1 . . .bm

].

Definition 1. Quantization is a mapping of a vector x into its closest vector of
the codebook {b

i

|i = 1, . . . ,m}, which we denote as ˆx?

= argmin

x̂2{bi} kˆx�
xk2.

The purpose of quantization is to reduce the cardinality of the representation
space. x has an infinite set of possible values, and when mapped to the code-
book, it is restricted to a finite set of possible vectors. In general, the cost of
computing a quantization is O(m|), where | represents the cost of computing
a single distance. In practice, the most common used is the squared Euclidean
distance, which is expensive since it implies 2q float operations, and yields a
total cost of O(mq).

4.2.2 Sparsity

A vector ↵ is k-sparse when it has at most k non-zero entries, i.e. kxk0  k.
Let Rm

k

be the space of k-sparse vectors in Rm, which is Rm

k

= {↵ 2 Rm

:

k↵k0  k}. Sparsity is a highly non-linear model [DeVore, 1998]. Observe
that the the sum of two k-sparse vectors does not necessarily result in another k-
sparse vector, since their non-zero entries might not coincide. Thus, the result
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( 1 0 1 )

( 0 1 1 )

( 1 1 0 )

Figure 4.1: Representation of B3
2 (left) and R3

2 (right) space with the input
vector x in green, and the codification error vector (ˆx� x) in red.

is no longer in Rm

k

. We also introduce the subset of binary vectors in Rm

k

,
which is the set of vectors with k ones and (m� k) zeros. Let {0, 1}m

k

= Bm

k

be the space of binary k-sparse vectors, Bm

k

= {↵ 2 Bm

: k↵k0 = k}, where
Bm

k

is a subset of Rm

k

, i.e. Bm

k

⇢ Rm

k

, and it is composed of a finite amount of
elements, in particular, its cardinality is |Bm

k

| =
�
m

k

�
.

4.2.3 Sparse Quantization

We consider the particular case of the quantization when the codebook is the
set of k-sparse vectors.

Definition 2. Sparse Quantization is a quantization into the codebook B =

Rq

k

.

The formulation for the Sparse Quantization of x 2 Rq is

ˆ

x

?

= arg min

x̂2Rq
k

kˆx� xk2. (4.1)

In the following, we assume that x 2 Rq

+ and that x is normalized. For brevity,
we use the term Sparse Quantization (SQ), but to be more precise, it should be
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called quantization into the codebook Rq

k

. Interestingly, Sparse Quantization
can be done in a more efficient way than a quantization into an arbitrary code-
book. In the following propositions, we show that SQ can be achieved with a
sorting algorithm, and it does not require the computation of the distances to
the codebook entries. The first proposition shows the case for the codebook Bq

k

,
which is what we use in our approach. The second proposition is the deriva-
tion for Sparse Quantization in the case where the codebook is the set Rq

k

. We
assume that x 2 Rq

+, and that x is normalized to 1. In all cases where we use
the propositions this is true.

Proposition 1. Let ˆx?

= argmin

x̂2Bq
k
kˆx � xk2 be the quantization into Bq

k

of x 2 Rq

+, kxk22 = 1. We can obtain ˆ

x

? by

x̂?

i

=

⇢
1 if i 2 k-Highest(x)
0 otherwise

, (4.2)

where k-Highest(x) is the set of dimensions indices that indicate which are the
k highest values in the vector x.

Proof. We first rewrite ||ˆx � x||2 as
P

i

(x̂
i

� x
i

)

2. Since ˆ

x 2 Bm

k

has k
elements set to 1 and (m� k) set to 0, we can write the above summation as

X

i

(x̂
i

� x
i

)

2
=

X

i:x̂i=1

(1� x
i

)

2
+

X

i:x̂i=0

(x
i

)

2. (4.3)

We sort in descending order the set of values at each dimension of x, i.e. we
sort {x

i

}, and we use a new indexing in this ordered set. We indicate so by
using x

0, and we index it with s instead of i, such that x0
(s�1) > x0

s

. To see
when Equation (4.3) is minimum, note that

(x0
1)

2 > . . . > (x0
(s�1))

2 > (x0
s

)

2 > . . . (4.4)

(1� x0
1)

2 < . . . < (1� x0
(s�1))

2 < (1� x0
s

)

2 < . . . , (4.5)

where (4.5) is due to the assumption kxk2 = 1. Therefore, to make both terms
in (4.3) minimum, we set the k ones in ˆ

x such that (1 � x0
s

)

2 in (4.5) are
minimum, and we set (m�k) zeros in ˆ

x such that (x0
s

)

2 in (4.4) are minimum.
Thus, we set the k ones in the k highest values, and 0 to the other (m � k)
values, which is what the Proposition says.
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Proposition 2. Let ˆx? be x 2 Rq

+ quantized into Rq

k

, i.e. ˆx?

= argmin

x̂2Rq
k
kˆx�

xk2. We can obtain ˆ

x

? by setting to the x
i

value the k highest dimensions in x,
and 0 otherwise, i.e.

x̂?

i

=

⇢
x
i

if i 2 k-Highest(x)
0 otherwise

, (4.6)

where k-Highest(x) is the set of dimensions indices that indicate which are the
k highest values in the vector x.

Proof. We can proceed as in the proof of Proposition 1, but instead, ˆx? is in
the set Rm

k

. The minimum of
P

i

(x̂
i

�x
i

)

2 is achieved when i : x̂
i

= 0 selects
the lowest x

i

. Thus,
X

i

(x̂
i

� x
i

)

2
=

X

i:x̂i 6=0

(x
i

� x
i

)

2
+

X

i:x̂i=0

(x
i

)

2
=

X

i:x̂i=0

(x
i

)

2. (4.7)

This is the same as selecting the k highest elements of x, and setting x̂
i

= x
i

,
and 0 otherwise.

Proposition 1 and Proposition 2 show that the Sparse Quantization can be done
with a sorting algorithm of the set {x

i

}, and selecting the k highest values. It
has a computational cost of O(q), in contrast to a general quantization, which
has a cost of O(mq), where in practice m � q. In Figure 4.1, we show an
example of Sparse Quantization in B3

2 and in R3
2. We plot an input vector x in

green, and the quantization error in red. Also, we show all
�3
2

�
= 3 possible

vectors for B3
2.

4.3 A New Formulation of Assignment-based Coding

In this Section, we introduce a new framework for Assignment-based Coding
(AC), which is based on the principles of Sparse Quantization. Additionally,
we show the relation to Sparse Coding.

4.3.1 Assignment-based Coding Revisited

We first review AC and its main variants and identify some common terminol-
ogy in the literature. This will serve as the basis for our new formulation that
we introduce in the subsequent Section.
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Let x 2 Rq

+ be the vector of a patch descriptor, which has been normalized,
and B 2 Rq⇥m the codebook matrix with m entries b

i

2 Rq . AC aims at
encoding x by selecting the codebook entries b

i

with minimum distance to x.
Such codebook entries are called the k-Nearest Neighbors (k-NN) of x. k is
the number of selected codebook entries, and it is a predefined constant.

Vector quantization (VQ) is the simplest AC method. It only selects a single
codebook entry, which is the closest to x, with the so called 1-NN. It is in fact a
quantization, since it maps x into a codebook entry. Let ↵ 2 Rm be the vector
that encodes the assignment. In VQ, ↵

i

is set to 1 when it is the element of the
codebook that is used to quantize x, and the rest is set to 0.

VQ has been extended to the popular Hard-Assignment (HA), which assigns
more than one codebook entry to x, e.g. [Philbin et al., 2008]. In this case,
there are 1s placed in the elements of ↵ that correspond to the k-NN codebook
entries, i.e.

↵
i

=

⇢
1 if i 2 k-NN(x,B)

0 otherwise . (4.8)

k-NN(x,B) is the set that indicates which k codebook entries are closest to
x. According to Definition 1, HA is not a quantization anymore but an as-
signment, because more than one vector of the codebook is assigned to x. In
the case of quantization, x is always represented with only a single codebook
vector.

In HA, ↵ results in a binary vector with k ones and (m � k) zeros. Thus, the
↵’s obtained are k-sparse vectors, which are in Bm

k

. In particular, ↵ is in Bm

k

when using HA, and in Bm

1 for VQ.

There exists also the soft version of HA, denoted as Soft-Assignment (SA) [Liu
et al., 2011a]. In the work by Liu et al. [2011a], ↵ is normalized such that
k↵k22 = 1. We assume that the normalization of ↵ is done in the pooling
stage, for the sake of simplicity in the codification. Also, we refer to SA for
what [Liu et al., 2011a] calls localized SA. In this case, instead of indicating the
k-NN with 1s, ↵ contains some notion of the relative distance to the selected
codebook entries, and becomes

↵
i

=

⇢
exp(��d(x,b

i

)) if i 2 k-NN(x,B)

0 otherwise . (4.9)
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d(x,y) is a given distance function, � a learned constant, and d(x,b
i

) is the
distance between x and b

i

. Thus, SA codifies a patch descriptor x with a
k-sparse ↵ in Rm

k

. Note that when � = 0 we recover HA, and ↵ 2 Bm

k

.

AC and other codings are usually the computational bottleneck of the patch-
based image classification, cf. [Chatfield et al., 2011]. Typically, the cost of
coding scales with the number of visual words, the number of patch descriptors
and the dimensionality of these descriptors. This can make the coding an order
of magnitude slower than the patch description. The reason is mainly because
the encoding requires computing the distances between the patch descriptor
and all the codebook entries.

In the following, we introduce a new formulation for AC, that also leads up to
a very efficient quantization scheme.

4.3.2 AC as a Sparse Quantization

We now introduce a new view of AC based on a non-linear mapping of x,
which we denote as � : Rq ! Rm.

Definition 3. Let �(x) be the following mapping:

�(x) =
1

Z
[exp(��d(x,b1)) . . . exp(��d(x,b

m

))], (4.10)

where � is a learned constant and d(a, b) a given distance. Z normalizes the
vector, and {b} parametrize the mapping.

Observe that in AC, B denotes the codebook matrix, but in our new formulation
it is used to parametrize the mapping �(x). In the following proposition, we
rewrite HA as a Sparse Quantization of �(x) (Section 4.2.3). Then, we show
this fact for SA.

Proposition 3. Let ↵? 2 Bm

k

be the result of Hard Assignment in Equa-
tion (4.8). Then, the same ↵? can be obtained through the following Sparse
Quantization of �(x):

↵?

= arg min

↵2Bm
k

||↵� �(x)||22. (4.11)
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Sketch of the Proof. We apply Proposition 1 to Equation (4.11), and we obtain
that

↵?

i

=

⇢
1 if i 2 k-Highest(�(x))
0 otherwise . (4.12)

Finally, note that k-Highest(�(x)) is equivalent to k-NN(x,B), and we recover
the HA formulation.

Proposition 3 shows that HA is a Sparse Quantization of �(x) into the code-
book Bm

k

. HA is formulated as a non-linear transformation �(x), which uses
B, and then the resulting vector is quantized into Bm

k

. This is in contrast to
how HA has been usually interpreted. Previous HA formulations used ↵ in
order to indicate to which codebook entries x is assigned. Both formulations
obtain the same coding results, and have the same computational complexity.

We now rewrite SA [Liu et al., 2011a] as a Sparse Quantization of �(x) in Rq

k

.
Recall that we consider that it is the pooling stage that normalizes ↵.

Proposition 4. Let ↵? 2 Rm

k

be the result of Soft-Assignment of x to the
codebook B, as in Equation (4.9). Then, ↵? can also be obtained through the
following Sparse Quantization of �(x):

↵?

= arg min

↵2Rm
k

||↵� �(x)||2. (4.13)

Sketch of the Proof. We apply Proposition 2 to Equation (4.13), and we obtain
that

↵?

i

=

⇢
�
i

(x) if i 2 k-Highest(�(x))
0 otherwise . (4.14)

Finally, note that k-Highest(�(x)) is equivalent to k-NN(x,B), and together
with Definition 3, we recover the SA formulation of Equation (4.9).

This shows that SA can also be seen as a quantization. That is, SA is equivalent
to quantizing �(x) into Rm

k

by selecting the vector in Rm

k

closer to �(x).

In the following, we make use of the re-interpretation of HA and SA, and we
show that Proposition 3 and Proposition 4 are able to fuse Assignment-based
Coding and Sparse Coding into a single formulation. Also, we show that we
can use the new formulation to design a very efficient codification.
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4.3.3 A Formulation for Sparse Coding and AC

When considering AC as a Sparse Quantization, we can analyze its relation to
Sparse Coding. Sparse Coding is the following coding scheme [Olshausen &
Field, 1997]:

↵?

= arg min

↵2Rm
k

||C↵� x||22, (4.15)

where C 2 Rq⇥m is the codebook used in Sparse Coding. It is usually relaxed
in the following way

↵?

= arg min

↵2Rm
||C↵� x||22 + �k↵k1, (4.16)

where �k↵k1 is the convex sparsity regularization term of ↵ 2 Rm

k

, and it
can be tuned to enforce different degrees of sparsity. Note that in [Yang et al.,
2009] it was already shown that Sparse Coding can be seen as an extension of
VQ; however, their formulation does not extend to AC in general.

The general formulation for Sparse Coding and Assignment-based Codings is:

↵?

= arg min

↵2Rm
k

||C↵� �(x)||22, (4.17)

where �(x) represents a mapping from the original q-dimensional vector x to
a space with a possibly different dimension, such as m in the earlier definition.
We now recover Sparse Coding by just setting �(x) = x, and we recover AC
by setting C to be the identity matrix I

m⇥m.

4.4 Nested Sparse Quantization

In this Section, we introduce an efficient encoding built upon the new formu-
lation of HA in Proposition 3. It consists of two Sparse Quantizations placed
in a nested architecture, coined Nested Sparse Quantization (NSQ). We define
NSQ as the following optimization problem:

↵ = arg min

↵2Bm
k

k↵� �(ˆx)k2, (4.18)

where ˆ

x = arg min

x̂2Bm0
k0

kˆx� ✓(x)k2, (4.19)
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where Equation (4.18) is the outer Sparse Quantization and Equation (4.19)
is the inner Sparse Quantization, respectively. The parameters in the inner
quantization are m0, k0 and the mapping ✓(x), and they are not necessarily the
same as in the outer quantization. The inner quantization results in the binary
ˆ

x, as a result of the Sparse Quantization into Bm

k

. The mapping in the inner
quantization ✓(x) has the real-valued x as input, whereas the outer mapping
�(ˆx) gets the vector ˆx 2 Bm

0

k

0 as input, which is a binary vector.

4.4.1 Implementation Advantages

Observe that the input to the outer quantization has a finite amount of possi-
ble values, because it receives one of the entries of the inner codebook. This
allows to use a look up table for the outer quantization, by memorizing the
quantization of all entries of the inner codebook. However, in practice, the
cardinality of the inner codebook is huge. In NSQ, the outer quantization is a
mapping from a set of

�
m

0

k

0

�
elements to

�
m

k

�
possible outputs, where in practice�

m

0

k

0

�
�
�
m

k

�
, and they are too high to be memorized in a look up table.

Indeed, the advantage of NSQ results from an appropriately chosen nesting of
two different quantizations. The inner quantization turns real-valued vectors
x into one of the

�
m

0

k

0

�
possible binary vectors ˆ

x, and the non-linear mapping
should be simple not to overload the system. The outer quantization starts from
a vector in the set Bm

0

k

0 , which are binary vectors, and can therefore be used to
very efficiently deploy a more complex mapping �(ˆx).

Inner Quantization

For the inner quantization, we use the most efficient and simplistic mapping
possible, which is ✓(x) = x; that is, the mapping ✓(x) does not apply any
transformation on x. Thus, the inner quantization in Equation (4.19) directly
quantizes the input x into the k0-sparse codebook for that step, without any
previous non-linear mapping. It becomes

ˆ

x = arg min

x̂2Bq
k0

kˆx� xk2, (4.20)

where m0 is equal to q, and k0 is the only parameter to be set. As stated
in Proposition 1, optimizing this problem is equivalent to computing the k0-
Highest values in {x

i

}. This implies selecting the k0 elements of x with the
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Algorithm 6: Nested Sparse Quantization

Input: x 2 Rq

+, ˆB 2 Bq⇥m

k

0

Output: ↵
ˆ

x Set k0 highest values of x to 1 and the rest to 0
foreach i = {1, . . . ,m} do

�
i

(

ˆ

x) =

P
q

j=1(x̂j

� ˆb
ij

)

end
↵ Set k highest values of �(ˆx) to 1 and the rest to 0

highest values, which has a computational cost of O(q). One could investigate
alternatives to ✓(x) = x to improve on the classification results, but this would
reduce the speed again and is therefore not studied.

Outer Quantization

The outer quantization now gets the binary output of the inner quantization
as its input, which is a vector in Bm

0

k

0 . The use of binary vectors allows to
reduce the complexity by using fast bit-wise comparisons, which most mod-
ern CPUs handle with dedicated instructions [Shakhnarovich, 2005; Calonder
et al., 2010]. Thus, we can afford applying a more sophisticated mapping �.
Recall that the computational cost of such �(ˆx) still is O(m|), with | the cost
of computing the distance. We can reduce the cost | by the very fact that ˆx
is binary. Thus, the mapping is the same as in Equation (4.10) but changing
the distance function to a Hamming distance, ˆd(ˆx, ˆb

i

). Recall that the ˆ

b

i

are
parameters used in the definition of the non-linear mapping, and do not cor-
respond neither to the codebook vectors of the inner quantization nor to the
codebook vectors of the outer quantization. In our case, these are obtained by
piping a total of m vectors b

i

through the inner quantization, thus yielding
those ˆ

b

i

.

Next, the mapping �(ˆx) can be further simplified by dropping the exponen-
tial functions, given the equivalence of argmin↵ with the mapping �(ˆx) =

1
Z

[

˜d(ˆx, ˆb1) . . . ˜d(ˆx, ˆb
m

)]. Now, suppose we take ˜d(ˆx, ˆb
i

) =

P
q

j=1(x̂j

�ˆb
ij

),
where� is the negation of the exclusive OR operator (nxor). It returns 1 if both
elements are equal, and 0 otherwise. This is again very efficient to compute.
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In Algorithm 6 we depict the implementation of NSQ, which highlights the
simplicity and efficiency of the method.

4.4.2 Discussion

Quantization vs. recognition accuracy

At this point, one may object that NSQ adds an extra quantization step in the
feature encoding procedure, and that quantization errors may grow worse, lead-
ing to a deteriorated performance. Yet, in recognition, quantization should also
allow for sufficient generalization. In the experiments, we show that the recog-
nition performance is not impaired, but that the speed goes up dramatically.

Relation of the Inner Quantization to Binary Embeddings and Hashing

NSQ is not to be confused with Binary Embeddings or Hashing-based meth-
ods. The goal of the inner quantization is a first step of feature encoding, and
it is not designed to be a fast nearest neighbor extractor nor a fast distance ap-
proximator. In fact, in the experiments we show that NSQ is not a good nearest
neighbor approximator. Hashing-based methods tackle fast distance compu-
tation rather than feature encoding, and have been typically used to speed up
image retrieval in large-scale databases [Indyk & Motwani, 1998; Weiss et al.,
2008; Gordo & Perronnin, 2011; Hervé Jégou, 2011]. The binarizations used
by these methods range from thresholding linear combinations of input fea-
tures to solving optimization problems. These have a negligible cost in image
retrieval, but not when applied to feature encoding. For example, in Locality
Sensing Hashing the binary embedding is h

n

(x) = T (rTx), where r is a pro-
jection vector, and T ( · ) is a threshold function. Hashing uses L different N -
dimensional embedding functions h(x) of an image signature x, and thus, the
cost of computing h(x) is O(LNq). Hashing is typically used in applications
where the cost O(LNq) is negligible compared to the cost of searching the
nearest-neighbors, because this search might be among hundreds of thousands
of elements. However, in feature encoding, the time of computing h(x) is not
negligible anymore, because the nearest neighbor search is only among thou-
sands of elements (the size of the codebook), and in addition, h(x) is computed
for each patch. In contrast, the inner quantization of NSQ obtains the binary
ˆ

x at a cheap cost O(q). Furthermore, the binary embeddings generate each
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bit independently of the others [Gordo & Perronnin, 2011], which is different
from NSQ, in which the output bits are dependent since only k of them are 1.

Sparse Quantization for Patch Descriptors

In [Boix et al., 2013], we extended the NSQ for feature encoding for patch
descriptors. We introduce a new formulation to patch description based on
Sparse Quantization. We take advantage of the capabilities of our formulation
to design novel, more discriminative and computationally efficient (binary) de-
scriptors. This allows for efficient encodings, leading to powerful, novel binary
descriptors, yet also to the generalization of existing descriptors like SIFT or
BRIEF. We also show the advantage of having a general formulation that can be
adapted to the task at hand. We demonstrate the capabilities of our formulation
for both keypoint matching and image classification. Our binary descriptors
achieve state-of-the-art results for two keypoint matching benchmarks. In im-
age classification we show that, the parameters of our formulation that recover
the SIFT descriptor work best for this task. Since SIFT descriptors and Hard-
Assignment can be formulated as a SQ, we can see the full network for image
classification as a hierarchy of SQ from the pixel level. In [Boix et al., 2013]
we report that the hierarchy of SQ achieves comparable results to the hierarchy
of Sparse Coding [Yu et al., 2011]. We refer to [Boix et al., 2013] for more
details about the learning of patch descriptors with Sparse Quantization.

4.5 Experiments in Image Classification

In this Section, we report experiments of the NSQ for image classification on
different datasets, namely Caltech101 [Fei-Fei et al., 2006], PASCAL VOC
2007 [Everingham et al., 2007] and ImageNet [Deng et al., 2009]. After de-
scribing the datasets and implementation details, we report the results, and an-
alyze the influence of the different parameters of the NSQ. In the next Section,
we report results for semantic image segmentation.

4.5.1 Datasets

In none of the experiments we use flipped or blurred images to extend the
training set, for fair comparison between the different methods.
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Caltech 101

This dataset contains 102 different classes with about 50 images per class. We
use 3 random splits of 30 images per class for training and the rest for testing,
and evaluate it with the average classification accuracy across all classes. We
resize the image to have a maximum of 300 pixels per dimension.

PASCAL VOC 2007

It consists of a total of 9,963 images with 20 different object classes. Half of
the dataset is used for training and the other half for testing. The evaluation is
based on the mean average precision (mAP) across all classes.

ImageNet

We create a new dataset taking a subset of 1, 065, 687 images of ImageNet.
This subset contains images of 909 different classes that do not overlap in the
synset. We randomly split this subset into two halfs, one for training and one
for testing, maintaining the proportion of images per class. For evaluation, we
report the average classification accuracy across all classes. Note that we do
not use the protocol of taking the 5 highest scores per image and keeping the
best. We resize the image to have a maximum of 300 pixels per dimension.

4.5.2 Implementation Details

Patch Descriptors

We use SIFT [Lowe, 2004] extracted from patches on a regular grid, at different
scales. In Caltech 101 and ImageNet they are extracted at every 8 pixels and
at the scales of 16, 32 and 48 pixels diameter. In VOC07, SIFT is sampled at
each 4 pixels and at the scales of 12, 24 and 36 pixels diameter.

Feature Encoding

Apart from comparing NSQ and HA, we also report results with LLC [Wang
et al., 2010] and the Super Vector method [Zhou et al., 2010]. We found that
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for all settings k = 5 is the optimal, except for the combination of HA, max-
pooling and linear SVM, which is k = 10. In NSQ, k0 = 25 for the inner
quantization (see discussion in 4.5.3 for those choices).

Codebook Generation

The codebook B is typically built with a learning algorithm either unsuper-
vised [Csurka et al., 2004; Sivic & Zisserman, 2003] or supervised [Moosmann
et al., 2007]. Recently, Coates & Ng [2011] showed that a similar performance
can be achieved by randomly picking a set of patches as codebook entries.
We compared a codebook obtained using k-means clustering versus building
it taking random patches from the training set. Tallying with the observations
in [Coates & Ng, 2011], compared to k-means clustering, random selection
considerably reduces the training time but does not lower the performance for
large codebooks. For the methods that are not AC, like LLC or Super Vector,
we learned the vocabularies as specified for each of them.

Pooling

We use in all datasets spatial pyramids. In Caltech 101 and ImageNet we divide
the image in 4⇥4, 2⇥2 and 1⇥1 regions, yielding 21 different regions, and in
VOC07, 3⇥1, 2⇥2 and 1⇥1 regions, yielding 8 regions. We use max-pooling
because it has been shown to systematically outperform other types of pooling.
In the case of NSQ and HA, the max-pooling results in a binary vector, which
is the descriptor of the whole image, which we do not normalize.

Classification

For Caltech 101 and VOC07, we use a linear one versus rest SVM classifier for
each class with the parameter C of the SVM set to 1000. In Caltech 101, we
also report results using the RB-�2 kernel, exp{���2}, setting � to the mean
of the pairwise distances in the training data. Before computing the �2 dis-
tance, the features are normalized with the `1-norm. When the image descrip-
tor is binary, the RB-�2 kernel can be computed efficiently using dedicated
CPU instructions [Shakhnarovich, 2005; Calonder et al., 2010]. In ImageNet
we use as classifier an approximated nearest neighbor that takes a maximum of
400 random examples per class.



4.5. EXPERIMENTS IN IMAGE CLASSIFICATION 73

Computational Evaluation

We use CPUs at 3.07GHz with the SSE4.1 instruction set, that enables fast
popcnt instructions for bit strings.

4.5.3 Results

Performance Evaluation

In Table 4.1 we report results on Caltech 101. We show the results for NSQ in
combination with different SVM kernels and pooling schemes. We do the same
for HA, and we also include a comparison with LLC and Super Vector. We use
a codebook of 8, 192 entries for all methods except for Super Vector for which
we use 1, 024, since it achieves the compromise between accuracy and effi-
ciency. LLC and Super Vector perform better than the others, as was reported
in previous papers. However, their coding consumes much more memory and
time than NSQ. The performance of NSQ is only 2.7% less than the best com-
peting method which is Super Vector, but NSQ requires 500 times less memory
than Super Vector and is about 10 times faster, and is 20 times faster than other
methods that use the same codebook size.

In Table 4.2 we summarize the results in VOC07. We use a codebook size of
16, 258 entries. NSQ obtains a 30 times speed up, while only degrading 2% in
performance.

In both tables we also provide the state-of-the-art methods in the literature.
Even though they obtain better performance than our method, these techniques
come at a far higher computational cost, as seen in the previous comparisons.
We did not reproduce results of SA because it was already observed by Liu
et al. [2011a] that SA only outperforms HA by less than 1%. Also, note that
in VOC07 there is a gap between the performance of LCC reported by Wang
et al. [2010] and the LCC using our descriptors. According to Chatfield et al.
[2011], this can be explained by the fact that Wang et al. [2010] extend the
training set by blurring and flipping the images, and we do not.

Influence of the Parameters

In Figure 4.2, we compare time and accuracy when changing the codebook
size for NSQ and HA. Up to a certain point, the larger the codebook, the better
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Figure 4.2: Influence of the parameter k and the vocabulary size in Caltech
101. Comparison of performance and time between NSQ and HA when vary-
ing the size of the codebook.

the accuracy becomes. Interestingly, the computational time for HA explodes
when increasing the codebook size, while in NSQ the increase is negligible
compared to HA.

We analyze the accuracy and time performance of our method when changing
the quantization parameters. We use the first split of Caltech 101 to show the
results. In Figures 4.3a and 4.3b, we compare the accuracy of our method when
changing the k parameter for the inner quantization and the outer quantization,
and keeping the codebook size at 8, 192. We see a peak of performance: When
the inner k is around 20 and 35 and the outer k is around 10 and 16. In the
right plot we analyze the time when changing this parameters, also keeping the
codebook at size 8, 192. The lower both k are, the less time classification takes.
The best compromise between time and performance is using k0 = 25 for the
inner quantization, and k = 10 for the outer.

Influence of the Quantization Error

We analyze the impact of having more quantization error due to the inner quan-
tization. We use Caltech 101 to show results using 8, 192 codebook entries. In
Figure 4.4a, we show that the quantization error of the inner quantization does
not have a clear relation with the classification accuracy. The accuracy is max-
imal for k0 at 20 and 35, and the quantization error has its minimum around
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(a) (b)

Figure 4.3: Influence of the parameter k and the vocabulary size in Caltech
101. (a) Accuracy and (b) Time when varying the inner and outer quantization
parameters.

(a) (b)

Figure 4.4: (a) Quantization error of the inner quantization vs k0, in Caltech
101. (b) Evaluation of the inner quantization as a nearest neighbor on Caltech
101 changing k and k0.

45. Moreover, we show the percentage of equal activated elements of ↵ in
NSQ and in HA using the same B, in Figure 4.4b. Around 90% of the nearest
neighbors are different. This shows that NSQ is a new encoding and not an
approximate nearest-neighbor approach.
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NSQ HA
Time Dataset
Features 17h 21m 17h 21m
Coding 6h 54m 7h 9m
Total 24h 18m 24h 30m
SizeDataset 5.4GB 700MB
Acc.Top-1 20.01% 16.6%

Table 4.3: Quantitative results on ImageNet. To fulfill the time constraints,
NSQ uses a codebook of 2, 048 and HA of 256 .

ImageNet in a Laptop in one Day

We introduce a new benchmark to test the efficiency of the encodings. We
used ImageNet with restrictions on time and memory, and only let the image
encoding algorithms run about 24 hours on a laptop of 4 CPUs. We compared
our method with HA with max pooling in which we adjusted the parameters to
fulfill the requirements. With NSQ we were able to use a codebook of 2, 048
entries, and in HA only of 256. In Table 4.3 the results are summarized. In
this benchmark, we outperform HA because in the same amount of time NSQ
can use a larger codebook, which is crucial to have good classification perfor-
mance. The reported results are of the same order of magnitude as reported
in [Deng et al., 2010], though a direct comparison is not possible because we
use a different subset of ImageNet. The state-of-the-art for this dataset is re-
ported by Lin et al. [2011], but the computational effort of this method is huge
compared to ours.

4.6 Experiments in Image Semantic Segmentation

Once we have tested the efficiency and efficacy of NSQ in standard object
recognition benckmarks, we now report results when using NSQ to encode
local regions for semantic segmentation. We use MSRC-21 [Shotton et al.,
2009], which is a standard semantic segmentation dataset. We first describe
the implementation details, and then report the results.
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4.6.1 Implementation Details

The components for semantic segmentation used in this experiment are de-
scribed below.

Superpixel Segmentation. The images are first over-segmented using the
SEEDS superpixel algorithm [Van den Bergh et al., 2014]. The MSRC-21
images are segmented with about 300 superpixels, as reported in [Roig et al.,
2013].

Unary Potentials. We use the features and classifiers reported in [Lucchi
et al., 2011], which are based on color histograms and SIFT descriptors, but
only using SIFT descriptor. We compare the encoding of the SIFT descriptor
using Bag-of-Words (used in [Lucchi et al., 2011]), and NSQ.

Inference. We take the maximum score for each superpixel, obtained by the
one-versus-rest classifiers, which was reported by Lucchi et al. [2011] to give
comparable results than using more complex probabilistic models.

4.6.2 Results

In Figure 4.5 we show the results when changing the amount of quantization in
the feature encoding with NSQ, and in Table 4.4 the results of NSQ compared
to Bag-of-Word encoding. We can see that we obtain comparable results with
both encodings, but as reported in the previous section, NSQ is much more
efficient to compute.

Encoding Method accuracy
Bag-of-Words 75.200%
NSQ (k0 = 15%, k = 5) 75.045%

Table 4.4: Semantic segmentation accuracy on MSRC-21. Comparision be-
tween NSQ and Bag-of-Words feature encoding.
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Figure 4.5: Semantic Segmentation accuracy on MSRC-21 with NSQ feature
coding, changing the inner and outer quantization parameter.

4.7 Conclusion

We presented a novel encoding formulation based on Sparse Quantization that
allows to fuse Sparse Coding and Assignment-based Coding schemes. We
investigated efficient feature encoding schemes for object recognition using
binary quantizations with the new formulation. We proposed a very efficient
encoding algorithm called Nested Sparse Quantization (NSQ), which is based
on two nested quantizations. The implementation of NSQ is very simple,
and can virtually be incorporated everywhere where Assignment-based Coding
schemes are employed, but higher efficiency and more compact representations
are demanded, e.g. real-time and large scale recognition problems. This poten-
tial was corroborated by our experiments on the Caltech 101, PASCAL VOC
07 and ImageNet benchmarks. Finally, we tested NSQ in image segmentation
framework, and we obtained similar accuracy performance with high gains in
efficiency.



5
Active MAP Inference for Efficient
Semantic Segmentation

5.1 Introduction

In many state-of-the-art methods for semantic segmentation, contextual infor-
mation plays a central role. A successful trend has been to encode the contex-
tual constraints with a Conditional Random Field (CRF) [Lafferty et al., 2001],
by modeling the interactions between different regions and scales of the image.
Most methods use sophisticated potentials between different neighboring re-
gions [Gould et al., 2008; Verbeek & Triggs, 2007], and the state-of-the-art has
been boosted with the use of high-order potentials in hierarchical CRFs [Boix
et al., 2012; Kohli et al., 2009; Plath et al., 2009].

Another common way to include contextual information has been to extend
image descriptors with contextual cues [Fulkerson et al., 2009; Jiang & Tu,
2009; Pantofaru et al., 2008], or also, combining semantic classifiers fed from
different contextual features [Csurka & Perronnin, 2010; Maire et al., 2011;
Munoz et al., 2010]. It is a remarkable feat the balance achieved between ac-
curacy and efficiency by the semantic texton forests of Shotton et al. [2009].
The good performance exhibited by many methods that do not benefit from
introducing context to a CRF, lead Lucchi et al. [2011] to ask the provocative
question: ‘Are spatial and global constraints really necessary for segmenta-
tion?’ From the experimental results, they conclude that the CRF structures
boost performance when the features only encode local information, whereas
the further gain is very little when the features already encode contextual in-
formation. This begs the question whether we can really benefit from CRFs in
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energy

Figure 5.1: Active MAP inference (best seen in color). Example of CRF with
unknown unary potentials. Active MAP selects the potentials to instantiate that
maximize the expected reward. Also, it estimates the MAP labeling from the
incomplete energy function.

semantic segmentation when using such powerful features that already encode
context.

We present a novel use of CRFs for semantic segmentation. We exploit CRFs
to estimate the semantic labeling without computing the descriptors and clas-
sifiers everywhere in the image. Given a budget of time, our algorithm decides
which potentials to compute. In doing so, it dramatically reduces the computa-
tional complexity of the whole pipeline. This is because of the computational
burden of instantiating the potentials that extract descriptors and apply classi-
fiers, which can be much higher than MAP inference for most of the energy
functions in the literature [Boix et al., 2012; Fulkerson et al., 2009; Lucchi
et al., 2011].

We introduce a relation between CRFs with some unknown unary potentials,
which correspond to the features and classifiers that we do not compute, and the
Perturb-and-MAP (PM) random field model [Papandreou & Yuille, 2011]. We
build our MAP inference algorithm - coined Active MAP inference - based on
this finding. We use the term ‘active’ because during inference it selects which
potentials to instantiate on-the-fly. This stands in contrast to previous MAP
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Original 100% 20% 5%

Figure 5.2: Examples of segmented images on VOC10 and MSRC-21. Ac-
tive MAP inference using different percentages of instantiated unary poten-
tials. Results are obtained by selecting the unary potentials with the expected
labeling change.

inference methods, which first execute the features/classifiers that instantiate
the CRF, and then run the MAP-CRF inference. In Figure 5.1 we illustrate the
principles of Active MAP inference. Surprisingly, seeing the instantiation of
the CRF energy function and MAP-CRF inference as two joint steps received
little attention in the community.

In a serie of experiments, we show that active MAP inference successfully
exploits spatial consistency to avoid evaluating the classifiers and features ev-
erywhere. It obtains comparable results to instantiating all the potentials in the
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CRF for the PASCAL VOC 2010 segmentation challenge [Everingham et al.,
2010] and for the MSRC-21 dataset [Shotton et al., 2009], but with major effi-
ciency gains. In Figure 5.2 we illustrate some results on semantic segmentation
obtained with active MAP inference.

5.2 Active MAP Inference in CRFs

This Section describes the approach for active MAP inference. Its formulation
uses a CRF to model the probability density distribution expressing the likeli-
ness of a certain labeling. Let G = (V, E) be the graph that represents such
distribution, and X the set of random variables or nodes of the graph. The el-
ements of V are indices of the nodes, i.e. X = {X

i

} in which i 2 V , and the
elements of E are the indices of the undirected edges of the graph. We denote
an instance of the random variables as x = {x

i

}, where x
i

takes a value from
a set of discrete labels L. Thus, x 2 LN , with N the cardinality of V .

We denote P (x|✓) as the probability density distribution of a labeling modeled
with the graph G. According to the Hammersley-Clifford theorem (cf. [Kolmogorov
& Wainwright, 2005]), the probability density that satisfies the Markov prop-
erties with respect to the graph G is a Gibbs distribution. Thus, P (x|✓) can be
written as the normalized negative exponential of an energy function

E✓(x) = ✓T�(x), (5.1)

in which �(x) = (�1(x), . . . ,�M

(x))T is the vector of potentials, or the so-
called sufficient statistics, and ✓ 2 RM are the parameters of the potentials.
We use the canonical over-complete representation, in which {�

i

(x)} are built
using indicator functions that allow us to express the energy function as such
linear combination of the potentials (cf. [Wainwright et al., 2005]). The most
probable state x? is obtained by inferring the Maximum a Posteriori (MAP) of
P (x|✓), or equivalently by minimizing the energy, i.e.

x

?

= arg min

x2LN
✓T�(x). (5.2)

As usual, we categorize the potentials of the energy function depending on the
number of random variables that they involve: unary and pairwise.

In the case of semantic segmentation, there is a node defined for each pixel or
superpixel in the image. The parameters of ✓ related to the unary potentials are
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typically the result of evaluating classifiers fed with features extracted from the
image. The pairwise and high-order potentials use some a priori assumptions
like the smoothness of the labeling. It is important to note that the instantiation
of ✓ might be orders of magnitude more computationally expensive than MAP
inference. Usually, state-of-the-art methods for semantic segmentation use fea-
tures and classifiers that take minutes to compute for a single image [Fulkerson
et al., 2009; Lucchi et al., 2011; Boix et al., 2012].

At testing phase, the common way to proceed is to instantiate ✓, and then to run
an off-the-shelf MAP inference algorithm to obtain the most probable labeling.
Active MAP inference aims at estimating x

? with only a subset of the elements
of ✓, {✓j}, which is selected by the algorithm. The computational gain comes
from not computing all classifiers and features needed to fully instantiate ✓.
Even though we do not have the complete energy function anymore because
part of ✓ is unknown, we will show in the sequel that we can still estimate
x

?. We define � 2 {0, 1}M , with the purpose of introducing the concept
of selected parameters in our notation, i.e. it works as an indicator function.
When the element j of the vector ✓, i.e. ✓j , is not computed, then, �j is zero,
and if the parameter is computed, then �j equals 1. This is

✓j
�

j =

⇢
✓j if �j = 1

unknown otherwise . (5.3)

Note that with this notation we can still easily express the initial formulation
that instantiates all parameters, using � = 1 and ✓

1

, where 1 is a vector of
ones.

With missing parameters, the energy function does not represent the initial
labeling problem anymore. It would be wrong to replace the unknown param-
eters by 0, or any value indicating that ‘the potential is missing’. There is
no guarantee that, in doing so, the new energy function would assign energy
values similar to the ones given by the complete energy.

General Overview

Given a time budget, Active MAP inference instantiates a subset of the poten-
tials (�), and only with them, it computes the complete MAP labeling, x?. In
the following Section, we introduce Perturb-and-MAP, as we use this mathe-
matical tool in the rest of this Chapter. In Section 5.4, we introduce the esti-
mation of x? when � is given, and in Section 5.5, we introduce the algorithm
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to determine �. Finally, we show results for the application of semantic image
segmentation, where we save the cost of instantiating all the unary potentials.
Active MAP inference is more general and can also be applied in many other
applications that use a CRF.

5.3 Perturb-and-MAP

Generating samples from CRFs is unusual in computer vision. For most prob-
lems, sampling over the discrete space of the CRF is prohibitive due to the
complexity of these spaces. Recently, Papandreou & Yuille [2011] introduced
the Perturb-and-MAP random field (PM), which is a model that allows for gen-
erating samples, built around the effective MAP inference algorithms in CRF.
In a follow-up paper, Tarlow et al. [2012] extended this idea to a more broader
set of models.

PM is based on injecting noise in the energy function to perturb it, and then, it
calculates the frequency that labellings are the MAP of the perturbed energy.
Let ✏ 2 RM be the random variable that it is used to perturb the parameters of
the energy function, and let f✏(✏) be the probability density of ✏. We denote
the perturbed parameters of the energy as ˜✓ = ✓+ ✏. For each perturbed ˜✓, we
can infer a MAP labeling. The different ˜✓s that yield the same MAP labeling
x, can be grouped together. We use P

x

to denote such set of ˜✓s,

P
x

=

⇢
˜✓ 2 RM |x = arg min

x

02LN

˜✓
T

�(x0
)

�
. (5.4)

Analogously, we can define the set of perturbations ✏, that yields the labeling
x when doing MAP inference. We denote this set as P

x

� ✓, and it is
⇢
✏ 2 RM |x = arg min

x

02LN
(✓ + ✏)T�(x0

)

�
. (5.5)

PM assigns a probability to x equal to the probability of drawing a perturbation
✏ that belongs to the set P

x

� ✓. Thus, the PM distribution is

f
PM

(x|✓) =
Z

P
x

�✓
f✏(✏)d✏. (5.6)

Intuitively, the PM calculates how frequent is that a labeling x is the MAP
labeling, when injecting noise to the energy function. Even though calculating
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the exact value of f
PM

(x;✓) might be not feasible for most practical cases,
note that we can easily draw samples from a PM distribution by simply doing
MAP inference on a perturbed energy. For a complete explanation of the PM
random field we refer to the paper [Papandreou & Yuille, 2011].

5.4 MAP Inference for Incomplete Energies

This Section aims at estimating the labeling from the incomplete energy func-
tion. We assume that � is given, and the potentials indicated by � have been
instantiated.

5.4.1 Relation to Perturb-and-MAP

Rather than filling in the energy function by inventing the unknown parameters
or setting them to a learned constant value, we use P (✓|✓�) to model them.
P (✓|✓�) is the probability that the parameters of the potentials take the values
✓ given ✓� . The CRF models the probability of the labeling, but it does not
directly model P (✓|✓�). In order to alleviate the lack of an exact expression for
P (✓|✓�), we use a model to approximate it, referred to as f✓(✓|�,⇡), where
⇡ are the parameters of the model. The definition of this model is open and
adaptable to each problem. We specify f✓ and ⇡ in the subsequent Section.

Changing ✓ in the energy function produces different MAP labelings, x

?.
Therefore, P (✓|✓�) induces a probability on x

?. We use P (X

?

= x|✓�) to
define such probability on x

?, i.e. the probability that x is the MAP labeling.
It can be computed as

Z

RM

I


x = arg min

x

02LN
E✓(x

0
)

�
P (✓|✓�)d✓, (5.7)

where I[ · ] is the indicator function. Equation (5.7) can be seen as a natural
way to calculate P (X

?

= x|✓�), since it accumulates the probability density of
P (✓|✓�) with ✓ yielding the minimum energy labeling equal to x. The integral
explores all complete energy functions, E✓(x), and for each of them, it checks
whether the MAP labeling is x or not. In case it is equal to x, the corresponding
probability density of P (✓|✓�) is accumulated into the final probability.

Deriving the exact P (X

?

= x|✓�) is computationally intractable, because of
the number and complexity of the constraints needed to define E✓ . Fortunately,
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it can be shown that P (X

?

= x|✓�) is indeed a PM random field, from which
we can easily draw samples. We state it formally in the following Proposition.

Proposition 5. Let P (✓|✓�) = f✓(✓|�,⇡), and f✓(✓|�,⇡) has mean equal
to µ 2 RM . Let f

PM

(x|�,µ) be the density distribution of a PM model with
energy Eµ(x), i.e. the energy with parameter µ 2 RM , and the perturbations
are drawn from ✏ ⇠ f✓(✏+ µ|�,⇡). Then,

P (X

?

= x|✓�) = f
PM

(x|�,µ). (5.8)

Proof. With few calculus we obtain:

P (X

?

= x|✓�) =

=

Z

RM

I


x = arg min

x

02LN
E✓(x

0
)

�
P (✓|✓�)d✓ (5.9)

=

Z

RM

I


x = arg min

x

02LN
E✓(x

0
)

�
f✓(✓|�,⇡)d✓ (5.10)

=

Z

RM

I


x = arg min

x

02LN
E(µ+✏)(x

0
)

�
f✓(✏+ µ|�,⇡)d✏ (5.11)

=

Z

P
x

�µ
f✓(✏+ µ|�,⇡)d✏ (5.12)

= f
PM

(x|�,µ),with energy: Eµ(x). (5.13)

I[ · ] is the indicator function. In Equation (5.9), we use the definition of
P (X

?

= x|✓�) in Equation (5.7). In Equation (5.10), we introduce the as-
sumption we made in the Proposition that P (✓|✓�) = f✓(✓|�,⇡). In Equa-
tion (5.11), we do the change of variable ✓ = µ+✏. Finally, in Equations (5.12)
and (5.13), we use the definitions of the PM model, in which

P
x

� µ =

⇢
✏ 2 RM |x = arg min

x

02LN
(µ+ ✏)T�(x0

)

�
. (5.14)

Observe that the density distribution of the PM model in Proposition 5 is

f
PM

(x|�,µ) =
Z

P
x

�µ
f✓(✏+ µ|�,⇡)d✏, (5.15)
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where P
x

�µ is the set of ✏ 2 RM such that x minimizes the energy function
E(µ+✏) (see Equation (5.4)). Note also that we draw ✏ from f✓(✏ + µ|�,⇡),
which is f✓ centered at 0. Proposition 5 shows that this PM distribution repro-
duces the definition of P (X

?

= x|✓�) in Equation (5.7). To obtain samples of
x

? in practice, we simply perturb µ using ✏, and then, we apply MAP inference
to E(µ+✏)(x).

Note that Proposition 5 is valid for any f✓(✓|�,⇡). Yet, the key assumption
in Proposition 5 is P (✓|✓�) = f✓(✓|�,⇡), which presupposes an underlying
model for the known and unknown ✓. This is addressed in the following.

5.4.2 Model of the Missing Parameters

We use a simple collection of independent Gaussian variables to define f✓(✓|�,⇡).
The parameters for this model are the mean and the standard deviation, referred
to as µ 2 RM and � 2 RM respectively, where for notation simplicity ⇡ in-
dicates both µ and �. We use the standard Gaussian distribution due to its
simplicity and its well-known properties. Specifically, we define f✓(✓|�,⇡)
such that, if the parameter of the potential is unknown (�i = 0), it is a uni-
variate Gaussian distribution, centered at µi and deviation �i. Otherwise it is
consistent with the instantiated potential, f

✓

(✓i|�i = 1,⇡i

) = I[✓i = ✓i
�

i ],
where I[ · ] is the indicator function. In this latter case, there is no uncertainty,
and ⇡i and �i are not used.

We set ⇡ to a fixed value that we learn by cross-validation. Thus, all f
✓

(✓i|�i =
0,⇡i

) are a Gaussian distribution with the same parameters. We could find the
more likely ⇡ given the observations, but it is out of the scope of this work.
From a practical perspective, it suffices to assume that ⇡ takes a fixed value to
achieve good performance in practice.

5.5 Selection of Potentials

In this Section we describe the selection of the potentials, indicated in �. The
algorithm starts from � = 0, and it sequentially determines which potential
to compute next, until the time budget, t

total

, expires. We denote the known
potentials at time t as ✓�t . The algorithm ranks the unknown potentials with
a score, and thus prioritizes the potentials in the time budget. This is done by
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Algorithm 7: Active MAP
�0 = 0;
while t<t

total

do
. Compute the score for the Unkown Unary Potentials:
forall the �i

t

= 0 do
Si

�t
= E

✓

⇥
R
�
f
PM

�
x|�

t

: �i = 1,⇡
t

: µi

= ✓
��⇤

end

. Instantiate the Unary Potential with higher Si

�t
:

i? = argmax

i

Si

�t

�i
?

= 1, Compute ✓i
?

end
x

?

= argmax

x

f
PM

(x|�,µ)

selecting the potentials with higher score. We summarize all steps in Algo-
rithm 7.

Let Si

�t
be the score that ranks the potentials. We define Si

�t
as the expected

reward of instantiating the potential i. This is

Si

�t
= E

✓

⇥
R
�
P
�
X

?

= x|✓�t : ✓
i

= ✓
��⇤

, (5.16)

where the expected value is over ✓ ⇠ f
✓

�
✓i|�i = 0,⇡i

�
, which is the Gaussian

model of the posterior P (✓i|✓�t). We use ✓�t : ✓
i

= ✓ to indicate that ✓i in ✓�t

has been set to ✓. R( · ) is the reward of instantiating ✓i = ✓, and it evaluates the
probability distribution of X?. The reward prioritizes probability distributions
using a pre-defined criterion, such as having low uncertainty in the labeling of
X

?. There are different possible criterion to define it, and we analyze two of
them in the sequel. Observe that Equation (5.16) evaluates the expected value
of the reward by sampling ✓s from f

✓

(✓i|�i = 0,⇡i

), and evaluating the reward
we would get if ✓i is clamped to the sampled ✓.

We can further develop Si

�t
in Equation (5.16). According to Proposition 5,

P
�
X

?

= x|✓�t : ✓
i

= ✓
�

(5.17)

is a PM, which is f
PM

�
x|�

t

: �i = 1,⇡
t

: µi

= ✓
�
. Thus, Si

�t
becomes

Si

�t
= E

✓

⇥
R
�
f
PM

�
x|�

t

: �i = 1,⇡
t

: µi

= ✓
��⇤

, (5.18)
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Below, we introduce two possible criteria for the expected reward, and analyze
the computational cost of calculating the reward.

5.5.1 Expected Reward

To compute the reward, we adapt two standard techniques from the active
learning literature [Settles, 2009], namely the residual entropy and the labeling
change. In the following we discuss them in the context of active MAP infer-
ence, and we show that both criteria can be effectively computed from a set of
samples derived from the PM.

Expected Residual Entropy (ERE)

We can compute the reward using the residual entropy in order to reduce the
uncertainty of the MAP labeling. Then, the reward R( · ) becomes

�H
�
f
PM

�
x|�

t

: �i = 1,⇡
t

: µi

= ✓
��

, (5.19)

where H( · ) is the entropy, and can be computed by drawing samples from the
PM. Note that reducing the uncertainty of the MAP labeling does not necessar-
ily mean that the labeling is closer to the true MAP labeling.

Expected Labeling Change (ELC)

Vezhnevets et al. [2012] proposes to evaluate the expected change in the label-
ing. In the case of our problem, it is the change in the labeling induced from
instantiating a potential. Thus, the reward R( · ) is

�

⇣
x

?

t

, argmax

x

f
PM

(x|�
t

: �i = 1,⇡
t

: µi

= ✓)
⌘
, (5.20)

where x

?

t

is the MAP labeling at iteration t, and �( · , · ) is a function that
counts how many labels of x?

t

differ from the labeling that we obtain with the
PM when instantiating ✓i = ✓.
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Figure 5.3: Illustrative example of the TK samples of ✓ to compute the ex-
pected Reward for all unknown potentials (best seen in color). Example with 2

unknown potentials, T = 2 and K = 3.

5.5.2 Efficient Computation of the Reward

We can see by analyzing Equation (5.18), that in the calculation of the expected
reward, there are TK computations of MAP inference, where T is the number
of samples of ✓i, and K the number of samples of the PM. This is because for
the T samples of ✓i, we evaluate a PM that computes MAP K times. Thus,
the cost of computing the scores for a number U of unknown potentials is
O(TKUm), where m is the cost of inferring the MAP labeling.

According to Algorithm 7, the scores are evaluated every time we instantiate
a potential. Thus, if doing TKU times MAP has a comparable cost to instan-
tiate one potential, rather than speeding up the whole pipeline, Active MAP
may become the computational bottleneck. In the following, we introduce two
complementary strategies that render the evaluation of the scores efficient in
practice.

Efficient computation of the expected reward

We first introduce a strategy to reduce O(TKUm) to O(TKm). It is based
on the observation that the PM draws the unknown parameters of the energy
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from f✓
�
✓i|�i = 0,⇡i

�
, which is the same probability distribution that we use

to generate the ✓s for the expected value. Thus, we could reuse the same sam-
ples of ✓ to calculate both the expected value, and the energy function of the
different perturbations of the PM.

Recall that in the expected reward, for each ✓i, PM computes MAP inference
K times with µi fixed to ✓i. We can generate a set of TK samples that can
be used for all PMs of any unknown potential. This is feasible by drawing T
values of ✓i from f✓ , and extending them, by repeating those T initial values
of ✓i by K times, in a random order. We do this for all unknown potentials
and obtain a set of TK different vectors of ✓. Figure 5.3 is an example of
✓s generated in that way. Note that for each value of ✓i, we always have K
different samples of ✓, having the unknown potentials perturbed and ✓i fixed.
This coincides with the form of the energy function of the K perturbations of
the PM.

The limitation of this method is that ✓i takes only T different values in the
TK samples, and they might not be diverse enough to correctly estimate the
reward. Yet, we observed in the experiments that this approach achieves the
same performance as using TKU different samples, even with small K and T .

Area of Influence

We propose a simple strategy to avoid re-computing the scores every time we
instantiate a potential. It is summarized in Algorithm 8. It is assumed that
instantiating a potential reduces the score of the potentials that are in its “area
of influence”, while the rest remain unchanged. Under this assumption, only
the scores in the area of influence are unreliable if they are not recomputed. We
discard such scores as candidates until we re-compute the scores. This is done
at the point that all potentials have been discarded.

We define an heuristic way, yet effective, to compute the area of influence.
We define the area of influence as set of nodes that in all samples drawn from
P (X

?

= x|✓�) take the same labeling value, and form a connected blob in
the image. In Figure 5.4 we illustrate several examples of the estimated area
of influence for some potentials, and in the experiments section we show that
using the area of influence is as effective as not using it, but it yields dramatic
speed ups. Note that computing the area of influence does not incorporate any
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Algorithm 8: Active MAP with Area of Influence
�0 = 0;
while t<t

total

do
. Compute the score for the Unknown Unary Potentials:
forall the �i

t

= 0 do
Si

�t
= E

✓

⇥
R
�
f
PM

�
x|�

t

: �i = 1,⇡
t

: µi

= ✓
��⇤

end
while 9Si

�t
6= �1 do

. Instantiate the Unary Potential with higher Si

�t

i? = argmax

i

Si

�t

�i
?

= 1, Compute ✓i
?

. Delete Candidates from the Area of Influence:
forall the xj 2 A. Infl. (�i = 1, {x}

K

2
) do

Si

�t
= �1

end
end

end
x

?

= argmax

x

f
PM

(x|�,µ)

extra major cost, since we can use the samples of the PM used for calculating
the rewards.

5.6 Experiments

We report results of our method on two popular datasets for semantic segmenta-
tion, namely the PASCAL VOC 2010 [Everingham et al., 2010] and MSRC-21
dataset [Shotton et al., 2009]. We use the standard evaluation set up. We first
describe the implementation details and discuss the computational times (with
a CPU 2.8GHz i7 with 8 cores). Then, we analyze the impact of the parameters
and the heuristics we use, and we report results on the two datasets. In the next
section, we slightly modify the experimental setup and we show active MAP
for human-in-the-loop semantic segmentation.



5.6. EXPERIMENTS 95

Figure 5.4: Area of Influence and Expected Reward. The top row shows the
original image and two samples of PM with 0% of observed unary potentials.
The bottom row shows the area of influence of the first selected superpixels
that ranked higher with ELC.

5.6.1 Implementation and Computational Time

We use a typical CRF with Potts pairwise potential modulated by the difference
in color [Fulkerson et al., 2009]. We use Active MAP to select which unary
potentials to compute, since they have the higher computational load. The
smoothness potentials are always computed, and thus, � is initialized to include
the smoothness potentials. Below we describe each of the pipeline components
for semantic image segmentation.

Unsupervised Segmentation

We first over-segment the images using SLIC superpixels [Achanta et al., 2012],
which allows us to work at superpixel level. The VOC10 images are over-
segmented with about 800 superpixels, and for MSRC-21 we use about 300.
SLIC takes on average 0.2 seconds per image.
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Unary Potentials

In order to show that state-of-the-art methods can benefit from Active MAP,
we use the publicly available features and classifiers in [Lucchi et al., 2011]. It
extracts features taking into account the context of the image at different scales.
Overlapping patches are described with SIFT and RGB histograms, and are
encoded using Bag-of-Words (BoW) at 6 different contextual scales around the
superpixels. The classifiers for each unary potential are SVMs with intersection
kernel. In [Lucchi et al., 2011] they showed that with these features, they
achieve comparable performance with or without using a CRF.

The computational cost for the different parts in VOC10 are 0.11s to compute
dense SIFT, 0.05s to compute dense RGB histogram over the patches, and
0.6s to build all the BoW of an image with a fast nearest neighbor extraction.
For MSRC-21 these costs are 0.03s to compute dense SIFT, 0.01s to compute
RGB histograms, and 0.06s to build the BoWs. The cost of computing these
features cannot be saved by the Active MAP inference, because we use a global
classifier that uses features over the entire image.

In the case of VOC10, computing the classification score with an SVM for a
superpixel takes 0.02 seconds, and, hence, for an image with 800 superpixels
this takes 16 seconds. In MSRC-21, computing the classification score for
each superpixel takes 0.01 seconds, and for 300 superpixels 3 seconds. Most
of the classifier costs - i.e. the main bottleneck of the pipeline - can be saved
by Active MAP inference.

Smoothness Potentials

The smoothness potentials are a Potts model modulated by the difference of
the mean of the RGB color of the connected superpixels, i.e. ||c

i

� c
j

||, where
i, j indices two neighboring superpixels, and c is the mean RGB color vector
of a superpixel. It takes 0.1 seconds to compute for 800 superpixels, and 0.03
seconds for 300 superpixels. We denote the weight that multiplies the smooth-
ness term in the energy function as �, and it is one of the parameters that we
learn in the following section.
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Figure 5.5: Learning the Parameters on MSRC-21. (a) Impact of � and
(b) � when varying the percentage of instantiated potentials. The accuracy is
normalized by the maximum accuracy for each amount of observed potentials.

Inference

We use ↵-expansion graph cuts [Boykov & Kolmogorov, 2004] to compute
the MAP labeling in a complete energy function. For the PM we use K = 5

samples, which takes 0.03 seconds for VOC10 and 0.02 seconds for MSRC-21.
For the expected reward we use T = 5, and it takes 0.15 and 0.12 seconds in
total, respectively. The final labeling x

? is computed with T = 1, i.e. a single
time MAP inference.

5.6.2 Learning the Parameters

The parameters that we learn are the weight of the smoothness potentials (�),
and the model of the missing unary potentials (µ, �). We learn them by cross-
validation in the validation set, depending on the amount of instantiated poten-
tials and the specific reward we use. In the following, we show the results in
MSRC-21 when using the ELC reward. For VOC10 and the other rewards, we
follow the same procedure.
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Figure 5.6: Impact of the Heuristics on MSRC-21. (a) Average squared de-
viation (error) from the mean and variance of the set of K samples used for
a PM in the calculation of the reward for one unknown unary potential, when
T = K. The error is normalized to the error of not using the heuristic. (b) Av-
erage amount of times the scores are calculated when varying the percentage
of observed unary potentials.

Weight of the Smoothness Potential (�)

In Figure 5.5a we report the impact of � on the accuracy. We can see that
depending on the percentage of instantiated potentials, the optimal value for
� may vary (indicated with the black line). Note that when few potentials are
instantiated, the value of � increases. This is because higher � encourages
label propagation, which is more important when we have less observations.
When all potentials are observed, setting � to 0 or very little gives the best
performance, which is in accordance to Lucchi et al. [2011]. We use the best �
for each fraction of instantiated potentials.

Model of the Missing Parameters (µ, �)

We may use µ to enforce a prior distribution over the classes. Yet, since the
datasets we evaluate have only about 20 object classes, using this prior distri-
bution can artificially boost the performance. Thus, we set all entries of µ to
the same constant value, which only adds an offset to the energy function that
has no effect on the MAP labeling.
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In Figure 5.5b we show the impact of � on the accuracy, when varying the
percentage of observed unary potentials. � is the level of injected noise in
P (X

?

= x|✓�), which is necessary to effectively evaluate the expected re-
wards. Note that when there are more potentials instantiated, the optimal �
increases. This might be used to calibrate the amount of injected noise in the
energy when less potentials can be perturbed.

5.6.3 Results

Efficient Computation of the Expected Rewards

We analyze the impact of the heuristics we introduced in Section 5.5.2. In
Figure 5.6a we show the error of the mean and variance of the K samples of
✓i when reusing the samples generated for the expected value. Ideally, the
samples of ✓i follow a Gaussian distribution, but due to the heuristic we use
to generate them, the samples could have deviated from the original Gaussian
distribution. We evaluate the average squared deviation (error) from the mean
and variance of the set of K samples used in the calculation of the reward,
for one unknown unary potential. The average is over all unknown potentials
of all images, when there are no instantiated potentials. We set T = K to
proportionally increase the amount of samples. The error is normalized to the
error of not using the heuristic. Note that as expected, the normalized error
tends to 1 (same error as not using the heuristic) when we increase the number
of samples. In the experiments, we use T = K = 5 samples because it is a
good tradeoff between computational cost and accuracy.

In Figure 5.6b we analyze the impact of using the area of influence (Algo-
rithm 7 compared to Algorithm 8). Recall that we discard the potentials that
are in the area of influence of an instantiated potential, and we recompute the
scores when all potentials have been discarded. We report the average number
of times the scores are computed when varying the number of observed unary
potentials. We can see that with 50% of the nodes instantiated, the scores are
only computed 2 times (in average for all images). Note that this is a dramatic
reduction of the computational cost, since without area of influence, the num-
ber of times it needs to compute the scores increases linearly to the number of
observed unary potentials. Additionally, we observed that both methods obtain
the same accuracy (we could only compare up to 10% of instantiated potentials
due to the high computational cost of not using the area of influence).
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Figure 5.7: Results on (a) VOC10 and (b) MSRC-21. Accuracy when varying
the percentage of instantiated potentials.

Method Global Average Features Inference Total
All CRF 78 78 3s 0.02s 3.02s
All max 78 78 3s � 3s

ELC 20% 76 76 0.6s 0.34s 0.94s
ERE 20% 76 75 0.6s 0.34s 0.94s

Random 20% 72 70 0.6s 0.1s 0.7s
ELC 5% 70 68 0.15s 0.34s 0.49s
ERE 5% 69 67 0.15s 0.34s 0.49s

Random 5% 65 60 0.15s 0.1s 0.25s

Table 5.1: Results on MSCR-21. The average score provides the per-class
average. The time measurements are for one image.

Active MAP for semantic segmentation

We report results on MSRC-21 and VOC10, of the active MAP inference, with
the ERE and ELC, and randomly selecting the unary potentials to compute the
classifiers (referred as Random). We also report the results of using all the
unary potentials and taking the maximum value of each, referred as Max, and
when having the complete CRF, referred as All CRF in the tables.

In Figure 5.7 we show the evolution of the performance when increasing the
amount of instantiated potentials on MSRC-21 and VOC10 (on the validation
set), and in Table 5.1 we report more detailed results on the MSRC-21 dataset,
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Method Average Features Inference Total
All CRF 32.9 16s 0.03 16.03s
All max 32.0 16s � 16s

ELC 20% 29.5 3.2s 0.37s 3.57s
ERE 20% 29.5 3.2s 0.37s 3.57s

Random 20% 23.5 3.2s 0.12s 3.32s
ELC 5% 24.2 0.8s 0.12s 0.92s
ERE 5% 23.9 0.8s 0.12s 0.92s

Random 5% 17.4 0.8s 0.03s 0.83s

Table 5.2: Results on VOC10 validation set. The average score provides the
per-class average. The time measurements are for one image.

Method Average Features Inference Total
All 33.5 16s � 16s

ELC 20% 30.4 3.2s 0.37s 3.57s
ELC 5% 24.8 0.8s 0.12s 1.17s
ELC 1% � � � �

Table 5.3: Results on VOC10 testing set. The average score provides the
per-class average. The time measurements are for one image.

and in Tables 5.2 and 5.3 on VOC10, for validation and test set respectively.
We also report the times for computing the features and classifiers related to the
potentials, and the inference time which includes the overhead of computing
the active MAP inference. We can see that on VOC10, the Active MAP with
ELC reward, yields a speed-up of around 20x when only instantiating 5% of the
unary potentials, achieving very competitive results. When instantiating only
20% of the unary potentials, there is a speed-up of 5x, and the performance
only decreases about 3% with respect to computing all the unary potentials.
Note that the overhead of extra computation of Active MAP is very small for
all cases. The ELC achieves slightly better accuracy than ERE reward, spe-
cially with fewer observed unary potentials, and both methods outperform the
Random strategy.
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(a) (b) (c) (d) (e) (f)

Figure 5.8: Examples of segmented images on VOC 2010. (a) Original image,
(b) groundtruth, (c) results with all unary potentials observed taking the maxi-
mum value, (d) all unary potentials observed using a pair-wise CRF model, (e)
20% of observed unary potentials, and (f) 5% observed unary potentials.
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(a) (b) (c) (d) (e) (f)

Figure 5.9: Examples of segmented images on MSRC-21 (see Figure 5.8).
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Method Global Average Features Inference Total
All 98 97 � � 300 clicks

ELC 20% 94 92 � 0.34s 60 clicks
ELC 5% 86 84 � 0.34s 15 clicks
ELC 1% 67 67 � 0.34s 3 clicks

Table 5.4: Results on MSCR-21 with a human in the loop. The average score
provides the per-class average. The time measurements are for one image.

Images of Results

In Figure 5.8 and 5.9 we show some more examples of segmentation results
achieved with Active MAP inference for different time budgets, on VOC 2010
dataset and MSRC-21, respectively. The first column corresponds to the origi-
nal image and the second one to its grountruth. The third column is the obtained
result of taking the maximum value of each unary potential independently. The
fourth column are results with all potentials observed and a pair-wise CRF
model. The fifth column are results obtained with a speed up of 5 (20% of the
unary potentials computed), and the sixth column with a speed up of 20 (5%
of the unary potentials).

5.7 Active MAP for human-in-the-loop segmentation

We evaluate the case of having the true labeling for some superpixels. This
could be the case of having some unary potentials that may be prohibitive
to compute, or also, when Active MAP interacts with a human that is asked
the ground-truth for some superpixels. We slightly modify the set up used in
previous experiments, by setting the instantiated unary potentials to add high
penalties for the labels different from the ground-truth, or 0 otherwise.

We include the case that all the unary potentials are known with the true la-
bel (referred as Max), which gives an upper-bound of the performance limited
by the errors introduced by the superpixels. We can see that with 2% of the
superpixels, which is about 6 superpixels in the image, we obtain the same
performance as the state-of-the-art method [Boix et al., 2012]. We show some
examples of semantic segmentation results with a human-in-the-loop in Fig-
ure 5.11.
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Figure 5.10: Results on MSRC-21 with a human-in-the-loop. Average accu-
racy

5.8 Conclusion

We presented a method for active MAP inference on a CRF with unknown pa-
rameters. We showed its relation to the Perturb-and-MAP random field. The
method incrementally adds the most promising parameters to the energy func-
tion using ranking criteria borrowed from active learning. Experiments on vari-
ous datasets show that active MAP inference leads to significant computational
savings, that clearly compensate for the overhead of computing the complete
set of parameters of the energy function. The proposed method is useful when
the computation of the energy function is more demanding than the MAP in-
ference, as is often the case in semantic image segmentation.
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Figure 5.11: Example of resulting images on MSRC-21 with a human-in-the-
loop.



6
Conclusions

In this work we have proposed an efficient semantic image segmentation frame-
work that delivers an output on a time budget that can be decided on-the-fly.
This framework is suited for robotic applications, and autonomous navigating
systems, which have limited computational resources and may need an output
in a limited amount of time. We divided the pipeline of semantic segmentation
in three steps, namely over-segmentation, feature extraction and classification,
and labeling inference. We made a contribution in each of them putting special
emphasis on efficiency.

We have proposed a superpixel algorithm for an efficient over-segmentation of
the image, which can be stopped at any time, and is able to deliver an over-
segmentation of the image in real time, obtaining state-of-the-art results. It
is based on filters that are learned using Spectral Clustering techniques, and
then the final optimization is done with a very efficient hill-climbing algorithm
that starts from a grid partition of the image, and then, refines the partition-
ing moving the boundaries of the superpixels. We also introduced a binary
quantization for the filters and descriptors to be able to speed-up the distance
computations that are involved in the optimization, achieving major speed-ups
without a significant decrease in the accuracy performance on standard super-
pixel benchmarks.

For the feature extraction we proposed an efficient feature encoding that is
based on the same quantization used in the superpixels to binarize the feature
descriptors an speed up the computations. It is based on a k-sparse quantiza-
tion, which a quantization to the set of sparse vectors that have k ones and the
rest elements of the vector to 0. Sparse quantization is computed with a sim-
ple sorting of the input feature vector, and a selection of the highest values of
the vector. The highest entries of the feature vector are set to 1, and the rest
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to 0. We proposed a nested sparse quantization to binarize the input descrip-
tors and compute the distances involved in the feature encoding with binary
computations, which are very efficient to compute. We tested our feature en-
coding on image classification benchmarks, as well as in image segmentation,
and showed that the accuracy performance is competitive to state-of-the-art
methods while being very efficient to compute.

For the labeling inference, we introduced Active MAP inference for CRFs. Ac-
tive MAP inference is able to infer where to put more computational effort in
computing features and classifiers in regions of the image, and then propagate
the information to the rest of the image with features that are cheap to com-
pute, such as color information. With unobserved regions of the image is able
to infer a labeling for all the image. It also delivers an uncertainty measure
that can be used in robotic applications to determine the state of the robot, or
to integrate the semantic segmentation in a probabilistic model that integrates
multiple sensors of the robot.

Overall, we proposed a semantic segmentation pipeline that actively selects
where to compute features and classifiers, and that can deliver a labeling of all
image given a time budget.



7
Future Directions

The work presented in this thesis can be further extended to estimate the seman-
tic segmentation in videos, exploiting the time consistency. This work could
also be applied in other scenarios than efficiency and computing the output on
a time budget. For instance, we could use it in applications where partial ob-
servability is needed or could help in the task. In the following we will further
explain how this work could be applied in videos. Also how it could be used for
eye movement prediction, where semantic uncertainty and partial observability
might be beneficial to get a good approximation of the scanpath eye prediction.

Semantic Video Segmentation on a Time Budget

Extending our semantic segmentation framework to videos could be done using
a video over-segmentation as a pre-processing step. For instance we could use
Video SEEDS, which is the extension of SEEDS superpixels to video that we
proposed in [Van den Bergh et al., 2013]. It is based in the same algorithm as
SEEDS, including also the time consistency information. It generates tubes in
time of superpixels, and runs on-line and in real-time. The tubes could be use to
propagate the information, and compute features and classifiers only in some
regions of the tube. In this scenario, we could build a graph, in which each
node corresponds to a superpixel tube. Also, with the Active MAP inference,
we could select in which tubes of superpixels we compute the features and
classifiers, and propagate the labeling information to the adjacent tubes.

We presented a preliminary work of the video idea in [de Nijs et al., 2012],
where we used the uncertainty computed with the entropy of the multiple sam-
ples to obtain an online semantic segmentation for an autonomous robot. The
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selection was done with the entropy, and it was based on superpixels for still
images, and not tubes of superpixels. We expect that using a more sophisti-
cated selection of the regions in which to compute features and classifiers, as
the ones we proposed in the Active MAP inference, and the tubes of superpix-
els that leverage the time consistency, will improve the performance and the
efficiency of the method in [de Nijs et al., 2012].

Another extension of the Active MAP in semantic segmentation is to explore
different reward functions for selecting which superpixels to compute (or tubes
of superpixels in the scenario with videos). A reasonable alternative is to use
Reinforcement Learning to learn from examples which are the best superpixels
to select. The objective function could be maximazing the accuracy of the
semantic segmentation labeling of the whole image at each time step.

Partial Observability with Active MAP for Saliency and Scanpath Predic-
tion

Visual attention models aim to predict human eye fixations in natural scenes,
[Itti et al., 1998]. Many state-of-the-art models incorporate semantic-level fea-
tures, which often are a stronger cue than the low-level features to predict eye
fixations. The semantic-level features are implemented by evaluating object
classifiers everywhere in the image. As a result, saliency models assume the
full observability of the image, which does not correspond to the function of
the eye gaze shifts that gradually capture the semantic-level information. We
could drop the assumption of full observability of the semantic labels in all the
image using our active MAP inference for semantic segmentation to model the
partial observability of the semantic-level, and compute semantic features for
saliency prediction based on the uncertainty and rarity of the semantics during
the gradual exploration of the image. Some of the semantic-level features that
could be computed with the active semantic segmentation for scanpath predic-
tion could be:

• Label Probability: It has been shown that certain object categories attract
attention more strongly and rapidly than others [Cerf et al., 2009]. The
label probability could be computed as the normalized distribution of
class labels from the samples of the active semantic segmentation.

• Semantic Uncertainty: since with the active MAP inference we have a
probability for the labeling, we could compute the Shannon entropy of
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the label probability, which can be used as a semantic-level feature for
scanpath prediction.

Also, the use of SEEDS superpixels, instead of pixels, as the basic unit for
saliency computation may allow enhancement on signal-to-noise-ratio at a re-
duced computational cost, and features defined on superpixels may also pro-
vide richer representations in the descriptions of a coherent group of pixels.
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Appendix SEEDS Superpixels

Evaluating Pixel-level and Block-level Movements

In this appendix we give more detail of the observation used to speed up the
evaluation of the pixel-level and block-level movements in SEEDS.

Recall that Al

k

is the set of pixels that are candidates to be moved from the
superpixel A

k

to A
n

.

Observation 1 Let the sizes of A
k

and A
n

be similar, and Al

k

much smaller,
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in which we simply merged Equation (3.4) and (3.5). We write H(s) � H(s
t

)

taking into account that s and s
t

only differ in Al

k

, and the assumption of the
Observation on the size of the superpixels, i.e. |A

k

| ⇡ |A
n

|� |Al

k

|. Thus, the
expression does not take into account the color at superpixels different from
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k and n, and we can get rid of the normalization of the histograms due to the
assumption. Then, the evaluation becomes,
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The second assumption of the Observation is that Al

k

is concentrated in a single
bin. Let H⇤ be the color in which Al

k

is concentrated. Then, the evaluation in
Equation (A.3) becomes
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Then, note the following simple equality:
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and we introduce it to the evaluation in Equation (A.4). Reordering the terms,
and canceling the same terms in both sides of the inequality, Equation (A.4)
becomes:
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Now, we develop the intersection distances in the Observation to arrive to
Equation (A.8). We use the following expression:
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and since we assumed that the histogram of Al
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Finally, we use this expression and the assumption of |A
k

| ⇡ |A
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|,and we
obtain Equation (A.8):
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