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Abstract: The genetic background of pain is becoming increasingly well understood, which opens 

up possibilities for predicting the individual risk of persistent pain and the use of tailored therapies 

adapted to the variant pattern of the patient’s pain-relevant genes. The individual variant pattern 

of pain-relevant genes is accessible via next-generation sequencing, although the analysis of all 

“pain genes” would be expensive. Here, we report on the development of a cost-effective next gen-

eration sequencing-based pain-genotyping assay comprising the development of a customized Am-

pliSeq™ panel and bioinformatics approaches that condensate the genetic information of pain by 

identifying the most representative genes. The panel includes 29 key genes that have been shown 

to cover 70% of the biological functions exerted by a list of 540 so-called “pain genes” derived from 

transgenic mice experiments. These were supplemented by 43 additional genes that had been inde-

pendently proposed as relevant for persistent pain. The functional genomics covered by the result-

ing 72 genes is particularly represented by mitogen-activated protein kinase of extracellular signal-

regulated kinase and cytokine production and secretion. The present genotyping assay was estab-

lished in 61 subjects of Caucasian ethnicity and investigates the functional role of the selected genes 

in the context of the known genetic architecture of pain without seeking functional associations for 

pain. The assay identified a total of 691 genetic variants, of which many have reports for a clinical 

relevance for pain or in another context. The assay is applicable for small to large-scale experimental 

setups at contemporary genotyping costs. 

Keywords: next generation sequencing; human genomics; pain genetics; pharmacogenomics; com-

putational functional genomics; data science; knowledge discovery 

 

1. Introduction 

A genetic background of pain plays a role in rare hereditary extreme phenotypes that 

cause either pain insensitivity [1] or paroxysmal pain disorders [2], in the perception of 

acute pain [3], in the risk of pain persistence after a triggering event [4], or in the response 

to pharmacological [5] or non-pharmacological [6] pain treatments. The involvement of 

540 “pain genes” in pain is supported by robust evidence [7,8], and further suggestions 

have been communicated [9,10]. With predominantly small effects exerted by common 

genetic variants [11], a breakthrough in the genetic profiling of individual risks, as occa-

sionally expected [12], has not yet really been achieved [13]. Instead, this seems to be 

linked to a complex pattern of functional genetic variants [14], which is being discovered 

in an evolutionary rather than revolutionary way, which is supported by technical ad-
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vances over the last decade [15] that allow to establish genotype versus phenotype asso-

ciations for thousands of genetic variants in a still manageable small number of patients 

[14,16]. 

As a basis for the association of human genotypes with pain and the risk for its per-

sistence, we propose a set of 29 genes as key players among the currently known pain-

relevant genes [17]. Specifically, the functional genomics-based architecture of pain has 

been presented as a polyhierarchy of biological processes [8] based on the organization of 

the Gene Ontology knowledge base that captures the current knowledge about the bio-

logical roles of all genes and their respective products [18,19]. With the 29 genes, a respec-

tive representation created with 540 pain-relevant genes could be reconstructed by 70%, 

based on a bioinformatics analysis of the Gene Ontology knowledge base [17]. 

The present report describes the development of a genotyping assay for these 29 

genes, with extension by further genes based on proposed importance for persistent pain 

to take full advantage of the technical specifications of the AmpliSeqTM gene sequencing 

library technique (Figure 1), resulting in a set of d = 72 genes (Table 1) continuing the 

research path of functional genomics of pain that has been pursued in previous reports 

[7,9,10,20]. Here, (i) the assembly of the present set of genes is reported along with (ii) a 

computational analysis of its functional genomics and (iii) its establishment in a subset of 

samples from a cohort of patients undergoing breast cancer surgery [21], together with 

(iv) an evidence-based analysis of known functional implications of the variants identified 

in these samples, although without aiming for a functional association in the present co-

hort. 

Table 1. Overview of the n = 72 genes contained in the proposed NGS panel. Subset 1 includes d = 29 genes identified 

using a computational functional genomics-based approach in which the gene sets are reduced to the most relevant items 

based on the importance of the gene within the polyhierarchy of biological processes characterizing the disease [17]. Sub-

set 2 resulted from the intersection of two proposed sets of human genes involved in modulating the risk or clinical course 

of persistent pain “Mogil” [9], and “Zorina-Lichtenwalter”. 

Gene Symbol NCBI  Gene Description Reference 

Subset #1 

ADRA2A 150  Adrenoceptor alpha 2A  [22] 

ADRB2* 154  Adrenoceptor beta 2  [23] 

AGER 177  Advanced glycosylation end-product specific receptor  [24] 

APOE* 348  Apolipoprotein E  [25] 

CCL21 6366  C-C motif chemokine ligand 21  [26] 

CCL5 6352  C-C motif chemokine ligand 5  [27] 

CCR2 729230 C-C motif chemokine receptor 2  [28] 

CCR7 1236  C-C motif chemokine receptor 7  [29] 

CD4 920  CD4 molecule  [30] 

CD40 958  CD40 molecule  [31] 

CD74 972  CD74 molecule  [32] 

CHRNA7 1139  Cholinergic receptor nicotinic alpha 7 subunit  [33] 

DRD1 1812  Dopamine receptor D1  [34] 

DRD2* 1813  Dopamine receptor D2  [34] 

EDN1 1906  Endothelin 1  [35] 

F2R 2149  Coagulation Factor II thrombin receptor  [36] 

F2RL1 2150  F2R like trypsin Receptor 1  [36] 

IFNG 3458  Interferon gamma  [37] 

IL1B* 3553  Interleukin 1 beta  [38] 

IL6 3569  Interleukin 6  [39] 
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LYN 4067  LYN proto-oncogene, Src family tyrosine kinase  [40] 

MAPK1 5594  Mitogen-activated protein kinase 1  [41] 

OPRM1* 4988  Opioid receptor mu 1  [42] 

P2RX7* 5027  Purinergic receptor P2X 7  [43] 

PRKCA 5578  Protein kinase C alpha  [44] 

PRKCD 5580  Protein kinase C delta  [45] 

TLR4 7099  Toll-like receptor 4  [46] 

TLR9 54106 Toll-like receptor 9  [47] 

TNF* 7124  Tumor necrosis factor  [48] 

Subset #2 

ACAN 176 Aggrecan [49] 

ACE 1636 Angiotensin I converting enzyme [50] 

ADRA1D 146 Adrenoceptor alpha 1D [51] 

ADRA2C 152 Adrenoceptor alpha 2C [52] 

ADRB2* 154 Adrenoceptor beta 2 [53] 

APOE* 348 Apolipoprotein E [25] 

AR 367 Androgen receptor [54] 

CALCA 796 Calcitonin related polypeptide alpha [55] 

CASP9 842 Caspase 9 [56] 

CFTR 1080 CF transmembrane conductance regulator [57] 

CRHBP 1393 Corticotropin releasing hormone binding protein [58] 

COMT 1312 Catechol-O-methyltransferase [59] 

DRD2* 1813 Dopamine receptor D2 [34] 

DRD4 1815 Dopamine receptor D4 [60] 

ESR1 2099 Estrogen receptor 1 [61] 

GCH1 2643 GTP cyclohydrolase 1 [62] 

GDF5 8200 Growth differentiation factor 5 [63] 

GSTM1 2944 Glutathione S-transferase mu 1 [64] 

HLA-DRB1 3123 Major histocompatibility complex, class II, DR beta 1 [65] 

HTR2A 3356 5-hydroxytryptamine receptor 2A [66] 

IL1A 3552 Interleukin 1 alpha [67] 

IL10 3586 Interleukin 10 [68] 

IL1B* 3553 Interleukin 1 beta [38] 

IL1RN 3557 Interleukin 1 receptor antagonist [69] 

CXCL8 3576 C-X-C motif chemokine ligand 8 [70] 

KCNS1 3787 
Potassium voltage-gated channel modifier subfamily S 

member 1 
[71] 

MAOA 4128 Monoamine oxidase A [72] 

MC2R 4158 Melanocortin 2 receptor [73] 

MTHFD1 4522 
Methylenetetrahydrofolate dehydrogenase, cyclohydro-

lase and formyltetrahydrofolate synthetase 1 
[74] 

MTRR 4552 
5-methyltetrahydrofolate-homocysteine methyltransfer-

ase reductase 
[75] 

NFKBIA 4792 NFKB inhibitor alpha [76] 

NR3C1 2908 Nuclear receptor subfamily 3 group C member 1 [77] 

OPRM1* 4988 Opioid receptor mu 1 [42] 
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P2RX7* 5027 Purinergic receptor P2X 7 [43] 

PGR 5241 Progesterone receptor [78] 

POMC 5443 Proopiomelanocortin [79] 

PRSS1 5644 Serine protease 1 [80] 

PTGS2 5743 Prostaglandin-endoperoxide synthase 2 [81] 

SCN9A 6335 Sodium voltage-gated channel alpha subunit 9 [82] 

SERPINA6 866 Serpin family A member 6 [83] 

SHMT1 6470 Serine hydroxy methyltransferase 1 [84] 

SMAD3 4088 SMAD family member 3 [85] 

SOD2 6648 Superoxide dismutase 2 [86] 

SPINK1 6690 Serine peptidase inhibitor, Kazal type 1 [57] 

STAT6 6778 Signal transducer and activator of transcription 6 [87] 

TGFB1 7040 Transforming growth factor beta 1 [88] 

TNF* 7124 Tumor necrosis factor [48] 

TRPA1 8989 
Transient receptor potential cation channel subfamily A 

member 1 
[89] 

TRPM8 79054 
Transient receptor potential cation channel subfamily M 

member 8 
[89] 

TRPV1 7442 
Transient receptor potential cation channel subfamily V 

member 1 
[89] 

*: Gene occurs in both subsets. 
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Figure 1. Assembly of the pain-relevant gene set forming the proposed NGS panel from various 

sources of evidence. The Venn diagram [90] visualizes the overlaps between the 29 key genes in 

the functional genomic representation of pain (“Lippmann” [17]) (subset 1 of the present NGS 

panel) and the two independent alternative proposals (“Mogil” [9] and “Zorina-Lichtenwalter” 

[10]) included as subset 2. The colors of the areas correspond to the colors of the adjacent names of 

the respective gene set. In addition, a set of d = 540 genes is indicated which have been empirically 

identified as relevant to pain and are either listed in the PainGenes database (http://www.jblde-

sign.com/jmogil/enter.html [7]) or were recognized as causing human hereditary diseases associ-

ated with extreme pain phenotypes, regulated in chronic pain in at least three studies including 

human association studies, or being targets of novel analgesics [91]. In addition, a further set of 

genes is included that belong to an NGS panel in an earlier approach to human genes relevant for 

the persistence of pain (”Kringel 1” [20]) The black dashed line surrounds the genes of the present 

NGS panel. The figure has been created using the R software package (version 4.0.2 for Linux; 

http://CRAN.R-project.org/ [92]) and the library “venn” (https://cran.r-project.org/package=venn 

[93]). 

2. Results 

2.1. Participants and Descriptive Data 

The NGS assay of the proposed set of 72 human genes relevant for persistent pain, was 

established in 61 genomic DNA samples available from a cohort of patients after breast can-

cer surgery [94] and including 55 subjects without pain and six patients with persistent pain, 

which corresponded to the ratio of persistent pain versus no pain in the entire cohort in 

order to resemble a random sample of subjects in terms of pain as much as possible. 

2.2. Main Results 

As applied previously [95], only exons including 25 bases of padding around all tar-

geted coding regions for which the realized read-depths for each nucleotide was higher 

than 20 were contemplated as successfully analyzed. With this acceptance criterion, the 

whole or almost whole coverage of the relevant sequences was obtained. The NGS se-

quencing process of the whole patient cohort required seven separate runs, each with 

samples of n = 9 or n = 10 patients. Coverage statistics were analogous between all runs 

and matched the scope of accepted quality levels [20,21,94]. A median of 4.55 × 106 reads 

per run was produced. The mean depth was close to 200 reads, the mean read length of 

called bases resulted in 215 bases and average chip loading was 67% (Figure 2). To estab-

lish a sequencing output with a high density of ISPs on a sequencing chip, the chip loading 

value should exceed 60% (Life Technologies, Carlsbad, CA, United States). The generated 

results of all NGS runs matched with the results obtained with Sanger sequencing of ran-

dom samples, meaning the accordance of nucleotide sequences between next generation 

sequencing and Sanger sequencing was 100% in all validated samples. 
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Figure 2. Technical detail of assay establishment and validation. A: Pseudo-color image of the Ion 318TM v2 Chip plate 

showing percent loading across the physical surface. This sequencing run had a 76% loading, which ensures a high Ion 

Sphere Particles (ISP) density. Every 318 chip contains 11 million wells and the color scale on the right side conduces as a 

loading indicator. Deep red coloration stays for a 100% loading, which means that every well in this area contains an ISP 

(templated and non-templated) whereas deep blue coloration implies that the wells in this area are empty. B: Alignment 

of segments of the ion torrent sequence of the COMT gene as Golden Helix Genome Browse®  readouts versus the same 

sequence according to an externally predicted Sanger electropherogram. The figure has been created using the original 

outputs of the Ion PGM System (Life Technologies, Darmstadt, Germany) and the Golden Helix Genome Browse®  software 

(Version 2.0.4, Golden Helix, Bozeman, MT, USA). 

Following elimination of nucleotides agreeing with the standard human genome se-

quence GRCh37 g1k (dated February 2009), the result of the NGS consisted of a vector of 

nucleotide information about the d = 69 genes for each individual DNA sample. This vec-

tor had a length equaling the set union of the number of chromosomal positions in which 

a non-reference nucleotide had been found in any probe of the actual cohort. Specifically, 

a total of 691 genetic variants were found, of which 161 were exonic, 22 intergenic, 255 

intronic, and 215 variants were located in the 3’-UTR and 38 variants in the 5’-UTR (Figure 

3). Three genes (IFNG, GSTM1, and CXCL8) were not represented in the final set of genetic 

variants. Panel design and assay quality parameters were re-examined with positive re-

sults. The read gene length provided an explanation for the absence of variants (Figure 3). 

That is, the three genes were among the shortest genes in the available panels. In fact, the 

number of variants detected was significantly correlated with the total number of nucleo-

tides read (total number of variants: robust correlation coefficient: 0.612, p = 1.116 × 10−8, 

exonic variants only: robust correlation coefficient: 0.398, p = 0.00054). The number of nu-

cleotides read per gene also matched well with the gene length queried from the database 

“org.Hs.eg.db” (robust correlation coefficient: 0.8633, p < 2.22 × 10−16. 
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Figure 3. Number and localization of variants identified using the present AmpliSeqTM panel, in relation to the read DNA length per gene. A: Stacked bar plot representing the number 

of genetic variants per gene included in the assay, categorized for the gene locations. The horizontal size of the cells is proportional to the number of nucleotides assayed in the respective 

gene. The genes are ordered for descending read length. Variants were not found in three genes (IFNG, GSTM1 and CXCL8; indicated in blue gene symbols at the x-axis), which are 

among the shortest genes. B: Scatterplot of the total number of variants versus the number of nucleotides read for the respective gene in the present assay. A robust regression line with 

95% confidence interval is overlaid on the dot plot. The genes where no variants had been detected are indicated as blue dots. Please note the decreasing order of gene length on the 

abscissa to match the main panel. The figure has been created using the R software package (version 4.0.2 for Linux, city, http://CRAN.R-project.org/ [92]) and the R libraries “ggplot2” 

(https://cran.r-project.org/package=ggplot2 [96]). UTR: untranslated region.
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2.3. Other Analyses 

The d = 29 genes have been shown to cover 70% of the DAG emerging from 540 pain 

genes, I.e., can be regarded to represent pain completely to this extent [17]. However, as 

the present panel had been filled with further genes, the present analyses aimed to func-

tionally characterize the set of d = 72 genes. This was approached by computational que-

rying of the knowledge about the function of human genes recorded in the knowledge 

base of gene ontology (GO). Over-representation analysis (ORA) identified 70 GO terms 

as significantly associated with the set of 72 genes, more often than randomly expected, 

at the selected p-value threshold of 5 × 10−15 with correction for multiple tests according to 

Bonferroni. Computed ABC analysis of the remarkableness of the GO terms qualifying as 

headlines to describe significant branches of the obtained polyhierarchy categorized d = 

14 terms into ABC set “A” indicating the most important items (Figure 4). Further reduc-

tion of the number of GO terms by subsumption of adjacent branches of the polyhierarchy 

to the next suitable unifying term upwards the hierarchy led to six functional areas cov-

ered by the 72 genes.
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Figure 4. Computational functional genomics perspective on the biological processes in which the genes analyzed with the proposed NGS panel are involved. The figure displays the 

results of an overrepresentation analysis (ORA; p-value threshold, tp = 5 × 10−15 and Bonferroni α correction) of the 72 genes included in the present NGS panel (Table 1). A: Bar plot of 

the gene relevance in the functional genomics representation of the present gene set. As a basis for the selection of the most relevant terms to describe the directed acyclic graph (DAG 

[97]) representing the polyhierarchical structure of the Gene Ontology database, i.e., the terms that can serve as headlines for each branch of the DAG, the remarkableness measure was 

previously introduced [98]. The bar plot shows the relevance of GO terms in decreasing order of the remarkableness measure. The blue bars indicate the most relevant terms selected 

by an item categorization technique, implemented as a computed ABC analysis [99]. B: The ABC plot (blue line) shows the cumulative distribution function of the remarkableness 

measure with the limits between sets A, B and C indicate as red lines. The results show that 14 GO terms belonged to ABC set “A” and were therefore considered as most relevant to 

the DAG. C: Top-down representation of the annotations (GO terms) representing a systems biology perspective of the biological processes modulated by the set of 72 genes included 

in the present NGS panel. Each ellipse represents a GO term. The graphical representation follows the standard of the GO knowledge base, where GO terms are related to each other by 

“is-a”, “part-of”, “has-a” and “regulates” relationships forming a branching polyhierarchy organized in a directed acyclic graph (DAG [97]). The color coding is as follows: No color: 

GO terms that are important for the DAG’s structure but do not have a significant p-value in Fisher’s exact tests. Red: Significantly overrepresented nodes. Green: Terms at the end 

(detail) of a branch of the DAG. In addition, the node’s text will be colored in blue to indicate that this node is a detail. Yellow: Significant nodes with highest remarkableness in each 

path from a detail to the root, i.e., the so-called “headlines”. The margins indicate over by its red color. Violet: Functional areas, i.e., terms selected to describe the parts below them in 

the DAG most concisely. The figure has been created using the R software package (version 4.0.2 for Linux; http://CRAN.R-project.org/[92]) and the R libraries “ABCanalysis” 

(http://cran.r-project.org/package=ABCanalysis [99]), “ggplot2” (https://cran.r-project.org/package=ggplot2 [96]) and “dbtORA” (https://github.com/IME-TMP-FFM/dbtORA [100]).
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These areas included: (i) the “regulation of localization” (GO:0032879), which mainly 

concerned the regulation of protein secretion (GO:0050708); (ii) “response to a stimulus” 

(GO:0050896) (Figure 5), especially to a chemical stimulus (GO: 0042221) and converged 

to “cytokine-mediated signaling (GO:0019221) and the MAPK cascade (GO:0043410); (iii) 

the “metabolic process” (GO: 0008152), which also converged to the MAPK cascade, the 

ERK1 and ERK2 cascade (GO: 007031), and the protein kinases (GO:0045860); (iv) the 

“multicellular organism process” (GO:0032501), which mainly involves cytokine produc-

tion (GO: 0001819), (v) “signaling” (GO:0023052), which in turn converges to the MAPK 

cascade, and (vi) finally, the non-specific “regulation of biological quality” (GO:0065008), 

which is considered to be relevant in the maintenance of homeostasis. Taken together, the 

set of n = 72 genes was functionally mainly involved in the mitogen-activated protein ki-

nase of extracellular signal-regulated kinase, which, in interaction with cytokine produc-

tion and secretion, indicated the control of immune and inflammatory processes in pain.
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Figure 5. Detail of the directed acyclic graph (DAG [97]) shown in Figure 4, displaying the polyhierarchical structure of the Gene Ontology database (“point of view”) below the GO 

term “response to stimulus” (GO:0050896). This was one of the major biological processes identified by a functional genomics analysis aiming at characteristics of pain and defined as 

“Any process that results in a change in state or activity of a cell or an organism (in terms of movement, secretion, enzyme production, gene expression, etc.) as a result of a stimulus. 

The process begins with detection of the stimulus and ends with a change in state or activity or the cell or organism.” [19]. The color coding is as follows: No color: GO terms that are 

important for the DAG’s structure but do not have a significant p-value in Fisher’s exact tests. Red: Significantly overrepresented nodes. Green: Terms at the end (detail) of a branch of 

the DAG. In addition, the node’s text will be colored in blue to indicate that this node is a detail. Yellow: Significant nodes with highest remarkableness in each path from a detail to the 

root, i.e., the so-called “headlines”. The margins indicate over by its red color. Violet: Functional areas, i.e., terms selected to describe the parts below them in the DAG most concisely. 

The figure has been created using the R software package (version 4.0.2 for Linux; http://CRAN.R-project.org/ [92]) and the library “dbtORA” (https://github.com/IME-TMP-

FFM/dbtORA [100]).
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3. Discussion 

The primary subset of the present panel of pain-relevant genes represents key genes 

of pain that had emerged in a computational functional genomics-based analysis that con-

sidered the position of biological processes in which these genes were involved in the 

polyhierarchical presentation of pain [17]. In a previous analysis of the functional ge-

nomics of pain [8], the biological functions characterizing pain had been identified to com-

prise 12 different components. Specifically, main functional areas were “behavior”, “re-

sponse to wounding” and “response to organic substance”, which are sub-terms of the 

GO term “response to stimulus”. In addition, ion homeostasis and transport, the synaptic 

transmission of nociceptive input and intracellular signal transduction including the G-

protein coupled receptor- signaling pathway as well as anatomical structure development 

and regulation of (multicellular) system processes completed the full functional picture of 

pain. In a later analysis [17], the present subset 1 of n = 29 best-scoring genes was found to 

identify the GO terms forming the complete polyhierarchy with precision and recall of more 

than 70%. Thus, the present subset 1 includes genes which best reflect the functional biology 

of pain. For comparison, when using a random sample of n = 29 genes from the 540 pain-

relevant genes, the average recall of the GO terms of the pain-DAG was only 1.77% [17]. The 

relevance for pain in general was also supported by the observation that for the currently 29 

genes a significantly higher hit rate of drug targets was achieved than for a random sample 

of 29 genes among the 540 pain genes [17]. Hence, several lines of evidence provide support 

that subset 1 can be considered as a pain-relevant selection of genes. 

It was technically possible to add more genes without increasing the analytical cost, 

and this option was chosen by adding subset 2, which uses previous and independent 

efforts to select pain-relevant genes [9,10]. This shifted the functional genomics of pain 

covered by the resent NGS Panel, resulting in the need for a new analysis, which led to an 

emphasis on immune and inflammatory processes in the functional genomics of pain cov-

ered by the current NGS panel, particularly represented by the mitogen-activated protein 

kinase of extracellular signal-regulated kinase and cytokine production and secretion. 

Thus, the present panel provides a key set of pain genes that has been derived from 

a computer-aided functional genomics analysis [17] of 540 genes of the PainGenes data-

base [7]. Although this covers 70% of the biological processes in which the 540 genes are 

involved, it is not an exhaustive set of genes of interest for pain. The genes in the Pain-

Genes database were included based on studies in transgenic mice, with the condition 

that at least one statistically significant difference was reported between the mutated mice 

and their concurrently tested wild-type controls. However, alternative approaches, includ-

ing by the authors of the PainGenes database [9], used different criteria, such as reported 

associations with clinical pain, resulting in additional gene sets that were suggested to be 

pain relevant. A selection of these genes was included as subset 2 in the present panel, and 

in addition, additional genes from these proposals were included in an earlier, similarly 

designed NGS panel [20,95,101]. For example, the COMT genes were added, which were 

extensively studied in connection with pain modulation [102], but were not included in the 

important subset 1 of the present panel, but were members of subset 2. 

3.1. Discussion of Main Results 

3.1.1. Technical Considerations 

Since 2008, when sequencing switched from Sanger-based to NGS technologies, the 

cost per raw megabase has been significantly below the expectations predicted by the re-

ciprocal of Moore’s law, where the latter is an empirical observation from computer hard-

ware engineering and describes technological developments that are widely regarded as 

successful (for data, see https://www.genome.gov/about-genomics/fact-sheets/DNA-Se-

quencing-Costs-Data). The panel presented here, fits well into the current costs. Our se-

quencing project with the Ion TorrentTM platform using the personal genome machine 

with 318TM chips cost approx. € 630 per sequencing run while the cost per raw megabase 
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of the 72 genes in 56 DNA samples required approximately € 0.20 per Mb. While the se-

quencing cost per run for the TorrentTM and Ilumina MiSeq are comparable, the invest-

ment costs for the MiSeq sequencer are higher, but this machine has a higher throughput, 

which reflects in a slightly reduced sequencing cost per megabase [103]. 

3.1.2. Functional Involvement of Genes in Biological Processes 

The selection of genes relied on empirical evidence of their involvement in pain. For 

subset #1 (d = 29). This had been shown for all of the genes in the original paper [17]. This 

subset includes d = 29 genes identified using a computational functional genomics-based 

approach in which the gene sets are reduced to the most relevant items based on the im-

portance of the gene within the polyhierarchy of biological processes characterizing pain. 

Subset #2 resulted from two proposed sets of human genes involved in modulating the 

risk or clinical course of persistent pain “Mogil” [9] and “Zorina-Lichtenwalter” [10]. The 

chosen set of genes for subset ‘2 includes the intersection from both alternative proposals 

aiming at similar phenotypes. However, when analyzing these alternatives for mutual 

agreement, an overlap of n = 50 could be observed. Combining all proposals into a large 

panel was not an option due to the technical limitations of the IonTorrentTM restricting the 

panel size to 500 kb (pipeline version 5.6.2, Carlsbad, CA, United States). 

Both subsets comprised genes associated with the mesolimbic dopaminergic system, 

i.e., DRD1, DRD2, DRD3, DRD4 which code for dopamine receptors which play an im-

portant role in pain modulation, suggesting that dopamine can modulate pain signals by 

acting at both presynaptic and postsynaptic targets [104]. Further genes were involved in 

cytokine production (CCL21 CCL5 CCR2, CCR7) and there is significant evidence showing 

that certain cytokines are involved in not only the initiation but also the persistence of 

pathologic pain by directly activating nociceptive sensory neurons [105]. Another main 

focal point were genes associated with immune regulatory processes including genes cod-

ing for interleukins (IL1A, IL6, IL10, IL1B, IL1RN) [106–109] and the histocompatibility 

complex related gene HLA-DRB1 [110], which has been shown to be involved in immu-

nological mechanisms of pain [111]. This is also supported by published evidence for the 

further genes in this list, such as TNF [112], GCH1 [113], and P2RX7 [114]. The view of 

pain and its development towards persistence as a trait resulting from alterations in the 

immune system is a concept that is biologically highly plausible and agrees with other 

lines of pain research and has been discussed more detailed in a previous work [115]. 

Another major process group included members of the transient receptor potential (TRP) 

family (TRPA1, TRPM8, TRPV1) that are expressed at nociceptors and which are well es-

tablished players in the perception of pain [116]. This similarly applies to the Toll-like 

receptor genes (TLR4 and TLR9)), which have been associated with the inflammatory con-

sequences of glia activation (including microglia and astrocytes), sensory neurons, and 

other cell types which can influence nociceptive processing [47]. 

3.1.3. Functional Involvement of Detected Variants 

In the present study sample, a total of 691 genetic coding variants were found. Re-

gardless of the sample preselection, 68 clinical associations, of which 29 have associated 

with various painful conditions (Table 2), could be queried for the observed variants from 

open access data sources. These comprise: (i) the Online Mendelian Inheritance in Man 

(OMIM® ) database (https://www.omim.org), (ii) the NCBI gene index database, the Gene-

Cards database (https://www.genecards.org) and the 1000 Genomes Browser (all accessed 

in October 2020). Although the present gene set has been assembled with a focus of a 

relevance to pain, many of its members have been implicated in pharmacogenetic modu-

lations of drug effects (Table 3). Moreover, several of the genes in the present NGS panel 

have been chosen as targets of analgesics, approved or under current clinical development 

(data not shown). Functional polymorphisms that have been proven to influence gene 

functions are the most common candidate mutations in human that play a vital role in the 

genetic basis of certain diseases [111,117]. 
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Table 2. Variants with reported clinical effects. The table provides a list of human variants in the 72 putative chronic pain 

genes which were found in the present random sample of 61 subjects of Caucasian ethnicity, for which clinical associations 

have been reported. 

Gene 

Name 
Variant 

dbSNP# Acces-

sion Number 
Consequence Known Clinical Association 

Refer-

ence 

Pain Related 

ACAN chr15:g.89398553C>A rs35430524 
NON_SYNONY-

MOUS 
Chronic low back pain [49] 

ACAN chr15:g.89402051A>G rs1042630 
NON_SYNONY-

MOUS 
Chronic low back pain [49] 

ADRB2 chr5:g.142780339C>A 
rs1042718 

 

NON_SYNONY-

MOUS 

Associated with increased re-

sponse to fentanyl 
[118] 

ADRB2 chr5:g.148206917C>T 
rs1042719 

 
SYNONYMOUS 

Associated with chronic pain in 

sickle cell disease 
[119] 

ADRB2 chr5:g.148207447G>A 
rs1042720 

 
SYNONYMOUS 

Associated with chronic pain in 

sickle cell disease 
[119] 

COMT chr22:g.19951207C>T rs4818 SYNONYMOUS Chronic post-surgical pain [120] 

ESR1 chr6:g.152420095G>A rs2228480 SYNONYMOUS Risk of knee osteoarthritis [121] 

HTR2A chr13:g.47409034G>A rs6314 
NON_SYNONY-

MOUS 

Development of rheumatoid ar-

thritis 
[122] 

IL1RN chr2:g.113887207T>C rs419598 SYNONYMOUS 
Altered pain perception [123] 

Knee osteoarthritis [124] 

IL1RN chr2:g.113890304T>C rs315952 SYNONYMOUS Osteoarthritis [125] 

IL6 chr7:g.22771039T>C rs13306435 SYNONYMOUS 
Associated with persistent lum-

bar radicular pain 
[126] 

KCNS1 chr20:g.43723627T>C rs734784 
NON_SYNONY-

MOUS 
Pain variability [127] 

MTRR chr5:g.7885959A>G rs162036 
NON_SYNONY-

MOUS 
Associated with migraine [128] 

P2RX7 chr12:g.121592689T>C rs17525809 
NON_SYNONY-

MOUS 

Regulate the onset of gouty ar-

thritis 
[129] 

P2RX7 chr12:g.121600253T>C rs208294 
NON_SYNONY-

MOUS 

Pain tolerance [130] 

Variability in chronic pain sensi-

tivity 
[43] 

P2RX7 chr12:g.121615103G>A rs1718119 
NON_SYNONY-

MOUS 

Cold pain sensitivity and analge-

sic effect of fentanyl 
[131] 

P2RX7 chr12:g.121622304A>G rs3751143 
NON_SYNONY-

MOUS 

Relevance to diabetic neuro-

pathic pain 
[132] 

SCN9A chr2:g.167141109G>C rs41268673 
NON_SYNONY-

MOUS 
Oxaliplatin induced neuropathy [133] 

 chr2:g.166277030T>G rs12478318 
NON_SYNONY-

MOUS 

Genotype GT is associated with 

Pain Insensitivity, Congenital as 

compared to genotype TT 

[134] 

TGFB1 chr19:g.41858876C>T rs1800471 
NON_SYNONY-

MOUS 

Painful bladder syndrome [135] 

Insensitivity to pain and erythro-

melalgia 
[136] 
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TRPA1 chr8:g.72975801T>C rs7819749 SYNONYMOUS 
Sensitivity to heat stimuli and 

topically applied capsaicin 
[16] 

TRPM8 chr2:g.234854550G>A rs11562975 SYNONYMOUS Attenuated cold pain sensation [137] 

TRPV1 chr17:g.3494361G>T rs222748 
NON_SYNONY-

MOUS 

Burning pain and capsaicin sen-

sitivity 
[138] 

TRPV1 chr17:g.3494361G>T rs222748 
NON_SYNONY-

MOUS 

Burning pain and capsaicin sen-

sitivity 
[138] 

Cold and heat pain sensitivity [139] 

TRPV1 chr17:g.3495374G>A rs222749 
NON_SYNONY-

MOUS 

Chronic migraine [55] 

Altered pain perception [140] 

Non-Pain Related 

ACAN chr15:g.89398407C>T rs3743398 
NON_SYNONY-

MOUS 
Glioblastoma multiforme [141] 

ACE chr17:g.61564052A>G rs4331 SYNONYMOUS 
Risk of late-onset Alzheimer’s 

disease 
[142] 

CASP9 chr1:g.15833506C>T rs2308950 
NON_SYNONY-

MOUS 

Risk of non-Hodgkin’s lym-

phoma 
 [143] 

 

Predisposition to lung cancer [144] 

CASP9 chr1:g.15834360A>G rs2020902 SPLICE_SITE Bladder cancer risk [145] 

CCR2 chr3:g.46399174G>T rs3918367 SYNONYMOUS 

Associated with endothelial 

function in prediabetic individu-

als 

[146] 

CCR2 chr3:g.46399208G>A rs1799864 
NON_SYNONY-

MOUS 

Associated with prostatic hyper-

plasia and prostate cancer 
[147] 

CCR2 chr3:g.46399798T>C rs1799865 SYNONYMOUS 

Associated with markers of exer-

cise-induced skeletal muscle 

damage 

[148] 

CD4 chr12:g.6924109C>T rs11575099 SYNONYMOUS 
Involved in multiple sclerosis [149] 

Stressful life events and suicide [150] 

CFTR chr7:g.117175372A>G rs121909046 
NON_SYNONY-

MOUS 

Associated with respiratory and 

pancreatic diseases 
[151] 

CFTR chr7:g.117199709G>C rs1800095 
NON_SYNONY-

MOUS 

Associated with idiopathic pan-

creatitis 
[152] 

CFTR chr7:g.117235055T>A rs1042077 SYNONYMOUS Associated with cystic fibrosis [153] 

ESR1 chr6:g.152129308G>A rs746432 SYNONYMOUS Breast cancer risk  [154] 

HTR2A chr13:g.47409034G>A rs6314 
NON_SYNONY-

MOUS 
Major depressive disorder [155] 

HTR2A chr13:g.47409149T>A rs35224115 SYNONYMOUS Obsessive-compulsive disorder [156] 

HTR2A chr13:g.47466622G>A rs6305 SYNONYMOUS Schizophrenia [157] 

IL1RN chr2:g.113877713A>C rs878972 SPLICE_SITE Prostate cancer risk [158] 

IL6 chr7:g.22771156C>G rs2069849 
NON_SYNONY-

MOUS 
Associated with obesity [159] 

MTRR chr5:g.7878424T>A rs2303080 
NON_SYNONY-

MOUS 

Risks of spina bifida and cono-

truncal heart defects 
[160] 

MTRR chr5:g.7889216G>A rs2287779 SYNONYMOUS 
Risk of childhood acute lympho-

blastic leukemia 
[161] 
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MTRR chr5:g.7889304C>T rs2287780 
NON_SYNONY-

MOUS 
Gastric cancer risk [162] 

NR3C1 chr5:g.142661490A>G rs6196 SYNONYMOUS 
Associated with corticosteroid 

dependency and resistance 
[163] 

NR3C1 chr5:g.142662280G>T rs258751 
NON_SYNONY-

MOUS 

Associated with high-altitude 

pulmonary edema 
[164] 

NR3C1 chr5:g.142779317T>A rs56149945 
NON_SYNONY-

MOUS 
Associated with cocaine use [165] 

NR3C1 chr5:g.142780337C>G 
rs6190 

 

NON_SYNONY-

MOUS 

Associated with mood and anxi-

ety disorders in patients with 

asthma 

[166] 

NR3C1 chr5:g.142780339C>A rs6189 
NON_SYNONY-

MOUS 

Associated with mood and anxi-

ety disorders in patients with 

asthma 

[166] 

P2RX7 chr12:g.121600238G>T rs28360447 STOP_GAINED Osteoporosis risk [167] 

PGR chr11:g.100909991T>C rs500760 SYNONYMOUS Gastric cancer risk [168] 

PGR chr11:g.100922202G>A rs1042839 SYNONYMOUS 
Sporadic neuroendocrine tumor 

risk 
[169] 

PRKCA chr17:g.64685078G>A rs2227857 SYNONYMOUS Deep vein thrombosis [170] 

POMC chr2:g.25387624G>A rs8192605 SYNONYMOUS 
Associated with substance de-

pendence and body mass index 
[171] 

SER-

PINA6 
chr14:g.94772504G>A rs1042394 SYNONYMOUS Associated with stress fractures [172] 

SER-

PINA6 
chr14:g.94776221A>C rs2228541 

NON_SYNONY-

MOUS 
Lymphoblastic leukemia [173] 

TLR4 chr9:g.120475302A>T rs4986790 
NON_SYNONY-

MOUS 
Higher risk for gastric cancer [174] 

 chr9:g.120475602C>T rs4986791 
NON_SYNONY-

MOUS 

Associated with lower respira-

tory tract infections 
[175] 

TRPM8 chr2:g.234905078C>A rs11563208 SYNONYMOUS 

Associated with cold-induced 

airway hyperresponsiveness in 

bronchial asthma 

[176] 

TRPV1 chr17:g.3495391T>C rs55916885 
NON_SYNONY-

MOUS 
Associated with asthma [177] 

# https://www.ncbi.nlm.nih.gov/snp/?cmd=search 

Table 3. Gene variants with reported pharmacogenetic effects. The table provides a summary of variants in genes included 

in the proposed panel of n = 72 genes and found in the DNA of the 61 analyzed subjects, that have been implicated in a 

pharmacogenetic context to modulate the effects of drugs administered for the treatment of pain or as disease modifying 

therapeutics in a painful disease. 

Gene Name Variant Affected Drug Findings Reference 

ADRA2A rs1800545 Oxycodone 

Allele A is associated with 

dose of opioids in people 

with Pain as compared to 

allele G in the develop-

ment sample 

[178] 

ADRA2A rs11195419 Oxycodone 
Allele A is associated with 

dose of opioids in people 
[178] 
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with Pain as compared to 

allele G in the develop-

ment sample 

ADRB2 rs1042718 Fentanyl 

Genotype AC is associ-

ated with increased re-

sponse to fentanyl in 

healthy individuals as 

compared to genotype CC 

[118] 

CALCA rs3781719 Botulinum 

Patients with the AA gen-

otype and chronic mi-

graine may have an in-

creased response to botu-

linum toxin A as com-

pared to patients with the 

AG or GG genotypes. 

[55] 

CCL21 rs2812378 Infliximab 

Nominal association of 

this SNP with association 

of rheumatoid arthritis 

risk alleles 

[179] 

CD40 rs1126535 Adalimumab 

Allele T is associated with 

increased response to ada-

limumab in people with 

Arthritis 

[180] 

COMT rs4633 Morphine 

Patients with the CC gen-

otype may be more likely 

to require postoperative 

intervention with opioids 

after adenotonsillectomy 

as compared to patients 

with the TT genotype. 

Other genetic and clinical 

factors may also influence 

a patient’s requirement 

for pain management. 

[181] 

DRD2 rs6275 Heroine 

Polymorphism is associ-

ated with decreased likeli-

hood of headache disor-

ders 

[182] 

ESR1 rs9340799 Leflunomide 

Patients with the AA gen-

otype may experience 

greater response to 

leflunomide as compared 

to patients with the GG 

genotype. Other genetic 

and clinical factors may 

also influence response to 

leflunomide, particularly 

rs2234693. 

[183] 

IFNG rs2069705 Etanercept 

Allele G is associated with 

increased response to Tu-

mor necrosis factor alpha 

[184] 
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(TNF-alpha) inhibitors in 

people with Arthritis 

IL1B rs1143634 Morphine 

Allele A is associated with 

increased dose of mor-

phine in women with 

Pain 

[185] 

IL6 rs11265618 Tocilizumab 

Patients with the CC gen-

otype and rheumatoid ar-

thritis may have a better 

response when treated 

with tocilizumab as com-

pared to patients with the 

CT or TT genotype 

[186] 

MTRR rs1801394 Folic Acid 

Female patients with the 

AA genotype and Mi-

graine who are treated 

with folic acid and a vita-

min b-complex may have 

decreased severity of pain 

as compared to patients 

with the GG genotype. 

[187] 

OPRM1 rs1799971 Opioids 

Allele G is associated with 

increased plasma concen-

trations of morphine in 

women with Pain, Postop-

erative as compared to al-

lele A 

[188] 

P2RX7 rs1718125 Fentanyl 

Patients with the CC gen-

otype may have de-

creased fentanyl dosage 

requirements as com-

pared to patients with the 

CT or TT genotypes 

[131] 

PTGS2 rs20417 Ibuprofen 

Patients with the CC gen-

otype may have de-

creased pain relief to ibu-

profen as compared to pa-

tients with GG or CG gen-

otype. 

[189]; how-

ever, see 

[190] 

For example, a single nucleotide polymorphism determined as ER22/23EK (rs6189 

and rs6190) is located in the exon 2 of the glucocorticoid receptor gene (NR3C1) and in-

volves codons 22 and 23. This SNP is revered be responsible for relative resistance to glu-

cocorticoids [111] and is associated with several effects like mood and anxiety disorders 

in patients with asthma [191] and a more aggressive disease course in multiple sclerosis 

[111]. Results of a study of the functional consequences of P2RX7 polymorphisms in re-

combinant cells in vitro [132] suggested a correlation between gain-of -function and loss-

of-function of P2RX7 expression. It was further demonstrated that in patients with dia-

betic peripheral neuropathic pain (DPNP), the presence of the gain-of-function SNPs 

rs208294 (His155Tyr) is associated with higher pain intensity scores. Another meta-anal-

ysis addressed the role of P2RX7 SNP (rs1718119) with the odds of Tuberculosis [192] and 

the findings indicate that this polymorphism could serve as a potential biological marker. 
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Another recent study aimed to examine whether pharmacogenetics explains some of the 

variability in the response to fentanyl, which is an agonist of the μ-opioid receptor com-

monly used in the treatment of moderate-severe pain. Carriers of the C523A polymor-

phism (rs1042718) in the ADRB2 gene were associated with increased response to fentanyl 

[111]. 

3.1.4. Comparison to other Proposals of Pain-Relevant Gene Assay Panels 

The present panel for sequencing genes associated with pain complements alterna-

tive proposals, including commercial offerings of “pain gene” sets that promise to provide 

ready-to-use assays for private testing or clinical association studies. For example, the 

company GX Sciences (Austin, TX, US) advertises a panel containing 30 single nucleotide 

polymorphisms in 28 different genes that comes with a do-it-yourself saliva swab test kit. 

All genes have a referenced relationship to chronic pain, but no further insight into the 

gene selection criteria is provided, nor is there any further information on the genotyping 

method performed (https://www.gxsciences.com). This panel and the currently proposed 

one have only 8.3% of their total genes in common, while 42.8% of the GXS panel are so-

called pain genes, i.e., genes mainly from the PainGenes database (http://www.jblde-

sign.com/jmogil/enter.html [7], with some extensions [8] comprising targets of approved 

analgesics [91] and genes known to be causally involved in familiarity syndromes with 

either absent or paroxysmal exaggerated pain [1]. For comparison, 65.3% of the presently 

proposed panel are “pain genes”. 

Another alternative panel for sequencing pain-related genes is provided by Live 

Technologies (Carlsbad, CA, United States), the manufacturer of the Ion TorrentTM plat-

form used for the present panel. It includes the complete exonic sequence of 64 pain-re-

lated genes. However, without further information on gene selection criteria 

(https://www.ampliseq.com). This set and the currently proposed set have only 11.5% of 

their total genes in common. However, 59.5% of this panel also belongs to the so-called 

“pain genes” mentioned above [8]. A third alternative is a cloud-based, publicly available 

knowledge base that enables virtual gene panels for human diseases and includes a virtual 

panel for chronic pain with 28 genes contributed by various departments, research 

groups, and consortia (https://panelapp.genomicsengland.co.uk). This set shares only 2% 

of the genes with the present panel, but 59.5% of its genes are also included in the “pain 

gene” set [8]. 

Thus, the present set of genes fits and complements other proposals. Taken above-

mentioned proposals, the panel introduced in the present report and our previous panel 

[20] together, NGS sets for pain already cover 28.3% of the 540 genes included as refer-

ences in the “pain-genes” set, which is based on the most stringent inclusion criteria by 

also requiring independent validations of a gene’s involvement in pain in knock-out mod-

els [7]. In contrast to the alternatives, the present set of pain-related genes is mainly based 

on a selection resulting from a computer-assisted functional genomic analysis [17]. Ac-

cording to a computational analysis of the functional involvement of the gene set [17], it 

covers > 70% of the genetic architecture of pain. This outperforms alternative proposals 

that purportedly single out pain-relevant genes but seem to lack a clear functional hypoth-

esis. The apparent discrepancies between the different proposals, which also extend to the 

sets of pain-related genes used to complete the present panel, underscore that the genetic 

architecture of persistent pain is still incompletely understood and that several independ-

ent lines of research can be pursued, because combining all proposals into a large research 

panel is not yet an easily implemented option because of the technical limitations of NGS 

applications. The development of these panels is aimed at broadening the genetic perspec-

tive on pain. Indeed, although many candidate gene association studies have identified 

multiple genes relevant for pain phenotypes in the past decade, but roughly ten genes or 

gene complexes account for over half of the findings and several of these candidate gene 

associations have held up in replication [9].  
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3.2. Strengths and limitations 

The present AmpliSeqTM panel complements earlier proposals on genes relevant for 

pain and especially persistent pain [7,9,10,20] and provides a validated assay suitable for 

high-throughput analyses to further evaluate genetic biomarkers for pain in this clinical 

setting. The biological roles of the included genes are clearly defined by the functional-

genomics description based on the current acquired knowledge about higher-level organ-

ization of gene products into biological pathways [193], of which the gold-standard is the 

Gene Ontology (GO) knowledge base [19]. These include a set of genes that have been 

shown to be essential for pain in a bioinformatics approach [17], which is in the present 

report regarded as the primary subset of major importance. Among the limitations, firstly, 

the selection of test persons does not reflect a random sample of a population, but only 

includes women with breast cancer. An attempt was made to reduce bias towards or 

against persistent pain by maintaining the respective ratio observed in the original cohort 

[94]. However, this proportion may not be identical for different settings of persistent 

pain. Furthermore, the inclusion of only women may have distorted the frequency of the 

X chromosome variant observed in this analysis. 

It is important to emphasize that the present report is limited to the details of assay 

development including the gene selection process. The separate report of the panel devel-

opment provides the details of its establishment and validation, along with the computa-

tional genomic bases of the gene selection and the functional implications of the selected 

gene set in the context of previous proposals of important genes related to persistent pain. 

Hence, it can be considered as a separate scientific analysis that would exceed the neces-

sary explanations provided within a genetic association report. In particular, the selection 

of the main subset of the present panel is based on a functional analysis and thus goes be-

yond the collection of genes discussed in the previous subsection, which seems to provide 

rather random collections based solely on mentions in the literature as pain-relevant genes. 

In contrast, the genetic analyses for risk of persistent pain will be performed in a 

cohort of 70/70 women with persistent/non-persistent pain, extending a previous analysis 

[14]. After all, the immediate exploitation of the advanced technology which NGS pro-

vides over single variant analysis, which was still common a decade ago, is still easier to 

achieve in limited gene sets than in the whole genome due to technical limitations. In view 

of the high prevalence of chronic pain of about one fifth to one third of the European 

population [194,195], it is important to advance the discovery of genetic markers as 

quickly as possible. 

4. Materials and Methods 

4.1. Assembly of a Pain-Relevant Gene Set 

The present NGS panel of pain relevant genes (Table 1) comprises two subsets de-

rived (i) from a computational functional genomics bioinformatics approach to key play-

ers in the genetic architecture of pain [17] and (ii) further genes taken from independent 

proposals of published evidence-based genes relevant to (persistent) pain. 

4.1.1. Computational Functional-Genomics Based Key Genes for Pain 

The focus in the selection of genes was on maintaining, as completely as possible, the 

functional genomics picture of pain with a reduced number of genes, as had been achieved 

by applying the computational functional genomics-based method of reducing disease-

related gene sets to their key components [17]. Thus, subset 1 (Table 1) of the presently 

proposed NGS panel consisted of the 29 genes with which it had been possible to repro-

duce the biological processes in which the full set of 540 pain-relevant genes is involved 

by over 70% although they represented only 5% of the original genes. 

4.1.2. Published Evidence-Based Genes Relevant to Pain 



Int. J. Mol. Sci. 2021, 22, 878 23 of 33 
 

 

In order to fully exploit the technical potential of the NGS panel, another 50 genes 

were added as subset 2 (Table 1). Specifically, these genes were selected based on inter-

sections between two independently proposed alternative sets of human genes involved 

in modulating the risk or clinical course of pain and its persistence (Figure 1). The sets 

contained 127 genes [9] and 152 genes [10]. Their intersection included 50 genes. As subset 

1 and subset 2 shared seven genes, the present NGS panel included 72 unique genes. 

4.2. Establishment of the AmpliSeqTM NGS Panel 

4.2.1. DNA Sample Acquisition 

The present set of genes complements an earlier NGS panel [20], which was success-

fully applied to genotype versus phenotype associations in patients who had undergone 

breast cancer surgery [14]. The laboratory analyses were therefore performed on the same 

DNA samples that were used previously, but with a non-redundant technical implemen-

tation. The samples comprise a subset from a cohort of n = 1000 women with unilateral non-

metastatic breast cancer, which has already been reported in connection with the develop-

ment of persistent pain after surgery [21]. All subjects were of Caucasian ethnicity by self-

assignment. The study followed the Declaration of Helsinki and was approved by the Co-

ordinating Ethics Committee of the Helsinki University Hospital. Each participating subject 

provided informed written consent including into the study of pain-relevant genes. 

For the present method-establishment and validation, a genetic association analysis 

with pain status was not intended. Nevertheless, in order to obtain a representative cohort 

for the evaluation of the frequency of genetic variants, which is as close as possible to a 

random sample of test subjects, the relative proportion of patients with persistent pain 

and without persistent pain, as observed in the entire cohort of 1000 women [94], was 

retained in the composition of the samples. Specifically, for assay establishment, 60 sam-

ples were planned. In the above-mentioned cohort, a total of 853 individuals were ana-

lyzed, 779 of whom had a favorable outcome with respect to pain, while 74 had developed 

persistent pain according to criteria defined in [94]. In 60 samples, this ratio corresponds 

to 5.7 individuals with persistent pain. After rounding, the sample currently analyzed 

consisted of 55 subjects without pain and six patients with persistent pain. 

4.2.2. DNA Amplification 

A multiplex PCR amplification strategy for the sequences of the coding genes was 

accomplished online (Ion AmpliseqTM Designer; http://www.ampliseq.com) to amplify 

the target region specified above with 25 base pair exon padding. After a comparison of 

several primer design options, the design providing the maximum target sequence cover-

age was chosen. The 403kb target-sized panel has been ordered with 1504 amplicons and 

covered approximately 97.54% of the target sequence. A total of 10 ng DNA per sample 

was used for the target enrichment by a multiplex PCR and each DNA pool was amplified 

with the Ion AmpliseqTM Library Kit in conjunction with the Ion AmpliseqTM “custom Pri-

mer Pool”-protocols according to the manufacturer procedures (Life Technologies, Darm-

stadt, Germany). 

After each pool had undergone 17 PCR cycles, the PCR primers were removed with 

FuPa Reagent (Thermo Fisher Scientific, Dreieich, Germany) and the amplicons were li-

gated to the sequencing adaptors with short stretches of index sequences (barcodes) that 

enabled sample multiplexing for subsequent steps (Ion Xpress™ Barcode Adapters Kit; 

Life Technologies, Carlsbad, CA, United States). After purification with AMPure XP beads 

(Beckman Coulter, Krefeld, Germany), the barcoded libraries were quantified with a 

Qubit®  2.0 Fluorimeter (Life Technologies, Darmstadt, Germany) and normalized for 

DNA concentration to a final concentration of 20 pmol/L using the Ion Library Equalizer™ 

Kit (Life Technologies, Darmstadt, Germany). Equalized barcoded libraries from 9–10 

samples at a time were pooled. To clonally amplify the library DNA onto the Ion Sphere 

Particles (ISPs; Life Technologies, Darmstadt, Germany), the library pool was subjected to 
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emulsion PCR by using an Ion PGM HI-Q View Template Kit on an PGM OneTouch sys-

tem (Life Technologies, Darmstadt, Germany) following the manufacturer’s protocol. 

4.2.3. DNA Sequencing 

Enriched ISPs which carried many copies of the same DNA fragment were subjected 

to sequencing on an Ion 318 Chip to sequence-pooled libraries with 9 to 10 samples. The 

number of combined libraries that can be accommodated in a single sequencing run de-

pends on the size of the chip, the balance of barcoded library concentration, and the cov-

erage required. The high-capacity 318 chip was chosen (instead of the low-capacity 314 or 

the medium-capacity 316 chip) to obtain a high sequencing depth of coverage of minimum 

30x. Sequencing was performed using the sequencing kit (Ion PGM Hi-Q Sequencing Kit; 

Life Technologies, Darmstadt, Germany) as per the manufacturer’s instructions with the 200 

bp single-end run configuration. This kit contained the most advanced sequencing chemis-

try available to users of the Ion PGM System (Life Technologies, Darmstadt, Germany). 

4.2.4. Assay Validation 

The current AmpliseqTM panel is technically identical to the panel which established 

previously [20], which had been validated by external Sanger sequencing. Hence, no di-

vergences in the current panel were expected. Again, for method validation a genomic 

region from the COMT gene which has already been in focus in a previous study [196], 

was chosen for validation by Sanger sequencing [197,198] in an independent external la-

boratory (Eurofins Genomics, Ebersberg, Germany), which was performed in ten DNA 

samples randomly chosen from the n = 72 samples in the present cohort. Amplification of 

the respective DNA segments was done using PCR primer pairs (forward, reverse) of (i) 

5’-CCTTATCGGCTGGAACGAGTT-3’, 5’-GTAAGGGCTTTGATGCCTGGT-3’ (ii) 5’-

GTTATTCCTCTGTAAGCAGCTGCCT-3’, 5’-TGTTTGTTTTAGATTGTGGTGGGTT-3’ 

(iii) 5’-TTTATTGCACAGACTTGCGGGTTC-3’, 5’-AGCCTTTTGAGAGATTTGAG-

TTTCA-3’.The results of Sanger sequencing were aligned with the genomic sequence and 

analyzed using Chromas Lite®  (Version 2.1.1, Technelysium Pty Ltd., South Brisbane, 

Australia) and the GenomeBrowse®  (Version 2.0.4, Golden Helix, Bozeman, MT, USA) 

was used to compare the sequences obtained with NGS or Sanger techniques.  

4.3. Data Analysis 

4.3.1. Bioinformatics Generation of Sequence Information 

The raw data (unmapped BAM-files) from the sequencing runs were processed using 

Torrent Suite Software (Version 5.2.2, Life Technologies, Darmstadt, Germany) to gener-

ate read alignments which are filtered by the software into mapped BAM-files using the 

reference genomic sequence (hg19) of target genes. Variant calling was performed with 

the Torrent Variant Caller Plugin using as key parameters: minimum allele frequency = 

0.15, minimum quality = 10, minimum coverage = 20 and minimum coverage on either 

strand = 3. The annotation of called variants was done using the Ion Reporter Software 

(Version 4.4; Life Technologies, Darmstadt, Germany) for the VCF files that contained the 

nucleotide reads and the SNP & Variation Suite®  (SVS) software (Version 8.9.0 for Linux, 

Golden Helix, Bozeman, MT, USA) to map the sequences to the reference sequences 

GRCh37 hg19 (dated February 2009). The SNP and Variation Suite software (SVS Version 

8.4.4; Golden Helix, Bozeman, MT, USA) was used for the analysis of sequence quality 

and coverage. 

4.3.2. Descriptive Analysis of Variant Frequencies 

Variants were identified and assigned to coding, regulatory, intronic or other loca-

tions on the genes using the SVS software. Based on the observed allelic frequency, the 

expected number of homozygous and heterozygous carriers of the respective SNP (single 

nucleotide polymorphism) according to the Hardy-Weinberg equilibrium was compared 
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with the observed number using Fisher’s exact test [199] as proposed previously [200]. 

Only variants within the Hardy–Weinberg equilibrium were retained. The number of var-

iants detected was analyzed for correlation with gene length, i.e., the number of nucleo-

tides read for each gene in the present assays. A robust correlation analysis was performed 

by calculating the percentage bend correlation coefficient using the R-package “WRS2” 

(https://cran.r-project.org/package=WRS2 [201]). Since the introns were considered only at 

their edges and intergenic regions only when the primer localization suggested by the panel 

design software included them, the correlation analysis was repeated for the exonic variants 

only. In order to recheck the correspondence of the read number of nucleotides with inde-

pendent information about the length of the respective genes, the latter was retrieved from 

the Bioconductor Annotation Data Package “org.Hs.eg.db” (https://bioconductor.org/pack-

ages/release/data/annotation/html/org.Hs.eg.db.html [202]) using the R library “EDASeq” 

(https://bioconductor.org/packages/release/bioc/html/EDASeq.html [203]). 

4.3.3. Identification of the Functional Genomics Biological Roles of the Set of Pain Genes 

The approach to the functional genomics biological roles of the set of pain genes was 

the same as before for the complete set of pain genes [8,17], or for other contextually se-

lected sets of genes relevant to pain [115]. The methods were described in detail in special 

publications [17,98]. The biological roles of the set of the n = 72 genes of the present panel, 

versus the biological roles of all human genes, were retrieved via analyses of the Gene 

Ontology knowledge base (GO; http://www.geneontology.org/) [204,205]. In the GO, 

knowledge of the biological processes, molecular functions and cellular components of 

genes is formulated using a controlled and clearly defined vocabulary of GO terms anno-

tated to the genes [8,98]. Here, the biological processes were used to compare the results 

with previous reports that had used this GO category [8,98]. In the GO, the terms are re-

lated by “is-a”, “part-of” and “regulated” relationships and form a polyhierarchy orga-

nized in a directed acyclic graph (DAG [97]), with a top-down polyhierarchy starting with 

more general root terms and specializing in the leaves representing GO terms of narrow-

est definitions. 

In order to obtain the DAG describing the biological processes in which the 72 se-

lected genes are involved, an overrepresentation analysis (ORA) was performed, which 

compared the occurrence of the specific set of genes annotated to certain GO terms with 

the expected occurrence of all human genes to these terms. The significance of a GO term 

associated with the present set of genes was determined using Fisher’s exact tests [199] 

with a p-value threshold of tp < 5 × 10−15 and an α correction for multiple testing according 

to Bonferroni [206]. The conservative thresholds were chosen heuristically, with the crite-

rion that the number of significant GO terms should not exceed the size of the gene set. 

The analyses were performed using our R library “dbtORA” (https://github.com/IME-

TMP-FFM/dbtORA [100]) on the R software environment (version 4.0.2 for Linux, coun-

try; http://CRAN.R-project.org/ [92]). 

In order to obtain an understandable interpretation of the GO-based functional ge-

nomics of pain covered by the selected NGS panel of 72 genes, the information was further 

reduced. As a basis for the selection of the most appropriate terms to describe the DAG, 

i.e., the terms that can serve as headlines for each branch of the DAG, the remarkableness 

measure was previously introduced [98]. That is, for each term 𝑇𝑖 in the set of terms, its 

remarkableness, 𝑅𝑒𝑚(𝑇𝑖) , was calculated as the product of certainty and information 

value, i.e., 𝑅𝑒𝑚(𝑇𝑖) = 𝐶𝑒𝑟𝑡(𝑇𝑖) · 𝐼𝑛𝑓𝑜(𝑇𝑖). There, the certainty of a term 𝑇𝑖 in the significant 

term set resulting from the ORA, is defined as 𝐶𝑒𝑟𝑡(𝑇𝑖) =

𝑝(there is a Term with smaller p-value) = |{𝑇𝑘:p-value(𝑇𝑘) < p-value(𝑇𝑖)}| 𝑛𝑇⁄ , where 

𝑛𝑇denotes the number of significant GO terms annotated to the given set of genes. This 

reflects how safe it is to assume that the term 𝑇𝑖 describes the gene set, with numerical 

values in the interval (0,1). The information value of the term 𝑇𝑖 can be captured using the 

(partial) Shannon information calculated as 𝐼𝑛𝑓𝑜(𝑇𝑖) = −𝑒 ∙ 𝑝𝑖 ∙ 𝑙𝑛(𝑝𝑖)  with 𝑝𝑖 =

𝑛𝐺(𝑇𝑖) 𝑛𝐺⁄ , where 𝑛𝐺(𝑇𝑖) is the number of genes in the input set annotated to term 𝑇𝑖 and 
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𝑛𝐺 is the number of all genes in the set. By using the factor 𝑒 and the natural logarithm the 

values of the information are normalized to the interval (0,1). 

In each branch of the DAG, the most remarkable term qualified as a potential head-

ing, i.e., GO terms that succinctly summarize the biological processes covered by the 

branch of the polyhierarchy in which they represent the most remarkable term. Of the GO 

terms that lend themselves to being headlines, the most important subset was identified 

using an item categorization technique implemented as computed ABC analysis, which 

meets the basic requirements of feature selection using filtering techniques [207]. ABC 

analysis aims to divide a data set into three disjoint subsets named “A”, “B”, and “C”. Set 

“A” should contain the “important few” elements, i.e., those elements that make it possi-

ble to achieve maximum yield with minimum effort [208]. Sets “B” and “C” include ele-

ments where an increase in expenditure is proportional to an increase in yield or the “triv-

ial many”, respectively. Hence, GO terms that were members of ABC set “A” were re-

tained as most significant to the functional genomics covered by the 72 genes in the pre-

sent NGS panel. The calculations were performed using the R package “ABCanalysis” 

(http://cran.r-project.org/package=ABCanalysis [99]). As this provided still many GO 

terms, a more global abstraction was obtained by applying the method of “subsumption” 

as introduced previously in the context of functional abstraction as a method to discover 

knowledge in gene ontologies [98]. That is, let T be a term in a specific ontology which 

covers the terms T1,…,Tk. A set of headlines H containing T1,…,Tk is abstracted if T1,…,Tk 

are replaced by T in H, thereby reducing the number of headlines. This aimed for a 5–9 

final terms describing the polyhierarchy, which would ideally be within Miller’s optimum 

of a human understandable size of a set of objects [209]. 

5. Conclusions 

A 72-pain gene NGS panel is proposed that covers (i) a subset of 29 genes identified 

previously in a bioinformatics approach as key genes covering the biological functions of 

540 genes relevant to pain by 70% [17]. Additional genes that were included, had been 

independently proposed as relevant for persistent pain [9,10], and the functional focus of 

the whole panel was now on immune or inflammatory processes, in line with the increasing 

evidence that such processes are key players in persistent pain [115]. Together with a re-

cently established AmpliSeq™ panel of 77 further pain-relevant genes [20], the assay covers 

a relevant part of the current state of knowledge on the genetic architecture of persistent 

pain (Figure 1). The assay is applicable for small to large-scale experimental setups to access 

information about any nucleotide within the coding and regulatory portions of pain-rele-

vant genes in a study cohort at costs per raw megabase which are in line with contemporary 

genotyping costs across different technical methods of NGS. In the genotypes of the 61 sub-

jects studied in the context of the present assay establishment, tens of variants were found 

that had previously been reported with functional implications for pain, pharmacogenetics 

of analgesics, and for pharmacological treatments not related to pain. 
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