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Abstract

In this dissertation the formal abstraction and verification of analog circuits is examined. An

approach is introduced that automatically abstracts a transistor level circuit with full Spice accuracy

into a hybrid automaton (HA) in various output languages. The generated behavioral model

exhibits a significant simulation speed-up compared to the original netlist, while maintaining an

acceptable accuracy, and can be therefore used in various verification and validation routines. On

top of that, the generated models can be formally verified against their Spice netlists, making the

obtained models correct by construction.

The generated abstract models can be extended to enclose modeling as well as technology de-

pendent parameter variations with little over approximations. As these models enclose the various

behaviors of the sampled netlists, the obtained models are of significant importance as they can

replace several simulations with just a single reachability analysis or symbolic simulation. More-

over, these models can be as well be used in different verification routines as demonstrated in this

dissertation.

As the obtained models are described by HAs with linear behaviors in the locations, the abstract

models can be as well compositionally linked, allowing thereby the abstraction of complex analog

circuits.

Depending on the specified modeling settings, including for example the number of locations of

the HA and the description of the system behavior, the accuracy, speedup, and various additional

properties of the HA can be influenced. This is examined in detail in this dissertation. The under-

lying abstraction process is first covered in detail. Several extensions are then handled including

the modeling of the HAs with parameter variations. The obtained models are then verified using

various verification methodologies. The accuracy and speed-up of the abstraction methodology is

finally evaluated on several transistor level circuits ranging from simple operational amplifiers up

to a complex circuits.



Zusammenfassung

Die formale Verifikation von analogen Schaltungen und insbesondere die von analogen Mixed sig-

nal (AMS) Schaltungen, ist ein Forschungsgebiet, dass in unserer Zeit zunehmend an Wichtigkeit

gewinnt. In erster Linie ist dies darauf zurückzuführen, dass die Zahl von Applikationen von sicher-

heitskritischen Systemen stetig zunimmt. Da bei diesen Applikationen das Eintreten von Fehlern

verheerende Folgen hätten, müssen eben diese Fehler ausgeschlossen werden. Eine Möglichkeit hi-

erfür bietet die formale Verifikation, welche eine mathematischen Beweis für die korrekt Funktion

eines Systems liefert. Im Vergleich zu digitalen Systemen, bei denen die Verifikation ein standard-

isierter Bestandteil des Entwurfsprozesses ist, ist die Verifikation von analogen Systemen noch weit

entfernt von diesem Zustand. Dies ist in erster Linie auf zwei Probleme zurückzuführen. Das wohl

bekannteste Problem für die formale Verifikation im analogen Bereich ist die Zustandsraumexplo-

sion. Durch die hohe Anzahl der kontinuierlichen Zustände, welche mit der Größe der Systemen

beinahe exponentiell mit wächst, scheitern die meisten Ansätze daran, einen formalen Beweis für

die Funktionalität eines Systems zu liefern.

Während im digitalen Bereich die Signale durch den diskreten Wertebereich beschränkt sind,

können analoge Signale in der Regel beliebige Werte vom kontinuierliche Wertebereich annehmen.

Dieses Problem wird in der vorliegenden Dissertationen als kontinuierliches Explosions-Problem

bezeichnet. Beide genannten Probleme müssten gelöst werden, um die formale Verifikation im

analogen Bereich zu ermöglichen.

Zurzeit dominieren in der Industrie die Simulationen in ihren verschiedenen Formen (Transienten,

Monte Carlo-, Corner-, Sweep-Simulationen, etc.) den Verifikationsprozess, während die formale

Verifikation im analogen Bereich nur beschränkt zum Einsatz kommt. Zwar liefert die Simulation

eines Systems hinreichend gute Ergebnisse die es ermöglichen, dass System zu analysieren und zu

prüfen, allerdings bietet diese Methode keinen formalen Beweis für die Funktionalität der entwor-

fen Schaltung und kann dementsprechend nicht als formale Verifikation betrachtet werden. Ein

weiterer Begriff, der oft in diese Zusammenhang fällt, ist die Emulation. Zwar kann die Emulation

durch geeignete Hardware schneller als eine typische Simulation durchgeführt werden, allerdings

ist dies durch die hohe Anzahl der Zustände und technische Limitierungen oft nicht realisierbar.

Ähnlich wie die Simulation liefert die Emulation keinen formalen Beweise für die Funktionalität der

Schaltung, sondern führt eine schnelle Validierung des Systems aus, welche auf die ausgeführten

Fälle begrenzt ist. Außerdem ist für analoge Schaltungen keine Emulation i.a. gut verfügbar.

Ein Ansatz, der in dieser Dissertationen verfolgt wird, die Abstraktion des Systems, ermöglicht

es, die Komplexität der Systeme zu reduzieren und damit einen Schritt Richtung durchführbarer

formaler Verifikation zu gehen. Um ein genaues Modell zu erzeugen ist es notwendig, die analoge

Schaltung auf Transistorebene zu abstrahieren. Die automatische Modellierung von analogen Schal-

tungen auf Transistorebene ist ein lange bekanntes Problem, welches bisher noch nicht zufrieden-
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stellend gelöst werden konnte. Die meisten existierenden Abstraktionsverfahren sind in erster Linie

manuell und beanspruchen dementsprechend relativ viel Zeit.

Außerdem kommt noch hinzu, dass die meisten Verfahren relativ ungenau Modelle liefern, selbst

dann, wenn die genutzten Verfahren automatisiert sind. Diese ungenauen Modelle sind für die

Verifikation ungeeignet, da sie gegenüber der originalen Netzliste große Abweichungen aufweisen.

Das in dieser Dissertation vorgestellte Abstraktionsverfahren, welches automatisch Modelle mit

einer hohen Genauigkeit liefert, soll diese Problem lösen. Dabei ist der gesamte Abstraktions-

ablauf automatisiert und resultiert durch die oben genannte signifikante Simulationsbeschleunigung

gegenüber der Spice Netzliste in einer einstellbar genauen Beschreibung der Modelle. Das Verfahren

zeichnet sich durch einen sehr hohen Abstraktionsgewinn und damit eine sehr hohe Beschleunigung

der Simulation der Modelle aus. Die erzeugten Modelle können mit ihrer originalen Netzliste auf

Transistorebene verglichen werden, um die Genauigkeit und den Speedup nachzuweisen. Dazu

kommt noch, dass die Modelle ebenfalls in verschiedene Verifikationsroutinen verwendet werden

können, dies wird in der vorliegenden Dissertation näher erläutert.

Das Verfahren, dass in dieser Dissertation vorgestellt wird, abstrahiert eine Spice Transistorlevel

Netzliste mit voller BSIM4 Genauigkeit, von der Transistorebene auf die Systemebene, als einen

hybriden Automaten. Dabei können verschiedene Einstellungen verwendet werden, welche die

Genauigkeit der Modelle beeinflussen. Die vorliegen Dissertation versucht systematisch den Kon-

struktionsweg zu erklären, wobei im Vordergrund die Eigenschaften und Einflüsse der verwendeten

Methoden analysiert und diskutiert wird.

Die vorgestellte Methode basiert auf der Transformation des nichtlinearen Systems stückweise

in lineare Systeme in Kronecker-Form, verbunden mit einer Dominant-Pole-Ordnungsreduktion.

Grundlegend stellt die Methode sicher, dass alle erreichbaren (nichtlinearen) Systemzustände berück-

sichtigt werden und bietet zudem einen formalen Beweis der Modellierungsgenauigkeit. Damit ist

das Verfahren erstmals in der Lage, vollständig verifizierte, schnelle Verhaltensmodelle automatisch

zu erzeugen.

Die Modellierung des abstrakten Modells kann in wesentlich in zwei Blöcke unterteilt werden.

Im ersten Block wird der Zustandsraum einer Spice Netzliste mittels eines Programmes (Vera,

dieses wurde am Institut für Entwurfsmethodik an der Goethe Universität in Frankfurt am Main

entworfen) abgetastet. Grundsätzlich ist Vera ein Programm das entworfen wurde, um einen for-

malen Äquivalenzvergleich im analogen Bereich zwischen zwei Schaltungen durchzuführen. Dabei

können die Schaltungen entweder in Spice oder in Verilog-A beschrieben sein. Das Programm

wurde teilweise erweitert, um die oben genannten Abtastung nur einer Schaltung durchzuführen.

Die Abtastung der Netzliste wird mit voller Spice Genauigkeit durchgeführt, wobei dies in einem

automatisch reduzierten Zustandsraum erfolgt. Dabei wird das System um die abgetasteten Punkte

linearisiert und die Ordnung des Systems auf ihr relevantes dynamisches Verhalten reduziert. Dies

kann entweder durch die Vorgabe einer Ordnung geschehen, oder durch die Bestimmungen des

relevanten Frequenzbereichs. Neben der Abtastung der Signale sowohl im Originalraum als auch

im reduzierten Zustandsraum, werden wesentliche Werte ermittelt, die für die Modellierung essen-

tiell sind. Diese Werte enthalten beispielsweise die Eigenwerte und Eigenvektoren des linearisierten

Systems, die Verbindungen zwischen den Punkten gegeben durch einen gerichteten Verbindungs-

graphen und die Transformationsmatrizen, welche die Verknüpfung zwischen den Zustandsräumen

beschreiben. Nachdem das System abgetastet wurde, erzeugt der zweite Block der Modellierung
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den abstrakten hybriden Automaten. Dieser Block verwendet das Programm, dass das Ergebnis

der vorgestellten Forschung darstellt: Eigenvalue Based Hybrid Linear System Abstraktion, oder

kurz Elsa.

Die hinter Elsa liegende Methode soll aus den abgetasteten Werte ein Modell erzeugen, dass als

hybrider Automat beschrieben wird. Dabei besitzt der erzeugte Automat eine Menge von diskreten

Orten (Engl. locations). In jedem Ort loc ∈ Loc = {g1r1, . . . } wird dabei das Systemverhalten

durch eine lineare Zustandsraumdarstellung mit einer Menge von endlichen, in der Regel kontinuier-

lichen, Zustandsvariablen beschrieben. Der hybride Automat kann sich in einem Ort loc befinden,

solange die Invariante des Ortes invloc gültig ist. Sobald die Invariante eines Ortes ungültig wird,

muss der hybride Automat den Ort verlassen. Wie der Automat den Ort verlässt, beschreiben die

Übergänge zwischen den Orten und die zugehörigen Sprungbedingungen. Der Automat kann einen

Ort mittels eines Überganges (Engl. guard) verlassen, muss dies allerdings nicht sofort ausführen

sobald der Übergang valide ist. Erst wenn die Invariante eines Ortes ungültig wird, muss der

Automat den Übergang durchführen und in den dementsprechenden aktuellen Ort wechseln.

Die Methode zur Erzeugung des hybriden Automaten geht wie folgt vor: Basierend auf den abge-

tasteten Eigenwerte des linearisierten Systems werden zunächst Gruppen durch eine Clusteranalyse

generiert. Im Anschluss werden Gruppen in Regionen aufgeteilt, die in dem selben Bereich im Zu-

standsraum sind. Gemeinsam bilden Gruppen und Regionen die Orte des Automaten. Bestimmte

Einstellungen in Elsa, wie etwa die Gewichtungen der Eigenwerte während der Clusteranalyse,

können die Anzahl der ermittelten Orte beeinflussen. Die Methodik, sowie die Einstellungen die

diese Analyse beeinflussen werden in der vorliegenden Dissertation detaillierter analysiert.

Die abgetasteten Punkte werden den jeweiligen Orten zugewiesen aufgrund der Clusteranalyse.

Die Punkte, die somit zu einem Ort gehören, werden mit Hilfe von konvexen Hüllen umschlossen.

Diese Hüllen werden im Anschluss durch geeignete geometrische Objekte (Polytope, Zonotope

oder Intervall Hüllen) repräsentiert und beschreiben somit die Invarianten der Orte. Zwischen

den Invarianten werden im Nachhinein die Übergänge und die zugehörigen Sprungbedingungen

ermittelt.

In jedem grundlegend Ort wird das Verhalten des Systems durch eine lineare Zustandsraum-

darstellung beschrieben. Dabei bilden die Eigenwerte den wesentlichen Bestandteil der System-

matrix. Die Eingangsmatrix wird durch geeignete Matrizen beschrieben, welche sich durch das

Abstraktionsverfahren berechnen lassen. Dabei ist zu beachten, dass die Systembeschreibung in

einem reduzierten Zustandsraum stattfindet (Sλ). Um die Werte des Systems im Originalraum

(So) der Schaltung zu finden, ist ein Rücktransformation erforderlich, welche die Ergebnisse vom

Sλ Raum zurück in den So Raum transformiert. Die erforderlichen Transformationsmatrizen wer-

den dabei hauptsächlich durch die Eigenvektoren des linearisierten Systems beschrieben.

Die erzeugten abstrakten Modelle können in drei verschiedenen Ausgabesprachen generiert wer-

den: Matlab (Cora), Verilog-A, und SystemC-AMS. Dabei unterscheiden sich sowohl die Beschrei-

bungen, als auch die Methodik der erzeugten Modelle je nach gewählter Sprache. Während die

Matlab (Cora) Modelle nichtdeterministisch sind, sind die Verilog-A als auch die SystemC-AMS

Modelle deterministisch. Daher muss für die letzten beiden genannten Ausgabesprachen die Def-

inition des hybriden Automaten angepasst werden. So wird, je nach gewählter Methodik, der

aktuelle Ort des Systems entweder anhand der Invarianten unter Vernachlässigung der Übergänge,
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oder anhand der Übergänge unter Vernachlässigung der Invarianten bestimmt. Die erzeugten Mat-

lab Modelle können anschließend in einer Erreichbarkeitsanalyse mittels Cora [Alt15] analysiert

werden. Für die SystemC-AMS und Verilog-A Modelle können Simulationen mittels Standard-

Simulatoren durchgeführt werden. Das vorgestellte Verfahren erzeugt somit aus einer Schaltung

auf Transistorebene ein Verhaltensmodell, dass auf Systemebene durch einen hybriden Automaten

beschrieben wird.

Das beschrieben Abstraktionsverfahren verwendet für die Bestimmung der Systemmatrizen, Ein-

gangsmatrizen und Transformationsmatrizen verschieden Methoden, die allerdings alle das linear

Modell durch Mittelwertbildung über viele linearisierte Abtastpunkte berechnen. Durch diese Mit-

telwertbildung können Fehler in den erzeugten Modellen entstehen, welche als Abstraktionsfehler

bezeichnet werden. In der vorliegenden Dissertation wird das beschriebe Abstraktionsverfahren

erweitert, um die Abstraktionsfehler zu umgehen, indem die Schwankungen der ermittelten Werte

des linearen Modells durch eine geeignete Modellierung in das Modell mit aufgenommen werden.

Dies kann sowohl für die Matlab (Cora) als auch für die SystemC-AMS Modelle verwendet werden.

Für die Cora Modelle, können die Matrizen die zur Systembeschreibung dienen durch Matrizen-

Zonotope (matZonotope [Alt15]) oder Intervall-Matrizen ersetzt werden. Für die SystemC-AMS

Modelle werden die Elemente der Matrizen durch affine Formen aus der Affine Arithmetic Dicision

Diagrams (AADD) Bibliothek [RGJR17] erweitert. Die erzeugten SystemC-AMS Modelle werden

anschließend symbolisch simuliert, während die Cora Modelle weiterhin in einer Erreichbarkeits-

analyse mittels Cora verwendet werden können. Somit kann das Verfahren durch Umschließen der

Schwankungen der Werte das Verhalten des abstrakten Modells erweitern, um den Abstraktions-

fehler zu umgehen und das System mittels Bereichsarithmetik zu verbessern. Allerdings werden

dadurch während der Simulationen zu jedem Zeitschritt Wertebereich bestimmt und nicht mehr

einzelne Werte die in der Regel mit Überapproximationen verbunden sind.

Eine zusätzlich Erweiterung für das Abstraktionsverfahren ist die Modellierung der Parameter-

schwankungen, die wegen den Prozessparametern auftreten. Wie beschrieben, abstrahiert Elsa

eine Transistorlevel Schaltung zu einem hybride Automaten. Dabei können die Prozessparameter-

schwankungen für die Elemente der Spice Netzliste angegeben werden. Dementsprechend werden

mehrere Netzlisten von Vera erzeugt, die ähnlich wie bei einer Monte Carlo Simulation die Pa-

rameter der Netzlist variieren. Alle erzeugten Netzlisten werden parallel mit Vera abgetastet und

ebenfalls parallel mittels Elsa zu hybriden Automaten abstrahiert. Die somit erzeugten Auto-

maten werden anschließend zu einem Automaten zusammengeführt, welcher das Verhalten aller

Automaten beinhaltet. Dementsprechend wird ein Automat erzeugt, der die Parameterabweichun-

gen der Netzliste beinhaltet.

Ein wichtiger Aspekt der generierten Modelle ist deren Kompositionalität. Beispielsweise kann

eine große Netzliste gegebenenfalls in mehrere kleine unterteilt werden, die unabhängig voneinan-

der zu hybriden Automaten abstrahiert werden. Falls die erzeugten Modelle in Verilog-A oder

SystemC-AMS sind, ist durch die Modularität der erzeugten hybride Automaten die Komposition-

alität direkt gegeben. Durch Verbinden der erzeugten Module kann somit ein komplexes System

durch einen kompositionalen hybride Automaten abstrahiert werden. Das entwickelte Programm

Elsa ist ebenfalls in der Lage einen kompositionale Automaten in Matlab für Cora zu generieren.

Dabei werden die Unterblöcke der Schaltung separat abstrahiert und anschließend als komposi-

tionalen Automaten beschrieben, der einem Produktautomaten ähnelt. Anschließend kann eine
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Erreichbarkeitsanalyse in Cora durchgeführt werden. Somit kann ein hybrider Automat nicht nur

für schnelle Simulationen des analogen Blocks verwendet werden, sondern auch kompositional für

größere Systeme eingesetzt werden.

Weitere Erweiterungen erlauben es, einen hybriden Automaten über die Optionen von Elsa zu

optimieren und somit einen Automaten zu erzeugen, der die geringste Abweichung zur Spice Net-

zlist aufweist, oder einen hybriden Automaten so zu erweitern, dass das Verhalten der realisierten

Schaltung beinhaltet wird [KTR+20].

Wie Anfangs erwähnt steht die formale Verifikation im Vordergrund in dieser Dissertation.

Dabei können, je nach Ausgabesprache des erzeugten hybride Automaten, unterschiedliche Ver-

ifikationsverfahren verwendet werden. Wird beispielsweise die Netzliste zu einem hybriden Auto-

maten in Verilog-A abstrahiert, so kann ein formaler Äquivalenzvergleich (Equivalence-Checking)

zwischen dem Verilog-A Modell und der Spice Netzlist durchgeführt werden. Dies kann mittels Vera

realisiert werden. Dabei vergleicht Vera den reduzierten Zustandsraum beider Systeme. Dadurch

kann der Fehler zur Netzliste ermittelt werden und dementsprechend ein Fehlermaß angegeben

werden, welcher den Unterschied beider Systeme beschreibt. Somit ist das Abstraktionsverfahren

durch die Verifikation der erstellen Modelle abgesichert.

Für die Matlab (Cora) Modelle wird ein andere Ansatz verfolgt. Diese Modelle können in einer

Erreichbarkeitsanalyse verwendet werden, wodurch Regionen im Zustandsraum analysiert werden

können (Engl. state space exploration). Zusätzlich wurde ein Model-Checking-Verfahren entwick-

elt, dass im Anschluss solch einer Analyse spezifische Eigenschaft auf deren Erfüllbarkeit überprüft.

Somit kann festgestellt werden, ob das System die Spezifikationen erfüllt. Durch die oben genan-

nten Erweiterungen kann das System durch einen hybriden Automaten mit Parametervariation

erzeugt werden, der sowohl die Abstraktionsfehler als auch die Parameterschwankungen durch den

verwendeten Prozess beinhaltet und somit für die Verifikation des Systems geeignet ist.

Wurde der hybride Automat in SystemC-AMS beschrieben können Online-Monitore verwendet

werden, die es erlauben während der Simulation das System auf spezielle Eigenschaften zu unter-

suchen, und im Falle einer Verletzung der Bedingung einen Fehler liefern. Ähnlich zu den Matlab

Modellen können die SystemC-AMS Modelle ebenfalls mit Parametervariation mittels der AADD

modelliert und anschließend symbolisch simuliert werden. Die Online-Monitore werden dabei eben-

falls mit der genannten Bibliothek erweitert und können somit das Gesamtverhalten des erzeugten

Modells beobachten. Je nach Art des Modells können dementsprechend verschiedene Verifika-

tionsverfahren verwendet werden, um die Funktionalität der generierten Modelle zu gewährleisten.

Das vorgestellte Verfahren wird anhand verschiedener Beispiele demonstriert, die von simplen

Filtern zweiter Ordnung, bis hin zu komplexen Schaltungen aus der Industrie reichen. Zusätzlich

wird der kompositionale Ansatz anhand eines Beispieles aus der Automobileindustrie verdeutlicht,

um die Skalierbarkeit des Ansatzes zu zeigen.

Zusammengefasst wird in der vorliegenden Dissertation ein Ansatz um die formale Verifikation

im analogen Bereich zu ermöglichen beschrieben. Dieser basiert auf der Abstraktion des Sys-

tems. Durch Modellierung mittels Parametervariationen löst der Ansatz das Problem der Unge-

nauigkeiten, die meistens mit Abstraktionsverfahren verbunden sind. Verschiedene Verifikationsver-

fahren die, basierend auf der Ausgabesprache der Modelle, verwendet werden können, wurden
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vorgestellt. Durch die Kompositionalität des Verfahrens kann die Skalierbarkeit des Ansatzes real-

isiert werden. Wodurch komplexe Schaltungen im analogen Bereich verifiziert werden können.
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General Notation
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1 Introduction

1.1 Motivation

In our modern world, recent technological trends have witnessed significant growth, enhancing

their influencing on our lives. These trends include the deployment of artificial intelligence in vari-

ous environments like autonomous driving, industrial automation, and human-robot collaboration.

With the rise of the internet of things (IoT) and the obstacles accompanied by it, like big data

and integration problems, artificial intelligence proves to be a game changer. Even in application

like energy management and security systems, artificial intelligence can be presented. Aside from

artificial intelligence, in general electronics devices and controllers are becoming more and more

parts of our daily lives. From circuits deployed in constantly evolving manufacturing processes to

circuits embedded in humans for the control of robots [AIA14], there seems to be no limit to the

application environment. Recent circuit are generated as self-healable electronic tattoos [WLL+19]

and are used for noninvasive and high-fidelity sensing. Thus, through various applications and

emerging technologies, electronic circuits prove themselves to be the key to an era.

These innovative technologies, regardless of their applications, are usually accompanied by com-

plex circuits or system on chip (SoC) designs. Considering the safety critical scenarios these tech-

nologies often underlie, there is a demand for the absolute reliability of not only the functionality of

the designs, but also of the fabricated circuits. New standards, such as ISO 262626 force integrated

circuit designers to invest much more effort into the verification and validation process. In some

industries, the verification task increasingly dominates the design flow with up to 70 % [BGG+09;

LAH+15], which is a significant amount of time. Thus it’s no surprise that verification has become

one of the most important topics in the circuit design.

Formal verification, on the other hand, is only partially used in such a design flow. In contrast

to the digital design, where system verification has become part of the basic design routines, the

analog and especially the analog mixed signal (AMS) verification clearly lags behind. Moreover,

formal verification approaches lack advanced methodologies to handle formal verification on a large

scale. Thus, formal techniques do not scale well with large complex circuits. This can be traced

back to several factors, of which one of the most dominant factor is the continuous nature of

the analog domain. Compared to a digital system, which is usually modeled as a discrete event

dynamic system, an analog system has a continuous dynamic behavior, in generally specified by

differential equations. In contrast to the finite set of possible input stimuli and the various binary

sequences they induce in the digital domain, the real valued input signals of analog systems could

attain theoretically infinitely many values generating thereby infinite trajectories in the continuous

state space of the system, which challenges the verification task. Compared to the digital formal

verification methodologies, much more effort must be deployed to achieve similar advances in the

analog/mixed-signal domain.
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1.2 State of the Art

In general, mixed-signal verification can be categorized as shown in Fig. 1.1. AMS verification can

be classified according to [GXGM19; Rad16] into two approaches: formal methods and simulation-

based methods. Often, emulation is not considered, even though it can yield faster results than

traditional simulations. However, it is usually accompanied by high costs, a lot of modeling effort,

and several technological limitations especially in the analog domain.

analog/mixed-signal
verification

formal methodssimulation 

worst case 
estimation

nominal 
simulation

equivalence 
checking

reachability 
analysis

runtime 
verification

model 
checking

emulation

random 
test 

Monte Carlo
simulation

symbolic 
simulation

Fig. 1.1. Overview of the verification methods for analog/mixed-signal circuits.

Traditional simulation-based methods cover some test scenarios for a specific set of input stimuli

and initial conditions. These computational expensive simulations including simple simulations

enhanced by corners, sweeps, and Monte Carlo simulations, deliver a clear understanding in the

functionality of the developed circuit. However, they do not fully verify the system behavior, and

therefore cannot be considered formal methods [Gie05; RG16]. More precisely, we cannot eliminate

the possibility by performing simple simulations that the circuit might reach bad states that will

cause system failure. From a different perspective, this lies in the fact that simulation-based

methods to not completely search the state space, and that the evaluation of the results is usually

manually performed in an informal fashion. Therefore, these methods only validates a design, but

do not verify it.

Formal methods attempt to prove in a formal manner that a circuit satisfies the specified specifi-

cation and performs correct under all circumstances as desired by the circuit designer. Specifically,

the objective of formal verification is to mathematically prove the properties of a system, usually

during the design phase. This is obviously accompanied by a lot more computational effort than a

single simulation. The results obtained, are often valid over a specified range of the inputs stimuli

and cover a portion of the state space of the circuit. Due to the continuous nature of analog cir-

cuits, there are actually infinitely many possible input stimuli. However, due to the technological as

well as the environmental constraints, this aspect is usually bounded, favoring the verification over

bounded regions. Another aspect that challenges formal verification are process parameter devia-

tions. Often, nominal models are considered in the verification tasks. However, due to the process

parameter, the system can still fail as deviations emerge between the verified system behavior and

the behavior of the real circuit. Hence, the process parameters must be considered as well in the
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verification task, making it an ever harder challenge. On top on that, even more challenges arise

from the sensitivity of the designed circuit to environmental factors like signal noise, temperature,

and higher order physical effects like different parasitics and current leakage [ZTB08]. Thus, there

are a lot of factors that need to be considered in the verification process.

Several publications exist that differently categorize the formal techniques. In [GXGM19] the

terms pre- and post-silicon analog verification are used. While pre-silicon verification focuses on the

correctness of a design, post-silicon verification focuses on the verification of the fabricated circuit.

Pre-silicon verification can be classified into two approaches: formal methods and simulation-based

techniques. While [GXGM19] divides the formal methods into three categories: property checking

and monitoring, affine arithmetic, and model and equivalence checkers, [ZTB08] divides the formal

methods into four categories: equivalence checking, model checking and reachability analysis, run-

time verification, and proof-based and symbolic methods. Here, a classification similar to [Rad16] is

adapted, which classifies the formal methods into five categories: symbolic simulations, reachability

analysis, model checking, runtime verification, and equivalence checking.

Depending on the nature of the specifications, there are several methods that can be used for

the formal verification of AMS circuits. For example, in the presence of a golden model, equiva-

lence checking can be used to examine whether these systems are equivalent with respect to their

functionality. At its simplest, equivalence checking compares the input-output behavior of both

systems. This usually requires the specification of tolerances or bounds on the parameters and

signals [ZTB08]. Hence, a failure occurs once the specified tolerance values are violated. Sev-

eral approaches exist that perform equivalence checking in the AMS domain [BHA95; SA01; HB5;

HB23; Sal02; SL10; SH10a; SH12a]. While in [BHA95] equivalence checking is performed on two

analog circuits using their transfer functions, [SA01] models the verification problem as a non-linear

optimization problem by ensuring that the implementation response is bounded within an envelope

around the specification under the influence of parameter variation. [Sal02] purposes and equiv-

alence checking at system-level, rather than at circuit-level, by partitioning the specification and

implementation codes into digital, analog, and data converter components, followed by verifying

the digital part with a SAT/BDD algorithm, the analog part by a set of rewriting rules, and the

converters between these parts by a matching procedure. However, this approach is only applicable

on simple designs as it is difficult to find appropriate rewriting rules to arbitrary classes of analog

circuits. A practical hierarchical, however, semi-formal equivalence checking methodology is pro-

vided in [SL10], that formulates equivalence checking as a constrained optimization problem. In

[HB23], the first paper of a series is introduced, that delivers an approach for the formal verification

of linear analog circuits with parameter tolerances, proving that a circuit fulfills a specification in

a given frequency interval for all parameter variations. [HB5], the series is continued, proposing an

equivalence checking approach for nonlinear circuits by comparing the implicit nonlinear state space

descriptions of the two systems. The approach is extended in [SH10a] by a structural recognition

and mapping of eigenvalues to circuit elements via circuit variables, and by a reachability analysis

that restricts the investigated state space to the relevant parts. In [SH12a], the approach is even

further enhanced by an efficient input stimuli generation algorithm that guarantees coverage of the

entire reachable state space. The main drawback of this algorithm, similarly to main other formal

verification methodologies, is the state space explosion problem which occurs when to many states

are considered in the examination of the circuits. However, as this approach operates on a reduced
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state space, there is room for a trade off accuracy for states to consider.

If the specifications are at hand, offline or online monitors can be used that fall into the category

of runtime verification [MN04; GT07; WAN+09a; JKN10; MN13]. Several specification languages

exist for runtime verification, which can be categorized into offline methods like Ana CTL (com-

putation tree logic for analog circuit verification) [DC05] and approaches based on PSL (Property

Specification Language) [GT07], and online methods like CT-CTL (continuous time CTL) [ZTB06]

that extends TCTL, and many others [NM07; MPDG09; WAN+09b]. Other technique such as

STL (signal temporal logic) [MN04; MN13], which is an extension to the MTL (metric timed linear

temporal logic) [TR05], support both online and offline monitors.

If these specifications are expressed in logical statements, and the whole state space is explored

to check whether the system satisfies the desired specification, the verification methods fall into

the domain of model checking [HHB02; HKH04; GBR04; DDM04; GPHB05; GPHB05]. [HKH04]

proposes the discretization of the infinite continuous state space of nonlinear analog systems. The

system properties are described using computation tree logic (CTL). [DC05; GPHB05] extent

CTL to cover analog behavior. For example BLTL (bounded linear temporal logic) [WKZC11]

uses model checking and sequential statistical techniques to verify properties of analog circuits in

both the temporal and the frequency domain. In this process, randomly sampled system traces

are sequentially generated using Spice and passed to a trace checker to examine the validity of a

specification until the desired statistical strength is achieved. On the other hand, ASL (Analog

Specification Language) [SH08] allows the definition of circuit properties such as gain, rise time,

and slew rate, and examines these properties on the circuits which are modeled as discrete graph

structures. Compared to runtime verification, model checking is computational much more expen-

sive. Moreover, in order to examine a specification, model checking approaches completely explore

the state space of the circuit. In contrast, runtime verification cannot guarantee conformance to

specification due to the finite number of tested signal traces [LAH+15].

Another approach that examines a set of given specifications can be achieved using symbolic

simulations. These simulations use symbols instead of numeric values [Hen00; AZT07; WLM+08].

Compared to standard simulation, symbolic simulation achieves a higher comprehensive coverage

in fewer simulations runs, as for example through substitution in the results, a single symbolic

simulation can replace several numerical ones. In [AHP96] for example, an automated symbolic

model checking procedure is introduced for embedded systems. The specifications are described in

a temporal logic and verified by a symbolic fixpoint computation. Symbolic simulations can prove

that the circuit behavior is contained in the set of given specifications. However, as the number

of symbolic variables increases and more complex equations are used, these simulations become no

longer feasible. Affine arithmetic [RSRG12] or interval arithmetic [ZATB07; YDL12] can be used

in these calculations, thereby reducing in general the number of symbolic variables in a trade for

accuracy (over approximations). In [RG16] an extension to affine arithmetic is proposed called

XAAF (extended affine arithmetic form) that additionally considers the relational operators in the

control flow.

The last branch of formal verification is the reachability analysis. This analysis works with

reachable sets using different geometrical representations to perform state exploration directly on

system dynamics. Since it is often not possible to find the exact representations of all reachable sets,

the reachable sets are often over approximated. Reachable sets are usually expressed by polyhedra
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[ABDM00; GBR04; CK03; DDM04; FKR06] or by zonotopes [ARK+13].

Recently in [TKR+20], a reachability analysis was used to perform an equivalence checking in

the analog domain of an abstracted model with a conformant model that was generated trained

with the measurements from the real circuit, thus, performing a post fabrication verification of

the model. So, connecting the verification methods can sometimes yield even better and faster

approaches than trying to apply them separately. Another innovative method, where numeric and

symbolic simulations were combined to yield the term nubolic is presented in [ZG19].

Even though several methods have been developed for the analog verification, simulation-based

methods still dominate the industrial design flow. Certainly, verifying such complex analog circuits,

and especially AMS circuits, is not an easy task. Due to the modern increasing complexity of circuits

arising partially from the demand of accurate models and partially from the size of these circuits,

modern verification methodologies are often not able to keep up with this rapid increase. This

can be often traced back to the state space explosion problem. In fact, a recent survey [ZTB08]

conducted on formal verification methods, raveled that the methods still suffer from the state space

explosion problem. Furthermore, the equivalence checking task in the AMS domain becomes a

difficult problem in the presence of tolerance margins, while model checking approaches that utilize

abstracted models suffer from the over approximated behavior of these models. On top on the

state explosion, which is also well known in the digital domain, it is possible to define a continuous

explosion [ZTB08; FH18] that must be handled in the analog domain due to the infinite many

possible continuous values a signal may attain. Thus, as the formal verification of analog/-mixed

signal circuits is a relatively young research field, there is still a room for improvements.

Several approaches have been deployed that try to solve continuous and state explosion problems

differently. Some approaches tackle these problems directly by a model order reduction and the

use of a discretized state space [HKH04]. Other approaches use range arithmetic to tackle the

state and continuous explosion [RG16; ASB07]. Recent methods try to use indirect measures like

coverage on top of standard simulations to close the confidence gap, and thereby be more formal

[FGG+17; BFG+16]. However, these approaches often still consume a lot of time. Moreover, even

though modern approaches yield solid and good results, they are still challenged by strong nonlinear

behaviors as well as the size of the circuits, i.e. most approaches are not scalable.

According to [GXGM19], formal verification of AMS circuits typically involves working on a

higher level of abstraction, as this results in significant speed-up of validation routines. However,

this has the drawback that inaccuracies might emerge due to this abstraction. More precisely, a

large speed-up factor of abstracted behavioral models is desired to support complex simulation of

a circuit at system or at least at module level while maintaining accurate results. As the systems

integrable on a chip become more complex and heterogeneous, the use of accurate behavioral models

for analog signal processing and interfacing would enhance design and simulation routines, on top

of offering new possibilities and improving the current verification routines. Thus, one way to make

formal verification applicable on complex analog circuits can be achieved by behavioral abstraction,

which permits faster verification routines with fewer state variables. Nonetheless, a behavior model

is often abstracted to a degree that it does not accommodate the full system behavior. This

challenges the verification task as accurate abstracted models are mandatory.

The problem of generating an accurate abstract model from a transistor level circuit has been
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around for some time. Different approaches exist that have tried to solve this problem, e.g. auto-

matic behavioral modeling [ZFHM05; Bor98; CWL+15; SWL+17]. These techniques are not tar-

geting hybrid automata and are mainly improving the simulation speed. The method in [LAH+15]

models the underlying DAE-system of electrical networks using piecewise linear regions, for each

nonlinear element, on-the-fly. It suffers from using an abstract transistor-model and is limited to

a specific number of transistors to be verified. However, it generates a complex hybrid automaton

on-the-fly preventing the state explosion problem at initialization and during evaluation of a given

input stimulus. Unfortunately, the HA is very complex as it is a cross product of all linearized

regions of all nonlinearities

For high level continuous systems, methods modeling the analog circuit as a hybrid system are

widely used [DDM04; FLD+11; FHS+07; ARK+13]. These methods are able to handle up to

20 state variables, if the underlying locations use linear ordinary differential equations (ODEs) to

describe the system behavior. Mostly, they use reachability analysis to prove safety properties. To

close the chain of proof at transistor level, hybrid automatons (HAs) are usually not suitable as

the ODEs become nonlinear differential algebraic equations (DAEs). Another aspect that must

be considered in the generation of an abstract model are the technology dependent parameter

variations. Most abstraction approach do not incorporate these variations into the generated model,

and if they do, they result in large over approximations and modeling times. In order to have

results with technology accuracy e.g. a BSIM3, BSIM4, or Hicum accurate verification, sample-

based formal verification methods [SH12b] could be used, however, the range-based proof is lost.

These methods, in contrast, can handle much larger circuits; up to 80 transistors. Hence, there is a

need for an abstraction approach that incorporates technology dependent parameter variations into

the abstract models. Moreover, there is as well a need for an accurate abstraction methodology

that delivers accurate abstract models with a reduced order suitable for verification routines.

1.3 Contribution

This dissertation aims to contribute to the formal verification of AMS circuits by generating ac-

curate behavioral models that can be used for verification. As accurate behavioral models are

often handwritten, this dissertation proposes an automatic abstraction method based on sampling

a Spice netlist at transistor level with full Spice BSIM accuracy. The approach generates a HA

that exhibits a linear behavior described by a state space representation in each of its locations,

thereby modeling the nonlinear behavior of the netlist via multiple locations. Hence, due to the

linearity of the obtained model, the approach is easily scalable.

Large speed-up factors can be achieved by the generated models while maintaining a high ac-

curacy, making them suitable for verification purposes. On the other hand, the modeling process

proposed in this dissertation is able to enclose technology dependent parameter variations of the

circuit elements as well as the deviations that result from the abstraction process.

Moreover, the generated models can be formally verified against their original Spice netlist, yield-

ing the deviations between the original Spice circuit and the abstracted model. Various verification

routines can be executed with the obtained models. For example, a reachability analysis or a sym-

bolic simulation can be performed on the models that enclose the parameter variations, thereby

capturing all possible behaviors the circuit exhibits.
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To sum up, the contributions presented in this dissertation are:

1. an automated abstraction method is presented that starts with a netlist in Spice or Verilog-

A syntax and yields accurate behavioral models in Matlab (Cora [Alt15]), Verilog-A, or

SystemC-AMS that can be used for fast and accurate simulations

2. generated by the pointwise analysis of the linear properties of the circuit, the HA created has

a linear behavior in its locations. Compared to the original system, the generated HA has a

significant lower dynamic order due to the order reduction performed during the abstraction

process. Moreover, the technology dependent behavior of the original netlist is embedded in

the obtained models, and the accuracy of the models can be controlled by the user

3. various extensions of the models exist:

a) the creation of abstract models with little over approximations that model the parameter

variations that result from the variation of the process parameters of the netlist as well

as from the abstraction procedure

b) the creation of compositional models that tackles the state space explosion problem. As

the Verilog-A and SystemC-AMS models are pin-wise compatible and compositionality

is directly given for these models, the compositional approach targets Cora models that

are used for reachability analysis.

4. created models (Verilog-A) can be formally verified using equivalence checking against the

original netlist, enabling correctness proof

5. use these models in various formal verification routines including reachability analysis coupled

with model checking, symbolic simulations and runtime verifications.

1.4 General Concept and Outline

In the following, the underlying general concept for a fully automated abstraction methodology

will be presented. The approach starts with a netlist described in Verilog-A or Spice with BSIM

accuracy and results in a model described at system level as a HA (Section 2.4). An overview of

the approach is illustrated in Fig. 1.2.

netlist
Spice or Verilog-A syntax

model 
abstraction

hybrid automaton
Matlab, Verilog-A or SystemC-AMS syntax

Fig. 1.2. Overview of the model abstraction approach.

The introduced approach uses two tools to realize the model abstraction: Vera and Elsa. Fig. 1.3

shows a closer look at the model abstraction approach. The abstraction methodology starts with

sampling the netlist via in-house tool called Vera. Using the sampled data, Elsa, which stands for

eigenvalue-based hybrid linear system abstraction, abstracts the netlist into a HA.
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HAnetlist
Vera Elsa

abstraction corestate space sampler

model abstraction

Fig. 1.3. Overview of the different tools used for the model abstraction.

Significant data and properties of the sampled systems, such as the eigenvalues, are used in order

to construct the HA with a linear behavioral description in each of its locations. Fig. 1.4 provides

a detailed illustration of the model abstraction process. As observed in Fig. 1.4, Vera samples the

netlist and stores the result in an acv file. This file is then processed by spaceM to transfer the

data into the memory of Matlab as a structure referred to as space. The Matlab structure space,

on the other hand, is processed by Elsa to generate a HA.

space (Matlab structure)

Elsa

Vera

*.acv fileread 
netlist

compute 
nonlinear 
equations

sample 
state 
space

C code:
yacc & lex

spaceM

initialization
location 

identification
system 

modeling
model

creation
HA

netlist

model abstraction

Fig. 1.4. Detailed overview of the model abstraction approach showing the components as well as

the interconnections between them.

In the following, the abstraction process will be examined in detail. Starting with Chapter 2, the

fundamental basics and principles used in this dissertation are briefly reviewed. As this disserta-

tion is an interdisciplinary work, combining control theory with different branches from electrical

engineering, such as computer science and artificial intelligence, only a part of the fundamentals is

reviewed. After this revision, the sampling of the netlist performed by Vera will be examined in

Chapter 3. According to Fig. 1.4, the abstraction process performed by Elsa can be divided into

4 main blocks: initialization, location identification, system modeling, and model creation. Each

of these blocks consists of different layers. In Chapter 4, a closer look is taken at the abstraction

core with all its underlying blocks and layers, followed by some powerful extensions for the gen-

erated abstract models in Chapter 5. The possible formal verification processes on the generated

models and their reference netlists or specifications are demonstrated in Chapter 6. In Chapter 7,

several examples are handled to illustrate and examine the model abstraction approach. Finally, a

conclusion is stated in Chapter 8 along with some future directions.



2 General Basics and Principles

“We are like dwarfs sitting on the shoulders of giants. We see more, and things that are

more distant, than they did, not because our sight is superior or because we are taller than

they, but because they raise us up, and by their great stature add to ours.”

– John of Salisbury, Metalogicon Of John Salisbury

A solid background in different principles is necessary for the proceeding topics. In this chapter,

fundamental basics and principles are recapped.

2.1 Geometry

For what follows in the later chapters, geometry plays a key role in establishing the methodologies

and concepts. In this section, few geometric objects are reviewed.

2.1.1 Polytopes

Polytopes are geometric objects in Rn. Throughout this dissertation only convex polytopes will be

considered. A (convex) polytope can have two types of representation:

1. halfspace representation

2. vertex representation

A halfspace:

H = {x | cTx ≤ d} , (2.1)

is one of two parts obtained by bisecting the n-dimensional Euclidean space with a hyperplane

Ph = {x | cTx = d}, such that c ∈ Rn represents the normal vector to the hyperplane and d ∈ R
is the scalar product of any point on the hyperplane with the vector c. Thus, a polytope P is the

nonempty intersection of m halfspaces. A formal definition is stated in Theorem 2.1.1.

Theorem 2.1.1. A convex polytope P is bounded by m intersections of halfspaces:

P =
{
x ∈ Rn | Cx ≤ d, C ∈ Rm×n, d ∈ Rm

}
(2.2)

Representing a polytope with the vertex representation can be performed by generating a convex

hull (CH) over the finite set of points as stated in Theorem 2.1.2.

Theorem 2.1.2. For k vertices pti ∈ Rn a convex polytope P is the set:

P = CH(pt1, . . . ,ptk) (2.3)

Polytopes used in the model abstraction in this dissertation are generated using the mpt toolbox

[HKJM13]. The algorithm described in [BDH96] is used to generate convex hulls.
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2.1.2 Zonotopes

Similarly to polytopes, zonotopes are geometric objects in Rn as well. Zonotopes have special

symmetric properties which allow a compact representation. A formal definition of a zonotope is

stated in Theorem 2.1.3.

Theorem 2.1.3. Consider a zonotope Z with a center c ∈ Rn and k generators {gi ∈ Rn | i =

1, . . . , k}, Z is defined as:

Z =

{
x ∈ Rn | x = c+

k∑
i=1

βigi, βi ∈ [−1, 1]

}
(2.4)

Thus, a zonotope can be interpreted as a Minkowski sum of line segments [Alt15].

A zonotope can be associated with affine arithmetic, as the operations performed on this geo-

metric shapes are like to those performed with this computational type. As in affine arithmetic, a

zonotope keeps track of the correlations between the spanning variables using generators, thereby

solving as well the dependency problem associated with interval arithmetic.

If a given set of points is hulled by a zonotope, the zonotope has in general significant over

approximation compared to hulling the same points with a polytope as shown in Fig. 2.1. This can

be traced back to the symmetry of a zonotope.
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(a)

-6 -4 -2 0 2 4 6
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0

2

4

6

8

(b)

Fig. 2.1. Example illustrating the over approximated hulling performed by zonotopes with (a) two

and (b) three generators compared to polytopes.

In Fig. 2.1, some random points are hulled by a zonotope Zi as well as by a polytope P. As

observed, the zonotope Z1 which has only two generators over approximates the convex hull con-

taining the points. If the number of generators used is increased to three, the result is still over

approximated (Z2) compared to the hulling performed by the polytope as shown in Fig. 2.1a. For

this example, Z2 is even larger than Z1.
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2.1.3 Interval Hulls

An interval hull I ∈ Rn, which can be represented as a multidimensional interval, can be interpreted

from a geometrical aspect as a n-dimensional hyper rectangle. A formal definition is:

Theorem 2.1.4. Consider an interval hull I which is bounded by a minimum xmin ∈ Rn and a

maximum xmax ∈ Rn, I is defined as:

I = {x ∈ Rn | xmin ≤ x ≤ xmax} (2.5)

In short, I can also be written as I = [xmin,xmax]. In contrast to zonotopes, computations

with intervals can be associated to interval arithmetic. Compared to affine arithmetic, interval

arithmetic suffers from the well known dependency problem which over approximates the exact

solution significantly. This is also known as the wrapping effect. In Fig. 2.2 the wrapping effect of

an interval hull is illustrated based on the previous seen shapes.
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Fig. 2.2. Example illustrating the over approximated hulling of zonotopes by interval hulls.

In Fig. 2.2a and Fig. 2.2b, the interval hulls I1 and I2 are used to hull the zonotope Z1 and

Z2, respectively. As observed in both figures, the result is over approximated. Moreover, hulling

the sampled points in Fig. 2.2b with the interval hulls I2 results as well in over approximations

compared to using the polytope P or the zonotope Z2. For the given example, polytopes seem to

result in exact solutions. However, for the case the shape obtained by connecting several sample

points is non-convex (concave), a convex polytope would over approximate the solution as well.

This must be kept in mind, as the polytopes used in this dissertation are always convex.

2.2 Eigenvalues and Eigenvectors

The study of eigenvalues and eigenvectors has a great importance in the analysis of different kinds

of problems. For dynamic systems, eigenvalues reveal insight information regarding the system
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behavior and its variation over time. For an LTI system, this is described in Section 2.3.1. In the

context of linear algebra and computer vision, eigenvalues are often associated with matrices and

matrix transformations. Nevertheless, the study of eigenvalues and eigenvectors finds its application

in vibrations analysis, heat flow, economics, computer graphics, etc. In the following, the standard

eigenvalue problem as well as the generalized eigenvalue problem will be briefly examined.

2.2.1 The Standard Eigenvalue Problem

In this dissertation, eigenvalues and eigenvectors find as well a key role to play, especially in

abstraction process presented in Chapter 4. In this sense, the definitions of the eigenvectors and

eigenvalues are both reviewed. For this purpose, consider the matrix A ∈ Rn×n and a nonzero

vector v ∈ Rn. In general, the linear transformation of a vector v upon the multiplication with the

square matrix A results in a vector that differs from v in both magnitude and direction. However,

for the case that v is an eigenvector of A, the multiplication of this vector with A does not change

the direction of the vector (except the orientation), but modifies the magnitude of v as described

by the scalar value λ called eigenvalue. A more formal definition from [LF09] is given in Theorem

2.2.1:

Theorem 2.2.1. Let A be an n× n matrix. The scalar λ is called an eigenvalue of A if there is

a nonzero vector v such that:

Av = λv (2.6)

the vector v is an eigenvector of A corresponding to λ.

The term eigenvector used through this dissertation refers to the right eigenvectors unless stated

otherwise. Hence, an eigenvector of a matrix A is only scaled by its corresponding eigenvalue λ

upon undergoing a linear transformation through the matrix multiplication with A. Note that

Eq. (2.6) is called the (standard) eigenvalue problem.

To find the eigenvalues, consider again Eq. (2.6) which can be rewritten as:

Av = λIv =⇒ (λI −A)v = 0 (2.7)

The task of determining the eigenvalues becomes finding the values of λ which satisfies Eq. (2.7)

for a nonzero vector x. This demands (λI −A) to be singular. By that, we can state the following

theorem:

Theorem 2.2.2. Consider the n× n matrix A, the characteristic equation of A is:

det(λI −A) = 0 (2.8)

The scalar λ is an eigenvalue of A if and only if it satisfies Eq. (2.8). Expanding Eq. (2.8) yields

the characteristic polynomial of A:

λn + cn−1λ
n−1 + · · ·+ c1λ

1 + c0 = 0 (2.9)

The roots of the characteristic polynomial are the eigenvalues of A. The eigenvectors of A corre-

sponding to the eigenvalue λ are the nonzero solutions of v that satisfy:

(λI −A)v = 0 (2.10)
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The algebraic multiplicity µi of an eigenvalue λi refers to the µi-repeated root λi of the charac-

teristic polynomial. This means that the algebraic multiplicity states how often an eigenvalue is

repeated in the characteristic polynomial.

The geometric multiplicity γi, on the other hand, states the number of linearly independent eigen-

vectors associated with an eigenvalue λi. That is, γi states the dimension of the nullspace (λiI−A):

γi = dim(ker(λiI −A)) =⇒ γi = n− rank(λiI −A) (2.11)

Each eigenvalue has at least a geometric multiplicity of one. That is, each eigenvalue has at least

one associated eigenvector.

Eigenvalue Decomposition of a Matrix

The aim of the eigenvalue decomposition is to transform a matrix A ∈ Rn×n into its diagonal (if

possible) form. Decomposing a matrix means to factorize it i.e. to find a product of matrices that is

similar to the initial one. Hence, the eigenvalue decomposition of a matrix decomposes the matrix

into the product of its eigenvectors and eigenvalues.

Not all matrices are diagonalizable. For a matrix to be diagonalizable, it must satisfy Theorem

2.2.3 as stated in [ARIS14].

Theorem 2.2.3. An n × n matrix A is said to be diagonalizable if and only if it has n linearly

independent eigenvectors. If λ1, λ2, . . . , λn are distinct eigenvalues of A, then the corresponding

eigenvectors v1,v2, . . . ,vn are linearly independent and A is diagonalizable. In general, A is said

to be diagonalizable if and only if the geometric multiplicity of every eigenvalue is equal to its

algebraic multiplicity.

For the matrix A ∈ Rn×n with n linearly independent eigenvectors, consider the matrix of the

right eigenvectors F ∈ Rn×n with columns consisting of these eigenvectors, that is:

F =
[
v1 v2 . . . vn

]
(2.12)

The diagonal matrix Λ, with the eigenvalues λ1, λ2, . . . , λn on the diagonal ordered like the

corresponding eigenvectors in F , is obtained by replacing v and λ with F and Λ in Eq. (2.7),

respectively, and solving for Λ. This yields:

Λ = F−1AF

=


λ1 0 . . . 0

0 λ2 . . . 0
...

...
. . .

...

0 0 . . . λn


(2.13)

Jordan Normal Form of a Matrix

Not every matrix A ∈ Rn×n is diagonalizable. A more general form is the Jordan normal form

(JNF). For every matrix A, there is a transformation matrix T such that J = T−1AT is in the
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Jordan normal form:

J =


J1

J2

. . .

Jk

 (2.14)

Where J1, J2,. . . , Jk are called Jordan blocks. A Jordan block Ji corresponding to an eigenvalue

λi has the form:

Ji =


λi 1

λi 1
. . .

. . .

λi 1

λi

 (2.15)

The geometric multiplicity γi of the eigenvalue λi states the number of Jordan blocks Ji corre-

sponding to λi. On the other hand, the algebraic multiplicity µi states the sum of the sizes of the

Jordan blocks Ji corresponding to λi.

For the case that λi is complex, the Jordan blocks can be reformed to purely real matrices:

J̃i =


Li Ii

Li Ii
. . .

. . .

Li Ii

Li

 (2.16)

Where Ii is an identity matrix, and Li for the eigenvalue λi = σi + jωi is:

Li =

[
σi ωi

−ωi σi

]
(2.17)

The origin of Li can be traced back to the similarity transformation as explained in Appendix A.2.

2.2.2 The Generalized Eigenvalue Problem

In Section 2.2.1, the standard eigenvalue problem was discussed and analyzed. In fact, the stan-

dard eigenvalue problem is a special case of the generalized eigenvalue problem, which is often

encountered when working with DAE systems. For the dissertation at hand, this section plays a

significant role in understanding the calculations performed during the sampling process presented

later in Chapter 3. In the following, the generalized eigenvalue problem will be examined in a

similar fashion to Section 2.2.1.

Consider two n × n matrices A and E, sometimes denoted as a matrix pair or a matrix pencil

(E,A). A scalar λ is a generalized eigenvalue of the pair (E,A) if:

Av = λEv (2.18)

Note that the standard eigenvalue problem is a special case of the generalized eigenvalue problem

for the case that E = I.
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The nonzero column vector that satisfies Eq. (2.18) is called a right generalized eigenvector

[KHD17]. For convenience, v is just referred to as an eigenvector. Reforming Eq. (2.18) leads to

the well known generalized eigenvalue problem:

(λE −A)v = 0 (2.19)

Theorem 2.2.4 states a more formal definition of this problem along with some of its significant

properties.

Theorem 2.2.4. Consider the two n×n matrices A and E that compose the matrix pencil (E,A),

and the associated characteristic polynomial p(λ) = det(λE −A)

1. the matrix pencil is regular if det(A− λE) 6= 0. Otherwise, it is called singular

2. a pencil (E,A) with nonsingular E is always regular [Ban14]

3. if E is singular, the matrix pencil (E,A) has an eigenvalue at infinity with multiplicity:

µ = (n− rank(E)) (2.20)

Note that if d denotes the degree of p(λ), then the pencil (E,A) has (n − d) eigenvalues at

infinity [Bai00]

4. if E is nonsingular, the generalized eigenvalue problem can be simplified to the standard

eigenvalue problem with:

Av = λEv =⇒ E−1Av = λv (2.21)

5. if λ =∞ is an eigenvalue, the nonzero vectors v satisfying

Ev = 0 (2.22)

are the corresponding right eigenvectors [Bai00]

6. if A is singular, then λ = 0 is an eigenvalue of the system

To deal with both finite and infinite eigenvalues, some approaches decompose an eigenvalue λ

into the pair (α, β) such that λ = α
β . Thus, the generalized eigenvalue problem can be rewritten as

βAv = αBv (2.23)

Eq. (2.23) states that for the case β 6= 0, λ = α
β is a finite eigenvalue. While for the case that

β = 0, λ =∞ is an eigenvalue of the system.

Weierstrass-Kronecker Form

There are a lot of decomposition theorems that can bring a matrix pencil to different forms, an

example of such a form is: the diagonal form, the Weierstrass form, the generalized Schur form,

and the Weierstrass-Schur form [Bai00]. Although the study of these forms is out of the range of

this dissertation, the Weierstrass-Kronecker canonical form will be briefly reviewed.
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Theorem 2.2.5. Consider the matrix pencil (E,A) with A,E ∈ Rn×n. If the matrix pencil (E,A)

is regular, then there exist two nonsingular matrices F and H such that:

Ẽ = FEH

=

[
IΛ 0

0 N

] Ã = FAH

=

[
J 0

0 I∞

]
(2.24)

The matrix pencils (E,A) and (Ẽ, Ã) are said to be equivalent [Ria08]. Where J ∈ Rm×m is

in general in the JNF (Section 2.2.1) corresponding to the finite eigenvalues of Eq. (2.19), while

N ∈ R(n−m)×(n−m) is nilpotent matrix corresponding to the infinite eigenvalues.

As mentioned in Theorem A.1.1 in Appendix A.1, η represents the index of nilpotency of N . The

nilpotent matrix N represents the singularity of the DAE [IR17]. Moreover, the index of nilpotency

is identical to the index of the DAE. As the Weierstrass-Kronecker canonical form is often referred

to in literature as Kronecker canonical form [Ria08], it is abbreviated as KCF.

2.3 Linear and Nonlinear Systems

Physical systems and procedures that exist in nature as well as industrial processes are often de-

scribed via models for analysis and examinations. The simplest approach to describe the behavior

of a system is to model it as a linear system. Linear models can describe a large part of the systems

from the real world. In fact, linear system and control theory has a broad application spectrum.

However, in general these methodologies cannot be applied on nonlinear systems [Ada09]. While

some systems cannot be described accurately with linear models, nonlinear model descriptions usu-

ally result in more precise and better behavioral results, emphasizing the importance of nonlinear

system theory. An exception to this are nonlinear systems that can be, to some degree, approxi-

mated by linear systems. An accurate linearization of a nonlinear system allows for the applications

of the efficient, easy to deploy, less complex algorithms from the linear system theory.

In general, several representations exist to model the behavior of a system. For linear time-

invariant (LTI) systems, the most common used ones are linear ordinary differential equations

(ODEs), transfer functions in the time as well as in the Laplace domain, and the state space

representation in different forms: controllable normal form, observable normal form, and Jordan

normal form (JNF). For nonlinear systems, usually more general forms, such as differential algebraic

equations (DAEs), are used. Of course, linearizing a nonlinear system would additionally allow

for representations such as the linear descriptor system representation, which can to some extent

describe the system behavior accurately. In this section, several model descriptions for linear as

well as for nonlinear systems are handled.

2.3.1 The State Space Representation of an LTI System

A linear system can be represented using the state space representation. With n state space

variables described by the state space vector x(t) ∈ Rn, and the initial condition of this vector

given by x(0) = x0, the state space representation of a multiple input multiple output (MIMO)

continuous time-invariant system is:

ẋ(t) = Ax(t) +Bu(t) (2.25a)

y(t) = Cx(t) +Du(t) (2.25b)
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Where the p output variables and k input variables are described by the output and input vectors,

y(t) ∈ Rp and u(t) ∈ Rk, respectively. Moreover, the matrices from Eq. (2.25) are:

• the system matrix A ∈ Rn×n

• the input matrix B ∈ Rn×k

• the output matrix C ∈ Rp×n

• the feedthrough matrix D ∈ Rp×k

Note that these matrices are time-invariant. Time variant system descriptions will not be covered

in this dissertation. Eq. (2.25) can be extended by some terms to model the noise as stated in

[Lun10]. This representation will be skipped here as well, as the noise is not modeled.

Let S denote the state space of a system. At any instance, the system state can be interpreted

as a point in the n dimensional state space S. The state response x(t) over the time t, on the other

hand, refers to the trajectory through the state space S. Note that t does not appear explicitly in

the state space of the system.

Time-domain Solution of an LTI State Space Equation

The state response i.e. the solution of the differential system given by Eq. (2.25a) with the initial

condition x0, can be stated in terms of the homogeneous solution xhom(t) and the particular

solution xpar(t) [Ada13] as:

x(t) = eAtx0︸ ︷︷ ︸
xhom

+

∫ t

0
eA(t−τ)Bu(τ)dτ︸ ︷︷ ︸

xpar

(2.26)

As observed, the state response depends on two components: the homogeneous response xhom(t)

which in terms depends on the initial condition x0, and the particular solution xpar(t) which

depends on the input vector u(t). Note that the particular solution is computed using a convolution

integral. Since the homogeneous solution is simply computed by the multiplication of the matrix

eAt with the initial condition x0, a state transition matrix Φ(t) can be defined:

Φ(t) = eAt , (2.27)

which upon the multiplication with x0, can deliver at any time t the homogeneous response of the

system. For the particular solution xpar, one can define Φ(t− τ):

Φ(t− τ) = eA(t−τ) , (2.28)

and compute the convolution integral of Eq. (2.26). Inserting this solution in the output equation

Eq. (2.25b), yields the system output response:

y(t) = CeAtx0 +C

∫ t

0
eA(t−τ)Bu(τ)dτ +Du(t) (2.29)

Thus, in order to compute the state and output responses of the system at hand, the main task

becomes finding the transition matrix from Eq. (2.27). Using the matrix exponential, the transition
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matrix can be expanded to an infinite series [Mey08]:

Φ(t) = eAt

=

∞∑
i=0

(At)i

i!

= I +At+A2 t
2

2!
+ . . .

(2.30)

For the case that A is a diagonal matrix, the transition matrix can be easily computed by applying

the exponential function on the entities of the diagonal of the matrix A [Ada13]:

A =


λ1 . . . 0
...

. . .
...

0 . . . λn

 =⇒ Φ(t) =


eλ1t . . . 0

...
. . .

...

0 . . . eλnt

 (2.31)

If the matrix A is not a diagonal matrix, in some cases it can be transformed into a diagonal one

(Section 2.2.1). If the matrix is not diagonalizable, one can first calculate the JNF of A, and then

compute the solution of the system in a similar fashion.

It is important to notice that the eigenvalues of A play a significant role in defining the solution

of the LTI system. Thus, if the eigenvalues are in general known, the solution of the LTI system

can be easily computed. Considering this fact from a different perspective, the system matrix A

can be reconstructed from the eigenvalues that characterize the solution of the LTI system. This

fact states the underlying concept of the abstraction approach stated in Chapter 4.

The Transfer Function of an LTI system

An LTI system is often transformed into the Laplace domain. This is because this domain represents

a powerful tool to analyze and solve an LTI system, due to some special properties obtained during

the transformation from one domain to the other. For example considering a transformation from

the time domain to the Laplace domain, a convolution integral results in a multiplication, while a

differential equation results in an algebraic equation. Note that in both cases the solution is easier

to compute in the Laplace domain. Moreover, properties such as the frequency and phase response

can be easily represented in the Laplace domain.

With s = σ+ jω denoting the complex frequency parameter with the real numbers σ and ω, the

state space in the time domain from Eq. (2.25) can be transformed into the Laplace domain:

X(s) = (sI −A)−1x0 + (sI −A)−1BU(s) (2.32a)

Y (s) = C(sI −A)−1x0︸ ︷︷ ︸
initial condition response

+ [C(sI −A)−1B +D]︸ ︷︷ ︸
transfer function G(s)

U(s) (2.32b)

As stated in [Tsu03], the transfer function G(s) gives a direct relationship between the outputs

of the system described by the output vector Y (s) and the inputs to the system described by the

input vector U(s). The initial condition response is also known as the zero-input response while

the transfer function G(s) is also known as the zero-state response. For the case that the initial

condition x0 is zero, the outputs of the system are described by the second term of Eq. (2.32b)

defined by the zero-state response and the inputs.
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Comparing Eqs. (2.26, 2.29) with Eq. (2.32) shows again the importance of the transition matrix

Φ(t) and the relationship to the eigenvalue problem from Eq. (2.7):

Φ(t) = eAt c s Φ(s) = (sI −A)−1 (2.33)

Stability of an LTI System

There exist a solid number of theorems that can determine the stability of an LTI system. Some

well known theorems are for example the Nyquist stability criterion and Routh-Hurwitz stability

criterion. Examining the stability of a system is of significant importance. For example, one might

find a Lyapunov function and proof that the system is or is not Lyapunov stable. BIBO (bounded

input bounded output) stability, which states that any bounded input generates a bounded output,

is also an important stability type. A special importance, however, is given to the asymptotic

stability. For an LTI system, in contrast a to nonlinear system, the stability condition for BIBO

and asymptotic stability are the same, demanding that all eigenvalues of the system matrix A have

only negative real parts. Hence, all eigenvalues are located in the left half in the complex s-plane.

Transformation of the State Space

The state space representation of a system is not unique. In fact, by reordering the state variables or

defining new state variables in terms of the old ones, infinite many possible state space models can

be constructed. Hence, some standardized state space representation forms have been introduced.

These forms are known as canonical forms: controllable normal form, observable normal form, and

the diagonal, or in general the Jordan normal form (JNF). For the aim this dissertation, only the

JNF and the diagonal form are of interest. As stated in Theorem 2.2.3, the system matrix A from

Eq. (2.25) can be transformed into its diagonal form, if the system has n distinct eigenvectors. If

this is not the case, in general A can be transformed to the Jordan normal form.

Generally speaking, transforming a model from the state space So with the state space variable

x to a new state space Ss with the state space variable xs can be preformed by applying a linear

transformation:

x = Txs, (2.34)

with the transformation matrix T . Upon undergoing a linear transformation with a regular trans-

formation matrix T , that is det(T ) 6= 0, the properties of the linear system including eigenvalues,

observability, and controllability are preserved.

2.3.2 Linear Descriptor System Representation

The state space representation from Eq. (2.25), which describes a linear system by first order

ordinary differential equations, can be extended to describe a system with linear DAEs. This is

done by using a linear descriptor system representation:

Eẋ(t) = Ax(t) +Bu(t) (2.35a)

y(t) = Cx(t) +Du(t) (2.35b)

With the mass matrix E ∈ Rn×n. The dimensions of the matrices A, B, C, and D are as stated

in Section 2.3.1. Compared to Eq. (2.25a), the multiplication of the matrix E with the derivative
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of the state vector (ẋ(t)) transforms the equation from an ODE to a DAE. Moreover, the rank of

E:

rank(E) = r ≤ n,

is of significant importance, as it states that Eq. (2.35a) consists of (r) differential equations and

(n−r) algebraic equations. In the case for E = I, where I ∈ Rn×n is an identity matrix, Eq. (2.35)

becomes identical to the state space representation from Eq. (2.25).

As stated at the end of Section 2.2.2, Eq. (2.35a) can be transformed into the KCF. This comes in

handy when performing a model order reduction on the system, as stated in [BAS16] for example,

or when trying to separate and solve the DAE system.

2.3.3 Local Linearization of a Nonlinear Descriptor System

Systems, especially technical ones, can be described very accurately using mathematical models.

In general this can be performed by using DAEs. In this dissertation, we focus on implicit DAEs

of the following structure:

f(ẋ(t),x(t),u(t)) = 0 (2.36a)

g(x(t),u(t)) = y(t) (2.36b)

Eq. (2.36) is also known in general as a nonlinear descriptor system with the descriptor vector

x ∈ Rn containing the system variables (descriptor variables). With the input vector u ∈ Rk and

the descriptor vector x, the output vector y can be defined using Eq. (2.36b).

Electric circuits, control systems, and many physical process are often described using this rep-

resentation. However, working with nonlinear systems descriptions often challenges the design

process. An easy approach to describe a nonlinear system linearly in a specific portion of the state

space is local linearization. For example, Eq. (2.36) can be linearized using the Taylor series around

the operating point xDC for an operating input uDC . By using the first order Taylor approximation

for multivariable functions on Eq. (2.36), neglecting thereby the higher order terms, the equation

is linearized to:

f(ẋ,x,u) ≈ f(ẋDC ,xDC ,uDC)︸ ︷︷ ︸
0

+
∂f(ẋDC ,xDC ,uDC)

∂ẋ︸ ︷︷ ︸
E

∆ẋ

+
∂f(ẋDC ,xDC ,uDC)

∂x︸ ︷︷ ︸
−A

∆x+
∂f(ẋDC ,xDC ,uDC)

∂u︸ ︷︷ ︸
−B

∆u,

(2.37)

and

g(x,u) ≈ g(xDC ,uDC)︸ ︷︷ ︸
yDC

+
∂g(xDC ,uDC)

∂x︸ ︷︷ ︸
C

∆x

+
∂g(xDC ,uDC)

∂u︸ ︷︷ ︸
D

∆u

(2.38)
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Since ẋDC = 0, f(0,xDC ,uDC) = 0 as given by Eqs. (2.36a, 2.37). Finally, the system can be

brought to the descriptor system representation presented in Eq. (2.35):

E∆ẋ(t) = A∆x(t) +B∆u(t) (2.39a)

∆y(t) = C∆x(t) +D∆u(t) (2.39b)

Such that:

∆x(t) = x(t)− xDC ∆u(t) = u(t)− uDC ∆y(t) = y(t)− yDC

The dimensions of the matrices A, B, C, D, and E are as stated in Section 2.3.2. Eq. (2.39) is in

general only valid in a small region around the linearization point. Hence, in order to describe a

nonlinear system accurately, often several linearization points are needed. This approach will find

its application in Section 3.2.2.

Eigenvalues of the System

Eigenvalues are defined in the context of linear systems. For nonlinear systems, linearizing a non-

linear system (for example using the Taylor series) and solving the underlying eigenvalue problem

allows for the computation of the eigenvalues around the operating points of the linearized system.

As the nonlinear system evolves, the eigenvalues and eigenvectors change. Thus, in the context

of nonlinear systems, one might define a set of eigenvalues and eigenvectors computed around the

linearization points.

Depending on the linearization, i.e. order of Taylor terms, the underlying eigenvalue problem

changes from the generalized eigenvalue problem stated in Section 2.2.2 to a polynomial eigenvalue

problem. This problem is often encountered during vibration analysis, MEMS simulation, and

the solution of least squares problems with quadratic constrains. In this dissertation, only the

generalized eigenvalue problem will be considered. For more details on this topic see [TM01;

HGL04].

2.4 Hybrid Automata

Hybrid systems can be modeled using hybrid automata. A hybrid automaton (HA) is a generalized

finite state machine with continuous state variables. It has a finite set of locations of which one is

the specified starting location (initial location).

In each location, the system behavior is described by differential equations with continuous state

variables. As long as the invariant condition of a location is valid, the system can stay in this

location. Once the invariant condition becomes invalid, the automaton must leave the location.

When a location can be left is described by the guards, and how it is left is specified by the

corresponding jump function. This function is applied once the corresponding guard is taken. The

guards allow for location switch, but do not define when exactly this switch happens. This makes

a HA non-deterministic. A HA can also be non-deterministic if different locations share the same

invariant, multiple location transitions can occur at the same time, or the same transition results

in different locations. Of course by choosing the invariants, jump functions, and guards in an

appropriate way, a HA can be created that is deterministic. The formal definition of the HA is

similarly defined as in [SK03] with some restrictions on the jumps and the guards:
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Definition 1. A hybrid automaton is a tuple HA = (Loc, loc0,xλ,xλ,0, inv, tran, grd,J ,u,f) con-

taining:

• the finite set of locations Loc = {loc1, . . . , locν} with an initial location loc0

• the continuous state variables xλ ∈ Rm corresponding to the state space Sλ ⊆ Rm and their

initial values xλ,0

• the invariant mapping inv: Loc → 2Sλ1 which assigns an invariant inv(loc) ⊆ Sλ to each

location loc ∈ Loc

• the set of discrete transitions tran ⊆ loc × loc. A transition (loci, locj) denotes a transition

from loci ∈ Loc to locj ∈ Loc

• the guard function grd: tran→ 2Sλ that assigns a guard set grd(loci, locj) for each transition

from loci to locj

• the jump function J : T ×Sλ → Sλ, which returns the next continuous state when a transition

is taken

• the continuous input variables u ∈ Rk corresponding to the input space Su ⊆ Rk

• the flow function f : Loc × Sλ × Su → Rm, which defines a continuous vector field for the

time derivative of xλ: ẋλ = f(loc,xλ,u)

Throughout this dissertation, invariants will be described by the geometric shapes stated in

Section 2.1. For simplicity, an invariant of a location loc is denoted as invloc.

The guards are modeled as halfspaces, polytopes, zonotopes or interval hulls (Section 2.1). A

guard is denoted as:

grdh : loci︸︷︷︸
current location

→ locj︸︷︷︸
target location

(2.40)

With loci and locj representing the current location and the target location, respectively. The

current location indicates the location the guard belongs to. The target location of the guard is the

next location the system switches to if this guard is taken. As a location can have several guards,

the guards of a location are distinguished by the guard index h.

The jump functions are restricted to linear mappings. With the matrix Qr ∈ Rm×m and the

reset vector vr ∈ Rm, along with the new state vector xλ,new ∈ Rm after and xλ,old ∈ Rm before a

transition is taken becomes, a jump function has in general the following form:

xλ,new = Qrxλ,old + vr (2.41)

2.5 Cluster Analysis

One of the essential building blocks of the algorithm presented in Chapter 4 is the cluster analysis.

In the last decade, cluster analysis has gained significant importance especially upon its application

in emerging fields such as big data and the internet of things, as it has proven itself as an effective

unsupervised machine learning algorithms. In this dissertation, cluster analysis plays a significant

role in the model abstraction process handled later in Section 4.4.

12Sλ is a power set of Sλ
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Cluster analysis aims to divide a given data set into groups (clusters), such that points in the

same group are similar to each other and dissimilar to points from other groups. Hence, groups

formed have low within-cluster variance and similar patterns. Moreover, it is often desired to obtain

a representing value for each cluster, the centroid.

When clustering a data set, the algorithm must answer some basic questions including the optimal

number of clusters and the quality of the found cluster. For some algorithms a set of specification

can be provided to aid this process. After a clustering analysis is launched on a data set, the algo-

rithm tries to group the data based on similarities, patterns, and differences with no previous labels.

Clustering analysis is also known as one of the main methods of unsupervised machine learning, as

the algorithm tries to find the best suited result from a set of given data and specifications without

human interaction. As the entire spectrum of cluster analysis exceeds this dissertation, only a few

topics will be picked and reviewed in this section. These topics include two clustering algorithms:

k-means and DBSCAN, and a cluster evaluation criterion: the silhouette coefficient. An extensive

study on data mining and especially clustering analysis can be found in [TSKK19].

In order to explore the clustering algorithms, a common data set represented by the matrix

Eig ∈ Rl×4 is considered. This data set consists of l = 18500 sampled data points:

Eig =


Re(λ1,1) Im(λ1,1) Re(λ1,2) Im(λ1,2)

Re(λ2,1) Im(λ2,1) Re(λ2,2) Im(λ2,2)
...

...
...

...

Re(λl,1) Im(λl,1) Re(λl,2) Im(λl,2)

 (2.42)

For simplicity, the second and fourth columns of Eq. (2.42) are zero vectors. Plotting the first

column values against the values from the third column is illustrated in Fig. 2.3. For this matrix,

two clustering goals are targeted. the first goal is to effectively cluster the data points into clusters,

while the second goal is to find a centroid for each identified cluster.
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Fig. 2.3. Unclustered data set contained in Eig.

2.5.1 Clustering Algorithm: K-means

The k-means algorithm, also known as Lloyd’s algorithm [Llo82], is a partitioning based method.

The algorithm tries to partition the data set into km clusters. Note that the desired number of

clusters km is specified by the user. For the clustering of the 4-dimensional data set Eig, the

k-means algorithm is described in Algorithm 1.
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Algorithm 1 K-means clustering algorithm

1: procedure k-means(Eig,km)

2: choose km initial centroids (cluster centers) randomly

3: while centroids change and maximum number of iterations is not reached do

4: for each point in Eig do

5: calculate the distances from the point to all centroids

6: assign the point to the closest centroid

7: end for

8: compute the average of all points in a cluster to obtain km new centroids

9: end while

10: end procedure

The standard implementation from Matlab extends Algorithm 1. The k-means Matlab imple-

mented offers a variety of options. For example, additionally to the standard way to proceed at

line 5 (batch update), Matlab offers an online update which reassigns points to centroids if several

criteria are met. By default, this option is off. The distance metric used in line 5 of Algorithm 1

can also be specified. Even though the abstraction approach handled later in Chapter 4 can use

various distance metrics, for simplicity only the default squared Euclidean distance metric will be

used throughout this dissertation.
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Fig. 2.4. Result of the k-means clustering algorithm for km = 2.

Fig. 2.4 shows the result of the k-means clustering process with km = 2 and the maximum number

of replicates set to r = 4. During the 4 replicates, which were executed in parallel, the algorithm

converged rapidly with a maximum number of iterations ranging between 3 to 5. Note that the

number of maximum iterations was not explicitly specified and hence the default value (100) was

used.
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As illustrated in Fig. 2.4a, the non-zero column vectors of Eig (column 1 and 3), have been

successfully clustered into two groups g1 and g2. The centroids of the clusters g1 and g2 have been

labeled λop,g1 and λop,g2, respectively. Fig. 2.4b shows the labeled distribution of the first column

of Eig, while Fig. 2.4c presents the result for the third column.

The result of the k-means with km = 3 is illustrated in Fig. 2.5 with the same number of replicates.

This time the algorithm needs a maximum of 14 iterations to converge. Compared to previous case

(km = 2) where the data points overlapped minimal along the Re(λ2) dimension, Fig. 2.5 shows

that these two groups do not overlap at all if km = 3 is used. However, g3 overlaps significantly

with the neighbor groups as shown clearly in Fig. 2.5c.
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Fig. 2.5. Result of the k-means clustering algorithm for km = 3.

The result of clustering Eig with km = 4 and km = 5 is presented in Fig. 2.6a and Fig. 2.6b,

respectively. For the case that km = 4, the algorithm needs a maximum of 19 iterations, while for

km = 5 the algorithm needs a maximum of 23 iterations.

Considering the various results obtain for different values of the number of clusters km, a question

is raised regarding the right number to choose. Moreover, there is a need for a metric that allows for

the comparison of the results. This is where the silhouette coefficient discussed later in Section 2.5.3

comes in.

As seen, the k-means is a simple algorithm which is easily applicable on a wide variety of data.

Solid results are obtained due to multiple runs as well as due to the specified desired number of

clusters km. However, k-means is a partitioning algorithm, which makes it unsuitable for some

data types, especially when the data contains outliers or the clusters are of various destinies. The

problem with outliers can be solved by dropping out points, whereas the problem with the density

of the data is linked to the partitioning nature of this algorithm. The more data are located
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Fig. 2.6. Result of the k-means clustering algorithm for (a) km = 4 and (b) km = 5.

in a portion of the data space, the more likely it becomes that these points form a cluster. To

demonstrate this, consider Fig. 2.7.

(a) (b)

Fig. 2.7. Results of the k-means algorithm with km = 3.

An additional dimension named (Vnout − Vneg) has been added to the four dimensions of Eig.

For the new data set, we desire 3 clusters, as presented in Fig. 2.7a, and have therefore specified

km = 3. As observed in Fig. 2.7b, k-means did successfully achieve this goal. Note that k-means

could have formed the clusters similar to Fig. 2.5a, when looking at 2.7b from the top view (Re(λ1),

Re(λ2)), but the distribution of the points favored this constellation.

Considering Fig. 2.8, when on the other hand 5 clusters are desired as shown in Fig. 2.8a, k-

means failed to achieve this result as presented in Fig. 2.8b, even though the data points are well

separated. Modifying the distance metric, or like in our case scaling the data set, can sometimes

achieve the desired result as shown in Fig. 2.8c.

There are various extensions to the k-means clustering algorithm, such as the k-means++[AV07]

which uses a heuristic to find the centroids of the km clusters improving the run time and the quality

of the results. Note that, by default Matlab k-means algorithm uses k-means++ for cluster center

(centroids) initialization. Another extended version is the k-medoids algorithm, which chooses the



2.5. Cluster Analysis 27

(a) (b)

(c)

Fig. 2.8. Results of the k-means algorithm with km = 5. The desired result is shown in (a). The

obtained results on the untreated data set is shown in (b). Upon scaling the data set, (c)

is obtained.

center of each cluster as one of the data points. In [TSKK19], various extended k-means algorithms

are listed and examined, like bisecting k-means.

2.5.2 Clustering Algorithm: DBSCAN

Another clustering algorithm is DBSCAN [EKX], which unlike k-means is a density based clus-

tering algorithm. This clustering algorithm can distinguish the points belonging to a cluster and

those which represent noise in a data set, as the name implies: Density-based spatial clustering of

applications with noise. In fact, points are divided into three types: core points, border points,

and noise points. These are defined as:

• Core points: points that have at least N points within a distance ε from themselves.

• Border points: points that has at least one core point at a distance ε from themselves, but

do not have the required N points within this distance.

• Noise points: points that are neither core nor border points.

A cluster can contain both, core and border points, while noise points don’t belong to any cluster.

Fig. 2.9 shows an example of this point classification.
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Fig. 2.9. Classification of points in DBSCAN. All circles have a radius of ε. The centers of the

circles represent the coordinates of the example points.

The DBSCAN algorithm is given in Algorithm 2 for the data set Eig, the threshold radius for a

neighborhood search query ε, and the minimum number of neighbors N required for a core point.

Algorithm 2 DBSCAN clustering algorithm

1: procedure DBSCAN(Eig,ε,N)

2: from Eig choose an initial core point and initialize the first cluster label km to 1

3: while there are unlabeled points do

4: while new points can be labeled to the current cluster km do

5: label the points that are at a distance ε from the current point

6: if at least N points are in a distance less than ε then

7: label the current point as a core point

8: else

9: label the current point as a noise point or a border point

10: end if

11: choose the current point as one of the found core points

12: end while

13: select next unlabeled point as the current point and increase the cluster label km by one

14: end while

15: end procedure

Noise as well as border points can be reassigned in this algorithm. Similar to the k-means

algorithm, the Matlab implementation of the DBSCAN algorithm comes with a wide variety of

possible settings that optimize the performance and results obtained.

Compared to k-means, DBSCAN has the advantage that the number of clusters is found by

the algorithm. On the other hand, this requires reasonable values for the input parameters ε and

N . Moreover, in some cases better results can be achieved by prepossessing the data set before

launching the clustering algorithm. The impact of changing only one parameter (ε) slightly is

shown in Fig. 2.10.

Along with the stated algorithms, the clustering algorithms OPTICS and mean-shift are also

used in this dissertation. As they are later stated only as substitution to the default algorithm,

they will not be reviewed here.

https://de.mathworks.com/help/stats/dbscan.html
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Fig. 2.10. Results of the DBSCAN algorithm with the data setEig and N = 1. In (a) the clustering

is performed with ε = 0.1, while in (b) ε = 0.09 is used.

2.5.3 Clustering Evaluation: The Silhouette Coefficient

To measure the quality of clustering, the silhouette coefficient can be used. The silhouette value for

each point shows how similar this point is to the other points belonging to a cluster. The silhouette

coefficient for a point λpt is defined as:

silhouette(λpt) =
bpt − apt

max(apt, bpt)
(2.43)

Where apt represents the average distance from the point λpt to the remaining points of the same

cluster, while bpt represents the minimum average distance from the point λpt to the points belong-

ing to a different cluster.

The silhouette coefficient can attain values between [−1, 1]. A close value to 1 indicates that the

point is well clustered and thereby assigned to the appropriate cluster. If this value is close to zero,

the point lies in between two clusters. A negative value indicates that the point is closer to other

clusters than to its own. This indicates that the clustering performed can be improved.

Considering the data set Eig and the clustering performed in Section 2.5.1 with the cluster

number km = 2, the silhouette coefficient for each of the 18500 points is shown in Fig. 2.11a. As

observed, the points are well labeled in the two clusters.

As stated in Section 2.5.1, when using the k-means algorithm the optimal number of clusters

km must be provided. For that, the silhouette coefficient can be used. In fact, Matlab provides

a clustering evaluation function called evalclusters, which according to a set of specified criteria

evaluates the cluster analysis. The result of this evaluation for the studied case from Section 2.5.1

is illustrated in Fig. 2.11b, with the silhouette coefficient set as the clustering evaluation criterion.

As observed, the optimal number of clusters for this case is km = 2.
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Fig. 2.11. In (a) the silhouette coefficients of the data points after performing k-means with km = 2

on Eig is shown, while in (b) the result of the evalclusters function with the silhouette

as the evaluation criterion and a maximum of 5 clusters to test is illustrated.
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Fig. 3.1. Overview of Vera and its basic building blocks.

The first step towards the model abstraction, as illustrated in Fig. 1.4, is to sample the netlist

via Vera [HKH04; HB5; SH10a]. Originally, Vera is an analog equivalence checking tool that

formally verifies the equivalence of two circuits by comparing their reduced state space. This will

be examined deeper in Chapter 6. For the purpose of this dissertation, Vera was partially extended

to fit the needs for the model generation process described in Chapter 4.

In the following, Vera is used to sample only one netlist. Fig. 3.1 shows an overview of the

sampling process as well as the building blocks of Vera. During the sampling process, an order

reduction is performed on the circuit as well as reachability analysis on the sampled data points

classifying them as reachable or not reachable. As shown in Fig. 3.1, the sampling yields an acv

file. This file contains significant information such as the values of sampled data points, their

reachability status, the connection between them given by a directed graph, and the eigenvalues

and eigenvectors of the pointwise linearized system.

The sampling performed by Vera is done on the original netlist at transistor level with full BSIM

accuracy. In order to generate an accurate model, not only the nodal currents and voltages need

to be sampled, but also significant behavioral data, such as the eigenvalues and eigenvectors. Note

that there is a nonlinear evolution of these sampled values in regard to the different sampled points,

which is the reason why these values need to be determined at every sampled point.

Therefore, to keep the overall system behavior, it is not enough to sample along some transient

trajectories. Rather, the circuit must be sampled in an adequate manner in the reachable state

space. The sampling process of Vera is described in Algorithm 3. Vera samples a netlist with

BSIM accuracy stepping thereby through the state space like in [SH10a], nonlinearly reducing the

order as in [PAOS03], and examining the reachability of the sampled points [SH10a]. The result is

a set of data points connected by a directed graph [SH12b]. In the following, the sampling process

performed by Vera will be examined in detail. Moreover, the generated acv file obtained from this

sampling, will be handled at the end of this chapter.
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Algorithm 3 State space sampling using Vera
1: procedure State space sampling

2: read the netlist

3: set up the nonlinear differential algebraic system:

4: f(x(t), ẋ(t),u(t)) = 0 g(x(t),u(t)) = y(t)

}
computing the nonlinear Eqs. (Section 3.1)

5: for every input value in a predefined range do

6: DC analysis → initial state vector xDC
7: compute the eigenvector matrix F

8: for every sample point in predefined ranges do

9: compute new step size ∆xs
10: compute state vectors for next sample point:

xest = xold + F∆xs,Λ
11: compute consistent sample points:



state space sampling (Section 3.2)

xcons using xest
12: compute the new eigenvector matrix F

13: xold = xcons
14: end for

15: end for

16: end procedure

3.1 Computing the Nonlinear Equations

Starting from the Spice netlist description of the circuit, the nonlinear differential algebraic equa-

tions are set up as stated in [SH10b]:

f(x(t), ẋ(t),u(t)) = 0 (3.1a)

g(x(t),u(t)) = y(t) (3.1b)

Where x(t) ∈ Rn represents the vector of n system variables {xi(t) | i ∈ 1, . . . , n}, u(t) ∈ Rk

represents the vector of k input variables {ui(t) | i ∈ 1, . . . , k}, and y(t) ∈ Rp represents the vector

of p output variables {yi(t) | i ∈ 1, . . . , p}. Note that in the following the indication that the

variables x, y, and u are functions of the time t will be dropped to shrink the size of the equations.

The system of equations f from Eq. (3.1a) is set up by using the modified nodal approach (MNA)

[HRB75]. Application of the MNA results in an implicit equation for each circuit node with the

system variables usually being the nodal voltages, some device currents, and additional variables

resulting from device equations or behavioral description of parts from the analog circuit [SH10b].

Using the MNA, the charge-oriented equations can be set up:

Nq̇ = fs(x,u) (3.2)

q = fa(x) (3.3)

Where q harbors the charge variables. For simplicity, inductive elements are not considered. If

inductive elements were to be considered, an approach similar to the charge oriented MNA stated

in [ABB11] could be used. Note that the vector of the unknowns would be extended by the flux

variables φ of the inductive elements.
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A closer look at Eq. (3.2) reveals that the equation represents in general a system of ordinary

differential equations (ODEs), for the case that N has full rank, while Eq. (3.3) represents a system

of algebraic equation. Inserting Eq. (3.3) into Eq. (3.2) would again result in Eq. (3.1a), a system

of differential algebraic equations (DAEs).

3.2 State Space Sampling

As described in Algorithm 3, the state space sampling involves several steps. These steps will be

examined in detail in the following.

3.2.1 DC Analysis

After the system equations have been set up, a DC analysis is performed to find the operating point

for a given input u = uDC , as mentioned in Algorithm 3 at line 6. For that, the time derivative of

the charge variables q̇ in Eq. (3.2) is set to 0, as at the steady state (t → ∞) the system reaches

an equilibrium. By that, Eq. (3.2) becomes:

fs(x,u) = 0 (3.4)

For a given input uDC , the only unknown in Eq. (3.4) is the state vector x. Therefore, the task

becomes finding xDC such that:

fs(xDC ,uDC) = 0 (3.5)

For simplicity, denote fs(x,u) as fs(x) for the case that u is given. Eq. (3.5) can be solved using

the explicit Newton-Raphson method. For each iteration, the Jacobian matrix is calculated:

Jfs(xi) =



∂fs1 (xi)
∂x1

∂fs1 (xi)
∂x2

. . .
∂fs1 (xi)
∂xn

∂fs2 (xi)
∂x1

∂fs2 (xi)
∂x2

. . .
∂fs2 (xi)
∂xn

...
...

. . .
...

∂fsn (xi)
∂x1

∂fsn (xi)
∂x2

. . . ∂fsn (xi)
∂xn

 (3.6)

With the Jacobian matrix at hand, its inverse can be computed and the solution of Eq. (3.4) can

be determined by applying the Newton-Raphson method:

xi+1 = xi − J−1
fs

(xi)fs(xi) (3.7)

After several iterations applying Eq. (3.7), the termination condition becomes valid and the DC

solution xDC for the input uDC is found.

3.2.2 Computing the Linear Eigenvector Matrix

With the DC solution xDC at hand, the eigenvector matrix F of the corresponding linearized

system is computed, which is of significant importance for the sampling process. This computation

is divided into several steps as shown in Algorithm 4. These steps are examined in the following.
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Algorithm 4 Computing the eigenvector matrix F
1: procedure Compute F

2: linearize Eq. (3.1a) and find the conduction matrix A and the capacitance matrix E

3: find the reduced state space Sλ
4: compute the eigenvector matrix F

5: end procedure

From the Nonlinear DAE to the Linear System Description: Computing A and E

As stated in Algorithm 4 at line 2, to find the conduction matrix A and the capacitance matrix

E, Eq. (3.1a) is linearized around the operating point xDC for the input vector uDC . Note that

the conduction matrix and the capacitance matrix are often denoted as G and C, however this

notation is not used here as it is more convenient to work with the stated notation, especially in

Chapter 4.

As mentioned, Eq. (3.1a) can be divided into the two Eqs. (3.2, 3.3). So, the task becomes

linearizing the equations:

Nq̇ = fs(x,u) =⇒ E∆ẋ+A∆x = B∆u

To determine the capacitance matrix E ∈ Rn×n, the chain rule is first applied on Eq. (3.3) to

determine q̇:

q̇ =
dq

dt

=
dfa(x)

dt

=
dfa(x)

dx

dx

dt

= Jfa(x)ẋ

(3.8)

Where Jfa(x) is a Jacobian matrix and ẋ is the derivative of the state vector x with respect to

the time. Substituting Eq. (3.8) in q̇ from Eq. (3.2), for x = xDC and u = uDC , yields:

Nq̇ = NJfa(xDC)︸ ︷︷ ︸
E

ẋ
(3.9)

The remaining nonlinear function fs(x,u) of Eq. (3.2) is next linearized around the operating

point (xDC , uDC) using the first order Taylor polynomial for multivariable functions. Using the

corresponding Taylor terms along with Eq. (3.5), fs(x,u) is linearized to:

fs(x,u) ≈ fs(xDC ,uDC)︸ ︷︷ ︸
0

+
∂fs(xDC ,uDC)

∂x︸ ︷︷ ︸
A

(x− xDC) +
∂fs(xDC ,uDC)

∂u︸ ︷︷ ︸
B

(u− uDC)
(3.10)

This is an approximation as the reminder of the Taylor series in Eq. (3.10) is missing. In fact, the

error of this approximation can be estimated by determining this reminder.

The conduction and input matrices in Eq. (3.10), A ∈ Rn×n and B ∈ Rn×k, respectively, are

both Jacobian matrices. With ∆u = u−uDC and ∆x = x−xDC leading to ∆ẋ = ẋ (as ẋDC = 0),

the linearized system becomes:

E∆ẋ = A∆x+B∆u (3.11)
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Note that Eq. (3.11) could have also been derived from Eq. (3.1a) by applying the Taylor series

directly on f(ẋ,x,u) as stated in Section 2.3.3 by applying Eq. (2.37).

Regarding the output of the system from Eq. (3.1b), the approach presented in 2.3.3 can be used

to linearize the output equation. In fact, this is not needed here as the output voltages and currents

are usually functions of the nodal currents and voltages presented in x. Thus, the output vector

y is often directly given as a function of the state variables x. For consistency, by additionally

consider the input vector u, the output equation becomes:

∆y = C∆x+D∆u (3.12)

With:

yDC = CxDC +DuDC C =
∂g(x,u)

∂x
D =

∂g(x,u)

∂u
(3.13)

Where C ∈ Rp×n and D ∈ Rp×k. For simplicity, the feedthrough matrix D will be neglected in

what follows, as the state vector x usually contains all nodal voltages and currents.

Summing up the previous results, the linear descriptor representation of the systems is:

E∆ẋ = A∆x+B∆u (3.14a)

∆y = C∆x+D∆u (3.14b)

According to Section 2.3.2, Eq. (3.14) represent the linear descriptor representation of the system

with x ∈ Rn being the state space vector, sometimes denoted as descriptor vector, in the original

state space So of the system. As stated previously, this vector hosts all nodal current and voltages

of the circuit.

The Reduced State Space Sλ

At this point, we aim to reduce the size of Eq. (3.14) pursuing two purposes:

• get rid of the algebraic equations presented in Eq. (3.14a)

• perform a dominant pole order reduction on Eq. (3.14a) to further reduce the order of the

equation to an appropriate one that considers the relevant dynamics of the system

The first goal can be achieved by separating Eq. (3.14a) into two equations according to the cor-

respondence to the finite and infinite eigenvalues. This can be achieved by transforming Eq. (3.14a)

into the KCF as stated in Section 2.2.2.

Consider the two transformation matrices F ∈ Rn×n and H ∈ Rn×n. F is the matrix of the right

eigenvectors, as the columns of F in general consist of the right eigenvectors of the linearized system.

We demand that F is regular, by that all its column vectors are independent. For the case the

finite eigenvalues of the system are distinct, this is straight forward, as the finite eigenvectors are by

definition independent, and the infinite eigenvectors can be freely chosen as stated in theorem 2.2.4.

H on the other hand is a properly calculated matrix. There exist different methods to calculate this

matrix [Mär91][Doo79]. For example, if all eigenvectors are independent and arranged column-wise

in the F matrix, to satisfy Eq. (2.24), H can be calculated as:

H = ÃF−1A−1 (3.15)
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Note that F and especially H are sometimes ill calculated, which challenges the model abstraction

process described in Chapter 4. Even though several methods have been implemented in Vera that

compute these matrices, errors can still arise due to numerical problems. As seen later, Section 4.5.2

tries to counter this problem.

Using the transformation matrices F , the state space vector x ∈ Rn in the original state space So
is transformed to the state space vector xs ∈ Rn in the new state space Ss by a linear transformation

(see Section 2.3.1):

∆x = F∆xs (3.16)

Using Eq. (3.16) and the transformation matrix H, Eq. (3.14) is transformed into the KCF as

stated in Section 2.2.2:

HEF︸ ︷︷ ︸
Ẽ

∆ẋs = HAF︸ ︷︷ ︸
Ã

∆xs +HB︸︷︷︸
B̃

∆u (3.17a)

∆y = CF︸︷︷︸
C̃

∆xs (3.17b)

Note that transformed matrices are marked by a tilde (˜). Expanding Ẽ and Ã yields the form

described in Eq. (2.24). By that, Eq. (3.17) becomes:[
IΛ 0

0 N

]
∆ẋs =

[
J 0

0 I∞

]
∆xs +

[
B̃Λ

B̃∞

]
∆u (3.18a)

∆y =
[
C̃Λ C̃∞

]
∆xs (3.18b)

With IΛ,J ∈ Rr×r, I∞,N ∈ R(n−r)×(n−r), B̃Λ ∈ Rr×k, B̃∞ ∈ R(n−r)×k, C̃Λ ∈ Rp×r, and C̃∞ ∈
Rp×(n−r). As stated in [HKH04], this transformation is only valid at the particular sampled point

of the linearized system. Note that the initial system consisting of n variables can now be divided

into r dynamic variables and (n− r) algebraic variables.

In order to achieve the second goal stated at the beginning of this section i.e. extracting the

relevant dynamics of the system, Eq. (3.18) is further processed. Performing a dominant pole

reduction similar to [PAOS03] on Eq. (3.18), reduces the high order resulting from parasitic poles

down to the functionality needed. This reduction can be specified by the number of poles of

interest to be incorporated or by a corner frequency. All poles and zeros which are below the

corner frequency are incorporated in the model. This can be thought of as moving the remaining

i poles and zeroes, that are far to the left of the complex s-plane and not in the range of interest,

to infinity. By that, the size of N and I∞ is increased by i rows and columns, while the size of IΛ

and J is decreased. The system thereby is left with:

m = (r − i), (3.19)

finite eigenvalues. Of course, other reduction method could also be used, for example those stated

in [Ban14]. As the model order reduction of a system is out of the scope of this dissertation, only

the stated case will be adapted. The model order reduction results in:[
IΛ,red 0

0 Nred

]
∆ẋs =

[
Jred 0

0 I∞,red

]
∆xs +

[
B̃Λ,red

B̃∞,red

]
∆u (3.20a)

∆y =
[
C̃Λ,red C̃∞,red

]
∆xs (3.20b)



3.2. State Space Sampling 37

Where the subindex red stands for the matrices after model order reduction. With IΛ,red,Jred ∈
Rm×m, I∞,red,Nred ∈ R(n−m)×(n−m), B̃Λ,red ∈ Rm×k, B̃∞,red ∈ R(n−m)×k, C̃Λ,red ∈ Rp×m, and

C̃∞,red ∈ Rp×(n−m). For simplicity, we perform the following assumptions

Assumption 1. All finite eigenvalues of the system are distinct, the matrix Jred in JCF becomes

thus a diagonal matrix Λ.

Assumption 2. The index of nilpotency η ≤ 1

Assumption 1 is quite common in numerical applications, but is here only assumed for simplicity.

Assumption 2 is made concerning the nilpotent matrix Nred. Theorem 3.2.1 states the results from

[Est00] summarized in [ABB11]. Note that the index of the DAE is the index of nilpotency as

stated in Section 2.2.2.

Theorem 3.2.1. If the differential index of the DAE is one, then the network contains neither

cut-sets with only inductive and/or independent current sources, nor loops with capacitive elements

and independent voltage sources.

In what follows, these assumptions are made as stated in [HKH04]. Concerning Assumption 1,

Λ can be replaced at any time with little adjustment by Jred. For Assumption 2, the case η > 1 is

handled in the Appendix A.1.

For the stated assumptions, the system becomes:[
IΛ,red 0

0 0

]
∆ẋs =

[
Λ 0

0 I∞,red

]
∆xs +

[
B̃Λ,red

B̃∞,red

]
∆u (3.21a)

∆y =
[
C̃Λ,red C̃∞,red

]
∆xs (3.21b)

Eq. (3.21a) can be divided into two parts: a dynamic and a static part. This is done by dividing

the state space vector xs ∈ Rn into two parts: xλ ∈ Rm and x∞ ∈ Rn−m.

xs =

[
xλ

x∞

]
(3.22)

The vector xλ is referred to as the state vector in the reduced canonical state space Sλ. The m-finite

eigenvalues of the system are associated with this state vector. The (n−m)-infinite eigenvalues are

associated with x∞, the state vector in the state space S∞.The parasitic behavior of these poles is

not totally rejected, as the nonlinear large signal dynamics are part of the consistent solutions as

explained at the end of Section 3.2.4.

By replacing the subscript (Λ, red) by λ and splitting xs into xλ and x∞ according to Eq. (3.22),

Eq. (3.21) becomes: [
Iλ 0

0 0

][
∆ẋλ

∆ẋ∞

]
=

[
Λ 0

0 I∞,red

][
∆xλ

∆x∞

]
+

[
B̃λ

B̃∞,red

]
∆u (3.23a)

∆y =
[
C̃λ C̃∞,red

] [∆xλ

∆x∞

]
(3.23b)

Hence, the dynamic or differential part of Eq. (3.23a) is:

Iλ∆ẋλ = Λ∆xλ + B̃λ∆u, (3.24)



38 3. Sampling the State Space

while the static or algebraic part is:

I∞,red∆x∞ = −B̃∞,red∆u (3.25)

In a similar fashion to the state vector xs, the eigenvector matrix F as well as the proper

calculated matrix H can be divided into two parts:

F =
[
FλF∞

]
H =

[
Hλ

H∞

]
(3.26)

Note that this distinction is performed after the model order reduction. Thus, FΛ ∈ Rn×m, F∞ ∈
Rn×(n−m), HΛ ∈ Rm×n, and H∞ ∈ R(n−m)×n. This concludes the calculation of the matrices F

and H as stated in Algorithm 4.

3.2.3 State Space Step

Continuing the sampling process described in Algorithm 3, the next step is to calculate the state

space step (line 9) followed by the calculation of the calculation of the estimated sample point

xest in the So domain (line 10). Previously, we have linearized Eq. (3.1a) around the operating

point (xDC ,uDC) and calculated the eigenvalues of the linearized system. With the transformation

matrices F and H, the system was transformed from the original state space So to the reduced

state space Sλ. The S∞ space is of minor importance as will be clarified in the following. The

relationship of the state vectors of these state spaces is given by Eq. (3.16):

∆x = Fλ∆xλ + F∞∆x∞ (3.27)

By considering Eq. (3.25), it becomes clear that as long as ∆u = 0, ∆x∞ = 0. Hence, for a given

state step value ∆xλ, a point in the So space can be estimated. For this, only the reduced part

(with the subscript λ) from the right side of Eq. (3.27) needs to be considered:

xest = Fλ∆xλ + xold (3.28)

By solving Eq. (3.28), the estimated sample point xest in the So domain is calculated. In the first

step, xold represents the DC operating point xDC .

This estimation however, suffers from a linearization error (see Section 3.2.2) which would prop-

agate during the sampling process inducing even larger errors. To obtain accurate results, the

calculated sample point must be corrected by computing the consistent solution.

3.2.4 The Consistent Solution

According to Algorithm 3, the next step in the sampling process is to calculate the consistent

solution. The consistent circuit solution xcons for each sampled point is calculated by solving the

nonlinear circuit equations from Eq. (3.1) based on the estimate sample point from Eq. (3.28).

This is done using a modified Spice circuit simulator [Dav03]. Each capacitor (netlist capacitor or

parasitic capacitor) is virtually converted into a voltage source. The values of these voltage sources

are the estimated voltage differences across the capacitor from xest. The solution of solving this

modified equation system is the consistent solution xcons with slightly differing capacitance voltages

due to nonlinearities and capacitance loops but fully fulfilling the nonlinear DAE system Eq. (3.1).
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Keeping in mind that Eq. (3.23) is linearized around the operating point (xDC , uDC), it becomes

clear that this equation is only valid around a small range around this operating point. Hence, a

small deviation, such as a state space step, from the operating point might lead to a change in the

eigenvalues of the system and thereby to a change in the calculated matrices F and H. Therefore,

as stated at line 12 of Algorithm 3 and described in Algorithm 4, after the consistent solution is

found, the system is linearized again around this point, the eigenvalues and transformation matrices

are recalculated, and the system is again brought to the canonical form shown in Eq. (3.23). Hence,

the system is linearized at every sampled point.

Since there exist unreachable regions in the state spaces, Vera incorporate a reachability anal-

ysis for the calculated sample points [SH10a]. For this, a directed graph is generated containing

successor and predecessor relationships. Starting from the operating points, a reachability analysis

is performed inside Vera and the reachable status of each sampled point is calculated.

3.3 Summary

The previous stated procedure from Section 3.2 is repeated for a given range of the state space

and input voltages. That is, the system is first linearized around a DC point, an order reduction is

performed, the transformation matrices are calculated, the estimated solution is computed based

on a state step, and finally the consistent solution is calculated. For the next sampled point, the

transformation matrices are recalculated, a new estimated point is calculated, and the consistent

solution is determined using this point. This is repeated till the specified borders of the state space

are reached, then a new DC point is selected, and the process is repeated.

All obtained information are stored in an acv file containing:

(a) all the x ∈ Rn, xλ ∈ Rm, and xvirt ∈ Rm sampled values from the So, Sλ, and Svirt state

spaces, respectively

(b) the transformation matrices F ∈ Rn×n and H ∈ Rn×n that link both domains So and Sλ

(c) the eigenvalues of the linearized system after model order reduction Λ ∈ Rm×m, which are

stored in the matrix Eig as described later in Section 4.4.1

(d) the directed edges between the sampled points

(e) the input matrices B ∈ Rn×k for the k input variables {ui(t) : i ∈ 1, . . . , k}, and the output

matrix C ∈ Rp×n for the p output variables {yi(t) | i ∈ 1, . . . , p}

As stated, Vera performs a dominant pole order reduction. This is done by specifying the desired

order of the reduced state space or by specifying the range of the frequencies of interest. By that,

the tool identifies the nodes that harbor the state variables. These variables make up a subspace

of the So space and are referred to as the virt variables. The state space vector corresponding to

these variables is denoted as xvirt ∈ Rm in the state space Svirt ⊂ So. An example of the Svirt
space is given in Section 4.1.

Consequently, four significant state spaces can be identified:

1. So: represents the original state space of the circuit. The state vector is x ∈ Rn, which

contains all n nodal voltages and currents of the circuit
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2. Ss: represents the transformed state space of x as given by Eq. (3.16), the state vector is

xs ∈ Rn

3. Sλ: represents the reduced state space spanned by the state vector xλ ∈ Rm, such that the

relationship between this vector to the state vector xs is given by Eq. (3.22). Thus, Sλ ⊂ Ss
4. Svirt: represents a state space of special interest, such that Svirt is a subspace of So i.e.

Svirt ⊂ So. Svirt is referred to as the virtual state space. The state variables in the state

vector xvirt ∈ Rm represent the voltages across capacitors and the currents through inductors

resulting in the states of the system. Note that the dimension of this state vector is, similarly

to xλ, is defined by the model order reduction which results in m < n states

The options, including for example the frequency range or order of the reduced system, are

provided to Vera via a .msl file. This file hosts as well the method used for the calculation of

the transformation matrices F and H, the maximal allowed slew rate, the range of interest in the

reduced state space, the state space step (calculate or fixed), the range of the inputs, the inputs

step, the reachability method, and the output node of the system. Other options specify as well

how the sampling in the Sλ space is performed, which in turn influences the overlapping of the

points in this space.

On the other, in case only one circuit is provided to Vera, Vera samples the netlist as described

in this chapter. In case two circuits are provided, Vera performs a formal equivalence checking in

the analog domain. This is done by extending the sampling procedure presented in Algorithm 3 for

two netlist, A and B. The process executes this time lines 2 till 12 for both circuits simultaneously.

Between lines 12 and 13, two additional steps are executed; the derivative error δẋ as well as the

output error δy are computed:

δẋ = max(ẋcons,A − ẋcons,B) δy = max(ycons,A − ycons,B) (3.29)

Thus, after computing the consistent solutions for both circuits A and B and the corresponding

output voltages, both errors are calculated by finding the maximum values over all corresponding

dimensions. After the analysis completes, the relative derivative error δẋ,r and the relative output

error δy,r are computed by considering the maximum voltage spectrum of the signals over all

sampled points:

δẋ,r =
2 · |δẋ| · 100

max(|ẋcons,A|) +max(|ẋcons,B|)
δy,r =

2 · |δy| · 100

max(|ycons,A|) +max(|ycons,B|)
(3.30)

Finally, the maximum values of errors δẋ and δy, as well as maximum values of relative errors δẋ,r

and δy,r are computed over all sampled points.

This verification, which calculates of the deviations between two models, has a significant impor-

tance and is therefore demonstrated later in Section 6.1. Using this methodology, the generated

abstract model can be compared against the original Spice netlist. This closes the modeling and

verification loop by verifying the correctness of the generated model. Consequently, error margins

can be defined.

3.4 From Vera to Elsa: spaceM

The generated acv file from Vera needs to be imported to Matlab, as Elsa (Chapter 4) is written in

Matlab syntax. This is done via spaceM, a MEX code that calls a C++ parser that uses LEX and
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YACC to generate a Matlab structure named space. The contents of this structure are, as stated

in Section 3.3, the contents of the acv file.

C code:
yacc & lex

spaceM

.acv file space

Fig. 3.2. Overview of spaceM.

The main function of spaceM is stated in appendix B. Note that at line 55 the C++ parser is

called via the function readACVFile.
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Abstraction

In this chapter, the automated abstraction approach is examined in detail. As the eigenvalues play

a significant role in the abstraction process, the approach has been named Elsa: eigenvalue-based

hybrid linear system abstraction. The abstraction process performed by Elsa can be divided into

four building blocks as indicated in Fig. 4.1. In the following, each of these blocks as well, as the

resultant hybrid automaton (HA), will be analyzed in detail.

After the initialization of Elsa in the first block, the locations of the HA are identified in the

second block. For each of the identified locations, a system description is found. The result is a HA

with a linear behavior in each of its location. On top to the system modeling, the guards as well

as the invariant for each location are identified in the system modeling block. Finally, the model is

generated according to the specified output language and the corresponding modeling methodology.

The abstract model can be generated as a Verilog-A, Matlab (Cora), or SystemC-AMS behavioral

model.

Elsa

initialization
location 

identification
system 

modeling
model 

creation

HA
space

Elsa options

Fig. 4.1. Overview of Elsa and its 4 building blocks.

As indicated in Fig. 4.1, along with the Matlab structure space (see Section 3.4), an option file

is passed to Elsa. This option file is called SpaceOptions. Hence, the start point of the abstraction

process is the in Matlab loaded structure space and the option file SpaceOptions located in the

current directory, while the end point is a generated HA in the specified output language. Note

that the whole abstraction process starting with the sampling executed by Vera, till the creation

of the HA by Elsa is automated. However, if a circuit has already been sampled and an acv file is

at hand (section 3.3), Elsa can be launched separately.

In the following, the building blocks of Elsa shown in Fig. 4.1 are examined along with the

possible modifications that can be set to improve the obtained HAs.

4.1 Running Example

To demonstrate the approach, a running example will be handled throughout this chapter. For

that purpose, consider the schematic diagram of a second order lowpass filter shown in Fig. 4.2.
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The lowpass filter exhibits a nonlinear limiting behavior at the output voltage Vnout as soon as

this voltage reaches its maximum or minimum value given by Vdd or Vss, respectively. Vdd is set to

+1.65 V, while Vss is set to −1.65 V. All voltages are given with respect to the reference voltage

Vref = Vgnd = 0 V. By that, Vnout is limited to the range [−1.65, 1.65] V.

The operation amplifier has a gain of −0.8869, which is negative as the operation amplifier is

used in an inverting configuration. Thus, for Vin > 1.8604 V the operation amplifier goes into the

negative saturation Vnout = −1.65 V, while for Vin < −1.8604 V the operation amplifier goes into

the positive saturation Vnout = 1.65 V.

In order to achieve this gain, the resistors R1, R2, and R3 are chosen to be 9.5 kΩ, 10 kΩ,

and 10 kΩ, while the capacitors C1 and C2 are set to 0.01 µF and 0.1 µF, respectively. The

operational amplifier is described in Spice at transistor level with full BSIM4 accuracy. Note that

in Appendix C, the schematic of the netlist describing the operation amplifier is shown in Fig. C.1,

while the test bench containing this operation amplifier is described in Listing C.1 and shown in

Fig. 4.2.

Fig. 4.2. A second order lowpass filter with a nonlinear limitation for Vnout ∈ [−1.65, 1.65]. The

operational amplifier is a Spice file consisting of 17 transistors in a 350 nm CMOS tech-

nology.

For the running example from Fig. 4.2, Vera has sampled the netlist and generated an acv file

as stated in Chapter 3. Note that the DAE system has n = 24 variables, which represent the nodal

voltages and currents of the circuit from Fig. 4.2 including the internal ones from the operation

amplifier (see Appendix C). With the nodal voltages (V∗) and currents (I∗.br), the x ∈ R24 state

vector is:

x =
[

VxI2.net1 VxI2.net2 VxI2.net3 VxI2.vbias4 VxI2.net7 VxI2.net5

VxI2.net6 VxI2.net4 VxI2.vbias1 VxI2.vbias2 Ivpsub.br Ivvdd.br

Ivvref.br Ivvdd.br IV 1.br VpsubE Vbbias Vvss

Vvref Vvdd Vnout Vneg Vnin2 Vnin
]T (4.1)

For this example, Vera detects that the system has an order of r = 14. The result of this dynamic

state identification is presented in Table 4.1.

An order reduction is performed by Vera resulting in a reduced order of m = 2. This corresponds

to selecting the first two rows from Table 4.1. Hence, at each sample point, Λ from Eq. (3.23)
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Table 4.1: Result of the dynamic state identification performed by Vera

# Node 1 Node 2 Eigenvalues (λi)

1 nout neg −1.01× 101

2 nin2 not set −1.09× 103

3 xI2.vbias1 xI2.vbias2 −1.71× 107

4 xI2.vbias4 bbias −3.24× 107

5 xI2.vbias1 vdd −4.36× 107

6 xI2.vbias4 vss −5.84× 107

7 xI2.net1 neg (−2.77− 17.02j)× 108

8 xI2.net1 not set (−2.77 + 17.02j)× 108

9 xI2.net7 bbias −2.88× 108

10 xI2.net3 xI2.net6 −4.67× 108

11 xI2.net4 vdd −1.36× 109

12 xI2.net2 vss −3.39× 109

13 xI2.net3 vss (−8.21− 2.62j)× 109

14 xI2.net2 xI2.net6 (−8.21 + 2.62j)× 109

contains only two eigenvalues and is thereby a 2× 2 matrix. Moreover, this defines the size of the

reduced state space vector xλ ∈ R2 as well as the size of the virtual state space vector xvirt ∈ R2.

Considering again the first two rows of Table 4.1, the dimensions of the xvirt vector can be

identified. In this case, this vector consists of three entities from the x vector: Vnout, Vneg, and

Vnin2. More precisely, the xvirt vector is:

xvirt =

[
Vnout − Vneg

Vnin2

]
(4.2)

Moreover, the dimensions of the transformation matrices are FΛ ∈ R24×2, F∞ ∈ R24×22, HΛ ∈
R2×24, and H∞ ∈ R22×24. The circuit is a SISO system with an output matrix C ∈ R1×24 and an

input matrix B ∈ R24×1. Note that even though C and B are both vectors, they will be handled

in the following as matrices to illustrate the approach in general.

Considering the sampling performed by Vera, the input range was specified as Vnin ∈ [−5, 5] V

with an input step of 0.5 V. The state space range was specified as xλ,1,xλ,2 ∈ [−5, 5] with a state

space step of 0.25. As mentioned, the reduction order was specified as m = 2. For these options,

Vera sampled this example with roughly l = 18500 points.

4.2 Examining the Results of Vera With Amcvis

Before starting with Elsa, a powerful tool will be briefly introduced. A Matlab application named

Amcvis has been implemented that represents a graphical interface to Elsa. Moreover, Amcvis

can be used for various debugging options, like for example plotting the sampled points in any of

the specified state spaces from Section 3.3. Up to three dimensions can be plotted simultaneously.

Additional dimensions affect the color scaling. In what follows, Elsa will be examined on code level
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and not through this interface. But before generating an abstract model with Elsa, it makes sense

to analyze the data first with this tool. Fig. 4.4 presents the front end of Amcvis.

Fig. 4.3. Amcvis implemented as a Matlab application.

After space has been loaded into Matlab via spaceM (Section 3.4), different plots can be generated

by using Amcvis. Fig. 4.4a shows the real part of the eigenvalues of the reduced system. Note that

the eigenvalues are purely real for this example. With these two eigenvalues, the color of the

sampled points in the remaining figures is specified. Fig. 4.4c shows the Svirt space, while Fig. 4.4g

the Sλ space. The red points represent the calculated DC points (see Section 3.2.1) for an input

range Vnin ∈ [−5, 5] V with an input step of 0.5 V. The remaining subfigures of Fig. 4.4 show

various plots with randomly chosen constellations of variables. The voltage labels correspond to

the node names shown in Fig. 4.2 as well as to the internal nodes of the operation amplified from

Appendix C. As observed, especially in Fig. 4.4f, the eigenvalues are well suited for the distinction

of the behavior of the pointwise linearized system.

Unlike the Sλ space, the Svirt space shown in Fig. 4.4c, clearly shows the different dynamic

behaviors of the system without an overlapping of the sample points with different eigenvalues.

However, the task of Elsa is to build a HA in the Sλ domain and not the Svirt domain, even though

the overlapping of these points might challenges the model abstraction approach.

A question that comes up when observing the Sλ and Svirt spaces is: can the HA be build in

the Svirt space? As Svirt ⊂ So, building a HA in the Svirt domain is equivalent to selecting specific

entities from the x vector and abstracting the model to these values. Obviously, this would result

in a model with a bad accuracy as well as in the loss of the ability to reconstruct precisely the

elements of x. However, the Svirt space can be used to aid the model abstraction process as will

be explained in Section 4.5.

Additional to building the HA in the Sλ domain, the generated model is simulated in this domain

as well. As observed in Fig. 4.4g, building as well as simulating the HA in this domain is not an
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Fig. 4.4. Various plots generated with Amcvis. In (a) the eigenvalues of the reduced system are

illustrated, while in (c) the Svirt space and in (g) the Sλ space are presented. In the

remaining figures, randomly chosen constellations of variables are shown.
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easy task. Considering the building aspect, each sampled point generally exhibits a different system

behavior, which can be traced back to the eigenvalues (Section 2.3.1). Moreover, one can simply

imagine that projecting a high dimensional system from the So domain, in this case with r = 14

dynamic states, to a space (Sλ) with a lower order, in this case m = 2, will in some cases result in

points overlapping with different dynamic behaviors. Additionally, for each point in the Sλ domain

the transformation matrices F and H (Section 3.2.2) vary, which favors this overlapping, and thus

challenges the abstraction process.

There are different settings that can be provided to Vera to control the overlapping of the sampled

points. On the other hand, this generally result in greater variations in the transformation matrices,

which challenges the abstraction process as well. However, as will be examined in Section 4.5, the

presented approach can overcome such challenges with a little additional computational effort.

Nonetheless, in the following the worst sampling case will be considered, that is the presence of

strongly overlapping points with different behaviors in the Sλ space.

4.3 Initialization

As stated at the beginning of this chapter, Elsa is provided with the structure space and an option

file called SpaceOptions. The initialization process is illustrated in Fig. 4.5.

space
spaceinitialization

.options

Elsa options

.Eig

.x

…

.x

.x

.F

.H

.Graph

.B

.C

Fig. 4.5. Initiation block of Elsa.

During this initialization phase, some basic functions are called to check if the options provided

are up to date, valid, and compatible. If this is not the case, the program is terminated and possible

fixes are displayed. If no errors are detected, the structure options is created from SpaceOptions

and assigned as an additional field in space named space.options as shown in Fig. 4.5. Note that,

the variables contained in space are as described in Section 3.3.

4.4 Location Identification

The next step in the abstraction process is to identify the locations Loc of the HA. Each location

loc ∈ Loc is defined as a pair consisting of a group and a region, such that:

loc = g(j)r(k), (4.3)

where j is the group counter, while k is the region counter.
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group 
identification
(eigenvalue 
clustering)

region 
identification

location identification

space

.options
.groups

.regions

space

.options
… …

.indices

Fig. 4.6. Overview of the location identification block of Elsa.

The location identification can be divided into two blocks: the group identification and the region

identification. Fig. 4.6 shows the location identification block of Elsa and its consisting subblocks.

As illustrated, the location identification starts with the group identification. For each of the

found groups, a region identification is performed. By that, a group is divided into one or several

regions. Hence, the indices of the underlying sampled points are labeled according to the group

and region they belong to. Why a group followed by a region identification is necessary, will be

clear at the end of this section.

4.4.1 Group Identification: Eigenvalue Clustering

The group identification consists of grouping the sampled points with similar eigenvalues obtained

from the pointwise linearization of the system (see Section 3.2.2). More precisely, for all sampled

points, the eigenvalues presented in Λ (Eq. (3.21)) are clustered. The clustering of these eigenvalues

is processed through several steps:

1. scale the data set

2. find the optimal number of clusters if necessary

3. perform k-means clustering on the scaled data set

These steps are necessary as various options can be applied to optimize the accuracy of the generated

HA.

Scaling the Data Set

In order to avoid working with complex values, each eigenvalue is divided into a pair of two elements,

one representing the real part and one representing the imaginary part. As Vera demanded that all

finite eigenvalues of the system are distinct (Assumption 1), Λ is a diagonal matrix. Although Elsa

is generally able to handle eigenvalue matrices in the JCF form (see Section 4.5), for simplicity the

approach will be described based on a diagonal Λ matrix.

By dividing each eigenvalue into two parts, the matrix Eig can be created that hosts the eigen-

values of a single point row-wise. Therefore, with a specified reduction order m and the l sampled

points, the matrix hosting the eigenvalues is Eig ∈ Rl×2m:

Eig =


Re(λ1,1) Im(λ1,1) Re(λ1,2) Im(λ1,2) . . . Re(λ1,m) Im(λ1,m)

Re(λ2,1) Im(λ2,1) Re(λ2,2) Im(λ2,2) . . . Re(λ2,m) Im(λ2,m)
...

...
...

... . . .
...

...

︸ ︷︷ ︸
Re(λ1)

Re(λl,1) ︸ ︷︷ ︸
Im(λ1)

Im(λl,1) Re(λl,2) Im(λl,2) . . . Re(λl,m) Im(λl,m)

 (4.4)
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For the running example from Section 4.1 with l = 18500 sampled data points and the reduced

order m = 2, the diagonal matrix for each sampled point is Λi ∈ R2×2, and thus the data set

becomes Eig ∈ Rl×4 as given by Eq. (2.42).

There exist different options to scale the sampled eigenvalues. Four methods have been imple-

mented that perform this task. All methods scale each column of Eq. (4.4) separately. Hence, the

eigenvalues in Eig are scaled by the scaling matrix K ∈ Rl×2m such that the new data set Ẽig is

given by the element-wise multiplication of these matrices:

Ẽig = Eig �K

The default method is to scale the row elements of each column of the data set Eig with the norm

of the column. For example, considering the ith column with i being an odd number, the magnitude

of the column vector Re(λi) (see Eq. (4.4)) is:

||Re(λi)|| =
√
Re(λ1,i)2 +Re(λ2,i)2 + · · ·+Re(λl,i)2

This can be thought of as if each row element of the column vector Re(λi) represents a dimension.

Next, each row element of the column vector Re(λi) is divided by this magnitude. Hence, K is:

K =


1

||Re(λ1)||
1

||Im(λ1)||
1

||Re(λ2)||
1

||Im(λ2)|| . . . 1
||Re(λm)||

1
||Im(λm)||

1
||Re(λ1)||

1
||Im(λ1)||

1
||Re(λ2)||

1
||Im(λ2)|| . . . 1

||Re(λm)||
1

||Im(λm)||
...

...
...

... . . .
...

...
1

||Re(λ1)||
1

||Im(λ1)||
1

||Re(λ2)||
1

||Im(λ2)|| . . . 1
||Re(λm)||

1
||Im(λm)||


=
[
k1 k2 . . . k2m

]
(4.5)

Note that for the case the magnitude of a column vector from Eq. (4.4) is zero, the corresponding

column inK is set to one. This scaling brings the advantage of comparing the eigenvalues regardless

of their size.

On top to the default method (a), the remaining three implemented scaling methods are:

(b) scaling performed similar to the dominant pole reduction i.e. poles closes to zero are more

weighted than poles further to the left in the complex s-plane

(c) scaling the eigenvalues till they have the same exponent pow in the scientific notion {d×10pow |
1 ≤ d ≤ 10}

(d) scaling the eigenvalues by a vector provided by the user

In the simplest case, the scaling method (b) first computes the mean values across the columns

of Eq. (4.4), that is for the ith column with i being an odd number:

Re(λi) = mean(Re(λ1,i), Re(λ2,i), . . . , Re(λl,i))

The corresponding ith column vector ki ∈ Rl×1 in K is then:

ki =
[
10κ 10κ . . . 10κ

]T
, (4.6)
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such that:

κ = kp · floor(log10(|Re(λi)|) (4.7)

Where kp is a constant that is specified by the user, with the default value set to kp = −2. Note

that, in this case the corresponding column Im(λ1,i+1) is scaled with the same vector, that is

ki+1 = ki. Moreover, if Eq. (4.7) returns infinity, the exponents in Eq. (4.6) are set to 0.

The scaling method (c) uses Eqs. (4.6, 4.7) with kp = −1, while method (d) uses an input

vector provided by the user to assign the column vectors from Eq. (4.5) directly. Note that only

the simplest versions of the scaling methods were discussed here. Nonetheless, at end of scaling

process, Eig has been scaled by K to form Ẽig.

In addition to scaling Eig, columns can also be removed. As complex eigenvalues always come

in pairs, they can be optionally considered only once during the clustering process. Hence, the

corresponding columns in Eq. (4.4) are removed.

Finding the Optimal Number of Clusters

The next step in the group identification involves finding the optimal number of clusters for this

data set. If this number has not been specified in the options provided to Elsa, the optimal number

of clusters is calculated according to the standard evalclusters function (see Section 2.5.3) provided

by Matlab. In this function call, the clustering algorithm is set to k-means (Section 2.5.1) and the

clustering evaluation criterion is set to use the silhouette coefficient (Section 2.5.3). The function

then launches k-means several times, each instance with a different number of clusters, up till a

specified maximum. The results from the various clustering are then compared using the silhouette

coefficient. Finally, the optimal number of clusters is returned from the clustering that yielded the

best silhouette coefficient.

To illustrate this process, consider the running example from Section 4.1. In fact, an extensive

clustering analysis on this example has been handled in Section 2.5. More precisely, for the running

example, the previous mentioned scaling (see Eq. (4.4)) is not needed. Moreover, as the eigenvalues

in Eig are purely real, the second and fourth columns of this matrix are zero vectors. Hence, the

eigenvalues of the reduced system can be illustrated in a 2D space (Fig. 2.3). By using the data

set Eig, which is illustrated in Fig. 2.3 (first and third column vectors), the optimal number of

clusters is evaluated using the silhouette coefficient as an evaluation criteria. The result of this

analysis is shown in Fig. 2.11b. As observed, the optimal number of clusters is two. Thus, k-means

is launched as stated in Section 2.5.1 with km = 2 to partition the eigenvalues as shown in Fig. 2.4.

The corresponding silhouette values of all sample points are shown in Fig. 2.11a.

Clustering the Data Set

With the optimal number of clusters at hand, the matrix of scaled eigenvalues Ẽig is clustered using

the k-means clustering algorithm presented in Section 2.5.1. Of course other clustering algorithms

can be used here as well. Nonetheless, as stated in Section 2.5.1, k-means is a partitioning clustering

algorithm. As our aim in the group identification is to partition the eigenvalues of the linearized

system into groups with similar eigenvalues, k-means represent an optimal approach compared to

other clustering methods. This can be clearly visualized in the Svirt or Sλ space as illustrated

in Fig. 4.7, where k-means has been used to identify the cluster groups g1 and g2. Note that
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the unlabeled data in each state spaces, Svirt and Sλ, was previously illustrated in Fig. 4.4c and

Fig. 4.4g, receptively.

(a) (b)

Fig. 4.7. Result of the group identification in the (a) Svirt and (b) Sλ space plotted against the real

part of the first eigenvalue. The red points show the calculated DC points.

According to Section 2.3, eigenvalues are directly linked to the system behavior. Hence, sampled

points with different eigenvalues from the linearized system correspond to different dynamic behav-

iors of the system. This implies that eigenvalue clustering can be used to distinguish the system

behaviors. This becomes clear when the cluster groups identified are visualized in the Svirt space

or Sλ space as shown in Fig. 4.7. According to Section 4.1, the circuit exhibits a limiting behavior.

This limiting behavior, which can be observed in group g2 of Fig. 4.7, can as well as be observed

in Fig. 4.8, which shows one of the xvirt state variables (see Eq. (4.2)) drawn against the output

of the system.
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Fig. 4.8. The first xvirt state, Vnout − Vneg, drawn against the output of the system Vnout after the

group identification. The red points show the calculated DC points.

What is important to notice in Fig. 4.7a, is that different regions of the group g2, the region with
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Vnout − Vneg ≤ −1.65 and the other region with Vnout − Vneg ≥ 1.65, have the same eigenvalues.

Thus, these points exhibit a similar homogeneous system responses (Section 2.3.1), even though they

belong to different portions of the state spaces. On the other hand, the DC points (Section 3.2.1),

colored in red in the Svirt space from Fig. 4.7a, show that the two regions belonging to the same

group g2 contain different operating points. The same can be observed in the Sλ space from 4.7b.

Interpreting this aspect, it becomes clear that sampled points belonging to different regions of a

group can exhibit different system responses which can be traced back to their particular solutions.

This becomes even more obvious when considering Fig. 4.8. Keeping in mind that the output

response of a linear system is as given in Eq. (2.29), it becomes clear that the particular solution

in the regions of g2 differ. Moreover, as indicated by the DC points, the operating points differ as

well, which can be traced back to the input of the system. Hence, after performing an eigenvalue

clustering and thus clustering the sampled points into groups, a region identification must be per-

formed on the groups to distinguish them into regions, thereby differentiating the overall behavior

of the sampled points.

4.4.2 Region Identification

For every identified group, a region identification is performed. Several algorithms have been

deployed that execute this task. In general, these algorithms can be classified into two categories

depending on the type of analysis they perform:

• graph analysis: distance or polytope

• clustering analysis: k-means, DBSCAN, mean shift, or OPTICS

The graph-based methods process the directed connection graph Vera generated during sampling

(see Section 3.3). The clustering-based methods simply perform a cluster analysis on the points

belonging to the same groups. In all methods, the state space in which the analysis is performed

can be chosen. This will be deeper examined in Section 4.5. For the remaining of this section, the

Svirt space will be used. For the clustering methods, on top of the specified state space, additional

data such as the inputs of the system can be used in the analysis. In the following, several region

identification methods will be examined, that effectively divide groups into regions.

Graph Based Methods

The graph-based methods make use of the directed graph generated by Vera. For the running

example, this graph is shown in Fig. 4.9.

This type of analysis first determines the subgraphs of each group. For that, the connection graph

of each group is analyzed separately. Note that, the connection graph of each group is formed by

the nodes that belong to the group. If a connection graph is not well-connected, subgraphs can be

determined. Hence, subgraphs are parts of a connection graph that are not connected.

Usually, Vera returns a well-connected graph for the entire state space as observed in Fig. 4.9.

Upon performing a group identification, the directed graph from Vera is divided into connection

graphs for each group. As observed in Fig. 4.9 for the running example, the directed graph from

Vera is divided into two connection graphs corresponding to the groups g1 and g2. Looking at this

from a different perspective, when a region identification is performed on g2, the points belonging
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Fig. 4.9. Connection graph generated by Vera in the Svirt space.

to g1 are not considered, which corresponds to removing these points from the directed graph of

the entire sampled space. Thus, the remaining points that belong to g2 form at least two subgraphs

as observed in Fig. 4.9. In contrast, g1 has probably only one subgraph which is at the same time

the connection graph of this group. Additional subgraphs may exist depending on the connections.

If the algorithm detects that a group has multiple subgraphs, the region identification is launched.

If this is not the case, the region identification is skipped. As observed in Fig. 4.9, the points

belonging to g1 are well-connected, while the point belonging to g2 are not and are therefore

subjected to a region identification. Hence, the task of the graph-based methods becomes finding

the regions of g2 from the identified subgraphs. Two graph-based methods have been implemented

that execute the region identification:

Gdist method uses the Euclidean distance

Gpoly method examines the volumes of the identified polytopes

The basic algorithm of the both methods is stated in Algorithm 5 using the notation from Eq. (4.3).

Algorithm 5 Graph-based region identification methods

1: procedure r(k) = regions(g(j), graph)

2: find subgraphs in graph

3: if g(j) has more than one subgraph then

4: find the largest two subgraphs and denote them as the main subgraphs

5: add the remaining subgraphs to the main subgraphs based on the selected method

6: label the nodes of the subgraphs to the two locations g(j)r1 and g(j)r2

7: else

8: all nodes of the graph belong to one location g(j)r1

9: end if

10: end procedure

As described in Algorithm 5, first the connection graph of a group is analyzed (line 2). If the

connection graph can be divided into subgraphs (line 3), the region identification is launched and

the largest two subgraphs are identified. As given in line 5, all remaining subgraphs are merged into

the largest two subgraphs of the current group using either the Gdist or Gpoly method . Finally,

the nodes of each subgraph are label as points belonging to the same region. In the case only one
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subgraph was determined, all underlying nodes belong to same region. Hence, the graph based

methods either divide a group into two regions, are assign all points of a group to the same region

based on the graph properties.

The Gdist method calculates in the Svirt space the distances from all nodes of the two main

subgraphs to the nodes of the current inspected one. This subgraph is then merged into the closest

main subgraph. Fig. 4.10a shows the result of this method on the running example.

(a) (b)

Fig. 4.10. Results of the region identification in the Svirt using the graph-based methods. In (a) the

result of the Gdist method is presented, while (b) shows the result of the Gpoly method .

The Gpoly method creates from the nodes of each of the two main subgraphs a polytope in the

Svirt space. At each iteration, one of the remaining subgraphs is examined, by enlarging the two

previously identified polytopes by the vertices of this subgraph. This usually increases the volume

of these polytopes. The new volume of each polytope is then computed, and the nodes of the

subgraph are added to the polytope which yields the smallest volume increase. The result of this

method is shown in Fig. 4.10b.

The graph-based methods are sensitive to a bad connected sampled state space and to a group

identification that yielded bad connection graphs. Even though several correcting algorithm exist,

there is no guarantee that these methods will yield the best results. Besides this, these methods

consume a fair amount of time. Yet, for the case that each group has only two regions, which is

often the case for a SISO system, these methods are quite reliable.

Clustering Based methods

Due to the stated disadvantages of the graph-based methods, the clustering-based methods were

developed. Moreover, for the case that the system has more than one input, which often implies

that the groups can have more than two regions, the cluster based methods should be used. Four

clustering-based methods have been deployed that can identify the regions of a group: k-means,

DBSCAN, mean shift, and OPTICS.
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K-means and DBSCAN have been previously explained in Section 2.5. The remaining clustering

methods will not be presented in this dissertation. For more details see [ABKS] for OPTICS and

[Yiz95] for mean shift.

In Fig. 4.11a, the result of the region identification performed by DBSCAN is illustrated for the

running example. With εs representing the state space step in the Svirt domain, DBSCAN (see

Section 2.5.2) with N = 1 and ε = 1.1 ∗ εs, identified the two regions of g2 as shown.

This clustering can also be performed with k-means, OPTICS, or mean shift. In case OPTICS

is used, Elsa can be launched in an interactive mode. The user is prompted to input a reachability

distance. OPTICS is launched with the specified distance, and the number of clusters found is

displayed to the user. At this point, the user can either change the reachability distance to obtain

more or less clusters, or continue the analysis with the found clusters. For the running example,

the reachability distance was set to 1.4, the corresponding reachability plot generated by OPTICS

for group g2 is illustrated in Fig. 4.11b. The ordering of the points as processed by OPTICS is

illustrated on the x-axis, while the y-axis illustrates the reachability distance. Note that, points

that belong to the same cluster have a low reachability distance to their nearest neighbor. Hence,

cluster are illustrated by valleys in the reachability plot. The wider the valley is, the denser the

cluster. For the selected reachability distance, two large valleys can be observed in Fig. 4.11b. The

result of this clustering is similar to the result of DBSCAN presented in Fig. 4.11a.
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Fig. 4.11. In (a) the result of the region identification in the Svirt using the cluster method DBSCAN

is shown. In (b) the reachability plot generated by OPTICS is presented. The red

horizontal line indicates the reachability distance specified by the user.

After the regions of each group are identified, the location identification is complete. Each

location can be described by a pair consisting of a group and a region as shown in Eq. (4.3). For

the running example, group g1 has only one region r1 while group g2 has two regions, r1 and r2.

Thus, this examples has 3 locations: g1r1, g2r1 and g2r2, yielding Loc = {g1r1, g2r1, g2r2}.

The region identification is not always necessary when the group identification is modified. In
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some cases the results of the group identification can be improved by clustering additionally to the

eigenvalues, the xvirt values from the Svirt space. In this case, the clustering data set is formed from

the eigenvalues stored in Eig and the xvirt sampled values. This enhances the group identification,

and in some cases, replaces the region identification by additional identifying groups. As presented

in Section 2.5.1, when k-means is used on the data set consisting of one of the xvirt states along with

eigenvalues, three locations could be determined as shown in Fig. 2.7. In this case three groups were

identified, with each group containing only one region. This can be considered a special case and

does not always guarantee the best solution. However, performing first a group identification on

the eigenvalues, followed by a region identification on the states, decreases the clustering overhead,

as well as separates the identification problem into first distinguishing points according to their

system behavior (eigenvalues), followed by distinguishing the labeled points based on their positions

or connections in the state space. On top of that, additionally considering the inputs of the system

in the region identification often provides even better results, but again increases the overhead.

Hence, in the following these options will be skipped unless stated otherwise.

4.5 System Modeling

According to Section 2.4, a HA is defined as:

HA = (Loc, loc0,xλ,xλ,0, inv, tran, grd,J ,u,f)

Until this point, the locations Loc have been determined (Section 4.4), while the input vector u is

usually given. The third block of Elsa as presented in Fig. 4.1 performs the system modeling. This

involves describing the system behavior in each location, determining the validity of the location

as specified by the invariants, and modeling the transitions between the locations using the guards

and the corresponding jump functions.

One of the properties of Elsa is that the created HA has a linear system description. Therefore, the

flow function f in each location is described using the linear state space representation introduced

in Section 2.3.1. Since the HA is created in the Sλ space, the states space vector of the automaton

is xλ ∈ Rm, with a given initial vector xλ,0. Thus, to describe the flow function, the system matrix

Aloc and the input matrix Bloc for each location loc ∈ Loc are needed, as well as some reference

linearization points as will be seen later.

Moreover, since the goal is to reconstruct all nodal voltages and currents in the So domain, a

back-transformation is needed that transforms the result of a simulation or reachability analysis of

HA in the Sλ space back to the original state space So of the system. Hence, the result of the system

modeling block described in this section, as shown in Fig. 4.12, is a HA accompanied by additional

matrices that define the back-transformation in each location. Note that, blocks in Fig. 4.12 with

dashed borders represents blocks that can be skipped depending on the specified options.

According to Fig. 4.12, the system modeling occurs in the Svirt space as well as in the Sλ space.

Nonetheless, the modeling can be also exclusively performed in the Sλ space if desired. In this case

the underlying blocks which are executed in the Svirt are processed in the Sλ space. Moreover, in this

case the transformation block is skipped. Note that, performing the system modeling exclusively

in the Svirt space is not possible, as the modeling process is based on KCF (see Section 2.2.2).
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Fig. 4.12. Overview of the system modeling block of Elsa.

As mentioned, one of the current tasks in this section is to create a HA with a linear flow function

f restricted to the linear state space representation from Section 2.3.1. Previously, Vera sampled

the nonlinear circuit and resulted in Eq. (3.23) for each sampled point. Considering only the first

row (dynamic part) of this equation:

∆ẋλ = Λ∆xλ + B̃λ∆u , (4.8)

this equation states the linearized dynamic behavior of each sampled point in the Sλ space. With

Assumption 2 (see Section 3.2.2), and by inserting the algebraic part stated in Eq. (3.25) into

Eq. (3.27), the following equation can be obtained:

∆x = Fλ∆xλ − F∞B̃∞,red∆u
= Fλ∆xλ − F∞H∞B∞,red∆u

(4.9)

Eq. (4.9) shows that for each sampled point a transformation exists that allows to calculate its

value in the So space by using only the Sλ space along with the input of the system. The only

problem is that Eqs. (4.8, 4.9) are only valid in a small region around the linearization points, as

at every sampled point, the system was linearized (see Algorithm 3 and Algorithm 4).

Thus, the current tasks for the flow function f in each location of the HA becomes clear: describe

the pointwise linear equations in each location of a HA by a well-chosen representing equation which

is valid for all sampled points belonging to the location.

During system linearization, a linearization point is chosen, and the system is linearized around

it. As long as the system stays in a close range to the linearization point, the linearized equations

are valid. Here, we went both ways. We first linearized the system for the sampled points. Secondly,

instead of choosing one that represents the remaining points, we analyzed the eigenvalues of the

linearized system and clustered them to locations of different behaviors (Section 4.4). By that,

we identified the location where the sampled points have similar behaviors. Next, a representing

equation in each location is determined that describes the behavior of all points belonging to the

location. Moreover, the range in the Sλ space where these equations are valid are defined by the

invariants of the HA. The transitions between these invariants are defined by the guards and the

jump functions. Hence, it becomes clear that the approach is actually building a HA step by step.
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In the following, this procedure will be analyzed analogously to Fig. 4.12. Moreover, as illustrated

in this figure, the approach is examined for the case Svirt is considered along with the Sλ space in

the modeling process, as this usually yields more reliable results. For the case the modeling was

performed entirely in the Sλ space, only the sections as specified in Fig. 4.46 are used.

4.5.1 Calculating the Operating Points

After the locations of the HA have been identified (Section 4.4), the sampled points are associated

to the corresponding locations. Among these points are also the DC points as shown in Fig. 4.13.
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Fig. 4.13. Result of the location identification presented (a) in the Svirt and (b) in the Sλ space for

the running example.

Consider the sampled Svirt space of the running example illustrated in Fig. 4.13a. From the

set of DC points in each location, a representing operating point needs to be chosen. For this,

first a global reference point must be computed. Unless specified otherwise, the global reference is

assumed to be the point at which there is no input voltage, that is u = 0. The location containing

the global reference point is referred to as the center location. For the running example, the global

reference point is xvirt,glob = 0 in the Svirt domain, implying that the center location is g1r1.

For each location the operating point is chosen as the DC point that is closest to the global

reference by using the Euclidean distance in the Svirt space:

d =|| xvirt,DC − xvirt,glob ||2

For the center location the reference point is identical with the operating point. Moreover, several

options exist that can affect the identification of the operating points. The most important one

specifies which operating point should be considered i.e. the ith closest, the ith furthest, or the

nearest to the global reference which is the default case used here.

The result of the operating points identification for the running example is illustrated in Fig. 4.14.

For each of the three locations of the HA, the yellow marked DC points are chosen as the repre-

senting operating points. The black circles in Fig. 4.14 show the distance from the selected orating

points to the global reference at xvirt,glob = 0.



4.5. System Modeling 59

-4 -3 -2 -1 0 1 2 3 4
-6

-4

-2

0

2

4

6

Fig. 4.14. The operating point identification performed in Svirt. The yellow points indicated the

chosen DC points in each location. The black circles indicate the distance from these

points to the global reference point.

By identifying an operating point, all the values stated in Section 3.3 for this point are obtained.

This includes, at the operating input voltage uop, the operating point in the Svirt domain denoted

xvirt,op, the operating point in the Sλ domain denoted xλ,op, and the operating point in the So
domain denoted xop.

Several aspects need to be considered when identifying the operating points. This includes the

case when there are DC points that are overlapping or equidistant from the global reference point.

In this case the mean of these points is taken, and the operating point is identified by the sampled

data point that is closest to this mean. Another case that needs to be considered is when there are

no DC points in a location, as shown later in Section 7.4.2. In this case, first a test is performed to

see if a DC point from the closest surrounding regions can be taken. If the surrounding DC points

are too far, which is the case when the minimum distance from all sampled points of a location

to each of the examined DC points is greater than the state space step, either a random sampled

point is chosen as the operating point, or the mean of all points in a location is calculated and the

operating point is chosen as the sampled point closest to the calculated mean value.

4.5.2 Determining the System Description

In the second block shown in Fig. 4.12, the different system behaviors of the HA in each location

are determined. With the sampled data set divided into the locations (see Section 4.4), and the

previous identified operating points in the So, Svirt and Sλ spaces, the current aim is to model the

system behavior in each location. More precisely, the system description task involves finding for

each location loc ∈ Loc:

(a) the representing operating points xop, xλ,op, and the operating input uop

(b) a linear state space representation that is valid for the whole location i.e. all sampled points

belonging to the location loc. This involves determining the system matrix Aloc ∈ Rm×m and
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the input matrix Bloc ∈ Rm×k, such that the linear system behavior is given by:

∆ẋλ = Aloc∆xλ +Bloc∆u

=⇒ ẋλ −��
�ẋλ,op = Aloc(xλ − xλ,op) +Bloc(u− uop),

(4.10)

for the case the operating point is a DC point, as:

ẋλ,op = 0

(c) a back-transformation that is valid for the whole location loc. This involves finding the trans-

formation matrices Floc ∈ Rn×m and Lloc ∈ Rn×k that transforms the solution of Eq. (4.10)

from the Sλ to the So space via:

x = xop + Floc(xλ − xλ,op)−Lloc(u− uop) (4.11)

Point (a) has already been covered in Section 4.5.1. The two remaining points ((b) and (c)) can

be solved with the information at hand. For this, several methods have been deployed, which vary

according to the points that are considered in determining the matrices Aloc, Bloc, Floc, and Lloc:

op method uses only the operating point

mean method uses all sampled points belonging to the location

dc method uses only the DC points belonging to a location

weight method uses all sampled points belonging to the location with different specified weights

Points in a location can be divided into two categories: normal sample points and DC points.

While DC points were computed by the DC analysis in Vera (see Section 3.2.1), the remaining

sampled points were computed by stepping through the reduced state space Sλ and calculating the

consistent solutions (see Section 3.2.3). Previously in Section 4.5.1, the operating points in each

location were identified from the DC points. Considering Eqs. (4.8, 4.9), the op method which uses

only the operating point of a location, basically assigns for each location loc ∈ Loc the system,

input, and transformation matrices to their values at the operating point:

Aloc = Λop Bloc = B̃λ,op (4.12)

Floc = Fλ,op Lloc = F∞,opH∞,opB∞,red,op (4.13)

The mean method computes the mean of the system, input, and transformation matrices over all

lloc sampled points belonging to a location:

Aloc = mean(Λ1, . . . ,Λlloc) Bloc = mean(B̃λ,1, . . . , B̃λ,lloc) (4.14)

Floc = mean(Fλ,1, . . . ,Fλ,lloc) Lloc = mean(L1, . . . ,Llloc) (4.15)

With:

Li = F∞,iH∞,iB∞,red,i

Similarly to the mean method , the dc method computes the mean of the system, input, and

transformation matrices. However, only the DC points belonging to a location are considered in
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this calculation. With (lDC + 1) DC points in a location, representing one operating point and lDC

remaining DC points, the matrices are calculated by:

Aloc = mean(Λ1, . . . ,ΛlDC ,Λop) Bloc = mean(B̃λ,1, . . . , B̃λ,lDC , B̃λ,op) (4.16)

Floc = mean(Fλ,1, . . . ,Fλ,lDC ,Fλ,op) Lloc = mean(L1, . . . ,LlDC ,Lop) (4.17)

The weight method adds weights in the calculation of the matrices. Three values can be weighted

in a location: the operating point by w1, the remaining DC points by w2, and the remaining points

by w3, such that:
3∑
i=1

wi = 1 (4.18)

With lpts = lloc − (lDC + 1) remaining points belonging to location, each of the four representing

matrix from Eqs. (4.16, 4.17) is computed by:

Mloc = w1 ·Mop + w2 ·mean(MDC,1, . . . ,MDC,lDC ) + w3 ·mean(Mpts,1, . . . ,Mpts,lpts)

Where M can be replaced with the desired matrix and its values corresponding to the operating,

DC, and remaining points, respectively.

Unless stated otherwise, the mean method is used as the default system description calculation

method. The op method usually yields worse results, compared to the default method. In contrast,

the dc method yields similar results to the mean method . However, upon changing the locations,

the mean method results in smother transitions. The weight method can yield better results than

the mean method , however, requires a good specification of the weights.

Before the system description specified by the matricesAloc andBloc and the back-transformation

described by the transformation matrices Floc and Lloc are calculated, the sampled points in each

location can be filtered 1. This filtering can remove points, according to a test with a specified

tolerance margin, by classifying them as bad points. In this case, the obtained filtered data set can

then be used for the calculation of the previous matrices, as well as for the proceeding calculations

of the guards and invariants.

Filtering the Sampled Points

Consider Fig. 4.15a and Fig. 4.15b which present the Svirt and Sλ space drawn against the input

voltage Vnin for the running example, respectively. For a specific input value Vnin, a plane containing

one DC point can be observed in each space along the z-axis. This is due to the way Vera samples

the state spaces. As stated in Chapter 3, and specifically in Algorithm 3 between lines 5 to 15,

for a specific input value, Vera first computes a DC point (red points in Fig. 4.15). Starting from

this point, Vera then steps though the Sλ with a specified state space step calculating thereby

the surrounding points. From these points, and by taking again a state step, Vera continuous to

sample the surrounding points till the specified borders are reached. Hence, Vera samples for each

DC point a plane in the Sλ space. Moreover, Vera linearizes the system at every sampled point.

As stated earlier, when a linearization is performed at a specific point, the linearized system

behavior is only valid in a range close to this linearization point. If for each plane in the Sλ space

1The results of Vera can sometimes contain non-plausible data resulting from the inverse integration scheme used

in Vera or from numerical inaccuracies. These point are candidates for exclusion.
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(a) (b)

Fig. 4.15. The (a) Svirt and (b) Sλ space drawn against the input voltage Vin. As observed, for

every input value there exists a plane containing one DC point.

the DC point is considered as the only linearization point, a question can be stated regarding the

range of validity of the linearized model around these points. For this, consider again Eq. (4.9)

which states the pointwise valid transformation between the So and Sλ space. When considering

only one plane in the Sλ space obtained for a single input value uDC , the DC point xDC in the So
space and its corresponding DC point xλ,DC in the Sλ space can be used as reference values for

the entire plane. Thus, for every calculated DC points corresponding to a specific input value, the

following equation is obtained by generalizing Eq. (4.9):

Fλxλ = (x− xDC) + F∞H∞B∞,red(u− uDC) + Fλxλ,DC (4.19)

Note that the matrices in Eq. (4.19) in general vary for every sampled point. Vera calculated

and corrected these matrices between every sampled point and the next points as given by the

connection graph. Obviously when considering the DC points as a constant references, only the

points that are a state step away from the DC points and have valid connection according to the

connection graph obey Eq. (4.19). For the remaining points of the plane, Eq. (4.19) proposes an

estimation. Still, a question can be stated regarding which transformation matrices should be used

in Eq. (4.19): those of the DC point of a plane or those of the currently inspected point. Therefore,

there are two options available to proceed with the abstraction of Eq. (4.9) through Eq. (4.19):

transPt method choose the transformation matrices as those belonging to the current analyzed

sample point. Thus, an error is performed for every considered point further

that one state step away from the DC point of the current plane

transDC method choose the transformation matrices belonging to the current DC point of the

plane, ignoring thereby the transformation matrices of the current analyzed

point. Hence, an error is made for every analyzed point that has transformation

matrices that differ from those of the current used DC point, as well as for those

points that are further than one step away from the DC point
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The transPt method provides additional information containing the variation of the transformation

matrices between the points in a plane. As the transDC method injects additional errors into the

modeling process, this method in not handled. For every xλ belonging to the plane containing the

DC point, Eq. (4.19) is solved for xλ,lsq using the least-square method:

xλ,lsq = lsq(Fλ, (x− xDC) + F∞H∞B∞,red(u− uDC)) + xλ,DC (4.20)

The obtained result is compared to the xλ value calculated by Vera, thereby marking points that

have large deviations. This is done by calculating the error δlsq in a similar fashion to the root

mean square error for every sampled point using the reduced order m and the Euclidean distance:

δlsq =
|| xλ − xλ,lsq ||2√

m
, (4.21)

For the running example, this comparison is performed by marking points which have an error

δlsq ≥ 0.1. The result is illustrated in Fig. 4.16. As observed, several points are marked as bad

points and can be dropped out if desired for the preceding calculations.

(a) (b)

Fig. 4.16. Identifying points that yield a great linearization error if considered with respect to the

DC point at a given input voltage.

Hence, the technique of filtering the sampled point based on Eq. (4.20) and a specified error

margin δlsq (Eq. (4.21)) is referred to as the lsq filter . A formal definition is:

lsq filter filters the sampled points according to a specified error margin δlsq by considering for

each DC point a plane in the Sλ or Svirt space, and applying Eqs. (4.20, 4.21) along

using the transPt method or transDC method on all sampled points belonging to this

plane

This filter can be seen as the removing points that are not suitable to be considered from the

DC points, even though their transformation matrices are used (transPt method). Note that, the
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filter can be applied for removing points during the calculation of the matrices Aloc, Bloc, Floc

and Lloc, as well as for removing points for further calculations such as performed in Section 4.5.5.

For the running example the effect of applying lsq filter is demonstrated on the calculation of the

transformation matrices. For the original system with n = 24 variables stated in Eq. (4.1) and a

reduced order of m = 2, the transformation matrix Floc ∈ R24×2 has two columns. Considering

only the 21th row, which corresponds to the output of the system Vnout, the distribution of Floc is

illustrated in Fig. 4.17 for the three previous identified location g1r1, g2r1, and g2r2. The first

row of this figure presents the first column of Floc, while the second row of Fig. 4.17 represent the

second column of Floc. The values of Floc at the operating point are marked in red (op method),

while the calculated mean values of Floc are marked in green when all sampled points are used

(mean method), and in magenta when only the DC points are used (dc method).
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Fig. 4.17. Distribution of the transformation matrix Floc for the locations loc ∈ {g1r1, g2r1, g2r2}
without the application of the lsq filter . The results are illustrated upon the 21th row of

Floc. The first row of this figure represents the first column of Floc, while the second row

represents the second column of Floc.

As observed in Fig. 4.17, in the limiting locations of the system (g2r1 and g2r2) the transfor-

mation matrix Floc attains various values with large differences. This can be traced back to the

sampling performed by Vera, and the methodology used to calculation transformation matrix Floc.

Nonetheless, selecting the correct representing value out of this large range is a challenging task.

When considering g1r1 and the corresponding first column in Fig. 4.17, one can notice that there

exists a difference between the value of Floc at the operating point (red line) and the mean value

of this matrix computed with the DC points only (magenta line). Even though g1r1 is the linear
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location of the system, a difference is still presented. This difference becomes even larger in the

nonlinear location (g2r1 and g2r2) especially in the second dimension of Floc, as illustrated in the

second row of Fig. 4.17.

With an increasing number of locations, the values shown in Fig. 4.17 are distributed on more

locations. This is often accompanied by a shortage of the distance between the operating and mean

values (red and green lines). More precisely, better results are obtained with an increasing number

of locations as will be later seen in Section 6.1.

When the lsq filter is applied during the calculation of the matrices, the mean value calculated

(green line) changes as well as the number of points that are considered. In Fig. 4.18, the result

of calculating the transformation matrix Floc is illustrated for the row corresponding to the output

node Vnout after applying the lsq filter . Note that, the red and magenta lines do not change. The

number of bins in both figures, Fig. 4.17 and Fig. 4.18, is set to 40. The points dropped out from

Fig. 4.18 compared to Fig. 4.17, are illustrated in Fig. 4.16 as bad points.
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Fig. 4.18. Distribution of the transformation matrix Floc as described in Fig. 4.17 after using the

lsq filter according to Section 4.5.2.

Even after applying the lsq filter , the obtained results only slightly change for the running ex-

ample. More precisely, the green line representing the mean value of Floc changes only minimally

upon comparing Fig. 4.18 to Fig. 4.17.

As the experimental results later in Chapter 7 show, using the mean method often yields better

results especially with a smaller number of locations. Additionally, in Section 7.1.3 several models

have been generated with the four different system descriptions handled in this section. As the
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results show, both the mean method and the dc method yield the best results. However, during

the transitioning of the locations, the mean method yields better results. Moreover, Section 7.1.3

shows as well that using the lsq filter for this example does not improve the system description,

but rather worsen the obtained results.

On the other hand, the eigenvalues with and without the application of the lsq filter are illustrated

in Fig. 4.19b and Fig. 4.19a respectively. Even though the number of eigenvalues decreased, the

mean of the eigenvalues did nearly not change.
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Fig. 4.19. In (a) the eigenvalues as sampled by Vera are illustrated, while in (b) the eigenvalues

are shown after using the lsq filter described in Section 4.5.2.

In what proceeds in this chapter, the lsq filter is not applied for the calculation of the previous

stated matrices, but only for filtering the bad points (see Fig. 4.16). In case the sampling performed

by Vera yields a Sλ space with strongly overlapping regions, it is recommended to use the lsq filter

to obtain better results.

4.5.3 Sorting the Locations

The third block shown in Fig. 4.12, sorts the identified locations. Based on the operating points

xλ,op and xvirt,op found previously in Section 4.5.1, the locations can be sorted. Starting with the

center location (Section 4.5.1), the locations are sorted from the closest to the furthest according

to the distance between their operating point to the operating point of the center location in the

Svirt space. Moreover, each location is provided with an information regarding the surrounding

locations. This information lists the neighbor locations from the closest neighbor to the furthest

surrounding one. This information is necessary as it can speed-up the guard identification later

performed in Section 4.5.6.

4.5.4 Modeling the Input as a State

The fourth block from Fig. 4.12 can be used to apply adjustments to the modeling of the system.

This includes modeling the inputs of the system as states. As indicated in Fig. 4.12, this block is

optional and often skipped. However, in some cases, especially when working with Matlab models

that are later used with the reachability tool Cora, this modeling step is sometimes necessary. At

the current time, the guards in Cora can only be defined using the states of the system, which are
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the contents of the vector xλ for the current models. On the other hand, in some cases it is desired

to include the input in the guard conditions.

To achieve this, several steps are necessary. First, ku specified inputs u+ ∈ Rku are added as

additional dimensions to the Sλ as well as to Svirt spaces, and removed from the input space Su.

Thus, the system has now k − ku inputs and m + ku state variables in the Sλ space as well as in

the Svirt space, with the new state variables:

xλ+ =

[
xλ

u+

]
xvirt+ =

[
xvirt

u+

]
(4.22)

Second, all calculations including the location identification (Section 4.4), operating point calcu-

lation (Section 4.5.1), and system modeling (Section 4.5.2) handled previously, additional to the

upcoming topics including the guards and invariants identification (Section 4.5.6) are executed in

the extended Sλ+ and Svirt+ spaces and the shrunk input space Su. On the other hand, the cal-

culations performed in Section 4.5.5 are still executed in the Sλ and Svirt spaces. The results are

then extended as shown in Eq. (4.22).

Third, for each location the system matrix Aloc from Eq. (4.10) is extend by B+, the part of the

input matrix Bloc that corresponds to u+:

Aloc+ =

[
Aloc 0

0 B+

]
(4.23)

Finally, the rows from F∞H∞B∞,red corresponding to the selected inputs are transferred to

extend the transformation matrix Fλ by additional columns. This corresponds to removing L+

from Lloc and adding it to Floc, thereby defining Floc+ as:

Floc+ =
[
Floc L+

]
(4.24)

In order to illustrate this option, an example of a circuit with a diode is modeled with the input

as a state in Section 7.2.

4.5.5 Sλ Space Recalculation

Continuing the modeling process of the system according to Fig. 4.12, the next block involves

recalculating the Sλ space. Note that this block can be skipped as the Sλ space was already

calculated by Vera. However, as will be clear at the end of this section, there are several reasons

why the Sλ space should be recalculated.

Finding the Sλ space corresponds to solving Eq. (4.9) for xλ. The problem with this equation is

that it is pointwise valid; it is only valid for each pair of points in the state space that are a state

step apart. Considering the aim which is to abstract the system, Eq. (4.9) needs to be abstracted.

In Section 4.5.2, Eq. (4.19) was presented which abstracts Eq. (4.9) by using the transformation

matrices belonging to either the DC point (transDC method) or the current analyzed point (transPt

method) along with the DC points to calculate the remaining points belonging to the plane in the

Sλ domain corresponding to the same input voltage. The recalculated space in Section 4.5.2 was
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only used to the filter (mark) bad points that were excluded in specific calculations. However, the

current task is to abstract Eq. (4.9) even more than Eq. (4.19) did, thereby replacing the Sλ space

calculated by Vera.

For that, two methods have been implemented that discard the Sλ space calculated by Vera

and replace it by values found by their solutions. The first method, the transPt method , has

already been introduced in Section 4.5.2. If the transPt method is used to recalculate the Sλ space,

Eq. (4.20) is used along with the transformation matrices of the current inspected point. This time,

the obtained Sλ space through this method replaces the Sλ space calculated by Vera. The second

method that can be used to recalculate the Sλ space is the transLoc method :

transLoc method uses the operating point at each location as a reference point along with the

transformation matrices previously calculated in Section 4.5.2

With the transformation matrices Floc and Lloc at hand, the transLoc method further abstracts

Eq. (4.19) to:

Flocxλ = x− xop +Lloc(u− uop) + Flocxλ,op (4.25)

Hence, the Sλ space is recalculated by solving Eq. (4.25) for all sampled points belonging to a

location loc ∈ Loc:
xλ = lsq(Floc, (x− xop) +Lloc(u− uop)) + xλ,op (4.26)

Eq. (4.26) recalculates the points in the Sλ space of a location to fit a single transformation

described by Floc and Lloc (see Section 4.5.2) and the found operating points xop, xλ,op at the

operating input uop (Section 4.5.1) for each location. For the rest of this section, only the transLoc

method will be considered.

This method can inject errors into the guard and invariant as points in the state space can be

calculated that have different values in the Sλ space than those calculated by Vera. Looking at

this fact from a different perspective, the points in the Sλ space are modified to obey the back-

transformation given by Eq. (4.11). Note that, both stated methods in this section can be combined

with the lsq filter from Section 4.5.2.

In Fig. 4.20 a comparison between the Sλ space from Vera and the recalculated Sλ space using

Eq. (4.26) is illustrated. Note that in both figures the lsq filter was not applied. Fig. 4.20a

and Fig. 4.20c correspond to the unchanged Sλ space as calculated by Vera, on the other hand,

Fig. 4.20b and Fig. 4.20d show the recalculated Sλ space. In the first row of Fig. 4.20, the input

was taken as an additional dimension to remove the overlapping of the points. As shown later in

Section 7.1, all these variants do not yield good abstracting models in general.

In contrast, when in either case the lsq filter is additionally used, the resulted models exhibit a

better abstraction behavior. The corresponding Sλ spaces are illustrated in Fig. 4.21.

As stated previously, the Sλ recalculation methods; the transPt method and the transLoc method ,

can be both accompanied by the lsq filter from Section 4.5.2. In this case, the bad sampled points

(see Fig. 4.16) are removed from the Sλ as observed in Fig. 4.21, prior to recalculating this space

with either method. Note that, Fig. 4.21b and Fig. 4.21d were generated using the transLoc method .

As shown in Fig. 4.12, the recalculation of the Sλ is optionally. However, there are several reasons

why the Sλ space should be recalculated:



4.5. System Modeling 69

(a) (b)

(c) (d)

Fig. 4.20. In (a) and (c) the unmodified Sλ space by Vera is presented, while in (b) and (d) the

recalculated Sλ using the transLoc method (Eq. (4.26)) is illustrated. In the first row,

the input Vnin is taken as an additional dimension.

1. The HA has linear location described as stated in Eq. (4.10). These delta values are computed

with respected to the operating points. When the system is later simulated in the Sλ space,

the locations in the Sλ should be adjusted to fit the behavior specified by the calculated

matrices (Section 4.5.2) and the identified operating points.

2. Points in a location should have similar transformation matrices. Points which have strongly

varying transformation matrices should not belong to the same location.

3. The results of the guards and invariants identification performed later in Section 4.5.6 can be

improved by reforming the Sλ space.

4. To control the discontinuities produced by the jump functions as will be later examined in

Section 4.5.9.

5. We do not completely trust the calculation performed by Vera.

Especially the second point makes is clear why the lsq filter should always be used. When the Sλ
space is recalculated and this filter is active, part of the behavior calculated by Vera is preserved

and can be bounded to an error margin. In Section 7.1 varies models were created with different
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(a) (b)

(c) (d)

Fig. 4.21. Sλ space after applying the lsq filter on the Sλ space from Vera ((a) and (c)) and on

the recalculated Sλ space ((b) and (d)) using the transLoc method . In the first row, the

input Vnin is taken as an additional dimension.

methods, and indeed, the combination of these two methods yields the best results in case the Sλ
space is strongly overlapping.

Summing up all previously mentioned manipulations and adjustments from Chapter 3 till the

current chapter, there are four options that can be used to filter and reform the Sλ space:

unchanged the Sλ space is used as calculated by Vera with all sampled points

reach filter the Sλ space is defined only through the points marked as reachable by Vera

as stated in Section 3.2.4

lsq filter removes points from the Sλ space which cannot be calculated from the DC

points under a specified error, even though their transformation matrices are

used and not those of the DC points (transPt method). For consistency, the

points removed from the Sλ space are also removed from the Svirt space (Sec-

tion 4.5.2)

Sλ recalculation discards the Sλ space calculated by Vera and recalculates it either by the

transLoc method which uses the computed transformation matrices Floc and
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Lloc with Eq. (4.26) and the identified operating points for each location,

or by the transPt method which uses the transformation matrices Fλ and

F∞H∞B∞,red of the current inspected point with Eq. (4.20) and the DC points

with the same input voltage. In both cases the solution is computed with the

least-square method. By default, the transLoc method is used

Combinations between the filters and recalculations methods are also possible and occur in the

ordered stated above. For example, one might apply first the reach filter followed by the lsq filter .

An overview of these manipulations is shown in Fig. 4.22.

reach 
or all

reachable 
points

all points

recalc. true

allreach

false

lsq
filter

Vera calculated     
space

truefalse

unchanged     
space

lsq filtered     
space

recalculate
space

transLoctransPt

Eq. (4.25)

lsq
filter truefalse

unchanged 
calc.       space

lsq filtered
calc.       space

recalc.
method

Eq. (4.19)

Fig. 4.22. Overview of the manipulations and adjustments in the Sλ space.

The first decision is to choose either all sampled points or only the reachable marked ones. In the

later case, the size of the sampled data set decreases, as points which are marked as not reachable

are completely neglected in the further analysis. The second decision involves choosing the Sλ space

calculated by Vera or recalculating this space using the stated methods. In both cases, the points

used can be filtered priory using the lsq filter as discussed in Section 4.5.2. Taking into account

the two different Sλ space recalculation methods that can be used, there are in total 12 possible

scenarios to find the Sλ space. Note that, using the reachable sampled points with the transPt

method and the lsq filter yields the best results if the Sλ space has strongly overlapping locations.

4.5.6 Finding the Invariants

With the Svirt and Sλ spaces at hand, either calculated or obtained from Vera, along with the

locations of the HA, the guards and invariants are next identified in the 6th block of Fig. 4.12.
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As the HA is later simulated in the Sλ space, it is necessary to find the guards and invariants

in this space. According to Section 4.5, the identification of the guards and invariants can occur

either in the Sλ or Svirt space. The latter case is illustrated in Fig. 4.12 and used in this chapter.

Finding the guards and invariants in the Svirt space brings the advantage of an easier identification

as the locations often do not overlap at all. On the other hand, the found results in the Svirt space

must be transformed back into the Sλ space, which is not an easy task and error-prone. As

previously seen in Section 4.5.5, this lies in the fact that the locations in the Sλ can sometimes

overlap, which can be traced back to the options provided to Vera, influencing the sampling of

the netlist. Specifically, these options can shift the individual calculated DC points by specific

values, for example, in accordance with the DC points in the Svirt space, thereby minimizing the

overlapping of the locations. As will be clear at the end of this section, the overlapping of the

locations does not affect the identification of the invariants, but only the calculation of the guards.

Based on the sampled points belonging to a location, the algorithm first finds the invariant of

each location. With the found invariants, the guards between the locations are identified. In the

following all calculations are performed in the Svirt space. Note that as stated in Section 4.5.5, the

lsq filter applied to the Sλ space also removes points from the Svirt space. Thus, the filtered Svirt
space shown in Fig. 4.16 is used here.

An invariant of a location is found by hulling the points belonging to this location by one of the

following geometric shapes:

• polytope (Section 2.1.1)

• zonotope (Section 2.1.2)

• interval hull (Section 2.1.3)

Regardless of the geometric shape used, throughout this dissertation, an invariant of a location

loc ∈ Loc is denoted as invloc according to Definition 1 from Section 2.4.

Several steps are required to find the invariant of a location. First, the borders of the locations are

found using convex hulls. The convex hulls are formed using the algorithm described in [BDH96].

This yields for each location the vertices vloc, as shown in Fig. 4.23 for the running example.
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Fig. 4.23. Identifying the borders of the locations in the Svirt space using convex hulls. The vertices

(vloc) of the convex hulls are subscripted according to the corresponding location.

The found vertices are used to model the invariants of the locations with the desired geometric
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representation according to Section 2.1. For the running example, the possible invariant represen-

tations are illustrated in Fig. 4.24.
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(a) Invariants modeled as interval hulls.
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(b) Invariants modeled as zonotopes.
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(c) Invariants modeled as polytopes.

Fig. 4.24. Modeling the invariants of the locations with different geometric shapes.

Representing an invariant as an interval hull basically corresponds to finding the bounding box of

the vertices as shown in Fig. 4.24a. This modeling results in large over approximations as observed.

When zonotopes are used to model the invariants as shown in Fig. 4.24b, the invariants are over
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approximated as well. More precisely, in some cases this representation can yield tighter invariants

compared to interval hulls. Nonetheless, this strongly depends on the order of the zonotope (number

of generators), as well as on the distribution of the points belonging to a location in the Svirt space.

Moreover, when comparing invariants modeled by zonotopes to the same invariants modeled with

either polytopes or interval hulls, the resulting invariants are no longer bounded by the vertices

i.e. the zonotopes can be larger than the max/min of all vertices. Depending on the scenario, this

representation can be less or more over approximative than using interval hulls, but is usually over

approximative when compared to polytopes. Fig. 4.24c shows the most accurate representation of

the invariants, which is obtained by enclosing the vertices of the convex hulls by polytopes. Even

this representation can yield over approximation of the space spanned by the sampled points, for

the case this portion of the space is not convex.

Since this identification was performed in the Svirt space, the found invariants must be trans-

formed into the Sλ space (Section 4.5.8). Note that, if the Sλ space was used for the identification

of the invariants, the approach would be similar to the stated identification in the Svirt, with the

difference that the results could be directly used.

In general, as observed in the figures of this section, a well partitioned state space (in this case

Svirt), yields good invariants. Since the sampled points are distributed among the locations based

on the location identification performed in Section 4.4, and the invariants are found by hulling these

points, the result of the invariants identification strongly depends on the location identification,

which labeled the points according to the linearized system behavior. Moreover, this identification

also depends on the distribution of the points in a location, which influence the calculation of

the convex hulls, which in terms affect the calculations of the geometrics shape used to enclose the

vertices of the convex hulls. On the other hand, the identification of the invariants is not affected by

the overlapping of the locations, as during this identification each location is handled independently

from the others, in contrast to the identification of the guards which is handled next.

4.5.7 Finding the Guards

According to Definition 1, guards are denoted throughout this dissertation as stated in Eq. (2.40).

For example, if the current location is g1r1 and the target location is g2r2, then the hth guard of

location g1r1 that allows for a transition to the target location g2r2 is denoted as:

grdh : g1r1︸︷︷︸
current loc

→ g2r2︸︷︷︸
target loc

(4.27)

According to Section 2.4, guards define when a location transition occurs. There are in general

four types of guard representations:

• polytope (Section 2.1.1)

• zonotope (Section 2.1.2)

• interval hull (Section 2.1.3)

• halfspace (Eq. (2.1))

For the SystemC-AMS as well as for the Verilog-A models, the definition for the guards is slightly

changed compared to Section 2.4. For these two models, a transition always and immediately occurs
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when a guard is hit. Hence, it makes sense to define the corresponding guards as halfspaces. On

the other hand, for the Matlab models, Cora can handle guards in various representation. In case

a reachable set intersects a guard, Cora projects the contained reachable set into the next location

if the polytope method is used for the guard intersections[ASB10a]. This method will be used

throughout this dissertation for guards of types polytopes, zonotopes, or interval hulls. Cora is

also able to handle halfspace guards, however, a different guard intersection methodology is used

which considers only a single reachable set (hyperplaneMap) [AK12b]. Note that, the remaining

guard intersection methods and guard representations of Cora will not be considered here.

In any case, the guards are determined by the points spanning the corresponding shapes. Hence,

first the guard points are determined, followed by representing these point with the specific guard

representation. For guards modeled as polytopes, zonotopes, or interval hulls, the guard points are

hulled by the specified geometric shape analogously to the approach from Section 4.5.6. For halfs-

pace guards, the guard points are used to determined the equation of the halfspace (see Eq. (2.1)).

Based on the invariants the guard points are first identified. To identify the points of the guards

two methods were implemented:

distance method uses distance metrics to identify the guards (Section 4.5.7)

intersection method intersects the invariants to find the guards (Section 4.5.7)

Guards Identification: Distance Method

The distance method first identifies the facets of the invariant of the current location. A facet is an

(m−1)-dimensional face of an m-dimensional polytope. Note that, a 0-dimensional face consists of a

single point and is called a vertex, while a 1-dimensional face is called an edge and represents a line

segment, and so on. Since the running example has an order of m = 2, the methodology identifies

the edges of the invariant. In general, identify the facets of the invariants is straight forward. For

each location, a convex hull is generated using the vertices of an invariant. The results are the

points that make up the facets of the invariants. Note that, each facet in the m-dimensional space

is described by m points. The task now becomes finding the facets that qualify as guards.

Based on the facets found, the points of the guards are identified in the Svirt space as described

in Algorithm 6. Note that estep represents the minimum step vector containing the minimum state

step for each dimension in the Svirt domain, while tol is a specified tolerance vector.

Algorithm 6 is executed for each location loci resulting in a structure called guards. This structure

contains all guards of the current location along with the information of the target locations (see

line 11). At this point, each guard is defined as a set of m points in an m-dimensional space.

In order to examine the m points that can span a guard two tests are performed. First, the

algorithm examines if the current facet and the line containing the operation points of the current

location loci and the next location (locj) intersect (see line 6 of Algorithm 6). If this condition

is true, the current facet is favored by increasing tol. Second as line 9 specifies, the distances

between each point in the next location to the mean of the facet points m̄facet are computed for

each dimension separately and saved in the distance matrix Dg. For each point, all corresponding

column entries in Dg are compared to the state step estep scaled by the tolerance vector tol through

an element-wise multiplication (see line 10). This can be thought of inspecting if the points of the
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Algorithm 6 determining the points of the guards using the distance method

1: procedure guards = findGuards(loci, Loc, inv, tol, estep,Svirt)
2: identify the facets of the invariant inv of the current location loci
3: for each facet do

4: for next location locj 6= loci in Loc do

5: calculate the mean (m̄facet) from the points of the facet

6: if facet intersects operation line then

7: favor this facet by increasing the tol

8: end if

9: compute distance Dg between locj points and m̄facet

10: if Dg < (tol� estep) then

11: add locj and facet points to guards of loci
12: count points with Dg < (tol� estep)
13: break

14: end if

15: set tol to default value

16: end for

17: end for

18: end procedure

next location locj are in an m-dimensional hyperrectangle with a center at m̄facet and bounded

by the points m̄facet − (tol � estep) and m̄facet + (tol � estep). If at least the distance from one

point from locj to m̄facet is less than (tol � estep) (line 10), the points of the facet are considered

guard points and saved along with the target location in the data set guards. Moreover, the points

of locj that pass the condition at line 10, and are thus inside the hyperrectangle, are counted (line

12) and used to specify the importance of the identified guard.

Fig. 4.25 shows the guard identification for the location g1r1 of the running example. The

invariant was modeled as an interval hull in a 2-dimensional space. Therefore, there are four

edges to consider. Fig. 4.25a shows the examination of the first edge colored in green for the

possibility of being a guard from g1r1 to g2r2. As observed, this edge does not intersect the red

line containing the operating points of g1r1 and g2r2. Thus, this edge is not favored according

to line 6 of Algorithm 6. Fig. 4.25b on the other hand, shows that the fourth edge does intersect

the line containing the operating point of g1r1 and g2r2. Thus, this edge is favored by increasing

tol, thereby increasing the size of the test rectangle which visualizes the condition at line 10. Note

that, initially all test rectangles have the same size.

The test rectangle in Fig. 4.25a does not contain any points from g2r2. Hence, this edge does

not qualify as a guard. In contrast, the test rectangle in Fig. 4.25b contains several points from

the target location. Thus, this edge (edgeg1r1,4) qualifies as a guard. Hence, the points of this edge

(surrounded by purple circles in Fig. 4.25b), along with the target location g2r2 and the number

of points from g2r2 inside the test rectangle are saved in the data structure guards of g1r1.

As the guard points are in general the points of the facets of the invariants, the complexity of

the guard identification is directly linked to the specified invariant representation. Hence, the more

complex the geometric shape of the invariant is, the more exhaustive the calculation becomes. For

example, considering location g1r1 of the running example with an invariant modeled as an interval

hull, the location has 4 edges. Additionally to g1r1, there are two locations: g2r1 and g2r2. Hence,
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Fig. 4.25. Part of the results of the guard identification for the location g1r1 with the invari-

ant modeled as an interval hull. The test rectangle is denoted as test with the center

m̄edge,g1r1,i, where i denotes the number of the test case.

for each location there are 8 cases to check for possible guards. If the invariant of g1r1 is modeled

as a polytope like shown Fig. 4.26, the invariant has 17 edges, with two possible target locations,

there are thus 34 cases for this location that need to be checked.
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Fig. 4.26. Part of the result of the guard identification for the location g1r1 with the invariant

modeled as a polytope with 17 edges. A test rectangle is denoted as test with the center

m̄edge,g1r1,i, where i denotes the number of the test case.

To speed-up the guard identification, tests can be skipped as line 13 in Algorithm 6 indicates.

This is possible as we demand that guards have only one target location according to Definition 1.

Therefore, if a facet qualifies as a guard from one location to the other, the next facet is handled,



78 4. Elsa: Eigenvalues Based Hybrid Linear System Abstraction

as line 13 exits the for loop between lines 4-16. For the current example, this reduces the test

cases of the guards identification for g1r1 with the invariant modeled as interval from 8 to 7 cases,

of which only 2 cases yield guards points. On the other hand, for the second scenario where the

invariant was modeled as polytopes, the test cases are reduced from 34 to 30 tests for the guards

identification of g1r1, of which only 7 cases yield guard points to the next locations as observed

in Fig. 4.26. The first 4 of these 7 edges: [1, 2, 16, 17, 8, 9, 10] yield guard points to g2r2, while the

remaining ones yield guard points to g2r1. Note that, every edge is tested in general twice. In the

first test, the edge is tested to be a guard to g2r2. If this test fails, a second test is launched to

examine if the edge is a guard to g2r1. In Fig. 4.26 only the performed tests are illustrated.

Moreover, as the location are ordered (Section 4.5.3), the runtime of the algorithm can be addi-

tionally reduced the set of target locations. For example, during the guard identification of g2r2,

only the intermediate neighbor location g1r1 needs to be examined as a possible target location

(line 4 of Algorithm 6), as no points from g2r1 surround g2r2.

From the previously identified guard points, the desired geometric shapes of the guards are

calculated. For a guard modeled as a polytope, zonotope, or interval hull the guard points are

simply hulled by the geometric shapes analogously to the approach from Section 4.5.6. However, in

some cases an additional modification is necessary. Since the previous mentioned geometric shapes

are always considered to have a volume, points that have the same value across one dimension, for

example points in a 3d space that are coplanar, are modified by adding to the defective dimension

a lower and an upper bound. This small tolerance value (tolG) assures that the guards have a

thickness, however, results also in portions of the guards that are outside the invariants.

For halfspace guards, a different approach is used. To determine a halfspace in an m-dimensional

space, in general m points are needed. For the case that m > 2, the guard points should be non-

colinear. Since these points belong to the halfspace, they obey Eq. (2.1). For example, in a 2D

space (m = 2), with c and d as defined in Section 2.1.1 and two points xvirt,1 and xvirt,2, following

equation can be specified:

cTxvirt,1 = d

cTxvirt,2 = d

This equation represents an underdetermined system of equation. Solving this equation yields in

this case the equation of a line. Next, the intersection of the halfspace for the found values of c and

d with the operating point of the current location is tested according to Eq. (2.1) i.e. it is examined

if the operating point lies on the halfspace. If this intersection returns false, the sign of both, the

normal vector c and the signed scalar d, is inverted.

For each set of guard points, a guard in the desired geometric shape is calculated. However, based

on the enclosed points counted at line 12 of Algorithm 6, for all transition between two locations,

the guards found can be reduced to a dominant one. This is done by selecting the guard that

encloses the most points to the target location. This is referred to as dominant guard reduction.

Fig. 4.27 shows the complete results of the guard identification for the running example with the

distance method . While Fig. 4.27a shows the result of the guards identification performed with

halfspace guards, the guards in Fig. 4.27b and Fig. 4.27c are of polytopic nature. Moreover, in

Fig. 4.27a and Fig. 4.27b the found guards between two locations are reduced to a single dominant
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Fig. 4.27. Results of the guards identifications using the distance method . In (a) and (b) a dominant

guard reduction is performed, while in (c) all guards are used. The guards are represented

in (a) as halfspaces, while in (b) and (c) as polytopes.

one. All calculations were performed with invariants modeled by polytopes. These invariants were

not enlarged as shown. However, polytopic guards were enlarged by a tolerance value set for this

example to tolG = 0.01. This enlargement is performed by the Minkowski addition of the tolerance

value to the polytopic guards, resulting in parts of the guards being outside the invariants. These

parts can be neglected, as guards are only valid inside and on the invariants (Definition 1). As

observed in Fig. 4.27b, the found guards are not acceptable as they are too small and thereby limit

the transition regions. This is especially true for grd1 of location g2r2. On the other hand, modeling

the same guards with halfspace, as in Fig. 4.27b, yields more acceptable results. Fig. 4.27c shows

the best results, as all edges to the neighbor locations are modeled as guards. However, finding these

guards consumed more computation time compared to the previous two guards identifications.
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Generally speaking, the best results are obtained when all guards are always considered, as all

facets are considered. Reducing the guards to a dominant one yields the best results if only few

guards are available. This is the case when the invariants are modeled by interval hulls. If this

is not desired and the invariants are modeled as polytopes or as zonotopes, the dominant guard

should be modeled as halfspace, even though this does not necessary ensure good results, it solves

the problem of too short guards that limit the possible transitions. Moreover, better results are

expected with guards of type halfspaces, as the modeling process did not inject any unnecessary

tolerance into the guard representations, thereby modeling accurately the borders of the locations.

Good and fast results can be obtained by the guard identification with invariants of type intervals.

On the other hand, while the results might be still acceptable with more complex geometric shapes,

the run time of the abstraction process suffers due to the computation of the distance matrix Dg

at line 9 of Algorithm 6 and the high number of possible test cases. This becomes an even greater

problem if the number of the sampled points or the number of locations increases. Solid extensions

were deployed that can handled this problem, by reducing the number of points considered in the

distance matrix Dg, or by performing a dominant guard reduction.

Guards Identification: Intersection Method

To overcome the flaws of the previous method, especially those concerned with the number of

sampled points, the geometric representation of the invariants, and the poor controllability of the

results, the intersection method was created. This method finds the points of the guards between

two locations based on the intersection of their invariants. As often the invariants do not intersect

after construction, one of the two invariants of adjacent locations is enlarged until it intersects

the other one. For the two location loci and locj , where the current location is loci with an

invariant invloci for which the guards are being determined with respect to the target location locj

with an invariant invlocj , the process of finding the points of the guards is stated in Algorithm 7.

Both invariants are modeled temporary as polytopes. Based on the flag, Algorithm 7 decides

which polytope to increase (Ptemp) at line 14. Hence, the intersection method is divided into two

methods:

intersectionI method increases the polytope modeling the invariant of the current location at

each iteration (flag = 1). After the guards are found the invariant of the

current location is enlarged to cover the identified guards

intersectionII method increases the polytope modeling the invariant of the target location at

each iteration (flag = 0). This enlargement is only temporarily and

neglected at the end of the guard identification

The polytope modeling the invariant (Ptemp) of either the target or the current location is increased

at every iteration at line 14 of Algorithm 7, by computing the Minkowski sum of this polytope and

an interval formed from the minimum state step vector estep, which is in fact an interval hull but

can be as well consider a polytope (Pstep). The result of this enlargement is illustrated in Fig. 4.28a

for an invariant modeled as an interval hull. For consistency with the previous stated algorithm,

all geometric shapes will be labeled as polytopes for the rest of this section.

From this point on, the algorithm increases the polytope Ptemp until either an intersection with

the next location’s invariant occurs, or the limit is reached, as specified at line 12. In the case
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Algorithm 7 Determining the point of the guards using the intersection method

1: procedure guards = findGuards(invloci , invlocj , Loc, limit, estep, f lag)

2: if flag == 1 then

3: Ptemp,0 = invloci
4: Pconst = invlocj
5: else

6: Ptemp,0 = invlocj
7: Pconst = invloci
8: end if

9: PI = intersect(Ptemp,Pconst)
10: Pstep = intervalHull(−estep, estep)
11: i = 0

12: while limit not reached && isempty(PI) do

13: i = i+ 1

14: Ptemp,i = Ptemp,i−1 + Pstep
15: PI = intersect(Ptemp,i,Pconst)
16: end while

17: if not isempty(PI) then

18: add locj and verttices of PI to guards of loci
19: end if

20: end procedure
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Fig. 4.28. The enlargement of the current invariant g1r1 by one step size is presented in (a). The

result of the intersectionI method between location g1r1 and g2r2 is shown in (b), with

invariants represented as interval hulls before the identification of the guards.

an intersection occurs, the intersection is represented as a polytope PI . The limit can be either

defined as the maximum allowed volume increase of the polytope Ptemp, or as a maximum number

of iterations. Moreover, additional conditions which are concerned with the volume of the polytope

PI can be included as well at line 12 of this algorithm, but will be skipped here for simplicity.
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For the running example the guard identification with the intersectionI method was performed

for the current location g1r1, considering only the target location g2r2. The result is shown in

Fig. 4.28b. The identification has been carried out with the limit set to:

volume(Ptemp,i) < k(volume(Ptemp,0) + volume(Pconst)),

where k is set to 1
2 , the subscript i denotes the current iteration, and Ptemp,0 denotes the initial-

ization to the invariant invg1r1. On the other hand, Pcont has been initialized to the invariant

invg2r2. Additional to the limit, a condition concerning PI has been set. This condition states

that 5 additional iterations are performed after the first intersection between Ptemp,i and Pconst
occurs. This assures in case the invariants are overlapping, that at least few iterations are per-

formed controlling thereby the size of the guards. Usually this value is set to 1, but was set to 5

for the running example for illustration purposes. At iteration 22, the intersection between Ptemp,i
and Pconst occurs for the first time. Thus, the algorithm terminates after 27 iterations as shown

in Fig. 4.28b. For simplicity, only the last polytope Ptemp,27 was added to the legend. The red

polytope PI represents the guard found. Note that, the guard type was set to polytope.

This method depends on the geometric representation of the invariants used (Section 4.5.6) and

the minimum state space step vector estep. As observed in Fig. 4.28, several iterations are needed

until an intersection of the invariants occurs, even though the simplest invariant type is chosen. On

the other hand, performing this identification with the same settings, but with invariants modeled

as polytopes results in much more computational effort as shown in Fig. 4.29a. This time 150

iterations are needed till the algorithm terminates. This lies in the fact that the distance between

the invariants increased, as a more precise invariant representation is used. In Fig. 4.29b, the step

vector estep has been doubled compared to its previous value. As observed, nearly half the number

of iterations is needed compared to the previous run. However, the identified guard yields a greater

volume compared to the previous case. For simplicity, in both figures only the last computed
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Fig. 4.29. Result of the intersectionI method for the current location g1r1 to the target location

g2r2 with polytopic invariants. In (a) state step vector estep is used, while (b) uses twice

this value per iteration.
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polytope Ptemp,150/78 was added to the legend.

After finding the intersection polytope PI , the polytope is changed into the specified geometric

shape. This is performed by first extracting the vertices of the polytope, followed by generating

the desired shape from these vertices according to Section 2.1. In case the guard type is set to

halfspace, the intersection method finds the outer facets of the intersection polytope PI with the

help of the operation points in each location. In Fig. 4.30, the intersection polytope PI from

Fig. 4.29b is used to determine the halfspace guards from g1r1 to g2r2. In the left of Fig. 4.30

the identified intersection polytope is illustrated. This polytope is decomposed into its halfspaces.

The halfspaces that contain the operation point xvirt,op of g1r1 are then selected as guards (green

lines), while the halfspaces that do not contain this point are neglected (red lines).
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Fig. 4.30. Determining the halfspaces of the polytope PI that are qualified as guards from g1r1 to

g2r2 after using the intersectionI method .

Unlike the distance method , reducing the guards to a dominant one is only possible if halfspace

guards are used. If the guards are of any other type, all intersections found form the guards.

Moreover, guards found with the intersection method are not modifications by any tolerances.

In the last step of the guard determination, the invariants are adjusted to enclose the found guards

in the case the intersectionI method was used, as it makes little sense to define guards outside the

invariants (see Definition 1). This is performed by adding the points of the found guards to the

points of the invariants. By that, the invariants are recalculated with the new set of points, resulting

in enlarged invariants. Hence, in this mode the invariants of the locations overlap in the final model.

In case the intersectionII method is used, the invariants of the target locations are only temporarily

enlarged. Thus, the invariants of the final model are not modified. Consequently, the intersectionI

method can inject errors into the system behavior, as the invariants exceed the sampled points

of the locations. Note that, in the distance method stated at the beginning of Section 4.5.7, the

invariants were not modified.

Fig. 4.31 shows the complete results of the guard identification using both modes of the inter-

section method . This time the condition for the intersection polytope PI has been set to:

volume(PI) ≥
1

80
(volume(Ptemp,0) + volume(Pconst)),
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instead of limiting this method as previously done with the number of iterations (Fig. 4.29), the

volume of the intersection polytope PI was used. While in Fig. 4.31b the intersectionII method was

used, Fig. 4.31a used the intersectionI method . As observed, both options yield good results. How-
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Fig. 4.31. Result of the (a) intersectionI method and (b) the intersectionII method . In (a) the

invariants are enlarged to cover the identified guards.

ever, the intersectionI method resulted in an enlargement of the invariants as shown in Fig. 4.31a.

This enlargement happened post to the guards identification of each location, and thus assured

that the invariants contain the guards.

In general, this method yields good results if the condition for the intersection polytope PI are

well chosen. Moreover, depending on the state step vector estep, the runtime can be improved in

potentially loss for accuracy. Regarding the guards, halfspace guards yield preciser descriptions

than the remaining shapes. This is due to the fact that the geometric shapes used i.e. polytopes,

zonotopes, and interval hulls are convex, hence, this causes over approximation especially as the

dimensions increase compared to halfspace guards. However, identifying the halfspace guards from

the intersection polytopes is still not optimal, and thus error prone.

In case the guard and invariant identifications were performed in the Sλ domain, and thereby

the previous calculations were performed in this domain, the invariants can be optionally enlarged

after the identification. However, if the previous calculations were performed in the Svirt space,

as this is the case here, only the intersectionI method can enlarge the invariants. All remaining

methods do not modify the invariants. This is on purpose disabled as modifying the invariants,

for the case that the guards and invariants are identified in the Svirt domain, does not yield good

results as no accurate transformation to the Sλ is possible as described in the next section.

4.5.8 State Space Transformation of the Guards and Invariants

The 7th block of Fig. 4.12 transforms the found guards and invariants into the Sλ space. This

is necessary if the previous calculations were carried out in the Svirt space. Specifically, this
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section targets the results from Section 4.5.6 and Section 4.5.7, where the invariants and guards

were identified in the Svirt domain. In all remaining calculations of Section 4.5, the results were

calculated in both state spaces. In case the guards and invariants were identified in the Sλ space,

no transformations are necessary, and thus the transformation block from Fig. 4.12 is skipped.

The invariants are taken as calculated in Section 4.5.6, disregarding the method chosen for

the guard identification and the possible modification applied to the invariants. Moreover, it is

necessary to take all sampled points in a location, rather than just to consider the vertices of

the invariants in the Svirt space, to determine the invariants in the Sλ space. The reason for

this lies in the fact that transforming only the vertices of an invariant into the Sλ space and

enclosing the result by a convex hull, does not necessary assure that all sampled points belonging

to this location are covered by the found hull. Fact is, each sampled point has in general different

transformation matrices calculated by Vera (see Eq. (4.9)). Thus, when transforming points with

different transformations, a change of the position of the transformed points between the two spaces

can occur. This becomes an even more challenging task when the invariants were modeled with

interval hulls or zonotopes, as the vertices of these shapes were not calculated by Vera in general,

and therefore no information regarding the transformations are available. This becomes clear when

examining the possible invariant representation from Fig. 4.24 for the location g1r1 as shown in

Fig. 4.32. As observed, only in the case the invariant is modeled as a polytope, the vertices of the

polytope are from the sampled points. Note that, in this case the vertices of the polytope are from

the vertices of the convex hull (vg1r1), which are in terms from the sampled points.
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Fig. 4.32. Invariant representation of g1r1 using different geometric shapes. Only if the invariant

is modeled as a polytope, the vertices of the invariant are from the sampled data.

However, even if the transformation matrices are available, as is the case for invariants modeled

as polytopes, it is not enough to consider only the vertices of this shape. This is due to the fact

that each sampled point is coupled with different transformation matrices (see Section 3.2), yielding

different projections as illustrated in Fig. 4.33.

This becomes clear when examining Fig. 4.34. Fig. 4.34a shows the result of the guard and

invariant identifications performed previously (Fig. 4.31b) with invariants modeled as polytopes

and guards found with the intersectionII method and modeled also as polytopes. The numbers in

the figure indicate the indices of the points that form the convex hull of the first location g1r1.

Note that the invariant invg1r1, which is a polytope formed from these points, dropped few of these
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Fig. 4.33. Transforming sampled points with different transformation matrices

points. The points, which define the convex hull in the Svirt space, are transformed into the Sλ
space, and are denoted by vest,g1r1 in Fig. 4.34b. However, generating a polytope from these points

in the Sλ space does not hull all sampled points of the location. Fig. 4.34c shows the desired result.
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Fig. 4.34. Examining the vertices of the invariant of location g1r1 in (a) the Svirt space and in (b)

and (c) in the Sλ space.
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Regardless of the method used to obtain the Sλ space, using all points the invariants in the

Sλ space are identified. Similarly to the process of finding the invariants in the Svirt space, the

invariants in the Sλ space are found by hulling the points of a location with a convex hull, followed

by transforming the hull into the desired representation (see Section 4.5.6).

Now it becomes clear why the invariants should not be modified. Modifying the invariants by

enlarging them yields points describing the convex hull that were not sampled. Consequently,

these points neither have transformation matrices nor corresponding points in the Sλ domain.

Modification applied on the invariants are neglected during the transformation of these shapes from

the Sλ space to the Svirt space. These modifications can be applied to the invariants after they have

been found in the Sλ space, for example by applying a state step enlargement corresponding to the

minimum state step in the Sλ space. However, finding the guards in the Sλ space becomes then

an even more challenging task. For this reason, invariant modifications should not be performed

if the Svirt space is used to find the invariants and guards. Specifically, the intersectionI method

should not be used in the Svirt domain, as the enlargements of the invariants yield vertices that do

not belong to the sampled data set.

The fact that a point does not belong to the sampled data set is quite often. The simplest

approach involves finding surrounding sampled points and use them instead. As long as this is

performed inside a location’s invariant, acceptable results can be expected as these points share

similar transformation matrices and system behaviors, which is especially true if various filters and

modification from Section 4.5.5 were applied. However, the results are not optimal. Moreover,

in the case that the points are outside the invariants, this is not feasible. The best option in

this case is to replace the points by the borders points of the invariants. Obviously, in the case

the intersectionI method is used, this corresponds to reversing the enlargement of the invariants,

thereby using the unmodified invariants. If the guards lie outside the unmodified invariants, bad

results can be expected. Therefore, the intersectionII method is always used if the guards and

invariants were calculated in the Svirt space, while the intersectionI method is dropped out in this

case due to the problems this methodology faces during transformation of the results.

Due to the stated limitation to unmodified invariants, guard points are always very close to the

sampled data, even though the guard points are often not directly from sampled data. Only the

distance method with invariants modeled as polytopes and guards modeled as halfspaces usually

forces the guard points to be from the sampled data set. While the distance method with guards

not modeled as halfspaces usually results in guards that are partially outside the invariants (due to

tolG), the intersectionII method always results in guard inside and on the borders of the invariants.

Generally speaking, guard points may not belong to the data set calculated by Vera, but lie in the

surrounding of points which do. Still, the guards found need to be transformed into the Sλ domain

from the guards identified in the Svirt space. For this, four methods have been implemented:

estT method estimates a transformation matrix Tloc based on all sample points belonging to

a location. This transformation matrix is used to transform the guard points

sampT method finds the sampled points inside a guard and transforms them to the Sλ domain.

In case the guards do not contain any sampled data point, the closest points to

the guards are found. These points are transformed to the Sλ space
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disT method extends the first method. First the guards are found using the estT method . In

the Sλ space, for each guard the closest facet of the invariant is identified by

finding the closest facet points. The found edges represent the new guards

halfT method computes first the guards as in the estT method . In the Sλ domain, the invariants

are modeled as polytopes in the halfspace representation. The distances from

the guard points to the hyperplanes of halfspaces are calculated and the closest

halfspace is found. Based on the halfspace, the closest points of the invariants

are identified and used as guard points

The estT , the disT , as well as the halfT methods estimate all a transformation matrix Tloc ∈ Rm×m

for each location loc ∈ Loc, such that:

{xvirt,loc,iTloc = xλ,loc,i | xvirt,loc,i ∈ xvirt,loc, xλ,loc,i ∈ xλ,loc} (4.28)

This is done by finding the least square solution of the this linear system. Thus, Tloc is estimated

using all sampled points xvirt,loc and xλ,loc from both state spaces for a given location. For all three

methods, all points of the guards at a given location are transformed from the Svirt to the Sλ space

by using this estimated transformation. The estT method ends here, by transforming the guard

points to the desired representation, that is by either hulling the guard points with the specified

geometric shape, or by finding a halfspace description.

The disT method takes an additional step after finding the estimated guard points in the Sλ
space. The problem with the estT method is that the estimated transformation does not yield

good guards. It is desired to obtain guards that are as close as possible to the facets of the

invariants. Therefore, the disT method was implemented which directly uses the invariants and

replaces the estimated guard points with the closest invariant points for each location. This is done

by computing the distance between the points of the invariant and the previous estimated guard

points for each location. The closest invariant points are then taken as the new guard points. In

the final step, these points are transformed to the desired guard representation. Note that, the

points of the guards were first called estimated, as this method corrects them after finding them

previously with the estimated transformation Tloc.

The halfT method takes a different approach after finding the estimated guard points in the

Sλ space. The problem of the disT method is that the points of the invariants can be close to

each other. Calculating the guards based on these points can join different facet points of the

invariant resulting in guards that instead of being on the facets pass through the invariant. To

solve this problem, the halfT method was implemented, which yields the best results compared to

the previous three. This method transforms the invariant of a location into a polytope Ploc in the

halfspace representation (Theorem 2.1.1), that is for the kh halfspaces of Ploc:

Ploc =
{
xλ ∈ Rm | Chxλ ≤ dh, Ch ∈ Rkh×m, dh ∈ Rkh

}
(4.29)

Each guard is then identified as one of the halfspaces of Ploc. For that, consider a estimated single

guard consisting of kgrd points. From each xλ,grd of the kgrd points, the distance di to each of the

kh halfspaces of the invariant polytope (Ploc) is calculated via:

di =
| Ch · xλ,grd − dh |√

Ch ·Ch
(4.30)
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For the kgrd points, the total distance is then computed:

dTotal =

kgrd∑
i=1

di (4.31)

This allows for the selection of a single halfspace which is closest to all kgrd points. This halfspace

replaces then the estimated guard. Next the polytope Ploc is brought into the vertex representation

as stated in Theorem 2.1.2. Using the previous found halfspace:

H = {xλ | cThxλ ≤ dh},

the corresponding vertices of the invariants can be identified, as these points belong to the hyper-

plane describing the halfspace, thereby satisfying:

cThxλ = dh

The vertices identified are finally transformed into the desired guard representation.

To keep things simple, for an invariant modeled as an interval hull, the results of the trans-

formation of the first guard grd1 of g1r1 to the Sλ space using the halfT method is presented in

Fig. 4.35.

-4 -3 -2 -1 0 1 2 3 4
-6

-4

-2

0

2

4

6

-1.8 -1.6 -1.4

-4

-2

0

2

4

6

(a)

-3 -2 -1 0 1 2
-6

-4

-2

0

2

4

6

-1.7 -1.6 -1.5
-5

0

5

-1.7 -1.65 -1.6

-5

0

5

-1.67248 -1.67244
-6

-4

-2

0

2

4

-1.7 -1.6 -1.5

-5

0

5

(b)

Fig. 4.35. Finding guard grd1 of location g1r1 in the Sλ space using the halfT method .
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The intersectionII method was used to identify the guards in the Svirt space as illustrated in

Fig. 4.35a. The guard grd1 of location g1r1 was thereby described using kgrd1 = 4 points. These

points where transformed into the Sλ domain using an estimated transformation matrix Tg1r1. The

estimated points are marked by diamonds colored in cyan in Fig. 4.35b. For each estimated point,

the distances to all edges of the invariant invg1r1 are computed, thereby denoting the distances by

two subindcies, such that the first represents the estimated point, while the second represents the

examined edge. For the four 4 points of the estimated guards, Eq. (4.30) is executed 4 times. The

closest edge is then identified by computing first the total distance dTotal (Eq. (4.31)) along the

kgrd points, followed by finding the minimum across the rows of dTotal. The found halfspace can

be directly used if the guard type is set to halfspace. If this is not the case, the vertices of the

invariant are identified, and changed into the desired representation. For example, in Fig. 4.35b

the vertices are used to model the identified guard points as an interval hull (Section 4.5.7). In

this case, by computing the Minkowski sum of this guard with a tolerance value (tolG), the guard

attains a volume and can be represented in the desired shape. Usually the halfT method identifies

several facets as guards, especially if the invariants are modeled as polytopes, thus several vertices

of the invariants can be used for each guard (see Fig. 4.36c).

The reader might ask now why an approach similar to the invariant is not applied. In fact

the sampT method takes this approach. This method does not estimate the guards and corrects

them, rather it uses an approach similar to the invariants. First the points inside the guards are

identified in the Svirt space. This identification is straight forward for guards modeled as polytopes,

zonotopes, or interval hulls. On the other hand, this is also applicable for a guard of type halfspace.

This lies in the fact that the points used to generate the halfspace can be used here. Using either

of the Sλ space recalculation method (see Section 4.5.5), these points are then transformed into the

Sλ space. Finally, the guards are modeled in the desired representation using the identified points.

This method has a fallback in case no points were found inside or on the guards. Under such

circumstances, the closest points are selected and the process continues as normal. As this method

resembles the approach of transforming only the vertices of the invariants during the invariant

identification, obviously since the sampled points inside a location have different transformation

matrices, the results are not always optimal.

For the running example, the result of the guard transformation is presented in Fig. 4.36, for

simplicity, by regarding only location g1r1. Using the intersectionII method in the Svirt space, the

guards of the center location g1r1 were found. The invariant as well as the guards were model as

polytopes, as illustrated for g1r1 in Fig. 4.36a. The red and blue points in this figure indicate the

points hulled by the two polytopic guards grd1 and grd2 of g1r1, respectively. If these points were

transferred to the Sλ domain using the sampT method , the resulted points are shown in Fig. 4.36b.

The sampT method first transforms these points into the Sλ domain, then hulls them with the

specified guard type. In this case, the guards are specified as polytopes. As observed, the obtained

guards in the Sλ domain (Fig. 4.36b), especially grd2, cover a large portion of the invariants, even

though concise guards were found in the Svirt space. Transforming the same guards identified in the

Svirt space with the halfT method yields much better results as presented in Fig. 4.36c. This method

first estimates the guard points by using the transformation matrix Tg1r1 and the guard point from

the Svirt domain. Then the estimated points, red for grd1 and orange for grd2, are mapped to the

corresponding halfspaces of the invariant invg1r1, identifying thereby the halfspaces that qualify as
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Fig. 4.36. In (a) the result of the guard identification using the intersectionII method in the Svirt
space for only the first location g1r1 is presented for an invariant and guards specified

as polytopes. The result of transforming the two guards of location g1r1 is illustrated

in (b) by using the sampT method , and in (c) by using the halfT method .

guards. Moreover, since the guards are specified as polytopes, the vertices of invariant lying on

the halfspaces are used to form the new guards, colored yellow for grd1 and cyan for grd2. These

vertices are then used to form the new guards in the Sλ domain. As observed in Fig. 4.36c, the

results are by far superior and preferable to the results of the sampT method (see Fig. 4.36a).

Moreover, the guards obtained using the halfT method , always lie on the borders of the invariants.

Therefore, the halfT method is used as the default method unless specified otherwise.

4.5.9 Jump Functions

The last block in the system modeling process presented in Fig. 4.12, is the jump function block.

This block can be skipped, but usually modeling the abstracted systems with jump functions results

in superior behavioral models. This is especially true for the case the locations do strongly overlap
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in the Sλ space compared to the Svirt space. Note that the overlapping of the Sλ space can be

controlled to some extent by the sampling method of Vera, as later examined in Section 7.1.2.

The DC points are a good indicator if the jump functions are necessary. As observed in Fig. 4.13a,

the DC points in the Svirt space inside a location can be mapped to a single line as illustrated in

Fig. 4.37. However, for the current sampled Sλ space illustrated in Fig. 4.13b, this is not possible.
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Fig. 4.37. Analyzing the Svirt space. Three lines are required to cover all DC points.

The number of lines with different slopes needed to join the DC points is a good indicator for the

number of locations at least needed, as for a linear SISO system the operating points obtained

at different inputs usually lie on one line. However, even though this can be extended to MIMO

systems to some extent using planes for example, this approach cannot be generalized, especially

for system with defective system descriptions, as systems exist that can have several operating

points for the same input stimuli.

In general, the overlapping of the locations in the Sλ space proposes a problem for the simulation

as well as for the location distinction. This problem can be solved by using jump functions and

adjusting the guards and invariants in Sλ space. In the instance the abstract model is described

with jump functions, several aspects need to be modified. The jump functions are linked to guards

(Definition 1). Once a guard is taken and thus a state transition occurs, the corresponding jump

function is applied. In Section 2.4, the jump function of a hybrid automaton was described as:

xλ,new = Qrxλ,old + vr , (4.32)

where Qr ∈ Rm×m is the mapping matrix, vr ∈ Rm is the reset vector, and xλ,new ∈ Rm and

xλ,old ∈ Rm are the new state vector after and before the transition, respectively. For the current

application, Eq. (4.32) is changed to:

xλ,new = Irxλ,old − xλ,op,locj , (4.33)

with Ir ∈ Rm×m and xλ,op,locj ∈ Rm representing an identity matrix and the operating point of

a target location locj in the Sλ space, respectively. Thus, whenever a guard is taken from the

current location to the target location, Eq. (4.33) is applied by subtracting the operating point of

the target location from xλ.

In addition to the previous mentioned adjustment of the state vector xλ, the guards as well as the

invariants are shifted. Both objects are shifted by the current operating point. This corresponds to
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subtracting the operating point of the current location in the Sλ space from these objects, thereby

moving these objects to the global reference point (Section 4.5.1) of the Sλ space, as shown in

Fig. 4.38.
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Fig. 4.38. Adjusting the invariants and guards in the Sλ space for the use with the jump functions.

The found results (a) are shifted by the corresponding operating to obtain (b).

Fig. 4.38a shows the previous calculated guards and invariants in the Sλ domain. These objects

were shifted by subtracting the corresponding operating points as observed in Fig. 4.38b. For

example, considering g2r1, the invariant invg2r1 and the guard grd1 from g2r1 to g1r1 are shifted

by subtracting xλ,op,g2r1 from both objects. Note that this is only applied for the Matlab (Cora)

models as explained in Section 4.6.1.

By these modifications, the overlapping of the locations can be controlled. Even though the

obtained results in Fig. 4.38b seem to be overlapping, they are in fact separated by the location

variable loc ∈ Loc = {g1r1, g2r1, . . . }. For the running example, three locations have been identi-

fied, thereby Loc = {g1r1, g2r1, g2r2}. Fig. 4.39 shows how the location variable allows for a clear

distinction of the invariants and guards.

Fig. 4.39. Result of the guards and invariants after adjustment illustrated against the locations.
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For the current example, the system starts at the center location g1r1. If the system does not

leave invg1r1, the system behavior is characterized by Eq. (4.10) and the operating points and

input voltages of the current location. In case the simulation terminates while the system does

not leave this location, the back transformation Eq. (4.11) uses only the operating values of the

current location as well. However, for a simulation in which the system intersects either on of

the guards grd1 or grd2 of location g1r1, the system performs a transition to either location g2r2

or g2r1, respectively. In both case the jump function is activated, and the system behavior is

shifted by subtracting the value of the target operating point as specified by Eq. (4.33). In the

new location, the simulation is continued until either a guard is intersected, the invariant is left, or

the simulation time is elapsed. In the two latter cases the simulation is terminated, while in the

first case a location transition again occurs. The results of the performed simulation or reachability

analysis are transformed from the Sλ space back to the original So space for each visited location

separately by using the corresponding operating values in Eq. (4.11).

To analyze the result, a phase diagram illustrated in Fig. 4.40 has been created for a constant

input voltage Vnin = 4 V. At the specified input voltage, the operating amplifier goes into saturation

thus changing the behavior of the system from a linear to a limiting nonlinear one. For the abstract

HA, this can be understood as changing the location from g1r1 to g2r2. As observed in Fig. 4.40,

for the system starting at location g1r1, the steady state point xλ,ss,g1r1 lies outside the invariant.

Fig. 4.40. Phase diagram of the created HA in the Sλ space with adjusted locations for a constant

input Vnin = 4 V illustrated along the location variable Loc.

Specifically, reaching this point from g1r1 intersects the guard grd1 before reaching xλ,ss,g1r1. In

this case, the HA performs a jump to g2r2 at the instance the intersection occurs. In g2r2 the

system tries to reach xλ,ss,g2r2. As this point lies inside the invariant invg2r2, the system reaches

this point and stays there. Note that, in this case g2r1 is not visited.

To gain more insight on the created HA, a reachability analysis was performed with Cora for

the same input voltage. The result in the Sλ space is illustrated in Fig. 4.41. As observed, the

reachability analysis starts at the center location g1r1. The reachable set Rg1r1 intersects grd1 at

xλ,1 = −1.767. The system performs then a jump to g2r2 continuing the reachability analysis with

Rg2r2 until the steady state is reached. The result of this analysis is finally transformed back into

the So space using the corresponding back-transformation (Eq. (4.11)) for each location. Fig. 4.42

shows one of the x variables which corresponds to the output voltage Vnout. As observed, the jump
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Fig. 4.41. Result of the reachability analysis in the Sλ space for a constant input at Vnin = 4 V.

occurred at the time t = 0.067 s. Note that the reachable sets are in fact illustrated as intervals

which bound the upper and lower bounds of the computed zonotopes (stored in x) along with a

specified time step of 0.001 s. As observed, the HA exhibits a limiting behavior. A comparison of
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Fig. 4.42. Result of the back-transformation of the reachability results in the So domain. The

element of x corresponding to the output voltage Vnout is illustrated versus time.

the generated HA and the netlist is presented in Section 7.1

If the system is modeled without jump functions, skipping thereby the 8th block in Fig. 4.12, the

adjustments performed in this section on the guards and invariants in the Sλ space are skipped.

Moreover, the simulations are performed directly on the variables instead of their delta values,

thereby removing the operating points xop, xλ,op, and the operating input voltage uop from Eqs.

(4.10, 4.11) for each location. However, in this case the invariants found previously must overlap

at least slightly in the Sλ space. If this is not the case, spaces between the invariants can lead

the system during transitions to leave all locations, thereby terminating the simulation. Generally

speaking, a HA modeled with jump functions yields significantly better results than a HA modeled

without jump functions. A detailed comparison of the running example modeled with and without

jump functions is presented in Section 7.1.5. Note that this section described the application of

the jump functions on the Matlab models. For the Verilog-A and SystemC-AMS models, the jump

functions applies a shift and not a reset on the system as explained in Section 4.6.
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4.6 Model Creation

The last block in Fig. 4.1, and thereby the final step in the model abstraction process, is the model

creation. According to the specified output language, three different types of models can be cre-

ated: Matlab, Verilog-A, or SystemC-AMS models. For the Matlab models a reachability analysis

can be performed using the reachability tool Cora, while simulations can be performed with the

remaining two types using standard Verilog-A and SystemC-AMS simulator, respectively. Addi-

tionally, the SystemC-AMS models can be extended for performing affine arithmetic simulations

with the standard simulator, yielding bounded results similar to a reachability analysis.

In the following, the model generation in the specified output language and corresponding mod-

eling methodology will be handled. Six properties need to be specified for the generated models:

(a) the system behavior according to Eq. (4.10), specified by the system matrix Aloc ∈ Rm×m,

the input matrix Bloc ∈ Rm×k, the operating points xop ∈ Rn and xλ,op ∈ Rm, and the

operating input uop ∈ Rk

(b) the invariant of location

(c) the guards that allow for transitions to the neighbor locations

(d) the location id loc ∈ Loc = {g1r1, g2r1, . . . }, specifying the current location of the HA

(e) the jump functions corresponding to the guards if necessary

(f) the back-transformation according to Eq. (4.11), specified by the transformation matrices

Floc ∈ Rn×m and Lloc ∈ Rn×k

Depending on the model type, the properties are embedded differently into the model description.

4.6.1 Matlab Models

The detailed generation of a Matlab model has been handled thought this chapter in detail. Each

location of the HA is described by a location class. The location class hosts:

(a) the system description: Aloc andBloc specified in general as matrices. The system description

can be also specified using matrix zonotopes or interval matrices to model process parameter

variations (Section 5.2) or compensate for the abstraction process (Section 5.1.1)

(b) the invariant: in any of the in Section 4.5.6 specified geometric shapes

(c) the guards: in any of the in Section 4.5.7 specified geometric objects

(d) the location id: loc, which specifies the current location of the HA

(e) the jump functions: specified by the reset variable hosting the matrix Qr and the reset vector

vr, and the target location. Note that the guards are saved, along with their corresponding

jump functions and target locations, in the transition variable of each location.

(f) the back-transformation: Floc and Lloc specified in general as matrices

For each location, a location class element is initialized and passed to a cell array named loc.

Finally, the hybrid automaton is initialized by passing this cell array to the hybrid automaton class

(hybridAutomaton). Unlike the SystemC-AMS and Verilog-A models, the result of the reachability

analysis of the Matlab (Cora) models is first completely computed, followed by transforming (post
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analysis) the found results from the Sλ space to the So space via the back-transformation. For

the SystemC-AMS and Verilog-A models, the results in the So space are computed during the

simulations. In Listing D.1, an example of a Matlab model is stated. In case the system is modeled

with jump functions, the invariants and guards are adjusted according to Section 4.5.9.

4.6.2 Verilog-A Models

Unlike Cora, the Verilog-A simulator performs a simulation and not a reachability analysis. More-

over, a clear condition must be stated when the transition occurs for the Verilog-A models, thereby

forcing the generated HAs to be deterministic. Additionally, due in to the behavior of the Verilog-A

simulator and the absence of the digital states, a different approach compared to the methodology

of the Matlab models must be used to identify the current location of the system during simulation.

For this purpose, two methods arise that can be used to model a HA in Verilog-A:

grdV method discard the invariants and use only the guards to define the current location and

the transitions to the next locations

invV method discard the guards and use only the invariants to define the current location and

the transitions to the next locations

The grdV method uses only the guards to define the transitions between the locations. Moreover,

using the xλ variables along with the guards and optionally the jump functions, the current location

of the HA is determined.

The guards are modeled as if conditions. For halfspace guards, this is straight forward. For

the reaming guard types, the geometric shapes are transformed to their halfspace representation,

followed by modeling selected halfspaces as if conditions. The concept of selecting the appropri-

ate halfspaces is similarly to the approach of extracting the relevant halfspaces from PI in the

intersection method from Section 4.5.7 (see Fig. 4.30).

To illustrate the model behavior of a HA in Verilog-A, consider Fig. 4.43. A HA was generated

for the running example with invariants modeled as interval hulls and guards specified as halfspaces

using the distance method . Moreover, the HA is modeled with jump functions, and described in
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Fig. 4.43. The Sλ space with the xλ stated variable as handled by the Verilog-A simulator.

Verilog-A using the grdV method . Even though the HA was modeled with jump functions, the
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locations are not adjusted in Fig. 4.43, in contrast to the Matlab model shown in Fig. 4.39. This is

due to the fact that the simulator uses the Sλ space as illustrated in Fig. 4.43, with the xλ shifted

during simulation and not reset as for the Matlab models. More precisely, the xλ variables are

constantly shifted by a shift vector:

vs = xλ,op,loc , (4.34)

that is set to the operating point of the current location. Hence, this vector is subtracted from the

xλ variables in all equations, as will be clarified through this section.

Fig. 4.44 shows how the current location can be identified from the xλ variables, guards, and

jump functions. Even though the invariants are ignored and irrelevant for the system behavior due

to the modeling method, their are illustrated in Fig. 4.44 for consistency. During a simulation,

Verilog-A simulator performs for every time step several iterations. At each time step, the system

starts from the center location as observed in Fig. 4.44. The HA stays in the center location as long
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Fig. 4.44. Determining the current location using the xλ variables, guards, and jump functions.

From location g1r1, the system can either stay in this location, or transition to the next

locations if a halfspace guard is intersected.

as the guards to the neighbor locations are not intersected. An example of a trajectory is colored

in green with the final destination point labeled 3. Once the trajectory in the Sλ space intersects

a guard of g1r1, a location transition occurs. For example, if the red trajectory is considered, the

HA intersects grd1 of g1r1 at the point labeled 1a. At this instance, the HA switches the location

to g2r2. Since the HA is modeled with jump functions, the operating point xλ,op,g2r2 of g2r2 is

subtracted from the intersection point 1a (see Eq. (4.33)). With the obtained value 1b, the system

continuous the simulation in the new location g2r2. As long as grd1 from g2r2 is not intersected,
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the HA stays in g2r2. Specially, as long as the HA stays to the left or grd1 of g2r2, the system

stays in g2r2. Similarly, the blue trajectory shows a possible transition to g2r1 from g1r1. Note

that the shift values are as well subtracted from the guards and invariants.

During the iterations in each time step, the HA is faced with the decision of the current location.

Starting from the center location, the possible intersections of the guards are analyzed. In case an

intersection occurs, the location is switched and the guards of the new location are analyzed. In case

no intersections occur, the current location is obtained. Algorithm 8 states the basic description of

the HA in Verilog-A for the running example using the grdV method .

Algorithm 8 Verilog-A model generated with the grdV method

1: module hybridAutomaton(Vnin, Vnout)

2: initialize the variables

3: set or unset the debug flag

4: identify the current location loc

5: issue a warning if debug is set and the current invaraint is left

6: assign all variables according to loc

7: solve nodal equations to find all V (xλ,i)

8: perform the back-transformation using the previous found voltages

9: end module

As stated in Algorithm 8, the variables are first initialized. Since Verilog-A does not support

matrices, all elements of the matrices are initialized as real variables, except the input and output

voltages, Vnin and Vnout along with the Sλ state space variables, xλ,1 and xλ,2, which are initialized

as electrical variables. At line 4, the HA finds the current location as described in Algorithm 9.

At line 3, a debug flag can be set, that issues a warning at line 5 after the current invariant is

left. Note that the invariants are described using their halfspace representation. Thus, only the

guard conditions decide when a location is left, while the invariants can be used to issue warnings.

Based on the current location identified at line 4, the elements of all matrices and vectors are

assigned according to their corresponding values at this location. This includes the system and

input matrices, the transformation matrices, and the operating values including the shift vector of

the jump function. With the new assigned values, the simulation continues at line 7 by solving two

nodal equations for the states V (xλ,1) and V (xλ,2). For the first state, the nodal equation is:

I ( x lam1 ) <+ −1∗ s c a l e ∗ddt (V( x lam1 ) ) ;

I ( x lam1 ) <+ s c a l e ∗(A11∗(V( x lam1 ) − xSh i f t 1 ) + A12∗(V( x lam2 ) − xSh i f t 2 )

+ B11∗(V( nin ) − uDc) ) ;

With xShift1 and xShift2 representing the elements of the shift vector vs for the m = 2 dimensional

system, set according to the operating point of the current valid location loc.[
xShift1

xShift2

]
︸ ︷︷ ︸

vs

= xλ,op,loc ,

and uDc representing the operating input voltage at xλ,op,loc used accordingly with the shift vector.

Note that the shift vector vs describes the jump function in each location. Specifically, instead of

describing the jump function with Eq. (4.32) along with the reset vector vr only once a transition
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occurs, the jump function is described by a shift vector vs which is constantly subtracted from the

xλ variables in the equations of the guards, invariants, back-transformation, and as previously seen

from the nodal equations. This vector does not change the values of the xλ variables as the reset

vector does, but constantly shifts them by a fixed vector (xλ,op,loc) for each location. Hence, the

geometric objects in the Sλ space in Fig. 4.43 are not adjusted.

According to Eq. (4.11), the found voltages are transformed back into the So domain at line 8 for

all x variables. For example, the voltage at the negative terminal of the operation amplifier (see

Fig. 4.2) is calculated via:

X neg = xDc22 + F221 ∗(V( x lam1 ) − xSh i f t 1 ) + F222 ∗(V( x lam2 ) − xSh i f t 2 )

+ FooEoob221 ∗(V( nin ) − uDc) ;

This process is repeated for every iteration during each time step. As observed in Algorithm 8, the

values in the So domain are calculated during the simulation in the Sλ space, in contrast to the

Matlab (Cora) models.

Based on the xλ variables along with the guards and optionally the jump functions, the current

location loc is identified as stated at line 4 of Algorithm 8. In Algorithm 9, this process is described

for the running example.

Algorithm 9 Identifying the current location loc using xλ, the guards, and the jump functions

1: module loc = currentLoc(xλ, xλ,op, guards)

2: loc = 0

3: set shift vector vs to xλ,op,g1r1
4: if shifted guard from g1r1 to g2r2 is valid then

5: loc = 22

6: set shift vector vs to xλ,op,g2r2
7: if shifted guard from g2r2 to g1r1 is valid then

8: loc = 11

9: end if

10: else if shifted guard from g1r1 to g2r1 is valid then

11: loc = 21

12: set shift vector vs to xλ,op,g2r1
13: if shifted guard from g2r1 to g1r1 is valid then

14: loc = 11

15: end if

16: else

17: loc = 11

18: end if

19: end module

As observed in Algorithm 9, based on the current location (loc), the guards are shifted by the

current operating point xλ,op,loc. For example, the guard of g1r1 to g2r2 at line 4 is adjusted:

i f 1∗(V( x lam1 ) − xSh i f t 1 ) + 0∗(V( x lam2 ) − xSh i f t 2 ) < −1.673

The if conditions at lines 7 and 13 of Algorithm 9 can be skipped, which is similar to removing

the guards from g2r1 and g2r2 to g1r1 in Fig. 4.44. On one hand, this brings the disadvantage

of not examining the correctness of the behavior after a transition. In this case, the guards of
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the current location are favored over the guards of the target locations. However, this facilitates

the convergence of the simulator during an iterations, especially in the case the guards of different

locations are overlapping. On the other hand, in the presence of these conditions, the guards of the

target locations are favored over the guards of the current location. This is due to the fact that in

each iteration, the HA’s final decision concerning the current location is specified by the validity

of the guards in the target location in case a transition occurred.

The grdV method is prone to errors if the guards were not modeled directly as halfspaces, as

not the optimal facets might be selected, especially when the intersection method was used for the

guards identification. Moreover, as the behavior inside a location is unbounded due to the absence

of the invariants of the system, the HA might reach unsampled portions in the state space.

Therefore, to solve the first problem, the guards should always be modeled as halfspaces if this

method is used. Moreover, to solve the second problem, the debug flag can be set to issue a warning

once the system leaves an invariant, as stated at line 5 of Algorithm 8. On the other hand, an even

greater problem occurs with the iterations Verilog performs. Due to the structure of the code in

Algorithm 8, the simulator can fall into the problem of switching constantly between two locations

during a single simulation run, which leads to convergence issues terminating the simulation. This

is often the case when the guards of the different locations are not well chosen i.e. they lie over

each other. This problem can be solved for example by enlarging the invariants till they intersect

slightly, in case they did not intersect prior to the identification of the guards, or by skipping the

if conditions at lines 7 13 of Algorithm 9. Note that the grdV method yields the best models in

case the guards were identified by the distance method and modeled as halfspaces. Moreover, as

the guards are found from the invariants, polytopic invariants should be used.

The grdV method works with both variants, in the presents as well as in the absence of the jump

functions. In the case the system was modeled without jump functions, the invariants must overlap,

which can be easily achieved by finding the guards and invariants directly in a well sampled Sλ
space, and slightly enlarging the invariants if necessary. In this case, the guards, nodal equations,

and the back-transformation are not shifted. That is, the model is not adjusted by the jump

functions. Note that better results are usually obtained in the presence of the jump functions. An

example of the Verilog-A model is stated in Listing D.2 in Appendix D.

As mentioned, the selection of the guard facet, in the case the guards are not modeled as halfs-

paces, as well as the absence of the invariant might inject errors into the obtained model. Therefore,

the invV method was implemented. This method neglects the guards and uses the invariants to

define the transitions. Moreover, as the invariants can be in general represented as polytopes, and

as the polytopes can be represented using the halfspace representation (Theorem 2.1.1), invariants

can be precisely defined by logical linked if conditions. For that, regardless of the specified invariant

type, the invariants are brought into their halfspace representation. Each halfspace represents an if

condition. In general, the polytope is then described by liking the if conditions with logical ANDs.

The complete model description is listed in Algorithm 10 for the running example.

After the initialization of the variables, the current location loc is found based on the invariants.

The invariants are realized using if conditions on lines 3, 5, and 7. Hence, each condition can only

become true if the voltages V (xλ,1) and V (xλ,2) lie inside the corresponding invariant. Note that

these conditions are formulated similarly to line 5 of Algorithm 8 (see line 236 in Listing D.2).
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Algorithm 10 Verilog-A model generated with the invV method

1: module hybridAutomaton(Vnin, Vnout)

2: initialize the variables

3: if (loc == 11 || loc == 0) &&(V (xλ,1)− xλ,op,g1r1,1), (V (xλ,2)− xλ,op,g1r1,2) ∈ invg1r1 then

4: loc = 11

5: else if (loc == 21 || loc == 0) &&(V (xλ,1)− xλ,op,g2r1,1), (V (xλ,2)− xλ,op,g2r1,2) ∈ invg2r1 then

6: loc = 21

7: else if (loc == 22 || loc == 0) &&(V (xλ,1)− xλ,op,g2r2,1), (V (xλ,2)− xλ,op,g2r2,2) ∈ invg2r2 then

8: loc = 22

9: else

10: find closest location by computing min. of
√∑m

i=1(V (xλ,i)− xλ,op,loc,i)
11: assign loc

12: end if

13: Assign all variables based on the current location loc

14: solve nodal equations to find all V (xλ,i)

15: perform back-transformation using the previous found voltages

16: end module

These conditions are extended by a query regarding the loc variable. This forces the simulator to

stay in a location during the iteration performed in a single time step. During the first iteration of

each simulation run, loc is set to zero and is thereby only assigned if the conditions concerning the

invariants become valid. Thus, after the first run, the system stays in the found location as long

as the invariant condition is true. Once this condition becomes false, the system tries to find the

closest operating point in the Sλ space, by finding the minimum distance from the current point

to the operating points of all locations. The location variable loc is then assigned according to

the found operating point. With loc at hand at line 13, the elements of all matrices and vectors

are assigned to their corresponding values at the location. At this point, the two nodal equation

are formulated, to find the values of the state variables V (xλ,1) and V (xλ,2). Finally, the found

voltages are transformed back into the So domain.

As observed in Algorithm 8 and Algorithm 10, unlike the Matlab models, the back-transformation

in the Verilog-A models happens at each simulation step. Moreover, comparing the two methods

of this section, it is better to use grdV method as this method yields better results (Section 7.1.5),

even though it comes with the disadvantage of ignoring the invariants in the system description.

However, with the ability to issue a warning once an invariant is left, the approach is able state

the validity of the models during simulation and warn the user once the model reaches unsampled

regions. On top of that, in Section 6.1, an approach is handled that defines an error margin for the

generated Verlog-A models against the original netlist.

Summing up this section, a HA is described in Verilog-A by:

(a) the system description: specified element-wise for the matrices Aloc and Bloc, and modeled

via nodal equations

(b) the invariants: defined as if conditions (invV and optional for debugging with grdV )

(c) the guards: in case the grdV method is used. The guards are specified as if conditions

(d) the location id: loc which is assigned using the Sλ space and optionally the jump functions

in addition to the guards (grdV method) or the invariants (invV method)
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(e) the jump functions: which are directly embedded into the model. If the system is modeled

with jump functions, a shift value is constantly subtracted from the simulation voltages

V (xλ,i). Note that the shift value is assigned according to the current valid location. As this

value is constantly subtracted from the variables of the system, it is referred to as shift (vs)

and not reset (vr)

(f) the back-transformation: specified element-wise for the matrices Floc and Lloc

4.6.3 SystemC-AMS Models

The modeled HA can be also generated in SystemC-AMS syntax. Similarly to the Verilog-A

models, the grdV method can be used for the modeling process. On the other hand, the system

descriptions of SystemC-AMS models need special attention. On top of generating models in

the standard modules of SystemC-AMS, the further aim is to generate models which use affine

arithmetic decision diagrams (AADD) from [RGJR17] to perform range computations using affine

arithmetic. For this, an extensive study has been performed in [Pip19] concerning the model

description. The main results are adapted in this part.

Starting with the simplest case, the models can be deployed in SystemC-AMS using the timed

data flow (TDF) computation model. Note that during computation, the TDF model processes

the data at discrete time steps. However, the system equations are solved by considering the input

samples as well as the dynamic behavior of the system as continuous time signals [BCE+10]. The

result is then sampled into a signal with the corresponding time step of the port. By that, the

continuous dynamic behavior modeled by Elsa can be directly used with this computation model.

The generated HA for the running example is presented in Algorithm 11.

Algorithm 11 SystemC-AMS model generated as a TDF computation model

1: SCA TDF MODULE (HA tdf)

2: declare input and output ports and constructor of HA tdf

3: initialize variables for first

4: set module and port attributes

5: if loc == 11 || loc == 0 then

6: set shift vector vs to xλ,op,g1r1
7: check shifted guards and reassign loc if necessary

8: end if

9: if loc == 21 then

10: set shift vector vs to xλ,op,g2r1
11: check shifted guards and reassign loc if necessary

12: end if

13: if loc == 22 then

14: set shift vector vs to xλ,op,g2r2
15: check shifted guards and reassign loc if necessary

16: end if

17: assign all variables according to loc

18: solve dynamic equations

19: perform back-transformation using the previous found states

20: variables declarations

21: end SCA TDF MODULE
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Instead of modeling the guards into the if conditions as the grdV method did with the Verilog-A

models, the location variable loc can be used inside the if conditions. This is due to the fact that

the value of loc is passed down between the simulated time steps. Moreover, the SystemC-AMS

models can be also modeled according to Algorithm 8, but this will not be handled here. Hence,

whenever the grdV method is used for the SystemC-AMS model generation, a modeled is generated

similarly to Algorithm 11.

As stated in Algorithm 11, the HA is declared as a TDF computation model. At first, the

input and output ports of the HA are declared as sca out and sca in from the namespace sca tdf.

Than, the constructor is defined. All remaining variables, of different types including sca matrix,

sca vector, and sca trace variable, are defined at the end of the module at line 20. The variables are

then initialized at line 3 inside the initialize method of this module. Attributes, such as the time

step, are specified at line 4. The lines 5 till 19 are performed inside the processing method of this

module. Initial, the integer location variable loc is set to zero at line 4. During the first run, the HA

enters the location g1r1 at line 5. The shift vector vs is then set to the operating point xλ,op,g1r1,

and the guards shifted by this vector are then evaluated. Note that the SystemC-AMS models

can either use a reset vector as the Matlab models, or a shift vector analogous to the Verilog-A

models. For simplicity, only SystemC-AMS models with shift vectors will be handled. In case a

guard condition is true, a location transition occurs and loc is reassign to the target location. If all

guard conditions of a location are false, the value of loc represents the current location. According

to the current location, the remaining variables and matrices are assigned at line 17. At line 18, the

dynamic equations of the system are solved in the Sλ space. Four modes have been implemented

that described the system behavior in the Sλ space:

ssC method solves the state space equation (sca ss) provided by the TDF module

eulC method uses the backward Euler method with a fixed time step

rukC method uses the Runge-Kutta method with a fixed time step

disC method discretizes the linear state space with a fixed time step

All methods describe both, the system and input matrices, Aloc and Bloc, as sca matrix variables

of type double. The operating points xop, xλ,op, as well as the operating input uop are variables of

type double sca vector.

The ssC method uses the TDF implementation of the state space (sca tdf::sca ss). The sca ss

object is provided with the system and input matrix, an identity matrix as the output matrix, a

zero matrix as the feedthrough matrix, the state space vector xλ, and the input of the system. The

solution returned is directly assigned (by reference) into the state space vector xλ. Note that the

xλ variables are shifted prior to passing the variables to the sca ss object:

// apply s h i f t

u (0 ) = i n n i n . read ( ) − uOp(0) ;

xLamTemp(0) = xLam(0) − x S h i f t (0 ) ;

xLamTemp(1) = xLam(1) − x S h i f t (1 ) ;

// s t a t e s p a c e i s a s c a s s ob j e c t

y = s t a t e s p a c e (a , b , c , d , xLamTemp, u) ;

// remove s h i f t

xLam(0) = xLamTemp(0) + x S h i f t (0 ) ;

xLam(1) = xLamTemp(1) + x S h i f t (1 ) ;
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The remaining methods make use of a constant predefined time step. The eulC method uses the

backward Euler method. For this purpose, consider the discrete version of Eq. (4.10) with the

sample time step T at the ith sample:

ẋλ(iT ) = Aloc(xλ(iT )− xλ,op) +Bloc(u(iT )− uop) (4.35)

The derivative of the state vector ẋλ(iT ) can then be replaced with:

ẋλ(iT ) =
xλ(iT )− xλ((i− 1)T )

T
(4.36)

By substituting Eq. (4.36) in Eq. (4.35), and solving for xλ(iT ), the following equation can be

obtained:

xλ(iT ) = (I − TAloc)
−1[xλ((i− 1)T )− TAlocxλ,op + TBloc(u(iT )− uop)] (4.37)

Thus, solving Eq. (4.37) with a given sample time step T for each state separately, yields the state

space vector xλ. Note that, for this method the sample time step T is specified in the model

creation options provided to Elsa. This is necessary as (I − TAloc)
−1 is calculated during the

abstraction process in Matlab and the obtained result is assigned to a matrix in the SystemC-AMS

model.

As the rukC method , which uses the Runge-Kutta method, is described similarly, the explanation

is skipped.

The disC method follows a different approach by discretizing the linear state space. As mentioned

in Section 2.3.1, the time domain solution of a linear system is given by Eq. (2.26). Performing this

calculation in the Sλ space in general with a system matrix A and input matrix B for an initial

value x(iT ) with a sample time step T yields:

xλ((i+ 1)T ) = eAlocTxλ(iT ) +

∫ T

0
eAloc(T−τ)Blocu(iT )dτ (4.38)

As u(iT ) is constant during the sample time step T , it can be moved outside the integral in

Eq. (4.38). Moreover, instead of considering the current value of the state vector to compute the

next one, the previous value is considered to calculate the current one. Thus, solving this integral

for a nonsingular system matrix A yields:

xλ(iT ) = eAlocTxλ((i− 1)T ) +A−1
loc(e

AlocT − I)Blocu(iT ) (4.39)

Similarly to the eulC and rukC methods, the operations in Eq. (4.39) are performed in Matlab

and the resulting two matrices, one multiplied with the state vector and one multiplied with the

input vector, are specified in the SystemC-AMS model. Therefore, the sample time step T must

be provided to Elsa as well.

In the case the jump functions are considered, the state and the input vectors are adjusted as

previously seen. Thus, the system behavior is modeled using the disC method by:

xλ(iT ) = eAlocT (xλ((i− 1)T )− xλ,op) +A−1
loc(e

AlocT − I)Bloc(u(iT )− uop) (4.40)
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A detailed model description of the running example generated using the disC method is provided

in Listing D.3 in Appendix D.

Regardless of the method used to calculate the current state space vector xλ(iT ), the results are

transformed back into the So space at line 19 of Algorithm 11 with Eq. (4.11). For the running

example, with x lam(0), x lam(1), and fooeoob representing xλ,1, xλ,2, and −Lloc, respectively,

the voltage at the negative terminal of the operation amplifier (Fig. 4.2) is calculated via:

neg . wr i t e (xOp(21) + f (21 ,0 ) ∗( x lam (0) − x S h i f t (0 ) )

+ f (21 ,1 ) ∗( x lam (1) − x S h i f t (1 ) )

+ fooeoob (21 ,0 ) ∗( i n n i n . read ( ) − uOp(0) ) ) ;

Note that fooeoob is assigned to −Lloc.

Optionally, the models can be extended for symbolic simulations using the AADD library from

[RGJR17] (available in Github [RG]). The AADD Library combines ordered binary decision dia-

grams (OBDD) with affine arithmetic forms. This library allows to perform a symbolic simulation

in combination with the SystemC-AMS data structure. For that, the standard data types of the

variables must be replaced with data types that allow symbolic executions: doubleS, floatS, intAS

and boolS instead of the standard data types: double, float, int and bool, respectively. Moreover,

the control statements need to be adjusted with ifS, elseS and endS. Thus, during simulation, both

cases of these conditions are added to the AADD as terminal nodes. For more details see [RGJR17].

At the current time, the AADD library is not compatible with the TDF state space (sca tdf::sca ss).

Hence, the ssC method cannot be used with the AADD library, while the remaining three methods

can. If the system is modeled to be compatible with the AADD library, the variables types of

x and xλ as well as the guard conditions are adjusted. Moreover, the tracing of the variables is

replaced with the opt sol class to capture the minimum and maximum of each variable. An detailed

example of an AADD model is handled in Section 5.1.2. Note that, the structure of Algorithm 11

was optimized for the use with this library. Specifically, the if conditions at lines 5, 9, and 13, were

structure in this way to minimize the path explosion problem.

Summing up this section, a HA in System-AMS is defined by:

(a) the system description: each matrix Aloc and Bloc is specified as sca matrix of type double

(doubleS for AADD). Four methods exist to model the system behavior

(b) the invariant: invV method or optional for debugging (grdV method)

(c) the guards: guards are specified as if conditions (ifS for AADD) (grdV method)

(d) the location id: an integer variable (doubleS for AADD) loc assigned using the shifted guards

(grdV method) or the shifted invariants (invV method)

(e) the jump functions: if the system is modeled with jump functions, a shift vector is constantly

subtracted from state space vectors in the Sλ space. Moreover, the shift vector is assigned

according to the current operating point. Jump functions can be, analogously to the Matlab

models, described with reset vectors, however, this is not handled in this dissertation for

simplicity

(f) the back-transformation: each matrix Floc and Lloc is specified as sca matrix of type double

(doubleS for AADD). The back-transformation is computed during the simulation at each
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time step

In Fig. 4.45 the three covered model output languages are presented. The Matlab (Cora) models

Matlab (Cora)

output 
language

Verilog-ASystemC-AMS

current
loc

use inv. use guards

grdVinvV

current
loc

use inv. use guards

grdVinvV

jump 
function

shiftreset

shift

reset shift

AADD

nondeterministic HA deterministic HA

falsetrue

Fig. 4.45. Possible models generated for the three covered output languages. Dashed lines indicate

topics not handled in this dissertation.

handled here are usually nondeterministic. Using the AADD library, nondeterministic SystemC-

AMS models can be created. In contrast to the previous two output languages, the Verilog-A

models are always deterministic. Moreover, in contrast to the Matlab models, the Verilog-A models

constantly shift the xλ variables as described in Section 4.6.2. The Matlab models reset the xλ

variable once a location transition occurs. Even though both options are available for the SystemC-

AMS models, only the shift variant will be handled here for simplicity.

4.7 Summary

In this chapter, the model generation was explained in detail. The approach can be divided into

4 building blocks (see Fig. 4.1). Depending on the space used for calculation, the result as well

as the run time of abstraction process vary. Fig. 4.46 shows the section covered depending on the

space used for calculation and the desired output language.

Depending on the options specified for the sampling performed by Vera, the Sλ space varies.

If a Sλ space is obtained with strongly overlapping locations, it is better to use the Svirt space

for identifying the guards and model the system with jump functions. If the Sλ has nearly no

overlapping regions, the guard and invariant identification can be performed in this space, and the

jump functions can be dropped out if desired. In general modeling with the Svirt space yields better

guards and invariants. However, the transformation of the result into the Sλ space is a difficult

process which does not always yield the best results. Moreover, modeling the system with jump
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Verilog-ASystemC-AMS

Matlab

Fig. 4.46. Sections covered depending on the output language and options for the system modeling.

function usually yields better results. For Verilog-A and SystemC-AMS models it is advised to use

grdV method , as the models obtained usually attain a fast convergence and simulation time.

In some cases, discontinuities can occur during the transition from one location to another as

will be shown in Chapter 7. In general, there are different aspects that can cause discontinuities:
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• guards and invariants

• system and input matrices

• back-transformation

When the guards and invariants are ill chosen, discontinuities can occur. In fact, there are many

sources that can lead to bad selection of the guards and invariants, for example: when then Sλ
space has been strongly modified compared to Vera’s calculations, over approximating geometric

shapes such as interval hulls are used for the invariant identification (Section 4.5.6), or when the

guards are not modeled as halfspaces and enlarged by tolerance factors. Often, these discontinuities

also result from the system and input matrices computations performed in Section 4.5.2, especially

if there exists a large variation of these matrices among the sampled data. As the matrices of

the back-transformation were often as well calculated using mean values, discontinuities can occur,

especially if the values of these matrices change strong on the border of the regions. Usually, this is

the main reason why discontinuities exist. In this case, increasing the number of locations, or using

an enhanced system description as in Section 5.1 can control and decrease the discontinuities.

To sum up, the introduced modeling process has the following properties:

• Vera conducts a sampling of the reachable state space of the netlist. A nonlinear order

reduction is performed up to a given frequency. The sampled points are connected in a graph

structure consisting of predecessors, successors, timing information on edges between states,

and slew rate limited input connections. Depending on the specified options (mainly Sλ
space), different results are obtained during the sampling process.

• at each sample point, information are available about the nonlinear and locally linearized

system including:

– the Spice accurate circuit signal solutions x

– the reduced Kronecker canonical linearized system with the state space vector xλ

– the transformation matrices between the spaces

• Elsa models the system by a hybrid automaton with a finite set of locations. In each location,

the system behavior is modeled via a linear state space representation

– various options can be specified, such as the number of locations of the desired HA, the

type of the invariants and guards, and the system description resulting in more accurate

models.

– the generated models are available in Matlab (Cora), SystemC-AMS, or Verilog-A syntax

• the modeling process is fully automated

• Various extensions can be used to enhance the obtained models (see Chapter 5)

• the models can be verified against their original netlist (see Chapter 6), or used in verification

(reachability analysis, symbolic simulations, online monitoring) or simulations routines with

huge speed-up factors (see Chapter 7)



5 Extended Model Abstraction

The models obtained from the abstraction approach presented in Chapter 4 can be enhanced by

various extensions. These extensions are:

(a) modeling the system with parameter variation to accommodate for the errors performed

during the abstraction process

(b) modeling the system with parameter variation to include the process parameter variations

(c) generating a compositional HA

(d) generating a conformant model that harbors the system behavior from the real circuit

(e) optimizing the HA over the available options, thereby comparing the generated HA with the

original netlist

The extension (e) optimizes the HA over its generation options. As seen in Chapter 4, various

options can be used to generate the HA. This extension iterates over all available options creating

various models to find the best one. These options include the number of locations (cluster number),

the region identification method, the state space used for the identification of the guards and

invariants, the guard identification methods, as well as the graphical representation of the guards

and invariants. Based on the deviation of the x values between the netlist and the generated models,

the models are judged and the best one is selected. As this is straight forward, this extension will

not be explained further here.

On top of generating models that accommodate for the abstraction errors as well as for the process

parameters ((a) and (b)), extension (d) generates a conformant model by using measurements from

the real circuit. Thus, the generated model harbors the behavior from the real circuit. The detailed

process is explained in [KTR+20]. This process includes generating an abstract model with Elsa,

and then train this model by various performed simulations and measurements. As the training is

done after the model abstraction, the generation of a conformant model will not be covered here.

Extensions (a), (b), and (c) will be handled in Section 5.1, Section 5.2, and Section 5.3, respec-

tively. Note that extension (a) is presented in [TH19a], and extension (b) is presented in [TH20].

5.1 Modeling With Parameter Variations

The models from Chapter 4 can be extended to compensate for the errors and deviations obtained

during the abstraction process. For this, the model descriptions are extended. In the following,

this extension will be explained for the Matlab (Cora) and the SystemC-AMS abstract models.

5.1.1 HAs in Cora With Parameter Variations

Instead of modeling the system matrix Aloc and the input matrix Bloc from Eq. (4.10) by matrices,

whose values were calculated by either method from Section 4.5.2, Aloc and Bloc can be specified



5.1. Modeling With Parameter Variations 111

as matrix zonotopes or interval matrices as performed in [TH19a].

As stated in [Alt15], a matrix zonotope is defined as:

A[z] = {C +

k∑
i=1

βi ·Gi | βi ∈ [−1, 1]}, C,Gi ∈ Rm×m (5.1)

In this case C is the matrix center, while {Gi | i = 1, . . . , k} are the matrix generators of the

matrix zonotope A[z]. On the other hand, an interval matrix can be seen as a special case of a

matrix zonotope, which specifies an interval for each matrix element aij :

A[i] = {[Amin,Amax] | ∀i, j : amin,i,j ≤ amax,i,j}, Amin,Amax ∈ Rm×m (5.2)

Instead of modeling the System matrix Aloc, for example with the mean of eigenvalues as shown

in Fig. 4.19a, all eigenvalues are considered. This is done by hulling the eigenvalues in the desired

shape. These shapes include intervals, zonotopes, or polytopes as shown in Figs.5.1a, 5.1b, and

5.1c, respectively, for the running example from Section 4.1. Note that the HA has 3 locations

g1r1, g2r1 and g2r2, but only two groups g1 and g2 of similar eigenvalues (see Section 4.5).
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Fig. 5.1. Hulling the eigenvalues by (a) intervals, (b) zonotopes, and (c) polytopes.

Considering the matrix that contains the eigenvalues Eig (see Eq. (4.4)), the columns of this ma-

trix are considered individual dimensions and are thus transposed. The 1, . . . , lloc points belonging
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to the same location are then hulled for example by a zonotope as follows:

Z



Re(λ1,1) Im(λ1,1) . . . Re(λ1,m) Im(λ1,m)

Re(λ2,1) Im(λ2,1) . . . Re(λ2,m) Im(λ2,m)
...

... . . .
...

...

Re(λlloc,1) Im(λlloc,1) . . . Re(λlloc,m) Im(λlloc,m)


T
 (5.3)

As observed when comparing Eq. (5.3) with Eq. (2.4), each row of the obtained zonotope Z ∈ R2m

represents a dimension. Moreover, each row in Eq. (5.3) (before transposing) represents a point

which is contained in the obtained zonotope Z. This is illustrated in Fig. 5.1b for the first and

third dimension of Z with the reduced order m = 2.

The obtained results from Fig. 5.1a, Fig. 5.1b, and Fig. 5.1c are transformed to interval hulls,

matrix zonotopes or matrix polytopes. For example, in case the eigenvalues are distinct, this can

be realized for a matrix zonotope A[z] ∈ Rm×m, with the zonotope Z obtained from Eq. (5.3) via:

C =


c1 c2 . . . 0 0

c4 c3 . . . 0 0
...

...
. . .

...
...

0 0 . . . c2m−3 c2m−2

0 0 . . . c2m c2m−1

 Gi =


gi,1 gi,2 . . . 0 0

gi,4 gi,3 . . . 0 0
...

...
. . .

...
...

0 0 . . . gi,2m−3 gi,2m−2

0 0 . . . gi,2m gi,2m−1

 (5.4)

Where c and gi represent the center and ith generator of the zonotope Z (see Eq. (2.4)), and C

and Gi represent the matrix center and the ith matrix generator of the matrix zonotope A[z] (see

Eq. (5.1)). Note that, in general C and Gi are in the Jordan normal form (see Section 2.2.1). For

the input matrix Bloc, the same procedure is performed.

At the current time, the reachability analysis of system description specified using matrix poly-

topes for HAs is not completely implemented in Cora and therefore dropped out in the following.

As observed, this approach improves the previous abstractions of the system behavior performed

in Section 4.5.2, by over approximating the system and input matrices by matrix zonotopes or

interval hulls, thereby covering the whole sampled system behavior.

The over approximation of the behavior varies depending on the sampled point as well as on

the desired representation. Considering for example the eigenvalues that characterize the system

matrix, for the same sampled data, greater over approximation would be obtained when using

interval hulls (see Fig. 5.1a) instead of using matrix zonotopes (see Fig. 5.1b). This is due to

the fact that a matrix zonotope considers the correlation between the underlying elements of the

matrices (Eq. (5.1)), while an interval matrix does not (Eq. (5.2)). For the running example, both

cases still yield over approximations compared to the sampled data or a matrix polytopic description

(Fig. 5.1c). On the other hand, the transformation matrices could be modeled similar to the system

and input matrices by this extension. However, as this yields even larger over approximations, this

is not performed in the following.

For the running example, an abstract model was generated using this methodology similarly as

in Chapter 4. For simplicity, the invariants of the HA were modeled as intervals, while the guards

were modeled as polytopes identified using the distance method . The system descriptions were
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generated according to this section, with the in Fig. 5.1b illustrated zonotopes. These zonotopes

were then converted into matrix zonotopes to replace the system matrix. Similarly, the input

matrix was as well described using matrix zonotopes. For an input voltage Vnin = 4 V, the result

of the reachability analysis performed in Cora is presented in Fig. 5.2a. If the initial conditions

of the state space variables are specified to be xλ,i ∈ [−0.5, 0.5], Fig. 5.2c is obtained. Hence, this

figure illustrates the result of a reachability analysis performed on a HA with parameter variation

and an uncertain region for initial conditions specified as a zonotope. Additionally, the input can

be specified with uncertainties as well. For an input Vnin = [1.5, 2.5] V and Vnin = [2.5, 3.5] V,

with the initial conditions again set to zero, Fig. 5.2b Fig. 5.2d are obtained, respectively. With

a larger input voltage, the HA reaches the saturation faster as observed in Fig. 5.2d compared to

Fig. 5.2b.
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Fig. 5.2. Results of the reachability analysis performed with Cora for the HA modeled according

to this section. The HA is simulated (a) with an input voltage Vnin = 4 V, in (c) with

additionally uncertainties in the initial conditions (xλ,i = [−0.5, 0.5]), while in (b) and (d)

with uncertainties in the input Vnin = [1.5, 2.5] V and Vnin = [2.5, 3.5] V, respectively.

5.1.2 HAs in SystemC-AMS With Parameter Variations

As stated in Section 4.6.3, using the AADD library, the SystemC-AMS models can be extended to

model uncertainties. These uncertainties can be either presented in the simulation input, thereby

allowing for a symbolic simulation yielding similar results as a reachability analysis, or in the

system description. In this section, as previously seen with the Matlab models. Both aspects will

be handled in this section.

The AADD library represents continuous propagated uncertainties by affine arithmetic forms
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[RGJR17; dS04]:

{x = xc +
n∑
i=1

xiβi | βi ∈ [−1, 1]}, x, xi, xc ∈ R (5.5)

Each variable xi models the sensitivity of x to the basic uncertainty βi. Specifically, the uncer-

tainty symbol βi, also known as noise symbol, is a symbolic variable whose exact value is unknown,

but lies in the interval [−1, 1]. The i ∈ {1, . . . , n} symbols are independent of each other. How-

ever, different affine forms can share the same uncertainty symbols representing their dependencies

[ZGO+19]. Each symbol βi is scaled by the corresponding partial deviation xi. Notice the similarity

between this equation and the definition of a zonotope in Theorem 2.1.3.

In Fig. 5.3, a graphical representation of the joint range of the two correlated variables x1 =

10 − 4β1 + 5β2 + 3β3 and x2 = 5 − 2β1 + 1β2 − 2β3 in affine and interval arithmetic is presented.

As observed, while the joint range obtained with affine arithmetic (zonotope Z) considers the
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0

5

10

15

Fig. 5.3. The joint range obtained for the dependent variables x1 and x2 using affine arithmetic

(Z) and interval arithmetic (I)

correlation between the variables, interval arithmetic (interval hull I) considers the maximum and

minimum values of the variables independently.

There are two approaches available for the deployment of the affine forms in the generated

models. The first approach is to model the elements of the input vector u, the elements of the

state variables x, xλ, and the loc variable as affine forms of type doubleS. Moreover, the guard

conditions are as well changed (ifS and elseS). Hence, a standard SystemC-AMS simulation becomes

a symbolic simulation with AADD for a specific range of the input signals. To demonstrate this

option, a SystemC-AMS model was created similarly to Section 7.1.6 with a modeling time of 8.22 s.

The underlying Sλ space exhibited minimal overlapping regions (Fig. 7.10). The invariants were

modeled as interval hulls, while the guards, identified using the distance method , were modeled as

halfspaces. Moreover, the HA is modeled with jump functions. As stated in Section 4.6.3, there are

four methods available to generate the abstracted HA in SystemC-AMS syntax. For this section,

the modeling process is restricted to the disC method , which models the behavior of the circuit as

a discrete system according to Eq. (4.40).

For this model, a symbolic simulation using the AADD library was performed with an input sine

wave at Vnin of amplitude 1 V, an uncertain offset of 0.5 V, and a frequency of 1 Hz. In short,

Vnin = sin(2π · t) + 0.5β V with β ∈ [−1, 1]. Fig. 5.4 shows the result of this simulation. As

observed, the circuit does not reach the limiting behavior. Thus, the HA stays in a single location

during the entire simulation.
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Fig. 5.4. Simulation of the generated HA with an input Vnin = sin(2π · t) + 0.5β V.

Two more simulation were performed on the same model with two different input signals. The

results are presented in Fig. 5.5. Both input signals are still sine waves with a frequency of 1 Hz.

The first input signal has an amplitude of 4 V and an uncertain offset of 0.1β V. The corresponding

results are illustrated in the colors blue (min) and red (max). The second signal has an amplitude

of 3 V with the same uncertain offset. The corresponding results are illustrated in yellow (min)

and purple (max).
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Fig. 5.5. Simulation of the generated HA with different values at the input Vnin (first row). The

result of the output voltage is illustrated in the second row. For the case the input is

Vnin = 4 · sin(wt) + 0.1β V, Vnout,min,4 and Vnout,max,4 are obtained, while for the input

Vnin = 3 · sin(wt) + 0.1β V, Vnout,min,3 and Vnout,max,3 are obtained with w = 2π · 1 s−1.

As observed in Fig. 5.5, in both cases the system goes into the limiting behavior. For the sine

wave at the input of the system with a larger amplitude (red and blue), the HA reaches saturation

faster than for a smaller amplitude. In both cases, the HA undergoes several location switches.

Specifically, the HA performs four location transitions. Note that the output voltage of both
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models at Vnout was extracted from the x vector after simulating in the Sλ space and performing

the back-transformation to the So space during every time step.

The second approach for the deployment of the affine forms in the generated models, is to

additionally model the system description with parameter variations. This can be realized by

modeling the elements of the system and input matrices, Aloc and Bloc, respectively, using affine

forms. For this, the elements can be either specified using a single sensitivity which bounds the

range of the element thus corresponding to an interval description, or using several sensitivities xi

and their corresponding symbolic uncertainties βi (see Eq. (5.5)), thereby consider the correlations

between the elements, which is similar to a zonotopic description.

To demonstrate this approach, a model was created using affine forms that additionally to the

guards, the input vector u, the state vectors x and xλ, and the location variable loc, models the

elements of the system matrix Aloc and the input matrix Bloc for each location using affine forms.

During this process, each element of these matrices was described by a single uncertainty that

bound its maximum and minimum values. This can be interpreted similar to using an interval

matrix description from Section 5.1.1 to replace the system and input matrices.

Two simulations were performed on the generated HA. In the first simulation a sine wave was

applied at the input Vnin with an amplitude of 2.7 V and a frequency of 1 Hz. The corresponding

signals in Fig. 5.6 are colored in blue and red for the minimum and maximum values, respectively.

Note that the voltage at the input is illustrated in the first row of Fig. 5.6. The voltage at the

output, which is selected from the x vector after performing the back-transformation at each

iteration step, is illustrated in the second row. In the second simulation, the input signal has been

modeled additionally with an uncertain offset, such that the signal at the input is now Vnin =

2.7 · sin(2πt) + 0.5β V. The corresponding results in Fig. 5.6 are colored in yellow and purple for

the minimum and maximum values, respectively. As observed in Fig. 5.6, even though the model
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Fig. 5.6. Simulation of the generated HA. If the input Vnin = 2.7 · sin(2πt) V has no uncertainties,

only the uncertainties in the system description are considered and Vnout,divS is obtained.

In case the input has an uncertain offset (0.5β V), Vnout,divS+divU is obtained.

harbors deviations in the system descriptions, the results are tightly bounded in both cases by the

affine forms. Moreover, the result bounded by the minimum and maximum values (colored in yellow
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and purple) of the second simulation, is slightly wider and contains the first simulation. Note that

the system reached the limiting behavior sooner in the presence of the additional deviation in the

input signal.

Two additional symbolic simulations were performed on this model using again the AADD library.

Fig. 5.7a illustrates the result at the output of the circuit Vnout for a step function of 2 + 0.5β V

at the input Vnin at t = 0 s. In Fig. 5.7b, the amplitude of the input signal is increased to 3 ± 0.5
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Fig. 5.7. Symbolic simulations of a HA modeled with parameter variations. The output is presented

for an input (a) Vnin = 2 + 0.5β V and (b) Vnin = 3 + 0.5β V.

V. As illustrated in Fig. 5.7, even for an over-approximative model, the symbolic simulation yield

tight bounded results. As the input voltage increases, the system reaches the saturation state at

1.65 V faster, decreasing the uncertain region bounded by the maximum and minimum values.

Fig. 5.8 presents a comparison between the reachability analysis conducted in Cora from Sec-

tion 5.1.1, and the previous performed symbolic simulation for the same input voltages. Both used
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Fig. 5.8. Comparison of the results obtained with Cora, SystemC-AMS, and the Spice netlist. The

output is presented for an input (a) Vnin = 2 + 0.5β V and (b) Vnin = 3 + 0.5β V for both

HAs. Additionally several simulations (labeled N) were performed on the Spice netlist.

HAs contain parameter variations. However, while the system behavior of the HA used for the

reachability analysis was described with matrix zonotopes, the system behavior of the HA used

for the symbolic simulation was described similarly to using an interval matrix. That is, for each

element of the system and input matrices, affine forms with single independent symbolic uncer-

tainties were used. As observed, even though the HA in SystemC-AMS was described with a more
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over-approximative system description, the results are more accurate than the results obtained by

the reachability analysis conducted in Cora on the more accurate HA. Several simulations were

additionally performed on the Spice netlist with various input voltages. These simulations are

labeled as N in Fig. 5.8 and subscipted according to the amplitude of the input step function. As

observed, these simulations lie for both HAs in the reachable regions. The over approximations of

both HAs can be partially traced back to the over approximative system description as observed

in Fig. 5.1.

In Section 7.3, a SystemC-AMS model is created according the methodology presented in this

section. Moreover, a case study is stated, that starts with modeling the basic components using

the AADD library, like the elements of the system an input matrix, then additionally models the

location variable loc, and finally the elements of the transformation matrices using this extension.

5.2 Modeling With Process Parameter Variations

The second extension to the approach from Chapter 4, enhances a HA to model the parameter

variation due to the process parameters used. An overview of the approach is presented in Fig. 5.9.

As illustrated, the process parameters along with the netlist are passed to Vera for sampling. From

netlist
Spice or Verilog-A syntax

hybrid automatons

Elsa

model abstraction

Vera

unified model 
generation

process parameters

sampled data

unified hybrid automaton

Fig. 5.9. Overview of modeling the system with the process parameter variation.

this netlist (initial netlist), Vera generates randomly, in a Monte Carlo fashion, various versions of

the netlist with different parameters according to the specified process parameters. The netlists are

afterwards sampled in parallel to generate several acv files. These files are passed to Elsa, which

in turn generates a HA from every netlist. This process is executed in parallel in Matlab. Finally,

the generated HAs are merged into a unified model, denoted as the unified HA.

The generation of the unified HA is executed in several steps. First the invariants and guards of

the underlying models are merged. For the invariants, the task is to model a unified invariant that

contains all invariants of the same locations. For the guards, the process is similarly. However,

guards of type halfspace are not supported. Note that Elsa assigns names to the locations randomly,
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thus, before the guards and invariants are merged, the corresponding locations are first identified

by using their operating points.

In the second step, the system and input matrices are generated as matrix zonotopes or interval

hulls, thereby similar to Section 5.1.1, the elements of the system and input matrices of the under-

lying HAs are hulled by zonotopes or interval hulls, which are then transformed to either matrix

zonotopes or interval matrices. There are two methods that can be used

exMat method the system descriptions of the underlying HAs are modeled by matrices according

to Section 4.5.2

exZ method the system descriptions of the underlying HAs are modeled by matrix zonotopes

or interval matrices as in Section 5.1.1

In case the exMat method is used, and thereby the system behaviors of the underlying HAs

are described by matrices, the hulling is performed in each location on the elements of these

matrices. For example, the matrix zonotope A[z] of the unified HA is in this case obtained by first

computing the zonotope Z ∈ R2m that contains the eigenvalues of the system matrices Aj of the

j ∈ {1, . . . , lSys} underlying HAs in the same location loc:

Z




Re(λ1,1) Re(λ1,2) . . . Re(λ1,lSys)

Im(λ1,1) Im(λ1,2) . . . Im(λ1,lSys)
...

... . . .
...

Re(λm,1) Re(λm,2) . . . Re(λm,lSys)

Im(λm,1) Im(λm,2) . . . Im(λm,lSys)



 , (5.6)

followed by computing the matrix zonotopeA[z] according to Eq. (5.4). Each jth column in Eq. (5.6)

contains the eigenvalues of the system matrix Aj . In case the exZ method is used, and thereby the

system behaviors of the underlying HAs are described by matrix zonotopes or interval matrices,

the matrix zonotopes or interval matrices are first transformed into zonotopes or interval hulls

and the hulling is performed on all vertices of these shapes belonging to the same location. For

example, in case the underlying HAs were modeled with matrix zonotopes, each matrix zonotope

is first changed into a zonotope by reversing Eq. (5.4). The vertices of the obtained zonotopes

are then computed, and a zonotope that hulls these points is calculated. Finally, the zonotope

is transformed into a matrix zonotope according to Eq. (5.4). Hence, instead of considering for

each of the underlying HAs of the same location the eigenvalues of the system matrix in Eq. (5.6),

the eigenvalues contained in the matrix zonotopes A[z],j of the j ∈ {1, . . . , lSys} underlying HAs

are in general considered. Thus, while the first method models only the abstracted behaviors of

the system, the second method considers every possible behavior the underlying systems attained

during sampling. In the last step, the transformation matrices of the unified model are found by

computing the mean value over all transformation matrices belonging to the same location.

To illustrate the approach, the running example from Section 4.1 is considered. The operation

amplifier was modeled in a 350 nm CMOS technology. The detailed description of the operation

amplifier is given in Appendix C. The nominal netlist, specifies the parameters R1, R2, and R3

as 99.6 kΩ, 999.6 kΩ, and 999.6 kΩ, while the capacitors C1 and C2 are set to 7.32 nF and

73.28 nF, respectively. This netlist is provided to Vera. According to the process parameters,

selected parameters are deviated. The parameter deviated include all parameters that can influence
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the deviation for the capacitors and resistors, and 9 parameters for p and n channel transistors,

including the most significant ones as the threshold voltage, width and length, thickness of the oxide,

and the field mobility. Beside the global deviations, mismatches between all resistors, capacitors,

and the two transistors at the input stage are considered. Note that the values of the parameters are

drawn similarly as during a Monte Carlo (MC) simulation. Moreover, the parameter selection was

limited as they were manual selected. This can be extended to cover all varying process parameters.

For this demonstration, 100 models were generated that abstracted 100 netlists. The distributions

of the three resistors, the two capacitors, as well as the transconductance (gm) of the two input

stage transistors are illustrated in Fig. 5.10.
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Fig. 5.10. Density plots based on the process parameters of 100 MC samples for the (a) resistance,

(b) capacitance, and (c) transconductance of the two transistors at the input stage.

On a Linux machine with 64 cores (intel Xeon @ 2.10 GHZ) with 256 GB of RAM, the sampling

of 100 transistor level circuits was executed in parallel in 17 min and 43 s. On the other hand,

the model abstractions to 100 HAs were executed in parallel in 25.57 s using Elsa. The unified

HA was created from these 100 models in 9.04 s. For each HA, the guards were identified as

polytopes using the distance method from Section 4.5.7. The invariants were modeled as polytopes

as well. Both identifications were performed in the Svirt space. The system and input matrices were

modeled by using the mean values of the sampled points (mean method). As the system has two

real eigenvalues, Aloc is a diagonal matrix with the mean of the eigenvalues, λop,1 and λop,2, on the

diagonal. As stated, the unified HA merges the results. The values of the representing eigenvalues,

λop,1 and λop,2, of the 100 HAs are represented in Fig. 5.11a and Fig. 5.11b, respectively. The

system description of the unified HA uses the zonotope exMat method as illustrated in Fig. 5.11c.

As locations belonging to same groups have the same system behavior, they are represented with

the same color in Fig. 5.11. Note that, zonotopes are used in Fig. 5.11c to hull the eigenvalues in

each location, thereby considering the correlations between the eigenvalues in contrast to interval

hulls. These zonotopes are later transformed to matrix zonotopes according to Eq. (5.4).

Instead of modeling the system behavior of the underlying HAs with matrices, the system behav-

ior can be as well be modeled using the exZ method . In this case the generation of 100 HAs, which

is executed in parallel, consumed 28.99 s. The unified HA was then created from these 100 models

in 16.63 s. The result is illustrated in Fig. 5.12c. The matrix zonotopes of the underlying HAs are

first transformed into zonotopes in R4. As the system has only real eigenvalues, the second and

fourth dimensions of the zonotopes can be neglected (see Eq. (5.6)). In general each HA yields 4
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Fig. 5.11. The operating eigenvalues for each location are hulled by a zonotope as shown in (c)

which is later transformed into a matrix zonotope. In (a) and (b) the distributions of

the operating eigenvalues that describe the system matrices of the HAs are illustrated.

points, thus, 4 times the data is used for each location as represented in Fig. 5.12a and Fig. 5.12b.

The obtained zonotopes are then transformed in each location to matrix zonotopes according to

Eq. (5.4).
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Fig. 5.12. Modeling the unified HA from 100 HAs whose system behaviors were described by matrix

zonotopes.
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Considering the invariants of the unified HA, for each location the invariant is found by hulling

all the points of the invariants of the underlying HAs by a polytope. For the guards, the same

procedure can be performed. The results are illustrated in Fig. 5.13a.
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Fig. 5.13. Invariants and guards of the unified HA (a) with guards calculated from the underlying

guards of the HAs or (b) with guards selected from the nominal model.

As Cora performs guard projections when the guards are intersected during a reachability anal-

ysis, the results can be over approximated in some cases during the projection into the target

location, especially when the guards are cover large portions of the state space. For that, an ad-

ditional option can be set to use the guards from the nominal model, thereby skipping the guard

enlargement performed previously as illustrated in Fig. 5.13b.

For the running example from Section 4.1, three unified HAs were generated with the stated

approach from this Section as described in Table 5.1. All three unified HAs were modeled using

Table 5.1: Unified HAs created

Model reachability analysis System description Guards

HA1 Fig. 5.14a exMat method merged

HA2 Fig. 5.14b exZ method merged

HA3 Fig. 5.14c exZ method nominal

100 underlying HAs. While HA1 uses 100 HAs whose system behaviors were modeled by matrices,

HA2 and HA3 use 100 HAs whose system behaviors were modeled by matrix zonotopes. Moreover,

HA1 and HA2 merge the guards of the underlying HAs, while HA3 takes the guards from the

nominal model. Note that the previously stated modeling time of 16.63 s were measured for the

generation of the HA2. Since the HA3 skips the merging of the guards, the modeling time is reduced

slightly to 14.27 s. The results of the reachability analysis performed with Cora for a step function

at Vnin = 4 V on the three models are illustrated in Fig. 5.14a, Fig. 5.14b, and Fig. 5.14c for HA1,

HA2, and HA3 respectively.

The over approximation of the reachable regions illustrated in Fig. 5.14 can be controlled by

splitting up the previous used system description shown in Fig. 5.12c for the first location g1r1 as
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Fig. 5.14. Reachability analysis performed with Cora for the three generated unified HAs with

different options for an input voltage step Vnin = 4 V.

illustrated in Fig. 5.15. As presented, the matrix zonotope is divided into four portions: a, b, c,

and d. Note that the system description of the reaming locations is unchanged. This is performed
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Fig. 5.15. Zonotopes that model the system behavior of the generated HA. Compared to Fig. 5.12c,

the zonotope which is later transformed to the matrix zonotope of the g1r1 is divided

into four portions.

for HA2 and HA3. Note that, while HA2 merges the guards of the underlying HAs, HA3 skips

this step. The results for the same input voltage Vnin = 4 V are shown in Fig. 5.16. For each

model, four simulation runs have been performed. In each run, only one portion (a, b, c, or d) for

the system description as illustrated in Fig. 5.15 was used. As observed, the results are less over
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Fig. 5.16. Reachability analysis performed in Cora for (a) HA2 and (b) HA3.

approximative for both models, HA2 and HA3, compared to the results presented in Fig. 5.14b and

Fig. 5.14c, respectively. This is due to the better modeling of the correlations of the parameters.

5.3 Compositional HA

A compositional hybrid automaton (CHA) can be easily created from the Verilog-A and SystemC-

AMS models, as the generated automatons are pin-wise compatible. This lies in the fact that the

HAs are generated as modules with input and output pins. For the models used in Cora, the

algorithm presented in Chapter 4 was extended to generate a compositional model from several

sampled netlists.

Typically, when creating a CHA consisting of several parts, two types of connections should be

distinguished: internal and external connections. Internal connections are between the components

of the CHA as illustrated in red in Fig. 5.17, while external connections lie between the CHA and

its surrounding test bench, like for example the input and output connections to and from the CHA.

Note that the internal connections can be also feedback loops as will be handled in Section 7.4 and

illustrated in Fig. 7.38.

compositional hybrid automaton

HA1 HA2

Fig. 5.17. A compositional HA consisting of two HAs.

The CHA in this section consists basically of HAs that are generated according to Chapter 4.
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Additionally, these models are extended by output equations.

As stated in Chapter 4, the generated HAs are simulated in the Sλ space. The result is then

transformed to the original state space of the system So via a back-transformation for each location.

This happens for the Cora models post simulation. However, when looking at a CHA from a

different perspective, the components of the CHA are connected in the original state space So.
More precisely, the interconnection between the components marked in red in Fig. 5.17 is in the

So space, while the HAs are simulated in the Sλ space. Therefore, an output equation is added to

each HA that basically performs the back-transformation of the simulated results into the So space

during the reachability analysis of the CHA. However, since not all variables from the state vector

x are needed, only the indexed variables of the output signals as provided to Elsa, are calculated

during the reachability analysis. With Ctmp ∈ Rp×n representing the output matrix computed

according to the system description methods from Section 4.5.2, the output equations of each HA

in a location loc is described via:

y = Ctmpx

= CtmpFloc︸ ︷︷ ︸
Cloc

(xλ − xλ,op)−CtmpLloc︸ ︷︷ ︸
Dloc

(u− uop) +Ctmpxop︸ ︷︷ ︸
kloc

(5.7)

Where Cloc ∈ Rp×m represents the output matrix used with the xλ state vector, while Dloc ∈ Rp×k

and kloc ∈ Rp represent the feedthrough matrix and offset vector, respectively.

Each HA is thus described using Eqs. (4.10, 5.7). The CHA is initialized using the parallelHybri-

dAutomaton class of Cora. A reachability analysis can now be performed on the CHA. The results

in the Sλ are then transformed into the So space via the back-transformation from Eq. (4.11) for

each HA separately. Note that this time all x values are calculated.

The back-transformations of the obtained results need special attention, especially if the system

contains feedback loops. At the current time, Cora does only yield the states of the system (xλ) for

the specified inputs of the CHA. Specifically, the internal connections are not included in the results.

In order to execute the back-transformation according to Eq. (4.11) for each of the underlying HAs

of the CHA, the inputs of each HA must be known. Using Eq. (5.7), the input from an internal

connection can be calculated from the corresponding output of the HA at the starting point of

this connection. For example, considering Fig. 5.17, the input to HA2 can be calculated from the

output of HA1. However, in case the compositional system contains a feedback loop, this is only

possible if feedthrough matrix Dloc is a zero matrix. That is, with Lloc calculated according to

Section 4.5.2:

Dloc = −CtmpLloc
= −CtmpF∞H∞B∞,red ,

must be a zero matrix, which is usually the case. Hence, in case the system contains a feedback

loop, the output of the subsystem at the starting point of the feedback loop is first computed.

An complex example from the automotive industry, in which the components were connected in a

control loop, is provided in Section 7.4.

To illustrate the basic process of building a CHA, two HAs generated from the example from

Section 4.2 are connected in series as presented in Fig. 5.18. The invariants of both HAs were
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compositional hybrid automaton

Low-pass

1

Low-pass

HA 2HA

Fig. 5.18. A compositional HA consisting of two lowpass filters connected in series.

modeled as intervals, while the guards were modeled as polytopes identified in the Svirt space using

the distance method . HA1 represents the same circuit from Section 4.2 with the difference that Vdd

is set to +1 V, while Vss is set to −1 V, thereby limiting Vnout to the range [−1, 1] V. For HA2 on

the other hand, the capacitors C1 and C2 are set to 0.001 µF and 0.01 µF, while the reaming of

the circuit is identical to the circuit from Section 4.2. The output voltage Vnout of HA1 represents

the input to HA2 at Vnin. Note that due to the limiting behavior of HA1, HA2 will never go into

the limiting behavior. More precisely, the locations g2r1 and g2r2 of HA2 will never be reached.

A reachability analysis was conducted in Cora for an input voltage of 3 V and an uncertain initial

range [−0.01, 0.01] for the xλ values of both HAs. The result at the output of HA1 is illustrated

in Fig. 5.19a, while the result of the output of HA2 is represented in Fig. 5.19b. For reference,

a Spice circuit was constructed that contains both circuits connected in series. The result of the

Spice simulation at the corresponding output nodes is illustrated for each HA in Fig. 5.19.
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Fig. 5.19. Reachability analysis performed with Cora on the created CHA model. The voltage

at the output (a) of HA1 and (b) of HA2 are illustrated. Note that Ri represent the

reachable sets computed in Cora for HAi, while Vnout,i represents the corresponding

Spice simulation.

As observed, HA1 switches the location from g1r1 to g2r2 (Fig. 5.19a), while HA2 remains in

the same location g1r1 during the entire analysis. In Fig. 5.19b, the zonotopes are colored in

orange before and in green after HA1 switches the location. HA2 does not change the location. As

illustrated, both HAs exhibit system behaviors close to the behavior of the real circuit.

Using this approach, a large circuit can be abstracted to a CHA by abstracting their underlying

subcircuits to HAs, permitting thereby scalability to the HAs generated for Cora.
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Analog verification is a promising research field with a long history. At its simplest, the aim of the

verification task is to prove that a circuit behaves as desired by the designer. As simple as this

sounds, the analog verification task is still an open problem. Traditionally, verification is often used

in the context of testing, fault analysis, and error detection. This type of verification is referred to

as simulation based verification, which establishes the design correctness using simulation results.

Even though these computational expensive analysis and simulations deliver a solid understanding

in the functionality of the developed circuit, they do not verify the full system behavior, in contrast

to formal verification. Formal verification aims to prove the correct functionality of the system with

respect to formal specifications or a golden model, using formal methods. Hence, formal verification

uses mathematical proofing methods to ensure that the circuit matches the specified specifications.

As illustrated in Fig. 1.1, there are several formal verification methods available in the AMS

domain. As mentioned in Chapter 1, formal verification methods suffer mainly from the state

space explosion. On top of this problem, there is a continuous explosion, as analog signals can

attain variable values from the continuous domain. Compared to the two possible values a digital

variable can attain, there are infinite many values for an analog variable. Hence, analog verification

approaches must overcome both problems, which is a challenging task.

On promising approach that permits verification of large circuits is behavioral abstraction. On

one hand, accurate abstracted models are mandatory for the verification task. As the verification of

complex AMS systems heavily relies on the use of behavioral models [GGKF18], accurate abstracted

models can speed-up simulation routines. On the other hand, behavior models are often abstracted

to a degree that they do not accommodate the full system behavior nor the circuit specific parameter

changes due to the process parameters or the operating conditions (temperature, process variations,

EMI, . . . ).

In this dissertation, we aim to use the accurate models from Chapter 4 and Chapter 5 in various

verification routines. But before using these models, we aim to formally verify their functionality,

thereby assuring a correct model abstraction. Hence, the generated models can then be considered

correct by construction.

In the following, the generated Verilog-A models are formally verified against the original Spice

netlist in Section 6.1. In the remaining of this chapter, several verification methods will be explored

that can be applied on the generated models from Chapter 4, as well as partially on the models

from Chapter 5.

6.1 Equivalence Checking

To close the tool chain, the generated abstract models can be verified against their original Spice

or Verilog-A netlists. As stated in Chapter 3, Vera [SH10b] can be used to perform an equivalence
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checking (EC) in the analog domain. In this process, a Verilog-A generated abstract model as

well as the original netlist (Spice or Verilog-A) are provided to Vera. As Vera supports Verilog-A

models, the generated abstract model in this syntax can be directly used.

To illustrate this process, the abstract model generated from the running example from Section 4.2

is compared to the original netlist (Listing C.1). The model is generated by sampling 18444 points

using Vera. This time, the sampling has been performed with little more effort by specifying a

different sampling method in Vera. This results in a Sλ space with minimal overlapping locations.

With the data points at hand, an abstract model has been generated using Elsa. To simplify the

modeling approach, the invariants were modeled as intervals, while the guards were specified as

halfspaces. Due to the extra effort spend during sampling, the guards were directly identified in the

Sλ space using the distance method . Note that the lsq filter was used on the Sλ space. The result of

the modeling approach with three locations Loc = {g1r1, g2r1, g2r2} is presented in Fig. 6.1. Using

the grdV method , the model was deployed in Verilog-A syntax, with a system behavior described

using the mean method .
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Fig. 6.1. Sλ space of the abstract Verilog-A model generated with 3 locations, invariants modeled

as intervals, and guards modeled as halfspaces.

This behavior model is passed to Vera along with the original netlist. The tool then executes the

described EC algorithm as presented at the end of Section 3.3. The results in the Svirt space versus

the relative errors are illustrated in Fig. 6.2, with the first row representing the relative output

error, while the second one shows the relative derivative error. The detailed results of the EC are

stated in Table 6.1.

Table 6.1: Modeling errors of a HA with 3 locations

Sampled points max(δẋ) (V) max(δẋ,r) (%) max(δy) (V) max(δy,r) (%) mean(δy) (V)

19096 27.65 1.845 0.0668 3.959 0.0036

As observed in Fig. 6.2 and stated in Table 6.1, the output error δy,r ≤ 3.95 % and the derivative

error δẋ,r ≤ 1.84 % are relative small. Moreover, the maximum error at the output computed is

at max(δy) = 0.0668 V. In addition to the errors from Eqs. (3.29, 3.30), the mean error mean(δy),
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Fig. 6.2. EC of the Verilog-A generated model with 3 locations versus the original netlist in Spice

syntax. The first row shows the relative output error, while the second one shows the

relative derivative error, illustrated both versus the Svirt space.

which is computed by calculating the mean of the output error δy over all sampled data point, is

stated in Table 6.1.

At the operating points, these errors are at their minimums as is illustrated in Fig. 6.3. Specif-

(a) (b)

Fig. 6.3. Result of the EC shown (a) versus the input voltage Vnin and the voltage Vnout − Vneg,
and (b) versus only the input voltage Vnin. The large red dots indicate the DC points.
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ically, in Fig. 6.3 the relative output error δy,r is illustrated against the input Vnin and one of the

two variables from the Svirt space. The large red dots indicate the DC points which were calculated

by Vera. These points are spaced 0.5 V apart. The HA with three locations g1r1, g2r1, and g2r2,

has its operating points at Vnin = 0, −2, and 2 V, respectively. As shown in Fig. 6.3b, the relative

output error δy,r is at its lowest at the operating points. In general, the further the system moves

from the operating points, the greater the previous stated errors become. Thus, increasing the

number of locations of the HA should result in more accurate models.

To emphasize this point, an abstracted model was created with the same settings as previously,

with the difference that instead of modeling the HA with 3 locations, the HA was modeled with 5

locations Loc = {g1r1, g2r1, g2r2, g3r1, g3r2} as illustrated in Fig. 6.4.
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Fig. 6.4. Sλ space of the abstract Verilog-A model generated with 5 locations.

As observed in Fig. 6.4, two intermediate locations g3r1 and g3r2 were additionally identified by

dividing the state space this time into 5 locations instead of 3 locations. The group identification

(Section 4.4.1) first identified 3 locations via eigenvalue clustering, followed by the region identifi-

cation (Section 4.4.2), which used the Gdist method to yield for each of the groups g2 and g3 two

regions.

Similarly to the previous analysis, the results of the EC with the original Spice netlist are pre-

sented in Fig. 6.5 and Table 6.2.

Table 6.2: Modeling errors of a HA with 5 locations

Sampled points max(δẋ) (V) max(δẋ,r) (%) max(δy) (V) max(δy,r) (%) mean(δy) (V)

20324 73.19 1.324 0.04721 2.803 0.0034

As observed, both errors decreased compared to the EC of the model with 3 locations; the relative

output error is now δy,r ≤ 2.80 % while the relative derivative error is δẋ,r ≤ 1.32 %. Moreover,

the maximum output error is at max(δy) = 0.0472 V. These results make sense, as with more

linearized locations the system behavior becomes more accurate and thus closer to the behavior of

the original circuit.



6.1. Equivalence Checking 131

Fig. 6.5. EC of the Verilog-A generated HA with 5 locations versus the original Spice netlist,

illustrated in the Svirt space.

With an increasing number of locations, the modeling error seems to be decreasing. To examine

this statement, a third model with 7 locations (4 groups) was generated as illustrated in Fig. 6.6.

Similarly to the 5-location version, an additional group was identified in the portions of the state

space were the eigenvalues change rapidly (see Fig. 4.7).

The results of the EC between the 7-location model with the original Spice netlist are presented

in Fig. 6.7 and in Table 6.3.

Table 6.3: Modeling errors of a HA with 7 locations

Sampled points max(δẋ) (V) max(δẋ,r) (%) max(δy) (V) max(δy,r) (%) mean(δy) (V)

19282 73.2 1.324 0.0303 1.804 0.0030

As Table 6.3 reveals, the relative output error δy,r as well as the output error δy decreased

compared to the errors of the previous generated models.

On a Linux machine with an i5-7300HQ CPU at 2.50 GHz with 16 GB of RAM, the model

generation via Elsa consumed 14.43 s for the 3-location version, 18.32 s for the 5-location version,

and 18.48 s for the 7-location version. On top of the modeling time of Elsa, the sampling time

consumed by Vera must be considered. The circuit was sampled in 130, 11 s with 18444 sampled
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Fig. 6.6. Sλ space of the abstract Verilog-A model generated with 7 locations.

Fig. 6.7. EC of the Verilog-A generated HA with 7 locations versus the original Spice netlist.

data points. This data was imported into Matlab memory in 2.51 s, thereby the whole modeling

process consumed in total 147.05 s for the 3-location, 150.94 s for the 5-location, and 151.10 s for

the 7-location version.
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Considering the EC of the netlist and the Verilog-A models, Vera consumed nearly the same

time, which is 159, 39 s for the EC of all three models. In view of the discretizing nature of

Vera presented due to the state space stepping through a continuous state space, fault can be

still presented between the sampled points. Decreasing the step size yields a higher confidence

in the obtained results. Another approach that uses the models generated by this dissertation

was presented in the [TKR+20]. In this contribution reachable sets were used to perform EC

between two circuits in the continuous state space of the system. However, since that the original

netlist is in Spice, the algorithm could not perform an EC between the original netlist and the

abstracted model. Hence, a model generated with Elsa was trained with the Spice simulations and

the real circuit measurements to obtain a conformant model [KTR+20]. In Fig. 6.8, the deviation

between the outputs of the models at Vnout is illustrated. As observed in Fig. 6.8, EC was then

Fig. 6.8. The difference between the output of the conformant model and the abstract HA it was

generated from for an input range Vnin = [0, 4] V [TKR+20].

performed between the conformant model and the abstract HA used to train this model. Hence,

using continuous reachable sets, EC has been executed in the continuous domain, combining thereby

reachability analysis with EC. For more details see [TKR+20].

Using the approach stated in this section, the equivalence of the netlist and the abstracted models

can be verified. Moreover, with this process the error between the abstracted model and the original

netlist can be calculated. Note that, due to the definition of the errors (Eqs. (3.29, 3.30)) and the

nature of the domain where the EC is executed, a 0 % error is in general not feasible. However, as

the results in Section 7.1.5 show, models generated with error bounded to 3.9 % usually yield good

results.

In general, this applies to the Verilog-A models, as these models were checked for equivalence

with the original netlist. For the Matlab models, a different approach has to be chosen, as the

one handled in the next section. Note that in the case halfspace guards were used, the Verilog-A

models exhibit nearly identical behaviors to the Cora models. Thus, the results validated on a

Verilog-A model could be generalized in specific cases for the SystemC-AMS and Cora models.

The differences that arise in the behavior of these models results from the tool used to perform a

simulation/reachability analysis.
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6.2 Reachability Analysis and Model Checking

For the in Matlab syntax created HAs, a reachability analysis can be conducted using Cora. On

top of this, a post simulation model checking algorithm has been implemented. The algorithm

basically detects intersections between the reachable set of a dimension in the So space with a

specified condition. The conditions can be either specified as top or bottom margins, or specific

regions of interest.

Even though the reachability analysis could verify the system behavior on its own, performing a

post simulation model checking (MC) allows for the interpretation of the results with and without

generating plots. This comes in handy when a small step size is specified for the reachability

analysis, thereby increasing the time needed to plot the results.

To demonstrate this, the model with three locations from Section 6.1 is used. This time however,

the guards are modeled as polytopes and the system is described via a matrix zonotope that, as

described in Section 5.1.1, encloses (over approximates) the whole abstracted system behavior.

The model is deployed in Matlab (Cora) syntax. With the initial state space vector of xλ lying in

[−0.5, 0.5] for each dimension, and an input voltage of Vnin = 4 V, the MC algorithm is launched to

check that the output voltage Vnout is always greater than −1.5 V as shown in Fig. 6.9a. The MC

algorithm detects from the reachable set the zonotope at which this condition fails. In this case,

the time of failure is returned. In Fig. 6.9b the model checking approach has be launched to check

that the output voltage is always bounded by the interval [−1.7,−1] after the time t = 0.15 s. In
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Fig. 6.9. Reachability analysis in Cora with post simulation MC.
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TCTL that is:

AG[0.15,0.5](−1.7 ≤ Vnout ≤ −1)

As observed in Fig. 6.9b, the algorithm detects that the condition is satisfied.

This approach can be improved by performing the MC during the runtime of Cora. However, at

the current time, the model checking is performed after the reachability analysis performed by this

tool.

6.3 Runtime Verification

For the formal verification using online monitors of the SystemC-AMS models, an CTL-A extension

has been developed in [Dra20]. This part summarizes the main contributions. Note that for the

Verilog-A models, a similar study was conducted in [Wag17].

Compared to traditional CTL, CTL-A is first extended by the analog operators greater than (>)

and less than (<) [HHB02]. Moreover, the introduced extension contains additional to the states

true (T ) and false (F ), the unknown (X) state, which is neither true nor false. Additionally, three

temporal operators can be used:

• Once O[tstart,tstop](expr): if the condition (expr) up till the current time was at least once

valid, the operator returns intermediately true

• Historically H[tstart,tstop](expr): if the condition up till the current time was and is still valid,

the operator returns true at tstop. If this is not the case, the operator intermediately returns

false

• Since (expr1)S[tstart,tstop](expr2): if (expr2) was true during the time interval, and during this

time step or intermediately after (expr1) becomes valid and stays valid till tstop, the operator

returns true at tstop

There are two modes for the time that can be used with the temporal operators. Either an interval

[tstart, tstop] is specified, or a duration tduration. The previously stated descriptions of the operators

were explained for the interval mode. Before the monitor reaches tstart, all operators return the

unknown state X. After that, each operator returns the state according to the expression. In

case the duration mode was used, the Once-operator Otduration returns intermediately true if the

expression is valid. During the entire duration, the operator returns true. In case the expression is

again valid, the operator returns true till the end of the duration. For the Historically-operator, the

operator returns true at ti if the expression is valid during [ti−duration, ti]. Hence, the Historically-

operator checks the expression in a time window from the current time till a duration back in the

past. Similarly for the Since-operator, for the current time ti if expr2 is true or was true until

expr1 became true in the time interval [ti−duration, ti], the operator returns true. However, if expr1

was true and in case expr2 becomes false during the current inspected time window, the operator

returns false at ti.

The online monitors are realized as automatons with several states. The automaton for the

Once-operator in the interval mode (O[tstart,tstop](expr)) is illustrated in Fig. 6.10. The detailed

description will be skipped here. Depending on the time as well as the evaluation of the expression,

the automaton from Fig. 6.10 switches states. This automaton is attached to the SystemC-AMS
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Fig. 6.10. Finite state automaton for the Once-operator in interval time mode [Dra20].

simulation as a header file. Hence, during simulation the monitor evaluates the specified specifica-

tions and assigns the value of the output y accordingly.

The developed monitors support SystemC-AMS simulations with affine forms. The monitors are

extended using the AADD library [RGJR17]. This is done by using affine forms in the expressions

(doubleS ), enhancing the guards conditions (ifS and elseS ), and tracing the outputs of the monitors

with min and max values. An output voltage of 0.5 V at the output of the monitors corresponds to

a logical false, a voltage of 3.6 V corresponds to a logical true, while a voltage of 1.8 V is obtained

if the expression is still not evaluated, thus corresponding to undefined (X ) state.

In Fig. 6.11, the results of several SystemC-AMS simulations, including online monitors, are

illustrated. In all four simulations, the HAs were generated from the running example from Sec-

tion 4.1 in SystemC-AMS syntax. The simulations in Fig.6.11a and Fig. 6.11b correspond to a HA

generated according to Section 7.1.6 with an input voltage Vnin = 4 ·sin(2π · t) V. In Fig. 6.11c and

Fig. 6.11d, the HA used was generated with affine forms according to Section 5.1.2 (see Fig. 5.5)

and symbolically simulated in with Vnin=3 · sin(2π · t) + 0.15β V. For all simulations, the output

of the HA (Vnout) as well as the output of the monitors (Vmonitor) are illustrated. In Fig. 6.11a,

the output of the system is monitored with O[0.5](Vnout<=−1.6). As a duration is specified with

the temporal operator Once, the monitor returns intermediately false as the specified expression is

false. At the instance Vnout becomes smaller than −1.6 V, the monitor returns true and stays true

as long as Vnout was once smaller than −1.6 V in the last 0.5 s from the current simulation time.

If this in not the case, the monitor evaluates to false. In Fig. 6.11b, the Historically operator is

used in the monitor H[0.1]((Vnout>−1.6)&(Vnout< 1.6)). As the monitor is set in duration mode,

if the expression returns true in the last 0.1 s from the current simulation time t, the monitor

returns true. In contrast to the previous simulations, a symbolic simulation was performed as il-

lustrated in Fig. 6.11c. The temporal operator Historically is used in interval mode in the monitor

H[0,0.25](Vnout >−1.6). At start, the monitor returns X and intermediately evaluates to false at

the instance the expression becomes invalid. As an affine monitor is used, the expression is evalu-

ated with affine forms, and two values corresponding to the maximum and minimum evaluations

of the expression are returned. Several operators can be cascaded, for example as the monitor
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shown in Fig. 6.11d which examines (H[0.1](Vnout >−1))S[0.05](Vneg < 0.1). The operator Since is

used in duration mode. The monitor returns true if in a time window of 0.05 s from the current

inspected time Vneg<0.1. This condition is true until t = 0.18 s. At this instance, the expression

H[0.1](Vnout >−1) is examined. The monitor returns true as long as in a time window of 0.05 s

the condition (Vneg<0.1) is true, or was once true in this window until H[0.1](Vnout>−1) became

true. However, at the instance the condition concerning Vneg is false, the condition about Vnout is

always false. At t = 0.2 s, the condition involving Vneg becomes as well false. At t = 0.201 s, with

a simulation time step is set to 10−3 s, the monitor returns false, as the condition Vneg<0.1 is not

valid in the time window of [0.151,0.201] with the duration of the monitor set to tduration = 0.05 s.
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(d) (H[0.1](Vnout>−1))S[0.05](Vneg<0.1)

Fig. 6.11. Online monitoring the output of the HA. The first row shows standard monitors, while

the second row shows affine monitors.

As the example demonstrates, the monitors can be used for the runtime verification of the

generated abstract models.
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This chapter demonstrated the abstraction approach from Chapter 4 upon various examples. Start-

ing with the sampling of various transistor level circuits with full BSIM4 accuracy, several models

are generated in different programming languages and simulated with the corresponding simulation

tool. The Verilog-A models are first compiled using the Verilog-A compiler ADMSXml [LMH02],

then simulated using the Spice simulator Gnucap [Dav03]. For the model generated in Matlab

(Cora) syntax, a reachability analysis is performed using Cora [Alt15]. The SystemC-AMS models

are simulated using the standard SystemC (2.3.3) and SystemC-AMS (2.1) libraries. The SystemC-

AMS HAs which are modeled with affine forms (Section 5.1.2) additionally use the AADD library

from [RGJR17]. All simulations were performed on a Linux PC with a four core i5-7300HQ CPU

at 2.50 GHz with 16 GB of RAM.

An overview of the handled examples and the used methodologies are listed in Table 7.1. For all

examples listed in Table 7.1, the groups of the locations are identified with eigenvalue clustering.

In Section 7.1, the running example from Section 4.1 will be used to examine the modeling meth-

ods from Chapter 4, and evaluated the accuracy and speed-up of the abstract models. Moreover, a

Table 7.1: Overview of the examined methods in Section 7.1

Lowpass filt.
Section 7.1

Diode circuit
Section 7.2

GmC filter
Section 7.3

Single track
Section 7.4.1

PI-controller
Section 7.4.2

Region ident.1 Gdist Gdist - DBSCAN9

System descr.2 mean mean mean mean

Sλ modification3 lsq , Sλ re. lsq , reach - -

Invariant type4 polytope polytope polytope interval

Guard type5 polytope halfspace halfspace polytope

Guard ident.5 intersectionI distance distance distance

Object transf.6 - - - -

Jump function7 reset (vr) shift (vs) - reset (vr)

M
et

h
o
d

s

Model method8

Table 7.2

- grdV - -

Dynamic order10 14 1 26 2 53

N
et

li
st

Complexity
17 trans.,

24 variab.

0 trans.,

4 variab.

46 trans.,

38 variab.

0 trans.,

2 variab.

68 trans.,

63 variab.

Reduced order11 2 / 4 1 2 2 2

Locations 3 / 5 / 7 2 3 1 9H
A

Output lang. All Matlab Verilog-A Matlab Matlab

1 Section 4.4.2 2 Section 4.5.2 3 Section 4.5.5 4 Section 4.5.6 5 Section 4.5.7 6 Section 4.5.8
7 Section 4.5.9 8 Section 4.6 9 Section 4.4.2 10 r in Eq. (3.19) 11m in Eq. (3.19)
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4th order abstract HA is generated in this section that demonstrates how the compositional system

from Section 5.3 (see Fig. 5.18) can be abstracted as a whole. In Section 7.4.3, a compositional

system is build that abstracts a control loop consisting of a PI-controller (Section 7.4.2) and a

single track model (Section 7.4.1). While in Section 7.3, a complex industrial OTA-based GmC

filter is abstracted.

7.1 Running Example: Second Order Lowpass Filter

According to Chapter 4, several methodologies can be used to model the HAs. In the following these

methodologies are analyzed by abstracting the running example from Section 4.1. Table 7.2 shows

an overview of the examined and used methods in this section. Note that, X marks the section

where the corresponding method is examined. On top on the examination of the methodologies,

Table 7.2: Overview of the examined methods in Section 7.1

Section
7.1.1

Section
7.1.2

Section
7.1.3

Section
7.1.4

Section
7.1.5

Section
7.1.6

Region ident.1 Gdist Gdist Gdist Gdist Gdist Gdist

System descr.2 param.9 mean X mean mean mean

Sλ modification3 lsq , Sλ

re.
X

lsq , Sλ

re.
lsq lsq lsq

Invariant type4 interval interval interval polytope polytope polytope

Guard type5 interval halfspace halfspace X halfspace halfspace

Guard ident.5 distance distance distance X distance distance

Object transf.6 halfT halfT halfT - - -

Jump function7 reset reset reset reset X shift

M
et

h
o
d

s

Model method8 - - - - X grdV

Reduced order 2 2 2 2 2 2

Locations 3 3 3 3 3 / 5 / 7 3

H
A

Output lang. Matlab Matlab Matlab Matlab Verilog-A SysC-AMS

1 Section 4.4.2 2 Section 4.5.2 3 Section 4.5.5 4 Section 4.5.6 5 Section 4.5.7 6 Section 4.5.8
7 Section 4.5.9 8 Section 4.6 9 Section 5.1.1

a fourth order model in generated in Section 7.1.7, do demonstrate how a compositional system

(Section 5.3) can be abstracted as a whole.

But before getting into the effect of the modeling methodologies, first the influence of the sampling

performed by Vera (Chapter 3) on the model generation is examined in Section 7.1.1.

7.1.1 Influence of the Sampled State Space From Vera

In accordance with Section 4.5, depending on the sampling settings specified in Vera, the identified

locations in the Sλ space can overlap strongly or slightly (or not at all) as illustrated in Fig. 7.1.

This comes at a trade-off for the accuracy of the calculated sampled points, the transformation

matrices, and the sampling time needed. Note that the sampling method has not been handled

in Chapter 3 for simplicity. This method basically influences the transformation of the DC points

from the So space to the Sλ space.
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Fig. 7.1. Result of the abstraction performed by Elsa before applying the jump functions. In (a)

the locations in the Sλ space overlap strongly, while in (b) the overlapping is minimal.

Two models were generated to examine the effect of the sampling method. For the first model

shown in Fig. 7.1a, 18513 have been sampled by Vera in 126.67 s, while 18444 points have been

sampled in 130,11 s for the model in Fig. 7.1b. To compare the generated models from these

sampled data, the same options are used for the model generation process from Chapter 4. More

precisely, both models have invariants and guards modeled as interval hulls. The guards were found

using the distance method . These guards have narrow thicknesses as shown in Fig. 7.1. For both

models, the guards and invariants were calculated in the Svirt space and transformed to the Sλ space

using the halfT method . Moreover, the lsq filter was used and the Sλ space was recalculated using

the transPt method . As both systems were modeled with jump functions for Cora, the locations

are adjusted similarly to Fig. 4.38, by subtracting the operating points from the geometric shapes

(see Section 4.5.9). The system descriptions were modeled by the approach from Section 5.1.1 with

matrix zonotopes, thereby capturing (over approximating) the whole system behavior, and omitting

the abstraction errors performed from using single representing values (Section 4.5.2). Note that

the model from Fig. 7.1a actually represents the same model used in Section 5.1.1.
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Fig. 7.2. Results of the reachability analysis performed on (a) the model shown in Fig. 7.1a and

(b) the model from Fig. 7.1b.
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Using Cora, a reachability analysis was executed with an range for the initial value of the state

variables xλ,i = [−0.5, 0.5] and an input voltage Vnin = [2.5, 3.5] V. The results are illustrated in

Fig. 7.2. As observed, even though both models have (in this case) exactly the system behaviors

(Aloc and Bloc), as well as the same transformation matrices (Floc and Lloc), the results vary. This

lies in the fact that the guards and invariants identified vary, which can be traced back to the

sampled points as observed in Fig. 7.1. Moreover, the operating points differ as well, influencing

the jumps performed.

7.1.2 Impact of the Sλ Space Manipulations

To compare the possible Sλ space modifications from Section 4.5.5, six models were created. All

models start with a state space similar to the one shown in Fig. 4.20c, and were created with

invariants modeled as intervals, and guards modeled as halfspaces using the distance method in the

Svirt space. Moreover, all models use jump functions. Models A, B, and C use the lsq filter , while

models D, E, and F don’t. Models A and D use the transPt method to recalculate the Sλ space,

while models B and E use the transLoc method . Models C and F skip this calculation. Table 7.3

summarizes the Sλ space modifications of the models. Note that, as mentioned is Section 4.5.2,

the lsq filter uses by default the transPt method as the transDC method is not handled here.

Table 7.3: Comparison of the Sλ space manipulations of the generated models

methods model A model B model C model D model E model F

lsq filter X X X - - -

Sλ re. transPt transLoc - transPt transLoc -

The Sλ space of models B, C, E, and F are illustrated in Fig. 4.21d, Fig. 4.21c, Fig. 4.20d, and

Fig. 4.20c, respectively. The Sλ space for model D can be extracted from Fig. 4.16b when removing

the bad points, while the Sλ space for model A is shown in Fig. 4.16b. Note that, all models were

generated with the sampling method that yielded the Sλ space in Fig. 7.1a. The results of the

reachability analysis performed on the models with Vnin = 4 V are shown in Table. 7.4.

The first column of Fig. 7.4 shows the results of the reachability analysis conducted with models

generated with the application of the lsq filter (Section 4.5.2), while the second column of this

figure shows the results for models generated without the lsq filter . As observed, this filter is

usually necessary to obtain good results, especially when dealing with a overlapping locations in

the reduced state space Sλ. On top of this, recalculating the Sλ space usually yields better results

as observed when comparing the results of models A and B with model C. Moreover, a closer look

at models A and B shows that the discontinuity in the Vnout upon switching locations decreases

in case the transPt method is used. Comparing models A and C, on the other hand, the best

results are obtained if the lsq filter is used and the Sλ is recalculated using the transPt method as

mentioned at the end of Section 4.5.5.

7.1.3 Effect of the System Description

To demonstrate the effect of the system description method from Section 4.5.2, four models were

generated. The first model was created with the op method , the second with the mean method ,

the third with the dc method , while the forth was created with the weight method with w1 = 0.5,
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Table 7.4: Result of the reachability analysis performed on various models from Table 7.3.
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w2 = 0.3, and w3 = 0.2. The remaining settings are listed in Table 7.2, which are basically

identical with the methods used to generate model A from Section 7.1.2. A reachability analysis

was performed with an input Vnin = 4 V. The results are illustrated in Fig. 7.3. As observed

in Fig. 7.3, the closest results to the Spice netlist are obtained when using the mean method .

Moreover, the remaining methods produce large discontinuities. Both aspects can be traced back

mainly to the transformation matrices, as the mean method considers all points belonging to a

location equally, thereby modeling these matrices by the sampled values of all points and not a

single representing one. Therefore, the mean method is used as the standard system description

method.

As stated in Section 4.5.2, the lsq filter can also be applied on the system description, thereby

removing flagged points from the calculation of the matrices. However, the results are not strongly

affected as shown in Fig. 7.4, during the same reachability analysis with Vnin = 4 V performed on

two models whose system description is modeled with the mean method .
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Fig. 7.3. Results of the reachability analysis performed on four models generated with different

determined system descriptions compared to the simulation of original Spice netlist.
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Fig. 7.4. Results of the reachability analysis performed on two abstract models with (subscript lsq)

and without applying the lsq filter in the calculation of the system description.

7.1.4 Guards and Invariants

There exist according to Section 4.5.6 various forms to represent the invariants. Depending on the

type chosen, the guard calculations are influenced as described in Section 4.5.7. Moreover, using

the intersection method from Section 4.5.7 to find the guards, the size (volume) of the guards can

be influenced.

To exemplify these points, three HAs in Cora syntax were generated, from the same Sλ space.

Three minimal overlapping locations were identified for each HA (Fig. 7.1b). For all three models

the invariants were specified as polytopes. Two models were generated with guards specified as

polytopes and identified via the intersectionI method . While the limit (line 12 of Algorithm 7)

for both models was specified as the maximum number of iterations performed after the first

intersection, this number was set to 1 for the first and to 10 for the second model. The HAs in the

Sλ space, before adjusting the location by the jump functions, are shown in Fig. 7.5a and Fig. 7.5b,

respectively. The guards of the third model were identified by the distance method and model

as polytopes as shown in Fig. 7.5c. Note how the number of maximum iterations influences the

thickness of the identified guards. Moreover, the edges of the guards are analogously to the edges

of the invariants.

A reachability analysis was performed with the same input step function as previously (Vnin =

4 V) on all three models. The results at the output node are illustrated in Fig. 7.6 for the two
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Fig. 7.5. Guards and invariants of the HAs in the Sλ space before adjustment. The polytopic

guards are found using the intersectionI method with the maximum number of iterations

set to (a) 1 and (b) 10. In (c) the halfspace guards are found using the distance method .
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Fig. 7.6. Result of the reachability analysis performed on two abstract models using 1 and 10 max-

imum iterations for the guard construction using the intersectionI method . The subindex

i on the reachable sets indicates the number of maximum iterations.

models generated with the intersectionI method . As observed, the size of the guards influences the

results of the reachability analysis. For a larger number of iterations, the invariants are enlarged

more by the intersectionI method , yielding guards that are further away from the original boarders

of the invariants described by the sampled points. Hence, the location switch happens at a further
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instance. As observed in Fig. 7.6, with a maximum number of iterations set to 10, the HA stays in

g1r1 too long resulting in discontinuities during the transition of the location to g2r2. Moreover,

after the transition, the reachable set of the model with 10 iterations is larger than the reachable

set obtained by the model with 1 iterations. This basically lies in the nature Cora computes the

reachability analysis for the guard intersection method specified as polytope [ASB10b]. Note that,

for halfspace guards the method in [AK12a] is used here for the analysis in Cora.

In Fig. 7.7, the results obtained with two models described with different guard identification

methods are illustrated. While one models uses halfspace guards identified via the distance method
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Fig. 7.7. Result of the reachability analysis performed on a HA with halfspace guards identified

with the distance method (subscript h) and on a HA with polytopic guards identified with

the intersectionI method (subscript i).

(Fig. 7.5c), the other model uses polytopic guards identified via the intersectionI method with a

maximum number of iterations set to 1 (Fig. 7.5a). As observed, the difference is barely visible. This

lies in the fact that the polytopic guards obtained have a very narrow width, and are almost on the

boarders of the unmodified invariants, where the halfspace guards lie. With an increasing number

of iterations the results obtained with the intersectionI method start to vary significantly compared

to results obtained with the distance method . Note that the distance method with halfspace guards

usually yield the most accurate results.

The previous results were obtained with jump functions. Specifically, since the models were

created for Cora, the jump functions are described by Eq. (4.33), and the geometric objects (guards

and invariants) in the Sλ space were adjusted similarly to Fig. 4.38. If the modeled with guards

identified via the intersectionI method with the maximum iterations set to 1 (Fig. 7.5a) was created

without jump functions, the result of the reachability analysis with the same input signal contains

large discontinuities as illustrated in Fig. 7.8. The corresponding results shown in the Sλ space

drawn versus time are illustrated in Fig. 7.9a. As observed Fig. 7.9a, the xλ variables remain

unchanged, leading to bad results as shown in Fig. 7.8. However, in case the system is modeled

with jump functions, the xλ undergo a reset upon switching the location according to Eq. (4.33)

(Fig. 7.9b), yielding better results as illustrated in Fig. 7.6. In disregard of the guard identification

method used, similarly results are obtained. For the Verilog-A and SystemC-AMS models, the

jump functions are described by shift vectors, as described in Section 4.6.2, which is constantly

subtracted from the system behavior. This aspect will be emphasized in the following section.
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Fig. 7.8. Result of the reachability analysis performed on the HA with polytopic guards identified

with the intersectionI method (i = 1) with no jump functions.

(a) (b)

Fig. 7.9. Result of the reachability analysis illustrated in the Sλ space. The results are shown for

a HA modeled (a) without jump functions and (b) with jump functions.

7.1.5 Verilog-A Models and the Jump Functions

In this section, the presence and absence of the jump functions are examined based on Verilog-A

generated abstract models. Moreover, the impact of using grdV and invV method from Section 4.6.2

are examined. For this, 4 models were generated. All models are based on the state space presented

in Fig. 7.10. For all models, the invariants are modeled as intervals while the guards, identified via
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Fig. 7.10. Result of the behavioral abstraction performed by Elsa in the Sλ space.
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the distance method in the Sλ space, are modeled as halfspaces.

Four models have been created: two with the grdV method and two with the invV method . In

each case, one model was created with and one without jump functions according to Section 4.6.2.

Fig. 7.11 shows the results of the simulations performed with a sine wave of amplitude 4 V and freq

of 1 Hz at the input Vnin. As observed, even with a well sampled Sλ space, the results are better

if the systems are modeled with jump functions. Moreover, the grdV method usually yields better
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Fig. 7.11. Result of the simulations performed on the four generated HAs in Verilog-A for an input

Vnin = 4 · sin(2πt) V.

results than the invV method . This can be further analyzed in Fig. 7.12, which shows the first xλ

variable and the corresponding element from the shift vector vs. According to Section 4.6.2, the

current location of the system is identified by the xλ variables, guards or invariants, and optionally

the jump functions. As observed in Fig. 7.12, the HAs modeled without jump functions are unable
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Fig. 7.12. Result of the previous simulations of four generated HAs illustrated upon xλ,1 and the

corresponding element from the shift vector vs,1.
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to determine the current location correctly, leading to the fluctuation of the location variable loc.

This in terms result in inaccurate results as observed in Fig. 7.11. On the other hand, according

to Algorithm 10, the invV method decides based on the operating points the current location the

target location once the HA leaves the current invariant. As the location variable is contained in

the conditions at lines 3, 5, and 7 of Algorithm 10, the HA is forced to stay in a location until the

current invariant becomes invalid. On one hand, this helps the Verilog-A simulator to converge

rapidly, on the other hand, the accuracy of the HA is diminished. As the results show in Fig. 7.11,

in case the guards are used to find the current location (grdV method), the most accurate results

are obtained. Thus, this method is adapted as the standard method in the remaining examples.

Note that, as observed in Fig. 7.12, in contrast to the Matlab models, the xλ variables are only

shifted by a shift vector. Specifically, the value of xλ is not modified by a reset.

In Table 7.5 a comparison is presented of the results obtained for several simulations performed

on the original Spice netlist and an abstract HA. The HA was created using the grdV method

(Algorithm 8) with jump functions and 3 locations. Three simulation were performed for a time

Table 7.5: Comparison of the abstracted Verilog-A model and the original Spice netlist

Circuit
Step 1 V Step 4 V Sine 4 V at 1 Hz

Time Iter. δ̂y δ̂y,r Time Iter. δ̂y δ̂y,r Time Iter. δ̂y δ̂y,r

HA 0.15 31761 0.047 2.8 0.15 31765 0.047 2.8 0.21 40075 0.058 3.5

Netlist 4.54 42078 - - 5.19 49743 - - 5.72 50325 - -

δ̂ stands for the maximum value of δ. Time is in s, δ̂y in V, and δ̂y,r in %

window of 1 s with a fixed time step of 0.1 µs. The first simulation was carried out with a step

function at Vnin with a rise time of 20 µs and an amplitude of 1 V. The second simulation was

performed similarly, but with an amplitude of 4 V. The third simulation was performed with a sine

wave of amplitude 4 V and freq of 1 Hz. The run time, the number of Newton iterations, and the

maximum and maximum relative output errors, max(δy) and max(δy,r), are used to compare the

simulations. As the system has only one output, the calculation of the errors is straight forward.

The maximum output error (max(δy)), which is computed by finding the maximum difference

between the output voltages of the HA and the netlist, is very similar in all simulation as observed

in Table 7.5. Moreover, this is as well true for the maximum relative output error (max(δy,r)).

Note that this value is normalized over the range of output voltage, which is in this case roughly

max(|ycons,netlist|) +max(|ycons,HA|) = 1.65 + 1.65 = 3.3 V for all three simulations.

The corresponding simulation figures from Table 7.5 are presented in Fig. 7.13. The vertical

purple lines in Fig. 7.13 indicate when the HA changes the locations. For each performed simulation,

the output error δy as well as the output voltage Vnout are illustrated versus time. In general, the

output error increases the further the system moves from the operating point, to reach its largest

values at the borders of the locations.

The HA model used here is in fact the same one used for EC in Section 6.1, for which Vera

calculated the maximum output error max(δy) = 0.0668 V and the maximum relative output error

max(δy,r) = 3.95 %. What is interesting to notice is that the errors from Table 7.5 are bounded

by these values. Moreover, in all cases the Spice netlist performs more iterations compared to the

HA, and the abstracted HAs yield a maximum speed-up of 27.2.
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Fig. 7.13. Simulation results obtained with a step function of amplitude (a) Vnin = 1 V, (b) Vnin =

4 V, and (c) a sine wave of amplitude Vnin = 4 V and freq = 1 Hz on a Verilog-A HA

modeled with the grdV method with jump functions and three locations. The vertical

purple lines indicate when the current location is changed.

As stated in Section 6.1, increasing the number of locations usually yields better results and

decreases the errors. To emphasize this aspect, three HAs were generated with 3, 5, and 7 locations,

respectively. All HAs were model with the grdV method and with jump functions. A simulation is

performed on these models as well as on the Spice netlist with a sine wave Vnin = 4 · sin(2πt) V

for 2 s. The results are shown in the first row in Fig. 7.14 at the output of the system Vnout. The

simulation are labeled according to the number of locations of the corresponding HA. The second

row in Fig. 7.14 shows the first dimension of the shift vector vs from Eq. (4.34). Whenever this

value changes, the corresponding HA switches the current location. Note that, as illustrated in

the first row of Fig. 7.12, the xλ variables are only shifted by the shift vector vs for the Verilog-A

models, in contrast to the Cora models.

As observed in the first row of Fig. 7.14, a HA with more locations can transition smoother

between the locations than a HA with fewer locations. This can be as well observed at the voltage

at the negative terminal of the operation amplifier Vneg (see Fig. 4.2) presented in Fig. 7.15.

In Fig. 7.16 the output error of the three generated HAs is illustrated for the same input voltage

Vnin = 4 ·sin(2πt) V. Specifically, in the first three rows of Fig. 7.16 the output errors δy,3, δy,5, and

δy,7 are illustrated which correspond to the HA generated with 3, 5, and 7 locations, respectively.

In the last row of the figure, the three errors are illustrated against each other. As observed, the

accumulated output error in general decreases with an increasing number of locations. However, as
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Fig. 7.14. Result of a simulation with Vnin = 4 · sin(2πt) V performed on three HAs with 3, 5,

and 7 locations and on the Spice netlist. The first row shows the voltage at the output

terminal, while the second row shows the first dimension of the shift vector vs.
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Fig. 7.15. Result of a simulation with Vnin = 4 ·sin(2πt) V performed on three Verilog-A HAs with

3, 5, and 7 locations and on the Spice netlist at the negative terminal of the operation

amplifier Vneg (see Fig. 4.2).

the number of locations increases, the error during the transition of the locations becomes sharper.

This can be traced back to the guards, and in particular to the grdV method used to describe the

HAs. Using the invV method , the error during the location switch can be decreased, however, this

comes at the expense of the accumulated error as examined in Section 7.3. Another import aspect

that Fig. 7.16 shows, is that the maximum output error calculated by Vera in Section 6.1 is violated

for the HA with 7 locations. In Section 6.1, the EC of the netlist against each of the three HAs yield

max(δy) to be 0.066, 0.047, and 0.030 V for the HAs with 3, 5, and 7 locations, respectively. This

limit is exceed by the HA with 7 locations. This can be traced back to the settings specified for

EC in Section 6.1. The HAs were compared against the netlist with a constant specified minimal

state space step set to ∆xλ = 0.25 (see Section 3.2.3), which is relatively large. Decreasing this

state space step to 0.1 yields max(δy) to be 0.067, 0.06, and 0.046 V for the HA with 3, 5, and

7 locations, respectively. The corresponding result of the EC in the Svirt space of the HA with

7 locations is illustrated in Fig. 7.17. Compared to first row of Fig. 6.7, the obtained errors in

Fig. 7.17 increased, as the EC was performed with a higher precision. Thus, in order to correctly

verify the generated HAs and obtain valid error margins, the EC must be executed with a well-

chosen state step. In Section 7.3, an approach is illustrated that extends a model with an affine
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Fig. 7.16. In the first three rows, the output errors of the HAs generated with 3, 5, and 7 locations

are shown, respectively. In the last row, these errors are plotted against each other.

Fig. 7.17. EC of the Verilog-A generated HA with 7 locations versus the original Spice netlist with

a minimal state step of 0.1 illustrated in the Svirt space.

description that integrates the state step into the modeling process.

7.1.6 SystemC-AMS Models

Previously, the Matlab as well as Verilog-A models were generated according to various options. In

this section, the focus lies on the generation of SystemC-AMS models. As stated in Section 4.6, the

final step in the model abstraction process is the creation of the HA in the desired syntax. Thus,

till the model creation step, the model abstraction process is identical regardless of the desired

file syntax. Consequently, the Verilog-A models generated in the Section 7.1.5 are similar to the
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models from this section if the same settings are used.

During the model creation, the models start to vary as for example the Verilog-A models describe

the system behavior in the reduced state space of the system with the ddt operator, while the

SystemC-AMS have 4 different methods (Section 4.6.3) to perform this task. These four system

modeling methods are: ssC method (sca ss), eulC method (backward Euler), rukC method (Runge-

Kutta), and disC method (discretized state space). In the following, these methods are compared.

For this purpose, four abstracted HAs have been generated that only vary in their method to

describe the system behavior. The remaining settings are listed in Table 7.2. As in Section 7.1.5,

these models were created with the grdV method (see Section 4.6.3), with three locations and jump

functions. The models are compared based on simulations with a sine wave of amplitude 4 V and

frequency of 1 Hz at the input Vnin. The simulations are performed with a simulation time step

(sca time) of 0.1 µs and a time window of 2 s. The results are presented in Table 7.6. The speed-up

factor is given between the runtime of the generated models against the runtime of the original

Spice netlist from Table 7.5. For all models, the circuit was sampled in 130.11 s and imported to

Matlab’s memory in 2.55 s. The modeling time in Table 7.6 represent the time consumed purely

by Elsa. Note that to decrease the modeling time, a clustering method (k-means) can be used for

Table 7.6: SystemC-AMS models of the running example

Modeling
method

Modeling
time (s)

Compile
time (s)

Runtime
(s) Speed up

max(δy)

(V)

max(δy,r)

(%)

ssC method 12.62 1.56 0.177 32.3 0.0589 3.58

eulC method 12.76 1.58 0.141 40.5 0.0592 3.60

rukC method 12.81 1.56 0.150 38.1 0.0596 3.63

disC method 12.79 1.57 0.136 42.0 0.0586 3.56

the region identification (Section 4.4.2) instead of the Gdist method , while still yielding the same

models for this example. If k-means is used for the region identification for example, the modeling

time using the disC method is reduced from 12.79 s to 4.48 s.

Along with the test-bench, the model and the input signal are compiled into a single executable.

The elapsed compiling time is presented in Table 7.6. This table holds as well for each HA the run-

time of the generated executable, the maximum output error max(δy), and the maximum relative

output error max(δy,r). As observed, all these values seem to lie close to each other for the various

models. However, as illustrated in Fig. 7.18, the disC method yields the best results.

As shown in Fig. 7.18, the output error (δy) of the model generated with the disC method exhibits

less deviation than the models generated using the remaining methods. However, for this example,

this model yields larger peaks during the transitions between the locations as illustrated in the

second row of Fig. 7.18. In general, all four methods are suited for the creation of good models.

Compared to the Verilog-A model from Section 7.1.5, the simulation using the SystemC-AMS

models consumed less time. The simulation for the sinus signal consumed 0.21 s for the Verilog-A

model, which is larger than the simulation time of the SystemC-AMS models which ranges between

0.177 and 0.136 s, while maintaining nearly the same output errors. However, contrarily to the

Verilog-A models which are compiled separated from their test-bench, the SystemC-AMS models



7.1. Running Example: Second Order Lowpass Filter 153

Fig. 7.18. Simulation results of the 4 generated SystemC-AMS models with Vnin = 4·sin(2πt) V. In

the first row, the output error δy is plotted, while in the second row the output voltages

at Vnout of the models are compared to the output of the netlist.

are recompiled every time the input signal in the test-bench is changed. On the other hand, the

SystemC-AMS models can be easily extended as stated in Section 5.1.2 to cover the deviations

during the modeling process, thereby allowing for symbolic simulations with ranges in the inputs

and the initial conditions on top of modeling the system behavior with parameter variations.

7.1.7 Fourth Order Lowpass Filter

Till now, the reduction order was set to two in the previous models. Increasing the reduction

order in the example from Section 4.1 makes little sense, as the primary aim of the introduced

methodology is to create an abstract model with a reduced order. However, in order to illustrate

the presented approach from Chapter 4, a fourth order model was created by connecting to lowpass

filters in series like in Sections 5.3 (see Fig. 5.18). In contrast to Sections 5.3, the two Spice netlists

were connected and the obtained system was sampled and abstracted as one unit. Thus, the overall

system has an order of r = 28, 34 transistors, and n = 44 nodal variables. An abstract HA in

Verilog-A was generated with a reduction order set to m = 4, the grdV method , and with jump

functions. The remaining settings are identical to the settings for the models from Section 7.1.5.

The reduced state space of the system is illustrated in Fig. 7.19

The two filters are connected in series. The first filter has Vdd set to +1 V, while Vss is set to

−1 V, thereby limiting Vnout to the range [−1, 1] V. The output voltage Vnout of the second filter

is [−1.65, 1.65] V, thus, this filter is similar to the running example from Section 4.1. However, in

contrast to the filter from Section 4.1, the capacitors C1 and C2 are set to 0.001µF and 0.01µF for

the second filter. As both filter have a gain of -0.88, the second filter will never go into limitation.

Hence, the overall circuit has only three locations, in contrast to the compositonal model from

Sections 5.3, which has for each filter three locations, thereby in total nine location (similar to

product automaton). As observed in Fig. 7.19, the current location, which is determined by the

current value of xλ and its position with respect to the halfspace guards (see grdV method), is
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(a) (b)

Fig. 7.19. Sλ space of the generated abstract HA with three location. The first three dimensions

are shown in (a), while (b) shows the forth dimension versus the first two dimensions.

mainly affected by the current value of xλ,2.

For an input step function of amplitude Vnin = −3 V, the results of the simulation of the Verilog-

A as well as the Spice netlist are illustrated in Fig. 7.20. The first column shows the voltages of the
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Fig. 7.20. Simulation results of the Spice netlist and the abstract HA. The first column shows

voltages to the first filter, while the second column shows the voltages of the second

filter. The purple vertical lines indicate when the HA changes the current location.

first filter, while the voltages at the second column correspond to the second filter. As observed,

the first filter reaches saturation, in contrast to the second filter which stays in the linear region.

While the voltage at the negative terminal of the operation amplifier corresponding to the second

filter (Vneg2) is accurately modeled, Vneg corresponding to the first filter exhibits large deviations.

These deviations can be reduced by either increasing the number of locations or the order of the
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abstracted HA.

The guards in the previous example were identified via the distance method and modeled as

halfspaces. The examination of several aspects has been skipped in this dissertation for simplicity.

This includes the over approximation of the intersection method compared to the distance method

during the guard identification for HAs with large reduction orders.

7.2 Simple Circuit With a Diode

In Section 4.5.4, it was stated that the input can be modeled as an additional state in the Sλ space.

This is sometimes necessary, especially if the system behavior varies significantly with the values

of the inputs of the system. To emphasize this point, consider the netlist from Fig. 7.21.

Fig. 7.21. Spice netlist containing a diode with a saturation current set to 100 fA.

Depending on the diode, the circuit from Fig. 7.21 exhibits a switching behavior between charging

the capacitance when the diode conducts the current, and discharging the capacitance once the

diode blocks the current. This netlist is provided to Vera with a reduced order set to m = 1.

(a) (b)
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Fig. 7.22. Modeling the circuit in the Sλ space with the input as an additional state.

In Fig. 7.22a, Amcvis (Section 4.2) is used to examine the sampled data. As observed, when

plotting the output of the system versus the input and real part of the only eigenvalue, a clear
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distinction in the behavior of the circuit can be observed, as the colors of the points are set

according to the eigenvalue, and the behavior of the system varies depending on the value of Vnin.

The system is then abstracted via Elsa to a HA for the use with Cora. In Fig. 7.22b, the result of

the location identification on the same previously used dimensions can be observed. Two locations

have been thereby identified. The system at hand is modeled with polytopic guards and invariants.

Moreover, the jump functions are to be considered. The result in the Sλ space before adjusting the

location by the jump functions is illustrated in Fig. 7.22c. Note that xλ,2 represents the input of

the system that has been modeled as a state according to Section 4.5.4. As observed in Fig. 7.22c,

to distinguish the locations of the HA, it is not enough to consider only xλ,1, but both states must

be considered simultaneously.

A reachability analysis has been performed in Cora using the generated model. The result of this

analysis for a ramp at the input of the system, as shown in Fig. 7.23a, is illustrated in Fig. 7.23b.

Both figures hold as well the simulation of the Spice netlist. Moreover, at time t = 0 s, the
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Fig. 7.23. Result of the reachability analysis (b) at the output node of the system for an input

voltage shown in (a).

initial voltage at the capacitance has been set to Vnout = 1.5 V. As observed in Fig. 7.25, the

abstract HA manifests a similar behavior as the original Spice netlist. In Fig. 7.24, the result of the

reachability analysis is illustrated in the Sλ space which is illustrated against the location variable

loc ∈ {g1r1, g2r1}. The system starts at xλ,1 = 1.5 at location g1r1. The reachable set Rg1r1 then

intersects the guard grd1:g1r1→g2r1 at xλ,1 = [0.273, 0.279] and xλ,2 = [0.84, 0.85]. At this instance

a jump is performed into the next location g2r1, a reset is applied on the xλ variables (Eq. (4.33)),

and the reachability analysis is continued in the next location of the HA.

A second reachability analysis is performed with an uncertain initial state for the variable Vnout =

[1, 2] V. The result of the analysis is illustrated in Fig. 7.25b. Moreover, Fig. 7.25a presents the Sλ
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Fig. 7.24. Result of the reachability analysis with illustrated in Sλ space drawn versus the location

variable loc ∈ {g1r1, g2r1}.

space with the adjusted locations of the HA (see Section 4.5.9). As observed, the system starts at

xλ,1 = [1, 2]. The reachable set Rg1r1 then intersects the guard grd1:g1r1→g2r1 at xλ,1 = [0.22, 0.32]

and xλ,2 = [0.8, 0.9]. A jump is then performed into the second location g2r1 with the new reachable

set Rg2r1 starting at the marked region (moved due to jump functions). The reachability analysis

continues at this location until the simulation time elapses.

-0.5 0 0.5 1 1.5 2 2.5 3 3.5 4
-5

0

5

0 0.05 0.1

0

0.1

0.2

(a)

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0

1

2

3

4

(b)

Fig. 7.25. Result of the reachability analysis at the (c) output of the system and (a) in the Sλ space

for an input Vnin as shown in Fig. 7.23a with Vnout = [1, 2] V.

7.3 GmC Filter

In this section, an industrial full differential second order GmC filter is abstracted with the proposed

methodology into a HA in Verilog-A and SystemC-AMS syntax. An overview of the circuit is

shown in Fig. 7.26. The circuit consists in total of 46 transistors and 38 nodes, and thus has n = 38

variables in the So space. The initial dynamic order of r = 26 of the netlist is reduced by Vera

to m = 2. In 243.41 s, Vera sampled 27191 points, thereby marking only 5501 of these points as
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Fig. 7.26. Schematic of a Spice netlist describing a GmC filter.

reachable. In Fig. 7.27a the reachable points are illustrated, while Fig. 7.27b holds all the sampled

points. Both figures shown the Sλ space versus the real part of the first eigenvalue. For the specified

reduction order, two complex conjugated eigenvalues are obtained.

For this example, there is great difference if all points are considered in the model abstraction

process, or only the reachable marked ones. In fact, all sample points that are not reachable might

mislead the behavioral abstraction, as for example the range of the real part of the first eigenvalue

increases significantly in case these points are considered. For the current abstraction, only the

reachable points are used. Hence, the reach filter is used to modify the Sλ space (Section 4.5.5).

(a) (b)

Fig. 7.27. The reduced state space of the system plotted versus the real part of the first eigenvalue.

In (a) only the reachable points are illustrated, while in (b) all sampled points are plotted.

The colors in both figures are controlled by the two eigenvalues of the system.

As the intention is to generate a Verilog-A model first, the grdV method (Algorithm 8) is used

here. With the sampled data at hand, Elsa is launched to generate the abstract HA. Unlike

demonstrated in Section 4.5, the modeling is performed directly in the Sλ space without using the

Svirt space. The result of the location identification is presented in Fig. 7.28a. Three locations loc ∈
{g1r1, g2r1, g2r2} have been identified by using eigenvalue clustering for the group identification

(Section 4.4.1) followed by using the Gdist method for the region identification (Section 4.4.2).

Additionally to the reach filter , the lsq filter was used. However, the Sλ space was not recalcu-

lated. The system behavior was described by using the mean values of all obtained points belonging

to a location (mean method). The invariants were specified as polytopes. The dominant guards
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Fig. 7.28. In (a) the reduced state space of the system plotted against the real part of the first

eigenvalue after the location identification is illustrated, while in (b) the identified guards

and invariants of the HA are illustrated.

were identified by the distance method (Section 4.5.7) and modeled as halfspaces. The generated

model is presented in Fig. 7.28b. The system is modeled with jump functions, which for Verilog-A

models is realized with a shift vector vs (Section 4.6.2). Finally, the model was deployed using the

grdV method in Verilog-A syntax. The overall modeling process of Elsa consumed 3.08 s.

A simulation with a sine signal of amplitude 0.5 V and offset of 1.22 V with a frequency at 1

KHz is applied at Vin. The results of the simulation is illustrated in Fig. 7.29. The result of the

simulation is illustrated in Fig. 7.29, which as well hold the Spice simulation of the original netlist.

The output error δy between the netlist and the generated HA is shown in the first row of this

figure. As observed, the output error reaches its maximum during the transitions of the location,

which is indicated by the change in vs,1 and the vertical purple lines.

In Table 7.7,the simulation results are closer examined. The modeling time in Table 7.7 includes

Table 7.7: Comparison of the abstracted Verilog-A HA and the original Spice netlist

Circuit
Model abstraction

time (s)

Run

time (s)

Time

steps

Newton

Iter.
δ̂y (V) δ̂y,r (%)

Speed

up

HA 243.41+4.01+3.08 0.14 10010 37296 0.098 9.8 125.1

Netlist - 17.41 10007 50204 - - -

δ̂ stands for the maximum value of δ.

the sampling time of Vera, the time needed to import the sampled data into Matlab using spaceM

(Section 3.4), and the abstraction time needed by Elsa in this order. Compared to [TH19b], the

data import time was significantly reduced. As observed in the table, the abstraction approach

yields a speed up of 125 with an acceptable accuracy. As the GmC filter has been excited with a

relative large input voltage for its design, the system has been pushed into the limiting behavior

rapidly, favoring the deviations to the netlist.

Disregarding the output error, there is a downside to the abstracted model. Due to the consider-
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Fig. 7.29. Result of a simulation performed on the generated HA and the Spice netlist. The first

row shows the output error δy, while the second row shows the voltages at the output of

both systems. The third row shows the first dimension of the shift vector vs.

able order reduction, not all internal voltages can be exactly reconstructed as shown in Fig. 7.30.

The first row of this Fig. 7.30 shows the voltages at the two internal nodes n1 and n2. As observed,
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Fig. 7.30. Result of a simulation performed on the generated HA and the Spice netlist. The first

row shows the voltages at the nodes n1 and n2, while the second row presents the voltages

Vbiq1 and Vbiq2. The subscripts N and HA denote the correspondences to the netlist and

abstract model, respectively.

the abstract model successfully reconstructed these voltages. However, for the internal voltages

Vbiq1 and Vbiq2, there is a strong deviation from the signals of the netlist. Note that the differ-

ence between these signals is nearly the same. Thus, even though the abstract model failed to

reconstruct these voltages, it preserved the difference between them. This is a result of the full

differential architecture. The nonlinear behavior disturbs both signals Vbiq1 and Vbiq2 in the same

way, which is absent in the linear location g1r1.
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Usually, the accuracy of the model can be increased by increasing the number of locations as

performed in Section 7.1.5 up till a certain degree. However, This is not always the case, especially

if the additional obtained location do not contain DC points. To demonstrate this, the GmC filter

was abstracted with the same settings as previously, with the difference that the HA was modeled

with 5 locations. This is illustrated in Fig. 7.31a, which shows the Svirt space of the GmC filter

drawn versus the real part of the first eigenvalue. In Fig. 7.31b the invariants and guards of the

HA are shown in the Sλ space. Note that the modeling time consumed by Elsa increased to 5.45 s.

(a)
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-0.5

0

0.5

1

(b)

Fig. 7.31. The (a) Svirt space drawn versus the real part of the first eigenvalue and (b) Sλ space of

the HA with 5 locations.

The same simulation as previously is performed on the generated HA. The result as well as the

result of the simulation of the Spice netlist are presented in Fig. 7.33. As observed, the output error

increased even though the HA was modeled with more locations than previously. Moreover, this

error attains its maximum values during the transition of the current location, which is indicated

by the vertical purple lines in Fig. 7.32. This can be mainly traced back to the selection of the

operating point and the position of new found guards. Since the two locations g2r1 and g2r2 have

no DC points (see Fig. 7.31a), the operating point is computed by taking the mean of the points

belonging to this location. This does not assure that the best suitable point is selected. Even

though different methods have been deployed to calculate a more suitable operating point, they are

not handled here for simplicity. One approach to solve this problem is for example to sample more

points, however, this is currently not the scope. Considering the guards, as the guards changed, the

transition between the locations occur at different instances than previously. Beside the previous

stated aspects and the errors arising during transitions, the accumulated error in a location can

be traced back to the guards as well as to the transformation, system, and input matrices (mean

method). Another downside which can be observed in Fig. 7.32, is the fluctuation of the current

location at t=0.471 s. On the other hand, the internal voltages Vbiq1 and Vbiq2 modeled by the HA

with 5 locations are slightly more accurate than obtained previously with the HA with 3 locations.

To control and decrease the error between the transitions, the invV method can be used to model
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Fig. 7.32. Result of a simulation performed on the Spice netlist and the generated HA. The HA

was generated with the grdV method with 5 locations. The first row shows the output

error between the netlist and the HA. The second row shows the output voltage Vout,

while the third row shows the internal voltages Vbiq1 and Vbiq2.

the HA in Verilog-A. Using the same settings as previously except the model description method, a

HA was generated with the invV method . For the same input voltage, a simulation was performed

on the generated HA and the original Spice netlist. The result is illustrated in Fig. 7.33. As shown,

the error during the transition of the locations decreased significantly. However, the accumulated
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Fig. 7.33. Result of a simulation performed on the Spice netlist and generated HA. The HA was

modeled with the invV method and with 5 locations.
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error increased. This is due to the fact that current location is determined by the distance to the

operating points (Algorithm 10), which often results in too early or too late transitions.

Another approach to increase the accuracy of the system and the modeled internal states, is to

increase the reduced order m, thereby gaining more internal dynamic voltages. On one hand, this

improves the exhibited behavior of the HA. On the other hand, since the current aim is to create a

HA with a significant lower order (reduction orders) compared to the netlist, a different approach is

taken that uses affine forms (Section 5.1.2). To demonstrate this, first a SystemC-AMS model was

created with the same settings as one of the previous models with the grdV method and 5 locations.

Elsa consumed 5.48 s for the generation of the HA. Note that, the SystemC-AMS version of the

grdV method passes the location variable loc during the simulation (Algorithm 11). Hence, loc can

be used to indicate the current location.

As previously, a simulation was performed on the netlist and the HA generated in SystemC-AMS

syntax. The results are illustrated in Fig. 7.34. The first row shows the output error δy between

the netlist and the generated HA. The second row shows the output voltages, while the third row

shows the internal voltages Vbiq1 and Vbiq2 of both systems. The vertical purple lines indicate a

location switch. As observed, the output of the HA exhibits deviations slight from the output of
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Fig. 7.34. Result of a simulation performed on the SystemC-AMS generated HA with 5 location

and the Spice netlist.

the netlist. Compared to the results of the Verilog-A HA with 5 locations and generated with either

method (grdV or invV ), the System-AMS model controls the error during the transition of the

location significantly better. However, there are still deviations from the behavior of the netlist,

which can be traced back to the system and transformation matrices which were calculated by the

mean method . This is as well true for the internal voltages Vbiq1 and Vbiq2.

To obtain a better model, the approach from Section 5.1.2 is used to extend the model with affine

forms from the AADD library. This is performed by hulling the elements of the matrices Aloci and

Bloci , Floci , and Lloci by the specified geometric shape. In this case for example, Aloci ∈ R2×2 has

4 dimensions corresponding to the real and imaginary values of its two eigenvalues. For simplicity,
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Fig. 7.35. Hulled eigenvalues of the sampled points of the GmC filter. For each group gj , an interval

hull Igj is used to hull the eigenvalues.

an interval hull (I) will be used here, which correspond to an affine description with a single

symbolic variable. In Fig. 7.35, the hulled eigenvalues are illustrated. With the convex hull, in this

case interval hull, at hand, the entities of the matrices are described according to Section 5.1.2.

Additionally, to compensate for the sampling performed by Vera, the sampling state step is added

to the xλ variables as an uncertainty. Moreover, the guards descriptions are extended with ifS and

elseS statements. For the generation of the model, Elsa consumed this time 5.58 s. For the same

input voltage as previously, the simulation results are illustrated in Fig. 7.36. In the third row of
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Fig. 7.36. Result of the simulation of the netlist compared to the result of a symbolic simulation

conducted on a deterministic HA with affine forms.

Fig. 7.36, the location variable loc is illustrated. As observed, fluctuations are presented in the

results, especially in the internal signals. To eliminate these fluctuations, the HA is changed from a

deterministic HA to a non-deterministic HA, by modeling the location variable loc by affine forms

and changing the if and else conditions involved with this variable into ifS and elseS conditions.

The simulation results are illustrated in Fig. 7.37.
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Fig. 7.37. Result of the simulation of the netlist compared to the result of a symbolic simulation

conducted on a non-deterministic HA with affine forms. The last row shows the location

variable loc attains a range during simulation.

As observed in Fig. 7.37, the location variable loc can attain various values in a single time step,

which makes the HA non-deterministic. This eliminates the fluctuations of the signals, and encloses

the behavior of the Spice netlist with little over approximations. The over approximations can be

reduced by using more than a single symbolic variable to model the matrices of the HAs. This

corresponds to a zonotopic description of these matrices, instead of using an interval description as

performed here.

7.4 Compositional Abstraction: Control Loop

In this section the extended approach from Section 5.3 is illustrated upon an example from the

automotive industry. The control loop from Fig. 7.38 is abstracted by performing a compositional

abstraction.

PI controller
single track 

model

compositional hybrid automaton

Fig. 7.38. Abstracted control loop consisting of a PI controller and a single track model.

Consequently, the components of the control loop, the PI controller and the single track model,

are internally abstracted by Elsa to HAs, followed by the generation of the compositional HA

(CHA) from these elements. As stated in Section 5.3, this process is completely automated. In the

following, the abstraction of the elements of the CHA are handled first separately. The generated

CHA is then presented in Section 7.4.3.
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7.4.1 Single Track Model

Fig. 7.39. Mathematical description of a single track model [SHB18].

Fig. 7.39 shows the used single track model [SHB18]. The yaw rate ψ and the slip angle β

represent the two states of the system. The steering angle δ is the input of the single track model.

With C, m, θ and v representing the tire stiffness, mass of the vehicle, moment of inertia around

the z-axis, and the constant speed of the car, respectively, the state space equations of the system

is described as: [
ψ̇v

β̇

]
=

[
− cα,vl2v+cα,hl

2
h

vΘ − cα,vlv−cα,hlh
Θ

−1− cα,vlv−cα,hlh
v2m

− cα,h+cα,h
vm

][
ψv

β

]
+

[
cα,vlv

Θ
cα,v
vm

]
δ (7.1)

As shown in Eq. (7.1), the single track model used is a linear second order system. This model

is described in Verilog-A using two equations. Still, as the intention is to use this model as a

HA in Cora, the model is abstracted by Elsa according to Chapter 4. In the first step, Vera

samples the circuit with 78106 points in 106.28 s. The data is imported into Matlab in 5.07 s. The

abstraction performed by Elsa consumed 0.39 s. The generated HA has only one location g1r1, a

single polytopic invariant, and no guards.

Two reachability analysis were performed on the abstracted model, both with a constant step

function at the input δ = 0.15 rad. The second reachability additionally considers an input deviation

of 0.1 rad, thereby the input becomes δ = [0.05, 0.25] rad. The results are presented in Fig. 7.40

for the yaw rate ψv (first column) and the slip angle β (second column). As observed, the system

has a linear behavior.

7.4.2 PI-Controller

The PI controller is abstracted next. The schematic of the controller is illustrated in Fig. 7.41.
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Fig. 7.40. Results of the reachability analysis with δ=0.15 (1st row) and δ=[0.05, 0.25] (2nd row).

Fig. 7.41. Schematic of the PI controller: Vin and Vref are the inputs. For the integral part a

finite large parasitic resistor RI2 is added to define the maximum output voltage. For

the proportional part a small parasitic capacitance Cp is added to model the timing

behavior.

The controller has two input voltages, Vin and Vref , and only one output voltage Vout. Note that

the PI controller has a capacitance at both parts: the integration and the proportional parts. At

the integration part, a large capacitance is used, while the capacitance at the proportional part is

very small. The capacitance at the proportional part is necessary to avoid working with a DAE

system with an index of nilpotency η > 1 (Appendix A.1).

The Spice netlist has n = 63 variables and a dynamic order r = 53 (Eq. (3.19)), with eigenvalues

ranging from −3.3 × 102 till −6.4 × 1011. This order is reduced to m = 2 by Vera. During a

sampling time of 551.58 s, Vera sampled 8000 points. The sampled points are illustrated in the

Svirt space plotted against the output of the system Vout in Fig. 7.42a and in the Sλ space plotted

against the real part of the first eigenvalue in Fig. 7.42b using Amcvis.

In 0.39 s, spaceM imports the sampled data into Matlab’s memory. With the sampled points

at hand, Elsa abstracts the system into a HA in 3.60 s. During this abstraction, Elsa performs

the group identification by eigenvalue clustering. To identify the regions of a group, Elsa uses the



168 7. Experimental Results

(a) (b)

Fig. 7.42. In (a) the Svirt space is illustrated versus the output of the PI controller Vout, while in

(b) the Sλ space is illustrated against the real part of the first eigenvalue λ1.

clustering method DBSCAN from Section 4.4.2 with ε specified as the minimum state step in the Sλ
space. The result of the region identification is presented in Fig. 7.43. Note that before DBSACAN
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Fig. 7.43. Result of the region identification using the DBSCAN clustering algorithm on each group.

is launched, the necessity of a region identification is analyzed based on distances between the

points of a group (Section 4.4.2). For the example, the region identification for the center location

g1r1 is skipped and therefore missing in Fig. 7.43.

For simplicity, the invariants were specified as intervals, while the guards were modeled as poly-

topes identified via the distance method in the Sλ space. Moreover, the HA is modeled with jump

functions. The resulted model is illustrated in Fig. 7.44 before the application of the jump func-

tions. As observed, 9 locations have been identified. Group g1 represents the location where the

PI controller exhibits a linear behavior. In group g3 and g2 the I-part and the P-part, respectively,

go into saturation, while in group g4 both parts become saturated.

7.4.3 Compositional Model

A compositional automaton can be generated for the control loop shown in Fig. 7.38 using the

approach from Section 5.3. Additionally to the sampled data of both systems, the single track
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Fig. 7.44. Generated HA in the Sλ space before applying the jump functions. The guards were

modeled as polytopes with a specified large thickness (volume) only for demonstration

purposes. However, the model used for simulation has considerable slimmer guards.

model and the PI controller, an option file is provided that lists the connections between the

elements. For the current example, this file specifies that the first and second input ports of the PI

controller, Vref and Vin, are from the global input and from the output of the single track model,

respectively. The input of the single track model, the steering angle δ, is the output of the PI

controller. The output of the PI controller is the voltage at the output (Vout in Fig. 7.41), and

the output of the single track model (ψv from Eq. (7.1)) are from the original state space So of

each system. The outputs of both systems are specified using Eq. (5.7). For the PI controller, the

output is simply calculated by:

Vout = ctmp,pixpi

= cloc(xλ,pi − xλ,op,pi) +
(((

((((
(((

dloc,pi(upi − uop,pi) + kloc,pi

= cloc,pi(xλ,pi − xλ,op,pi) + Vout,op

(7.2)

Note that all variables and vector in Eq. (7.2) correspond to the PI controller (pi). Similarly, the

output of the single track model (st) is calculated via:

ψv = cloc,st(xλ,st − xλ,op,st) + ψv,op , (7.3)

which represents the input to the PI controller. Thus, the control loop controls the yaw rate ψv

according to the reference voltage at Vref .

In 9.17 s, Elsa created the CHA. Note that, spaceM is integrated in the model call. Thus,

internally, Elsa first generated the HAs from each sampled data set, followed by the generation

of a CHA consisting of these HAs. The model was deployed in the form for the usage with the

parallelHybridAutomaton class from Cora.
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With the single track models speed set to 10 km/h, a reachability analysis is performed with a

unit step at Vin, the input of the PI controller. The result is illustrated in Fig. 7.45. Note that

after the solution has been calculated by Cora, the internal signals are resolved using the xλ state

variables to calculate the inputs of the systems. This is performed by using Eqs. (7.2, 7.3) to

compute the output of one system, which represents the input of the next system. Finally, the

back-transformation is as usually applied for both systems with the calculated and global inputs,

to compute all internal variables of both systems in their original state spaces.
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Fig. 7.45. Result of the reachability analysis of the compositional system illustrated upon the inputs

of the PI controller. The figure in (a) is enlarged in (b) to show the different dynamic

behaviors obtained during the simulation due to the switching of the location of the PI

controller. Note that Vref steps from 0 to 1 V at t=0 s.

As shown in Fig. 7.45, the PI controller undergoes 4 transitions, thereby changing 5 times the

dynamic behavior. Starting from the unsaturated state (g1r1), first the P-part (g3r2) then both

parts (g4r2) go into saturation. After that, the P-part reaches again a linear behavior, while the

I-part is still in the saturation mode (g2r1). Finally, both parts leave saturation (g1r1).

The various examples handled in this chapter and the obtained results show how the introduced

abstraction methodology could be used to abstract simple up till mid range circuits easily with

an acceptable accuracy. Depending on the settings used, the accuracy of the model as well as the

speed-up obtained can vary. For large circuits, a compositional approach could be used that first

models the underlying circuits, followed by generating a compositional model from the obtained

HAs, thus giving this approach the capability of scalability while preserving an acceptable accuracy.



8 Conclusion and Future Directions

8.1 Conclusion

In this dissertation, a fully automated abstraction approach was proposed that abstracts a Spice

netlist to a hybrid automaton (HA) with a finite set of locations. These HAs have a reduced order

compared to the original netlist. Moreover, they can be used for simulations with a significant

speed up factor compared to the netlist with little deviations. On top of that, the generated HAs

can be formally verified against the Spice netlist they abstract, closing thereby the modeling loop

by models which are correct by construction. By additionally considering the error between the

abstract model and the Spice netlist, the generated HA can be used for the formal verification of

the circuits using various formal methods such as reachability analysis and run time verification.

As stated, the approach is fully automated. In the behavioral abstraction process, three tools

are used: Vera, spaceM, and Elsa. The latter two are the result of this dissertation, while the

first one is a household tool partially extended to fit the needs of the abstraction methodology.

The approach first samples a netlist via Vera. Second, the sampled data points are imported into

Matlab by using the developed tool spaceM. Finally, the developed tool Elsa, which stands for

eigenvalue-based hybrid linear system abstraction, is used to model a HA from the sampled data.

The resulted HA exhibits a linear behavior in each of its locations characterized mainly by the

sampled eigenvalues.

The tools Elsa uses various unsupervised machine learning algorithms, such as clustering the

eigenvalues and the sampled data to identify the locations of the HA. Moreover, various algorithms

examine and label the sampled data, which are used to identify the invariants and guards of the HA

in the specified representations. Additional options, like filtering the sampled points or applying

jump functions, can be specified which result in different behaviors. Moreover, the number of

locations of the HA can be specified as well. In general, increasing the number of locations usually

result in more accurate models.

This dissertation systematically builds a map that links the investigated approach to the proper-

ties of the constructed HA. Several examples have been covered demonstrating various advantages

of the presented methodology, such as: a significant speed-up, a reduced system order, modeling

with parameter variation to enclosing abstraction and technology parameter variations, composi-

tional modeling of the system, formally verify the constructed models, use the abstracted models

in various verification routines, and automatically obtaining a model at system level from a cir-

cuit level description. On the other hand, the abstraction approach is also coupled with acceptable

deviations, which occur especially during the transitions of the location of the HA. Several method-

ologies were introduced that differently handle the transitions of the locations and the corresponding

obtained deviations. Moreover, the order reduction should be handled carefully, as a too aggressive
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order reduction might result in the incapability of capturing the essential behavior used to describe

the model accurately.

The presented approach overcomes the boarders between various programming languages. From

a Spice netlist, the models generated could be deployed in three various output languages. The

main target of this diversity was the focus on the formal methods, that is, for each of the deployed

model formats, a verification method can be used. The models generated in Matlab syntax can

be used in a reachability analysis performed by Cora. The Verilog-A models can be checked for

equivalence against the original Spice netlist. The models generated in System-AMS can be online

monitored and thus verified during runtime.

Finally, there are still many difficulties for the formal verification of analog and especially AMS

circuits. The stated approach proposed to abstract a netlist by a HA and use it in verification

routines. However, the abstracted model still exhibits slight deviations from the original netlist.

Even though the approach offered to compensate for the errors performed during the abstraction

of the circuit by modeling the system with parameter variations, over approximations are usually

obtained. Even though these over approximations were acceptable and well bounded, more effort

must be spent in examining and optimizing the generated models to obtain even tighter bounded

results. Thus, accurate formal verification is still a goal that future work targets to achieve.

8.2 Future Directions

With the presented methodology, small and mid range circuits could be easily abstracted. However,

the user still needs some knowledge about the circuit, to provide the correct settings, with the

reduction order being the most significant option.

For the presented methodology, there are some aspects which could be improved. Probably the

most significant one is linking the sampling tool Vera to the abstraction tool Elsa. Considering

this point from the sampling aspects, Vera could interact with the eigenvalue clustering in Elsa.

Thus, Elsa could examine the need to sample more points in specific regions of the state space.

This would drastically reduce the sampling time, as only significant locations are sampled precisely.

Considering this point from the modeling aspect, the modeling process of Elsa might be changed

to a one-the-fly one.

Another point that offers room for improvement, is the system description. At the current

time, the HAs are described linearly in their locations. This of course brings the capability of

easily scaling, especially when a compositional approach is used. However, more accurate system

descriptions might be obtained by using slightly nonlinear functions instead.

One of the major goals of this dissertation was removing the borders between the models on

system level and those on the circuit level. The presented approach proved its capability of transi-

tioning a circuit level netlist to a system level description with an acceptable accuracy. Considering

the opposite direction, and thereby the synthesis of a netlist at circuit level from a system level

description, there might be some promising directions in investigating the usage of the presented

methods.

Another major goal was to introduce an approach which is scalable. As stated in the previous

chapter, this approach utilizes various methods to attain scalability, of which the most promising one
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in the compositional abstraction. By dividing the circuit into sub-circuits, followed by abstracting

these netlist and building a compositional model from the obtained HAs, the introduced approach

could be used to handle large circuits, bringing it once again to divide and conquer.
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[Est00] D. Estévez-Schwarz, “Consistent Initialization for Index-2 Differential Algebraic Equa-

tions and its Application to Circuit Simulation,” Dissertation, Humboldt-Universität

Berlin, 2000.

[FGG+17] A. Fürtig, G. Gläser, C. Grimm, L. Hedrich, S. Heinen, H.-S. L. Lee, G. Nitsche,

M. Olbrich, C. Radojicic, and F. Speicher, “Novel metrics for Analog Mixed-Signal

coverage,” in Design and Diagnostics of Electronic Circuits & Systems (DDECS),

2017 IEEE 20th International Symposium On, IEEE, 2017, pp. 97–102.
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A Additional Descriptions

A.1 The Index of Nilpotency

Theorem A.1.1. A square matrix N , is a nilpotent matrix of index η, if:

Nη = 0 (A.1)

η is called the index of nilpotency. Nilpotent matrices have several special properties. In this

dissertation, we are only interested in the following property:

(I +N)−1 =

η−1∑
i=0

(−N)i

= I −N +N2 + . . .+ (−1)η−1Nη−1

(A.2)

For the case that Assumption 2 is not made, Eq. (3.21) becomes:[
IΛ,red 0

0 Nred

]
∆ẋs =

[
Λ 0

0 I∞,red

]
∆xs +

[
B̃Λ,red

B̃∞,red

]
∆u (A.3a)

∆y =
[
C̃Λ,red C̃∞,red

]
∆xs (A.3b)

By that, Eq. (A.3a) is divided into two parts similarly to Eq. (3.21).

Compared to Eq. (3.21), the unchanged part:

IΛ,red∆ẋλ = Λ∆xλ + B̃Λ,red∆u (A.4)

The algebraic part from Eq. (3.21) becomes as well a dynamic part:

Nred∆ẋ∞ = I∞,red∆x∞ + B̃∞,red∆u (A.5)

Eq. (A.5) can be derived over time and multiplied from the right by the nilpotent matrix Nred to

yield:

Nred
d
dt=⇒ N2

red∆ẍ∞ = NredI∞,red∆ẋ∞ +NredB̃∞,red∆u̇

= I∞,red∆x∞ + B̃∞,red∆u+NredB̃∞,red∆u̇
(A.6)

Note that B̃∞,red is considered invariant over time. With η representing the index of nilpotency

this process can be repeated η-times to yield:

Nη
red∆x

(η)
∞ = ∆x∞ +

η−1∑
i=0

N i
redB̃∞,red∆u

(i) (A.7)
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The left side of Eq. (A.7) is obviously equal to zero (see Eq. (A.1)). Thus, x∞ is uniquely determined

by:

∆x∞ = −
η−1∑
i=0

N i
redB̃∞,red∆u

(i) (A.8)

Notice the difference between Eq. (A.2) and Eq. (A.8).

The remaining algorithm remains unchanged. Only the back-transformation in Elsa is affected by

this change. For that, first consider Eq. (3.16) which states the relationship between the So and

Ss space. In Eq. (3.27), this equation was extended to yield a relationship between So, Sλ and S∞
which represents the origin of the back-transformation. Instead of changing Eq. (3.27) to Eq. (4.9),

Eq. (3.27) is changed to:

∆x = Fλ∆xλ + F∞∆x∞

= Fλ∆xλ − F∞
η−1∑
i=0

N i
redB̃∞,red∆u

(i)
(A.9)

By replacing Eq. (4.9) by Eq. (A.9), the approach stated in Chapter 4 can be used.

A.2 Similarity Transformations With Complex Eigenvalues

Sometimes it is desired to describe a system without complex values. Consider a diagonal matrix

A with the complex eigenvalue λ1 = σ1 + jω1 and its conjugate λ2 = σ1 − jω1 on its diagonals:

A =

[
σ1 + jω1 0

0 σ1 − jω1

]
(A.10)

Using the transformation matrix T and its inverse T−1:

T =

[
1 −j
−1 −j

]
T−1 =

[
1
2 −1

2
j
2

j
2

]
(A.11)

A can be transformed to a matrix with only real values:

T−1AT =

[
σ1 ω1

−ω1 σ1

]
(A.12)



B Core of SpaceM

1 // Author: Ahmad Tarraf

2 // Date: 28.01.2019

3 // last review 03.06.2020

4

5 // syntax spaceM: [G,El,Er,C,D,Dim ,INames ,DC,Reach ,ReachSlew ,inputMatrix ,outMatrix

,Odim ,Idim ,Xdim ,Xsdim ,Boxid]= spaceM(’rcc.gc.acv.Test ’);

6 //or call space=spaceM(’rcc.gc.acv ’); for structure mode

7 #include <iostream >

8 #include <stdlib.h>

9 #include "statespace.h"

10 #include "acv.h"

11 #include "preprocessor.h"

12 #include "msl.h"

13 #include <chrono >

14

15 int verbose; /* in msmct global definiert */

16 double predmindeltat;

17

18 void mexFunction(int nlhs , mxArray *plhs[], int nrhs , const mxArray *prhs [])

19 {

20 //Init

21 auto start = chrono :: steady_clock ::now(); // measure time

22 matlabData *spaceP = new matlabData;

23 StateSpace *stsp = new StateSpace (0);

24

25 // pass all data as a struc == 1 | or elementwise == 0

26 int strucMode = 0;

27

28 // if only one output is specified , create structure

29 if (nlhs == 1)

30 strucMode =1;

31

32 int argc = nrhs;

33 int preprocess_count = 0;

34 int argi = 1;

35 char **argv;

36 bool full = true;

37 bool onlyacv = true;

38 bool changed = true;

39 verbose = 0;

40 predmindeltat = 0;

41

42 // allocate mem:

43 argv = (char **) mxCalloc(argc , sizeof(char **));

44 argv [0] = (char *) mxCalloc (200, sizeof(char *));



187

45

46 // pass input arguments

47 for (int i = 0; i < argc; i++)

48 {

49 argv[i] = mxArrayToString(prhs[i]);

50 }

51 // fprintf(stdout , "Running spaceM on %s \n", argv [0]);

52 std::cout <<"Running spaceM on " << argv[0]<< std::endl;

53 // core function -> get data

54 std::cout <<"Reading file "<<endl;

55 try

56 { readACVFile(argv[0], stsp , spaceP);}

57 catch (std:: exception &e)

58 {

59 std::cerr << "An error occured" << e.what() << ’\n’;

60 }

61 std::cout <<"Reading finished "<<endl;

62 auto pause1 = chrono :: steady_clock ::now(); // measure time

63 std::cout << "Elapsed time: " << chrono :: duration_cast <chrono ::seconds >(

pause1 - start).count () << " sec" <<std::endl;;

64 // pass data to matalb

65 // *********************

66

67 std::cout <<"Copying data to matlab "<<endl;

68 if (strucMode == 0)

69 {

70 // 1) matricies

71 plhs [0] = spaceP ->Copyvalue("Graph");

72 plhs [1] = spaceP ->Copyvalue("Eigvleft");

73 plhs [2] = spaceP ->Copyvalue("Eigvright");

74 plhs [3] = spaceP ->Copyvalue("center");

75 plhs [4] = spaceP ->Copyvalue("d");

76

77 // 2) Names

78 plhs [5] = spaceP ->CopyStrArray("dimensions");

79 plhs [6] = spaceP ->CopyStrArray("InputNames");

80 //plhs [5]= spaceP ->CopyStrArray (" XStateNames ");

81 //plhs [6]= spaceP ->CopyStrArray (" X_sStateNames ");

82

83 //3) vectors

84 plhs [7] = spaceP ->Copyvalue("DC");

85 plhs [8] = spaceP ->Copyvalue("Reach");

86 plhs [9] = spaceP ->Copyvalue("ReachSlew");

87 plhs [10] = spaceP ->Copyvalue("inputMatrix");

88 plhs [11] = spaceP ->Copyvalue("outputMatrix");

89

90 // 4) Scaler

91 plhs [12] = spaceP ->Copyvalue("Outputdim");

92 plhs [13] = spaceP ->Copyvalue("Inputdim");

93 plhs [14] = spaceP ->Copyvalue("XStatesdim");

94 plhs [15] = spaceP ->Copyvalue("X_sStatesdim");

95 plhs [16] = spaceP ->Copyvalue("BoxId");

96 plhs [17] = spaceP ->Copyvalue("p2p");

97 free(spaceP);
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98 }

99 // pass all at once

100 // create Strucutre array:

101 else

102 {

103 mxArray *G, *El , *Er , *C, *D, *Dim , *INames , *DC , *Reach , *

ReachSlew , *inputMatrix , *outputMatrix ,*Odim ,*Idim , *Xdim , *

Xsdim , *BoxId , *p2p;

104 const char *fieldnames [] = {"Graph", "Eigvleft", "Eigvright",

105 "center", "d", "dimensions", "inputNames", "DC", "Reach",

106 "ReachSlew", "inputMatrix","outputMatrix", "Outputdim",

107 "Inputdim", "XStatesdim", "X_sStatesdim","BoxId","p2p"};

108

109 G = spaceP ->Copyvalue("Graph");

110 El = spaceP ->Copyvalue("Eigvleft");

111 Er = spaceP ->Copyvalue("Eigvright");

112 C = spaceP ->Copyvalue("center");

113 D = spaceP ->Copyvalue("d");

114 Dim = spaceP ->CopyStrArray("dimensions");

115 INames = spaceP ->CopyStrArray("InputNames");

116 DC = spaceP ->Copyvalue("DC");

117 Reach = spaceP ->Copyvalue("Reach");

118 ReachSlew = spaceP ->Copyvalue("ReachSlew");

119 inputMatrix = spaceP ->Copyvalue("inputMatrix");

120 outputMatrix = spaceP ->Copyvalue("outputMatrix");

121 Odim = spaceP ->Copyvalue("Outputdim");

122 Idim = spaceP ->Copyvalue("Inputdim");

123 Xdim = spaceP ->Copyvalue("XStatesdim");

124 Xsdim = spaceP ->Copyvalue("X_sStatesdim");

125 BoxId = spaceP ->Copyvalue("BoxId");

126 p2p = spaceP ->Copyvalue("p2p");

127 std::cout <<"Creating structure "<< endl;

128 plhs [0] = mxCreateStructMatrix (1, 1, 18, fieldnames);

129

130 mxSetFieldByNumber(plhs[0], 0, 0, G);

131 mxSetFieldByNumber(plhs[0], 0, 1, El);

132 mxSetFieldByNumber(plhs[0], 0, 2, Er);

133 mxSetFieldByNumber(plhs[0], 0, 3, C);

134 mxSetFieldByNumber(plhs[0], 0, 4, D);

135 mxSetFieldByNumber(plhs[0], 0, 5, Dim);

136 mxSetFieldByNumber(plhs[0], 0, 6, INames);

137 mxSetFieldByNumber(plhs[0], 0, 7, DC);

138 mxSetFieldByNumber(plhs[0], 0, 8, Reach);

139 mxSetFieldByNumber(plhs[0], 0, 9, ReachSlew);

140 mxSetFieldByNumber(plhs[0], 0, 10, inputMatrix);

141 mxSetFieldByNumber(plhs[0], 0, 11, outputMatrix);

142 mxSetFieldByNumber(plhs[0], 0, 12, Odim);

143 mxSetFieldByNumber(plhs[0], 0, 13, Idim);

144 mxSetFieldByNumber(plhs[0], 0, 14, Xdim);

145 mxSetFieldByNumber(plhs[0], 0, 15, Xsdim);

146 mxSetFieldByNumber(plhs[0], 0, 16, BoxId);

147 mxSetFieldByNumber(plhs[0], 0, 17, p2p);

148 // mxDestroyArray(G); mxDestroyArray(El);

149 // mxDestroyArray(Er); mxDestroyArray(C);
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150 // mxDestroyArray(D); mxDestroyArray(Dim);

151 // mxDestroyArray(INames); mxDestroyArray(DC);

152 // mxDestroyArray(Reach); mxDestroyArray(ReachSlew);

153 // mxDestroyArray(inputMatrix); mxDestroyArray(Idim);

154 // mxDestroyArray(Xdim); mxDestroyArray(Xsdim);

155 // mxDestroyArray(BoxId);

156 }

157

158 // finalise

159 auto end = chrono :: steady_clock ::now(); // measure time

160 std::cout << "Elapsed time: " << chrono :: duration_cast <chrono ::seconds >(

end - start).count() << " sec" <<std::endl;;

161

162 std::cout << "Successful terminated" << endl;

163 }



C Spice Netlist of the Operation Amplifier

The schematic of the operation amplifier used in Section 4.1 is illustrated below:

Fig. C.1. Schematic of the operation amplifier used in Fig. 4.2 from Section 4.1.
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The corresponding test bench which can be used for Vera as well as for Gnucap is stated bellow:

Listing C.1: Test bench

1 spice

2

3 .param vdd 1.7

4 * .verilog

5 * load ./rc.so

6 * paramset myrc rc; .c=3n; .r=200k; endparamset

7 * myrc rc1 (nin ,nout1 ,0);

8 * spice

9

10 * for Vera

11 V1 nin 0 0

12

13 R1 nin nin2 100k

14 C1 nin2 0 0.01u

15 R2 nin2 neg 1000k

16 R3 nout neg 1000k

17 C2 nout neg 0.1u

18

19 vvdd vdd 0 dc=’3.3/2’

20 vvref vref 0 dc=’0’

21 vvdd 0 vss dc=’3.3/2’

22 iref vdd bbias 5u

23

24 .include opIN_offset2e6_67MV.gc

25 * gnd inneg inpos out bias vdd

26 xI2 vss neg 0 nout bbias vdd opIN_offset2e6_67MV

27

28 * .options noccons

29 *.print tran v(nodes) hidden (0)

30

31 ** verification cut here **

32 * replace V1 to see something happen.

33 *.print dc v(nodes) v(nout)

34 V1 nin 0 sin(frequency=1, amplitude =18, offset =0)

35 *V1 nin 0 pulse iv=0 pv=9 rise =200u delay =2000u

36

37 .print tran v(nout) V(nin) v(nodes)

38

39 .op

40 .tran .5m 3000m > orginal.gc.acs

41 .end



D Generated Models in Different Output

Languages

D.1 Matlab (Cora) Model of the Running Example

For the running example from Section 4.1, several models were created in various programming

languages. An example of a Matlab model is given in Listing D.1.

Listing D.1: Abstracted Matlab (Cora) model of the running example

1 %System @ group 1 region 1

2 A1 = [ .. .. ; .. .. ] ;

3 B1 = [ .. ; .. ] ;

4 Sys = linearSys('linearSys ',A1 ,B1);

5 inv = interval ([ ..; .. ],[ .. ; .. ]) ;

6 guard1 = halfspace ([ .. ; .. ], ..) ;

7 reset.A = eye(2,2); reset.b = [ .. ; .. ] ;

8 tran {1} = transition( guard1 , reset ,2) ;

9 guard2 = halfspace( [ .. ;.. ], ..) ;

10 reset.A = eye(2,2); reset.b = [ .. ; .. ] ;

11 tran {2} = transition( guard2 , reset ,3) ;

12 locs {1} = location('1 -> g1r1',inv ,tran ,Sys);

128 HA = hybridAutomaton(locs);

185 HA = reach(HA ,options);

191 trans.state {1}.F = [ .. ..; ...

365 X_space.X=backtransformation(trans ,HA ,..);

As observed, the system and input matrices are initialized at lines 2 and 3, respectively. On line 5,

the invariant is initialized, in this case as an interval hull. Since g1r1 has 2 guards, two transitions

are defined on lines 8 and 11. Each transition hosts the guards, in this case defined as halfspaces,

and their corresponding jump functions which are defined by the reset structure. Moreover, the

transitions also contain the target location. For example the first transition on line 8 targets g2r1

(locs{2}). Note that the target locations on lines 8 and 11 are specified as doubles. The model

abstraction approach makes sure that these numbers are unique and distinct. The name of the

location, invariant, transitions, and system description are passed to the location cell array locs

at line 12. For the reaming two locations, a similar initialization is performed. The cell array

locs is passed to the hybrid automaton class at line 128. At line 185, a reachability analysis is

performed with the previously specified HA in Cora. After the analysis finishes, the results are

finally transformed at line 365 from the Sλ space to the So space using the transformations matrices

and operating points stored in trans.
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D.2 Verilog-A Model of the Running Example

An example of a Verilog-A model for the running example is given in Listing D.2 using the grdV

method . The explanation of the model is stated in Section 4.6.2.

Listing D.2: Abstracted Verilog-A model of the running example
1 // Creat ion opt ions −−−−−−−−−−−−−−−−−−−−−−−−−
2 //

3 // Name o f source f i l e : r c cT r an s i s t o r s g c

60 //−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
61 ‘ i n c l u d e ” d i s c i p l i n e . h”

62 ‘ i f d e f insideADMS

63 ‘ d e f i n e P(x ) x

64 ‘ d e f i n e INITIAL MODEL @( i n i t i a l mod e l )

65 ‘ e l s e

66 ‘ d e f i n e P(p)

67 ‘ d e f i n e INITIAL MODEL @( i n i t i a l s t e p )

68 ‘ e n d i f

71 module rcc ( nin , nout ) ;

72 inout nin , nout ;

73 e l e c t r i c a l nin , nout ;

74 //Xs system va r i a b l e s

75 r e a l A11 ‘P ( ask=”yes ” ) ;

76 r e a l A21 ‘P ( ask=”yes ” ) ;

192 e l e c t r i c a l x lam1 ;

193 e l e c t r i c a l x lam2 ;

194 r e a l X xI2 net1 ‘P ( ask=”yes ” ) ;

210 r e a l l o c ‘P ( ask=”yes ” ) ;

211 analog begin

212 xSh i f t 1 = −4.793030e−03 ;

213 xSh i f t 2 = −4.793020e−04 ;

214 i f ( (1 .139373 e+01)∗(V( x lam1 ) − xSh i f t 1 ) + (0 .000000 e+0)∗(V( x lam2 ) − xSh i f t 2 ) < −1.934276 e+01 )

215 begin

216 l o c = 22 ;

217 xSh i f t 1 = −1.719380 e+00 ;

218 xSh i f t 2 = 1.828060 e+00 ;

219 i f ( (−9.727910 e+00) ∗(V( x lam1 ) − xSh i f t 1 ) + (−0.000000 e+00) ∗(V( x lam2 ) − xSh i f t 2 ) < −9.810597e−01

)

220 l o c = 11 ;

221 end

234 i f ( debug == 1 && loc == 11)

235 begin

236 i f ( ( ( 1 . 0 e+00) ∗(V( x lam1 ) − xSh i f t 1 ) + (0 . 0 e+00)∗(V( x lam2 ) − xSh i f t 2 ) > 1.728103 e+00) | |
237 ( ( 0 . 0 e+00)∗(V( x lam1 ) − xSh i f t 1 ) + (1 . 0 e+00)∗(V( x lam2 ) − xSh i f t 2 ) > 5.608539 e+00) | |
238 ((−1.0 e+00) ∗(V( x lam1 ) − xSh i f t 1 )+ (0 . 0 e+00) ∗(V( x lam2 ) − xSh i f t 2 ) > 1.697667 e+00) | |
239 ( ( 0 . 0 e+00)∗(V( x lam1 ) − xSh i f t 1 ) + (−1.0 e+00) ∗(V( x lam2 ) − xSh i f t 2 ) > 5.785191 e+00) )

240 $ s t robe ( ”out o f l o c %f ” , l o c ) ;

241 end

277 i f ( l o c == 11)

278 begin

279 A11 = −1.039866 e+01 ;

280 A21 = 0.000000 e+00 ;

281 A12 = 0.000000 e+00 ;

282 A22 = −1.099663 e+03 ;

283 B11 = −9.145890 e+00 ;

284 B21 = 9.999631 e+02 ;

285 xSh i f t 1 = −4.793030e−03 ;

286 xSh i f t 2 = −4.793020e−04 ;

287 uOp = 0.000000 e+00 ;

360 end

361 i f ( l o c == 22)

362 begin

363 A11 = −1.867446 e+01 ;

364 A21 = 0.000000 e+00 ;

588 I ( x lam1 ) <+ −1∗ s c a l e ∗ddt (V( x lam1 ) ) ;

589 I ( x lam1 ) <+ sc a l e ∗(A11∗(V( x lam1 ) − xSh i f t 1 ) + A12∗(V( x lam2 ) − xSh i f t 2 ) + B11∗(V( nin ) − uOp) ) ;

590 I ( x lam2 ) <+ −1∗ s c a l e ∗ddt (V( x lam2 ) ) ;

591 I ( x lam2 ) <+ sc a l e ∗( A21∗(V( x lam1 ) − xSh i f t 1 ) + A22∗(V( x lam2 ) − xSh i f t 2 ) + B21∗(V( nin ) −
uOp) ) ;

595 X xI2 net1 = xOp1 + F11∗(V( x lam1 ) − xSh i f t 1 ) + F12∗(V( x lam2 ) − xSh i f t 2 ) + FooEoob11 ∗(V( nin ) −
uOp) ;

617 X neg = xOp22 + F221 ∗(V( x lam1 ) − xSh i f t 1 ) + F222 ∗(V( x lam2 ) − xSh i f t 2 ) + FooEoob221 ∗(V( nin ) − uOp) ;

621 end

622 endmodule
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D.3 SystemC-AMS Model of the Running Example

An example of a SystemC-AMS model for the running example is given in Listing D.3 using the

disC method . The explanation of the model is stated in Section 4.6.3.

Listing D.3: Abstracted SystemC-AMS model of the running example
1 // Creat ion opt ions −−−−−−−−−−−−−−−−−−−−−−−−−
2 //

3 // Name o f source f i l e : r c cT r an s i s t o r s g c

57 //−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
58 #pragma once

59 #inc lude <systemc>

60 #inc lude <systemc−ams>

61

62 SCA TDF MODULE( HA TDF rcc )

63 {
64 s c a t d f : : s c a i n<double> i n n i n ;

65 s c a t d f : : s ca out<double> out nout ;

66

67 HA TDF rcc ( s c c o r e : : sc module name nm ) :

68 i n n i n ( ” i n n i n ” ) ,

69 out nout ( ” out nout ” )

70 {}
71

72 void i n i t i a l i z e ( )

73 {
74 t f = s c a u t i l : : s c a c r e a t e t a b u l a r t r a c e f i l e ( ” trace HA TDF rcc . dat” ) ;

75 s c a u t i l : : s c a t r a c e ( t f , V1 br , ”V1 br” ) ;

109 l o c = 21 ;

110 xLam(0) = 0 . 0 ;

111 xLam(1) = 0 . 0 ;

112 }
117 void s e t a t t r i b u t e s ( )

118 {
119 s e t t ime s t ep ( s c a c o r e : : s ca t ime (1 . 000000e−04, s c c o r e : : SC SEC) ) ;

120 }
121 void p roc e s s i ng ( )

122 {
123 i f ( l o c == 11)

124 {a (0 ,0 ) = −10 . 398661 ;

125 a (1 , 0 ) = 0 . 000000 ;

128 b (1 ,0 ) = 999 . 963073 ;

129 xSh i f t (0 ) = −0 . 004793 ;

130 xSh i f t (1 ) = −0 . 000479 ;

232 fooeoob (23 ,0 ) = 1 . 000000 ;

237 i f ( (1 . 139373 e+01) ∗(xLam(0) − xSh i f t (0 ) ) + (0 . 000000 e+00)∗(xLam(1) − xSh i f t (1 ) ) <

−1 . 907022 e+01 )

238 { l o c = 22 ; }
239 i f ( (−1 . 139373 e+01) ∗(xLam(0) − xSh i f t (0 ) ) + (0 . 000000 e+00)∗(xLam(1) − xSh i f t (1 ) ) <

−1 . 968965 e+01 )

240 { l o c = 21 ; }
252 }
253 i f ( l o c == 22)

254 {
500 }
501 u (0) = in n in . read ( ) − uOp(0) ;

502 xLam(0) = a (0 ,0 ) ∗(xLam(0)−xSh i f t (0 ) ) + a (0 ,1 ) ∗(xLam(1)−xSh i f t (1 ) ) + b (0 ,0 ) ∗x (0) ;

503 xLam(1) = a (1 ,0 ) ∗(xLam(0)−xSh i f t (0 ) ) + a (1 ,1 ) ∗(xLam(1)−xSh i f t (1 ) ) + b (1 ,0 ) ∗x (0) ;

504 xLam(0) = xLam(0) + xSh i f t (0 ) ;

505 xLam(1) = xLam(1) + xSh i f t (1 ) ;

507 xI2 net1 . wr i t e ( xOp(0) + f (0 , 0 ) ∗(xLam(0) − xSh i f t (0 ) ) + f (0 , 1 ) ∗(xLam(1) − xSh i f t (1 ) ) +

fooeoob (0 ,0 ) ∗( i n n i n . read ( ) − uOp(0) ) ) ;

528 neg . wr i t e ( xOp(21) + f (21 ,0 ) ∗(xLam(0) − xSh i f t (0 ) ) + f (21 ,1 ) ∗(xLam(1) − xSh i f t (1 ) ) +

fooeoob (21 ,0 ) ∗( i n n i n . read ( ) − uOp(0) ) ) ;

534 }
535 pub l i c :

536 s c a u t i l : : s ca matr ix<double> a , b , c , d , f , fooeoob ;

537 s c a u t i l : : s c a v e c t o r<double> xOp , uOp, xSh i f t ;

538 i n t l o c ;

539 s c a u t i l : : s c a v e c t o r<double> xLam, u , y ;

568 s c a t d f : : s c a t r a c e v a r i a b l e<double> nin ;

569 } ;
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