Formal Abstraction and Verification of Analog

Circuits

Dissertation

zur Erlangung des Doktorgrades
der Naturwissenschaften

vorgelegt beim Fachbereich Informatik und Mathematik
der Johann Wolfgang Goethe-Universitit

in Frankfurt am Main

von
Ahmad Tarraf
aus

Rinteln, Deutschland

Frankfurt 2020
(D 30)

vom Fachbereich Informatik und Mathematik der Johann Wolfgang
Goethe-Universitiat als Dissertation angenommen.

Dekan
Prof. Dr. Lars Hedrich

Johann Wolfgang Goethe-Universitat

Gutachter
Prof. Dr. Lars Hedrich

Johann Wolfgang Goethe-Universitat

Prof. Dr. Christoph Grimm

Technische Universitat Kaiserslautern

Datum der Disputation

19. Januar 2021

Foreword

This dissertation summarizes my research during the last 3 years at the institute of computer
science in the design methodology group of the Goethe University in Frankfurt.

First, I would like to thank my supervisor prof. Lars Hedrich for his dedicated support and
guidance. The meetings and conversations we had, were vital in inspiring me to think outside
the box and from multiple perspectives. Without your guidance, this work would not be possible.
Moreover, I am grateful to all of those with whom I have had the pleasure to work with at our

institute and our project partners.

I want to thank all my teachers and professors that thought and encouraged me throughout my
academic carrier. I am sitting on your shoulders. Hopefully someday I can help others to see
further as well.

The direction our lives take is guided through a lot of consequent decisions. We choose a major
part of these decisions to achieve the outcome we desire and think of as the best. During early age
however, our parents take these decisions, enriching us with their hopes and dreams. For that, I
want to thank my mother Nohad and my father Hassan for helping me become the person I am
today. I am especially grateful to you mother for opening my eyes towards the future. Without
your guidance, I would not be the person I am today. You have thought me more I can even express
in words.

Special thanks to my brother Ali and my two sisters as well. I am grateful that you are a part
of my life. Well brother, who thought that we both would follow academic careers and get so far.
But I guess this is life, as a kid you dream to become a pilot, during your early twenties you dream
of becoming an inventor and decide to study engineering, and today you write a dissertation about
analog circuits. Funny how the sails we set for our course are changed by the winds of life.

Finally, I want to thank my friend Saskia Panthen for constantly supporting and encouraging me

to follow my dreams. Thank you for being a part of my life.

Ahmad Tarraf

www.orcid.org/0000-0002-9174-5598
® www.em.cs.uni-frankfurt.de
ﬂ www.researchgate.net/profile/Ahmad_Tarraf3

https://orcid.org/0000-0002-9174-5598
www.orcid.org/0000-0002-9174-5598
http://www.em.cs.uni-frankfurt.de/
www.em.cs.uni-frankfurt.de
https://www.researchgate.net/profile/Ahmad_Tarraf3
www.researchgate.net/profile/Ahmad_Tarraf3

Abstract

In this dissertation the formal abstraction and verification of analog circuits is examined. An
approach is introduced that automatically abstracts a transistor level circuit with full Spice accuracy
into a hybrid automaton (HA) in various output languages. The generated behavioral model
exhibits a significant simulation speed-up compared to the original netlist, while maintaining an
acceptable accuracy, and can be therefore used in various verification and validation routines. On
top of that, the generated models can be formally verified against their Spice netlists, making the

obtained models correct by construction.

The generated abstract models can be extended to enclose modeling as well as technology de-
pendent parameter variations with little over approximations. As these models enclose the various
behaviors of the sampled netlists, the obtained models are of significant importance as they can
replace several simulations with just a single reachability analysis or symbolic simulation. More-
over, these models can be as well be used in different verification routines as demonstrated in this

dissertation.

As the obtained models are described by HAs with linear behaviors in the locations, the abstract
models can be as well compositionally linked, allowing thereby the abstraction of complex analog

circuits.

Depending on the specified modeling settings, including for example the number of locations of
the HA and the description of the system behavior, the accuracy, speedup, and various additional
properties of the HA can be influenced. This is examined in detail in this dissertation. The under-
lying abstraction process is first covered in detail. Several extensions are then handled including
the modeling of the HAs with parameter variations. The obtained models are then verified using
various verification methodologies. The accuracy and speed-up of the abstraction methodology is
finally evaluated on several transistor level circuits ranging from simple operational amplifiers up

to a complex circuits.

Zusammenfassung

Die formale Verifikation von analogen Schaltungen und insbesondere die von analogen Mixed sig-
nal (AMS) Schaltungen, ist ein Forschungsgebiet, dass in unserer Zeit zunehmend an Wichtigkeit
gewinnt. In erster Linie ist dies darauf zuriickzufiihren, dass die Zahl von Applikationen von sicher-
heitskritischen Systemen stetig zunimmt. Da bei diesen Applikationen das Eintreten von Fehlern
verheerende Folgen hatten, miissen eben diese Fehler ausgeschlossen werden. Eine Moglichkeit hi-
erfiir bietet die formale Verifikation, welche eine mathematischen Beweis fiir die korrekt Funktion
eines Systems liefert. Im Vergleich zu digitalen Systemen, bei denen die Verifikation ein standard-
isierter Bestandteil des Entwurfsprozesses ist, ist die Verifikation von analogen Systemen noch weit
entfernt von diesem Zustand. Dies ist in erster Linie auf zwei Probleme zuriickzufithren. Das wohl
bekannteste Problem fiir die formale Verifikation im analogen Bereich ist die Zustandsraumezplo-
sion. Durch die hohe Anzahl der kontinuierlichen Zusténde, welche mit der Grofie der Systemen
beinahe exponentiell mit wichst, scheitern die meisten Ansétze daran, einen formalen Beweis fiir

die Funktionalitit eines Systems zu liefern.

Wiéhrend im digitalen Bereich die Signale durch den diskreten Wertebereich beschrinkt sind,
konnen analoge Signale in der Regel beliebige Werte vom kontinuierliche Wertebereich annehmen.
Dieses Problem wird in der vorliegenden Dissertationen als kontinuierliches Explosions-Problem
bezeichnet. Beide genannten Probleme miissten gelost werden, um die formale Verifikation im

analogen Bereich zu ermoglichen.

Zurzeit dominieren in der Industrie die Simulationen in ihren verschiedenen Formen (Transienten,
Monte Carlo-, Corner-, Sweep-Simulationen, etc.) den Verifikationsprozess, wihrend die formale
Verifikation im analogen Bereich nur beschrankt zum Einsatz kommt. Zwar liefert die Simulation
eines Systems hinreichend gute Ergebnisse die es ermoglichen, dass System zu analysieren und zu
priifen, allerdings bietet diese Methode keinen formalen Beweis fiir die Funktionalitat der entwor-
fen Schaltung und kann dementsprechend nicht als formale Verifikation betrachtet werden. Kin
weiterer Begriff, der oft in diese Zusammenhang féllt, ist die Emulation. Zwar kann die Emulation
durch geeignete Hardware schneller als eine typische Simulation durchgefiihrt werden, allerdings
ist dies durch die hohe Anzahl der Zustdnde und technische Limitierungen oft nicht realisierbar.
Ahnlich wie die Simulation liefert die Emulation keinen formalen Beweise fiir die Funktionalitéit der
Schaltung, sondern fiithrt eine schnelle Validierung des Systems aus, welche auf die ausgefiihrten
Fille begrenzt ist. Auflerdem ist fiir analoge Schaltungen keine Emulation i.a. gut verfiigbar.

Ein Ansatz, der in dieser Dissertationen verfolgt wird, die Abstraktion des Systems, ermdglicht
es, die Komplexitdt der Systeme zu reduzieren und damit einen Schritt Richtung durchfiihrbarer
formaler Verifikation zu gehen. Um ein genaues Modell zu erzeugen ist es notwendig, die analoge
Schaltung auf Transistorebene zu abstrahieren. Die automatische Modellierung von analogen Schal-
tungen auf Transistorebene ist ein lange bekanntes Problem, welches bisher noch nicht zufrieden-

vi

stellend gelost werden konnte. Die meisten existierenden Abstraktionsverfahren sind in erster Linie

manuell und beanspruchen dementsprechend relativ viel Zeit.

AuBerdem kommt noch hinzu, dass die meisten Verfahren relativ ungenau Modelle liefern, selbst
dann, wenn die genutzten Verfahren automatisiert sind. Diese ungenauen Modelle sind fiir die
Verifikation ungeeignet, da sie gegeniiber der originalen Netzliste grole Abweichungen aufweisen.
Das in dieser Dissertation vorgestellte Abstraktionsverfahren, welches automatisch Modelle mit
einer hohen Genauigkeit liefert, soll diese Problem I6sen. Dabei ist der gesamte Abstraktions-
ablauf automatisiert und resultiert durch die oben genannte signifikante Simulationsbeschleunigung
gegeniiber der Spice Netzliste in einer einstellbar genauen Beschreibung der Modelle. Das Verfahren
zeichnet sich durch einen sehr hohen Abstraktionsgewinn und damit eine sehr hohe Beschleunigung
der Simulation der Modelle aus. Die erzeugten Modelle kénnen mit ihrer originalen Netzliste auf
Transistorebene verglichen werden, um die Genauigkeit und den Speedup nachzuweisen. Dazu
kommt noch, dass die Modelle ebenfalls in verschiedene Verifikationsroutinen verwendet werden

konnen, dies wird in der vorliegenden Dissertation naher erlautert.

Das Verfahren, dass in dieser Dissertation vorgestellt wird, abstrahiert eine Spice Transistorlevel
Netzliste mit voller BSIM4 Genauigkeit, von der Transistorebene auf die Systemebene, als einen
hybriden Automaten. Dabei kénnen verschiedene Einstellungen verwendet werden, welche die
Genauigkeit der Modelle beeinflussen. Die vorliegen Dissertation versucht systematisch den Kon-
struktionsweg zu erklaren, wobei im Vordergrund die Eigenschaften und Einfliisse der verwendeten
Methoden analysiert und diskutiert wird.

Die vorgestellte Methode basiert auf der Transformation des nichtlinearen Systems stiickweise
in lineare Systeme in Kronecker-Form, verbunden mit einer Dominant-Pole-Ordnungsreduktion.
Grundlegend stellt die Methode sicher, dass alle erreichbaren (nichtlinearen) Systemzusténde beriick-
sichtigt werden und bietet zudem einen formalen Beweis der Modellierungsgenauigkeit. Damit ist
das Verfahren erstmals in der Lage, vollstdndig verifizierte, schnelle Verhaltensmodelle automatisch

Zu erzeugen.

Die Modellierung des abstrakten Modells kann in wesentlich in zwei Blocke unterteilt werden.
Im ersten Block wird der Zustandsraum einer Spice Netzliste mittels eines Programmes (Vera,
dieses wurde am Institut fiir Entwurfsmethodik an der Goethe Universitat in Frankfurt am Main
entworfen) abgetastet. Grundsétzlich ist Vera ein Programm das entworfen wurde, um einen for-
malen Aquivalenzvergleich im analogen Bereich zwischen zwei Schaltungen durchzufithren. Dabei
konnen die Schaltungen entweder in Spice oder in Verilog-A beschrieben sein. Das Programm
wurde teilweise erweitert, um die oben genannten Abtastung nur einer Schaltung durchzufiihren.
Die Abtastung der Netzliste wird mit voller Spice Genauigkeit durchgefiithrt, wobei dies in einem
automatisch reduzierten Zustandsraum erfolgt. Dabei wird das System um die abgetasteten Punkte
linearisiert und die Ordnung des Systems auf ihr relevantes dynamisches Verhalten reduziert. Dies
kann entweder durch die Vorgabe einer Ordnung geschehen, oder durch die Bestimmungen des
relevanten Frequenzbereichs. Neben der Abtastung der Signale sowohl im Originalraum als auch
im reduzierten Zustandsraum, werden wesentliche Werte ermittelt, die fiir die Modellierung essen-
tiell sind. Diese Werte enthalten beispielsweise die Eigenwerte und Eigenvektoren des linearisierten
Systems, die Verbindungen zwischen den Punkten gegeben durch einen gerichteten Verbindungs-
graphen und die Transformationsmatrizen, welche die Verkniipfung zwischen den Zustandsraumen
beschreiben. Nachdem das System abgetastet wurde, erzeugt der zweite Block der Modellierung

vii

den abstrakten hybriden Automaten. Dieser Block verwendet das Programm, dass das Ergebnis
der vorgestellten Forschung darstellt: Eigenvalue Based Hybrid Linear System Abstraktion, oder
kurz FElsa.

Die hinter Flsa liegende Methode soll aus den abgetasteten Werte ein Modell erzeugen, dass als
hybrider Automat beschrieben wird. Dabei besitzt der erzeugte Automat eine Menge von diskreten
Orten (Engl. locations). In jedem Ort loc € Loc = {glrl,...} wird dabei das Systemverhalten
durch eine lineare Zustandsraumdarstellung mit einer Menge von endlichen, in der Regel kontinuier-
lichen, Zustandsvariablen beschrieben. Der hybride Automat kann sich in einem Ort loc befinden,
solange die Invariante des Ortes invj,. giiltig ist. Sobald die Invariante eines Ortes ungiiltig wird,
muss der hybride Automat den Ort verlassen. Wie der Automat den Ort verlésst, beschreiben die
Ubergiinge zwischen den Orten und die zugehorigen Sprungbedingungen. Der Automat kann einen
Ort mittels eines I"Jberganges (Engl. guard) verlassen, muss dies allerdings nicht sofort ausfiihren
sobald der Ubergang valide ist. Erst wenn die Invariante eines Ortes ungiiltig wird, muss der
Automat den U'bergang durchfithren und in den dementsprechenden aktuellen Ort wechseln.

Die Methode zur Erzeugung des hybriden Automaten geht wie folgt vor: Basierend auf den abge-
tasteten Eigenwerte des linearisierten Systems werden zunéchst Gruppen durch eine Clusteranalyse
generiert. Im Anschluss werden Gruppen in Regionen aufgeteilt, die in dem selben Bereich im Zu-
standsraum sind. Gemeinsam bilden Gruppen und Regionen die Orte des Automaten. Bestimmte
Einstellungen in FElsa, wie etwa die Gewichtungen der Eigenwerte wiahrend der Clusteranalyse,
konnen die Anzahl der ermittelten Orte beeinflussen. Die Methodik, sowie die Einstellungen die
diese Analyse beeinflussen werden in der vorliegenden Dissertation detaillierter analysiert.

Die abgetasteten Punkte werden den jeweiligen Orten zugewiesen aufgrund der Clusteranalyse.
Die Punkte, die somit zu einem Ort gehoren, werden mit Hilfe von konvexen Hiillen umschlossen.
Diese Hiillen werden im Anschluss durch geeignete geometrische Objekte (Polytope, Zonotope
oder Intervall Hiillen) représentiert und beschreiben somit die Invarianten der Orte. Zwischen
den Invarianten werden im Nachhinein die Ubergénge und die zugehérigen Sprungbedingungen
ermittelt.

In jedem grundlegend Ort wird das Verhalten des Systems durch eine lineare Zustandsraum-
darstellung beschrieben. Dabei bilden die Eigenwerte den wesentlichen Bestandteil der System-
matrix. Die Eingangsmatrix wird durch geeignete Matrizen beschrieben, welche sich durch das
Abstraktionsverfahren berechnen lassen. Dabei ist zu beachten, dass die Systembeschreibung in
einem reduzierten Zustandsraum stattfindet (Sy). Um die Werte des Systems im Originalraum
(S,) der Schaltung zu finden, ist ein Riicktransformation erforderlich, welche die Ergebnisse vom
Sy Raum zuriick in den S, Raum transformiert. Die erforderlichen Transformationsmatrizen wer-
den dabei hauptsédchlich durch die Eigenvektoren des linearisierten Systems beschrieben.

Die erzeugten abstrakten Modelle kénnen in drei verschiedenen Ausgabesprachen generiert wer-
den: Matlab (Cora), Verilog-A, und SystemC-AMS. Dabei unterscheiden sich sowohl die Beschrei-
bungen, als auch die Methodik der erzeugten Modelle je nach gewéhlter Sprache. Wahrend die
Matlab (Cora) Modelle nichtdeterministisch sind, sind die Verilog-A als auch die SystemC-AMS
Modelle deterministisch. Daher muss fiir die letzten beiden genannten Ausgabesprachen die Def-
inition des hybriden Automaten angepasst werden. So wird, je nach gewéhlter Methodik, der
aktuelle Ort des Systems entweder anhand der Invarianten unter Vernachlissigung der Uberginge,

viii

oder anhand der Ubergénge unter Vernachlissigung der Invarianten bestimmt. Die erzeugten Mat-
lab Modelle kénnen anschlieBend in einer Erreichbarkeitsanalyse mittels Cora [Alt15] analysiert
werden. Fir die SystemC-AMS und Verilog-A Modelle kénnen Simulationen mittels Standard-
Simulatoren durchgefithrt werden. Das vorgestellte Verfahren erzeugt somit aus einer Schaltung
auf Transistorebene ein Verhaltensmodell, dass auf Systemebene durch einen hybriden Automaten
beschrieben wird.

Das beschrieben Abstraktionsverfahren verwendet fiir die Bestimmung der Systemmatrizen, Ein-
gangsmatrizen und Transformationsmatrizen verschieden Methoden, die allerdings alle das linear
Modell durch Mittelwertbildung tiber viele linearisierte Abtastpunkte berechnen. Durch diese Mit-
telwertbildung kénnen Fehler in den erzeugten Modellen entstehen, welche als Abstraktionsfehler
bezeichnet werden. In der vorliegenden Dissertation wird das beschriebe Abstraktionsverfahren
erweitert, um die Abstraktionsfehler zu umgehen, indem die Schwankungen der ermittelten Werte
des linearen Modells durch eine geeignete Modellierung in das Modell mit aufgenommen werden.
Dies kann sowohl fiir die Matlab (Cora) als auch fiir die SystemC-AMS Modelle verwendet werden.
Fiir die Cora Modelle, konnen die Matrizen die zur Systembeschreibung dienen durch Matrizen-
Zonotope (matZonotope [Alt15]) oder Intervall-Matrizen ersetzt werden. Fiir die SystemC-AMS
Modelle werden die Elemente der Matrizen durch affine Formen aus der Affine Arithmetic Dicision
Diagrams (AADD) Bibliothek [RGJR17] erweitert. Die erzeugten SystemC-AMS Modelle werden
anschlieend symbolisch simuliert, wahrend die Cora Modelle weiterhin in einer Erreichbarkeits-
analyse mittels C'ora verwendet werden konnen. Somit kann das Verfahren durch Umschlieflen der
Schwankungen der Werte das Verhalten des abstrakten Modells erweitern, um den Abstraktions-
fehler zu umgehen und das System mittels Bereichsarithmetik zu verbessern. Allerdings werden
dadurch wahrend der Simulationen zu jedem Zeitschritt Wertebereich bestimmt und nicht mehr

einzelne Werte die in der Regel mit Uberapproximationen verbunden sind.

Eine zuséatzlich Erweiterung fiir das Abstraktionsverfahren ist die Modellierung der Parameter-
schwankungen, die wegen den Prozessparametern auftreten. Wie beschrieben, abstrahiert FElsa
eine Transistorlevel Schaltung zu einem hybride Automaten. Dabei kénnen die Prozessparameter-
schwankungen fiir die Elemente der Spice Netzliste angegeben werden. Dementsprechend werden
mehrere Netzlisten von Vera erzeugt, die dhnlich wie bei einer Monte Carlo Simulation die Pa-
rameter der Netzlist variieren. Alle erzeugten Netzlisten werden parallel mit Vera abgetastet und
ebenfalls parallel mittels Elsa zu hybriden Automaten abstrahiert. Die somit erzeugten Auto-
maten werden anschlieffend zu einem Automaten zusammengefithrt, welcher das Verhalten aller
Automaten beinhaltet. Dementsprechend wird ein Automat erzeugt, der die Parameterabweichun-
gen der Netzliste beinhaltet.

Ein wichtiger Aspekt der generierten Modelle ist deren Kompositionalitdt. Beispielsweise kann
eine grofle Netzliste gegebenenfalls in mehrere kleine unterteilt werden, die unabhéngig voneinan-
der zu hybriden Automaten abstrahiert werden. Falls die erzeugten Modelle in Verilog-A oder
SystemC-AMS sind, ist durch die Modularitit der erzeugten hybride Automaten die Komposition-
alitat direkt gegeben. Durch Verbinden der erzeugten Module kann somit ein komplexes System
durch einen kompositionalen hybride Automaten abstrahiert werden. Das entwickelte Programm
Elsa ist ebenfalls in der Lage einen kompositionale Automaten in Matlab fiir Cora zu generieren.
Dabei werden die Unterblocke der Schaltung separat abstrahiert und anschliefend als komposi-
tionalen Automaten beschrieben, der einem Produktautomaten dhnelt. Anschliefend kann eine

X

Erreichbarkeitsanalyse in Cora durchgefithrt werden. Somit kann ein hybrider Automat nicht nur
fiir schnelle Simulationen des analogen Blocks verwendet werden, sondern auch kompositional fiir
groflere Systeme eingesetzt werden.

Weitere Erweiterungen erlauben es, einen hybriden Automaten tiber die Optionen von FElsa zu
optimieren und somit einen Automaten zu erzeugen, der die geringste Abweichung zur Spice Net-
zlist aufweist, oder einen hybriden Automaten so zu erweitern, dass das Verhalten der realisierten
Schaltung beinhaltet wird [KTR-+20].

Wie Anfangs erwéhnt steht die formale Verifikation im Vordergrund in dieser Dissertation.
Dabei koénnen, je nach Ausgabesprache des erzeugten hybride Automaten, unterschiedliche Ver-
ifikationsverfahren verwendet werden. Wird beispielsweise die Netzliste zu einem hybriden Auto-
maten in Verilog-A abstrahiert, so kann ein formaler Aquivalenzvergleich (Equivalence-Checking)
zwischen dem Verilog-A Modell und der Spice Netzlist durchgefiihrt werden. Dies kann mittels Vera
realisiert werden. Dabei vergleicht Vera den reduzierten Zustandsraum beider Systeme. Dadurch
kann der Fehler zur Netzliste ermittelt werden und dementsprechend ein Fehlermafl angegeben
werden, welcher den Unterschied beider Systeme beschreibt. Somit ist das Abstraktionsverfahren
durch die Verifikation der erstellen Modelle abgesichert.

Fiir die Matlab (Cora) Modelle wird ein andere Ansatz verfolgt. Diese Modelle kénnen in einer
Erreichbarkeitsanalyse verwendet werden, wodurch Regionen im Zustandsraum analysiert werden
konnen (Engl. state space exploration). Zusétzlich wurde ein Model-Checking-Verfahren entwick-
elt, dass im Anschluss solch einer Analyse spezifische Eigenschaft auf deren Erfiillbarkeit iiberpriift.
Somit kann festgestellt werden, ob das System die Spezifikationen erfiillt. Durch die oben genan-
nten Erweiterungen kann das System durch einen hybriden Automaten mit Parametervariation
erzeugt werden, der sowohl die Abstraktionsfehler als auch die Parameterschwankungen durch den
verwendeten Prozess beinhaltet und somit fiir die Verifikation des Systems geeignet ist.

Wurde der hybride Automat in SystemC-AMS beschrieben kénnen Online-Monitore verwendet
werden, die es erlauben wahrend der Simulation das System auf spezielle Eigenschaften zu unter-
suchen, und im Falle einer Verletzung der Bedingung einen Fehler liefern. Ahnlich zu den Matlab
Modellen konnen die SystemC-AMS Modelle ebenfalls mit Parametervariation mittels der AADD
modelliert und anschliefend symbolisch simuliert werden. Die Online-Monitore werden dabei eben-
falls mit der genannten Bibliothek erweitert und konnen somit das Gesamtverhalten des erzeugten
Modells beobachten. Je nach Art des Modells kénnen dementsprechend verschiedene Verifika-

tionsverfahren verwendet werden, um die Funktionalitit der generierten Modelle zu gewahrleisten.

Das vorgestellte Verfahren wird anhand verschiedener Beispiele demonstriert, die von simplen
Filtern zweiter Ordnung, bis hin zu komplexen Schaltungen aus der Industrie reichen. Zuséatzlich
wird der kompositionale Ansatz anhand eines Beispieles aus der Automobileindustrie verdeutlicht,
um die Skalierbarkeit des Ansatzes zu zeigen.

Zusammengefasst wird in der vorliegenden Dissertation ein Ansatz um die formale Verifikation
im analogen Bereich zu ermdglichen beschrieben. Dieser basiert auf der Abstraktion des Sys-
tems. Durch Modellierung mittels Parametervariationen 16st der Ansatz das Problem der Unge-
nauigkeiten, die meistens mit Abstraktionsverfahren verbunden sind. Verschiedene Verifikationsver-
fahren die, basierend auf der Ausgabesprache der Modelle, verwendet werden konnen, wurden

vorgestellt. Durch die Kompositionalitdt des Verfahrens kann die Skalierbarkeit des Ansatzes real-
isiert werden. Wodurch komplexe Schaltungen im analogen Bereich verifiziert werden kénnen.

Contents

1

Introduction
1.1 Motivation e
1.2 Stateof the Art e
1.3 Contribution L
1.4 General Concept and Outline
General Basics and Principles
2.1 Geometry . . oL oL e e
2.1.1 Polytopes e
2.1.2 Z0onotopes e e e e e e
2.1.3 Imterval Hulls oo
2.2 Eigenvalues and Eigenvectors
2.2.1 The Standard Eigenvalue Problem
2.2.2 The Generalized Eigenvalue Problem
2.3 Linear and Nonlinear Systems
2.3.1 The State Space Representation of an LTI System
2.3.2 Linear Descriptor System Representation
2.3.3 Local Linearization of a Nonlinear Descriptor System
2.4 Hybrid Automata L e e
2.5 Cluster Analysis e
2.5.1 Clustering Algorithm: K-means
2.5.2 Clustering Algorithm: DBSCAN
2.5.3 Clustering Evaluation: The Silhouette Coefficient
Sampling the State Space
3.1 Computing the Nonlinear Equations
3.2 State Space Sampling e
3.2.1 DC Analysis e
3.2.2 Computing the Linear Eigenvector Matrix
3.2.3 State Space Step
3.2.4 The Consistent Solution
3.3 SUMMATY . . . o ot o e e e
3.4 From Vera to Elsa: spaceM
Elsa: Eigenvalues Based Hybrid Linear System Abstraction
4.1 Running Example Lo
4.2 Examining the Results of Vera With Amcvis
4.3 Initialization Lo
4.4 Location Identification L oo

4.4.1 Group Identification: Eigenvalue Clustering

xii Contents
4.4.2 Region Identification L Lo oo 52

4.5 System Modeling e 56
4.5.1 Calculating the Operating Points 58

4.5.2 Determining the System Description 59

4.5.3 Sorting the Locations 66

4.5.4 Modeling the Input asa State. 66

4.5.5 Sy Space Recalculation 67

4.5.6 Finding the Invariants Lo 71

4.5.7 Finding the Guards 74

4.5.8 State Space Transformation of the Guards and Invariants 84

4.5.9 Jump Functions 91

4.6 Model Creation L L 96
4.6.1 Matlab Models 96

4.6.2 Verilog-A Models 97

4.6.3 SystemC-AMS Models 103

4.7 SUMMATY . . . o o e e e e 107

5 Extended Model Abstraction 110
5.1 Modeling With Parameter Variations 110
5.1.1 HAs in Cora With Parameter Variations 110

5.1.2 HAs in SystemC-AMS With Parameter Variations 113

5.2 Modeling With Process Parameter Variations 118
5.3 Compositional HAo 124

6 Formal Verification 127
6.1 Equivalence Checking L 127
6.2 Reachability Analysis and Model Checking 134
6.3 Runtime Verification Lo 135

7 Experimental Results 138
7.1 Running Example: Second Order Lowpass Filter 139
7.1.1 Influence of the Sampled State Space From Vera 139

7.1.2 Impact of the S\ Space Manipulations 141

7.1.3 Effect of the System Description 141

7.1.4 Guards and Invariants 143

7.1.5 Verilog-A Models and the Jump Functions 146

7.1.6 SystemC-AMS Models 151

7.1.7 Fourth Order Lowpass Filter, 153

7.2 Simple Circuit With a Diode 155
7.3 GmOC Filter e 157
7.4 Compositional Abstraction: Control Loop 165
7.4.1 Single Track Model L 166

7.4.2 Pl-Controller 166

7.4.3 Compositional Model 168

8 Conclusion and Future Directions 171
8.1 Conclusion e 171

8.2 Future Directions 172

Contents xiii
Appendices 183
A Additional Descriptions 184
A.1 The Index of Nilpotency 184
A.2 Similarity Transformations With Complex Eigenvalues 185
B Core of SpaceM 186
C Spice Netlist of the Operation Amplifier 190
D Generated Models in Different Qutput Languages 192
D.1 Matlab (Cora) Model of the Running Example 192
D.2 Verilog-A Model of the Running Example 193
D.3 SystemC-AMS Model of the Running Example 194

Notations

General Notation
A/a amnon-bold letter in math font represents a scalar
A an uppercase bold letter represents a matrix

a a lowercase bold letter represents a vector. If two lowercase letters are in bold, the first
letter is the starting point of the vector, while the second one the ending point

Abbreviations

AADD affinearithmetic decision diagrams
AMS analog mixed signal

BIBO bounded input bounded output
BSIM Berkeley Short-channel IGFET Model
CH convex hull

CHA compositional hybrid automaton
CTL computational tree logic

DAE differential algebraic equation

EC equivalence checking

freq frequency

HA hybrid automaton

HAs hybrid automatons/automata

JNF Jordan normal form

KCF Weierstrass-Kronecker canonical form
LTI linear time-invariant

MC Monte Carlo

MIMO multiple input multiple output
MNA modified nodal approach

Notations

XV

ODE ordinary differential equation
S seconds
SISO single input single output
TDF timed data flow
A% volt
Variables
0 error
€ threshold for a neighborhood search radius
n index of nilpotency
i geometric multiplicity of an eigenvalue \;
A eigenvalue
z interval hull
P polytope
S state space spanned by the components of the state vector x
Seo state space spanned by the components of the state vector
Sy state space spanned by the components of the state vector x
S, state space spanned by the components of the state vector x,
zZ zonotope
A n X n system matrix
B n X k input matrix
C p X n output matrix
D p X k feedthrough matrix
E n X n mass matrix
I identity matrix
7% algebraic multiplicity of an eigenvalue \;
v maximum number of locations
vector of charge variables
u input vector
x state space vector
Yy output vector

number of inputs

number of sampled points

number of state space variables in the reduced space Sy
number of state space variables in the S, space

number of outputs

number of dynamic state space variables in the state space Ss before order reduction

1 Introduction

1.1 Motivation

In our modern world, recent technological trends have witnessed significant growth, enhancing
their influencing on our lives. These trends include the deployment of artificial intelligence in vari-
ous environments like autonomous driving, industrial automation, and human-robot collaboration.
With the rise of the internet of things (IoT) and the obstacles accompanied by it, like big data
and integration problems, artificial intelligence proves to be a game changer. Even in application
like energy management and security systems, artificial intelligence can be presented. Aside from
artificial intelligence, in general electronics devices and controllers are becoming more and more
parts of our daily lives. From circuits deployed in constantly evolving manufacturing processes to
circuits embedded in humans for the control of robots [ATA14], there seems to be no limit to the
application environment. Recent circuit are generated as self-healable electronic tattoos [WLL+19]
and are used for noninvasive and high-fidelity sensing. Thus, through various applications and
emerging technologies, electronic circuits prove themselves to be the key to an era.

These innovative technologies, regardless of their applications, are usually accompanied by com-
plex circuits or system on chip (SoC) designs. Considering the safety critical scenarios these tech-
nologies often underlie, there is a demand for the absolute reliability of not only the functionality of
the designs, but also of the fabricated circuits. New standards, such as ISO 262626 force integrated
circuit designers to invest much more effort into the verification and validation process. In some
industries, the verification task increasingly dominates the design flow with up to 70 % [BGG+09;
LAH-+15], which is a significant amount of time. Thus it’s no surprise that verification has become

one of the most important topics in the circuit design.

Formal verification, on the other hand, is only partially used in such a design flow. In contrast
to the digital design, where system verification has become part of the basic design routines, the
analog and especially the analog mixed signal (AMS) verification clearly lags behind. Moreover,
formal verification approaches lack advanced methodologies to handle formal verification on a large
scale. Thus, formal techniques do not scale well with large complex circuits. This can be traced
back to several factors, of which one of the most dominant factor is the continuous nature of
the analog domain. Compared to a digital system, which is usually modeled as a discrete event
dynamic system, an analog system has a continuous dynamic behavior, in generally specified by
differential equations. In contrast to the finite set of possible input stimuli and the various binary
sequences they induce in the digital domain, the real valued input signals of analog systems could
attain theoretically infinitely many values generating thereby infinite trajectories in the continuous
state space of the system, which challenges the verification task. Compared to the digital formal
verification methodologies, much more effort must be deployed to achieve similar advances in the

analog/mixed-signal domain.

2 1. Introduction

1.2 State of the Art

In general, mixed-signal verification can be categorized as shown in Fig. 1.1. AMS verification can
be classified according to [GXGM19; Rad16] into two approaches: formal methods and simulation-
based methods. Often, emulation is not considered, even though it can yield faster results than
traditional simulations. However, it is usually accompanied by high costs, a lot of modeling effort,

and several technological limitations especially in the analog domain.

analog/mixed-signal
verification

simulation (formal methods }

test | T~ verification
simulation simulation checking
[worst case] [Monte Carlo] [reachability] [model]
estimation simulation analysis checking

Fig. 1.1. Overview of the verification methods for analog/mixed-signal circuits.

Traditional simulation-based methods cover some test scenarios for a specific set of input stimuli
and initial conditions. These computational expensive simulations including simple simulations
enhanced by corners, sweeps, and Monte Carlo simulations, deliver a clear understanding in the
functionality of the developed circuit. However, they do not fully verify the system behavior, and
therefore cannot be considered formal methods [Gie05; RG16]. More precisely, we cannot eliminate
the possibility by performing simple simulations that the circuit might reach bad states that will
cause system failure. From a different perspective, this lies in the fact that simulation-based
methods to not completely search the state space, and that the evaluation of the results is usually
manually performed in an informal fashion. Therefore, these methods only validates a design, but
do not verify it.

Formal methods attempt to prove in a formal manner that a circuit satisfies the specified specifi-
cation and performs correct under all circumstances as desired by the circuit designer. Specifically,
the objective of formal verification is to mathematically prove the properties of a system, usually
during the design phase. This is obviously accompanied by a lot more computational effort than a
single simulation. The results obtained, are often valid over a specified range of the inputs stimuli
and cover a portion of the state space of the circuit. Due to the continuous nature of analog cir-
cuits, there are actually infinitely many possible input stimuli. However, due to the technological as
well as the environmental constraints, this aspect is usually bounded, favoring the verification over
bounded regions. Another aspect that challenges formal verification are process parameter devia-
tions. Often, nominal models are considered in the verification tasks. However, due to the process
parameter, the system can still fail as deviations emerge between the verified system behavior and
the behavior of the real circuit. Hence, the process parameters must be considered as well in the

1.2. State of the Art 3

verification task, making it an ever harder challenge. On top on that, even more challenges arise
from the sensitivity of the designed circuit to environmental factors like signal noise, temperature,
and higher order physical effects like different parasitics and current leakage [ZTB08]. Thus, there
are a lot of factors that need to be considered in the verification process.

Several publications exist that differently categorize the formal techniques. In [GXGMI19] the
terms pre- and post-silicon analog verification are used. While pre-silicon verification focuses on the
correctness of a design, post-silicon verification focuses on the verification of the fabricated circuit.
Pre-silicon verification can be classified into two approaches: formal methods and simulation-based
techniques. While [GXGM19] divides the formal methods into three categories: property checking
and monitoring, affine arithmetic, and model and equivalence checkers, [ZTB08] divides the formal
methods into four categories: equivalence checking, model checking and reachability analysis, run-
time verification, and proof-based and symbolic methods. Here, a classification similar to [Rad16] is
adapted, which classifies the formal methods into five categories: symbolic simulations, reachability

analysis, model checking, runtime verification, and equivalence checking.

Depending on the nature of the specifications, there are several methods that can be used for
the formal verification of AMS circuits. For example, in the presence of a golden model, equiva-
lence checking can be used to examine whether these systems are equivalent with respect to their
functionality. At its simplest, equivalence checking compares the input-output behavior of both
systems. This usually requires the specification of tolerances or bounds on the parameters and
signals [ZTBO08]. Hence, a failure occurs once the specified tolerance values are violated. Sev-
eral approaches exist that perform equivalence checking in the AMS domain [BHA95; SA01; HB5;
HB23; Sal02; SL10; SH10a; SH12a]. While in [BHA95] equivalence checking is performed on two
analog circuits using their transfer functions, [SA01] models the verification problem as a non-linear
optimization problem by ensuring that the implementation response is bounded within an envelope
around the specification under the influence of parameter variation. [Sal02] purposes and equiv-
alence checking at system-level, rather than at circuit-level, by partitioning the specification and
implementation codes into digital, analog, and data converter components, followed by verifying
the digital part with a SAT/BDD algorithm, the analog part by a set of rewriting rules, and the
converters between these parts by a matching procedure. However, this approach is only applicable
on simple designs as it is difficult to find appropriate rewriting rules to arbitrary classes of analog
circuits. A practical hierarchical, however, semi-formal equivalence checking methodology is pro-
vided in [SL10], that formulates equivalence checking as a constrained optimization problem. In
[HB23], the first paper of a series is introduced, that delivers an approach for the formal verification
of linear analog circuits with parameter tolerances, proving that a circuit fulfills a specification in
a given frequency interval for all parameter variations. [HB5], the series is continued, proposing an
equivalence checking approach for nonlinear circuits by comparing the implicit nonlinear state space
descriptions of the two systems. The approach is extended in [SH10a] by a structural recognition
and mapping of eigenvalues to circuit elements via circuit variables, and by a reachability analysis
that restricts the investigated state space to the relevant parts. In [SH12a], the approach is even
further enhanced by an efficient input stimuli generation algorithm that guarantees coverage of the
entire reachable state space. The main drawback of this algorithm, similarly to main other formal
verification methodologies, is the state space explosion problem which occurs when to many states
are considered in the examination of the circuits. However, as this approach operates on a reduced

4 1. Introduction

state space, there is room for a trade off accuracy for states to consider.

If the specifications are at hand, offline or online monitors can be used that fall into the category
of runtime verification [MNO04; GT07; WAN-+09a; JKN10; MN13]. Several specification languages
exist for runtime verification, which can be categorized into offline methods like Ana CTL (com-
putation tree logic for analog circuit verification) [DCO05] and approaches based on PSL (Property
Specification Language) [GT07], and online methods like CT-CTL (continuous time CTL) [ZTB06]
that extends TCTL, and many others [NMO07; MPDGO09; WAN-09b]. Other technique such as
STL (signal temporal logic) [MNO04; MN13], which is an extension to the MTL (metric timed linear
temporal logic) [TR05], support both online and offline monitors.

If these specifications are expressed in logical statements, and the whole state space is explored
to check whether the system satisfies the desired specification, the verification methods fall into
the domain of model checking [HHB02; HKH04; GBR04; DDMO04; GPHB05; GPHB05]. [HKHO04]
proposes the discretization of the infinite continuous state space of nonlinear analog systems. The
system properties are described using computation tree logic (CTL). [DCO05; GPHBO05] extent
CTL to cover analog behavior. For example BLTL (bounded linear temporal logic) [WKZC11]
uses model checking and sequential statistical techniques to verify properties of analog circuits in
both the temporal and the frequency domain. In this process, randomly sampled system traces
are sequentially generated using Spice and passed to a trace checker to examine the validity of a
specification until the desired statistical strength is achieved. On the other hand, ASL (Analog
Specification Language) [SHO8] allows the definition of circuit properties such as gain, rise time,
and slew rate, and examines these properties on the circuits which are modeled as discrete graph
structures. Compared to runtime verification, model checking is computational much more expen-
sive. Moreover, in order to examine a specification, model checking approaches completely explore
the state space of the circuit. In contrast, runtime verification cannot guarantee conformance to

specification due to the finite number of tested signal traces [LAH+15].

Another approach that examines a set of given specifications can be achieved using symbolic
simulations. These simulations use symbols instead of numeric values [Hen00; AZT07; WLM+08].
Compared to standard simulation, symbolic simulation achieves a higher comprehensive coverage
in fewer simulations runs, as for example through substitution in the results, a single symbolic
simulation can replace several numerical ones. In [AHP96] for example, an automated symbolic
model checking procedure is introduced for embedded systems. The specifications are described in
a temporal logic and verified by a symbolic fixpoint computation. Symbolic simulations can prove
that the circuit behavior is contained in the set of given specifications. However, as the number
of symbolic variables increases and more complex equations are used, these simulations become no
longer feasible. Affine arithmetic [RSRG12] or interval arithmetic [ZATBO07; YDL12] can be used
in these calculations, thereby reducing in general the number of symbolic variables in a trade for
accuracy (over approximations). In [RG16] an extension to affine arithmetic is proposed called
XAAF (extended affine arithmetic form) that additionally considers the relational operators in the
control flow.

The last branch of formal verification is the reachability analysis. This analysis works with
reachable sets using different geometrical representations to perform state exploration directly on
system dynamics. Since it is often not possible to find the exact representations of all reachable sets,
the reachable sets are often over approximated. Reachable sets are usually expressed by polyhedra

1.2. State of the Art)

[ABDMO00; GBR04; CK03; DDMO04; FKRO06] or by zonotopes [ARK+13].

Recently in [TKR+20], a reachability analysis was used to perform an equivalence checking in
the analog domain of an abstracted model with a conformant model that was generated trained
with the measurements from the real circuit, thus, performing a post fabrication verification of
the model. So, connecting the verification methods can sometimes yield even better and faster
approaches than trying to apply them separately. Another innovative method, where numeric and
symbolic simulations were combined to yield the term nubolic is presented in [ZG19].

Even though several methods have been developed for the analog verification, simulation-based
methods still dominate the industrial design flow. Certainly, verifying such complex analog circuits,
and especially AMS circuits, is not an easy task. Due to the modern increasing complexity of circuits
arising partially from the demand of accurate models and partially from the size of these circuits,
modern verification methodologies are often not able to keep up with this rapid increase. This
can be often traced back to the state space explosion problem. In fact, a recent survey [ZTBO08]
conducted on formal verification methods, raveled that the methods still suffer from the state space
explosion problem. Furthermore, the equivalence checking task in the AMS domain becomes a
difficult problem in the presence of tolerance margins, while model checking approaches that utilize
abstracted models suffer from the over approximated behavior of these models. On top on the
state explosion, which is also well known in the digital domain, it is possible to define a continuous
explosion [ZTB08; FHI18] that must be handled in the analog domain due to the infinite many
possible continuous values a signal may attain. Thus, as the formal verification of analog/-mixed

signal circuits is a relatively young research field, there is still a room for improvements.

Several approaches have been deployed that try to solve continuous and state explosion problems
differently. Some approaches tackle these problems directly by a model order reduction and the
use of a discretized state space [HKHO04]. Other approaches use range arithmetic to tackle the
state and continuous explosion [RG16; ASBO7]. Recent methods try to use indirect measures like
coverage on top of standard simulations to close the confidence gap, and thereby be more formal
[FGG+17; BFG+16]. However, these approaches often still consume a lot of time. Moreover, even
though modern approaches yield solid and good results, they are still challenged by strong nonlinear
behaviors as well as the size of the circuits, i.e. most approaches are not scalable.

According to [GXGM19], formal verification of AMS circuits typically involves working on a
higher level of abstraction, as this results in significant speed-up of validation routines. However,
this has the drawback that inaccuracies might emerge due to this abstraction. More precisely, a
large speed-up factor of abstracted behavioral models is desired to support complex simulation of
a circuit at system or at least at module level while maintaining accurate results. As the systems
integrable on a chip become more complex and heterogeneous, the use of accurate behavioral models
for analog signal processing and interfacing would enhance design and simulation routines, on top
of offering new possibilities and improving the current verification routines. Thus, one way to make
formal verification applicable on complex analog circuits can be achieved by behavioral abstraction,
which permits faster verification routines with fewer state variables. Nonetheless, a behavior model
is often abstracted to a degree that it does not accommodate the full system behavior. This
challenges the verification task as accurate abstracted models are mandatory.

The problem of generating an accurate abstract model from a transistor level circuit has been

6 1. Introduction

around for some time. Different approaches exist that have tried to solve this problem, e.g. auto-
matic behavioral modeling [ZFHMO05; Bor98; CWL+15; SWL+17]. These techniques are not tar-
geting hybrid automata and are mainly improving the simulation speed. The method in [LAH+15]
models the underlying DAE-system of electrical networks using piecewise linear regions, for each
nonlinear element, on-the-fly. It suffers from using an abstract transistor-model and is limited to
a specific number of transistors to be verified. However, it generates a complex hybrid automaton
on-the-fly preventing the state explosion problem at initialization and during evaluation of a given
input stimulus. Unfortunately, the HA is very complex as it is a cross product of all linearized

regions of all nonlinearities

For high level continuous systems, methods modeling the analog circuit as a hybrid system are
widely used [DDMO04; FLD+11; FHS+07; ARK+13]. These methods are able to handle up to
20 state variables, if the underlying locations use linear ordinary differential equations (ODEs) to
describe the system behavior. Mostly, they use reachability analysis to prove safety properties. To
close the chain of proof at transistor level, hybrid automatons (HAs) are usually not suitable as
the ODEs become nonlinear differential algebraic equations (DAEs). Another aspect that must
be considered in the generation of an abstract model are the technology dependent parameter
variations. Most abstraction approach do not incorporate these variations into the generated model,
and if they do, they result in large over approximations and modeling times. In order to have
results with technology accuracy e.g. a BSIM3, BSIM4, or Hicum accurate verification, sample-
based formal verification methods [SH12b] could be used, however, the range-based proof is lost.
These methods, in contrast, can handle much larger circuits; up to 80 transistors. Hence, there is a
need for an abstraction approach that incorporates technology dependent parameter variations into
the abstract models. Moreover, there is as well a need for an accurate abstraction methodology

that delivers accurate abstract models with a reduced order suitable for verification routines.

1.3 Contribution

This dissertation aims to contribute to the formal verification of AMS circuits by generating ac-
curate behavioral models that can be used for verification. As accurate behavioral models are
often handwritten, this dissertation proposes an automatic abstraction method based on sampling
a Spice netlist at transistor level with full Spice BSIM accuracy. The approach generates a HA
that exhibits a linear behavior described by a state space representation in each of its locations,
thereby modeling the nonlinear behavior of the netlist via multiple locations. Hence, due to the

linearity of the obtained model, the approach is easily scalable.

Large speed-up factors can be achieved by the generated models while maintaining a high ac-
curacy, making them suitable for verification purposes. On the other hand, the modeling process
proposed in this dissertation is able to enclose technology dependent parameter variations of the

circuit elements as well as the deviations that result from the abstraction process.

Moreover, the generated models can be formally verified against their original Spice netlist, yield-
ing the deviations between the original Spice circuit and the abstracted model. Various verification
routines can be executed with the obtained models. For example, a reachability analysis or a sym-
bolic simulation can be performed on the models that enclose the parameter variations, thereby

capturing all possible behaviors the circuit exhibits.

1.4. General Concept and Outline 7

To sum up, the contributions presented in this dissertation are:

1.

1.4

an automated abstraction method is presented that starts with a netlist in Spice or Verilog-
A syntax and yields accurate behavioral models in Matlab (Cora [Alt15]), Verilog-A, or
SystemC-AMS that can be used for fast and accurate simulations

. generated by the pointwise analysis of the linear properties of the circuit, the HA created has

a linear behavior in its locations. Compared to the original system, the generated HA has a
significant lower dynamic order due to the order reduction performed during the abstraction
process. Moreover, the technology dependent behavior of the original netlist is embedded in
the obtained models, and the accuracy of the models can be controlled by the user

various extensions of the models exist:

a) the creation of abstract models with little over approximations that model the parameter
variations that result from the variation of the process parameters of the netlist as well

as from the abstraction procedure

b) the creation of compositional models that tackles the state space explosion problem. As
the Verilog-A and SystemC-AMS models are pin-wise compatible and compositionality
is directly given for these models, the compositional approach targets Cora models that

are used for reachability analysis.

created models (Verilog-A) can be formally verified using equivalence checking against the

original netlist, enabling correctness proof

use these models in various formal verification routines including reachability analysis coupled

with model checking, symbolic simulations and runtime verifications.

General Concept and Outline

In the following, the underlying general concept for a fully automated abstraction methodology

will be presented. The approach starts with a netlist described in Verilog-A or Spice with BSIM

accuracy and results in a model described at system level as a HA (Section 2.4). An overview of

the approach is illustrated in Fig. 1.2.

hybrid automaton

netlist e

Spice or Verilog-A syntax A
o TE model
T abstraction

Matlab, Verilog-A or SystemC-AMS syntax

/ ™\
[glrl
“\ i /

Ady = AppeAzy + BioeAu

Fig. 1.2. Overview of the model abstraction approach.

The introduced approach uses two tools to realize the model abstraction: Vera and Elsa. Fig. 1.3

shows a closer look at the model abstraction approach. The abstraction methodology starts with

sampling the netlist via in-house tool called Vera. Using the sampled data, Elsa, which stands for

eigenvalue-based hybrid linear system abstraction, abstracts the netlist into a HA.

8 1. Introduction

state space sampler abstraction core

netlist

model abstraction

Fig. 1.3. Overview of the different tools used for the model abstraction.

Significant data and properties of the sampled systems, such as the eigenvalues, are used in order
to construct the HA with a linear behavioral description in each of its locations. Fig. 1.4 provides
a detailed illustration of the model abstraction process. As observed in Fig. 1.4, Vera samples the
netlist and stores the result in an acv file. This file is then processed by spaceM to transfer the
data into the memory of Matlab as a structure referred to as space. The Matlab structure space,
on the other hand, is processed by Flsa to generate a HA.

netlist read compute sample *.acv file

C code:
—P : nonlinear state
netlist : yacc & lex
equations space

Vera . spaceM

space (Matlab structure)

location system
identification modeling creation

Elsa

model abstraction A

Fig. 1.4. Detailed overview of the model abstraction approach showing the components as well as
the interconnections between them.

In the following, the abstraction process will be examined in detail. Starting with Chapter 2, the
fundamental basics and principles used in this dissertation are briefly reviewed. As this disserta-
tion is an interdisciplinary work, combining control theory with different branches from electrical
engineering, such as computer science and artificial intelligence, only a part of the fundamentals is
reviewed. After this revision, the sampling of the netlist performed by Vera will be examined in
Chapter 3. According to Fig. 1.4, the abstraction process performed by FElsa can be divided into
4 main blocks: initialization, location identification, system modeling, and model creation. Each
of these blocks consists of different layers. In Chapter 4, a closer look is taken at the abstraction
core with all its underlying blocks and layers, followed by some powerful extensions for the gen-
erated abstract models in Chapter 5. The possible formal verification processes on the generated
models and their reference netlists or specifications are demonstrated in Chapter 6. In Chapter 7,
several examples are handled to illustrate and examine the model abstraction approach. Finally, a
conclusion is stated in Chapter 8 along with some future directions.

2 General Basics and Principles

“We are like dwarfs sitting on the shoulders of giants. We see more, and things that are
more distant, than they did, not because our sight is superior or because we are taller than
they, but because they raise us up, and by their great stature add to ours.”

— John of Salisbury, Metalogicon Of John Salisbury

A solid background in different principles is necessary for the proceeding topics. In this chapter,

fundamental basics and principles are recapped.

2.1 Geometry

For what follows in the later chapters, geometry plays a key role in establishing the methodologies

and concepts. In this section, few geometric objects are reviewed.

2.1.1 Polytopes

Polytopes are geometric objects in R™. Throughout this dissertation only convex polytopes will be

considered. A (convex) polytope can have two types of representation:
1. halfspace representation
2. vertex representation

A halfspace:
H={x|clz<d}, (2.1)

is one of two parts obtained by bisecting the n-dimensional Euclidean space with a hyperplane
Pr = A{z | cl'e = d}, such that ¢ € R™ represents the normal vector to the hyperplane and d € R
is the scalar product of any point on the hyperplane with the vector ¢. Thus, a polytope P is the
nonempty intersection of m halfspaces. A formal definition is stated in Theorem 2.1.1.

Theorem 2.1.1. A convez polytope P is bounded by m intersections of halfspaces:
P={xcR"|Cx<d CcR™" decR"} (2.2)

Representing a polytope with the vertex representation can be performed by generating a convex
hull (CH) over the finite set of points as stated in Theorem 2.1.2.

Theorem 2.1.2. For k vertices pt; € R™ a convez polytope P is the set:
P =CH(pty,...,pt) (2.3)

Polytopes used in the model abstraction in this dissertation are generated using the mpt toolbox
[HKJM13]. The algorithm described in [BDH96] is used to generate convex hulls.

10 2. General Basics and Principles

2.1.2 Zonotopes

Similarly to polytopes, zonotopes are geometric objects in R™ as well. Zonotopes have special
symmetric properties which allow a compact representation. A formal definition of a zonotope is
stated in Theorem 2.1.3.

Theorem 2.1.3. Consider a zonotope Z with a center ¢ € R™ and k generators {g; € R" | i =
1,...,k}, Z is defined as:

k
Z:{meR”|x:c+26¢g¢,ﬁi€[—1,1]} (2.4)
=1

Thus, a zonotope can be interpreted as a Minkowski sum of line segments [Alt15].

A zonotope can be associated with affine arithmetic, as the operations performed on this geo-
metric shapes are like to those performed with this computational type. As in affine arithmetic, a
zonotope keeps track of the correlations between the spanning variables using generators, thereby

solving as well the dependency problem associated with interval arithmetic.

If a given set of points is hulled by a zonotope, the zonotope has in general significant over
approximation compared to hulling the same points with a polytope as shown in Fig. 2.1. This can
be traced back to the symmetry of a zonotope.

8

e points e points

0z
Wnr

Fig. 2.1. Example illustrating the over approximated hulling performed by zonotopes with (a) two
and (b) three generators compared to polytopes.

In Fig. 2.1, some random points are hulled by a zonotope Z; as well as by a polytope P. As
observed, the zonotope Z; which has only two generators over approximates the convex hull con-
taining the points. If the number of generators used is increased to three, the result is still over
approximated (Z2) compared to the hulling performed by the polytope as shown in Fig. 2.1a. For
this example, Z5 is even larger than Z;.

2.2. FEigenvalues and Eigenvectors 11

2.1.3 Interval Hulls

An interval hull Z € R™, which can be represented as a multidimensional interval, can be interpreted
from a geometrical aspect as a n-dimensional hyper rectangle. A formal definition is:

Theorem 2.1.4. Consider an interval hull T which is bounded by a minimum x.;;, € R™ and a

MATIMuUM Tpmae € R™, T is defined as:

I= {w € R" | Tmin <@ < a’mam} (25)

In short, Z can also be written as Z = [®ymin, Tmaz]. In contrast to zonotopes, computations
with intervals can be associated to interval arithmetic. Compared to affine arithmetic, interval
arithmetic suffers from the well known dependency problem which over approximates the exact
solution significantly. This is also known as the wrapping effect. In Fig. 2.2 the wrapping effect of
an interval hull is illustrated based on the previous seen shapes.

8 : : : : : 8

e points

Fig. 2.2. Example illustrating the over approximated hulling of zonotopes by interval hulls.

In Fig. 2.2a and Fig. 2.2b, the interval hulls Z; and Z, are used to hull the zonotope Z; and
Z,, respectively. As observed in both figures, the result is over approximated. Moreover, hulling
the sampled points in Fig. 2.2b with the interval hulls Zs results as well in over approximations
compared to using the polytope P or the zonotope Z,. For the given example, polytopes seem to
result in exact solutions. However, for the case the shape obtained by connecting several sample
points is non-convex (concave), a convex polytope would over approximate the solution as well.
This must be kept in mind, as the polytopes used in this dissertation are always convex.

2.2 Eigenvalues and Eigenvectors

The study of eigenvalues and eigenvectors has a great importance in the analysis of different kinds

of problems. For dynamic systems, eigenvalues reveal insight information regarding the system

12 2. General Basics and Principles

behavior and its variation over time. For an LTI system, this is described in Section 2.3.1. In the
context of linear algebra and computer vision, eigenvalues are often associated with matrices and
matrix transformations. Nevertheless, the study of eigenvalues and eigenvectors finds its application
in vibrations analysis, heat flow, economics, computer graphics, etc. In the following, the standard
eigenvalue problem as well as the generalized eigenvalue problem will be briefly examined.

2.2.1 The Standard Eigenvalue Problem

In this dissertation, eigenvalues and eigenvectors find as well a key role to play, especially in
abstraction process presented in Chapter 4. In this sense, the definitions of the eigenvectors and
eigenvalues are both reviewed. For this purpose, consider the matrix A € R™*™ and a nonzero
vector v € R™. In general, the linear transformation of a vector v upon the multiplication with the
square matrix A results in a vector that differs from v in both magnitude and direction. However,
for the case that v is an eigenvector of A, the multiplication of this vector with A does not change
the direction of the vector (except the orientation), but modifies the magnitude of v as described
by the scalar value X called eigenvalue. A more formal definition from [LF09] is given in Theorem
2.2.1:

Theorem 2.2.1. Let A be an n x n matriz. The scalar X\ is called an eigenvalue of A if there is
a nonzero vector v such that:
Av =\ (2.6)

the vector v is an eigenvector of A corresponding to A.

The term eigenvector used through this dissertation refers to the right eigenvectors unless stated
otherwise. Hence, an eigenvector of a matrix A is only scaled by its corresponding eigenvalue A
upon undergoing a linear transformation through the matrix multiplication with A. Note that

Eq. (2.6) is called the (standard) eigenvalue problem.
To find the eigenvalues, consider again Eq. (2.6) which can be rewritten as:

Av= v = (AM[-A)v=0 (2.7)

The task of determining the eigenvalues becomes finding the values of A which satisfies Eq. (2.7)
for a nonzero vector . This demands (A — A) to be singular. By that, we can state the following
theorem:

Theorem 2.2.2. Consider the n x n matrix A, the characteristic equation of A 1is:
det(A\I —A)=0 (2.8)

The scalar X is an eigenvalue of A if and only if it satisfies Eq. (2.8). Expanding Eq. (2.8) yields

the characteristic polynomial of A:
N e A N M =0 (2.9)

The roots of the characteristic polynomial are the eigenvalues of A. The eigenvectors of A corre-

sponding to the eigenvalue X are the nonzero solutions of v that satisfy:

(M — A)w =0 (2.10)

2.2. FEigenvalues and Eigenvectors 13

The algebraic multiplicity p; of an eigenvalue A; refers to the u;-repeated root A; of the charac-
teristic polynomial. This means that the algebraic multiplicity states how often an eigenvalue is
repeated in the characteristic polynomial.

The geometric multiplicity +;, on the other hand, states the number of linearly independent eigen-
vectors associated with an eigenvalue \;. That is, ; states the dimension of the nullspace (\;I—A):

vi = dim(ker(MI — A)) = v =n —rank(MI — A) (2.11)

Each eigenvalue has at least a geometric multiplicity of one. That is, each eigenvalue has at least
one associated eigenvector.

Eigenvalue Decomposition of a Matrix

The aim of the eigenvalue decomposition is to transform a matrix A € R™" into its diagonal (if
possible) form. Decomposing a matrix means to factorize it i.e. to find a product of matrices that is
similar to the initial one. Hence, the eigenvalue decomposition of a matrix decomposes the matrix
into the product of its eigenvectors and eigenvalues.

Not all matrices are diagonalizable. For a matrix to be diagonalizable, it must satisfy Theorem
2.2.3 as stated in [ARIS14].

Theorem 2.2.3. An n X n matriz A is said to be diagonalizable if and only if it has n linearly
independent eigenvectors. If A, Ao, ..., A\, are distinct eigenvalues of A, then the corresponding
eigenvectors vi,va, ..., V, are linearly independent and A is diagonalizable. In general, A is said
to be diagonalizable if and only if the geometric multiplicity of every eigenvalue is equal to its

algebraic multiplicity.

For the matrix A € R™ " with n linearly independent eigenvectors, consider the matrix of the
right eigenvectors F' € R™*" with columns consisting of these eigenvectors, that is:

F:|:’U1 Vo ... Up (2.12)

The diagonal matrix A, with the eigenvalues Aj, Ao,..., A\, on the diagonal ordered like the
corresponding eigenvectors in F', is obtained by replacing v and A with F' and A in Eq. (2.7),
respectively, and solving for A. This yields:

A=F'AF
M O .00
0 X ... O (2.13)
0 0 ... M\

Jordan Normal Form of a Matrix

Not every matrix A € R™*" is diagonalizable. A more general form is the Jordan normal form
(JNF). For every matrix A, there is a transformation matrix T such that J = T-'AT is in the

14 2. General Basics and Principles

Jordan normal form:

Ji
Jo
J = _ (2.14)
J
Where Ji, Jo,..., J are called Jordan blocks. A Jordan block J; corresponding to an eigenvalue
\; has the form:
1 -
A1
J; = (2.15)
A1
i Ai]

The geometric multiplicity ~; of the eigenvalue \; states the number of Jordan blocks J; corre-
sponding to A;. On the other hand, the algebraic multiplicity u; states the sum of the sizes of the
Jordan blocks J; corresponding to ;.

For the case that A; is complex, the Jordan blocks can be reformed to purely real matrices:

(L, I
L, I,
J; = , (2.16)
L, I,
L L]
Where I; is an identity matrix, and L; for the eigenvalue \; = o; + jw; is:
Li=|% “"] (2.17)
—W; O

The origin of L; can be traced back to the similarity transformation as explained in Appendix A.2.

2.2.2 The Generalized Eigenvalue Problem

In Section 2.2.1, the standard eigenvalue problem was discussed and analyzed. In fact, the stan-
dard eigenvalue problem is a special case of the generalized eigenvalue problem, which is often
encountered when working with DAE systems. For the dissertation at hand, this section plays a
significant role in understanding the calculations performed during the sampling process presented
later in Chapter 3. In the following, the generalized eigenvalue problem will be examined in a
similar fashion to Section 2.2.1.

Consider two n X n matrices A and E, sometimes denoted as a matrix pair or a matrix pencil

(E,A). A scalar X is a generalized eigenvalue of the pair (E,A) if:
Av = \Ev (2.18)

Note that the standard eigenvalue problem is a special case of the generalized eigenvalue problem
for the case that £ = I.

2.2. FEigenvalues and Eigenvectors 15

The nonzero column vector that satisfies Eq. (2.18) is called a right generalized eigenvector
[KHD17]. For convenience, v is just referred to as an eigenvector. Reforming Eq. (2.18) leads to
the well known generalized eigenvalue problem:

(AE -Awv=0 (2.19)
Theorem 2.2.4 states a more formal definition of this problem along with some of its significant
properties.

Theorem 2.2.4. Consider the two n xn matrices A and E that compose the matriz pencil (E,A),
and the associated characteristic polynomial p(\) = det(AE — A)

1. the matrix pencil is regular if det(A — AE) # 0. Otherwise, it is called singular
2. a pencil (E, A) with nonsingular E is always regular [Banl4]

3. if E is singular, the matrix pencil (E, A) has an eigenvalue at infinity with multiplicity:
w=(n—rank(E)) (2.20)
Note that if d denotes the degree of p(\), then the pencil (E, A) has (n — d) eigenvalues at
infinity [Bai00]

4. if E is nonsingular, the generalized eigenvalue problem can be simplified to the standard
eigenvalue problem with:

Av =\ Ev — E 'Av=) v (2.21)

5. if A = oo is an eigenvalue, the nonzero vectors v satisfying
Ev=0 (2.22)

are the corresponding right eigenvectors [Bai00]
6. if A is singular, then A\ = 0 is an eigenvalue of the system

To deal with both finite and infinite eigenvalues, some approaches decompose an eigenvalue A
into the pair (a, 8) such that A = % Thus, the generalized eigenvalue problem can be rewritten as

BAv = aBv (2.23)

Eq. (2.23) states that for the case 8 # 0, A = % is a finite eigenvalue. While for the case that

8 =0, A = o0 is an eigenvalue of the system.

Weierstrass-Kronecker Form

There are a lot of decomposition theorems that can bring a matrix pencil to different forms, an
example of such a form is: the diagonal form, the Weierstrass form, the generalized Schur form,
and the Weierstrass-Schur form [Bai00]. Although the study of these forms is out of the range of
this dissertation, the Weierstrass-Kronecker canonical form will be briefly reviewed.

16 2. General Basics and Principles

Theorem 2.2.5. Consider the matrix pencil (E, A) with A, E € R"*™. If the matriz pencil (E, A)
1s reqular, then there exist two nonsingular matrices F' and H such that:

E-=FEH A=FAH
_[Ia O REA (2.24)
o N o I

The matriz pencils (E, A) and (E,A) are said to be equivalent [Ria08]. Where J € R™<™ g
in general in the JNF (Section 2.2.1) corresponding to the finite eigenvalues of Eq. (2.19), while
N e Rv=m)x(n=m) s pilpotent matriz corresponding to the infinite eigenvalues.

As mentioned in Theorem A.1.1 in Appendix A.1, n represents the index of nilpotency of IN. The
nilpotent matrix N represents the singularity of the DAE [IR17]. Moreover, the index of nilpotency
is identical to the index of the DAE. As the Weierstrass-Kronecker canonical form is often referred
to in literature as Kronecker canonical form [Ria08], it is abbreviated as KCF.

2.3 Linear and Nonlinear Systems

Physical systems and procedures that exist in nature as well as industrial processes are often de-
scribed via models for analysis and examinations. The simplest approach to describe the behavior
of a system is to model it as a linear system. Linear models can describe a large part of the systems
from the real world. In fact, linear system and control theory has a broad application spectrum.
However, in general these methodologies cannot be applied on nonlinear systems [Ada09]. While
some systems cannot be described accurately with linear models, nonlinear model descriptions usu-
ally result in more precise and better behavioral results, emphasizing the importance of nonlinear
system theory. An exception to this are nonlinear systems that can be, to some degree, approxi-
mated by linear systems. An accurate linearization of a nonlinear system allows for the applications

of the efficient, easy to deploy, less complex algorithms from the linear system theory.

In general, several representations exist to model the behavior of a system. For linear time-
invariant (LTI) systems, the most common used ones are linear ordinary differential equations
(ODEs), transfer functions in the time as well as in the Laplace domain, and the state space
representation in different forms: controllable normal form, observable normal form, and Jordan
normal form (JNF). For nonlinear systems, usually more general forms, such as differential algebraic
equations (DAEs), are used. Of course, linearizing a nonlinear system would additionally allow
for representations such as the linear descriptor system representation, which can to some extent
describe the system behavior accurately. In this section, several model descriptions for linear as

well as for nonlinear systems are handled.

2.3.1 The State Space Representation of an LTI System

A linear system can be represented using the state space representation. With n state space
variables described by the state space vector x(t) € R", and the initial condition of this vector
given by x(0) = x, the state space representation of a multiple input multiple output (MIMO)

continuous time-invariant system is:
(t) = Az(t) + Bu(t) (2.25a)
y(t) = Cx(t) + Du(t) (2.25b)

2.3. Linear and Nonlinear Systems 17

Where the p output variables and k input variables are described by the output and input vectors,
y(t) € R? and u(t) € R¥, respectively. Moreover, the matrices from Eq. (2.25) are:

e the system matrix A € R™*"

e the input matrix B € R?*¥

e the output matrix C € RP*"

e the feedthrough matrix D € RP*F

Note that these matrices are time-invariant. Time variant system descriptions will not be covered
in this dissertation. Eq. (2.25) can be extended by some terms to model the noise as stated in
[Lun10]. This representation will be skipped here as well, as the noise is not modeled.

Let S denote the state space of a system. At any instance, the system state can be interpreted
as a point in the n dimensional state space S. The state response x(t) over the time ¢, on the other
hand, refers to the trajectory through the state space S. Note that ¢ does not appear explicitly in
the state space of the system.

Time-domain Solution of an LTI State Space Equation
The state response i.e. the solution of the differential system given by Eq. (2.25a) with the initial

condition xg, can be stated in terms of the homogeneous solution xp.,(t) and the particular
solution @4, (t) [Adal3] as:

t
x(t) = eMao+ / A7) Bu(r)dr (2.26)
S~ 2 ~-
Lhom Lpar

As observed, the state response depends on two components: the homogeneous response o, (1)
which in terms depends on the initial condition @y, and the particular solution @,q,(t) which
depends on the input vector u(t). Note that the particular solution is computed using a convolution
integral. Since the homogeneous solution is simply computed by the multiplication of the matrix

eAt with the initial condition @, a state transition matrix ®(t) can be defined:

B(t) = et (2.27)

which upon the multiplication with xg, can deliver at any time ¢ the homogeneous response of the
system. For the particular solution x4, one can define ®(t — 7):

Bt —7) = AT (2.28)

and compute the convolution integral of Eq. (2.26). Inserting this solution in the output equation
Eq. (2.25b), yields the system output response:

t
y(t) = CeAlwg + C/ A7) Bu(7)dr + Dul(t) (2.29)
0

Thus, in order to compute the state and output responses of the system at hand, the main task
becomes finding the transition matrix from Eq. (2.27). Using the matrix exponential, the transition

18 2. General Basics and Principles

matrix can be expanded to an infinite series [Mey08]:

2 (At)!
- Z : a) (2.30)

t2
I+At+A2§+...

For the case that A is a diagonal matrix, the transition matrix can be easily computed by applying
the exponential function on the entities of the diagonal of the matrix A [Adal3]:

)\1 0 6)‘1t 0
A=|: . | = ®MWt)=|:1 - (2.31)
0 ... \ 0 ... et

If the matrix A is not a diagonal matrix, in some cases it can be transformed into a diagonal one
(Section 2.2.1). If the matrix is not diagonalizable, one can first calculate the JNF of A, and then
compute the solution of the system in a similar fashion.

It is important to notice that the eigenvalues of A play a significant role in defining the solution
of the LTI system. Thus, if the eigenvalues are in general known, the solution of the LTI system
can be easily computed. Considering this fact from a different perspective, the system matrix A
can be reconstructed from the eigenvalues that characterize the solution of the LTI system. This
fact states the underlying concept of the abstraction approach stated in Chapter 4.

The Transfer Function of an LTI system

An LTI system is often transformed into the Laplace domain. This is because this domain represents
a powerful tool to analyze and solve an LTI system, due to some special properties obtained during
the transformation from one domain to the other. For example considering a transformation from
the time domain to the Laplace domain, a convolution integral results in a multiplication, while a
differential equation results in an algebraic equation. Note that in both cases the solution is easier
to compute in the Laplace domain. Moreover, properties such as the frequency and phase response
can be easily represented in the Laplace domain.

With s = 0 + jw denoting the complex frequency parameter with the real numbers o and w, the
state space in the time domain from Eq. (2.25) can be transformed into the Laplace domain:

X(s)=(sI — A) 'z + (sI — A)'BU(s) (2.32a)
Y(s)= C(sI-A)'zy + [C(sI-A)'B+D]U(s) (2.32b)
initial condition response transfer function G(s)

As stated in [Tsu03], the transfer function G(s) gives a direct relationship between the outputs
of the system described by the output vector Y (s) and the inputs to the system described by the
input vector U (s). The initial condition response is also known as the zero-input response while
the transfer function G(s) is also known as the zero-state response. For the case that the initial
condition x(is zero, the outputs of the system are described by the second term of Eq. (2.32b)
defined by the zero-state response and the inputs.

2.3. Linear and Nonlinear Systems 19

Comparing Egs. (2.26, 2.29) with Eq. (2.32) shows again the importance of the transition matrix
®(t) and the relationship to the eigenvalue problem from Eq. (2.7):

B(t) =eA! o—e B(s)=(sI—A)! (2.33)
Stability of an LTI System

There exist a solid number of theorems that can determine the stability of an LTI system. Some
well known theorems are for example the Nyquist stability criterion and Routh-Hurwitz stability
criterion. Examining the stability of a system is of significant importance. For example, one might
find a Lyapunov function and proof that the system is or is not Lyapunov stable. BIBO (bounded
input bounded output) stability, which states that any bounded input generates a bounded output,
is also an important stability type. A special importance, however, is given to the asymptotic
stability. For an LTT system, in contrast a to nonlinear system, the stability condition for BIBO
and asymptotic stability are the same, demanding that all eigenvalues of the system matrix A have

only negative real parts. Hence, all eigenvalues are located in the left half in the complex s-plane.

Transformation of the State Space

The state space representation of a system is not unique. In fact, by reordering the state variables or
defining new state variables in terms of the old ones, infinite many possible state space models can
be constructed. Hence, some standardized state space representation forms have been introduced.
These forms are known as canonical forms: controllable normal form, observable normal form, and
the diagonal, or in general the Jordan normal form (JNF). For the aim this dissertation, only the
JNF and the diagonal form are of interest. As stated in Theorem 2.2.3, the system matrix A from
Eq. (2.25) can be transformed into its diagonal form, if the system has n distinct eigenvectors. If
this is not the case, in general A can be transformed to the Jordan normal form.

Generally speaking, transforming a model from the state space S, with the state space variable
x to a new state space Ss with the state space variable s can be preformed by applying a linear
transformation:

x =Tz, (2.34)

with the transformation matrix T". Upon undergoing a linear transformation with a regular trans-
formation matrix T', that is det(T") # 0, the properties of the linear system including eigenvalues,
observability, and controllability are preserved.

2.3.2 Linear Descriptor System Representation
The state space representation from Eq. (2.25), which describes a linear system by first order

ordinary differential equations, can be extended to describe a system with linear DAEs. This is

done by using a linear descriptor system representation:
Ei(t) = Axz(t) + Bu(t) (2.35a)
y(t) = Cx(t) + Du(t) (2.35Db)

With the mass matrix E € R™*"™, The dimensions of the matrices A, B, C, and D are as stated
in Section 2.3.1. Compared to Eq. (2.25a), the multiplication of the matrix E with the derivative

20 2. General Basics and Principles

of the state vector (&(t)) transforms the equation from an ODE to a DAE. Moreover, the rank of
E:

rank(E) =r < n,

is of significant importance, as it states that Eq. (2.35a) consists of (r) differential equations and
(n—r) algebraic equations. In the case for E = I, where I € R™*" is an identity matrix, Eq. (2.35)
becomes identical to the state space representation from Eq. (2.25).

As stated at the end of Section 2.2.2, Eq. (2.35a) can be transformed into the KCF. This comes in
handy when performing a model order reduction on the system, as stated in [BAS16] for example,
or when trying to separate and solve the DAE system.

2.3.3 Local Linearization of a Nonlinear Descriptor System

Systems, especially technical ones, can be described very accurately using mathematical models.
In general this can be performed by using DAEs. In this dissertation, we focus on implicit DAEs
of the following structure:

F(E(t),2(t),u(t) =0 (2.36a)
9(z(1),u(t)) = y(t) (2.36b)

Eq. (2.36) is also known in general as a nonlinear descriptor system with the descriptor vector
x € R™ containing the system variables (descriptor variables). With the input vector u € R¥ and
the descriptor vector @, the output vector y can be defined using Eq. (2.36b).

Electric circuits, control systems, and many physical process are often described using this rep-
resentation. However, working with nonlinear systems descriptions often challenges the design
process. An easy approach to describe a nonlinear system linearly in a specific portion of the state
space is local linearization. For example, Eq. (2.36) can be linearized using the Taylor series around
the operating point @ pc for an operating input wpc. By using the first order Taylor approximation
for multivariable functions on Eq. (2.36), neglecting thereby the higher order terms, the equation

is linearized to:

Of(pc,Tpc,upc) A

f(i:7m)u) ~ .f(ifDC,iUDC,UDC)‘F

ox
0
9f(&pc, Zpe, upc) 81;(33170 xpc, upc) (2.37)
+ ? ? A$+] , Au’
ox u
and
(9 xr ’u
g(af:,u) ~~ g(mDC’ch) + g(DaCm DC) A
—_—
—
Ypc
9g(zpc; wne) : (2.38)
+ 99\TDC, UDC) A,,
ou
—_—

D

2.4. Hybrid Automata 21

Since £pc = 0, f(0,zpc,upc) = 0 as given by Egs. (2.36a, 2.37). Finally, the system can be
brought to the descriptor system representation presented in Eq. (2.35):

EAz(t) = AAx(t) + BAu(t) (2.39a)
Ay(t) = CAx(t) + DAu(t) (2.39b)
Such that:
Az (t) = x(t) — zpc Au(t) = u(t) — upc Ay(t) =y(t) — ypc

The dimensions of the matrices A, B, C, D, and E are as stated in Section 2.3.2. Eq. (2.39) is in
general only valid in a small region around the linearization point. Hence, in order to describe a
nonlinear system accurately, often several linearization points are needed. This approach will find

its application in Section 3.2.2.

Eigenvalues of the System

Eigenvalues are defined in the context of linear systems. For nonlinear systems, linearizing a non-
linear system (for example using the Taylor series) and solving the underlying eigenvalue problem
allows for the computation of the eigenvalues around the operating points of the linearized system.
As the nonlinear system evolves, the eigenvalues and eigenvectors change. Thus, in the context
of nonlinear systems, one might define a set of eigenvalues and eigenvectors computed around the

linearization points.

Depending on the linearization, i.e. order of Taylor terms, the underlying eigenvalue problem
changes from the generalized eigenvalue problem stated in Section 2.2.2 to a polynomial eigenvalue
problem. This problem is often encountered during vibration analysis, MEMS simulation, and
the solution of least squares problems with quadratic constrains. In this dissertation, only the
generalized eigenvalue problem will be considered. For more details on this topic see [TMOI;
HGLO04].

2.4 Hybrid Automata

Hybrid systems can be modeled using hybrid automata. A hybrid automaton (HA) is a generalized
finite state machine with continuous state variables. It has a finite set of locations of which one is
the specified starting location (initial location).

In each location, the system behavior is described by differential equations with continuous state
variables. As long as the invariant condition of a location is valid, the system can stay in this
location. Once the invariant condition becomes invalid, the automaton must leave the location.

When a location can be left is described by the guards, and how it is left is specified by the
corresponding jump function. This function is applied once the corresponding guard is taken. The
guards allow for location switch, but do not define when exactly this switch happens. This makes
a HA non-deterministic. A HA can also be non-deterministic if different locations share the same
invariant, multiple location transitions can occur at the same time, or the same transition results
in different locations. Of course by choosing the invariants, jump functions, and guards in an
appropriate way, a HA can be created that is deterministic. The formal definition of the HA is
similarly defined as in [SK03] with some restrictions on the jumps and the guards:

22 2. General Basics and Principles

Definition 1. A hybrid automaton is a tuple HA = (Loc, locy, Ty, Ty, inv, tran, grd, J,u, f) con-
taining:

e the finite set of locations Loc = {locy, ..., loc,} with an initial location locy

e the continuous state variables) € R™ corresponding to the state space Sy C R™ and their

initial values xy o

e the invariant mapping inv: Loc — 25! which assigns an invariant inv(loc) C Sy to each

location loc € Loc

e the set of discrete transitions tran C loc x loc. A transition (loc;,locj) denotes a transition

from loc; € Loc to locj € Loc

e the guard function grd: tran — 25X that assigns a guard set grd(loc;, locj) for each transition
from loc; to loc;

o the jump function J: T x Sy — Sy, which returns the next continuous state when a transition
s taken

e the continuous input variables uw € R* corresponding to the input space S, C RF

o the flow function f: Loc x Sy x S, — R™, which defines a continuous vector field for the
time derivative of xy: &\ = f(loc,x),u)

Throughout this dissertation, invariants will be described by the geometric shapes stated in

Section 2.1. For simplicity, an invariant of a location loc is denoted as invj,.

The guards are modeled as halfspaces, polytopes, zonotopes or interval hulls (Section 2.1). A
guard is denoted as:
grdy, : loc; - loc; (2.40)
—~—

current location target location

With loc; and loc; representing the current location and the target location, respectively. The
current location indicates the location the guard belongs to. The target location of the guard is the
next location the system switches to if this guard is taken. As a location can have several guards,
the guards of a location are distinguished by the guard index h.

The jump functions are restricted to linear mappings. With the matrix Q, € R™*™ and the
reset vector v, € R™, along with the new state vector & pe, € R™ after and x) 519 € R™ before a
transition is taken becomes, a jump function has in general the following form:

LA new — Qrw)\,old + vr (241)
2.5 Cluster Analysis

One of the essential building blocks of the algorithm presented in Chapter 4 is the cluster analysis.
In the last decade, cluster analysis has gained significant importance especially upon its application
in emerging fields such as big data and the internet of things, as it has proven itself as an effective
unsupervised machine learning algorithms. In this dissertation, cluster analysis plays a significant
role in the model abstraction process handled later in Section 4.4.

195 is a power set of Sy

2.5. Cluster Analysis 23

Cluster analysis aims to divide a given data set into groups (clusters), such that points in the
same group are similar to each other and dissimilar to points from other groups. Hence, groups
formed have low within-cluster variance and similar patterns. Moreover, it is often desired to obtain
a representing value for each cluster, the centroid.

When clustering a data set, the algorithm must answer some basic questions including the optimal
number of clusters and the quality of the found cluster. For some algorithms a set of specification
can be provided to aid this process. After a clustering analysis is launched on a data set, the algo-
rithm tries to group the data based on similarities, patterns, and differences with no previous labels.
Clustering analysis is also known as one of the main methods of unsupervised machine learning, as
the algorithm tries to find the best suited result from a set of given data and specifications without
human interaction. As the entire spectrum of cluster analysis exceeds this dissertation, only a few
topics will be picked and reviewed in this section. These topics include two clustering algorithms:
k-means and DBSCAN, and a cluster evaluation criterion: the silhouette coefficient. An extensive
study on data mining and especially clustering analysis can be found in [TSKK19].

In order to explore the clustering algorithms, a common data set represented by the matrix
Eig € R** is considered. This data set consists of | = 18500 sampled data points:

. ' : ’ : ’ (2.42)
Re(N1) Im(Mj1) Re(M2) Im(N2)

For simplicity, the second and fourth columns of Eq. (2.42) are zero vectors. Plotting the first
column values against the values from the third column is illustrated in Fig. 2.3. For this matrix,
two clustering goals are targeted. the first goal is to effectively cluster the data points into clusters,
while the second goal is to find a centroid for each identified cluster.

-1099.4 T T T T T T T T T
J e Scale color: \; +)\2‘
-1099.6
— -1099.8
<
Z 100 | M
O .
& 11002 | , /
-1100.4 |- ; /,
-1100.6 | | | | | | | | |
-20 -19 -18 -17 -16 -15 -14 -13 -12 -11 -10
Re()\l)

Fig. 2.3. Unclustered data set contained in E1ig.

2.5.1 Clustering Algorithm: K-means

The k-means algorithm, also known as Lloyd’s algorithm [L10o82], is a partitioning based method.
The algorithm tries to partition the data set into k,, clusters. Note that the desired number of
clusters k,, is specified by the user. For the clustering of the 4-dimensional data set Eig, the
k-means algorithm is described in Algorithm 1.

24 2. General Basics and Principles

Algorithm 1 K-means clustering algorithm

1: procedure k-means(E%g,k,,)
2: choose k,, initial centroids (cluster centers) randomly
while centroids change and maximum number of iterations is not reached do
for each point in Eig do
calculate the distances from the point to all centroids
assign the point to the closest centroid
end for

compute the average of all points in a cluster to obtain k,, new centroids
9: end while
10: end procedure

The standard implementation from Matlab extends Algorithm 1. The k-means Matlab imple-
mented offers a variety of options. For example, additionally to the standard way to proceed at
line 5 (batch update), Matlab offers an online update which reassigns points to centroids if several
criteria are met. By default, this option is off. The distance metric used in line 5 of Algorithm 1
can also be specified. Even though the abstraction approach handled later in Chapter 4 can use
various distance metrics, for simplicity only the default squared Euclidean distance metric will be
used throughout this dissertation.

-1099.4

I
o gl) égl
g2 ° Agz

-1099.6 |

~—~ -1099.8
2
~— -1100
Q
m -1100.2 +~

-1100.4

-1100.6
-20

8000 , , , , , 2000 , ; ; , :
i gl 1 gl
6000 | Eg2|| 1 1500 | g2

4000 r

freq.

2000 r 1 500 r

. . L 0 L
-18 -16 14 -12 -10 -1100.6 -1100.4 -1100.2 -1100 -1099.8 -1099.6

Re(\) Re(\s)
(b) (c)

Fig. 2.4. Result of the k-means clustering algorithm for k,, = 2.

Fig. 2.4 shows the result of the k-means clustering process with k,,, = 2 and the maximum number
of replicates set to r = 4. During the 4 replicates, which were executed in parallel, the algorithm
converged rapidly with a maximum number of iterations ranging between 3 to 5. Note that the
number of maximum iterations was not explicitly specified and hence the default value (100) was
used.

2.5. Cluster Analysis 25

As illustrated in Fig. 2.4a, the non-zero column vectors of Eig (column 1 and 3), have been
successfully clustered into two groups g1 and g2. The centroids of the clusters g1 and g2 have been
labeled A,y g1 and Agp g2, respectively. Fig. 2.4b shows the labeled distribution of the first column
of Fig, while Fig. 2.4c¢ presents the result for the third column.

The result of the k-means with k,,, = 3 is illustrated in Fig. 2.5 with the same number of replicates.
This time the algorithm needs a maximum of 14 iterations to converge. Compared to previous case
(km = 2) where the data points overlapped minimal along the Re(A2) dimension, Fig. 2.5 shows
that these two groups do not overlap at all if k,, = 3 is used. However, g3 overlaps significantly

with the neighbor groups as shown clearly in Fig. 2.5¢c.

-1099.4 I — T T T T T T T
o gl 3 A
10006 || Y 9o ° g2
0 g2 e >\gl ° Ag3

— -1099.8 =
<!
~— -1100
L ®
D: -1100.2 —

-1100.4 .

-1100.6 | | | | | |

-20 16 -15 14 -13 12 11 10
R€(>\1)
(a)
8000 : 2000 r
gl gl

6000 g2 1500 g2/
> [g3 > g3
E 4000 . g 1000 .
(g Chg

2000 . 500 - _

o
0 1 L 1 L 0 T |
-18 -16 -14 -12 -10 -1100.6 -1100.4 -1100.2 -1100 -1099.8 -1099.6
Re()\l) Re()\g)
(b) (c)

Fig. 2.5. Result of the k-means clustering algorithm for k,, = 3.

The result of clustering Fig with k,, = 4 and k,, = 5 is presented in Fig. 2.6a and Fig. 2.6b,
respectively. For the case that k,, = 4, the algorithm needs a maximum of 19 iterations, while for
k., = b the algorithm needs a maximum of 23 iterations.

Considering the various results obtain for different values of the number of clusters k,,, a question
is raised regarding the right number to choose. Moreover, there is a need for a metric that allows for
the comparison of the results. This is where the silhouette coefficient discussed later in Section 2.5.3

comes in.

As seen, the k-means is a simple algorithm which is easily applicable on a wide variety of data.
Solid results are obtained due to multiple runs as well as due to the specified desired number of
clusters k,,. However, k-means is a partitioning algorithm, which makes it unsuitable for some
data types, especially when the data contains outliers or the clusters are of various destinies. The
problem with outliers can be solved by dropping out points, whereas the problem with the density
of the data is linked to the partitioning nature of this algorithm. The more data are located

26 2. General Basics and Principles

-1099.4 : - — -1099.4
o gl g3 ° Agl . Agg S
0996 | g9 o g4 e Aoz * Aga % -1099.6 ff
-1099.8 4 1 -1099.8
~— . ~—~
= <
~— -1100 = ~— -1100
&5 =
-1100.2 1 -1100.2
-1100.4 1 -11004
-1100.6 : : : : -1100.6 : : : :
-20 -18 -16 -14 -12 -10 -20 -18 -16 -14 -12 -10
Re(/\l) RG(/\l)
(a) (b)

Fig. 2.6. Result of the k-means clustering algorithm for (a) k,, = 4 and (b) k,,, = 5.

in a portion of the data space, the more likely it becomes that these points form a cluster. To

demonstrate this, consider Fig. 2.7.

e
o Scale color: Re(\) + Re()\Q)‘

I
IN
(

o N
L

o N
L L

'

N
'

N
L

Vnout - Vneg
Vnout - Vneg

ok

©.1099.5

N
os
v

©.1099.5

-15

Re()\l) -10 -1100.5 Re()\Q) Re(Al) -10 -1100.5 Re(>\2)

Fig. 2.7. Results of the k-means algorithm with k,, = 3.

An additional dimension named (Vj,out — Vieg) has been added to the four dimensions of E1g.
For the new data set, we desire 3 clusters, as presented in Fig. 2.7a, and have therefore specified
kn = 3. As observed in Fig. 2.7b, k-means did successfully achieve this goal. Note that k-means
could have formed the clusters similar to Fig. 2.5a, when looking at 2.7b from the top view (Re(A1),
Re()\2)), but the distribution of the points favored this constellation.

Considering Fig. 2.8, when on the other hand 5 clusters are desired as shown in Fig. 2.8a, k-
means failed to achieve this result as presented in Fig. 2.8b, even though the data points are well
separated. Modifying the distance metric, or like in our case scaling the data set, can sometimes
achieve the desired result as shown in Fig. 2.8c.

There are various extensions to the k-means clustering algorithm, such as the k-means++[AV07]
which uses a heuristic to find the centroids of the k,,, clusters improving the run time and the quality
of the results. Note that, by default Matlab k-means algorithm uses k-means++ for cluster center
(centroids) initialization. Another extended version is the k-medoids algorithm, which chooses the

2.5. Cluster Analysis 27

o Scale color:/'R\e()q) + Re(Xs)|

N
L
N »
L (

o
L
o
L

‘/n(mt - ‘/neg
Vnout - Vneg

) N
P ———

-1099.5

N
o

Re(Al) -10 -1100.5 RG(A2) RG(AI) -10 -1100.5 RG(A2)

o gl o g2 g3 o g4 gd

0.02
0.01

0

-0.01

Vnuut - I/’vneg

-0.02
-10

-7.36
-7.362
-7.364 %1073

-8
%1073 -6
-7.366

Re(\y) “ Re(Xg)
(c)

Fig. 2.8. Results of the k-means algorithm with k,, = 5. The desired result is shown in (a). The
obtained results on the untreated data set is shown in (b). Upon scaling the data set, (c)

is obtained.

center of each cluster as one of the data points. In [TSKK19], various extended k-means algorithms

are listed and examined, like bisecting k-means.

2.5.2 Clustering Algorithm: DBSCAN

Another clustering algorithm is DBSCAN [EKX], which unlike k-means is a density based clus-
tering algorithm. This clustering algorithm can distinguish the points belonging to a cluster and
those which represent noise in a data set, as the name implies: Density-based spatial clustering of
applications with noise. In fact, points are divided into three types: core points, border points,
and noise points. These are defined as:

e Core points: points that have at least N points within a distance ¢ from themselves.

e Border points: points that has at least one core point at a distance e from themselves, but
do not have the required N points within this distance.

e Noise points: points that are neither core nor border points.

A cluster can contain both, core and border points, while noise points don’t belong to any cluster.

Fig. 2.9 shows an example of this point classification.

28 2. General Basics and Principles

2 — T T | — T T
o core points Y S
. . \
15 H o noise points o = { o | -
X = >~ © . /
border points ~ hN AN
1 { J) Vo e =
> 7 SO (e
—-——— - \ — o/~]
05 4 A / — 7
: o S / ey
\\ / // \\
0r ~C 7 o —
e o (\ /}
N //
05 L | | | | [|
- 2 1 0 1 2 3 4
T

Fig. 2.9. Classification of points in DBSCAN. All circles have a radius of €. The centers of the
circles represent the coordinates of the example points.

The DBSCAN algorithm is given in Algorithm 2 for the data set Eig, the threshold radius for a
neighborhood search query ¢, and the minimum number of neighbors N required for a core point.

Algorithm 2 DBSCAN clustering algorithm
procedure DBSCAN(Eig,e,N)

from FEig choose an initial core point and initialize the first cluster label k,, to 1
while there are unlabeled points do
while new points can be labeled to the current cluster &, do

1:
2
3
4
5: label the points that are at a distance € from the current point
6 if at least N points are in a distance less than ¢ then

7 label the current point as a core point

8 else

9: label the current point as a noise point or a border point
10: end if
11: choose the current point as one of the found core points

12: end while

13: select next unlabeled point as the current point and increase the cluster label k,, by one
14: end while

15: end procedure

Noise as well as border points can be reassigned in this algorithm. Similar to the k-means
algorithm, the Matlab implementation of the DBSCAN algorithm comes with a wide variety of
possible settings that optimize the performance and results obtained.

Compared to k-means, DBSCAN has the advantage that the number of clusters is found by
the algorithm. On the other hand, this requires reasonable values for the input parameters ¢ and
N. Moreover, in some cases better results can be achieved by prepossessing the data set before
launching the clustering algorithm. The impact of changing only one parameter (e) slightly is
shown in Fig. 2.10.

Along with the stated algorithms, the clustering algorithms OPTICS and mean-shift are also
used in this dissertation. As they are later stated only as substitution to the default algorithm,
they will not be reviewed here.

https://de.mathworks.com/help/stats/dbscan.html

2.5. Cluster Analysis 29

-1099.4 T T T T -1099.4
ogl - g3

10996 | o g2 o g4 -1099.6

-1099.8 -1099.8
— ~
a (5]
:_</ -1100 5/ -1100
x x

-1100.2 -1100.2

-1100.4 | -1100.4

-1100.6 -1100.6 L . L

-20 -18 -16 -14 -12 -10 -20 -18 -16 -14 -12 -10
Re()q) Re()\l)
(a) (b)

Fig. 2.10. Results of the DBSCAN algorithm with the data set Eig and N = 1. In (a) the clustering
is performed with € = 0.1, while in (b) € = 0.09 is used.

2.5.3 Clustering Evaluation: The Silhouette Coefficient

To measure the quality of clustering, the silhouette coefficient can be used. The silhouette value for
each point shows how similar this point is to the other points belonging to a cluster. The silhouette
coefficient for a point A, is defined as:

bpt — (Ipt

sithouette(An) = Z0 oy
pty Vp

(2.43)
Where a,; represents the average distance from the point A,; to the remaining points of the same
cluster, while b,; represents the minimum average distance from the point A,; to the points belong-
ing to a different cluster.

The silhouette coefficient can attain values between [—1,1]. A close value to 1 indicates that the
point is well clustered and thereby assigned to the appropriate cluster. If this value is close to zero,
the point lies in between two clusters. A negative value indicates that the point is closer to other
clusters than to its own. This indicates that the clustering performed can be improved.

Considering the data set Eig and the clustering performed in Section 2.5.1 with the cluster
number k,, = 2, the silhouette coefficient for each of the 18500 points is shown in Fig. 2.11a. As
observed, the points are well labeled in the two clusters.

As stated in Section 2.5.1, when using the k-means algorithm the optimal number of clusters
k., must be provided. For that, the silhouette coefficient can be used. In fact, Matlab provides
a clustering evaluation function called evalclusters, which according to a set of specified criteria
evaluates the cluster analysis. The result of this evaluation for the studied case from Section 2.5.1
is illustrated in Fig. 2.11b, with the silhouette coefficient set as the clustering evaluation criterion.
As observed, the optimal number of clusters for this case is k,, = 2.

30 2. General Basics and Principles
0.964
0.962
ir n
\8)
3 0.96
L S
= ~
VAl [\8) L
E % 0.958
> 3
= 0956 -
teS
2t N
0.954 -
n " . . . 0.952
0 0.2 0.4 0.6 0.8 1 2 25 3 35 4 4.5 5
Silhouette Value Number of Clusters
(a) (b)

Fig. 2.11. In (a) the silhouette coefficients of the data points after performing k-means with &, = 2
on Eig is shown, while in (b) the result of the evalclusters function with the silhouette

as the evaluation criterion and a maximum of 5 clusters to test is illustrated.

3 Sampling the State Space

w} compute sample
fead nonlinear state *.acv file
I I .)
Vera options equations space

Vera

Fig. 3.1. Overview of Vera and its basic building blocks.

The first step towards the model abstraction, as illustrated in Fig. 1.4, is to sample the netlist
via Vera [HKHO04; HB5; SH10a]. Originally, Vera is an analog equivalence checking tool that
formally verifies the equivalence of two circuits by comparing their reduced state space. This will
be examined deeper in Chapter 6. For the purpose of this dissertation, Vera was partially extended
to fit the needs for the model generation process described in Chapter 4.

In the following, Vera is used to sample only one netlist. Fig. 3.1 shows an overview of the
sampling process as well as the building blocks of Vera. During the sampling process, an order
reduction is performed on the circuit as well as reachability analysis on the sampled data points
classifying them as reachable or not reachable. As shown in Fig. 3.1, the sampling yields an acv
file. This file contains significant information such as the values of sampled data points, their
reachability status, the connection between them given by a directed graph, and the eigenvalues
and eigenvectors of the pointwise linearized system.

The sampling performed by Vera is done on the original netlist at transistor level with full BSIM
accuracy. In order to generate an accurate model, not only the nodal currents and voltages need
to be sampled, but also significant behavioral data, such as the eigenvalues and eigenvectors. Note
that there is a nonlinear evolution of these sampled values in regard to the different sampled points,
which is the reason why these values need to be determined at every sampled point.

Therefore, to keep the overall system behavior, it is not enough to sample along some transient
trajectories. Rather, the circuit must be sampled in an adequate manner in the reachable state
space. The sampling process of Vera is described in Algorithm 3. Vera samples a netlist with
BSIM accuracy stepping thereby through the state space like in [SH10a], nonlinearly reducing the
order as in [PAOS03], and examining the reachability of the sampled points [SH10a]. The result is
a set of data points connected by a directed graph [SH12b]. In the following, the sampling process
performed by Vera will be examined in detail. Moreover, the generated acv file obtained from this
sampling, will be handled at the end of this chapter.

32 3. Sampling the State Space

Algorithm 3 State space sampling using Vera

1: procedure State space sampling
2 read the netlist
3 set up tk.le nonlinear differential algebraic system: } computing the nonlinear Eqs. (Section 3.1)
L f@®)but) =0 g@t)ult) = y()
5: for every input value in a predefined range do
6 DC analysis — initial state vector pc
7 compute the eigenvector matrix F'
8 for every sample point in predefined ranges do
9 compute new step size Ax,
10: compute state vectors for next sample point:

Test = Torg + FAx . .
est old oA state space sampling (Section 3.2)

11: compute consistent sample points:
Lcons USiIlg Lest

12: compute the new eigenvector matrix F'

13: Lold = Lcons

14: end for

15: end for
16: end procedure

3.1 Computing the Nonlinear Equations

Starting from the Spice netlist description of the circuit, the nonlinear differential algebraic equa-
tions are set up as stated in [SH10b]:

Fla(t), &(t), u(t) =0 (3.1a)
9(z(1),u(t)) = y(?) (3.1b)

Where x(t) € R" represents the vector of n system variables {x;(t) | i € 1,...,n}, u(t) € RF
represents the vector of k input variables {u;(t) | ¢ € 1,...,k}, and y(t) € RP represents the vector
of p output variables {y;(t) | ¢ € 1,...,p}. Note that in the following the indication that the
variables x, y, and u are functions of the time ¢ will be dropped to shrink the size of the equations.

The system of equations f from Eq. (3.1a) is set up by using the modified nodal approach (MNA)
[HRB75]. Application of the MNA results in an implicit equation for each circuit node with the
system variables usually being the nodal voltages, some device currents, and additional variables
resulting from device equations or behavioral description of parts from the analog circuit [SH10b].
Using the MNA, the charge-oriented equations can be set up:

Ng = fs(z,u) (3:2)
q = fa(x) (3.3)

Where g harbors the charge variables. For simplicity, inductive elements are not considered. If
inductive elements were to be considered, an approach similar to the charge oriented MNA stated
in [ABB11] could be used. Note that the vector of the unknowns would be extended by the flux
variables ¢ of the inductive elements.

3.2. State Space Sampling 33

A closer look at Eq. (3.2) reveals that the equation represents in general a system of ordinary
differential equations (ODEs), for the case that IN has full rank, while Eq. (3.3) represents a system
of algebraic equation. Inserting Eq. (3.3) into Eq. (3.2) would again result in Eq. (3.1a), a system
of differential algebraic equations (DAEs).

3.2 State Space Sampling

As described in Algorithm 3, the state space sampling involves several steps. These steps will be
examined in detail in the following.

3.2.1 DC Analysis

After the system equations have been set up, a DC analysis is performed to find the operating point
for a given input w = upc, as mentioned in Algorithm 3 at line 6. For that, the time derivative of
the charge variables ¢ in Eq. (3.2) is set to 0, as at the steady state (¢ — oo) the system reaches
an equilibrium. By that, Eq. (3.2) becomes:

fs(mau) =0 (3.4)

For a given input upc, the only unknown in Eq. (3.4) is the state vector . Therefore, the task
becomes finding «pc such that:

fs(xpc,upc) =0 (3.5)

For simplicity, denote fs(x,u) as fs(x) for the case that u is given. Eq. (3.5) can be solved using
the explicit Newton-Raphson method. For each iteration, the Jacobian matrix is calculated:

[0fy (@) Ofs (@) 0fs, (@)
ox1 Oxa e Oxn
8f32 (:1:1) afsg (:1!1) afsg (:1!1)
N 0x1 Ox2 T On
Jg (@) = (3.6)
afsn (:1:1) 8-f5n (wl) afsn (:151)
L Oz Oxa T oxry

With the Jacobian matrix at hand, its inverse can be computed and the solution of Eq. (3.4) can
be determined by applying the Newton-Raphson method:

zi1 =z — J; (@) fs (i) (3.7)

After several iterations applying Eq. (3.7), the termination condition becomes valid and the DC
solution xpc for the input wpe is found.

3.2.2 Computing the Linear Eigenvector Matrix
With the DC solution xpc at hand, the eigenvector matrix F' of the corresponding linearized

system is computed, which is of significant importance for the sampling process. This computation
is divided into several steps as shown in Algorithm 4. These steps are examined in the following.

34 3. Sampling the State Space

Algorithm 4 Computing the eigenvector matrix F
1: procedure Compute F'

2: linearize Eq. (3.1a) and find the conduction matrix A and the capacitance matrix E
3: find the reduced state space Sy

4: compute the eigenvector matrix F

5: end procedure

From the Nonlinear DAE to the Linear System Description: Computing A and E

As stated in Algorithm 4 at line 2, to find the conduction matrix A and the capacitance matrix
E, Eq. (3.1a) is linearized around the operating point xpc for the input vector upc. Note that
the conduction matrix and the capacitance matrix are often denoted as G and C', however this
notation is not used here as it is more convenient to work with the stated notation, especially in
Chapter 4.

As mentioned, Eq. (3.1a) can be divided into the two Eqs. (3.2, 3.3). So, the task becomes
linearizing the equations:

Ng = fs(z,u) - EAz + AAx = BAu

To determine the capacitance matrix E € R™ " the chain rule is first applied on Eq. (3.3) to
determine q:
| dg
=
_ df.(x)
dt (3.8)
_dfa(x) dx
- dx dt
=Jg, (z)T

Where J¢, () is a Jacobian matrix and & is the derivative of the state vector x with respect to
the time. Substituting Eq. (3.8) in ¢ from Eq. (3.2), for € = xpc and u = upe, yields:
Nq = NJfa(wpc)i:
~—_—

E

(3.9)

The remaining nonlinear function fs(x,u) of Eq. (3.2) is next linearized around the operating
point (xpc, upc) using the first order Taylor polynomial for multivariable functions. Using the
corresponding Taylor terms along with Eq. (3.5), fs(x,u) is linearized to:

Ofs(xpc,upc)

dfs(xpc,upc) (@

fs(z,u) = fs(xpc,upc) + O —xpc) + ou (v —upc) (3.10)
0 " B

This is an approximation as the reminder of the Taylor series in Eq. (3.10) is missing. In fact, the

error of this approximation can be estimated by determining this reminder.

The conduction and input matrices in Eq. (3.10), A € R™" and B € R™ ", respectively, are
both Jacobian matrices. With Au = u—upc and Az = ¢ —xpe leading to Az = & (as £pc = 0),

the linearized system becomes:
EAx = AAx + BAu (3.11)

3.2. State Space Sampling 35

Note that Eq. (3.11) could have also been derived from Eq. (3.1a) by applying the Taylor series
directly on f(&,x,u) as stated in Section 2.3.3 by applying Eq. (2.37).

Regarding the output of the system from Eq. (3.1b), the approach presented in 2.3.3 can be used
to linearize the output equation. In fact, this is not needed here as the output voltages and currents
are usually functions of the nodal currents and voltages presented in . Thus, the output vector
y is often directly given as a function of the state variables . For consistency, by additionally

consider the input vector u, the output equation becomes:

Ay = CAzxz + DAu (3.12)
With:
9g(x,u) 9g(x, u)
ypc = Cxpc + Dupc C=—"—"— D=">""- (3.13)
ox ou

Where C € RP*"™ and D € RP**. For simplicity, the feedthrough matrix D will be neglected in
what follows, as the state vector x usually contains all nodal voltages and currents.

Summing up the previous results, the linear descriptor representation of the systems is:

EAz = AAxz + BAu (3.14a)
Ay = CAz + DAu (3.14b)

According to Section 2.3.2, Eq. (3.14) represent the linear descriptor representation of the system
with & € R” being the state space vector, sometimes denoted as descriptor vector, in the original
state space S, of the system. As stated previously, this vector hosts all nodal current and voltages
of the circuit.

The Reduced State Space S)

At this point, we aim to reduce the size of Eq. (3.14) pursuing two purposes:
e get rid of the algebraic equations presented in Eq. (3.14a)

e perform a dominant pole order reduction on Eq. (3.14a) to further reduce the order of the
equation to an appropriate one that considers the relevant dynamics of the system

The first goal can be achieved by separating Eq. (3.14a) into two equations according to the cor-
respondence to the finite and infinite eigenvalues. This can be achieved by transforming Eq. (3.14a)
into the KCF as stated in Section 2.2.2.

Consider the two transformation matrices F' € R"*™ and H € R™*". F is the matrix of the right
eigenvectors, as the columns of F' in general consist of the right eigenvectors of the linearized system.
We demand that F' is regular, by that all its column vectors are independent. For the case the
finite eigenvalues of the system are distinct, this is straight forward, as the finite eigenvectors are by
definition independent, and the infinite eigenvectors can be freely chosen as stated in theorem 2.2.4.
H on the other hand is a properly calculated matrix. There exist different methods to calculate this
matrix [Mar91][Doo79]. For example, if all eigenvectors are independent and arranged column-wise
in the F' matrix, to satisfy Eq. (2.24), H can be calculated as:

H=AF1A"! (3.15)

36 3. Sampling the State Space

Note that F' and especially H are sometimes ill calculated, which challenges the model abstraction
process described in Chapter 4. Even though several methods have been implemented in Vera that
compute these matrices, errors can still arise due to numerical problems. As seen later, Section 4.5.2

tries to counter this problem.

Using the transformation matrices F', the state space vector & € R" in the original state space S,
is transformed to the state space vector s € R™ in the new state space S by a linear transformation
(see Section 2.3.1):

Az = FAz, (3.16)

Using Eq. (3.16) and the transformation matrix H, Eq. (3.14) is transformed into the KCF as
stated in Section 2.2.2:

HEF Ai, = HAF Az, + HB Au (3.17a)
SN—— SN—— N~~~
E A B
Ay = C~F Az, (3.17b)
C

Note that transformed matrices are marked by a tilde (7). Expanding E and A yields the form
described in Eq. (2.24). By that, Eq. (3.17) becomes:

In 0 Ty = J 0 Az, + ?A Au (3.18a)
0 N 0 I B,
Ay — [éA éoo] A, (3.18b)

With Iy, J € R™", I, N € Rv=x(=n) By e Rk B € RO-1*E Cy € RP*7 and Cu €
RP*(n=7) - Ag stated in [HKHO4], this transformation is only valid at the particular sampled point
of the linearized system. Note that the initial system consisting of n variables can now be divided

into 7 dynamic variables and (n — r) algebraic variables.

In order to achieve the second goal stated at the beginning of this section i.e. extracting the
relevant dynamics of the system, Eq. (3.18) is further processed. Performing a dominant pole
reduction similar to [PAOS03] on Eq. (3.18), reduces the high order resulting from parasitic poles
down to the functionality needed. This reduction can be specified by the number of poles of
interest to be incorporated or by a corner frequency. All poles and zeros which are below the
corner frequency are incorporated in the model. This can be thought of as moving the remaining
17 poles and zeroes, that are far to the left of the complex s-plane and not in the range of interest,
to infinity. By that, the size of IN and I is increased by ¢ rows and columns, while the size of Ip
and J is decreased. The system thereby is left with:

m=(r—1), (3.19)

finite eigenvalues. Of course, other reduction method could also be used, for example those stated
in [Banl4]. As the model order reduction of a system is out of the scope of this dissertation, only
the stated case will be adapted. The model order reduction results in:

[IA,red 0 Jred 0

Ioo,red

B re
Az, + | 24| Au (3.20a)

0 Nred

oco,red

Ay = |:éA,red éoo,red:| Ams (3'20b)

3.2. State Space Sampling 37

Where the subindex red stands for the matrices after model order reduction. With Iy yeq, Jred €
Rmxm’ Ioo,redaNred € R(n—m)x(n—m)7 BA,red € Rkaa Boo,red € R(n—m)xky éA,red € Rpxmy and
C’oo,red € Rp*(n=m) For simplicity, we perform the following assumptions

Assumption 1. All finite eigenvalues of the system are distinct, the matriz Jyeq in JCF becomes
thus a diagonal matriz A.

Assumption 2. The index of nilpotency n <1

Assumption 1 is quite common in numerical applications, but is here only assumed for simplicity.
Assumption 2 is made concerning the nilpotent matrix IN,.q. Theorem 3.2.1 states the results from
[Est00] summarized in [ABB11]. Note that the index of the DAE is the index of nilpotency as
stated in Section 2.2.2.

Theorem 3.2.1. If the differential index of the DAFE is one, then the network contains neither
cut-sets with only inductive and/or independent current sources, nor loops with capacitive elements

and independent voltage sources.

In what follows, these assumptions are made as stated in [HKH04]. Concerning Assumption 1,
A can be replaced at any time with little adjustment by J,.q. For Assumption 2, the case n > 1 is
handled in the Appendix A.1.

For the stated assumptions, the system becomes:

I 0 A O B
Ared ™| N = Az, + | 28 A (3.21a)
0 0 0 Ioo,red oo,red
Ay = [(}Med éoo,red] Az, (3.21b)

Eq. (3.21a) can be divided into two parts: a dynamic and a static part. This is done by dividing
the state space vector x5 € R" into two parts: &) € R™ and x € R"™ ™.

T
Ty =
Lo

The vector x) is referred to as the state vector in the reduced canonical state space Sy. The m-finite

(3.22)

eigenvalues of the system are associated with this state vector. The (n —m)-infinite eigenvalues are
associated with x.., the state vector in the state space Sy .The parasitic behavior of these poles is
not totally rejected, as the nonlinear large signal dynamics are part of the consistent solutions as
explained at the end of Section 3.2.4.

By replacing the subscript (A, red) by A and splitting @ into @) and &, according to Eq. (3.22),
Eq. (3.21) becomes:

I>\ 0 A:BA _ A 0 Aa:)\ + ~B)\ Au (3.23&)
0 0 Amoo 0 Ioo,red Amoo Boo,red
- - Ax)
Ay - [C/\ Coo,red} Awoo (323b)

Hence, the dynamic or differential part of Eq. (3.23a) is:

L Az), = AAx) + B)\A’u, (3.24)

38 3. Sampling the State Space

while the static or algebraic part is:

Ioo,redA$oo = _Boo,redAu (325)

In a similar fashion to the state vector x,, the eigenvector matrix F as well as the proper
calculated matrix H can be divided into two parts:

F= [FAFOO} H = [IZI*] (3.26)

Note that this distinction is performed after the model order reduction. Thus, Fy € R"™*™, F. €
R (=m) F, € R™*" and H,, € R("™)*"_ This concludes the calculation of the matrices F
and H as stated in Algorithm 4.

3.2.3 State Space Step

Continuing the sampling process described in Algorithm 3, the next step is to calculate the state
space step (line 9) followed by the calculation of the calculation of the estimated sample point
Zest in the S, domain (line 10). Previously, we have linearized Eq. (3.1a) around the operating
point (xpc, upc) and calculated the eigenvalues of the linearized system. With the transformation
matrices F' and H, the system was transformed from the original state space S, to the reduced
state space S). The S, space is of minor importance as will be clarified in the following. The
relationship of the state vectors of these state spaces is given by Eq. (3.16):

Az = F\Ax) + Fy oAz (3.27)

By considering Eq. (3.25), it becomes clear that as long as Au = 0, Az, = 0. Hence, for a given
state step value Ax), a point in the S, space can be estimated. For this, only the reduced part
(with the subscript A) from the right side of Eq. (3.27) needs to be considered:

Lest = F/\A$)\ + Tolq (328)

By solving Eq. (3.28), the estimated sample point s in the S, domain is calculated. In the first
step, x,iq represents the DC operating point xpc.

This estimation however, suffers from a linearization error (see Section 3.2.2) which would prop-
agate during the sampling process inducing even larger errors. To obtain accurate results, the

calculated sample point must be corrected by computing the consistent solution.

3.2.4 The Consistent Solution

According to Algorithm 3, the next step in the sampling process is to calculate the consistent
solution. The consistent circuit solution x..,s for each sampled point is calculated by solving the
nonlinear circuit equations from Eq. (3.1) based on the estimate sample point from Eq. (3.28).
This is done using a modified Spice circuit simulator [Dav03]. Each capacitor (netlist capacitor or
parasitic capacitor) is virtually converted into a voltage source. The values of these voltage sources
are the estimated voltage differences across the capacitor from x.s. The solution of solving this
modified equation system is the consistent solution X..,s with slightly differing capacitance voltages
due to nonlinearities and capacitance loops but fully fulfilling the nonlinear DAE system Eq. (3.1).

3.3. Summary 39

Keeping in mind that Eq. (3.23) is linearized around the operating point (xpc, upc), it becomes
clear that this equation is only valid around a small range around this operating point. Hence, a
small deviation, such as a state space step, from the operating point might lead to a change in the
eigenvalues of the system and thereby to a change in the calculated matrices F and H. Therefore,
as stated at line 12 of Algorithm 3 and described in Algorithm 4, after the consistent solution is
found, the system is linearized again around this point, the eigenvalues and transformation matrices
are recalculated, and the system is again brought to the canonical form shown in Eq. (3.23). Hence,
the system is linearized at every sampled point.

Since there exist unreachable regions in the state spaces, Vera incorporate a reachability anal-
ysis for the calculated sample points [SH10a]. For this, a directed graph is generated containing
successor and predecessor relationships. Starting from the operating points, a reachability analysis
is performed inside Vera and the reachable status of each sampled point is calculated.

3.3 Summary

The previous stated procedure from Section 3.2 is repeated for a given range of the state space
and input voltages. That is, the system is first linearized around a DC point, an order reduction is
performed, the transformation matrices are calculated, the estimated solution is computed based
on a state step, and finally the consistent solution is calculated. For the next sampled point, the
transformation matrices are recalculated, a new estimated point is calculated, and the consistent
solution is determined using this point. This is repeated till the specified borders of the state space
are reached, then a new DC point is selected, and the process is repeated.

All obtained information are stored in an acv file containing:

(a) all the @ € R",)\ € R™, and @y;x € R™ sampled values from the S,, Sy, and S, state

spaces, respectively
(b) the transformation matrices F € R™*™ and H € R™*" that link both domains S, and Sy

(c) the eigenvalues of the linearized system after model order reduction A € R"™*™ which are
stored in the matrix Etg as described later in Section 4.4.1

(d) the directed edges between the sampled points

(e) the input matrices B € R™** for the k input variables {u;(t) : 4 € 1,...,k}, and the output
matrix C € RP*™ for the p output variables {y;(t) |7 € 1,...,p}

As stated, Vera performs a dominant pole order reduction. This is done by specifying the desired
order of the reduced state space or by specifying the range of the frequencies of interest. By that,
the tool identifies the nodes that harbor the state variables. These variables make up a subspace
of the &, space and are referred to as the wirt variables. The state space vector corresponding to
these variables is denoted as x,;+ € R™ in the state space Syt C S,. An example of the Syt
space is given in Section 4.1.

Consequently, four significant state spaces can be identified:

1. S,: represents the original state space of the circuit. The state vector is € R™, which
contains all n nodal voltages and currents of the circuit

40 3. Sampling the State Space

2. S;: represents the transformed state space of x as given by Eq. (3.16), the state vector is
x; € R”

3. S): represents the reduced state space spanned by the state vector &) € R™, such that the
relationship between this vector to the state vector x; is given by Eq. (3.22). Thus, S\ C S;s

4. Syir+: represents a state space of special interest, such that S, is a subspace of S, i.e.
Svirt C So. Suyirt 18 referred to as the virtual state space. The state variables in the state
vector @+ € R™ represent the voltages across capacitors and the currents through inductors
resulting in the states of the system. Note that the dimension of this state vector is, similarly

to x), is defined by the model order reduction which results in m < n states

The options, including for example the frequency range or order of the reduced system, are
provided to Vera via a .msl file. This file hosts as well the method used for the calculation of
the transformation matrices F' and H, the maximal allowed slew rate, the range of interest in the
reduced state space, the state space step (calculate or fixed), the range of the inputs, the inputs
step, the reachability method, and the output node of the system. Other options specify as well
how the sampling in the Sy space is performed, which in turn influences the overlapping of the
points in this space.

On the other, in case only one circuit is provided to Vera, Vera samples the netlist as described
in this chapter. In case two circuits are provided, Vera performs a formal equivalence checking in
the analog domain. This is done by extending the sampling procedure presented in Algorithm 3 for
two netlist, A and B. The process executes this time lines 2 till 12 for both circuits simultaneously.
Between lines 12 and 13, two additional steps are executed; the derivative error d; as well as the
output error d, are computed:

51' - max(a':cons,A - abcons,B) 5y - mam(ycons,A - ycons,B) (329)

Thus, after computing the consistent solutions for both circuits A and B and the corresponding
output voltages, both errors are calculated by finding the maximum values over all corresponding
dimensions. After the analysis completes, the relative derivative error d;, and the relative output
error d,, are computed by considering the maximum voltage spectrum of the signals over all
sampled points:

210z 1 2-8,] - 100
Ogr = 1921 - 100 Syr = % (3.30)

' max(’d’cons,A’) + max(|:bcon5,3|) maa:(|ycons’A|) + max(|ycon8,]3|)

Finally, the maximum values of errors d; and d,, as well as maximum values of relative errors d;
and d,, are computed over all sampled points.

This verification, which calculates of the deviations between two models, has a significant impor-
tance and is therefore demonstrated later in Section 6.1. Using this methodology, the generated
abstract model can be compared against the original Spice netlist. This closes the modeling and

verification loop by verifying the correctness of the generated model. Consequently, error margins
can be defined.

3.4 From Vera to Elsa: spaceM

The generated acv file from Vera needs to be imported to Matlab, as Elsa (Chapter 4) is written in
Matlab syntax. This is done via spaceM, a MEX code that calls a C++ parser that uses LEX and

3.4. From Vera to FElsa: spaceM 41

YACC to generate a Matlab structure named space. The contents of this structure are, as stated
in Section 3.3, the contents of the acv file.

C code:

.acv file space

yacc & lex

spaceM

Fig. 3.2. Overview of spaceM.

The main function of spaceM is stated in appendix B. Note that at line 55 the C++ parser is
called via the function readACVFile.

4 Elsa: Eigenvalues Based Hybrid Linear System
Abstraction

In this chapter, the automated abstraction approach is examined in detail. As the eigenvalues play
a significant role in the abstraction process, the approach has been named FElsa: eigenvalue-based
hybrid linear system abstraction. The abstraction process performed by Elsa can be divided into
four building blocks as indicated in Fig. 4.1. In the following, each of these blocks as well, as the
resultant hybrid automaton (HA), will be analyzed in detail.

After the initialization of FElsa in the first block, the locations of the HA are identified in the
second block. For each of the identified locations, a system description is found. The result is a HA
with a linear behavior in each of its location. On top to the system modeling, the guards as well
as the invariant for each location are identified in the system modeling block. Finally, the model is
generated according to the specified output language and the corresponding modeling methodology.
The abstract model can be generated as a Verilog-A, Matlab (Cora), or SystemC-AMS behavioral
model.

space
location system model
Elsa options identification modeling creation

initialization

Fig. 4.1. Overview of Elsa and its 4 building blocks.

As indicated in Fig. 4.1, along with the Matlab structure space (see Section 3.4), an option file
is passed to FElsa. This option file is called SpaceOptions. Hence, the start point of the abstraction
process is the in Matlab loaded structure space and the option file SpaceOptions located in the
current directory, while the end point is a generated HA in the specified output language. Note
that the whole abstraction process starting with the sampling executed by Vera, till the creation
of the HA by FElsa is automated. However, if a circuit has already been sampled and an acv file is
at hand (section 3.3), Elsa can be launched separately.

In the following, the building blocks of Elsa shown in Fig. 4.1 are examined along with the
possible modifications that can be set to improve the obtained HAs.

4.1 Running Example

To demonstrate the approach, a running example will be handled throughout this chapter. For
that purpose, consider the schematic diagram of a second order lowpass filter shown in Fig. 4.2.

4.1. Running Example 43

The lowpass filter exhibits a nonlinear limiting behavior at the output voltage V., as soon as
this voltage reaches its maximum or minimum value given by V4 or Vi, respectively. Vg is set to
+1.65 V, while Vi, is set to —1.65 V. All voltages are given with respect to the reference voltage
Vief = Vgna = 0 V. By that, V,,y¢ is limited to the range [-1.65,1.65] V.

The operation amplifier has a gain of —0.8869, which is negative as the operation amplifier is
used in an inverting configuration. Thus, for V;, > 1.8604 V the operation amplifier goes into the
negative saturation V., = —1.65 V, while for V;;, < —1.8604 V the operation amplifier goes into
the positive saturation Vo, = 1.65 V.

In order to achieve this gain, the resistors R1, R2, and R3 are chosen to be 9.5 k2, 10 kS,
and 10 k€2, while the capacitors C1 and C2 are set to 0.01 pF and 0.1 uF, respectively. The
operational amplifier is described in Spice at transistor level with full BSIM4 accuracy. Note that
in Appendix C, the schematic of the netlist describing the operation amplifier is shown in Fig. C.1,
while the test bench containing this operation amplifier is described in Listing C.1 and shown in
Fig. 4.2.

‘/n,(fg - ‘/n,mn‘,

a—————
Co
|
I
R
vVWA
Vad
} nout
Vs WLout

Fig. 4.2. A second order lowpass filter with a nonlinear limitation for V0, € [-1.65,1.65]. The

Y4l
Vain O Viin2 | == C1

operational amplifier is a Spice file consisting of 17 transistors in a 350 nm CMOS tech-
nology.

For the running example from Fig. 4.2, Vera has sampled the netlist and generated an acv file
as stated in Chapter 3. Note that the DAE system has n = 24 variables, which represent the nodal
voltages and currents of the circuit from Fig. 4.2 including the internal ones from the operation
amplifier (see Appendix C). With the nodal voltages (Vi) and currents (I,,), the € R?* state

vector is:

= [Viranett Varzmet2 Vaizmets Virowbiasa Virzmetr ViI2nets
Vle.netG Var2.nets Vle.vbiasl Vx]?.vbias? vasub.br Ivvdd.br (41)
Lyvrefor Tovdd.br Ivipr VpsubE Vibias Viss
Voref Viad Viout Vieg Viin2 Vain] g

For this example, Vera detects that the system has an order of r = 14. The result of this dynamic

state identification is presented in Table 4.1.

An order reduction is performed by Vera resulting in a reduced order of m = 2. This corresponds
to selecting the first two rows from Table 4.1. Hence, at each sample point, A from Eq. (3.23)

44 4. Elsa: Eigenvalues Based Hybrid Linear System Abstraction

Table 4.1: Result of the dynamic state identification performed by Vera

| Node 1 Node 2 Eigenvalues (\;)

1 | nout neg —1.01 x 10*

2 | nin2 not set —1.09 x 103

3 | xI2.vbiasl zI2.vbias2 —1.71 x 107

4 | xI2.vbiasd bbias —3.24 x 107

5 | xl2.vbiasl | vdd —4.36 x 107

6 | xl2.vbiasd VS8 —5.84 x 107

7 | xI2.netl neg (—2.77 — 17.025) x 108
8 | xI2.netl not set (—2.77 4 17.025) x 108
9 | xI2.net7 bbias —2.88 x 108

10 | zI2.net3 x12.netb —4.67 x 108

11 | xI2.net4 vdd —1.36 x 10?

12 | 2I2.net2 vsS —3.39 x 10°

13 | z12.net3 v8s (—8.21 — 2.625) x 10?
14 | zI2.net2 r12.net6 (—8.21 4 2.625) x 10°

contains only two eigenvalues and is thereby a 2 x 2 matrix. Moreover, this defines the size of the
reduced state space vector € € R? as well as the size of the virtual state space vector @, € R2.

Considering again the first two rows of Table 4.1, the dimensions of the x,;+ vector can be
identified. In this case, this vector consists of three entities from the x vector: Vyout, Vieg, and

Vinina- More precisely, the @+ vector is:

Vnout - Vneg

4.2
Vm'nQ ()

Lyirt =

Moreover, the dimensions of the transformation matrices are Fy € R**2 F., € R**22 H, €
R2%24 and H,, € R?2*24, The circuit is a SISO system with an output matrix C € R'*24 and an
input matrix B € R?**!. Note that even though C and B are both vectors, they will be handled

in the following as matrices to illustrate the approach in general.

Considering the sampling performed by Vera, the input range was specified as V,,;,, € [—5,5] V
with an input step of 0.5 V. The state space range was specified as x 1,2 € [—5, 5] with a state
space step of 0.25. As mentioned, the reduction order was specified as m = 2. For these options,

Vera sampled this example with roughly I = 18500 points.

4.2 Examining the Results of Vera With Amcuvis

Before starting with Flsa, a powerful tool will be briefly introduced. A Matlab application named
Amcvis has been implemented that represents a graphical interface to FElsa. Moreover, Amcuvis
can be used for various debugging options, like for example plotting the sampled points in any of
the specified state spaces from Section 3.3. Up to three dimensions can be plotted simultaneously.
Additional dimensions affect the color scaling. In what follows, Elsa will be examined on code level

4.2. Examining the Results of Vera With Amcuis 45

and not through this interface. But before generating an abstract model with FElsa, it makes sense
to analyze the data first with this tool. Fig. 4.4 presents the front end of Amcuvis.

Ul Figure - o x
plot cut create options debug
File: |rccTransistors.gc.acv v Q load [plot | focus
x Virt_nout-neg v new figure finalize 1
y Virt_nin2 v assign space in base import space from base
z V1 v face alpha edge alpha
IIIIIIIIIIIIIIIIIIIIIIITI IIIIIIIIIIIHIIIIIIIIIIIII
Reach mode | All v 0 20 40 60 80 100 0 20 40 60 80 100
DC Graph
))
el J@x Off @l On Auto mode
|||||||||||l|Illllllllllll |||||||||||l|||||||||||l|| actlve ref-resh rate 0
0 20 40 60 80100 0 20 40 60 80100
||||I|l|||||||I|I|||||I||| ||||||l|||||l|||l|l|[|l|||
0 20 40 60 80100 0 20 40 60 80100

: : path: /home/tarraf/matlab/examples/dis
scale dimensions

x12.net1 refresh save path save
xI2.net2

x12.net3 path] /home/tarraf/matlab/examples/dis/rccTran/acv
xl2.vbias4 refresh path =
x12 net7 h

Fig. 4.3. Amcvis implemented as a Matlab application.

After space has been loaded into Matlab via spaceM (Section 3.4), different plots can be generated
by using Amcuvis. Fig. 4.4a shows the real part of the eigenvalues of the reduced system. Note that
the eigenvalues are purely real for this example. With these two eigenvalues, the color of the
sampled points in the remaining figures is specified. Fig. 4.4c shows the Sy;¢ space, while Fig. 4.4g
the Sy space. The red points represent the calculated DC points (see Section 3.2.1) for an input
range Vi € [—5,5] V with an input step of 0.5 V. The remaining subfigures of Fig. 4.4 show
various plots with randomly chosen constellations of variables. The voltage labels correspond to
the node names shown in Fig. 4.2 as well as to the internal nodes of the operation amplified from
Appendix C. As observed, especially in Fig. 4.4f, the eigenvalues are well suited for the distinction
of the behavior of the pointwise linearized system.

Unlike the Sy space, the Syir+ space shown in Fig. 4.4c, clearly shows the different dynamic
behaviors of the system without an overlapping of the sample points with different eigenvalues.
However, the task of Elsa is to build a HA in the S) domain and not the S,;+ domain, even though
the overlapping of these points might challenges the model abstraction approach.

A question that comes up when observing the Sy and S,;+ spaces is: can the HA be build in
the Syirt space? As Syt C So, building a HA in the S,;+ domain is equivalent to selecting specific
entities from the & vector and abstracting the model to these values. Obviously, this would result
in a model with a bad accuracy as well as in the loss of the ability to reconstruct precisely the
elements of x. However, the S+ space can be used to aid the model abstraction process as will
be explained in Section 4.5.

Additional to building the HA in the §) domain, the generated model is simulated in this domain
as well. As observed in Fig. 4.4g, building as well as simulating the HA in this domain is not an

46 4. Elsa: Eigenvalues Based Hybrid Linear System Abstraction

-1099.4 , ; | |
« Scale clolor: AL+ Ao ""." « Scale color: A\ + Xy . S84 Scale color: Ay + A
-1099.6 = DC points 1'5;4»;&»8&&,. » DC points 4 ¥ | « DC points
1 . - e
IR TER R R :
1E:aww":=!!::“! st :
-1099.8 ;“”“«'ﬁ”g!“u“ #an R 4
o 05 gyupnp @hf o nanantl
™ - 9 ¢ ;”H LM TEEELE ™ : .
= N gesBBBE yElDgg ’ | = :
T M S Ofgunnnp;gpofi aannt S o :
% ~ :“aﬁﬂﬁiﬂ'jgnﬁ‘:giﬁ ,gn: o~ d
s '0-5Zaaukﬁﬁagnﬁ9:i!ﬂ 88 > 5
-1100.2 &Qa&ﬁﬁﬁ’;‘&@!!ﬂi“ 88 2t
afgssnond a8 annseny : |
lopnnnn"qgudf upnnnst ul 1
-1100.4 s SHIHTIHI 5);]
'?ii”n'li”llioo 'Y i :
-1100.6 s ‘ ‘ ‘ 2 - iR
-20 .18 .16 14 12 10 5 4 3 -2 -1 0 1 2 3 4 5 -4 -2 0 2 4
Re()\l) an Vnout — ‘[rleg

(a) (b) (c)

Vnout

S X e Scale color: /\1 + >\2
% o DC points
4 > 2]
: 3 2
$ffF g
2 | | g\
+ 2 —~ 4
— 14 3 y
2 olf : = S o
) o d\:) -16 ~ ¢
-1 é}
2 3 -18 $
: ~ ~5
¥ 20 2
4 0 2
-0.9 1
s O 1
bt 445 : dsesees -1.2 -1 -05
R e T v Vg 0%
. 212 vbias4 Virz.net2 neg Ver2nett
A1

®) (i)

Fig. 4.4. Various plots generated with Amcwvis. In (a) the eigenvalues of the reduced system are
illustrated, while in (c) the Syir¢ space and in (g) the Sy space are presented. In the
remaining figures, randomly chosen constellations of variables are shown.

4.3. Initialization 47

easy task. Considering the building aspect, each sampled point generally exhibits a different system
behavior, which can be traced back to the eigenvalues (Section 2.3.1). Moreover, one can simply
imagine that projecting a high dimensional system from the S, domain, in this case with r = 14
dynamic states, to a space (Sy) with a lower order, in this case m = 2, will in some cases result in
points overlapping with different dynamic behaviors. Additionally, for each point in the S) domain
the transformation matrices F' and H (Section 3.2.2) vary, which favors this overlapping, and thus
challenges the abstraction process.

There are different settings that can be provided to Vera to control the overlapping of the sampled
points. On the other hand, this generally result in greater variations in the transformation matrices,
which challenges the abstraction process as well. However, as will be examined in Section 4.5, the
presented approach can overcome such challenges with a little additional computational effort.
Nonetheless, in the following the worst sampling case will be considered, that is the presence of
strongly overlapping points with different behaviors in the Sy space.

4.3 Initialization

As stated at the beginning of this chapter, Fisa is provided with the structure space and an option
file called SpaceOptions. The initialization process is illustrated in Fig. 4.5.

EIFEN I space
space —» P

:Bptions

Fig. 4.5. Initiation block of Elsa.

During this initialization phase, some basic functions are called to check if the options provided
are up to date, valid, and compatible. If this is not the case, the program is terminated and possible
fixes are displayed. If no errors are detected, the structure options is created from SpaceOptions
and assigned as an additional field in space named space.options as shown in Fig. 4.5. Note that,
the variables contained in space are as described in Section 3.3.

4.4 Location ldentification

The next step in the abstraction process is to identify the locations Loc of the HA. Each location
loc € Loc is defined as a pair consisting of a group and a region, such that:

loc = g(j)r(k), (4.3)

where j is the group counter, while k is the region counter.

48 4. Elsa: Eigenvalues Based Hybrid Linear System Abstraction

group
space |de'nt|f|cat|on __________ > re.gllon. » space
(eigenvalue identification
.options clustering) .options
.groups
location identification .regions

.indices

Fig. 4.6. Overview of the location identification block of FElsa.

The location identification can be divided into two blocks: the group identification and the region
identification. Fig. 4.6 shows the location identification block of Elsa and its consisting subblocks.

As illustrated, the location identification starts with the group identification. For each of the
found groups, a region identification is performed. By that, a group is divided into one or several
regions. Hence, the indices of the underlying sampled points are labeled according to the group
and region they belong to. Why a group followed by a region identification is necessary, will be
clear at the end of this section.

4.4.1 Group ldentification: Eigenvalue Clustering

The group identification consists of grouping the sampled points with similar eigenvalues obtained
from the pointwise linearization of the system (see Section 3.2.2). More precisely, for all sampled
points, the eigenvalues presented in A (Eq. (3.21)) are clustered. The clustering of these eigenvalues

is processed through several steps:
1. scale the data set
2. find the optimal number of clusters if necessary
3. perform k-means clustering on the scaled data set

These steps are necessary as various options can be applied to optimize the accuracy of the generated
HA.

Scaling the Data Set

In order to avoid working with complex values, each eigenvalue is divided into a pair of two elements,
one representing the real part and one representing the imaginary part. As Vera demanded that all
finite eigenvalues of the system are distinct (Assumption 1), A is a diagonal matrix. Although Elsa
is generally able to handle eigenvalue matrices in the JCF form (see Section 4.5), for simplicity the
approach will be described based on a diagonal A matrix.

By dividing each eigenvalue into two parts, the matrix Eig can be created that hosts the eigen-
values of a single point row-wise. Therefore, with a specified reduction order m and the [sampled
points, the matrix hosting the eigenvalues is Fig € R>2™:

Re()\1,1) Im()\lyl) Re()\lyg) Im()qyz) ce Re()\l,m) Im()\l,m>
Eig— Re(:)\z,l) Im(z)\z,l) Re(:)\Q,z) Im(:Ag,z) ... Re():\g,m) Im(?\zm) 4
Re(Al,l) fm(>\l,1) Re()\l72) Im()\lg) ... Re()\hm) Im()\l,m)

—_—— ——
Re(A1) Im(Ar)

4.4. Location Identification 49

For the running example from Section 4.1 with [= 18500 sampled data points and the reduced
order m = 2, the diagonal matrix for each sampled point is A; € R?>*2, and thus the data set
becomes Eig € R™** as given by Eq. (2.42).

There exist different options to scale the sampled eigenvalues. Four methods have been imple-
mented that perform this task. All methods scale each column of Eq. (4.4) separately. Hence, the
eigenvalues in Eig are scaled by the scaling matrix K € R™™2?™ such that the new data set E’zvg is
given by the element-wise multiplication of these matrices:

Eig=Figo K

The default method is to scale the row elements of each column of the data set Eig with the norm
of the column. For example, considering the i*" column with i being an odd number, the magnitude
of the column vector Re(\;) (see Eq. (4.4)) is:

|Re(Ni)[| = \/Re(M)2 + Re(a)? + - + Re(M,)?

This can be thought of as if each row element of the column vector Re(\;) represents a dimension.
Next, each row element of the column vector Re(;) is divided by this magnitude. Hence, K is:

1 1 1 1 1
TR Tl TReGTll Trmeal = TR Tt
K _ | RGN TGl TReC Tl - TReall T
. . : : . . ws)
1 1 1 1 1 1
MReD TTmG0l TR TTmGa) - TReGwll ()]
:[kl ky ... ka}

Note that for the case the magnitude of a column vector from Eq. (4.4) is zero, the corresponding
column in K is set to one. This scaling brings the advantage of comparing the eigenvalues regardless
of their size.

On top to the default method (a), the remaining three implemented scaling methods are:

(b) scaling performed similar to the dominant pole reduction i.e. poles closes to zero are more
weighted than poles further to the left in the complex s-plane

(c) scaling the eigenvalues till they have the same exponent pow in the scientific notion {dx 10P°" |
1<d<10}

(d) scaling the eigenvalues by a vector provided by the user

In the simplest case, the scaling method (b) first computes the mean values across the columns
of Eq. (4.4), that is for the i"® column with i being an odd number:

Re(A;) = mean(Re(A1;), Re(A2), ..., Re(N;))
The corresponding i** column vector k; € R**! in K is then:

ki:[loﬂ 105 ... 10“]T, (4.6)

50 4. Elsa: Eigenvalues Based Hybrid Linear System Abstraction

such that:

k = kp - floor(logio(|Re(N;)]) (4.7)
Where k, is a constant that is specified by the user, with the default value set to k, = —2. Note
that, in this case the corresponding column Im(A;;4+1) is scaled with the same vector, that is
ki11 = k;. Moreover, if Eq. (4.7) returns infinity, the exponents in Eq. (4.6) are set to 0.

The scaling method (c) uses Egs. (4.6, 4.7) with k, = —1, while method (d) uses an input
vector provided by the user to assign the column vectors from Eq. (4.5) directly. Note that only
the simplest versions of the scaling methods were discussed here. Nonetheless, at end of scaling
process, Eig has been scaled by K to form E'ng

In addition to scaling Eig, columns can also be removed. As complex eigenvalues always come
in pairs, they can be optionally considered only once during the clustering process. Hence, the

corresponding columns in Eq. (4.4) are removed.

Finding the Optimal Number of Clusters

The next step in the group identification involves finding the optimal number of clusters for this
data set. If this number has not been specified in the options provided to Flsa, the optimal number
of clusters is calculated according to the standard evalclusters function (see Section 2.5.3) provided
by Matlab. In this function call, the clustering algorithm is set to k-means (Section 2.5.1) and the
clustering evaluation criterion is set to use the silhouette coefficient (Section 2.5.3). The function
then launches k-means several times, each instance with a different number of clusters, up till a
specified maximum. The results from the various clustering are then compared using the silhouette
coefficient. Finally, the optimal number of clusters is returned from the clustering that yielded the

best silhouette coefficient.

To illustrate this process, consider the running example from Section 4.1. In fact, an extensive
clustering analysis on this example has been handled in Section 2.5. More precisely, for the running
example, the previous mentioned scaling (see Eq. (4.4)) is not needed. Moreover, as the eigenvalues
in Eig are purely real, the second and fourth columns of this matrix are zero vectors. Hence, the
eigenvalues of the reduced system can be illustrated in a 2D space (Fig. 2.3). By using the data
set Eig, which is illustrated in Fig. 2.3 (first and third column vectors), the optimal number of
clusters is evaluated using the silhouette coefficient as an evaluation criteria. The result of this
analysis is shown in Fig. 2.11b. As observed, the optimal number of clusters is two. Thus, k-means
is launched as stated in Section 2.5.1 with k,,, = 2 to partition the eigenvalues as shown in Fig. 2.4.

The corresponding silhouette values of all sample points are shown in Fig. 2.11a.

Clustering the Data Set

With the optimal number of clusters at hand, the matrix of scaled eigenvalues E'\z/g is clustered using
the k-means clustering algorithm presented in Section 2.5.1. Of course other clustering algorithms
can be used here as well. Nonetheless, as stated in Section 2.5.1, k-means is a partitioning clustering
algorithm. As our aim in the group identification is to partition the eigenvalues of the linearized
system into groups with similar eigenvalues, k-means represent an optimal approach compared to
other clustering methods. This can be clearly visualized in the S,;+ or Sy space as illustrated
in Fig. 4.7, where k-means has been used to identify the cluster groups gl and g2. Note that

4.4. Location Identification 51

the unlabeled data in each state spaces, Sy and Sy, was previously illustrated in Fig. 4.4c and
Fig. 4.4g, receptively.

-10 -10

N - g1
12 ° 92 © 92
) e DC points 12 o DC points
—~ -l4 — -l4
=< \ <
L -16 O -16
& ~
-18 -18
20 -20
5 5
0
‘/m'n2 T2
5 _\47 \ 0 2 4 a 2 0 2 4
Vnout - Vneg W

Fig. 4.7. Result of the group identification in the (a) Syir¢ and (b) Sy space plotted against the real
part of the first eigenvalue. The red points show the calculated DC points.

According to Section 2.3, eigenvalues are directly linked to the system behavior. Hence, sampled
points with different eigenvalues from the linearized system correspond to different dynamic behav-
iors of the system. This implies that eigenvalue clustering can be used to distinguish the system
behaviors. This becomes clear when the cluster groups identified are visualized in the S,;+ space
or Sy space as shown in Fig. 4.7. According to Section 4.1, the circuit exhibits a limiting behavior.
This limiting behavior, which can be observed in group ¢2 of Fig. 4.7, can as well as be observed
in Fig. 4.8, which shows one of the x,;; state variables (see Eq. (4.2)) drawn against the output
of the system.

x I x x x x x x
15H * 91
° 92
e DC points

o
o
T

Vnout

-2 e | | | 1 1 1 1 =
-4 -3 -2 -1 0 1 2 3

‘/nout - V;Leg

Fig. 4.8. The first T,;¢ state, Viour — Vieg, drawn against the output of the system V5,4 after the
group identification. The red points show the calculated DC points.

What is important to notice in Fig. 4.7a, is that different regions of the group g2, the region with

52 4. Elsa: Eigenvalues Based Hybrid Linear System Abstraction

Viout — Vineg < —1.65 and the other region with Vi,5us — Vieg > 1.65, have the same eigenvalues.
Thus, these points exhibit a similar homogeneous system responses (Section 2.3.1), even though they
belong to different portions of the state spaces. On the other hand, the DC points (Section 3.2.1),
colored in red in the Sy;+ space from Fig. 4.7a, show that the two regions belonging to the same
group g2 contain different operating points. The same can be observed in the Sy space from 4.7h.
Interpreting this aspect, it becomes clear that sampled points belonging to different regions of a
group can exhibit different system responses which can be traced back to their particular solutions.

This becomes even more obvious when considering Fig. 4.8. Keeping in mind that the output
response of a linear system is as given in Eq. (2.29), it becomes clear that the particular solution
in the regions of g2 differ. Moreover, as indicated by the DC points, the operating points differ as
well, which can be traced back to the input of the system. Hence, after performing an eigenvalue
clustering and thus clustering the sampled points into groups, a region identification must be per-
formed on the groups to distinguish them into regions, thereby differentiating the overall behavior
of the sampled points.

4.4.2 Region ldentification

For every identified group, a region identification is performed. Several algorithms have been
deployed that execute this task. In general, these algorithms can be classified into two categories
depending on the type of analysis they perform:

e graph analysis: distance or polytope
e clustering analysis: k-means, DBSCAN, mean shift, or OPTICS

The graph-based methods process the directed connection graph Vera generated during sampling
(see Section 3.3). The clustering-based methods simply perform a cluster analysis on the points
belonging to the same groups. In all methods, the state space in which the analysis is performed
can be chosen. This will be deeper examined in Section 4.5. For the remaining of this section, the
Syirt space will be used. For the clustering methods, on top of the specified state space, additional
data such as the inputs of the system can be used in the analysis. In the following, several region
identification methods will be examined, that effectively divide groups into regions.

Graph Based Methods

The graph-based methods make use of the directed graph generated by Vera. For the running
example, this graph is shown in Fig. 4.9.

This type of analysis first determines the subgraphs of each group. For that, the connection graph
of each group is analyzed separately. Note that, the connection graph of each group is formed by
the nodes that belong to the group. If a connection graph is not well-connected, subgraphs can be
determined. Hence, subgraphs are parts of a connection graph that are not connected.

Usually, Vera returns a well-connected graph for the entire state space as observed in Fig. 4.9.
Upon performing a group identification, the directed graph from Vera is divided into connection
graphs for each group. As observed in Fig. 4.9 for the running example, the directed graph from
Vera is divided into two connection graphs corresponding to the groups g1 and ¢g2. Looking at this
from a different perspective, when a region identification is performed on ¢2, the points belonging

4.4. Location Identification 53

Vnin2

P

§5 85
¥ ¥
6 HE ¥
- | | |

| | | | |

Vnout - Vneg

IS
w
N
-
o
=
N
w

Fig. 4.9. Connection graph generated by Vera in the S+ space.

to gl are not considered, which corresponds to removing these points from the directed graph of
the entire sampled space. Thus, the remaining points that belong to g2 form at least two subgraphs
as observed in Fig. 4.9. In contrast, g1 has probably only one subgraph which is at the same time
the connection graph of this group. Additional subgraphs may exist depending on the connections.

If the algorithm detects that a group has multiple subgraphs, the region identification is launched.
If this is not the case, the region identification is skipped. As observed in Fig. 4.9, the points
belonging to gl are well-connected, while the point belonging to g2 are not and are therefore
subjected to a region identification. Hence, the task of the graph-based methods becomes finding
the regions of g2 from the identified subgraphs. Two graph-based methods have been implemented

that execute the region identification:
Gdist method uses the Euclidean distance
Gpoly method examines the volumes of the identified polytopes
The basic algorithm of the both methods is stated in Algorithm 5 using the notation from Eq. (4.3).

Algorithm 5 Graph-based region identification methods
procedure (k) = regions(g(j), graph)
find subgraphs in graph

1:
2
3 if g(j) has more than one subgraph then

4 find the largest two subgraphs and denote them as the main subgraphs

5: add the remaining subgraphs to the main subgraphs based on the selected method
6 label the nodes of the subgraphs to the two locations g(j)rl and g(j)r2

7 else

8 all nodes of the graph belong to one location g(j)rl

9: end if

10: end procedure

As described in Algorithm 5, first the connection graph of a group is analyzed (line 2). If the
connection graph can be divided into subgraphs (line 3), the region identification is launched and
the largest two subgraphs are identified. As given in line 5, all remaining subgraphs are merged into
the largest two subgraphs of the current group using either the Gdist or Gpoly method. Finally,
the nodes of each subgraph are label as points belonging to the same region. In the case only one

54 4. Elsa: Eigenvalues Based Hybrid Linear System Abstraction

subgraph was determined, all underlying nodes belong to same region. Hence, the graph based
methods either divide a group into two regions, are assign all points of a group to the same region
based on the graph properties.

The Gdist method calculates in the Sy;+ space the distances from all nodes of the two main
subgraphs to the nodes of the current inspected one. This subgraph is then merged into the closest
main subgraph. Fig. 4.10a shows the result of this method on the running example.

VninZ
Vm’n?

-2.5 0

Vnout - Vneg
(b)

Fig. 4.10. Results of the region identification in the S, using the graph-based methods. In (a) the
result of the Gdist method is presented, while (b) shows the result of the Gpoly method.

The Gpoly method creates from the nodes of each of the two main subgraphs a polytope in the
Syirt space. At each iteration, one of the remaining subgraphs is examined, by enlarging the two
previously identified polytopes by the vertices of this subgraph. This usually increases the volume
of these polytopes. The new volume of each polytope is then computed, and the nodes of the
subgraph are added to the polytope which yields the smallest volume increase. The result of this
method is shown in Fig. 4.10b.

The graph-based methods are sensitive to a bad connected sampled state space and to a group
identification that yielded bad connection graphs. Even though several correcting algorithm exist,
there is no guarantee that these methods will yield the best results. Besides this, these methods
consume a fair amount of time. Yet, for the case that each group has only two regions, which is
often the case for a SISO system, these methods are quite reliable.

Clustering Based methods

Due to the stated disadvantages of the graph-based methods, the clustering-based methods were
developed. Moreover, for the case that the system has more than one input, which often implies
that the groups can have more than two regions, the cluster based methods should be used. Four

clustering-based methods have been deployed that can identify the regions of a group: k-means,
DBSCAN, mean shift, and OPTICS.

4.4. Location Identification 55

K-means and DBSCAN have been previously explained in Section 2.5. The remaining clustering
methods will not be presented in this dissertation. For more details see [ABKS] for OPTICS and
[Yiz95] for mean shift.

In Fig. 4.11a, the result of the region identification performed by DBSCAN is illustrated for the
running example. With €, representing the state space step in the S+ domain, DBSCAN (see
Section 2.5.2) with N =1 and € = 1.1 % €5, identified the two regions of g2 as shown.

This clustering can also be performed with k-means, OPTICS, or mean shift. In case OPTICS
is used, Flsa can be launched in an interactive mode. The user is prompted to input a reachability
distance. OPTICS is launched with the specified distance, and the number of clusters found is
displayed to the user. At this point, the user can either change the reachability distance to obtain
more or less clusters, or continue the analysis with the found clusters. For the running example,
the reachability distance was set to 1.4, the corresponding reachability plot generated by OPTICS
for group ¢2 is illustrated in Fig. 4.11b. The ordering of the points as processed by OPTICS is
illustrated on the x-axis, while the y-axis illustrates the reachability distance. Note that, points
that belong to the same cluster have a low reachability distance to their nearest neighbor. Hence,
cluster are illustrated by valleys in the reachability plot. The wider the valley is, the denser the
cluster. For the selected reachability distance, two large valleys can be observed in Fig. 4.11b. The
result of this clustering is similar to the result of DBSCAN presented in Fig. 4.11a.

6

14
4 12} .
2 > I]
-~
e
=
X S o8t 1
= 3
0
o S
S
S 06]
O
2t A
04t
4t
02 i
6 0 1 1 1 1
] 0 2000 4000 6000 8000
order
(b)

Fig. 4.11. In (a) the result of the region identification in the S, using the cluster method DBSCAN
is shown. In (b) the reachability plot generated by OPTICS is presented. The red
horizontal line indicates the reachability distance specified by the user.

After the regions of each group are identified, the location identification is complete. FEach
location can be described by a pair consisting of a group and a region as shown in Eq. (4.3). For
the running example, group g1 has only one region r1 while group g2 has two regions, r1 and r2.
Thus, this examples has 3 locations: glrl, g2rl and ¢g2r2, yielding Loc = {glrl, g2r1, g2r2}.

The region identification is not always necessary when the group identification is modified. In

56 4. Elsa: Eigenvalues Based Hybrid Linear System Abstraction

some cases the results of the group identification can be improved by clustering additionally to the
eigenvalues, the x,;+ values from the S,;+ space. In this case, the clustering data set is formed from
the eigenvalues stored in Fig and the @,;-+ sampled values. This enhances the group identification,
and in some cases, replaces the region identification by additional identifying groups. As presented
in Section 2.5.1, when k-means is used on the data set consisting of one of the x,;+ states along with
eigenvalues, three locations could be determined as shown in Fig. 2.7. In this case three groups were
identified, with each group containing only one region. This can be considered a special case and
does not always guarantee the best solution. However, performing first a group identification on
the eigenvalues, followed by a region identification on the states, decreases the clustering overhead,
as well as separates the identification problem into first distinguishing points according to their
system behavior (eigenvalues), followed by distinguishing the labeled points based on their positions
or connections in the state space. On top of that, additionally considering the inputs of the system
in the region identification often provides even better results, but again increases the overhead.
Hence, in the following these options will be skipped unless stated otherwise.

4.5 System Modeling

According to Section 2.4, a HA is defined as:
HA = (Loc,locy, xx, T, inv, tran, grd, J,u, f)

Until this point, the locations Loc have been determined (Section 4.4), while the input vector u is
usually given. The third block of FElsa as presented in Fig. 4.1 performs the system modeling. This
involves describing the system behavior in each location, determining the validity of the location
as specified by the invariants, and modeling the transitions between the locations using the guards
and the corresponding jump functions.

One of the properties of Elsa is that the created HA has a linear system description. Therefore, the
flow function f in each location is described using the linear state space representation introduced
in Section 2.3.1. Since the HA is created in the Sy space, the states space vector of the automaton
is £y € R™, with a given initial vector x o. Thus, to describe the flow function, the system matrix
Ao and the input matrix By, for each location loc € Loc are needed, as well as some reference

linearization points as will be seen later.

Moreover, since the goal is to reconstruct all nodal voltages and currents in the S, domain, a
back-transformation is needed that transforms the result of a simulation or reachability analysis of
HA in the Sy, space back to the original state space S, of the system. Hence, the result of the system
modeling block described in this section, as shown in Fig. 4.12, is a HA accompanied by additional
matrices that define the back-transformation in each location. Note that, blocks in Fig. 4.12 with
dashed borders represents blocks that can be skipped depending on the specified options.

According to Fig. 4.12, the system modeling occurs in the S,;+ space as well as in the Sy space.
Nonetheless, the modeling can be also exclusively performed in the Sy space if desired. In this case
the underlying blocks which are executed in the Sy are processed in the Sy space. Moreover, in this
case the transformation block is skipped. Note that, performing the system modeling exclusively
in the S+ space is not possible, as the modeling process is based on KCF (see Section 2.2.2).

4.5. System Modeling 57

i S
space > oper?tlng P X spac_e » space
point recalculation
.options ; : s .'Bptions
.groups v .groups
.regions .regions
system sort guards and transform |_.indices
description locations invariants Ovirt PSSy —-é
::F,\
Suirt SPace S) space —-F'A H
—+FocFloo
system modeling —'Ignltard
_:jump

Fig. 4.12. Overview of the system modeling block of Flsa.

As mentioned, one of the current tasks in this section is to create a HA with a linear flow function
f restricted to the linear state space representation from Section 2.3.1. Previously, Vera sampled
the nonlinear circuit and resulted in Eq. (3.23) for each sampled point. Considering only the first
row (dynamic part) of this equation:

Ady = AAxy + By\Au, (4.8)

this equation states the linearized dynamic behavior of each sampled point in the Sy space. With
Assumption 2 (see Section 3.2.2), and by inserting the algebraic part stated in Eq. (3.25) into
Eq. (3.27), the following equation can be obtained:

Ax = F)\A:B)\ — FooBoo,redAu

(4.9)
= F)\Am/\ — FooHooBoo,redAU

Eq. (4.9) shows that for each sampled point a transformation exists that allows to calculate its
value in the S, space by using only the Sy space along with the input of the system. The only
problem is that Eqs. (4.8, 4.9) are only valid in a small region around the linearization points, as
at every sampled point, the system was linearized (see Algorithm 3 and Algorithm 4).

Thus, the current tasks for the flow function f in each location of the HA becomes clear: describe
the pointwise linear equations in each location of a HA by a well-chosen representing equation which
is valid for all sampled points belonging to the location.

During system linearization, a linearization point is chosen, and the system is linearized around
it. As long as the system stays in a close range to the linearization point, the linearized equations
are valid. Here, we went both ways. We first linearized the system for the sampled points. Secondly,
instead of choosing one that represents the remaining points, we analyzed the eigenvalues of the
linearized system and clustered them to locations of different behaviors (Section 4.4). By that,
we identified the location where the sampled points have similar behaviors. Next, a representing
equation in each location is determined that describes the behavior of all points belonging to the
location. Moreover, the range in the Sy space where these equations are valid are defined by the
invariants of the HA. The transitions between these invariants are defined by the guards and the
jump functions. Hence, it becomes clear that the approach is actually building a HA step by step.

58 4. Elsa: Eigenvalues Based Hybrid Linear System Abstraction

In the following, this procedure will be analyzed analogously to Fig. 4.12. Moreover, as illustrated
in this figure, the approach is examined for the case Sy is considered along with the Sy space in
the modeling process, as this usually yields more reliable results. For the case the modeling was
performed entirely in the Sy space, only the sections as specified in Fig. 4.46 are used.

4.5.1 Calculating the Operating Points

After the locations of the HA have been identified (Section 4.4), the sampled points are associated
to the corresponding locations. Among these points are also the DC points as shown in Fig. 4.13.

6 . : : 6 : .
. e glrl o g2r2 e glrl o g2r2
e o . .
AR o g2rl o DC points|| Al o g2rl o DC points||
L]
: BEs
esiasst S es el el oS
ole shasatsissateiciel
ga 08 05 05 ens
Sesies S
N ° L
§ oke D 0 e ”E::§f
e @ c
N e
2r Srese sl
4r SRR
9000
£ oEE
-6 L
4 2 2 0 2 4
a1
(b)

Fig. 4.13. Result of the location identification presented (a) in the S, and (b) in the Sy space for

the running example.

Consider the sampled S,;+ space of the running example illustrated in Fig. 4.13a. From the
set of DC points in each location, a representing operating point needs to be chosen. For this,
first a global reference point must be computed. Unless specified otherwise, the global reference is
assumed to be the point at which there is no input voltage, that is w4 = 0. The location containing
the global reference point is referred to as the center location. For the running example, the global
reference point is @yir¢ giop = 0 in the Syiy domain, implying that the center location is glr1.

For each location the operating point is chosen as the DC point that is closest to the global

reference by using the Euclidean distance in the S+ space:

d :H Loyirt, DC — Lwirt,glob HQ

For the center location the reference point is identical with the operating point. Moreover, several
options exist that can affect the identification of the operating points. The most important one
specifies which operating point should be considered i.e. the i** closest, the i** furthest, or the

nearest to the global reference which is the default case used here.

The result of the operating points identification for the running example is illustrated in Fig. 4.14.
For each of the three locations of the HA, the yellow marked DC points are chosen as the repre-
senting operating points. The black circles in Fig. 4.14 show the distance from the selected orating

points to the global reference at ;¢ giop = 0.

4.5. System Modeling 59

I
"*? o glrl - g2r2

[] >
L] [l e 9 .
A 8 22 o g2rl o DC points|
. D S N
o Sseneenes R e
®) s o » Q0
2+ o "?i: SO0 0 @ 3]
° D ®) o o5)
N e
£ ° >
S
L]
,2 —
4 -
H
6 ®o'g % 98 00T 0T 000 30 o0V %W eo® 00W 0oW 0o® oW ooW 0o¥ 0o¥ 02W 00W 02 oo
-4 -3 -2 -1 0 1

Vnout - Vneg

Fig. 4.14. The operating point identification performed in S,;+. The yellow points indicated the
chosen DC points in each location. The black circles indicate the distance from these

points to the global reference point.

By identifying an operating point, all the values stated in Section 3.3 for this point are obtained.
This includes, at the operating input voltage wu,),, the operating point in the Sy;+ domain denoted
Tyirt,op, the operating point in the S\ domain denoted x) ,,, and the operating point in the S,

domain denoted .

Several aspects need to be considered when identifying the operating points. This includes the
case when there are DC points that are overlapping or equidistant from the global reference point.
In this case the mean of these points is taken, and the operating point is identified by the sampled
data point that is closest to this mean. Another case that needs to be considered is when there are
no DC points in a location, as shown later in Section 7.4.2. In this case, first a test is performed to
see if a DC point from the closest surrounding regions can be taken. If the surrounding DC points
are too far, which is the case when the minimum distance from all sampled points of a location
to each of the examined DC points is greater than the state space step, either a random sampled
point is chosen as the operating point, or the mean of all points in a location is calculated and the

operating point is chosen as the sampled point closest to the calculated mean value.

4.5.2 Determining the System Description

In the second block shown in Fig. 4.12, the different system behaviors of the HA in each location
are determined. With the sampled data set divided into the locations (see Section 4.4), and the
previous identified operating points in the S,, Syir+ and Sy spaces, the current aim is to model the
system behavior in each location. More precisely, the system description task involves finding for

each location loc € Loc:
a) the representing operating points x,,, € o,, and the operating input u,
Dy LX0p 7

(b) a linear state space representation that is valid for the whole location i.e. all sampled points
belonging to the location loc. This involves determining the system matrix A;,. € R™*™ and

60 4. Elsa: Eigenvalues Based Hybrid Linear System Abstraction

the input matrix Bj,. € R™** such that the linear system behavior is given by:

Az = A Axy + B Au

o (4.10)
= T _% = Aloc(m)\ - mA,Op) + Bloc(u - uop)7

for the case the operating point is a DC point, as:

Trop =0

(c) a back-transformation that is valid for the whole location loc. This involves finding the trans-
formation matrices Fj,. € R"*™ and L;,. € R™*F that transforms the solution of Eq. (4.10)

from the Sy to the S, space via:

T =ZTop + Eoc(wA - m)\,op) - Lloc(u - uop) (4'11)

Point (a) has already been covered in Section 4.5.1. The two remaining points ((b) and (c)) can
be solved with the information at hand. For this, several methods have been deployed, which vary
according to the points that are considered in determining the matrices A;joe, Bioc, Floe, and Ljge:

op method uses only the operating point

mean method uses all sampled points belonging to the location

dc method uses only the DC points belonging to a location

weight method uses all sampled points belonging to the location with different specified weights

Points in a location can be divided into two categories: normal sample points and DC points.
While DC points were computed by the DC analysis in Vera (see Section 3.2.1), the remaining
sampled points were computed by stepping through the reduced state space Sy and calculating the
consistent solutions (see Section 3.2.3). Previously in Section 4.5.1, the operating points in each
location were identified from the DC points. Considering Eqgs. (4.8, 4.9), the op method which uses
only the operating point of a location, basically assigns for each location loc € Loc the system,
input, and transformation matrices to their values at the operating point:

Aloc = Aop Bloc = B)\,op (412)
-Floc = F/\,op Lloc = FooppHoo,opBoo,red,op (413)

The mean method computes the mean of the system, input, and transformation matrices over all

l;oc sampled points belonging to a location:

Aloc = mean(Al, ey Alloc) Bloc = mecm(B)\J, ey B)\ylloc) (414)

Fioc = mean(Fy,,...,Fyy,,.) Lioc = mean(Ly,..., Ly,) (4.15)

With:
Li = Foo,iHoo,iBoo,red,i

Similarly to the mean method, the dc method computes the mean of the system, input, and
transformation matrices. However, only the DC points belonging to a location are considered in

4.5. System Modeling 61

this calculation. With (Ipc+ 1) DC points in a location, representing one operating point and Ip¢
remaining DC points, the matrices are calculated by:

Aloc = mean(Al, e ,Ach, Aop) Bloc = mean(B)\’l, e 7B>\JDC7 B)\,op) (416)
Fioe =mean(Fyq,...,Fxip0, Fop) Li,c = mean(Lq,...,L;,., Lop) (4.17)

The weight method adds weights in the calculation of the matrices. Three values can be weighted
in a location: the operating point by w1, the remaining DC points by ws, and the remaining points
by ws, such that:

3
d wi=1 (4.18)
i=1

With lpis = ljoc — (Ipc + 1) remaining points belonging to location, each of the four representing
matrix from Egs. (4.16, 4.17) is computed by:

Mioe = w1 - Moy + wo - mean(Mpc i, ..., Mpcy,.) + ws - mean(Mps 1, . . ., Mpts,lpts)

Where M can be replaced with the desired matrix and its values corresponding to the operating,
DC, and remaining points, respectively.

Unless stated otherwise, the mean method is used as the default system description calculation
method. The op method usually yields worse results, compared to the default method. In contrast,
the dc method yields similar results to the mean method. However, upon changing the locations,
the mean method results in smother transitions. The weight method can yield better results than
the mean method, however, requires a good specification of the weights.

Before the system description specified by the matrices A;,. and By, and the back-transformation
described by the transformation matrices Fj,. and L;,. are calculated, the sampled points in each
location can be filtered '. This filtering can remove points, according to a test with a specified
tolerance margin, by classifying them as bad points. In this case, the obtained filtered data set can
then be used for the calculation of the previous matrices, as well as for the proceeding calculations
of the guards and invariants.

Filtering the Sampled Points

Consider Fig. 4.15a and Fig. 4.15b which present the S,;+ and Sy space drawn against the input
voltage V,,;, for the running example, respectively. For a specific input value V,,;,,, a plane containing
one DC point can be observed in each space along the z-axis. This is due to the way Vera samples
the state spaces. As stated in Chapter 3, and specifically in Algorithm 3 between lines 5 to 15,
for a specific input value, Vera first computes a DC point (red points in Fig. 4.15). Starting from
this point, Vera then steps though the S, with a specified state space step calculating thereby
the surrounding points. From these points, and by taking again a state step, Vera continuous to
sample the surrounding points till the specified borders are reached. Hence, Vera samples for each

DC point a plane in the Sy space. Moreover, Vera linearizes the system at every sampled point.

As stated earlier, when a linearization is performed at a specific point, the linearized system
behavior is only valid in a range close to this linearization point. If for each plane in the S) space

!The results of Vera can sometimes contain non-plausible data resulting from the inverse integration scheme used
in Vera or from numerical inaccuracies. These point are candidates for exclusion.

62 4. Elsa: Eigenvalues Based Hybrid Linear System Abstraction

o glrl o g2r2
. o g2rl o DC points

LIVl

e glrl o g2r2
o g2rl o DC points

IS LSS L2

,,,,,, e s

,,,,,,,,

- T 5
1 1
S 0 § 0
1 S s -1+
2 OPUEE s d i 2 C i
,,,,,,,, LR AV AV SV
-3 S -3+ SIS
LIPS S 4 LL27 00000/
-4 SSLLLISS IS)
-5 — -5
4 2 2 . 4 2 0 2 45
V. —V 4 ‘/mn2 T T)2
nout neg Al
(a) (b)

Fig. 4.15. The (a) Syt and (b) Sy space drawn against the input voltage Vj,. As observed, for

every input value there exists a plane containing one DC point.

the DC point is considered as the only linearization point, a question can be stated regarding the
range of validity of the linearized model around these points. For this, consider again Eq. (4.9)
which states the pointwise valid transformation between the S, and Sy space. When considering
only one plane in the S space obtained for a single input value wpc, the DC point € po in the S,
space and its corresponding DC point) pc in the Sy space can be used as reference values for
the entire plane. Thus, for every calculated DC points corresponding to a specific input value, the
following equation is obtained by generalizing Eq. (4.9):

Fyx) = (x —xpc) + FooHooBoo rea(u — upc) + Frxy pe (4.19)

Note that the matrices in Eq. (4.19) in general vary for every sampled point. Vera calculated
and corrected these matrices between every sampled point and the next points as given by the
connection graph. Obviously when considering the DC points as a constant references, only the
points that are a state step away from the DC points and have valid connection according to the
connection graph obey Eq. (4.19). For the remaining points of the plane, Eq. (4.19) proposes an
estimation. Still, a question can be stated regarding which transformation matrices should be used
in Eq. (4.19): those of the DC point of a plane or those of the currently inspected point. Therefore,
there are two options available to proceed with the abstraction of Eq. (4.9) through Eq. (4.19):

transPt method choose the transformation matrices as those belonging to the current analyzed
sample point. Thus, an error is performed for every considered point further
that one state step away from the DC point of the current plane

transDC method choose the transformation matrices belonging to the current DC point of the
plane, ignoring thereby the transformation matrices of the current analyzed
point. Hence, an error is made for every analyzed point that has transformation
matrices that differ from those of the current used DC point, as well as for those
points that are further than one step away from the DC point

4.5. System Modeling 63

The transPt method provides additional information containing the variation of the transformation
matrices between the points in a plane. As the transDC method injects additional errors into the
modeling process, this method in not handled. For every x) belonging to the plane containing the
DC point, Eq. (4.19) is solved for &) ;5, using the least-square method:

x)1sg = 15¢(F, (x —xpc) + Foo Hoo Boo red(¥ — upc)) +) Do (4.20)

The obtained result is compared to the x) value calculated by Vera, thereby marking points that
have large deviations. This is done by calculating the error d;,, in a similar fashion to the root

mean square error for every sampled point using the reduced order m and the Euclidean distance:

e s]2

5lsq - \/TTL)

(4.21)

For the running example, this comparison is performed by marking points which have an error
d1sq = 0.1. The result is illustrated in Fig. 4.16. As observed, several points are marked as bad
points and can be dropped out if desired for the preceding calculations.

o glrl o DC points
i o g2rl < bad points
‘ 2r2

o o glrl o DC points
71 o g2rl - bad points

‘/m’n
Vm'n

-4 -2 0 2 45 - -
Vnout - Vneg Vnin2 Tr1 Th2

Fig. 4.16. Identifying points that yield a great linearization error if considered with respect to the
DC point at a given input voltage.

Hence, the technique of filtering the sampled point based on Eq. (4.20) and a specified error
margin 5, (Eq. (4.21)) is referred to as the Isq filter. A formal definition is:

Isq filter filters the sampled points according to a specified error margin d;s, by considering for
each DC point a plane in the S\ or Sy;+ space, and applying Eqs. (4.20, 4.21) along
using the transPt method or transDC method on all sampled points belonging to this
plane

This filter can be seen as the removing points that are not suitable to be considered from the
DC points, even though their transformation matrices are used (transPt method). Note that, the

64 4. Elsa: Eigenvalues Based Hybrid Linear System Abstraction

filter can be applied for removing points during the calculation of the matrices Ajoe, Bioe, Floe
and Lj,., as well as for removing points for further calculations such as performed in Section 4.5.5.
For the running example the effect of applying Ilsq filter is demonstrated on the calculation of the
transformation matrices. For the original system with n = 24 variables stated in Eq. (4.1) and a
reduced order of m = 2, the transformation matrix Fj,. € R?**2 has two columns. Considering
only the 21" row, which corresponds to the output of the system Vj,ou:, the distribution of Fj,. is
illustrated in Fig. 4.17 for the three previous identified location glrl, ¢g2rl, and ¢g2r2. The first
row of this figure presents the first column of Fj,., while the second row of Fig. 4.17 represent the
second column of Fj,.. The values of Fj,. at the operating point are marked in red (op method),
while the calculated mean values of Fj,. are marked in green when all sampled points are used
(mean method), and in magenta when only the DC points are used (dc method).

1200

3000

5000

I distribution I distribution [distribution
1000 —mean 2500 —mean ——mean
—op —op 4000 __op
—DC — I
800 2000 Do DC
8‘" S" S’_‘ 3000
L 600 L 1500 b
S S~ S~ 2000
400 1000
200 500 1000
. . L ol | L 1
3 4 5 3 4 5 6 4 6 8
Fyin x10* Foor1 x10° Fyara x10°
1200 — 1200 1500
I distribution I distribution
1000 —mean 1000 —mean
—op —Oop
800 800 1000 bc
S S $
L 600 & 600 £
o o o
400 400 500
200 200
0 0 0
3 4 5 6 6 8
Fglrl x10° Fg2r2 x10°

Fig. 4.17. Distribution of the transformation matrix Fj,. for the locations loc € {glrl, g2rl, g2r2}
without the application of the Isq filter. The results are illustrated upon the 21*" row of
Fjoe. The first row of this figure represents the first column of Fj,., while the second row
represents the second column of Fj,..

As observed in Fig. 4.17, in the limiting locations of the system (g2r1 and ¢g2r2) the transfor-
mation matrix Fj,. attains various values with large differences. This can be traced back to the
sampling performed by Vera, and the methodology used to calculation transformation matrix Fj,..
Nonetheless, selecting the correct representing value out of this large range is a challenging task.

When considering glr1 and the corresponding first column in Fig. 4.17, one can notice that there
exists a difference between the value of Fj,. at the operating point (red line) and the mean value
of this matrix computed with the DC points only (magenta line). Even though glr1 is the linear

4.5. System Modeling 65

location of the system, a difference is still presented. This difference becomes even larger in the
nonlinear location (g2r1 and g2r2) especially in the second dimension of Fj,., as illustrated in the
second row of Fig. 4.17.

With an increasing number of locations, the values shown in Fig. 4.17 are distributed on more
locations. This is often accompanied by a shortage of the distance between the operating and mean
values (red and green lines). More precisely, better results are obtained with an increasing number
of locations as will be later seen in Section 6.1.

When the [sq filter is applied during the calculation of the matrices, the mean value calculated
(green line) changes as well as the number of points that are considered. In Fig. 4.18, the result
of calculating the transformation matrix Fj,. is illustrated for the row corresponding to the output
node Vi after applying the lsq filter. Note that, the red and magenta lines do not change. The
number of bins in both figures, Fig. 4.17 and Fig. 4.18, is set to 40. The points dropped out from
Fig. 4.18 compared to Fig. 4.17, are illustrated in Fig. 4.16 as bad points.

1200

I distribution
—mean

—op
—DC

1000

800

3000

2500

2000

I distribution

4500
4000
3500
3000

I distribution

> SY S 2500
L 600 L 1500 E
& & 2000
iy iy o
400 1000 1500
1000
200 500
500
0 0 0
3 35 4 45 5 55 3 4 5 6 4 6 8
Fglrl %104 F927~1 %x10° Fg2r2 %x10°
1200 1200 1500
I distribution I distribution
1000 ——mean 1000 ——mean
—op —op
800 —DbC 800 1000 —DC
g g 5
L 600 L 600 e
S S STy
400 400
200 200

6 8
Fggrg x10°

Fig. 4.18. Distribution of the transformation matrix Fj,. as described in Fig. 4.17 after using the
Isq filter according to Section 4.5.2.

Even after applying the lsq filter, the obtained results only slightly change for the running ex-
ample. More precisely, the green line representing the mean value of Fj,. changes only minimally
upon comparing Fig. 4.18 to Fig. 4.17.

As the experimental results later in Chapter 7 show, using the mean method often yields better
results especially with a smaller number of locations. Additionally, in Section 7.1.3 several models
have been generated with the four different system descriptions handled in this section. As the

66 4. Elsa: Eigenvalues Based Hybrid Linear System Abstraction

results show, both the mean method and the dc method yield the best results. However, during
the transitioning of the locations, the mean method yields better results. Moreover, Section 7.1.3
shows as well that using the [sq filter for this example does not improve the system description,
but rather worsen the obtained results.

On the other hand, the eigenvalues with and without the application of the lsq filter are illustrated
in Fig. 4.19b and Fig. 4.19a respectively. Even though the number of eigenvalues decreased, the
mean of the eigenvalues did nearly not change.

10994 -1099.4 T
X -10.31
-1099.6 Y -1100
-1099.6 3
—
A—1099.8 s /\'1099'8 r 5 1
> 2
S 1100} < -1100 |
[O
(&5 ~
-1100.2 -1100.2
-1100.4 -1100.4
-1100.6 -1100.6 - - - .
-20 -20 -18 -16 -14 -12 -10
Re()\l)
(b)

Fig. 4.19. In (a) the eigenvalues as sampled by Vera are illustrated, while in (b) the eigenvalues
are shown after using the [sq filter described in Section 4.5.2.

In what proceeds in this chapter, the Ilsq filter is not applied for the calculation of the previous
stated matrices, but only for filtering the bad points (see Fig. 4.16). In case the sampling performed
by Vera yields a Sy space with strongly overlapping regions, it is recommended to use the lsq filter
to obtain better results.

4.5.3 Sorting the Locations

The third block shown in Fig. 4.12, sorts the identified locations. Based on the operating points
Ty op and Xyirt0p found previously in Section 4.5.1, the locations can be sorted. Starting with the
center location (Section 4.5.1), the locations are sorted from the closest to the furthest according
to the distance between their operating point to the operating point of the center location in the
Svirt space. Moreover, each location is provided with an information regarding the surrounding
locations. This information lists the neighbor locations from the closest neighbor to the furthest
surrounding one. This information is necessary as it can speed-up the guard identification later
performed in Section 4.5.6.

4.5.4 Modeling the Input as a State

The fourth block from Fig. 4.12 can be used to apply adjustments to the modeling of the system.
This includes modeling the inputs of the system as states. As indicated in Fig. 4.12, this block is
optional and often skipped. However, in some cases, especially when working with Matlab models
that are later used with the reachability tool Cora, this modeling step is sometimes necessary. At
the current time, the guards in Cora can only be defined using the states of the system, which are

4.5. System Modeling 67

the contents of the vector) for the current models. On the other hand, in some cases it is desired
to include the input in the guard conditions.

To achieve this, several steps are necessary. First, k, specified inputs u, € R* are added as
additional dimensions to the Sy as well as to Syi+ spaces, and removed from the input space S,.
Thus, the system has now k — k, inputs and m + k, state variables in the Sy space as well as in
the Syi¢ space, with the new state variables:

xr Ly
T+ = [/\] Loirt+ = [vzrt] (4'22)

U4 U4

Second, all calculations including the location identification (Section 4.4), operating point calcu-
lation (Section 4.5.1), and system modeling (Section 4.5.2) handled previously, additional to the
upcoming topics including the guards and invariants identification (Section 4.5.6) are executed in
the extended Sy; and Syiriq spaces and the shrunk input space §;. On the other hand, the cal-
culations performed in Section 4.5.5 are still executed in the Sy and S,;+ spaces. The results are
then extended as shown in Eq. (4.22).

Third, for each location the system matrix Ay, from Eq. (4.10) is extend by B, the part of the
input matrix By, that corresponds to w:

(4.23)

Finally, the rows from Fy H. By ;cq corresponding to the selected inputs are transferred to
extend the transformation matrix F) by additional columns. This corresponds to removing L.
from Lj,. and adding it to Fj,., thereby defining Fj .+ as:

EOC-‘r = |: Eoc : L+ i| (424)

In order to illustrate this option, an example of a circuit with a diode is modeled with the input
as a state in Section 7.2.

4.5.5 S, Space Recalculation

Continuing the modeling process of the system according to Fig. 4.12, the next block involves
recalculating the Sy space. Note that this block can be skipped as the S) space was already
calculated by Vera. However, as will be clear at the end of this section, there are several reasons
why the Sy space should be recalculated.

Finding the S space corresponds to solving Eq. (4.9) for «. The problem with this equation is
that it is pointwise valid; it is only valid for each pair of points in the state space that are a state
step apart. Considering the aim which is to abstract the system, Eq. (4.9) needs to be abstracted.

In Section 4.5.2, Eq. (4.19) was presented which abstracts Eq. (4.9) by using the transformation
matrices belonging to either the DC point (transDC method) or the current analyzed point (transPt
method) along with the DC points to calculate the remaining points belonging to the plane in the
Sy domain corresponding to the same input voltage. The recalculated space in Section 4.5.2 was

68 4. Elsa: Eigenvalues Based Hybrid Linear System Abstraction

only used to the filter (mark) bad points that were excluded in specific calculations. However, the
current task is to abstract Eq. (4.9) even more than Eq. (4.19) did, thereby replacing the Sy space
calculated by Vera.

For that, two methods have been implemented that discard the Sy space calculated by Vera
and replace it by values found by their solutions. The first method, the transPt method, has
already been introduced in Section 4.5.2. If the transPt method is used to recalculate the Sy space,
Eq. (4.20) is used along with the transformation matrices of the current inspected point. This time,
the obtained Sy space through this method replaces the Sy space calculated by Vera. The second
method that can be used to recalculate the Sy space is the transLoc method:

transLoc method uses the operating point at each location as a reference point along with the
transformation matrices previously calculated in Section 4.5.2

With the transformation matrices Fj,. and L;,. at hand, the {ransLoc method further abstracts
Eq. (4.19) to:
Foex) = — Top + Lloc(u - uop) + F'locm)\,op (4'25)

Hence, the Sy space is recalculated by solving Eq. (4.25) for all sampled points belonging to a
location loc € Loc:
) = 15q(Floc, (X — Top) + Lioe(U — Uop)) + X op (4.26)

Eq. (4.26) recalculates the points in the Sy space of a location to fit a single transformation
described by Fj,. and L, (see Section 4.5.2) and the found operating points @, Tz 0p at the
operating input u,, (Section 4.5.1) for each location. For the rest of this section, only the transLoc
method will be considered.

This method can inject errors into the guard and invariant as points in the state space can be
calculated that have different values in the Sy space than those calculated by Vera. Looking at
this fact from a different perspective, the points in the S) space are modified to obey the back-
transformation given by Eq. (4.11). Note that, both stated methods in this section can be combined
with the lsq filter from Section 4.5.2.

In Fig. 4.20 a comparison between the Sy space from Vera and the recalculated Sy space using
Eq. (4.26) is illustrated. Note that in both figures the lsq filter was not applied. Fig. 4.20a
and Fig. 4.20c correspond to the unchanged S) space as calculated by Vera, on the other hand,
Fig. 4.20b and Fig. 4.20d show the recalculated Sy space. In the first row of Fig. 4.20, the input
was taken as an additional dimension to remove the overlapping of the points. As shown later in

Section 7.1, all these variants do not yield good abstracting models in general.

In contrast, when in either case the [sq filter is additionally used, the resulted models exhibit a

better abstraction behavior. The corresponding Sy spaces are illustrated in Fig. 4.21.

As stated previously, the Sy recalculation methods; the transPt method and the transLoc method,
can be both accompanied by the lsq filter from Section 4.5.2. In this case, the bad sampled points
(see Fig. 4.16) are removed from the Sy as observed in Fig. 4.21, prior to recalculating this space
with either method. Note that, Fig. 4.21b and Fig. 4.21d were generated using the transLoc method.

As shown in Fig. 4.12, the recalculation of the Sy is optionally. However, there are several reasons
why the S space should be recalculated:

4.5.

System Modeling 69

T
T
s glrl - g2rl - g2r2 517 - glrl ©g2rl < g2r2
o Eropgirl © Taopgirl © Topg2r2 ° Thopglrl © Thopg2rl * L) opg2r2
£
0+ :S: 0
5 5 - 5
4 -2 0 2 45 -4 -2 0 2 45
x)\,]_ .’L.)\,Q x)\ 1 x}\,Q
b)
(a) (b)
6 T T T 6 T T T
- glrl © g2rl © g2r2 < glrl © g2rl ° g2r2
Ar | © Txopglrl ° Tropg2rl * Txopg2r2|] Ar | o Txopglrl © Tropg2rl * L) op,g2r2|]
2} 2l
C\]h
0r é< 0 -
2 F 2+
4+ -4+
6 -6
4 2 0 2 4 -4 2 0 2 4
TH1 Trl
(c) (d)

Fig. 4.20. In (a) and (c) the unmodified Sy space by Vera is presented, while in (b) and (d) the

5.

recalculated Sy using the transLoc method (Eq. (4.26)) is illustrated. In the first row,

the input V,,;,, is taken as an additional dimension.

. The HA has linear location described as stated in Eq. (4.10). These delta values are computed

with respected to the operating points. When the system is later simulated in the Sy space,
the locations in the Sy should be adjusted to fit the behavior specified by the calculated
matrices (Section 4.5.2) and the identified operating points.

. Points in a location should have similar transformation matrices. Points which have strongly

varying transformation matrices should not belong to the same location.

The results of the guards and invariants identification performed later in Section 4.5.6 can be

improved by reforming the Sy space.

To control the discontinuities produced by the jump functions as will be later examined in
Section 4.5.9.

We do not completely trust the calculation performed by Vera.

Especially the second point makes is clear why the Isq filter should always be used. When the Sy

space is recalculated and this filter is active, part of the behavior calculated by Vera is preserved

and can be bounded to an error margin. In Section 7.1 varies models were created with different

70 4. Elsa: Eigenvalues Based Hybrid Linear System Abstraction

T e e T R
57 « glrl ° g2rl © g2r2 57« glrl ° g2rl © g2r2
o Tropglrl ® Thropg2rl * LT op,g2r2 © Tropglrl ® Tropg2rl * L) op,g2r2
£ g
SN o5 0
-5 5 -5 5
-4 -4
T)2 T)2
(b)
6 T T T 6 . ; .
- glrl © g2rl © g2r2 - glrl - g2rl . g2r2
4F | © Tropglrl © Txopgarl L)\0p,g2r2|1 4r ° Tropglrl © Tropg2rl * Thopg2r2|]
2r 2t :
N =
< of < of
& &
2t 2t
aft a4t
6 -6
-4 2 0 4 -4 4
T 1
(c)

Fig. 4.21. S\ space after applying the lsq filter on the Sy space from Vera ((a) and (c)) and on
the recalculated Sy space ((b) and (d)) using the transLoc method. In the first row, the
input V,,;, is taken as an additional dimension.

methods, and indeed, the combination of these two methods yields the best results in case the Sy

space is strongly overlapping.

Summing up all previously mentioned manipulations and adjustments from Chapter 3 till the
current chapter, there are four options that can be used to filter and reform the Sy space:

unchanged the Sy space is used as calculated by Vera with all sampled points

reach filter the Sy space is defined only through the points marked as reachable by Vera
as stated in Section 3.2.4

lsq filter removes points from the Sy space which cannot be calculated from the DC
points under a specified error, even though their transformation matrices are
used and not those of the DC points (transPt method). For consistency, the
points removed from the Sy space are also removed from the S,;+ space (Sec-
tion 4.5.2)

Sy recalculation discards the Sy space calculated by Vera and recalculates it either by the
transLoc method which uses the computed transformation matrices Fj,. and

4.5. System Modeling 71

Lj,. with Eq. (4.26) and the identified operating points for each location,
or by the transPt method which uses the transformation matrices F and
F, H By ;g of the current inspected point with Eq. (4.20) and the DC points
with the same input voltage. In both cases the solution is computed with the
least-square method. By default, the transLoc method is used

Combinations between the filters and recalculations methods are also possible and occur in the
ordered stated above. For example, one might apply first the reach filter followed by the Isq filter.
An overview of these manipulations is shown in Fig. 4.22.

reachable .
. all points
points
| |
false %m true
Sa l
Vera calculated recalculate
S space S space

false true transPt recalc. transLoc
method
A4 A4
unchanged Isq filtered
Eq. (4.19 Eq. (4.25
S) space S space q (l) q (l)
false $ true
unchanged Isq filtered
calc. S, space calc. S, space

Fig. 4.22. Overview of the manipulations and adjustments in the Sy space.

The first decision is to choose either all sampled points or only the reachable marked ones. In the
later case, the size of the sampled data set decreases, as points which are marked as not reachable
are completely neglected in the further analysis. The second decision involves choosing the Sy space
calculated by Vera or recalculating this space using the stated methods. In both cases, the points
used can be filtered priory using the lsq filter as discussed in Section 4.5.2. Taking into account
the two different Sy space recalculation methods that can be used, there are in total 12 possible
scenarios to find the Sy space. Note that, using the reachable sampled points with the transPt
method and the lsq filter yields the best results if the Sy space has strongly overlapping locations.

4.5.6 Finding the Invariants

With the S,i+ and Sy spaces at hand, either calculated or obtained from Vera, along with the
locations of the HA, the guards and invariants are next identified in the 6** block of Fig. 4.12.

72 4. Elsa: Eigenvalues Based Hybrid Linear System Abstraction

As the HA is later simulated in the Sy space, it is necessary to find the guards and invariants
in this space. According to Section 4.5, the identification of the guards and invariants can occur
either in the Sy or S+ space. The latter case is illustrated in Fig. 4.12 and used in this chapter.

Finding the guards and invariants in the Sy;+ space brings the advantage of an easier identification
as the locations often do not overlap at all. On the other hand, the found results in the S,;+ space
must be transformed back into the Sy space, which is not an easy task and error-prone. As
previously seen in Section 4.5.5, this lies in the fact that the locations in the Sy can sometimes
overlap, which can be traced back to the options provided to Vera, influencing the sampling of
the netlist. Specifically, these options can shift the individual calculated DC points by specific
values, for example, in accordance with the DC points in the Sy;+ space, thereby minimizing the
overlapping of the locations. As will be clear at the end of this section, the overlapping of the
locations does not affect the identification of the invariants, but only the calculation of the guards.

Based on the sampled points belonging to a location, the algorithm first finds the invariant of
each location. With the found invariants, the guards between the locations are identified. In the
following all calculations are performed in the Sy;+ space. Note that as stated in Section 4.5.5, the
Isq filter applied to the Sy space also removes points from the S,;+ space. Thus, the filtered Syt

space shown in Fig. 4.16 is used here.

An invariant of a location is found by hulling the points belonging to this location by one of the

following geometric shapes:
e polytope (Section 2.1.1)
e zonotope (Section 2.1.2)
e interval hull (Section 2.1.3)

Regardless of the geometric shape used, throughout this dissertation, an invariant of a location

loc € Loc is denoted as invj,. according to Definition 1 from Section 2.4.

Several steps are required to find the invariant of a location. First, the borders of the locations are
found using convex hulls. The convex hulls are formed using the algorithm described in [BDH96].

This yields for each location the vertices vy, as shown in Fig. 4.23 for the running example.

6 T T I I
® j £ o g2r2 Vgirl ® Vg
4 — & H
° g 2r1 O Lyirtop,g2r2 © Vg2l
2+ g : -
o~ g
§ 0O :j -
). ! _
} ' o
4= &
3 S 8 3 8 8 Be 8 3 Be i °
6 | | | © 86 8676 86X b | |
-4 -3 -2 -1 0 1 2 3 4

Vnout - Vneg

Fig. 4.23. Identifying the borders of the locations in the S,;+ space using convex hulls. The vertices
(vioe) of the convex hulls are subscripted according to the corresponding location.

The found vertices are used to model the invariants of the locations with the desired geometric

4.5. System Modeling 73

representation according to Section 2.1. For the running example, the possible invariant represen-
tations are illustrated in Fig. 4.24.

5 —
™
£
S 0
o~
-5 ! 2] 5 525 R SISS SRS SINRISRAR RIS
-3 -2 -1 0 1 2 3
Vnout - V;”Leg
> glrl . 927’1 . g27’2 ¢ Vgir1 ¢ Vgor1 ® Vgor2
® Tyirtopglrl ® Tyirtopg2rl O Lyirt,op,g2r2 -invglrl I:Iinvg%l I:IinngTQ
(a) Invariants modeled as interval hulls.
6 T
48 S
2 —
=
S of _
N
oL |
4 © |
)
6Ll =R B0 ek Red SR 8
-4 -3 -2 -1 0 1 2 3 4
Vnout - Vneg
o glrl o g2rl o g2r2 ° Vgir1 ° Vgorl * Vgoro

L] L yirt,op,glrl @ Lyirt,op,g2rl @ a’virt,op,g2r2-7:nvglr1 I:Iinvg%l I:Iinvg2r2

(b) Invariants modeled as zonotopes.

V;LinQ

Vnout - Vneg

o glrl ° g2rl o g2r2 ° Vgir1 ° Vgl * Vgoro
L] mvirt,op,glrl ® mvirt,op7g2r1 ®} mvirt7op,g2r2 -'anglrl I:Iznvg%l I:Iznvg2r2

(¢) Invariants modeled as polytopes.
Fig. 4.24. Modeling the invariants of the locations with different geometric shapes.
Representing an invariant as an interval hull basically corresponds to finding the bounding box of

the vertices as shown in Fig. 4.24a. This modeling results in large over approximations as observed.
When zonotopes are used to model the invariants as shown in Fig. 4.24b, the invariants are over

74 4. Elsa: Eigenvalues Based Hybrid Linear System Abstraction

approximated as well. More precisely, in some cases this representation can yield tighter invariants
compared to interval hulls. Nonetheless, this strongly depends on the order of the zonotope (number
of generators), as well as on the distribution of the points belonging to a location in the Sy;y+ space.
Moreover, when comparing invariants modeled by zonotopes to the same invariants modeled with
either polytopes or interval hulls, the resulting invariants are no longer bounded by the vertices
i.e. the zonotopes can be larger than the maz/min of all vertices. Depending on the scenario, this
representation can be less or more over approximative than using interval hulls, but is usually over
approximative when compared to polytopes. Fig. 4.24c shows the most accurate representation of
the invariants, which is obtained by enclosing the vertices of the convex hulls by polytopes. Even
this representation can yield over approximation of the space spanned by the sampled points, for

the case this portion of the space is not convex.

Since this identification was performed in the S,;+ space, the found invariants must be trans-
formed into the Sy space (Section 4.5.8). Note that, if the S space was used for the identification
of the invariants, the approach would be similar to the stated identification in the Sy, with the
difference that the results could be directly used.

In general, as observed in the figures of this section, a well partitioned state space (in this case
Svirt), yields good invariants. Since the sampled points are distributed among the locations based
on the location identification performed in Section 4.4, and the invariants are found by hulling these
points, the result of the invariants identification strongly depends on the location identification,
which labeled the points according to the linearized system behavior. Moreover, this identification
also depends on the distribution of the points in a location, which influence the calculation of
the convex hulls, which in terms affect the calculations of the geometrics shape used to enclose the
vertices of the convex hulls. On the other hand, the identification of the invariants is not affected by
the overlapping of the locations, as during this identification each location is handled independently
from the others, in contrast to the identification of the guards which is handled next.

4.5.7 Finding the Guards

According to Definition 1, guards are denoted throughout this dissertation as stated in Eq. (2.40).
For example, if the current location is glrl and the target location is ¢2r2, then the h" guard of
location glrl that allows for a transition to the target location g2r2 is denoted as:

grdy . glrl = g2r2 (4.27)
S~ —~—~
current loc target loc

According to Section 2.4, guards define when a location transition occurs. There are in general
four types of guard representations:
e polytope (Section 2.1.1)
e zonotope (Section 2.1.2)
e interval hull (Section 2.1.3)
e halfspace (Eq. (2.1))

For the SystemC-AMS as well as for the Verilog-A models, the definition for the guards is slightly
changed compared to Section 2.4. For these two models, a transition always and immediately occurs

4.5. System Modeling 75

when a guard is hit. Hence, it makes sense to define the corresponding guards as halfspaces. On
the other hand, for the Matlab models, Cora can handle guards in various representation. In case
a reachable set intersects a guard, Cora projects the contained reachable set into the next location
if the polytope method is used for the guard intersections[ASB10a]. This method will be used
throughout this dissertation for guards of types polytopes, zonotopes, or interval hulls. Cora is
also able to handle halfspace guards, however, a different guard intersection methodology is used
which considers only a single reachable set (hyperplaneMap) [AK12b]. Note that, the remaining
guard intersection methods and guard representations of Cora will not be considered here.

In any case, the guards are determined by the points spanning the corresponding shapes. Hence,
first the guard points are determined, followed by representing these point with the specific guard
representation. For guards modeled as polytopes, zonotopes, or interval hulls, the guard points are
hulled by the specified geometric shape analogously to the approach from Section 4.5.6. For halfs-
pace guards, the guard points are used to determined the equation of the halfspace (see Eq. (2.1)).

Based on the invariants the guard points are first identified. To identify the points of the guards
two methods were implemented:

distance method uses distance metrics to identify the guards (Section 4.5.7)
intersection method intersects the invariants to find the guards (Section 4.5.7)

Guards ldentification: Distance Method

The distance method first identifies the facets of the invariant of the current location. A facet is an
(m—1)-dimensional face of an m-dimensional polytope. Note that, a 0-dimensional face consists of a
single point and is called a vertex, while a 1-dimensional face is called an edge and represents a line
segment, and so on. Since the running example has an order of m = 2, the methodology identifies
the edges of the invariant. In general, identify the facets of the invariants is straight forward. For
each location, a convex hull is generated using the vertices of an invariant. The results are the
points that make up the facets of the invariants. Note that, each facet in the m-dimensional space

is described by m points. The task now becomes finding the facets that qualify as guards.

Based on the facets found, the points of the guards are identified in the S,;+ space as described
in Algorithm 6. Note that e, represents the minimum step vector containing the minimum state

step for each dimension in the Sy;+ domain, while tol is a specified tolerance vector.

Algorithm 6 is executed for each location loc; resulting in a structure called guards. This structure
contains all guards of the current location along with the information of the target locations (see
line 11). At this point, each guard is defined as a set of m points in an m-dimensional space.

In order to examine the m points that can span a guard two tests are performed. First, the
algorithm examines if the current facet and the line containing the operation points of the current
location loc; and the next location (loc;) intersect (see line 6 of Algorithm 6). If this condition
is true, the current facet is favored by increasing tol. Second as line 9 specifies, the distances
between each point in the next location to the mean of the facet points m t4.e; are computed for
each dimension separately and saved in the distance matrix D,. For each point, all corresponding
column entries in Dy are compared to the state step e, scaled by the tolerance vector tol through
an element-wise multiplication (see line 10). This can be thought of inspecting if the points of the

76 4. Elsa: Eigenvalues Based Hybrid Linear System Abstraction

Algorithm 6 determining the points of the guards using the distance method

1: procedure guards = findGuards(loc;, Loc, inv,tol, esep, Syirt)

2: identify the facets of the invariant inv of the current location loc;
3: for each facet do
4: for next location loc; # loc; in Loc do
5: calculate the mean (M fqce) from the points of the facet
6: if facet intersects operation line then
T favor this facet by increasing the tol
8: end if
9: compute distance D, between loc; points and M facet
10: if Dy < (tol ® egtep) then
11: add loc; and facet points to guards of loc;
12: count points with Dy < (tol © esep)
13: break
14: end if
15: set tol to default value
16: end for

17: end for
18: end procedure

next location loc; are in an m-dimensional hyperrectangle with a center at mq.; and bounded
by the points M focet — (L0l © €gtep) and M pocer + (L0l © eg4ep). If at least the distance from one
point from locj to M fqeet is less than (tol © egep) (line 10), the points of the facet are considered
guard points and saved along with the target location in the data set guards. Moreover, the points
of loc; that pass the condition at line 10, and are thus inside the hyperrectangle, are counted (line
12) and used to specify the importance of the identified guard.

Fig. 4.25 shows the guard identification for the location glrl of the running example. The
invariant was modeled as an interval hull in a 2-dimensional space. Therefore, there are four
edges to consider. Fig. 4.25a shows the examination of the first edge colored in green for the
possibility of being a guard from glrl to g2r2. As observed, this edge does not intersect the red
line containing the operating points of glrl and ¢g2r2. Thus, this edge is not favored according
to line 6 of Algorithm 6. Fig. 4.25b on the other hand, shows that the fourth edge does intersect
the line containing the operating point of glrl and ¢g2r2. Thus, this edge is favored by increasing
tol, thereby increasing the size of the test rectangle which visualizes the condition at line 10. Note
that, initially all test rectangles have the same size.

The test rectangle in Fig. 4.25a does not contain any points from ¢g2r2. Hence, this edge does
not qualify as a guard. In contrast, the test rectangle in Fig. 4.25b contains several points from
the target location. Thus, this edge (edgegir1,4) qualifies as a guard. Hence, the points of this edge
(surrounded by purple circles in Fig. 4.25b), along with the target location g2r2 and the number
of points from ¢g2r2 inside the test rectangle are saved in the data structure guards of glrl.

As the guard points are in general the points of the facets of the invariants, the complexity of
the guard identification is directly linked to the specified invariant representation. Hence, the more
complex the geometric shape of the invariant is, the more exhaustive the calculation becomes. For
example, considering location glr1 of the running example with an invariant modeled as an interval

hull, the location has 4 edges. Additionally to glr1, there are two locations: ¢g2r1 and g2r2. Hence,

4.5. System Modeling 7
6 T
(]]
o - ! |
2 |]
o
£ g
N S |
2 4 -
o L
-4 N o
L] L]
6 I n L
; 3 ; 4 4 2 0 2 4
Vnout - Vneg Vnout - Vneg
g].’f'l ° 927'2 _edgeglrl)l gl’f‘l L] g27'2 _edgeglrlA
® Tuirtopgirt © Luirt,opg2r2 _Lglrl,g2r2 ® Tyiriopglrl © Luirt,op,g2r2 _Lglrl,g2r2
. g2rl T linvgi [test . g2rl T Tinvgin [Cltest
® Tyirtopg2rl ° m5d93791T171 ® Tyirtopgorl © medge,g1r1,4

(a)

(b)

Fig. 4.25. Part of the results of the guard identification for the location glrl with the invari-

ant modeled as an interval hull. The test rectangle is denoted as test with the center

Medge,glrl,i, Where i denotes the number of the test case.

for each location there are 8 cases to check for possible guards. If the invariant of glrl is modeled

as a polytope like shown Fig. 4.26, the invariant has 17 edges, with two possible target locations,

there are thus 34 cases for this location that need to be checked.

Vm’n2

8

Vnout - Vne q

glrl [Jtest [test

i ® Lyirt,op,glrl l:lteSt -teSt
e g2rl ® medge,gl'rl,ﬁ ® medge,glrl,lQ

i ® Lyirt,op,g2rl -tCSt -tESt

o g2r2 Ptest [test
i O Tyirtop,g2r2 © medge,glrlﬁ ® medge,glrl,lii

I invgin [test [test

1] ® medye,glrl,l [Ctest [Mtest
[Miest ® medge,glrl,S ® medge,glrl,M

] medge,glrl,Q -teSt |:|t68t

[test Mltest [test
:_ ® medge,glrl,3 ® medge,gl'rl,g ® medge,glrl,lS

. | [test test [Cltest

[Mtest [test [Cltest
medge,glrl,él ® medge,glrl,lo medge,glrl,l(i

| [Jtest [test [test
4 |[test [Mtest ¢ Medge,glr1,17

medge,glr1,5 ® medge,glrl,ll I:lteSt

Fig. 4.26. Part of the result of the guard identification for the location glrl with the invariant

modeled as a polytope with 17 edges. A test rectangle is denoted as test with the center

Medge,glri i, Where i denotes the number of the test case.

To speed-up the guard identification, tests can be skipped as line 13 in Algorithm 6 indicates.

This is possible as we demand that guards have only one target location according to Definition 1.

Therefore, if a facet qualifies as a guard from one location to the other, the next facet is handled,

78 4. Elsa: Eigenvalues Based Hybrid Linear System Abstraction

as line 13 exits the for loop between lines 4-16. For the current example, this reduces the test
cases of the guards identification for glr1 with the invariant modeled as interval from 8 to 7 cases,
of which only 2 cases yield guards points. On the other hand, for the second scenario where the
invariant was modeled as polytopes, the test cases are reduced from 34 to 30 tests for the guards
identification of glrl, of which only 7 cases yield guard points to the next locations as observed
in Fig. 4.26. The first 4 of these 7 edges: [1,2,16,17,8,9,10] yield guard points to g2r2, while the
remaining ones yield guard points to g2r1. Note that, every edge is tested in general twice. In the
first test, the edge is tested to be a guard to g2r2. If this test fails, a second test is launched to
examine if the edge is a guard to ¢g2rl. In Fig. 4.26 only the performed tests are illustrated.

Moreover, as the location are ordered (Section 4.5.3), the runtime of the algorithm can be addi-
tionally reduced the set of target locations. For example, during the guard identification of g2r2,
only the intermediate neighbor location glrl needs to be examined as a possible target location
(line 4 of Algorithm 6), as no points from ¢2r1 surround g2r2.

From the previously identified guard points, the desired geometric shapes of the guards are
calculated. For a guard modeled as a polytope, zonotope, or interval hull the guard points are
simply hulled by the geometric shapes analogously to the approach from Section 4.5.6. However, in
some cases an additional modification is necessary. Since the previous mentioned geometric shapes
are always considered to have a volume, points that have the same value across one dimension, for
example points in a 3d space that are coplanar, are modified by adding to the defective dimension
a lower and an upper bound. This small tolerance value (tolg) assures that the guards have a
thickness, however, results also in portions of the guards that are outside the invariants.

For halfspace guards, a different approach is used. To determine a halfspace in an m-dimensional
space, in general m points are needed. For the case that m > 2, the guard points should be non-
colinear. Since these points belong to the halfspace, they obey Eq. (2.1). For example, in a 2D
space (m = 2), with ¢ and d as defined in Section 2.1.1 and two points @yiy¢,1 and @yr¢2, following
equation can be specified:

T
C ZTyirt,] = d

T
C Tyt =d

This equation represents an underdetermined system of equation. Solving this equation yields in
this case the equation of a line. Next, the intersection of the halfspace for the found values of ¢ and
d with the operating point of the current location is tested according to Eq. (2.1) i.e. it is examined
if the operating point lies on the halfspace. If this intersection returns false, the sign of both, the
normal vector ¢ and the signed scalar d, is inverted.

For each set of guard points, a guard in the desired geometric shape is calculated. However, based
on the enclosed points<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>