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Zusammenfassung

Üblicherweise werden Kristalle unter Zuhilfenahme von Gittern, Einheitszel-
len, Raumgruppen und auf diesen aufbauenden Modellen beschrieben. Diese
Modelle beruhen auf dimensionalen Grössen: Gitter und Einheitszellen wer-
den durch Längen und Winkel beschrieben; Raumgruppen beruhen darauf,
dass sich Atome an bestimmten Koordinaten in diesen Einheitszellen be-
finden. In der hier vorgestellten Arbeit wird ein grundlegend anderer Weg
verfolgt: Kristalle werden durch Quotientengraphen beschrieben. Vereinfacht
ausgedrückt, werden Atome und Bindungen einer Einheitszelle durch Knoten
und Kanten beschrieben.

Die Überführung von Kristallstrukturen in Quotientengraphen und die
zugehörige Umkehrung, die Einbettung von Netzen in den Euklidischen Raum,
wird erläutert. Verbindungen zwischen Netzen oder den sie beschreibenden
Quotientengraphen und der specifischen Dichte von Kristallstrukturen wer-
den hergestellt: Die topologischen Dichte wird definiert und dazu benutzt für
eine Untergrenze der spezifischen Dichte zu finden. Weiter werden die maxi-
malen Längen der Kanten von Einheitszellen, und somit das Volumen einer
Einheitszelle, nach oben abgeschätzt.

Zwei neue Klassen von geschlossenen Pfaden werden eingeführt und dar-
aufhin untersucht, wie spezifisch sie für Netze sind. Darüber hinaus werden
Kriterien aufgestellt, die es erlauben Netze ohne eine Einbettung (das heißt
die Quotientengraphen) daraufhin zu untersuchen, ob sie aus nicht zusam-
menhängenden Teilnetzen bestehen. Diese Kriterien erlauben es, Netze zu
unterscheiden, bei denen diese Teilnetze die Form von Inseln, Ketten oder
Schichten haben, oder die aus sich gegenseitig durchdringenden parallelen
Netzen (wie zum Beispiel in Cuprit) bestehen. Die Kriterien werden an den
Quotientengraphen von Graphit, Talk, Cristobalit und Cuprit vorgeführt.

Ein Algorithmus zur Aufzählung von Quotientengraphen, mit dem Ziel
Kristallstrukturen ab initio zu erzeugen, wird vorgestellt. Um diese Aufzähl-
ung so effizient wie möglich zu gestalten, werden Regeln aufgestellt, die es er-
lauben viele redundante oder für Kristallstrukturen unzulässige Quotienten-
graphen von einer Aufzählung auszuschließen. Eine vollständige Aufzählung
aller vierfach koordinierten Netze, deren Einbettungen vier Knoten in ei-
ner Einheitzelle besitzen, ergab mehr als 67’000 Netze. Unter diesen befan-
den sich das Diamant-Netz (mit doppelter Einheitszelle), das Lonsdaelit-
Netz und drei weitere Netze, die möglicherweise bisher unbekannten sp2-
Kohlenstoffmodifikationen entsprechen könnten.

Eine neu eingeführte Definition von Netzen und Quotientengraphen be-
ruht nicht auf Translationen und Atompositionen und hat somit den Vorteil
von Kristallstrukturen unabhängig zu sein. Beweise über die Isomorphie von
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Quotientengraphen für diese Definition werden durchgeführt. Der vermut-
lich wichtigste Beitrag dieser Arbeit ist ein Vergleich der Automorphien der
Quotientengraphen mit Raumgruppen. Es wird gezeigt, dass die Annahme
einer Einbettung maximaler Symmetrie effektiv die Raumgruppe (die Punkt-
gruppe und die den einzelnen Rotationen oder Spiegelungen zugehörigen
inhärenten Vektoren) einer solchen Einbettung bestimmt. Der Ansatz wird
dazu benutzt zu zeigen, dass die Struktur von Markasit durch eine Verzer-
rung aus der Pyrit-Struktur hervorgeht. Der Vergleich der Strukturen von
Markasit und Rutil lässt vermuten (ohne Zuhilfenahme von Quantenphysik
oder ähnlicher Hilfsmittel), dass in Markasit S-S Bindungen existieren. Ei-
ne Analyse von Hoch- und Tiefquarzen zeigt, dass ein bindungserhaltender
Phasenübergang nur zwischen gewissen Paaren der enatiomorphen Struk-
turen möglich ist und ein displaziver Phasenübergang der Hochquarze zu
höhersymmetrischen Strukturen ausgeschlossen ist. Drei Graphitmodifikatio-
nen werden diskutiert.

Gewisse Quotientengraphen besitzen Automorphien, die Translationen
einer Einbettung eines Netzes entsprechen, die mit dem Gitter der ursprüng-
lichen benutzten Einbettung unvereinbar sind. Ein Algorithmus, der direkt
die den höhersymmetrischen Gittern entsprechenden Quotientengraphen be-
stimmt, wird vorgestellt. Dies entspricht, grob ausgedrückt, einer Verkleine-
rung einer Superzelle zu einer anderen Super- oder Einheitszelle, möglicher-
weise in Verbindung mit einer Drehung der Koorinatensystems.

Für das Halit-Netz wird gezeigt, dass unter der Voraussetzung, dass die
beiden Atomsorten nicht unterschieden werden, die Zahl der Knoten im redu-
zierten Quotientengraph halbiert werden kann. Für Quotientengraphen, die
aus zentrierten Zellen der Magnesit- und Kalkspat-Strukturen hervorgehen,
wird gezeigt, dass sie auf Quotientengraphen die primitiven Zelle entprechen
reduziert werden können, und dass ihre Topologien sich von der eines Bary-
tokalzits unterscheiden. Am Beispiel der Struktur eines Strontium-Feldspats
wird gezeigt, wie der reduzierte Graph benutzt werden kann um abzuschätzen
ob eine (Un-)Ordnung einer Struktur einen translations(un-)gleichen Pha-
senübergang nach sich zieht.

Zusammenfassend zeigt die hier vorgestellte Arbeit, dass Quotientengra-
phen und Netze Vorteile in Bezug auf den zur Bestimmung gewisser Eigen-
schaften nötigen Rechenaufwands mitbringen.
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Erweiterte Zusammenfassung

Üblicherweise werden Kristalle unter Zuhilfenahme von Gittern, Einheitszel-
len, Raumgruppen und auf diesen aufbauenden Modellen beschrieben. Diese
Modelle beruhen auf dimensionalen Grössen: Gitter und Einheitszellen wer-
den durch Längen und Winkel beschrieben; Raumgruppen beruhen darauf,
dass sich Atome an bestimmten Koordinaten in diesen Einheitszellen befin-
den.

In der hier vorgestellten Arbeit wird ein grundlegend anderer Weg ver-
folgt: Kristalle werden durch Graphen beschrieben. Vereinfacht ausgedrückt,
werden Atome und Bindungen durch Knoten und Kanten beschrieben. Kri-
stalle werden damit in unendliche Graphen überführt, die Netze genannt
werden. Diese Art Strukturen zu beschreiben ist der Kristallographie geläufig
und in der Chemie und Biologie weit verbreitet. Die Unendlichkeit der Netze
stellte jedoch ein großes Hindernis bei einer Bearbeitung durch Rechner dar.
Dieses änderte sich, als Chung et al. [1984] vorschlugen, diese Netze mit soge-
nannten Quotientengraphen zu beschreiben. Diese Quotientengraphen sind
für alle (periodische) Kristalle endlich und damit auf Rechnern bearbeitbar.

Im 2. Kapitel wird diese Überführung einer Kristallstruktur in einen Quo-
tientengraphen und die zugehörige Umkehrung, die Einbettung von Netzen
in den Euklidischen Raum, erläutert. Dies wird durch eine Übersicht für
spätere Kapitel wichtiger Eigenschaften von Quotientengraphen und Net-
zen vervollständigt. Dies schließt eine hinreichende Bedingung für Isomor-
phie von Netzen basierend auf Automorphien von Quotientengraphen ein.
Darüberhinaus werden Invarianten von Netzen und Koordinationsfolgen1 ein-
geführt.

Verbindungen zwischen Netzen oder den sie beschreibenden Quotienten-
graphen und physikalischen Eigenschaften der entsprechenden Kristallstruk-
turen werden im 3. Kapitel hergestellt. So wird zuerst die der spezifischen
Dichte entsprechende topologische spezifische Dichte definiert. Die Definiti-
on der topologischen Dichte basiert auf Koordinationsfolgen und kann dazu
benutzt werden, für eine hypothetische Struktur (das heißt die Einbettung
eines Netzes in den Euklidischen Raum) eine Untergrenze der spezifischen
Dichte zu finden. Diese Untergrenze wird für einige Strukturen mit der spe-
zifischen Dichte verglichen. Weiter werden die maximalen Längen der Kanten
der Einheitszellen aller möglichen Einbettungen eines Netzes nach oben ab-
geschätzt. Diese Abschätzung erfolgt ausschließlich durch eine Betrachtung
von geschlossenen Pfaden im Quotientengraphen und ist somit sehr einfach
durchzuführen. Sie erlaubt es, das Volumen einer Einheitszelle nach oben und

1Coordination sequences
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somit die spezifische Dichte nach unten abzuschätzen.
Diese beiden Abschätzungen werden hier dazu benutzt, in einer Auf-

zählung solche Quotientengraphen auszuschließen, die offensichtlich nicht in
der Natur vorkommenden Kristallstrukturen entsprechen können. Mit Hil-
fe der in Kapitel 4 aufgezählten Netze wird gezeigt, dass Netze existieren,
die ausschließlich anhand einer der beiden Kriterien ausgeschlossen werden
können. Die Berechnung beider Abschätzungen stellen im Vergleich zu einer
Einbettung eines Netzes und der dazu nötigen Optimierung der Zellparame-
ter, einen wesentlich geringeren Rechenaufwand dar. Ihre Berechnung führt
deswegen indirekt zu einer bedeutenden Reduzierung des allgemeinen Auf-
wands bei Aufzählung von kristallographischen Netzen.

Weiterhin werden zwei neue Klassen von geschlossenen Pfaden2 einge-
führt: gestreckte und vollständig gestreckte geschlossene Pfade3. Diese wer-
den daraufhin untersucht, wie spezifisch sie für Netze sind. Drei Beobachtun-
gen sind bemerkenswert:

• Beide Klassen von Pfaden erlauben es Folgen zu definieren, die für
über 67’000 nicht-isomorphe Netze unterschiedlich sind. Die Menge die-
ser Netze beinhaltet alle Netze die durch Quotientengraphen mit vier
Knoten vom Grade vier beschrieben werden können,

• Genauer, für die in Kapitel 4 aufgezählten Netzen stellt sich heraus,
dass die vollständig gestreckten und geschlossenen Pfade die höchste
Spezifizität haben (einschließlich geschlossener Pfade und Koordinati-
onsfolgen).

• Diese Pfade erfordern im Vergleich mit den anderen geschlossenen Pfa-
den den kleinsten rechnerischen Aufwand.

Darüber hinaus werden Kriterien aufgestellt, die es erlauben Netze ohne
eine Einbettung (das heißt die Quotientengraphen) daraufhin zu untersuchen,
ob sie aus nicht zusammenhängenden Teilnetzen bestehen. Diese Kriterien
erlauben es, Netze zu unterscheiden, bei denen diese Teilnetze die Form von
Inseln, Ketten oder Schichten (wie zum Beispiel in Talk oder Graphit) haben,
oder die aus sich gegenseitig durchdringenden parallelen Netzen (wie zum
Beispiel in Cuprit) bestehen. Die Kriterien werden an den Quotientengraphen
von Graphit, Talk, Cristobalit und Cuprit vorgeführt.

Ein Algorithmus zur Aufzählung von Quotientengraphen wird im 4. Kapi-
tel vorgestellt. Der Algorithmus wurde mit dem Ziel entwickelt, Kristallstruk-
turen ab initio zu erzeugen. Um diese Aufzählung so effizient wie möglich zu

2Cycle
3Stretched and fully stretched cycle sequences.
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gestalten, werden Regeln aufgestellt, die es erlauben viele redundante oder
für Kristallstrukturen unzulässige Quotientengraphen von einer Aufzählung
auszuschließen:

• Es wird gezeigt, dass gewisse Kombinationen von Vektoren an (anti-)
parallelen Kanten ‘Doppelbindungen‘ oder sich kreuzenden Bindungen
in einer Einbettung entsprechen.

• Eine Betrachtung der Automorphien von Quotientengraphen wird dazu
benutzt, um eine Großzahl von Netzen auszuschließen, deren Einbet-
tungen durch Spiegelungen oder durch gewisse Rotationen ineinander
übergehen würden.

Eine vollständige Aufzählung aller vierfach koordinierten Netze, deren Ein-
bettungen vier Knoten in einer Einheitzelle besitzen, schließt das Kapitel ab.
Diese Aufzählung ergab mehr als 67’000 Netze, unter denen sich das Diamant-
Netz (mit doppelter Einheitszelle), das Lonsdaelit-Netz und drei weitere
Netze, die möglicherweise bisher unbekannten sp2-Kohlenstoffmodifikationen
entsprechen könnten, befanden.

In Kapitel 5 werden Netze und Quotientengraphen neu definiert. Die De-
finitionen von Netzen und Quotientengraphen folgt der Definition von voltage
graphs. Die Definitionen haben den Vorteil, dass sie nicht auf Translationen
und Atompositionen beruhen und somit von Kristallstrukturen unabhängig
sind. Da die Beweise über die Isomorphie von Quotientengraphen gemäß
der herkömmlichen Definition nicht mehr anzuwenden sind, werden sie neu
durchgeführt. Der wohl wichtigste Beitrag dieser Arbeit ist vermutlich die
darauf folgende Betrachtung der Automorphien der Quotientengraphen. Zu-
erst wird an einem einfachen Beispiel gezeigt, dass unter Zuhilfenahme der
Automorphien eines Netzes die Punktgruppe einer Einbettung mit (maxi-
maler) Symmetrie bestimmt werden kann. Weiterhin ergibt sich aus der An-
nahme einer Einbettung maximaler Symmetrie ein Gleichungssystem, das
effektiv die Raumgruppe einer solchen Einbettung bestimmt. Da die Lösung
eines solchen Gleichungssystems sehr kompliziert werden kann, wird ein al-
ternativer, direkter und systematischer Ansatz vorgestellt. Dieser Ansatz be-
stimmt die Punktgruppe und die den einzelnen Rotationen oder Spiegelungen
zugehörigen inhärenten Vektoren4 ausschließlich unter Betrachtung des Quo-
tientengraphen. Der Ansatz wird dazu benutzt zu zeigen, dass die Struktur
von Markasit durch eine Verzerrung aus der Pyrit-Struktur hervorgeht. Der
Vergleich der Strukturen von Markasit und Rutil lässt vermuten (ohne Zu-
hilfenahme von Quantenphysik oder ähnlicher Hilfsmittel), dass in Markasit

4Intrinsic vectors
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S-S Bindungen existieren. Dies beruht auf der Beobachtung, dass die An-
oder Abwesenheit der entsprechenden Kanten im Quotientengraphen zu un-
terschiedlichen Automorphismen führen: in Anwesenheit dieser Kanten ent-
spricht der Automorphismus der Raumgruppe in der Markasit kristalliert,
in Abwesenheit der Rutil-Struktur. Eine Analyse von Hoch- und Tiefquar-
zen zeigt, dass ein bindungserhaltender Phasenübergang nur zwischen ge-
wissen Paaren der enatiomorphen Strukturen möglich ist und ein displaziver
Phasenübergang der Hochquarze zu höhersymmetrischen Strukturen ausge-
schlossen ist. Eine Diskussion von drei Graphitmodifikationen schließt das
Kapitel ab.

Gewisse Quotientengraphen besitzen Automorphien, die Translationen
einer Einbettung eines Netzes entsprechen, die nicht mit dem Gitter der ur-
sprünglichen benutzten Einbettung vereinbar sind. Eine Untersuchung dieser
Translationen im 6. Kapitel führt zu dem Ergebnis, dass sie Gitter definieren,
die kleiner als das Gitter sind, das ursprünglich zur Erzeugung des Quotien-
tengraphen benutzt worden ist. Eine ausführliche Diskussion 2-dimensionaler
Beispiele führt zu der Definition des reduzierenden Vektors5, der die relative
Größe der neuen Gitterkonstanten beschreibt. Dieser Vektor wird ausschließ-
lich unter Zuhilfenahme des Quotientengraphen und eines auszuwählenden
Automorphismus bestimmt. Dieser Vektor wird dazu benutzt um den Quo-
tientengraphen zu reduzieren. In anderen Worten, der, dem verkleinerten
Gitter entsprechende, Quotientengraph wird bestimmt. Dies entspricht, grob
ausgedrückt, einer Verkleinerung einer Superzelle zu einer anderen Super-
oder Einheitszelle, möglicherweise in Verbindung mit einer Drehung der Ko-
orinatensystems. Zwei Beispiele mit zwei-dimensionalen Netzen erläutern das
Vorgehen. Eines der 2-dimensionalen Beispiele und der einer zentrierten Zel-
le des Strontium-Feldspats entsprechenden Quotientengraphen zeigen, dass
eine direkte Reduktion auf einen Graphen minimaler Größe, zumindest mit
der hier vorgestellten Theorie, nicht immer möglich ist.

Für das Halit-Netz wird gezeigt, dass unter der Voraussetzung, dass die
beiden Atomsorten nicht unterschieden werden, die Zahl der Knoten im
reduzierten Quotientengraph halbiert werden kann. Für den Quotienten-
graphen, der aus einer rhomboedrisch zentrierten Zelle der Magnesit- oder
Kalkspat-Strukturen hervorgeht, wird gezeigt, dass er auf dem einer primi-
tiven Zelle entprechenden Quotientengraphen reduziert werden kann (jedoch
nicht weiter). Ähnlich wird für einen in Raumgruppe I2/c kristallisierenden
Strontium-Feldspat gezeigt, dass eine Reduktion des Quotientengraphen zu
einem, einer primitiven Zelle entsprechenden, Graphen führt. Wird angenom-
men, dass die in dieser Struktur teilweise ungeordneten Al- und Si-Positionen

5Reduction vector
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durch eine Atomsorte ersetzt werden können, besitzt der reduzierte Graph
noch einen weiteren reduzierenden Vektor (der einer zentrierten Zelle ent-
sprechende Graph insgesamt drei). Ein Vergleich der unter dem entsprechen-
den Automorphismus auf einander abgebildet Positionen und der dort do-
minierenden Atomsorten führt jedoch zu einem Widerspruch: Al-dominante
Positionen werden unter diesem Automorphismus auf Si-dominante Positio-
nen abgebildet. In anderen Worten, sollte eine geordnete Struktur existieren,
würde diese eine Einheitszelle der gleichen Größe besitzen.

Zusammenfassend zeigt die hier vorgestellte Arbeit, dass Quotientengra-
phen und Netze Vorteile in Bezug auf den zur Bestimmung gewisser Eigen-
schaften nötigen Rechenaufwands mitbringen.
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Abstract

As an alternative approach to lattices and space groups, this work explores
graph theory as a means to model crystal structures. The approach uses
quotient graphs and nets - the graph theoretical equivalent of cells and lattices
- to represent crystal structures.

After a short review of related work, new classes of cycles in nets are intro-
duced and their ability to distinguish between non-isomorphic nets and their
computational complexity are evaluated. Then, two methods to estimate a
structure’s density from the corresponding net are proposed. The first uses
coordination sequences to estimate the number of nodes in a sphere, whereas
the second method determines the maximal volume of a unit cell. Based on
the quotient graph only, methods are proposed to determine whether nets
consist of islands, chains, planes, or penetrating, disconnected sub-nets.

An algorithm for the enumeration of crystal structures is revised and
extended to a search for structures possessing certain properties. Particular
attention is given to the exclusion of redundant nets and those, which, by the
nature of their connectivity, cannot correspond to a crystal structure. Nets
with four four-coordinated nodes, corresponding to sp3 hybridised carbon
polymorphs with four atoms per unit cell, are completely enumerated in
order to demonstrate the approach.

In order to render quotient graphs and nets independent from crystal
structures, they are reintroduced in a purely graph-theoretical way. Based
on this, the issue of iso- and automorphism of nets is reexamined. It is
shown that the topology of a net (that is the bonds in a crystal) constrains
severely the symmetry of the embedding (that is the crystal), and in the case
of connected nets the space group except for the setting. Several examples
are studied and conclusions on phases are drawn (pseudo-cubic FeS2 versus
pyrite; α- versus β- quartz; marcasite- versus rutile-like phases).

As the automorphisms of certain quotient graphs stipulate a transla-
tional symmetry higher than an arbitrary embedding of the corresponding
net would show, they are examined in more detail and a method to reduce
the size of such quotient graphs is proposed. Besides two instructional exam-
ples with 2-dimensional graphs, the halite, calcite, magnesite, barytocalcite,
and a strontium feldspar structures are discussed. For some of the structures
it is shown that the quotient graph which is equivalent to a centred cell is
reduced to a quotient graph equivalent to the primitive cell. For the partially
disordered strontium feldspar, it is shown that even if it could be annealed
to an ordered structure, the unit cell would likely remain unchanged. For
the calcite and barytocalcite structures it is shown that the equivalent nets
are not isomorphic.
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Chapter 1

Introduction

The most common models of crystals are based on the observation that an
(ideal) crystal possesses a periodic arrangement of atoms in a lattice with a
translational symmetry. This lattice is used to define unit cells and a coordi-
nate system. Most importantly, within these unit cells, atoms are attributed
with coordinates, called positions and their ensemble show symmetries, which
are usually classified by point or space groups. These coordinates and sym-
metries are then, in combination with quantum and other theories, used to
determine physical properties of a crystal structure; or vice versa, physical
properties are used to determine these coordinates [Wenk and Bulakh, 2004,
Putnis, 1992].

The approach presented here follows a different strategy: crystals are
interpreted as graphs1, in which atoms are interpreted as nodes and bonds as
edges. Or, in a generalised interpretation, groups of bond atoms (molecules)
can be mapped onto a single node, and sequences of bonds, 2-coordinated
atoms (e.g. -O- bridges) as edges. This type of model is commonplace in
chemistry or biology: it often gives a good insight to a substance’s properties.
This approach is not foreign to crystallography; early in the last century,
Laves [1926a,b] used graphs (though he did not explicitly use the term graph)
to describe and analyse crystal structures. However, graphs were exclusively
used in figures to visually represent crystals, only informal links to their
physical properties were established. Probably the main reason for this was
the inability to mathematically manipulate the infinite graphs which crystals
effectively represent.

About a half a century after F. Laves introduced the use of graphs into
crystallography, Wells [1977, 1979] used graph theory to predict crystal struc-
tures. Though his contribution is certainly ground breaking, no link is yet

1See Wilson and Watkins [1990], Harary [1969] for an introduction to graph theory.
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made between graphs and physical properties, and the difficulty with the
infinity of graphs persists. The latter is overcome by Chung et al. [1984]:
they proposed to describe the infinite crystal graphs or nets by finite quo-
tient graphs (QG). This opened the avenue for the use of graph theory in
approaches that characterise, analyse, or predict crystal structures in new
ways [Goetzke and Klein, 1991, Beukeman and Klee, 1994, Klein, 1996, Meier
et al., 1996, Thimm and Klee, 1997, Peresypkina and Blatov, 2000, Blatov,
2000, Baerlocher and McCusker, 2007]. Yet, the theory of properties par-
ticular to these nets, which describe atoms and bonds in a crystal, is little
developed and their relation to physical properties of crystal structures has
not been studied to any significant extent.

1.1 Overview

The following chapter presents work related to the later chapters. In partic-
ular, it presents the conventional way of defining quotient graphs, outlines
the transformation of QGs into crystal structures and back, and discusses
past work on the isomorphism of nets and their invariants.

In chapter 3, coordination sequences are set into a relation with the
specific density and the maximal size of unit cells in crystals. Then, con-
ventional, stretched, and fully stretched cycle sequences are examined with
respect to their specificity in distinguishing different topologies. This is fol-
lowed by a discussion of two types of disconnected sub-nets, penetrating and
non-penetrating nets, and means to determine to which of these sets a net
belongs.

The enumeration of QGs is addressed in chapter 4. This chapter pro-
poses a basic enumeration procedure and means to improve its efficiency.
The chapter concludes with results from a complete enumeration of nets
equivalent to all crystal structures with four four-coordinated atoms per unit
cell. These nets were then examined for whether they could represent sp3 car-
bon structures. This resulted in known structures, as for example diamond
and lonsdaleite, and in three nets for which an analysis based on quantum
mechanical principles stipulates that equivalent non-metallic carbon modifi-
cations are stable.

On a first impression, graphs have little in common with space groups:
graphs retain no obvious trace of atom positions, whereas space groups ignore
inter-atomic bonds. That this first impression is wrong is shown in chapter 5,
where first quotient graphs and nets - the graph theoretical equivalent of cells
and crystal structures - are reintroduced independent from crystal structures.
Based on this, iso- and automorphisms of nets, the graph theoretical equiv-
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alent of symmetry operations, are closer examined. As result, it is shown
that the topology of a net (that is the bonds in a crystal) constrains severely
the symmetry of all possible embeddings (that is the crystal structures with
this topology). This observation allows to determine the space group of a
maximal-symmetry embedding in the case of a connected net except for the
setting.

Chapter 6 discusses the reduction of quotient graphs. This reduction is
comparable to changing the cell used to represent a structure to a smaller cell
(e.g. use a primitive cell instead of a super- or centred cell). The procedure
is demonstrated using artificial 2-dimensional examples and several known
crystal structures.

1.2 Objectives

This work has as objective

• to establish links between the net topology (as defined by a QG) and
physical properties of crystal structures, and

• to enumerate net topologies which may represent crystal structures.

1.3 Contributions

• A definition of nets and QGs based on voltage graphs that does not
rely on a crystal structure.

• A proof that the topology of a net (that is the automorphisms of the
quotient graph) determines to a wide extend the maximal symmetry
of a structure that possesses this topology. Examples illustrating the
determination of the space group with a maximal symmetry and im-
plications of this theorem are given.

• An algorithm that allows a reduction of a QG in the presence of QG
automorphisms. This reduction corresponds to finding a smaller unit
cell of a net embedded with a translational higher symmetry than that
of the QG determined from the original embedding.

• A general algorithm that allows in principle a complete enumeration
of all periodic crystal structures. The computational complexity is
prohibitive for structures represented by quotient graphs in which the
number of edges significantly exceeds the number of nodes. Hence,
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several criteria are proposed that allow a more directed search and
therefore the expansion of the searchable domain of quotient graphs if
the topology of the structure is significantly reduced.

• A link from coordination sequences to a minimal specific density and
maximal volume of a unit cell in an arbitrary embedding of a net.

• Definitions of stretched and fully stretched cycle sequences, which share
some of the properties of cycle sequences, yet have a significantly lower
computational complexity.

4



Chapter 2

Foundations

This section presents the transformation of a crystal structure into a quotient
graph (QG) as originally introduced by Chung et al. [1984]. In most of this
dissertation, their definition is applicable. However, in chapter 5 QGs and
nets are redefined independent of crystal structures. This is mainly done with
the intention to allow a discussion that is independent of cell parameters and
atom positions. As Chung´s definition is somewhat more intuitive, the newer
definition is used only where a more rigorous discussion is of order.

Furthermore, some properties of nets, which play a role in later chapters,
are discussed.

2.1 From crystals to quotient graphs

The most natural way to achieve a transformation of a crystal structure into
a QG is the association of atoms with nodes and covalent bonds with edges
in a graph. However, other, herein not further discussed possibilities exist.
For example, groups of atoms can be mapped onto one node, or an oxygen
bridge could be identified with a single edge. In any case, the transformation
results into an infinite, periodic graph called net. The net is referred to as
being or being not embedded; where an embedded net differs from the later
by having precise locations assigned to each node (a crystal is therefore an
embedded net) [see Goetzke, 1992, Goetzke and Klein, 1991, Schumacher,
1994, Chung et al., 1984].

The transformation of a crystal structure into a quotient graph depends
on conventional structural properties. Let vectors a, b, and c define a coor-
dinate system that is compatible with the examined structure. Then, in this
coordinate system, coordinates of atoms are described by (k ·a+x, l ·b+y, m·
c + z) where 0 ≤ x, y, z < 1 are conventional (fractional) atom coordinates
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and the integers k, l, and m enumerate the unit cells. The components k, l
and m are grouped together in a vector x ∈ I

3 and attributed to each node
in the net. n1, n2, n3, . . . are sets of translationally equivalent nodes (atoms).
Then each node (atom) is uniquely identified as ni(x); that is by its set and
a vector (nodes in a unit cell are labelled with the same vector).

A quotient graph is then defined as a graph with nodes n1, n2, n3, . . . ,
which are associated with the sets of nodes in the net of the same name.
Furthermore, for each set of translationally equivalent atom bonds, which

connect atoms ni(x) and nj(x
′), the quotient graph has an edge ni

x′−x
−−−→ nj,

with the orientation from ni to nj and the label (vector) v = x−x′ attached
to it.

Similar definitions can be made for crystal-like structures in any dimen-
sion and most results can be extrapolated. For the reason that 3-dimensional
graphs are difficult to visualise, 2-dimensional examples will often be used.
An example for transformations of a 2-dimensional hexagonal net into a quo-
tient graphs is illustrated in figure 2.1.

a b

0

n1

n2

n1

n2

n1

n2

n2n2n2n2

n1n1n1

n1

n2 n2 n2

n1 n1

n1

n1 n1 n1

n2

(0,1)

(0,0)

(1,0)

n1

Figure 2.1: The 2-dimensional, hexagonal net and a possible representation
as quotient graph.

A quotient graph for a crystal (embedded net) is not unique. For example,
the labels attached to the edges depend on the choice of the coordinate
system. Also, the shape of the quotient graph may vary (as shown in Bader
et al. [1997]), depending on the way the net is embedded in Euclidean space.
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2.2 From quotient graphs to crystal struc-

tures

The creation of an embedded net from a quotient graph is in principle very
simple: it is sufficient to assign to each node in the quotient graph a vector
(x, y, z), select a coordinate system (i.e. the lengths of the unit vectors
and angles between the axes) and unfold the QG. However, the choice of
the coordinate system and positions of nodes in a unit cell is difficult, as
nature imposes constraints such as minimal and maximal distances between
bond and unbound atoms. Due to the high number of constraints and free
variables, no direct solution to the problem is known. The only feasible way
is to formulate the problem as an optimisation problem. A crystallographic
embedding, that is an embedding in Euclidean space which agrees well with
the laws of physics, can for example be attempted using quantum mechanical
calculations [Winkler et al., 1999].

A serious shortcoming of this approach is that a majority of the enumer-
ated quotient graphs are equivalent to nets for which no crystal structure
can exist. Several ways to eliminate some of them beforehand are discussed
later. Unfortunately, current knowledge does not permit an elimination of all
pathological quotient graphs without an attempt to embed the corresponding
nets. As embedding a net is essentially an optimisation, it is computationally
costly and may result in an erroneous rejection of a net.

2.3 Isomorphism of nets and quotient graphs

In the same spirit in which structures are classified into structure types,
it is desirable to have the means to compare nets and quotient graphs for
similarity. This is achieved by applying the conventional definition of graph
isomorphism to nets [Gould, 1988]. Two net are isomorphic, if a bijective
function exists, which maps all nodes in the first graph such on the nodes
in the second graph so that if, and only if, two nodes in the first graph are
linked by an edge, then there is also an edge between the images of these
nodes. More formally:

Definition 2.3.1. Let G and G′ be two nets with nodes GN and G′
N and

edges GE and G′
E. Then G and G′ are isomorphic if, and only if, a bijective

function φ : GN → G′
N exists such that for all edges n ↔ m ∈ GE the edge

φ(n) ↔ φ(m) exists in G′
E.

Unfortunately, this definition cannot be consistently applied to QGs, as
QG with rather different appearance can be derived from the same net or
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structure; yet the nets are the entities one is interested in. Consequently:

Definition 2.3.2. Quotient graphs are isomorphic if, and only if, they can
be derived from the same or an isomorphic net (or, alternatively, define iso-
morphic nets).

Net isomorphism is defined in the same way as for finite graphs. How-
ever, unlike finite graphs, nets cannot easily be examined with a computer.
On the other hand, the quotient graph’s shape and labels depend much on
the embedding of the net and the choice of the cell used for its creation.
Therefore, other means of comparing nets based on QGs are necessary.

This definition of (graph) isomorphism does often match the crystallo-
graphic understanding of isomorphism, in which the morphology of crystals
is compared [e.g. Wenk and Bulakh, 2004]. Consider, for example, the rhom-
bohedral carbonates magnesite, smithsonite, siderite, rhodochrosite, and cal-
cite, which are isostructural (structure data from Downs and Hall-Wallace
[2003]). Their respective QGs differ only in the labels of the nodes equiva-
lent to the cations1 and are isomorphic in both interpretations. On the other
hand, the rhombohedral carbonates are not isomorphic to their orthorhombic
counterparts in either sense: the coordination of the cations is 9 instead of 6
[see Pannhorst and Lohn, 1970], implying that the nets cannot be isomorphic.

However, in some cases the two definitions may conflict. For example the
graphs describing pyrite and marcasite are isomorphic, yet the appearance
of their crystals is rather distinct (compare sections 5.5 and 5.6).

In cases where the base graphs, that is the QGs stripped of all labels,
of QGs are isomorphic, a possible isomorphism of the net can be shown.
Goetzke proposed to use QGs to conclude on a possible isomorphism of the
equivalent nets (see the remainder of this section and sections 5.2). This
requires the knowledge of so-called cycle sums, which are calculated from
the quotient graph. In an embedded net equivalent to a QG, a cycle sum
�+ describes the relative position of two translationally equivalent atoms in
terms of unit cells. The relative positions together with the topology of the
quotient graph provide enough information to determine a net’s topology. A
cycle sum�+ can be calculated by orienting all edges in the sense of the cycle
and then adding all labels of edges. The reorientation of an edge ni

v
−→ nj is

achieved by replacing the edge with nj
−v
−→ ni (i.e. by negating the label and

inverting the orientation to the edge). See figure 2.2 for an example.
In the following, a basic set of cycles is always used, where basic means

that the explicitly given cycle sums are sufficient to determine the cycle sums
of all other cycles in the QG (the cycle sums form a vector space with a finite

1This only minor difference is also due to the similar settings in the structure data.
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(1, 0)

n2n1

(1,−1)

(0, 0)

Upper cycle without reorienta-
tion:

�1= n1
(0,0)
−−→ n2, n1

(1,0)
−−→ n2

Upper cycle after reorientation: �1= n1
(0,0)
−−→ n2, n2

(−1,0)
−−−→ n1

Cycle sum: �+ 1 = (−1, 0)

Lower cycle after reorientation: �2= n2
(0,0)
−−→ n1, n1

(1,−1)
−−−→ n2

Cycle sum: �+ 2 = (1,−1)

Figure 2.2: An example for cycle sums.

base). If a quotient graph comprises n nodes and m edges, a basic set of cycle
sums consists of m−n+1 cycles. A convenient way to obtain a basic set is
to chose an arbitrary spanning tree of the QG. Then, the basic set consists
of all cycles, which possess exactly one edge that is not part of this tree and
zero or more edges that are (the spanning tree may have non-zero labels).

Goetzke defines two QGs to be isomorphic if and only if an isomorphism
of the two quotient graphs Q and Q′ as plain graphs exist such that the
cycle sums �+ k and �+ ′

k over all cycles �k of Q and the equivalent �′
k of Q′

can be transformed into each other via an orthogonal matrix W (adapted
from Goetzke [1992]):

for all k: �+ k ∗ W =�+ ′
k. (2.1)

It can be easily seen, that if two QGs are isomorphic according to Goetzke,
the equivalent nets are isomorphic. However, the inverse statement is false.
Two possible known reasons for this are:

1. The embedding of one net is the result of a non-affine distortion of the
other embedding.

2. The selected cells for the transformation of the net to the QG are
different in shape (e.g. include a different number of atoms).

Both cases lead to QGs that are non-isomorphic as plain graphs. However,
it is an open question, whether nets can be isomorphic, possess QGs, which
are isomorphic as plain graphs, but the representing QGs are not isomorphic
according to Goetzke.
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Klee [2004] examined automorphisms of quotient graphs closer and dis-
covered that they allow to determine the point group and lattice type of a
possible embedding.

2.4 Invariants

An invariant of a quotient graph or a net is typically a sequence of numbers
which is identical for isomorphic nets or QGs. They are of some importance in
the classification of crystal structures as a direct comparison is often difficult
or impossible [Meier et al., 1996, Baerlocher and McCusker, 2007, Peresyp-
kina and Blatov, 2000, Thimm and Klee, 1997]. These properties also have
some importance for the enumeration of nets, as they permit to recognise
pathological nets, help to target the search for new structures and to reduce
significantly the complexity of eliminating redundant QGs (chapter 4).

A few among many invariants are:

• The spectrum of the degrees of nodes.

• The sizes of rings2 or the loop configuration showing the number of 3-
or 4-member rings a node or atom is part of [O’Keeffe and Brese, 1992,
Baerlocher and McCusker, 2007, Meier et al., 1996, Yuan and Cormack,
2002].

• Coordination sequences (see section 2.5).

• Cycle sequences (see section 3.3).

In contrast to what may be expected is the observation that most properties
of the QGs are not invariants. For example:

• The size (the number of nodes) of a QG is not an invariant as larger QGs
describing the same net can be systematically constructed [Schumacher,
1994].

• QGs with the same size but a different connectivity of the base graph
can describe the same net [Schumacher, 1994].

Rings and certain variations of them have a (weak) link to crystal prop-
erties; further references can be found in [Yuan and Cormack, 2002].

2A ring is a closed path, in which for all pairs of nodes at least one of the shortest
paths between these nodes is part of the path.
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2.5 Coordination sequences

Coordination sequences are a property common to a set of isomorphic nodes
and are used in various ways [Beukeman and Klee, 1994, Blatov, 2000, Brun-
ner, 1979, Grosse-Kunstleve et al., 1996]. Let ni(0) be the starting node3

of an infinite sequence (sni

1 , sni

2 , sni

3 , . . . ) that describes the number of nodes
that are reachable by following paths4 of lengths 1, 2, 3 and so on, where
each node is counted only once in the coefficient with the lowest index. In
these sequences, sni

1 is equal to the degree of node ni(0). The superscript in
the sequence contains the set (and not the node) as, due to the translational
symmetry of the net-defining crystal structure, sequences starting at nodes in
the same set ni are identical. A set of initial sequences, or more convenient
for comparison, the average sequence (s1, s2, . . . ) over of all coordination
sequences, are invariant of a set of isomorphic nets. Unfortunately, some
non-isomorphic nets bear identical sequences, and the average sequences are
in general not integer.

Coordination sequences were used by Grosse-Kunstleve et al. [1996] to
define the topological density of a crystal in an algebraic definition (based on
polynomials describing the coordination sequences). This density (or more
precisely, an estimate of it) is catalogued in a database of zeolite structures
[Meier et al., 1996, Baerlocher and McCusker, 2007], but no relation to,
for example, specific densities was drawn. TOPOLAN - a program for the
calculation of coordination sequences - can be obtained from Thimm [2007].

3x = 0 can be chosen as the sequences are identical for isomorphic nodes, including all
x ∈ I

3.
4A path is sequence of nodes connected by edges, where no node appears more than

once.
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Chapter 3

Properties of Nets and Crystals

This chapter tries to establish relationships between certain graph theoretical
properties and physical properties of crystal structures.

3.1 Nets with non-penetrating, disconnected

sub-nets

Numerous nets obtained from crystals are disconnected and, if embedded,
sub-nets can be placed at any arbitrary distance to each other without chang-
ing the distance between connected nodes. This is, for example, the case for
graphite as shown in figure 3.1 or talc (Mg3Si4O12H2 [Gruner, 1934, Put-
nis, 1992]). The QG of talc is shown in table 3.1 (see also figure 3.2 and
table A.16).

Depending on the chosen orientation of the coordinate system and chosen
origin used during the construction of the QG, this may or may not be
obvious from the QG. For example: all z-components of labels in the QG of
graphite in figure 3.3 are zero. Consequently, the net is not connected in this
orientation.

For some choices of the coordinate system, non-zero components may
exist for each dimension. This is the case for the QG of talc. Although
some edges have labels with non-zero elements for all coordinates (including
the direction of the z-axis), the cycle sum matrix is of rank 2 and it can be
correctly concluded that talc has a sheet-like structure.

Definition 3.1.1. The dimensionality d̂ of a net defined by a connected QG
with cycle sum matrix C is defined as

d̂ = rank(C) (3.1)
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Figure 3.1: The structure of “un-buckled” graphite (figure created using data
from Downs and Hall-Wallace [2003]). Carbons are located at (0, 0, 0) and
(1

3
, 2

3
, 0) and symmetrically equivalent positions.

If embedded, (sub-)nets have the form of islands, chains, or planes, as
already observed by Laves [1926a]. The types of nets depend on whether d̂
has the value 0, 1, or 2, respectively.

3.2 Penetrating, disconnected nets

Simply connected QGs may define nets with disconnected, isomorphic sub-
nets. However, unlike the nets considered in section 3.1, the shortest distance
between nodes of disconnected sub-nets cannot be arbitrary large without
changing the distances between connected nodes. For these nets, the dimen-
sionality of (sub-)nets is equal to the dimensionality of the edge labels. The
situation is illustrated in figure 3.4: the isomorphic sub-nets with black and
white nodes are disconnected as no edge connects a white and a black node.
However, all nodes in the net are mapped onto the same node in the QG.
The resulting QG has therefore only one node and is connected.

Three-dimensional nets in this category are not pathological, and are
observable in nature. For example, cuprite (Cu2O [Downs and Hall-Wallace,
2003]) consists of two cristobalite-like structures [Laves, 1926b]. Some of
these nets are equivalent to the isomorphic, dual nets as described in Delgado-
Friedrichs et al. [2003].
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Figure 3.2: A unit cell of the talc structure: the sheets extend horizontally
out of the page (see also table A.16,Gruner [1934]).
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C 2

C 3C 1

C 4

e4(0, 1, 0)
e6(1, 1, 0)

e1(0, 1, 0)

e3(1, 1, 0)

e2(0, 0, 0) e5(0, 0, 0)

Figure 3.3: The graphite QG

(-1,1)

(1,1)

yx

Figure 3.4: A net with disconnected sub-nets and its quotient graph.

Whether or not a quotient graph describes a disconnected three-dimen-
sional net can be easily determined (without proof).

Definition 3.2.1. Be Q a connected QG and the matrix C be comprised of
rows of cycle sum vectors. Then, the multiplicity m of all nets described by
Q is defined as

m̂ = min
C′

| det(C′)| with det(C′) 6= 0 (3.2)

where the matrices C′ are of the same rank as C, square, and obtained by an
arbitrary deletion of rows and columns from C.

From observation, m̂ equals the number of disconnected sub-nets in the
net defined by the QG. For example, the net is composed of two isomorphic
sub-nets if m̂ = 2, or using Delgado-Friedrichs’ nomenclature, it consists of
two isomorphic, dual nets.

For example, figure 3.5 shows the cuprite structure: atoms represented as
large spheres form one the dual nets, small spheres the other (structures see
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Figure 3.5: The cuprite structure ([Downs and Palmer, 1994, Downs and
Hall-Wallace, 2003].
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Mg1

(−1,−1,0)
−−−−−→ O1 Mg1

(−1,−1,0)
−−−−−→ O2 Mg1

(−1,−1,0)
−−−−−→ OH1 Mg1

(0,0,0)
−−−→ O3

Mg1

(0,0,0)
−−−→ O4 Mg1

(0,0,0)
−−−→ OH2 Mg2

(−1,0,0)
−−−−→ O2 Mg2

(0,0,0)
−−−→ O3

Mg2

(0,0,0)
−−−→ O1 Mg2

(0,0,0)
−−−→ O4 Mg2

(0,0,0)
−−−→ OH1 Mg2

(0,1,0)
−−−→ OH2

Mg3

(−1,0,1)
−−−−→ OH3 Mg3

(0,−1,0)
−−−−→ O5 Mg3

(0,0,−1)
−−−−→ O7 Mg3

(0,0,−1)
−−−−→ O8

Mg3

(0,0,0)
−−−→ O6 Mg3

(0,0,0)
−−−→ OH4 Mg4

(−1,0,0)
−−−−→ OH4 Mg4

(0,0,−1)
−−−−→ O7

Mg4

(0,0,−1)
−−−−→ OH3 Mg4

(0,0,0)
−−−→ O5 Mg4

(0,0,0)
−−−→ O6 Mg4

(0,1,−1)
−−−−→ O8

Mg5

(−1,−1,−1)
−−−−−−→ O7 Mg5

(−1,−1,0)
−−−−−→ O5 Mg5

(−1,−1,0)
−−−−−→ OH4 Mg5

(0,0,−1)
−−−−→ O8

Mg5

(0,0,−1)
−−−−→ OH3 Mg5

(0,0,0)
−−−→ O6 Mg6

(0,−1,0)
−−−−→ OH1 Mg6

(0,0,0)
−−−→ O1

Mg6

(0,0,0)
−−−→ O2 Mg6

(0,0,0)
−−−→ O3 Mg6

(0,0,0)
−−−→ OH2 Mg6

(1,0,0)
−−−→ O4

O1
(0,0,0)
−−−→ Si3 O2

(0,0,0)
−−−→ Si4 O9

(−1,0,0)
−−−−→ Si4 O9

(0,1,0)
−−−→ Si1

O10
(0,−1,0)
−−−−→ Si5 O10

(1,0,0)
−−−→ Si2 O11

(0,−1,0)
−−−−→ Si3 O11

(1,0,0)
−−−→ Si6

O3
(0,0,0)
−−−→ Si1 O4

(0,0,0)
−−−→ Si6 O5

(0,0,0)
−−−→ Si5 O6

(0,0,0)
−−−→ Si2

O7
(0,0,0)
−−−→ Si7 O8

(0,0,0)
−−−→ Si8 O12

(−1,0,0)
−−−−→ Si7 O12

(0,1,0)
−−−→ Si8

O13
(0,0,0)
−−−→ Si1 O13

(0,0,0)
−−−→ Si4 O14

(0,0,0)
−−−→ Si2 O14

(0,0,0)
−−−→ Si5

O15
(0,0,0)
−−−→ Si3 O15

(0,0,0)
−−−→ Si6 O16

(0,0,0)
−−−→ Si7 O16

(0,0,0)
−−−→ Si8

O17
(−1,0,0)
−−−−→ Si4 O17

(0,0,0)
−−−→ Si1 O18

(0,−1,0)
−−−−→ Si5 O18

(0,0,0)
−−−→ Si2

O19
(0,0,0)
−−−→ Si3 O19

(1,0,0)
−−−→ Si6 O20

(0,0,0)
−−−→ Si7 O20

(0,1,0)
−−−→ Si8

Table 3.1: The QG of talc

tables A.5 and A.6). If, say, the sub-structure comprising the small spheres
is removed, a structure similar to that of cristobalite is obtained.

Figure 3.6 shows two possible QGs for the cycle sum matrices and their
determinants. The cycle sum matrices are calculated for spanning trees com-
prising the four edges on the left and the top right edge in each graph.

Assuming that the minimal absolute, non-zero determinant of the cycle
sum matrix equals the multiplicity m̂ of the net described by the QG,

• the QG possesses a spanning tree with zero-labels (i.e. all atoms in a
unit cell are linked by a chain of bonds contained in the cell) and

• only edge labels in {−1, 0, 1} are permitted (i.e. the distances between
parallel faces of a unit cell is larger than an atom bond),

then the multiplicity of a D-dimensional nets is limited by the numbers given
in table 3.2. In this table, the multiplicity is calculated as the maximal
absolute determinant over all matrices in {−1, 0, 1}D×D.
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cristobalite cuprite
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Figure 3.6: QGs for cristobalite and cuprite, as well as possible cycle sum
matrices and their determinants.

Dimensions D 1 2 3 4 5
Multiplicity m̂ 1 2 4 16 48

Table 3.2: The multiplicity m̂ of nets as a function of their dimensions D.

Experiments with the enumeration procedure presented in section 4.1
confirm this deduction. Nets with an even higher multiplicity exist if

• the constraint on the labels to consist only of values in {−1, 0, 1} is
relaxed (e.g. for D = 3 and vi ∈ {−2,−1, 0, 1, 2} up to 32 parallel nets
exist),

• no spanning tree possesses non-zero labels, or

• the QG is composed of identical (sub-)QGs.

In definitions 3.1.1 and 3.2.1, the constrain that the QGs have to be
connected is important. Otherwise - even so this seems to be a contradiction
- nets can be at the same time penetrating and non-penetrating and the values
of dimensionality d̂ and multiplicity m̂ (even so they can be calculated) do
not match the underlying ideas of these definitions. For example, the QG in
figure 3.7 defines a net that is made of infinitely repeated sub-nets similar to
the one shown in figure 3.4. In an embedding, each connected sub-net lies in
a plane. If a pair of sub-nets originates from the same sub-QG, these planes
are parallel; otherwise the planes intersect each other. All edges are loops
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and their labels therefore equivalent to cycle sums. Applying equations (3.1)
and (3.2) results in a dimensionality of 3 and a multiplicity of 2. Both values
are not matching the intentions for the two definitions (redefinitions of the
two properties based on sub-graphs are possible, but not of much relevance
in crystallography).

(1,1,0)

(−1,1,0)

(1,0,1)

(−1,0,1)

Figure 3.7: Example of a QG defining a penetrating and non-penetrating
net.

Beside others, dual, non-isomorphic nets can be represented by discon-
nected quotient graphs.

3.3 Cycle sequences

Cycles � are closed trails1 in a graph. Similarly to the way coordination
sequences are defined based on paths of given lengths, cycles can be used
to define (infinite) cycle sequences (cni

1 , cni

2 , cni

3 , . . . ), which are identical for
all isomorphic atoms [Beukeman and Klee, 1994]. Each cni

i is defined as the
number of cycles including a given atom ni(0) with size of i (cni

i is the size
of the set {� | ni(0) ∈� and | � | = i}). For crystals, cni

1 = cni

2 = 0 as
self-bonds and double-bonds are meaningless.

From experiments with the nets described in section 4.2, it is evident that
cycle sequences are more discriminative for non-isomorphic nets with a min-
imal node degree of two2 than coordination sequences3. The author suspects
that cycle sequences of a sufficient length are distinct for non-isomorphic nets
in this set. However, even if this unproven proposition is valid, the problem
arises that there is no indication on how long a finite sequence must be in or-
der to prove isomorphism. In experiments, non-isomorphic nets were found,
where the cycle sequences up to a length of 30 nodes are indistinguishable.

1A trail is a sequence of connected edges (a walk) where an edge occurs at most once.
2Nodes of degree zero and one are by definition not part of any cycle and are therefore

not reflected in a cycle sequence.
3These and other sequences were calculated using TOPOLAN; see [Thimm, 2007]
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This is a serious shortcoming for a practical application, as the calculation of
cycle sequences is particularly expensive; the computation time appears to
be proportional to the faculty of the length of the sequence. The calculation
for a single node in a net with nodes of degree four requires several days
on a modern workstation. Another disadvantage is that cycle sequences are
not well understood (i.e. no algebraic expression describing them is known)
and non-zero elements seem to grow at least with the faculty of the sequence
length.

3.4 Stretched and fully stretched cycles

Stretched and fully stretched cycles are defined to counteract the excessive
computational complexity of cycle sequences, though retaining their high
specificity. Both sets are subsets of the cycles defined in section 3.3.

Definition 3.4.1. A cycle is stretched with respect to a starting node ni(0),
if it consists of two paths of the same length, both commencing at node ni(0)
and each consisting of nodes in a non-decreasing distance4 to node ni(0) and

• either the end nodes of both paths are identical

• or the end nodes are connected by an edge.

Definition 3.4.2. A cycle is fully stretched, if it is a stretched cycle and the
distances of the nodes to ni(0) in both paths are strictly increasing (though
the last nodes in both sequences may be at the same distance from ni(0)).

Examples of a general, not stretched cycle, a stretched but not fully
stretched and a fully stretched cycle are depicted in figure 3.8. The starting
node is a marked with a circle; numbers give the distance to the starting
nodes and the dotted lines mark the paths into which the cycle is split.

Obviously, a fully stretched cycle is a stretched cycle but not necessarily
vice versa. However, for certain graphs, all stretched cycles are also fully
stretched, as for example the square and the diamond net. For other nets
a discrepancy exist: coesite (SiO2) possesses for a given node about 15
times more stretched cycles of size 25 than fully stretched cycles (structure
see table A.4, [Levien and Prewitt, 1981]). Note that stretched and fully
stretched cycles are not equivalent to circles or rings as defined in standard
graph theory; shortcuts may well exist.

Nets can be classified by using the average stretched cycle sequences,
which is the sum over all nodes’ sequences divided by the number of nodes

4The distance of two nodes in a graph is the length of the shortest path between them.

21



in the QG. This sequence is in general rational but yet an invariant of the
net.

1 1

1

2
2

2

1

1

2

2

2 3

Figure 3.8: Cycles: a (plain) cycle, a stretched and a fully stretched cycle.
Numbers indicate the distance to the starting node represented as a circle,
arrows the ends of the two paths.

An advantage of the stretched and fully stretched cycles over normal
cycles is the lower computational effort. For example, in the case of the
nets with nodes of degree four, the stretched cycle sequences appear to grow
exponentially with the cycle size. This represents a big computational ad-
vantage over cycle sequences, which grow in the order of faculty of the cycle
size. In the case of the nets of degree 4, the non-zero elements of the aver-
age stretched cycle sequences were observed to approximate exp(αN) with
0.5 < α < 1.0 and N > 10. For example the calculation of cycle sequences
for diamond and cycles of sizes up to 20 requires about 50 times the time
required for stretched cycle sequences of the same size (diamond QG see ta-
ble B.4). For the over 67’000 nets described in section 4.2, averaged stretched
and fully stretched cycle sequences of a maximal length of 32 are distinct for
all non-isomorphic nets. For smaller cycle sizes, the fully stretched cycle
sequences were observed to be slightly more discriminative than stretched
cycle sequences. Both show higher discriminative capabilities than cycle se-
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quences. Furthermore, the computational effort turned out to be prohibitive
to calculate cycle sequences of length 32.

Figure 3.9 illustrates how specific the three types of cycle sequences clas-
sify the nets. Although the curves are very similar, a close examination
reveals that fully stretched cycles are more specific than stretched cycles,
which in turn are more specific than cycle sequences. Compared to these,
much shorter average coordination sequences are necessary to distinguish
between most network topologies. However, 285 nets fall into 136 sets, for
which the coordination sequences seem to be equal, although the nets are not
isomorphic. For distinguishable nets, sequences of length 22 are specific, but
sequences of length 50 could not split the 136 classes further. The specificity
is still rather high: 99.579%. This may be considered a small risk, taken into
account that

• The calculation of the apparent 100% specific fully stretched cycle se-
quences is computationally more expensive.

• The nets used in the experiment are rather similar: their quotient
graphs possess the same number of nodes of degree 4.

cycle size/ length of coordination sequence

number of

sets of QGs
distinguished

Fully streched cycles
Stretched cycles

Average coordination seq.
Cycles

60000

50000

40000

30000

20000

10000

0
0 5 10 15 20 3025

Figure 3.9: The number of sets of nets depending on the cycle sizes and
average coordination sequences. Calculated for all nets with connected QGs
consisting of four nodes of degree four.
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3.5 Density and coordination sequences

It is quite evident that coordination sequences give an indication on how
“dense” a possible crystal structure is. Generally, average coordination se-
quences for structures representing simply connected nets in a n−dimensional
space can be approximated by a polynomial of the degree n−1. For the av-
erage coordination sequences of silicates and aluminium-silicates, a linear
relationship between the specific density and the coefficient of the fastest
growing sequence was shown by Thimm et al. [2000].

In general, all nodes reachable via a path of a maximal length ℓ are neces-
sarily contained in a sphere with a radius of ℓ times the maximal diameter of
an atom or bond length in the structure. Figure 3.10 illustrates the principle:
the numbers indicate the distance to the centre node in terms of path length.
If furthermore, an atom is assumed to occupy a minimal (average) volume
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Figure 3.10: Density in a 2-dimensional net.

equivalent to a sphere with the diameter equal to a bond length, a necessary
criteria for crystallographic nets can be deduced: the volume occupied by
the nodes as calculated of the sum of coordination sequence must be smaller
than the volume of the sphere in which they are contained. In figure 3.10,
these spheres (circles to be precise) are drawn as dashed lines. Obviously, a
circle with a radius of k “bonds” contains all nodes reachable by a path of
at most k edges (the shaded areas). More generally:

24



• if sni is the coordination sequence calculated for some arbitrary set of
nodes ni,

• V is the average volume of atoms or building blocks which are mapped
on a node,

• f a factor compensating for dual nets (see also section 3.2; f = 1 for
simply connected nets and f = m̂ for penetrating nets, i.e. f = 2 for
cuprite).

• ℓ is the length of the sequence,

• and ⊘(ni) is the diameter of the atoms in set ni,

then a net must fulfil equation (3.3) in order to be crystallographic.

V · f max
ni∈net

ℓ
∑

k=1

sni

k ≤
4π

3

(

ℓ · max
ni∈net

(⊘(ni))
3

)

(3.3)

The length of the coordination sequence ℓ should be chosen larger than
a few times the number of nodes in a unit cell (the estimation of the density
improves with ℓ). If V is approximated by a sphere with diameter ⊘, the
quotient graph of a crystallographic net must fulfil equation (3.4).

⊘
3
f max

a∈QG

ℓ
∑

i=1

sa
i ≤ 8ℓ3 max

a∈QG
(⊘(a))3 (3.4)

Or, equivalent by:

1 ≥ ρ̂ · δ :=

f max
a∈QG

ℓ
∑

i=1

sa
i

8ℓ3
·

⊘
3

max
a∈QG

(⊘(a))3 , (3.5)

where ρ̂ is called the specific topological density and depends on the topology
of the structure and δ is determined by the chemical composition of the
structure (ρ̂ and δ are dimensionless).

In the case of an embedding of a net consisting of disconnected sheets in
the 3-dimensional space, two extreme situations exist:

• all connected nodes are in one plane (as in the graphite), or

• the nodes are arranged perpendicular to the sheet (as in talc; compare
section 3.1 and [Gruner, 1934, Downs and Hall-Wallace, 2003]).
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In the latter case, the thickness is limited by the product of the (maximal)
sum of the bond lengths along the path(s) that define the diameter of the
QG5. Similarly for structures consisting of disconnected “bars”, as in py-
roxenes or amphiboles, the cross sectional area of these “bars” has to be
estimated.

This definition differs from the definition by Grosse-Kunstleve et al. [1996]:
it is related closer to the density determined by mass and volume. For large
ℓ, one density can be estimated from the other, as Grosse-Kunstleve’s defi-
nition measures the surface of a polygon inscribed in the sphere from which
ρ̂ is calculated. For crystals, ρ̂ is smaller than 1.0 as:

• The nodes reached from a central node by paths of a length ℓ are actu-
ally contained in polyhedra, of shapes determined by the connectivity
of the net. As these polyhedra are enclosed by spheres of radius ℓ, the
volume available to the atoms is overestimated.

• Atom bonds are rarely at a 180◦ degree angle, which implies that the
radius of the sphere well exceeds the maximal distance between its
centre and the atom furthest away from the centre. In other words, the
polyhedra formed by the growth sequences are always enclosed in this
sphere but usually not inscribed.

• The value of ℓ maxa∈QG (⊘(a)) is a conservative upper bound estimation
for the radius of the enclosing sphere. The diameter of the enclosing
spheres should be calculated as the maximum over the sums of the
atom bond lengths of individual paths.

Table 3.3 shows some examples the topological density of existing struc-
tures (in number of atoms found in a given volume). As expected for real
crystals, the values of ρ̂ · δ are smaller than one. Note that the specific
topological density of cuprite is twice that of cristobalite due to the doubled
net. Furthermore, “dense” structures as those of the alloy DyCu, diamond
and perovskite (CaTiO3) show much higher values for ρ̂ than the framework
silicates [Putnis, 1992]. This is not necessarily the case for nets that do not
have a crystallographic correspondence. Among the nets enumerated in sec-
tion 4.2, values for ρ̂ exceeding 2.7 were observed. It is possible to construct
QGs with a ρ̂ that exceeds any given value.

As there is strong evidence that the specific densities of structures with a
similar chemical compositions are almost linearly related to their topological

5The diameter of a connected graph is the maximal distance over all pairs of its nodes.
Several paths of the same minimal length may exist between such pairs of nodes, of which
several pairs may exist.
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Structure ρ̂ δ ρ̂δ
CuDy (figures 6.1, 6.2) 0.270 0.712 0.192
Perovskite (table A.10) 0.516 0.160 0.083
Diamond (tables A.7, B.4) 0.113 1.000 0.113
Cristobalite (table A.5, 3.6) 0.043 0.316 0.014
Coesite (table A.4, figure B.1) 0.057 0.316 0.018
Cuprite (table A.6, figure B.1) 0.087 0.279 0.024

Table 3.3: Inverse specific topological densities and ρ̂ values for selected
structures with ℓ = 20. Based on ⊘(Dy) = 3.18Å, ⊘(C) = 1.54Å (covalent
radii from [PhysLink.com, 2007]); ⊘(Si) = 2.3Å, ⊘(Ti) = 2.9Å, ⊘(Ca) =
3.795Å [Laves, 1926b]; ⊘(O)=1.2Å (using the smallest metal-O distance as
in [Cramer et al., 2003]); ⊘(Cu)=2.5Å (calculated from the cuprite structure,
see table A.6).

densities [Thimm et al., 2000], a more aggressive cut-off value for ρ̂ · δ can
be used.

More generally, a known structure can be used to estimate sensible lower
and/or upper bounds for ρ̂. For example, it can be assumed that all possi-
ble sp3 carbon structures of dimensionality 3 (according to section 3.1) are
not (much) denser than diamond. Allowing for some margin, a cut-off value
corresponding to a topological density twice the density of diamond permits
to reject more than 95% of all topologies enumerated by the basic enumer-
ation procedure as non-crystallographic (as opposed to 16% for the criteria
in equation (3.5)).

3.6 Density versus unit cell volume

For a crystallographic embedding of a net, a maximal bond length is usually
known from conventional crystal chemical knowledge. Based on this length,
the distance between any pair of nodes is limited by this maximal length
times the number of edges in the shortest path between them. As this is also
true for any pair of translationally equivalent nodes in neighbouring cells,
upper limits for dimensions a, b, and c of a cell exist. In other words, the
topology of a net limits the dimensional cell parameters as a function of
the bond lengths of the considered chemical composition. As the number
of atoms in a cell is equal to the number of nodes in the QG, a minimal
density of a possible structure can be estimated and some pathological nets
recognised.

More precisely, the maximal volume of a cell can be estimated as follows.
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Be � a cycle in a QG with maximal dimensionality for which some elements
of the cycle sums are non-zero. Then, cell parameters amax, bmax, or cmax,
respectively, are limited by the product of the sum of the diameters of the
atoms (or bond lengths) in the cycle and the length of the cycle divided by
the absolute value of the non-zero cycle sum element. Minimising the length
of these cycles results in equations (3.6) to (3.8).

amax = min
�∈QG

1

|k|

∑

a∈�

⊘(a)

with �+ = (k, l, m) and k 6=0 (3.6)

bmax = min
�∈QG

1

|l|

∑

a∈�

⊘(a)

with �+ = (k, l, m) and l 6=0 (3.7)

cmax = min
�∈QG

1

|m|

∑

a∈�

⊘(a)

with �+ = (k, l, m) and m 6=0 (3.8)

The cell volume of an embedded net is consequently limited by Vmax =
amaxbmaxcmax, presuming a cell with orthogonal axes. For other cells, the
limit is still valid, though even more conservative.

On the other hand, the minimal volume Vmin occupied by all atoms in a
cell can be approximated as:

Vmin =
∑

a∈ QG

π

6
⊘ (a)3 (3.9)

Obviously, for crystallographic topologies the space occupied by the atoms
must be smaller than the maximal volume of the cell: Vmin ≤ Vmax.

For example, the QG of the diamond lattice consists of 4 edges: C1
0,0,0
−−→

C2, C1
1,0,0
−−→ C2, C1

0,1,0
−−→ C2 and C1

0,0,1
−−→ C2. A possible choice of a cycle

to determine cell parameter a are the first two edges, resulting in k =1 and
∑

⊘(a)=3.088Å, assuming that a C-C bond is 1.544Å in length. This limits

the maximal cell volume to 29.45Å
3

(as compared to the observed value of

11.35Å
3
).

This condition is easily calculated for all quotient graphs, and turns out
to be quite effective: for the nets described in section 4.2, only about 50%
fulfil this condition.

The minimal density as calculated in section 3.5 and estimated density
are to some extent independent: for certain nets, the minimal density is quite
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low, whereas the estimated density is high and vice versa. For example, Vmax

and ρ̂ were calculated for the nets described in section 4.2 and the number of
occurrences counted. The number of occurrences are depicted in figure 3.11
(top: gray values represent the number of occurences; bottom: the length of
the lines). Though most occurrences are for small Vmax paired with small ρ̂,
the two values are not strictly correlated - implying that both criteria are
complementing each other.

The absence of certain Vmax has a combinatorial reason: cycles of sizes
bigger than 4 in the considered QGs are always a combination of smaller
cycles. This implies that 1 ≤ amax, bmax, cmax ≤ 4 and consequently excludes
values for Vmax that are not a product of three integers in this range (values
larger than 24 for Vmax also seem to be impossible).
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Figure 3.11: Occurrences of pairs of ρ̂ and Vmax.
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Chapter 4

Nets and Their Enumeration

The idea of creating crystal structures ab initio is not new and other ap-
proaches towards a systematic enumeration of possible crystal structures were
proposed in literature:

• Delgado-Friedrichs et al. [1999] describe a systematic approach based
on tiling theory. This is an alternative approach to the one described in
this paper, with advantages (the generation of structures complying to
crystallographic constraints is simpler) and disadvantages (1. the con-
siderably more complicated theory, 2. the likely higher computational
cost, and 3. the relationship between the complexities of structures
and tilings being rather loose).

• Sphere packings were used by Koch and Fischer [1995]. Sphere packings
have the disadvantage that structures with dominantly covalent bonds
are difficult to model as these structures do not represent (dense) sphere
packings.

• The work of Blatov [2000] is in some aspects very close to this publica-
tion. He and a collaborator also analysed crystal structures based on
graph theory [Peresypkina and Blatov, 2000].

• Klein [1996] presented a method for enumerating crystal topologies
with a given (minimal) symmetry by augmenting the quotient graph
(called dl-graph) with symmetry labels. This has the advantage to
reduce the size of the graph in the case that structures with a high
symmetry are searched for as well as the search space for edge labels,
and therefore being able to consider highly symmetric structures with
larger unit cells. The drawback is that if (also) structures of minimal
symmetry are considered, the same topology is generated in various
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forms having low apparent and explicit high symmetries - and this
worsens the computational complexity.

• Treacy et al. [2004] developed an approach which uses a mixture of
tiling and graph theory, and takes advantage of space group informa-
tion. Their group proposed approximately 2.5 million hypothetical
zeolite structures (see [Foster and Treacy, accessed 2007]). However,
their approach compares to the here presented approach in a similar
way as the work by Klein [1996]. Notably, Treacy, Rivin, Balkovsky,
Randall, and Foster decided not to enumerate structures in space group
P1 (as the computational effort is quite excessive), which is effectively
done here. Furthermore, their approach is very much tailored towards
zeolites and other structures with tetragonal atoms.

The major focus of this chapter is a reduction of the number of nets
(and, hence, quotient graphs) enumerated and considered for the proposition
of possible crystal structures. Ideally, the tentative embedding succeeds only
for so-called crystallographic nets (in contrast to pathological nets), which
have an equivalent in nature and may feature desired properties.

4.1 The enumeration of crystal structures

The systematic examination of (potentially new) nets and crystal structures
can be organised in four main steps:

1. The enumeration of quotient graphs.

2. The elimination of redundant and obviously pathological nets.

3. A tentative embedding under minimal crystallographic constraints.

4. A quantum mechanical based geometry optimisation and analysis; syn-
thesis.

For the sake of readability, a rather inefficient enumeration procedure
is described in section 4.1.1. Then, subsequent sections discuss how the
efficiency is improved by excluding pathological and redundant QGs from
the enumeration. Two vital assumptions with respect to the computational
complexity of this approach are made. Firstly, for any crystal a unit cell
can be chosen such that all inter-atomic bonds connect atoms located in
neighbouring unit cells1. This has he benefit that the values of the elements

1This assumption reduces not only the number of vectors considered, but limits also
the maximal number of parallel, disconnected sub-nets of the same dimensionality (see
section 3.2)
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of the QG’s vector labels are limited to {−1, 0, 1}. Secondly, it is assumed,
that a unit cell can be chosen such that between any pair of atoms in a unit
cell that are connected via an arbitrary path there exists also a path following
bonds not leaving the cell. This implies that only QGs having a spanning
tree with zero labelled edges must be considered. This greatly reduces the
number of edges in a QG for which non-zero edges need to be considered.

The theory presented in chapter 5 permits to determine the space group
with a maximal symmetry compatible with a given QG. This simplifies a
tentative embedding obeying symmetry constraints, possibly complemented
with a geometric optimisation of cell parameters and atom positions in order
to obtain a trial structure in which bond lengths and angles are within values
observed in known crystal structures. The tentative embedding and the
preliminary purely geometrical optimisation is important as the final step,
the quantum mechanical analysis and optimisation of the proposed structures
is a particularly time intensive and difficult procedure. Neither the tentative
embedding nor the quantum mechanical based geometry optimisation are
discussed further.

4.1.1 The basic enumeration procedure

The basic enumeration procedure starts with a given number of atoms in a
unit cell of the considered crystal structures, as well as their degrees. The
procedure consists of 5 steps, of which some are subjected to later refinement:

1. Enumerate all non-isomorphic trees with the required number of
nodes, where all trees may be extensible to a graph with the specified prop-
erties [Gould, 1988, Harary, 1969, Wilson and Watkins, 1990]. The edges in
the trees are labelled with zero-vectors.

2. Extend the spanning trees to all possible graphs which match the
specification. This may include parallel edges and loops2.

3. Completing the labelling of the graphs: for each partially labelled quo-
tient graph, all possible combinations of vectors with elements in {−1, 0, 1}
are enumerated (exceptions are discussed later) and used to complete the
labelling of the graphs. Furthermore, an arbitrary orientation (yet identical
to all enumerated QGs) is assigned to all edges in a QG.

Not all combinatorially possible labels match constraints imposed by na-
ture on crystal structures, some assignments are illicit. For example, loops
may not have zero labels, as this would correspond to atoms bond to them-
selves. Furthermore, labels of parallel or anti-parallel edges are not allowed
to be equal or that one is the negative of the other (see section 4.1.2). Fur-

2A loop is an edge connecting a node with itself.
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ther restrictions on the quotient graphs, respectively the nets, are described
in later sections.

4. Elimination of quotient graphs describing isomorphic nets: as the
previous steps produce numerous quotient graphs describing isomorphic nets,
it is important to eliminate such redundant graphs for efficiency reasons. This
is done in several steps:

1. Classify quotient graphs using averaged coordination sequences with,
for example, 10 elements.

2. For each set obtained, perform a comparison between pairs to detect
isomorphism and remove redundant graphs.

3. If two non-isomorphic graphs have identical coordination sequences,
test the isomorphism of their nets using longer coordination sequences
or some variation of cycle sequences. However, no straightforward cri-
teria known to the authors permit a decision. Help on how to decide
the isomorphism by hand can be found in Schumacher [1994].

5. Embed the nets tentatively under minimal crystallographic constraints
(i.e. the distance between bond and unbound nodes must be reasonable).

Note that if the approach proposed by Klein [1996] is preferred, steps 1
to 3 have to be modified accordingly. The elimination of isomorphic nets
requires a prior translation of the symmetry labelled graphs into QGs.

4.1.2 Parallel edges in quotient graphs

(Anti-)parallel edges in quotient graphs with the same or negated labels are
not permissible. Their presence would result in overlapping or intersecting
edges in the embedded net. The following theorem puts this observation in
precise terms.

Theorem 4.1.1. Be net G embedded in the D-dimensional space and Q a

QG of G. Then, the line representing the edge e1 =
(

n
v
−→ n′

)

has more than

the end points in common with lines equivalent to the embeddings of each of

the edges e2 =
(

n′ v
−→ n

)

, e3 =
(

n
−v
−→ n′

)

, e4 =
(

n′ −v
−→ n

)

.

Proof. Edges e1 and e4, as well as e2 and e3 are identical according to the
definition of QGs in section 2.1. It is therefore sufficient to show the theorem
for e1 and e2.

Let the positions x and x′ be the positions of nodes n(0) and n′(0) in an
arbitrary embedding with 0 ≤ xi, x

′
i < 1. Following the edge in the embedded
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net equivalent to edge e1 in the QG from n(0) leads to the node n′(v) at the
absolute position x′ +v and correspondingly, from n′(0) the edge e2 leads to
node n(v) at position x + v1, respectively. Assuming straight lines between
the nodes, the lines intersect iff some constants g and h with 0 < h, g < 1
exist such that

x + g · (x′ + v) − x

= x′ + h · (x + v) − x′

Setting g = h = 1
2

shows that at least one more common point exists.

4.1.3 Penetrating and non-penetrating sub-nets

Adding an edge to a QG can increase, decrease, or leave its multiplicity
unchanged. Consequently, it is necessary to complete QGs during an enu-
meration before their multiplicity is evaluated (and used to discard or retain
a particular QG).

Nets with a dimensionality smaller than the dimensionality of the space
in which they are embedded are not pathological per se and numerous crystal
structures fall into this category (e.g. graphite, talc). Yet, they are omitted
here from an enumeration for two reasons:

• They may or may not be of interest due to their particular structure.

• The enumeration of these structures is done more efficiently achieved
by enumerating nets of a lower dimensionality (i.e. the labels of the QG
have only one or two elements), which are then “stacked” by adding
to all labels additional elements equal to zero in order to form a net in
the desired space.

4.1.4 Elimination of redundant nets

As indicated in section 5.2, multiple QGs may represent the same net. Some
of them can be excluded without actually comparing nets, thus saving a
considerable amount of computation time.

Assume that two quotient graphs Q and Q′ are isomorphic and the edges
are mapped such that the ith edge in Q is mapped onto the ith edge in Q′

and this mapping respects the orientation of the edges. Suppose that further
for all labels ℓk and ℓ′k a common orthogonal matrix M exists such that

for all k: ℓk ∗ M = ℓ′k. (4.1)

Clearly, this implies that equation (2.1) holds and the two QG are isomorphic.
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Based on this observation, many redundant quotient graphs can be ex-
cluded from the enumeration beforehand. As the labels are attributed to the
quotient graph in this particular manner, the labels not in the spanning tree
are equivalent to the cycle sums. If these labels are gathered as rows in a
matrix L, only matrices where

• all the column vectors of L have a positive or zero norm and

• Vector Li is lexicographically smaller3 than Li+1 for all 1 ≤ i < D

are accepted as labels for a QG. This permits to reduce the number of redun-
dant QGs by a factor of close to 48 for the QG enumerated in section 4.2.

4.1.5 Desired properties of crystals

Rings and cycles in a possible crystal structure are already defined by the
net, respectively the quotient graphs. This permits, for example, to exclude
structures that have or do not have cycles of a given size.

Furthermore, during a search for crystal structures with high degrees of
symmetry, QGs with small automorphism groups can be dropped before a
tentative embedding is attempted. This is possible, as the automorphism
group of the QGs is homomorphic to all space groups of possible embedding
of the equivalent net. This is computationally interesting as the calculation
of the automorphism group is much less demanding than a full geometry
optimisation of a crystal structure.

4.2 The nets with 4 nodes of degree 4

The author enumerated all simply connected nets with 4 translationally non-
equivalent nodes of degree 4 in the intend to determine all sp3 carbon struc-
tures with 4 atoms per unit cell (a graph is simply connected if a path exists
between all pairs of nodes). The total number of quotient graphs (describ-
ing pathological and crystallographic nets) is estimated to be larger than
5 ∗ 1010, a certainly prohibitive number. Using the approaches described
above (including QG with loops), the enumeration produced a manageable
subset of roughly 40’000’000 quotient graphs from which 67510 potentially
non-isomorphic nets emerged (for three nets between two to five, as plain
graphs non-isomorphic, quotient graphs are still included). Using the pre-
sented constraints and the assumption that a sp3 carbon modification cannot

3E.g.: if the letter ‘A’ is associated with 1, ‘B’ with 0, and ‘C’ with -1, the “words”
corresponding the Li are lexicographically ordered.
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be much denser than diamond, a subset of 104 potentially crystallographic
nets was obtained. These were then embedded and node positions and cell
parameters optimised such that bond nodes are about 1.60Å apart and non-
bond atoms at a minimal distance of at least 2.26Å. For 26 of the 104 nets
an embedding could be found for which the error on the bonds is less then
0.20Å. Two of these nets describe the diamond topology (with a double cell),
one lonsdaleite. Of the remaining 23 nets, an analysis based on quantum
mechanical principles stipulates three non-metallic new or yet unidentified
carbon modifications [Strong et al., 2004], other nets are still under investi-
gation.
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Chapter 5

Net Topologies, Space Groups,

and Crystal Phases

The transformation of crystal structures into QG discussed in section 2.1 has
the limitation that the spatial information on nodes in the crystal is of fun-
damental importance. This means that QGs and nets cannot be dissociated
from cell parameters and atom positions. Here, an approach is introduced
which does not rely on these and defines quotient graphs and nets indepen-
dently of the arrangement of nodes in Euclidean space. Then, results on
the isomorphism of nets by K. Goetzke are reformulated and complemented
[Goetzke, 1992]. Findings are illustrated with 2-dimensional examples and
known crystal structures.

5.1 Crystals, graphs, and voltage graphs

The approach presented here to express quotient graphs and nets was inspired
by voltage graphs [Gross and Tucker, 2001]. In contrast to the conventional
approach to QGs, QGs are first defined as a set of graphs labelled in a certain
way, and only then are the nets defined as a cross product of a quotient graph
and an integer vector space.

Definition 5.1.1. A quotient graph Q of dimension D is a finite graph
consisting of N nodes QN = {ni|1 ≤ i ≤ N} and directed, labelled edges

QE =
{

e =
(

ni
v
−→ nj

)}

⊂ QN × Z
D ×QN with dimension D > 0. An edge

ni
v
−→ nj is identical to the edge nj

−v
−→ ni.

This definition uses the idea of base graphs and voltages proposed by
Gross and Tucker [2001] with the restriction that the “voltages” are exclu-
sively integer vectors. The definition of identical edges means that QE is a
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set of pairs of equivalent edges with respect to the given definition of the
identity of edges. To avoid notational complexity, this rather trivial equiva-
lence shall not be included in the notation but applied, whenever necessary.

Furthermore, edges may be denoted as ek =
(

n(k) vk−→ n′(k)
)

, where the su-

perscript (k) indicates that the node is the start or end node of the kth edge.
Identical edges having opposite edge orientations are being called inverted
to each other. In the following, a base graph of a QG is defined as the QG
stripped of labels and edge orientations (an edge and its inverted counterpart
are indistinguishable).

Definition 5.1.2. A net G = 〈Q, ZD〉 is the cross product of a quotient
graph Q of dimension D and an integer vector space of the same dimension.
In this cross product,

GN =
{

ni(x)|1 ≤ i ≤ N,x ∈ Z
D
}

is the set of nodes in G and

GE =
⋃

e ∈ QE

x ∈ Z
D

{

ni(x) ↔ nj(x + v)|e =
(

ni
v
−→ nj

)}

the set of (undirected) edges.

Hereby, a net is defined without recurring to an embedding (or a crystal
structure), cell parameters, or atom positions. Usually, only quotient graphs
Q of a finite degree1 are considered, as a net 〈Q, ZD〉 is of the same degree
and only those are meaningful in the context of this publication. In general,
a net may or may not be connected. A minimal, yet insufficient, condition
for a net being connected is that it’s quotient graph is connected – which is
assumed in the following (if not stated otherwise) for the sake of simplicity.
Disconnected nets are discussed in sections 3.1 and 3.2.

Definition 5.1.3. Two quotient graphs Q and Q̄ are isomorphic if and only
if the nets 〈Q, ZD〉 and 〈Q̄, ZD〉 are isomorphic.

Obviously, if two QG are identical, except for the names of their nodes,
they describe isomorphic nets. This can be expressed in a more rigorous way
as follows: if a bijective mapping φ – called base graph isomorphism – exists
for the base graphs of Q and Q̄ with φ(ni) = n̄i, φ(ek) = ēk, and vk = v̄k

(that is the edges and nodes can be renumbered such that this is true), then
the QGs (and their nets) are isomorphic.

1Only a finite number of edges are incident to a node.
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5.2 Isomorphism of quotient graphs and nets

Isomorphisms of QGs and nets have only superficially been addressed by
the closing statement in section 5.1, and Goetzke [1992] proposed several
theorems on net and QG isomorphism, which are quite similar to some of
the following theorems. However, as QGs and nets are redefined, the ideas
proposed by Goetzke and others are revised accordingly. The isomorphism
of nets and QGs is formulated here without consideration of atom types or
similar concepts for the sake of simplicity and generality. In cases where
this is not acceptable, the isomorphic mappings φ can be restricted to those
fulfilling such constraints.

The following theorem addresses cases of isomorphism that correspond
to a modification of an embedding where sets of isomorphic nodes (with
a fixed coordinate system and cell boundaries) are translated beyond cell
boundaries (or the boundaries themselves are translated). This is reflected
in the QG by the addition or subtraction of the same integer vector to the
labels of the edges that link this node to the rest of the QG. Theorem 5.2.1
and theorem 5.2.2 are equivalent to K. Goetzke’s definition of V-variants.

Theorem 5.2.1. Two QGs describe isomorphic nets if

• a base graph isomorphism φ : Q → Q̄

• a set of nodes A ⊂ QN , as well as

• a vector t ∈ Z
D

exist, such that for all edges n
v
−→ n′ in Q there exists an edge φ(n)

v̄
−→ φ(n′)

in Q̄ with
v̄ = v + t

v̄ = v − t

v̄ = v







if







n ∈ A and n′ 6∈ A

n 6∈ A and n′ ∈ A

otherwise
(5.1)

Proof. It has to be shown that an isomorphism φ between G = 〈Q, ZD〉 and
Ḡ = 〈Q̄, ZD〉 exists. This is done by construction of isomorphism φ : G → Ḡ.

Without loss of generality, assume that n̄i = φ(ni) for all ni ∈ QN and
φ(ek) = ēk for all ek ∈ QE . Then, define φ(ni(x)) = n̄i(x) for all x ∈ Z

D and
ni ∈ QN , and in order to obtain an isomorphic mapping for the edges in the
nets, define φ for all x ∈ Z

D as
φ
(

n(x) ↔ n′(x + v)
)

=







n̄(x) ↔ n̄′(x + v + t) if n ∈ A and n′ 6∈ A

n̄(x) ↔ n̄′(x + v − t) if n 6∈ A and n′ ∈ A

n̄(x) ↔ n̄′(x + v) otherwise.
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φ is the desired isomorphism, as it is bijective and consistent with the
premises.

Theorem 5.2.1 can be extended to include sequences of pairs of quo-
tient graphs that fulfil the premises in this theorem, and the following theo-
rem 5.2.2 is such an extension.

Theorem 5.2.2. Two QGs describe isomorphic nets if

• a base graph isomorphism φ : Q → Q̄, and

• vectors ti ∈ R
D (1 ≤ i ≤ |QN |, |QN | the number of nodes in Q)

exist, such that for all edges ni
v
−→ nj in Q exists an edge = φ(ni)

v̄
−→ φ(nj)

in Q̄ with
v̄ = v + tj − ti (5.2)

Proof. Choose φ and ti ∈ Z
D such that the premises of theorem 5.2.2 hold.

Let Q = Q1,Q2, ...,QN = Q̄ be a sequence of QGs with qi = {ni} for
2 ≤ i ≤ N . From the proof of theorem 5.2.1 it is clear that this sequence
describes isomorphic nets (use t = ti and q = qi to show that Qi−1 and
Qi are isomorphic). A close examination of isomorphic edges in Q1 and QN

shows that for all edges
(

n(k) vk−→ n′(k)
)

=
(

ni
vk−→ nj

)

φ
(

ni
vk−→ nj

)

=
(

φ(ni)
vk+tj−ti

−−−−−→ φ(nj)
)

.

Therefore, defining

φ (ni(x) ↔ nj(x + vk)) = (φ(ni)(x) ↔ φ(nj)(x + vk + tj − ti))

for all x ∈ Z
D results into an isomorphic mapping of the nets.

A closer examination of theorems 5.2.1 and 5.2.2 shows that QGs, which
describe isomorphic nets in embeddings that are related by of a rotation, a
reflection, or a non-linear transformation, will unlikely fulfil the respective
premises. Theorem 5.2.3 address these cases.

Theorem 5.2.3. Two QGs describe isomorphic nets if

• a base graph isomorphism φ : Q → Q̄, and

• vectors ti ∈ R
D (1 ≤ i ≤ |QN |), and

• an orthogonal matrix W ∈ Z
D × Z

D
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exists, such that for all edges ni
v
−→ nj in Q exists an edge φ(ni)

v̄
−→ φ(nj) in

Q̄ with
v̄ = W · (v + tj − ti). (5.3)

Two lemma and the respective proofs comprise the proof of theorem 5.2.3:

Lemma 5.2.4. For a chosen spanning tree, a quotient graphs Q is isomor-
phic to (at least one) QG Q̄ that possesses only edges with zero-vector labels
for this tree.

Proof. By construction: chose a leave as the root node of the spanning tree.
Then, number the nodes such that the root node is n1 and for any path
within the tree from n1 to any other node nj , j is the highest node index in

this path. Then, successively for i = 2 . . . N select the edge nh
v
−→ ni with

h < i from the tree (only one exists), set t = −v and q = {ni}, and modify
the QG according to theorem 5.2.1. In the resulting sequence of QGs, each
is isomorphic to the initial QG and the last QG possesses a spanning tree
with only zero labels.

Lemma 5.2.5 is equivalent to K. Goetzke’s BM -variants, which roughly
represent rotations and reflections of a net’s embedding.

Lemma 5.2.5. Two QGs describe isomorphic nets if

• a base graph isomorphism φ : Q → Q̄, and

• an orthogonal matrix W ∈ Z
D × Z

D

exists, such that for all edges ek =
(

n(k) vk−→ n′(k)
)

in Q exists an edge

φ(n(k))
v̄k−→ φ(n′(k)) in Q̄ with

v̄k = W · vk. (5.4)

Proof of lemma 5.2.5. By construction of φ:

φ
(

n(k)(x) ↔ n′(k)(x + vk)
)

=
(

φ(n(k))(W · x) ↔ φ(n′(k))(W · (x + vk))
)

Figure 5.1 illustrates a case where two obviously isomorphic nets are em-
bedded in slightly different ways and for any choice of unit cell do not possess
identical QGs (the labels in the nets indicate for each set of translationally
equivalent edges the corresponding edge in the QG). However, the choice of
φ(ni) = n̄i and φ(ei) = ēi results in

W =

(

0 1
1 0

)

.
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ē4(1,−1)
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Figure 5.1: Two isomorphic QGs and possible corresponding embeddings of
〈Q�, Z2〉 and 〈Q̄�, Z2〉.

Then, the vectors t1 = t2 = t3 = (0, 0) and t4 = (0,−1) fulfil equation (5.3).
Note that a solution for the vectors ti is not unique. If a set of vectors ti
fulfils equation (5.3), then also the vectors ti + u for any u ∈ Z

D.

It can be shown that W in equation (2.1) and W in theorem 5.2.3 are
identical, which allows a direct calculation of this matrix.

Theorem 5.2.3 does not allow a direct calculation of the ti’s for a given
pair of quotient graphs. The following reformulation of the problem improves
on this. Be

1. W defined as in theorem 5.2.3,

2. V, V̄ ∈ Z
|QE | × Z

D matrices composed of rows of edge labels for an
arbitrarily chosen but fixed orientation of the edges in Q and Q̄ (the
rows Vk and V̄k belong to edges ek and φ(ek)),
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3. P a special permutation matrix with

Pk,i =























1 if φ(ei) = ēk and the
orientation of the edges is maintained

−1 if φ(ei) = ēk and the
orientation of the edges is inverted

0 otherwise.

4. Be R ∈ Z
|QE | × Z

|QN | with

Rk,i =























0 if ek neither originates nor terminates at ni

or if ek is a loop, i.e. terminates
at the same ni from which it originated

1 if ek terminates at ni

−1 if ek originates at ni,

with 1 ≤ i ≤ |QN | and 1 ≤ k ≤ |QE|.

5. Be T ∈ Z
|QN | × Z

D (row Ti in this matrix corresponds to the ti’s in
theorem 5.2.3).

Then, the existence of W and T fulfilling

V̄ = P (V + R · T) ·W (5.5)

is equivalent to the condition in theorem 5.2.3. A reformulation results into
RT = P−1V̄W−1 − V, which suggests to calculate T by the means of a
Moore-Penrose inverse. This approach has two difficulties, though: firstly,
RTR is singular. In the case of a connected2 QG of dimensionality d̂ = D
(compare section 3.1) matrix R is of rank N − 1. This requires to remove,
for instance, the first column of R and the first row3 of T to obtain R̂

and T̂, respectively. Furthermore t1 is set to the zero vector. Then, the
formula T̂ = (R̂T R̂)−1R̂T (P−1V̄W−1 −V) allows a direct calculation of T.
Secondly, the solution obtained by the Moore-Penrose inverse is not always
in the integer domain. However, in all net automorphisms considered by the
authors, this was not the case.

Consider, for example, the base graph automorphisms of Q̄� with φ(n̄i) =
n̄i, φ(ē1) = ē2, φ(ē2) = ē1, φ(ē3) = ē3, φ(ē4) = ē5, φ(ē5) = ē4, and φ(ē6) = ē6.

2In the case of disconnected QG with k sub-graphs, k + 1 suitable columns have to be
removed such that R is of full rank. More columns have to be removed the dimensionality
d̂ of the QG is lower than D.

3The row(s) corresponding to the column(s) removed in R
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This automorphisms corresponds to the special permutation matrix

P =

















0 1 0 0 0 0
1 0 0 0 0 0
0 0 1 0 0 0
0 0 0 0 −1 0
0 0 0 −1 0 0
0 0 0 0 0 1

















.

Among other choices, the following cycles span the vector space of cycle sums
for Q̄�:

1. the cycle comprising ē4 plus the inverse of the edges ē3 and ē2 has the
cycle sum (1,−1) and its image the cycle sum (−1,−1),

2. the cycle made of ē1 and the inverse of ē2 has the cycle sum (1, 0) and
its image the cycle sum (−1, 0), and

3. the cycle with edges ē4 and ē5 which has the same cycle sums as the
previous cycle.

Matrix W follows from equation (2.1):

W =

(

−1 0
0 1

)

.

Furthermore, the matrices obtained from the edge labels and the connectivity
of Q̄� are

R =

















−1 0 1 0
−1 0 1 0

1 −1 0 0
0 −1 1 0
0 1 −1 0
0 0 −1 1

















and V =

















1 0
0 0
0 0
1 −1
0 1

−1 0

















.

Then, solving equation (5.5) for T using the Moore-Penrose inverse results
in the displacements

T =









0 0
0 0

−1 0
1 0
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5.3 The space group of possible embeddings.

An automorphism of a QG is defined as an automorphism of the base graph
of the QG which is compatible with some automorphism of the net it is equiv-
alent with4. If an embedding of the net is respecting such an automorphism,
the matrices M and W in equations (2.1) and (5.5), respectively, equal to
the rotational component of a symmetry of the embedding. Consequently,
the traces and determinants of these matrices allow to classify the symmetry
operations of a suitable embedding [Grosse-Kunstleve, 1999]. It is therefore
straightforward to identify the point group that is a super group to the point
groups of all possible embeddings of the net. However, this information alone
does not allow to gather more information on the space group or (relative)
positions of the nodes in an embedding featuring such a symmetry.

Here, an embedding of a net is defined as

• an assignment of suitable vectors in R
D to all nodes and

• a representation of the edges as line sections which have as endpoints
the coordinates assigned to the corresponding nodes.

No constraint on the intersection or distance between edges, or edges and
nodes sharing points other than endpoints is imposed.

More indications on these can be obtained from the orbits of edges in the
QG. Consider, for example, the quotient graph Q♠ with Q♠

N = {n1, n2} and
the edges Q♠

E comprising:

e1 = n1
(0,0)
−−→ n2

e2 = n1
(0,−1)
−−−→ n2

e3 = n1
(1,0)
−−→ n2

One of infinitely many possible embeddings of 〈Q♠, Z2〉 is shown in figure 5.2.
The arbitrarily chosen coordinate system is depicted in the middle of the
figure. The triangles and the circles are the nodes resulting from n1 and
n2, respectively. The parallelogram (unit cell) is formed by the coordinate
system and the dotted lines contains the nodes n1(0, 0) and n2(0, 0).

The quotient graph Q♠ possesses 12 base graph automorphisms: either
n1 is mapped onto itself or onto n2 and n2 accordingly onto n2 or n1. For
each of these two mappings of the nodes, 3! = 6 mappings of the edges exist.
All 12 base graph automorphisms induce net automorphisms. From these

4It is not clear whether all automorphisms of a net are equivalent to an automorphism
of the QG.
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1n
n2

xy

Figure 5.2: An embedding of 〈Q♠, Z2〉.

automorphic mappings φ1 and φ2 were selected with the following generators
and permutation matrices:

W1 =

(

0 1
1 0

)

, P1 =





1 0 0
0 0 1
0 1 0



 ,

W2 =

(

1 −1
1 0

)

, P2 =





0 −1 0
0 0 −1

−1 0 0



 .

These matrices indicate that an embedding with maximal symmetry pos-
sesses a reflection corresponding to φ1 exchanging the x- and y-coordinates
and a 6-fold rotation corresponding to φ2. To be precise, the set of these ma-
trices allows to deduce the point group of a possible embedding with maximal
symmetry (compare also [Klee, 2004]). In the example presented here, the
two operations permute all three edges, though φ2 additionally inverses their
orientations. Consequently, an embedding realising this automorphism is in
group is p6mm, as this is the only two-dimensional space group in the hexag-
onal crystal system. However, this does not allow conclusions on (relative)
positions of the nodes in an embedding, nor the space group in the gen-
eral case. More information comes from the orbits of the edges and nodes.
All edges in Q♠ are mutually exchanged by some automorphism, and conse-
quently all equivalent edges in an embedding possess the same lengths. Thus,
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if xi and yi are the cell coordinates of node ni with cell parameters a = b = 1:

|e1|
2 = (x2 − x1)

2 + (y2 − y1)
2

+2(x2 − x1)(y2 − y1) cos(γ)

|e2|
2 = (x2 + 1 − x1)

2 + (y2 − y1)
2

+2(x2 + 1 − x1)(y2 − y1) cos(γ)

|e3|
2 = (x2 − x1)

2 + (y2 − 1 − y1)
2

+2(x2 − x1)(y2 − 1 − y1) cos(γ)

It follows from |e1| = |e2|, |e1| = |e3|, δx = x2 − x1, and δy = y2 − y1 that

δx =
1

2(cos(γ) − 1)
(5.6)

δy =
−1

2(cos(γ) − 1)
(5.7)

As the space group of a maximal symmetry embedding is p6mm, γ is either
60◦ or 120◦ (γ = 240◦ and 300◦ give the same results as 60◦ and 120◦,
respectively). The latter results in δy = 1

3
and δx = −1

3
, which determines

the relative node positions. Setting γ = 60◦ results in δx = δy = −1 and a
co-location of the two sets of nodes, and is therefore meaningless.

An additional source of information on the embedding is the link between
the automorphisms of the net and the symmetry of node positions in the
embedding. Supposed ni(x) at the cell coordinates x is mapped onto nj(y)
using (Wk,wk), then Wk · x + wk + y. The notation x + y signifies that
x and y differ at most by an integer value. In other words, both sides of the
equation are equal “modulus 1”. Equations can be added; a number added
to both sides of an equation; but multiplications are forbidden.

In the case of the net 〈Q♠, ZD〉, the matrix W1, and the corresponding
automorphism of the QG φ1(ni) = ni, this results in

y1 + a1 + x1, x1 + b1 + y1, y2 + a1 + x2, x2 + b1 + y2. (5.8)

A solution to this redundant set of equations (5.8) is b1 + −a1 and x1 +

y1+a1. This solution is consistent with the facts that the position of (at least)
one node relative to the coordinate system is arbitrary and the symmetry
operation in question is a reflection. The constraints resulting from φ2(n1) =
n2 are:

x1 − y1 + a2 + x2, x1 + b2 + y2 and x2 − y2 + a2 + x1. (5.9)

This allows to conclude that a2 + y1 + 2
3

and b2 + y1−x1 + 1
3
. Setting further

a2 = b2 = 0 results in the node positions (x1, y1) = (2
3
, 1

3
) and (x2, y2) =

(1
3
, 2

3
), as well as a1 = 0.
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Even though this approach to determine details on atom positions and
space groups appears to be straightforward, for more complex QGs, the equa-
tions can be rather complex. A more direct approach to the space group
(that is the translational components w of symmetry operations) is based on
a dissociation of w into

• the intrinsic translation w(i) of the symmetry operation (in other words,
the translation of a glide or screw symmetry), and

• the location translation w(ℓ) which depends on the relative location of
the elements of a symmetry operation and the origin of the chosen unit
cell (the setting).

so that w = w(i) + w(ℓ) [Hahn, 1992, Grosse-Kunstleve, 1999]. If the Seitz
symbol (W|w) describes a symmetry operation of order O, then

(W|w(i) + w(ℓ))O = (I,w(i))O.

Compared to this, a repetitive mapping of a node ni using a QG automor-
phism φ inducing (W|w), describes the orbit of ni in the QG and φO(ni) = ni.
The same is true for the embedding if a symmetry operation corresponding
to φ has zero-valued intrinsic translation. In general, φO(ni(x)) = ni(y)
and 1

O
(y − x) is equal to the intrinsic translation of the symmetry opera-

tion. On the other hand, the difference y − x is determined by the QG if

a path p =
(

ni
v
−→ nj , nj

v′

−→ nk . . . , no
v′′

−→ φ(ni)
)

exists. Be P the embed-

ding of this path p with all edges oriented from ni to φ(ni), Then the path
ni(x), nj(x

′), . . . , ni(y) is the concatenation of paths P, φ(P ), . . . , φO−1(P ),
which in turn are the embeddings of the paths p, φ(p), . . . , φO−1(p). Conse-
quently:

w(i) =
1

O

O−1
∑

i=0





∑

e∈φi(p)

v



 . (5.10)

In other words, if for an automorphism φ of a QG a node n and its image
φ(n) are connected by a path p, the intrinsic translation of the symmetry
operation is determined by equation (5.10). However, as path p from ni to
φ(ni) is not necessarily unique, the w(i) in equation (5.10) depends on p.
A QG automorphism therefore may correspond to several distinct intrinsic
translations and symmetry elements. This correlates nicely to the fact that
certain symmetry operations have multiple symmetry elements with possibly
distinct glide or screw components.

A maximal symmetry embedding of the net 〈Q♠, ZD〉 (the perfect hexagon
net similar to a layer of graphite) is used as example. This embedding has
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the symmetry of space group of p6mm with 12 symmetry operations (see the
International Tables A [Hahn, 1992]), with two mirror planes perpendicular
to the x-axis:

• one without glide component and

• one with a glide vector parallel to the y-axis.

Compared to this, the QG automorphism with the rotational component
(

−1 −1
0 1

)

has exactly two intrinsic vectors: (0, 0) and (0, 1
2
). Similarly for

all other mirror planes, a corresponding QG automorphism with two intrinsic
vectors exists. Compared to this, all rotations in the two-dimensional space
have obviously no screw component. This is reflected by the QG as their
automorphisms having only zero intrinsic vectors.

The same observation is true for the location parts, yet they depend
much on the intrinsic translations: assumed that φ(ni(x)) = nj(y) for some
arbitrary nodes and cell coordinates x and y exist two intrinsic translations
w

(i)
1 and w

(i)
2 . For symmetry reasons, W · x + w

(i)
1 + w

(ℓ)
1 + y and W · x +

w
(i)
2 + w

(ℓ)
2 + y, which implies that w

(i)
1 + w

(ℓ)
1 + w

(i)
2 + w

(ℓ)
2 + y = w.

Therefore, the locational and intrinsic translations for a symmetry element
are inter-depend.

Corollary 5.3.1. Let φ be an automorphism of some QG with at least one
path from some arbitrary node n to φ(n). Then, the QG defines the intrinsic
translations of the symmetry operation equivalent to φ of the embedding with
respect to a right handed coordinate system. Furthermore, a connected QG
fully determines the space group with maximal symmetry of an embedding,
except for the setting of this embedding.

A few notes concerning corollary 5.3.1 are due:

• The embedding with respect to a coordinate system of a certain hand-
edness is required to be able to distinguish between space groups that
differ only by the orientation of a screw (that is a 31 and 32, 41 and 43,
61 and 65 screw).

• No “reasonable” embedding having the maximal symmetry may exist.
For example, an embedding with maximal symmetry may require that

some nodes are at the same position. The QG with the edges {n1
0,1
−→

n1, n1
1,0
−→ n1, n1

0,0
−→ n2} represents such a case.
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• It is possible to define nets, for which some automorphisms are not
represented by a base graph automorphism of all QG representing these
nets. However, these nets are rare and are unlikely to represent crystal
structures. A more detailed discussion of these nets would exceed the
scope of this work.

• In the case that the QG is obtained from a crystal structure based on
a supercell, or a cell that becomes a supercell in an embedding with a
maximal symmetry, several QG automorphisms correspond to the same
rotational matrix. Section 5.8 discusses such a case and chapter 6 uses
this to reduce QGs in size.

• The space group (symbol) can be determined by the approaches pro-
posed in Grosse-Kunstleve [1999] or Grosse-Kunstleve and Adams [2002].

For the quotient graph Q♠ and the symmetry operation W1, three paths
consisting of a single edge have to be considered as φ(n1) = n2. As fur-
ther φ1(e2) = e2 the intrinsic translation for the corresponding reflection

is w
(i)
1 = 1

2
(v1 − v1) = 0. Setting the path p to e2 and e3 results into

the (effectively identical) intrinsic translations (−1
2
,−1

2
) and (1

2
, 1

2
), respec-

tively (φ1 exchanges the two edges). The two vectors correspond to the
8 reflection and 12 glide planes that are parallel or perpendicular to the
vector (1, 1) of the space group p6mm. Accordingly for φ2 and p = (e1):
w2 = 1

6
(v1 − v2 + v3 − v1 + v2 − v3) = 0. All other choices for p re-

sult in the same intrinsic translations, which matches the fact that only
one 6-fold rotation axis exists for the hexagon net. Placing n1 at the same
cell coordinates used earlier allows the calculation of the locational parts:
w

(i)
1 = (1

3
, 2

3
)T −W1 · (

2
3
, 1

3
)T −w

(i)
1 = 0 and w

(i)
2 = 0.

5.4 Automorphism of QGs and crystal struc-

tures

As shown in section 5.3, a considerable amount of information on the space
group of an embedding of a net with maximal symmetry can be gathered
from the QG automorphisms. This can be used different ways:

• In an ab initio generation of crystal structures (compare [Strong et al.,
2004, Winkler et al., 2001]), a structure optimisation could be primed
with suitable cell parameters and atom positions.
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• During a search using the approaches described in [Bader et al., 1997,
Klein, 1996, Thimm, 2004] for nets with a given space group, QGs with
incompatible automorphisms can be discarded early.

• For the prediction of pseudo-symmetries (compare [Abrahams, 1989,
Fadda and Zanzotto, 2004, Igartua et al., 1999, 1996]). For this pur-
pose, the QG, as obtained from the observed crystal structure, is anal-
ysed for automorphisms and an embedding of maximal symmetry. Then,
the result is compared to the observed structure. Examples for this ap-
proach are discussed in sections 5.5 to 5.8.

It has to be noted that, even if the idea is similar, the concept of pseudo-
symmetries in this paper is different from that used in [Igartua et al., 1999,
Abrahams, 1989] and the papers referenced there. In the approach described
in these papers, phase transitions to a structure with higher symmetry are
only detected if the atom displacements are of the order of 0.1 to 2.0Å.
As the minimal displacement considered to be a ‘transition’ and maximal
permitted displacement is somewhat arbitrary (different limits are used),
and no measure is taken to ensure the persistence of inter-atomic bonds, the
procedure is somewhat arbitrary.

Opposed to this, the approach presented here does not impose any arbi-
trary constraint such as a maximal displacement and ensures that no bonds
are broken. Also, our method has a much lower computational complexity
and does not require that subgroup – super group relations have to be consid-
ered. Obvious draw backs are that the proposed structures may not be stable
elastically and only constraints on positions (not exact values) may stand at
the end of calculations. However, combining this approach with quantum
mechanical calculations is possible, and that would then ensure that the
structure is stable with respect to small distortions and that internal degrees
of freedom would be optimised, so that the structure is force-free.

After the conclusion of this work, the author found that Delgado-Friedrichs
and O’Keeffe [2003] realised that the QG contains sufficient information to
determine the space group of an embedding. However, their less rigorous
approach relies much on an actual embedding of a net and they do not
distinguish between the intrinsic and location vector. This leads to a depen-
dency of the resulting description of the symmetry operation on the arbitrary
setting of the embedding and an identification of the space group is therefore
somewhat tedious.

In order to show the potential of QGs to gain information on a crystal
structure and demonstrate the application of the discussed theories, quartz,
marcasite, pyrite, pseudo-cubic FeS2 and graphite are closer examined in
sections 5.5 to 5.8.
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5.5 Pyrite

Pyrite (FeS2) crystallises in the cubic space group Pa3̄ [Bragg, 1913] (see also
figure 5.3 and table A.11). However, some pyrites and a significant number

Figure 5.3: The structure of cubic pyrite (see table A.11, [Bayliss, 1977]).

of related compounds crystallise in slightly distorted structures with lower
symmetries (e.g. Bayliss [1977], Marcos et al. [1996]). The low symmetry
structures can be derived from the cubic structure type by small atomic
displacements, and have the same bonding system and topology, described
by the edges in figure 5.4.

An examination of the QGs of these structures shows that each has 24
automorphisms (the order of Pa3̄). It can be concluded that the pyrite
structure-type has a maximal symmetry for this topology.

5.6 Marcasite and rutile

Marcasite is an orthorhombic (FeS2, space group Pnnm) polymorph, whose
structural relationship to pyrite has been discussed previously (see Dodony
et al. [1996] and references therein). The marcasite structure is illustrated in
figure 5.5 (dark coloured spheres represent Fe-atoms, light coloured S).

The structural differences between marcasite and pyrite manifest them-
selves in the respective coordination and cycle sequences (see Beukeman and
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e6

Fe3

S8

Fe4

S7

e19

e24

e18

e13
e1

e7

S1

Fe1

e12

Fe2

S2

S6

S5

S4

S3

e1 = Fe1
0,0,−1
−−−→ S1 e2 = Fe1

0,−1,0
−−−→ S2 e3 = Fe1

−1,0,0
−−−→ S3

e4 = Fe1
−1,−1,0
−−−−→ S4 e5 = Fe1

−1,0,−1
−−−−→ S5 e6 = Fe1

0,−1,−1
−−−−→ S6

e7 = Fe2
0,0,0
−−→ S1 e8 = Fe2

0,−1,0
−−−→ S2 e9 = Fe2

0,−1,0
−−−→ S4

e10 = Fe2
0,0,0
−−→ S5 e11 = Fe2

0,−1,0
−−−→ S7 e12 = Fe2

0,0,0
−−→ S8

e13 = Fe3
0,0,−1
−−−→ S1 e14 = Fe3

0,0,0
−−→ S3 e15 = Fe3

0,0,0
−−→ S4

e16 = Fe3
0,0,−1
−−−→ S6 e17 = Fe3

0,0,−1
−−−→ S7 e18 = Fe3

0,0,0
−−→ S8

e19 = Fe4
1,0,0
−−→ S2 e20 = Fe4

0,0,0
−−→ S3 e21 = Fe4

0,0,0
−−→ S5

e22 = Fe4
1,0,0
−−→ S6 e23 = Fe4

0,0,0
−−→ S7 e24 = Fe4

1,0,0
−−→ S8

Figure 5.4: The QG of pyrite (see table A.11).

Klee [1994], Conway and Sloane [1997]). The positions of the sulphur atoms
are such that sulphur atoms are bound to four Fe- and possibly to one other
S-atom. As the distance between the sulphur atoms of 2.212Å is noticeably
larger than the bond lengths observed in sulphur allotrophs (about 2.06Å for
S6 [Akahama et al., 1993] and 2.032Å to 2.060Å for γ-sulphur5 at ambient
conditions [Watanabe, 1974]), it is not obvious if they are bound together or
not. We will show here that this question can be investigated by studying

52.047Å to 2.073Å if corrected liberational motion [Watanabe, 1974].
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Figure 5.5: The marcasite structure (see table A.9, [CCMS, 2007])

the QG.

The QG Qmarc of marcasite shown in figure 5.7 was created from the
structural data in table A.9. The dashed edges e13 and e14 stand for these S-
S contacts, equivalent bonds are shown near the centre of figure 5.5. If these
edges are neglected, then marcasite QG possesses 16 automorphisms and is
isomorphic to the QG of rutile, a TiO2 polymorph, and rutile-like structures
without anion-anion bonds. Rutile crystallises in the tetragonal space group
P 42

m
nm (see figure 5.6 and table A.14)

In the following, we first assume that there are no S-S bonds, and therefore
the horizontally drawn, dashed edges (e13 and e14) in figure 5.7, are ignored
in the analysis. The net 〈Qmarc \ {e13, e14}, Z

3〉 would therefore be the same
as for rutile-like structures. We now proceed to embedded it with a maximal
symmetry, which will allow us to determine the highest space group and
node positions. Then we consider the existence of S-S bonds and discuss the
consequences.

In order to simplify the notation, the shorthand φ[n1, n2, . . . , nn][e1, e2, . . . ]
[p1, p2, . . . ] is used to indicate that φ permutes the nodes ni, edges ek, or paths
pℓ. More precisely, φ(n1) = n2, φ(n2) = n3, and so on until φ(en) = e1 and
similar for the ek and pℓ. Not all permutations are necessarily given.

An embedding with a maximal symmetry of marcasite has point group
4/mmm. The corresponding structure therefore has a tetragonal space group
in the range of space groups 123 to 142 in the International Tables A [Hahn,
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Figure 5.6: The rutile structure TiO2 (see table A.14).

1992]. The automorphism φ1 corresponds to the matrix

W1 =





0 1 0
1 0 0
0 0 1





and exceeds the set of automorphisms expected for a structure in space group
Pnnm. As the automorphism φ1[n3][n4][n5][n6][n1, n2] maps some nodes on
themselves, the path p can be chosen to be a single node and therefore
w(i) = 0. In order to reduce the number of variables (and to obtain the usual
setting for the embedding), n5 ls set to have the cell coordinates (0, 0, 0). It

then follows from φ1[n5] that W1 · 0 + w
(ℓ)
1 + 0 and therefore w

(ℓ)
1 = 0.

The symmetry operation is (W1|0). Furthermore, xi is equal to yi for all
3 ≤ i ≤ 6 as well as x1 = y2, x2 = y1, and z1 = z2. Note that, although
other choices for p lead to different intrinsic and location vectors, their sum
is always zero.

φ2[n5, n6][n1, n4, n2, n3] corresponds to the symmetry matrix

W2 =





0 1 0
−1 0 0

0 0 1



 .

Choosing p = (e1, e7) with φ2 [(e1, e7), (e12, e6), (e3, e8), (e10, e5)] results in

w
(i)
2 = (0, 0, 1

2
). Setting w

(ℓ)
2 = (u, v, w) and using φ2(φ2(n5)) = n5 im-
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S 4

Fe 5

S 1

Fe 6

S 2 S 3

e1(0, 1, 0)

e12(0, 0, 1)
e7(0, 0, 0)

e4(1, 0, 1)

e14(1, 0, 0)

e10(0, 0, 1)

e8(0, 0, 0)

e9(0, 0, 0)

e5(1, 1, 0)

e11(0, 0, 0)

e13(0, 1, 0)

e2(0, 1, 1)

e3(1, 0, 0)

e6(0, 0, 0)

Figure 5.7: The quotient graph of marcasite Qmarc (nodes are labelled with
the element type and a node number). The dashed edges are the questionable
sulphur-sulphur bonds.

plies that (u + v, v − u, 2w + 1) + 0. This equation has two solutions for
u, v, w ∈ [0, 1) with u = v = 1

2
and w ∈ {0, 1

2
}, resulting in w2 = (1

2
, 1

2
, w+ 1

2
).

Furthermore, n6 has the coordinates (1
2
, 1

2
, w + 1

2
)

φ3[n5, n6][n1, n4, n2, n3] [(e1, e7), (e11, e6), (e3, e8), (e6, e5)] with matrix

W3 =





0 1 0
−1 0 0

0 0 −1



 ,

results in w
(i)
3 = (0, 0, 0) and for symmetry reasons w

(ℓ)
3 = (x6, y6, z6) =

(1
2
, 1

2
, w + 1

2
), that is w3 = w2. The mapping φ2(n1) = n4 = φ3(n1) implies

that z1 + w + 1
2

+ z4 + −z1 + w + 1
2

which is equivalent to z1 ∈ {0, 1
2
}. If

furthermore n1 has the coordinates (x1, y1, z1), then n4 is located at (y1 +
1
2
,−x1+ 1

2
,−z1+w+ 1

2
), n2 at (−x1,−y1, z1), and n3 at (−y1+ 1

2
, x1+ 1

2
,−z1+

w + 1
2
).

Combining this with the constraints on the node position obtained from
φ1 gives

• n1 : (x1,−x1, z1),

• n2 : (−x1, x1, z1),

• n3 : (x1 + 1
2
, x1 + 1

2
,−z1 + w + 1

2
), and
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• n4 : (−x1 + 1
2
,−x1 + 1

2
,−z1 + w + 1

2
).

The automorphism
φ4[n5, n6][n1, n4][n2, n3][(e1, e7)(e12, e6)] is paired with matrix

W4 =





−1 0 0
0 1 0
0 0 1



 .

Choosing p = (e1, e7) results in w
(i)
4 = (0, 1

2
, 1

2
) and for symmetry reasons

w
(ℓ)
4 = (x6, y6 −

1
2
, z6 −

1
2
) = (1

2
, 0, w), implying that w4 = w2.

The generators of the space groups of the full symmetry embedding of
marcasite without S-S bonds are therefore:

y, x, z

y +
1

2
, −x + 1

2
, z + w +

1

2

y +
1

2
, −x + 1

2
, −z + w +

1

2

−x +
1

2
, y + 1

2
, z + w +

1

2
,

which, for w = 0, are the generators of space group P 42

m
nm as listed in the

International Tables A [Hahn, 1992]. A comparison with rutile, which has
the symmetry P 42

m
nm and a QG isomorphic to the QG of marcasite, shows

that for x1 = 0.1947 and z1 = 1
2
, the lattice coordinates for the embedding

of the marcasite quotient graph and the rutile structure are identical. An
alternative setting for the same structure is obtained for x1 = 0.1947 and
z1 = 0. Even though the parameter x1 is not constrained further by the
topology of the net and its automorphisms, it may appear reasonable that
all bonds are of the same length. Setting, for example, |e1| = |e5| has the
solution x1 = 2a2−c2

8a2 . For the experimentally determined lattice parameters

of rutile (a = 4.593 Å, c = 2.956 Å), yields x1 = 0.198, which is close to
the observed value for x1 (the bonds differ 2% in length). For marcasite (a
= 4.443 Å, b = 5.424 Å, c = 3.386 Å) x1 becomes 0.1911 (if, in the latter
case, a is set to the average of the experimentally determined a and b cell
parameters). If w is chosen as 1

2
, this does obviously not change the intrinsic

translations, and therefore only the setting of the embedding.
If, however, there are S-S bonds, the QG of marcasite has only the eight

automorphisms equivalent to the symmetry operations in space group Pnnm
observed for the physical structure. This implies that if there are S-S bonds,
any phase transitions between the two FeS2 polymorphs must be reconstruc-
tive, i.e. it would require that bonds are broken. It should be stressed that
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a group theoretical analysis would not give this result. Pnnm is a max-
imal space group of P 42

m
nm [Stokes and Hatch, 1988], where a transition

would be proper ferroelastic, and hence from this perspective, a displacive
phase transition would be allowed. In practical terms, it is generally the case
that reconstructive phase transitions require some activation energy and can
be quenched, and hence metastable polymorphs can be obtained, while dis-
placive phase transitions happen on the time scale of phonon frequencies and
do not require any activation energy. As no prior crystal chemical knowledge
has been used in this deduction, the finding of the importance of a bond
between the anion applies to all structures with a marcasite-like structure.
It would therefore now be of interest to systematically investigate these with
respect to those where the anion-anion bond is very weak, as such border-line
cases are probably most likely to allow to obtain new phases. That rutile is
very far away from this border-line is clear from a consideration of the O-O
distance: O-O bonds are expected to exist between oxygen atoms about 1.4Å
apart, whereas the shortest observed distance between two oxygen atoms in
the rutile structure is 2.53Å. With respect to their topologies, rutile and mar-
casite (presuming the presence of the S-S bonds) are of maximal symmetry.

5.7 Quartz

α- and β-quartz (SiO2) are known to possess the same topology [Heany,
1994]. Figure 5.8 shows the structures of two types of quartz structures (see
also tables A.12 and A.13).

As to their QG, the enantiomorphic α-quartz crystals with symmetries
P3121 and P3221, as well as the enantiomorphic crystals of β-quartz in P6222
and P6422 [Wenk and Bulakh, 2004, Levien et al., 1980, CCMS, 2007]) can
be described by QGs similar to those in figures 5.9 or 5.10 (an edge is in-
terpreted as a Si-O-Si bond). As that both quartz modifications have the
same topology, it is no surprise that theorem 5.2.3 shows they are isomor-
phic. However, out of the 48 isomorphisms between the base graphs, only
12 correspond to a (net) isomorphism. One of these isomorphism matches
nodes with the same names as well as φ(ei) = ēi for all i. A possible choice
of four cycles for the calculation of W are the three pairs of (anti-)parallel
edges and any cycle with three edges. This results in

W =





1 0 0
0 1 0
0 0 −1



 .

As none of the four space groups has a mirror plane perpendicular to the
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α-quartz β-quartz
space group P3221 space group P6222

Figure 5.8: The structures of α- and β-quartz SiO2 [Levien et al., 1980,
CCMS, 2007].

z-axis, or, equivalently, none of the net automorphisms features this matrix
W, it can be deduced that the two structures are enantiomorphic.

Furthermore, it can be shown that both QGs possess 12 automorphisms,
which allows to conclude that β-quartz has the highest possible symmetry for
its topology. Alternatively - even if β-quartz would be unknown - it could be
concluded that a bond-preserving (displacive) phase transition of α-quartz to
a higher symmetry can result only in a structure having space group P6222
(for the lower symmetry phase in P3221) or P6422 (for the lower symmetry
phase in P3121). Reasons for this are:

• For P3121, space groups P6122 and P6422 are the only super groups
of cardinality 12 with a 6-fold axis (see Hahn [1992]).

• An examination of the orbit of an edge under QG automorphisms of or-
der 6 reveals that the equivalent symmetry operations in an embedding
must have an intrinsic vector (0, 0,±1

3
). This excludes P6122.

• For P3221 space groups P6222 and P6522 are the only permissible
super groups.

• For the same reason as in the earlier case, P6522 is excluded.
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Si3

Si1

Si2
e5(0, 0, 0)

e6(1, 0, 0)

e4(0, 1, 0)

e1(0, 0, 1)

e2(0, 1, 1)

e3(1, 0, 0)

Figure 5.9: A QG derived from α−quartz with a P3121 structure.

Si3

Si1

Si2
ē5(0, 0, 0)

ē6(1, 0, 0)

ē4(0, 1, 1)

ē1(0, 0, 0)

ē2(0, 1, 0)

ē3(1, 0,−1)

Figure 5.10: A QG derived from β−quartz with a P6222 structure.

This observation consistent with the fact that phase transitions from α- to β-
or back are either between the structures in space groups P3121 and P6422
or P3221 and P6222 [Heany, 1994]: other transitions would reconstructive
and therefore require a higher activation energy.

Note that the approach is only valid for ‘strongly’ periodic structures and
incommensurate structures cannot be represented or predicted. On the other
hand, this test can be applied to all structures for possible higher symmetric
phases with the same topology in a very straightforward manner.

5.8 Graphite

Graphite crystallises, among others, “un-buckled” in the hexagonal space
groups P63mc or “buckled” in P 63

m
mc if only polymorphs with two layers

per unit cell are considered CCMS [2007]. The QGs of these modifications
are somewhat special, as they consists of two disconnected sub-graphs as
shown in figure 5.11. Each set of layers, each set containing layers that are
translationally equivalent with respect to integer multiples of vector (0, 0, c),
is represented by a connected sub-graph (see also figure 3.1.).
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Graphite crystallises also in a rhombohedral phase (space group R3̄m), in
which the layers are stacked such that a primitive cell contains only two atoms
CCMS [2007]. This implies that a QG representing this structure comprises
only two nodes with three edges between them. However, doubling the size
of the unit cell in the direction perpendicular to the layers results in a QG
of the same appearance as shown in figure 5.11.

C 2

C 3C 1

C 4

e4(0, 1, 0)
e6(1, 1, 0)

e1(0, 1, 0)

e3(1, 1, 0)

e2(0, 0, 0) e5(0, 0, 0)

Figure 5.11: The QG of graphite.

Table 5.1 shows three matrices and the corresponding automorphisms
with their intrinsic translations as far as they are defined by the QG. The
automorphisms, for which no intrinsic translations are defined, correspond
to symmetry operations in the graphite modifications which exchange atoms
across layers. Therefore, for these automorphisms the translational part of
the symmetry operation, that is the relative positions of the layers, can be
arbitrarily chosen (if energy considerations are left aside). This ambiguity of
the relative positions of the layers is consistent with the coexistence of the
three considered graphite modifications.
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W1 =





0 1 0
1 0 0
0 0 1



 W2 =





1 1 0
−1 0 0

0 0 1



 W3 =





1 0 0
0 1 0
0 0 −1





O = 2 O = 6 O = 2

φ1[n1, n2][n3, n4] φ2[n1, n2][n3, n4] φ3[n1][n2][n3][n4]
[e2, e3][e1][e5, e6][e4] [e1, e2, e3][e4, e5, e6] [e1][e2][e3][e4][e5][e6]

w
(i)
1a = (0, 0, 0) w

(i)
2 = (0, 0, 0) w

(i)
3 = (0, 0, 0)

w
(i)
1b = (1

2
, 1

2
, 0)

φ′
1[n1, n4][n2, n3] φ′

2[n1, n4][n2, n3] φ′
3[n1, n3][n2, n4]

[e2, e6][e1, e4][e3, e5] [e1, e5, e3][e4, e2, e6] [e1, e4][e2, e5][e3, e6]

No path from n to φ′
i(n) exists: w

(i)
i is undefined.

Table 5.1: Details on the automorphism of the graphite QG
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Chapter 6

Reduction of Quotient Graphs

This chapter presents an approach to reduce the size of quotient graphs in a
way comparable to a reduction of a centred or supercell to a smaller (centred,
super-, or primitive) cell. As quotient graphs and nets are independent of an
embedding (that is the exact positions of atoms within a crystal structure),
this can reveal structures with reduced translational symmetries. This may
occur when

1. a structure is distorted in a non-affine manner,

2. a structure is the mixture of two end members (in which different atom
types occupy otherwise comparable positions).

Reduced symmetries of the first case are, for example, observable in certain
graphite polymorphs (compare section 5.8).

Examples for the second case are solid solutions that are isomorphic to
one or more end members. For the sake of simplicity, the structure of copper-
lanthanide alloys such as CuEr, CuEu, CuGd, CuHo, and CuDy are used as
an example [Villars and Calvert, 1989]. These alloys crystallise in space
group Pm3̄m. In a standard setting, the copper atoms are located at the
corners of the cubic unit cell and the lanthanide atom in the centre (fractional
coordinates (0, 0, 0) and (1

2
, 1

2
, 1

2
), respectively). The primitive cell contains

therefore two atoms (see figure 6.1).
If in these structures the lanthanide atoms are replaced by copper atoms,

additional symmetries, among which is (I, (1
2
, 1

2
, 1

2
)), are created. Even so

this “replacement” incurs an expansion of the unit cell to that of pure copper
with a = 3.615Å, the fractional coordinates of the atoms and the unit cell are
unchanged. However, the structure of Cu is in space group Fm3m with one
atom per primitive cell. This implies that the quotient graph of pure copper
for a primitive cell contains half as many nodes and edges as compared to
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Figure 6.1: The CuDy structure.

the copper-lanthanide alloys discussed above. The two QGs are shown in
figure 6.2.

(0,0,-1)

(1,0,0)

(0,0,0) Dy

(1,1,-1)

(1,1,0)

(0,1,-1)

(0,1,0)

(1,0,-1)

Cu
Cu

(1,0,0) (0,1,0)

(1,1,1) (0,0,−1)

Figure 6.2: The CuDy and the Cu QGs for primitive cells.

6.1 Automorphism and translational symme-

try

In chapter 5 it was shown that in a maximal symmetry embedding (if atom
types disregarded) all symmetries are equivalent to a QG automorphism.
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This obviously includes purely translational symmetries, some of which may
not be observed in the original structure (as for example the symmetries
stated above for the copper-lanthanide alloys).

Automorphisms φ of a QG which have the identity matrix as the ro-
tational component are equivalent to translations of a maximal-symmetry
embedding of the equivalent net. These automorphisms, excluding the iden-
tity with a zero intrinsic translation, are called translational automorphism,
and only these are of interest in the remainder of this chapter. QGs without
a translational symmetry cannot be reduced (all embeddings of the net have
necessarily a maximal translational symmetry).

Assume that φ is a translational automorphism of Q. For this φ, the
sizes of all edge orbits n̂i and node orbits êk are equal to the order O of the
symmetry operation. A reduced set of nodes Q̂N is accordingly defined1 as

Q̂N = {n̂i| n̂i is an orbit of some node in QN}

The definition of a set of edges follows a similar scheme, but requires a
calculation of appropriate edge labels. This calculation relies on the relative
size of the new cell and therefore the translational symmetries of the smaller
lattice: for all translational symmetries (I,w) of order O, the vector O · w
describes a translation compatible with all embeddings of G = 〈Q, ZD〉. On
the other hand, w describes a translation compatible with the sub-lattice of
a suitable embedding of the net (that is a translation compatible with a unit
cell of reduced size).

A key observation it is that for automorphism φ of order O, any node
n(x) ∈ GN and this vector w the equation

φO(n(x)) = n(x + O · w) (6.1)

holds. Furthermore, if a path p between n(x) and φ(n(x)) exists in this
net, then the path p, together with an appropriate choice of its isomorphic
images, links n(x) and n(x + O · w). These paths form, if concatenated, a
continuous path p̂. An addition of the labels of the edges in the QG that
correspond to path p̂ must result into a vector equal to O · w (all edges in
the path have to have the same orientation). Nets, in which no path between
isomorphic nodes exist, are discussed in section 6.1.3.

Figure 6.3 shows examples for such paths. In this figure, shaded nodes
are translationally equivalent (only one set of nodes is shown). All nodes in
figure 6.3 represented by circles, shaded or not, are assumed to equivalent
with respect to an automorphism of the net (though not necessarily trans-
lationally equivalent in a given embedding). The continuous lines designate

1The names of the orbits are reused for the nodes and edges in the newly defined QG.
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a

b

x

y

c

d

d’’

e

e’

d’

Figure 6.3: Examples for paths occurring for isomorphic paths between iso-
morphic nodes. For an explanation of labels, see text.
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a possible choice of a (super-) cell, the dotted lines the primitive cell. The
curved lines represent possible paths (including an arbitrary set of nodes);
paths with the same shape are isomorphic.

Figure 6.3 can also be considered as the representative of an almost ar-
bitrary embedding of a simply connected net. The only particularity of this
embedding is that a 3x2 supercell exists as compared to an embedding with
a maximal translational symmetry.

The simplest cases, where a path can be used to deduce information on
translational symmetries for the sub-lattices, are represented by the paths
labelled with a and b: three, respectively two, isomorphic “copies” of the
paths span a distance equivalent to the length of the unit cell along the y- and
x-axis. That two translationally equivalent instances of path a are needed to
cover the distance between two shaded nodes implies that, compared to the
original lattice, the lattices of all maximal-symmetry embeddings have half
the spacing in the direction of the y-axis. From path b it can be concluded
that the lattice is three time as wide. In the QG equivalent to the supercell,
an accumulation of the edge labels in all possible QGs corresponding to paths
a and b and their isomorphic copies results into the respective unit vectors.
The vectors 1

2
· (0, 1) = (0, 1

2
) and 1

3
· (1, 0) = (1

3
, 0) must therefore describe

a translation of an embedding with maximal translational symmetry. In
these vectors, the non-zero elements indicate a reduction of the unit cell in
the respective directions; zero-entries indicate that the cell is unchanged in
this direction. Consequently, unit cells with relative sizes (1

3
, 1) and (1, 1

2
)

result in lattices with higher translational symmetries. These vectors, which
describe the reduction of the lattice, are called reduction vectors t (a detailed
definition is proposed later). Similarly, from path c, it can be concluded that
the size of a unit cell in a maximal symmetry embedding is a sixth of the size
of the original cell. Accumulating the edge labels of the path onto which path
c and its “copies” are mapped has to result into t = 1

6
(2, 3) = (1

3
, 1

2
) as the

accumulated path crosses the vertical cell boundaries twice, the horizontal
boundaries three times.

For path d, the calculation yields t = (4
3
, 1), which clearly does not define

an appropriate size for the reduced unit cell. The reason is that path d is
equivalent of a combination of two other paths: path d′′, which is compatible
with the original lattice, and path d′, which is proper to the reduced lattice.
Similar observation are rather obvious in a (visual) inspection of a structure,
and the path used to reduce the lattice can be chosen appropriately. However,
this is not the case if - as intended in this work - an embedding of the net
is to be avoided. The solution to this problem is rather trivial: the vector
t can be split into an integer part, which is equivalent to a translation of
the original lattice and a part that comprises elements with absolute values
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smaller than one; the reduction vector t becomes (1
3
, 1).

Path e illustrates a similar problem: although t = (2
3
, 1

2
) has no integer

component, it does not define a reduction of the lattice. However, from the
translational symmetry and the existence of path e, it can be concluded that
an alternative path e′ has to exist, which does define a valid reduction of the
lattice.

In general, if t = ( s1

t1
, s2

t2
, . . . , sD

tD
) is a vector of fractions (it is assumed

in the following that nominators and denominators have no common divisor
other than one), then the vector ( 1

t1
, 1

t3
, . . . , 1

tD
) can be represented by some

path (without proof). Following these observations, a reduction vector t,
which is compatible with a chosen automorphism and suitable for a reduction
of the QG, is defined as follows:

Definition 6.1.1. Be φ a QG automorphism with symmetry (I,w), n ∈ QN ,
w 6= 0, and p an arbitrary path between n and φ(n) in the QG. Then, the
reduction vector t is defined as

t = �





1

O

O−1
∑

i=0

∑

e∈φi(p)

v



 (6.2)

with O the size of the orbit of the nodes in the QG under φ and � (·) the
function that sets the nominator of fractions to one (note that � (0) = 1).

Figure 6.4 shows more examples of isomorphic paths - though in a lattice
where the maximal degree of reduction is identical in two directions. Paths
f and g both result in a reduction of the lattice by a third. The same must
be true for path h as the orbit of any node comprises only three sets of
nodes that are not isomorphic with respect to the original lattice. However,
unlike the other examples, the product over the elements in t does not match
this degree of reduction. This can be readily understood by an examination
of all possible embeddings: an equilateral unit cell would have to have a

length of
√

1
3

times the length of the original unit cell in order to have the

appropriate volume. Such a unit cell is for obvious reasons incompatible
with the given lattice. Such cases can be recognised by an examination
of the denominators in vector t: a (sub-)set of denominators then has a
greatest common divisor larger than one. This situation corresponds loosely
to structures where alternative cells possess edges oblique to the original,
larger unit cell.

In principle, a reduction vector t can have both properties: in one direc-
tion, the direction follows the behaviour illustrated by paths a to g, in other
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directions that of path h. For example, the reduction vector (1
3
, 1

6
, 1

5
) de-

scribes a reduction in the x-y-direction by 3, combined with reductions along
the y- and z-axis by 2 and 5, respectively. Consequently, the volume of a
unit cell in the reduced lattice is 30 time smaller than that of the original cell
(as opposed to

∏

ti = 1
90

). Even though a general formula could probably be
formulated, a simpler approach is proposed here: combined reductions are
expressed as sequences of the two simpler cases as presented in the following
two sections.

g

h
f

x

y

Figure 6.4: Second example for isomorphic paths: t = (1
3
, 1

3
)

6.1.1 Reduction for vectors of type t = (1
k
, 1

ℓ
, 1

m
, . . . )

The reductions considered in this section possess reduction vectors in which
all greatest common divisors of all pairs of denominators are equal to one.
For these cases, equation 6.3 determines edge labels for the reduced QG Q̂

(1 ≤ k ≤ D).

v̂k =
∑

v with
“

n
v

−→n′

”

∈ê

vk ·
D
∏

i=1,i6=k

ti (6.3)
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The resulting labels v̂ are integer if Q has a spanning tree with zero labels2

and the edges

Q̂E = {êk = n̂i
v̂
−→ n̂k|n ∈ n̂i, n′ ∈ n̂k, and n

v
−→ n′ ∈ QE} (6.4)

permits to define Q̂ = (Q̂N , Q̂E), which is isomorphic to Q.

That equation (6.3) defines edge labels for an isomorphic QG can be
motivated with a simplified case: assume t has only one element at position
d that is equal to 1

O
and the QG has a spanning tree with exclusively zero-

labels (this can always be achieved, see section 5.2).

A comparison of Q and an arbitrary embedding of the net 〈Q, ZD〉 shows
that exactly one edge e per orbit in Q has a non-zero element at position
d. The product in equation (6.3) is equal to one and consequently v̂d is
equal to the element in the edge e. Be p a path between n(0) and n(y)
in 〈Q, ZD〉 with all yi = 0 if i 6= d. Then an isomorphic path exists in
the reconstructed net 〈Q̂, ZD〉 between the nodes n̂(0) and n̂(O · y). The
construction of 〈Q, ZD〉 and 〈Q̂, ZD〉 allows to conclude that for all paths
between n(x) and n(x + O · y) possess isomorphic paths in 〈Q̂, ZD〉.

Following a similar argument, all vector elements excluding vd in a chosen
edge orbit must be equal (but not necessarily zero). This implies that the
sum in equation (6.3) is equal to O-times of the value of any of the elements.
However, the product of the ti in equation (6.3) is equal to 1

O
and the resulting

element is therefore equal to the corresponding vector elements of the edges
in the orbit. Consequently, if a path between n(x) and n(y) with xd = yd

exists in 〈Q, ZD〉, then an isomorphic path exists in 〈Q̂, ZD〉 between the
nodes n̂(x) and n̂(y) with xd = yd. As the reduction further preserves the
degree of the nodes, it is reasonable to assume that the reduction produces
isomorphic QGs.

6.1.2 Reduction for vectors of type t = ( 1
O
, 1
O
, . . . ).

The reduction of a QG with respect to a reduction vector t ∈ { 1
O

, 1}D requires
several steps. First, a set of labels is calculated by accumulating all labels in
an orbit. Using these labels in a reduced QG defines a QG equivalent to a set
of O penetrating nets. Each of these nets is individually isomorphic to the
original net. Then, the labels in the reduced QG are transformed such that
it describes again a net with the original multiplicity. For simply connected,
non-penetrating nets, this is achieved in four steps:

2If this is not the case, Q or Q̂ may have to be modified such that this is true; compare
theorem 5.2.2.
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1. Calculate temporary labels ṽ using

ṽ =
∑

v with
“

n
v

−→n′

”

∈ê

v, (6.5)

and create a Q̂E using these labels as in equation (6.4).

2. Use theorem 5.2.1 to change these labels such that the reduced QG pos-
sesses a spanning tree with zero-vector labels v̄. This achieves that all
non-zero edge labels are equal to cycle sums (all cycles can chosen such
that they comprise at most one edge with a non-zero label). Replac-
ing the labels (as a set) by their product with an arbitrary orthogonal
matrix consequently results in an isomorphic QG.

3. Choose a set of D labels among the vectors v̄ such that the (quadratic)
matrix M = (v̄1, v̄2, . . . , v̄D) has a determinant equal to ±O.

4. Set the vectors v̂k in Q̂E to

v̂k = M−1v̄k (6.6)

The procedure of reducing penetrating nets to a simply connected net can
be motivated as follows: as M consists of cycle sums, its determinant defines
the number of interpenetrating nets. Consequently, multiplying its inverse
to all cycle sums ensures that the multiplicity m̂ of the QG is equal to one as
det(M · M−1) = 1. At the same time, the vectors v̄1, v̄2, . . . , v̄D are aligned
with the axes of the coordinate system. This ensures that the new labels are
integer.

A few selected cases are discussed in the sections 6.2 to 6.7.

6.1.3 Reduction of disconnected QGs

For disconnected QGs, an automorphism may map nodes onto each other
that are not linked by some path. The QGs of the graphite modifications
discussed in section 5.8 are examples. In such cases, the sub-graphs form
orbits and it is sufficient to choose from each orbit a QG and combine these
in a new QG. In the case of the graphite QG shown in figure 5.11, a possible
reduced QG is the sub-graph consisting of two nodes and the them connecting
edges.

As for connected QGs, the degree of reduction is equal to the size of the
node and edge orbits. However, a definition of a reduction vector is somewhat
meaningless.
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6.2 The reduction of the square net

The probably simplest QG that falls into the category discussed in sec-
tion 6.1.2 is Q�. This QG and a possible embedding are shown in figure 6.5.
The dashed lines and the inscribed coordinate system indicate a possible
choice for a unit cell that results into the QG on the left.

n2

(0,1)

(0,0)

(1,0)

n1

(1,1)

Q�

yx

Figure 6.5: A QG for the square net with 2 nodes.

The only translational automorphism of Q� maps n1 onto n2 and induces
a reduction vector t = (1

2
, 1

2
). The reduced QG has a single node n̂ and two

loops. Equation 6.5 determines the temporary labels as ṽ1 = (1, 1) and
ṽ2 = (1,−1). As the tree of the reduced QG comprises a single node, both
edge labels are equivalent to cycle sums, which implies that v̄1 = ṽi. The
matrix

M =

(

1 1
1 −1

)

results in a replacement of the edge vectors with

M−1 · v̄1 =

(

1
0

)

and M · v̄2 =

(

0
1

)

and the edges in the reduced QG are

Q̂�
E =

{

n̂
(1,0)
−−→ n̂, n̂

(0,1)
−−→ n̂

}

6.3 The reduction of the triangle net

A distorted, 2-dimensional net and its QG Q△ are shown in figure 6.6. The
arrows in the net’s embedding indicate the translational symmetries used
during its transformation into Q△. Table 6.1 shows all three translational
automorphisms of Q△ along with the corresponding w(i), t, and the orbits
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(1,0)

(1,0)

(0,1)

n4
(1,0)

(-1,1)

n2

(0,1)(0,1)

n1

n3

Figure 6.6: The distorted triangle net with its QG Q△.

of nodes and edges. All reductions have as results QGs with two nodes and
six edges.

For example, the QG Q̂△ resulting from the reduction (1
2
, 1) is depicted on

the left side of figure 6.7. This graph can be further reduced with t = (1, 1
2
)

to the irreducible graph ˆ̂
Q

△

at the right side of figure 6.7.

It is noteworthy that no direct reduction of Q△ to ˆ̂
Q△ exists. In general,

this absence of a direct reduction to a minimally sized QG seems to be tied to
the presence of a reduction vector with denominators with a greatest common
divisor larger than one.

(1,0) (1,0)

(0,-1)

(0,0)

(-1,0)

(1,-1)

n̂1 n̂2

(1,0)

(1,-1)(0,1)

ˆ̂n

Figure 6.7: the QG Q̂△ obtained from a reduction of Q△ with reduction

(1
2
, 1) and the irreducible QG ˆ̂

Q
△

obtained by reducing Q̂△.
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w(i) t Node
orbits

Edge orbits

(

1
2

0

) (

1
2

1

)

[n1, n2]
[n3, n4]

[n2
(1,0)
−−→n1, n1

(0,0)
−−→n2] [n3

(0,1)
−−→n1, n4

(0,1)
−−→n2]

[n3
(0,0)
−−→n1, n4

(0,0)
−−→n2] [n4

(1,0)
−−→n1, n3

(0,0)
−−→n2]

[n1
(0,−1)
−−−→n4, n2

(1,−1)
−−−→n3] [n4

(1,0)
−−→n3, n3

(0,0)
−−→n4]

(

0
1
2

) (

1
1
2

)

[n1, n3]
[n2, n4]

[n2
(1,0)
−−→n1, n4

(1,0)
−−→n3] [n2

(0,0)
−−→n1, n4

(0,0)
−−→n3]

[n3
(0,1)
−−→n1, n1

(0,0)
−−→n3] [n4

(1,0)
−−→n1, n2

(1,−1)
−−−→n3]

[n1
(0,−1)
−−−→n4, n3

(0,0)
−−→n2] [n2

(0,−1)
−−−→n4, n4

(0,0)
−−→n2]

(

1
2
1
2

) (

1
2
1
2

)

[n1, n4]
[n2, n3]

[n2
(1,0)
−−→n1, n3

(0,0)
−−→n4] [n2

(0,0)
−−→n1, n3

(−1,0)
−−−→n4]

[n3
(0,1)
−−→n1, n2

(0,0)
−−→n4] [n3

(0,0)
−−→n1, n2

(0,−1)
−−−→n4]

[n4
(1,0)
−−→n1, n1

(0,−1)
−−−→n4] [n2

(0,0)
−−→n3, n3

(−1,1)
−−−→n2]

Table 6.1: The three non-trivial translational automorphisms of Q△.

6.4 Halite

Figure 6.8: The face centred unit cell of the halite structure (NaCl): sodium
atoms are at the corners and centres of the faces of the cell, chlorine atoms
occupy the centre and the centre of the edges.
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Halite or rock salt (NaCl) crystallises in space group F3m̄3 [Putnis, 1992].
In a conventional setting, sodium atoms are located at the fractional coor-
dinates (0, 0, 0) and chlorine atoms at (0, 1

2
, 0) [Wenk and Bulakh, 2004].

Figure 6.8 shows the face centred cell (the axes coincide with the edges of
the cell). If the structure of halite is converted into a QG based on a primitive
cell, the resulting Qhalite has 2 nodes and 6 edges:

e1 = Cl
(1,0,1)
−−−→ Na, e2 = Cl

(0,1,0)
−−−→ Na,

e3 = Cl
(0,1,1)
−−−→ Na, e4 = Cl

(1,0,0)
−−−→ Na,

e5 = Cl
(1,1,0)
−−−→ Na, and e6 = Cl

(0,0,1)
−−−→ Na.

The only translational automorphism defines a reduction that places both
nodes into the same orbit. Furthermore, the three edge orbits comprise the
edges in each row in the list above. As the reduction vector is equal to
(1

2
, 1

2
, 1

2
) and O = 2, the ṽ are (the labels with an even index are subtracted

to correct for their orientation in the edge orbit):

ṽ1 = v1 − v2 = ( 1,−1, 1)

ṽ2 = v3 − v4 = (−1, 1, 1)

ṽ3 = v5 − v6 = ( 1, 1,−1)

As all edges in the reduced QG are loops, and the vectors ṽi are linearly

independent, defining M = (ṽ1, ṽ2, ṽ3) results in a QG with 3 edges: n
(1,0,0)
−−−→

n, n
(0,1,0)
−−−→ n, and n

(0,0,1)
−−−→ n. This QG is isomorphic to the QG of the cube

net and is in accordance with the informal discussion at the introduction to
this chapter.

Centred cells have a similar apparent reduction of the translational sym-
metry: if the QG of halite is created for a F-centred cell, the QG comprises 8
nodes and 24 edges. The set of reduction vectors includes all seven possible
vectors {1

2
, 1}3 with the exception of (1, 1, 1). All reductions halve the size of

the QG and the reduced QGs are twice the size of Qhalite. Only the vectors
(1

2
, 1

2
, 1), (1

2
, 1, 1

2
), and (1, 1

2
, 1

2
) reduce the QG consistent with the atom types

associated to the nodes.

6.5 Calcite and magnesite

The carbonates calcite (CaCO3) and magnesite (MgCO3) crystallise in space
group R3̄c [Graf, 1961]. The hexagonal unit cells contain six formula units.
Their QGs therefore consist of six nodes corresponding to calcium or mag-
nesium atoms, six to carbons and 18 to oxygen (see tables A.2 and A.8).
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The structure is shown in figure 6.9. The QG of the two structures is shown

Figure 6.9: The structure of calcite. Bonds between the calciums and oxy-
gens are included to reflect nearest neighbour relationships (structure see
table A.2).

in table 6.2; the cations are represented by ‘A’. The QG shown in table 6.2
possesses two translational automorphisms; both reduction vectors are equal
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C1
(0,0,0)
−−−→ O1 C1

(0,0,0)
−−−→ O2 C1

(0,0,0)
−−−→ O3

C2
(0,0,0)
−−−→ O10 C2

(0,0,0)
−−−→ O5 C2

(0,0,0)
−−−→ O6

C3
(−1,−1,0)
−−−−−→ O11 C3

(0,0,0)
−−−→ O12 C3

(0,0,0)
−−−→ O13

C4
(0,0,0)
−−−→ O14 C4

(0,0,0)
−−−→ O15 C4

(0,0,0)
−−−→ O16

C5
(0,0,0)
−−−→ O7 C5

(0,0,0)
−−−→ O8 C5

(0,0,0)
−−−→ O9

C6
(−1,0,0)
−−−−→ O18 C6

(0,−1,0)
−−−−→ O17 C6

(0,0,0)
−−−→ O4

A1
(−1,−1,−1)
−−−−−−→ O9 A1

(−1,−1,0)
−−−−−→ O10 A1

(−1,0,0)
−−−−→ O6

A1
(0,−1,−1)
−−−−−→ O8 A1

(0,0,−1)
−−−−→ O7 A1

(0,0,0)
−−−→ O5

A2
(0,−1,0)
−−−−→ O8 A2

(0,0,0)
−−−→ O18 A2

(0,0,0)
−−−→ O4

A2
(0,0,0)
−−−→ O9 A2

(1,0,0)
−−−→ O17 A2

(1,0,0)
−−−→ O7

A3
(0,−1,0)
−−−−→ O14 A3

(0,0,0)
−−−→ O11 A3

(0,0,0)
−−−→ O13

A3
(0,0,0)
−−−→ O15 A3

(1,0,0)
−−−→ O12 A3

(1,0,0)
−−−→ O16

A4
(−1,0,0)
−−−−→ O10 A4

(0,0,0)
−−−→ O11 A4

(0,0,0)
−−−→ O12

A4
(0,0,0)
−−−→ O5 A4

(0,1,0)
−−−→ O13 A4

(0,1,0)
−−−→ O6

A5
(−1,0,0)
−−−−→ O1 A5

(0,0,0)
−−−→ O17 A5

(0,0,0)
−−−→ O2

A5
(0,0,0)
−−−→ O4 A5

(0,1,0)
−−−→ O18 A5

(0,1,0)
−−−→ O3

A6
(−1,−1,0)
−−−−−→ O14 A6

(−1,−1,0)
−−−−−→ O2 A6

(−1,0,0)
−−−−→ O1

A6
(0,−1,0)
−−−−→ O16 A6

(0,0,0)
−−−→ O15 A6

(0,0,0)
−−−→ O3

Table 6.2: The magnesite and calcite QG obtained for a hexagonal setting.
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to (1
3
, 1

3
, 1

3
). The edge and node orbits are:

[C1, C3, C5] [C2, C4, C6] [A1, A3, A5] [A2, A4, A6]
[O4, O10, O14] [O1, O9, O13] [O2, O8, O12]
[O3, O7, O11] [O5, O16, O18] [O6, O15, O17]

Following the procedure described in section 6.1.2 results in the QG shown
in table 6.3, which is isomorphic to the QG obtained for the primitive (rhom-
bohedral) cell. The edge label with an element 2 is an artifact of the cal-
culation. This can corrected by subtracting vector (1, 0, 0) from the edges
incident to node O2 (according to theorem 5.2.1).

C1
(0,0,0)
−−−→ O1 C1

(0,1,0)
−−−→ O3 C1

(1,0,0)
−−−→ O2

C2
(0,0,0)
−−−→ O4 C2

(0,0,0)
−−−→ O5 C2

(0,0,1)
−−−→ O6

A1
(0,0,0)
−−−→ O1 A1

(0,0,0)
−−−→ O4 A1

(0,0,0)
−−−→ O6

A1
(1,−1,0)
−−−−→ O5 A1

(1,0,0)
−−−→ O3 A1

(2,−1,1)
−−−−→ O2

A2
(−1,0,−1)
−−−−−→ O1 A2

(−1,1,−1)
−−−−−→ O4 A2

(0,0,0)
−−−→ O2

A2
(0,0,0)
−−−→ O3 A2

(0,0,0)
−−−→ O5 A2

(0,0,0)
−−−→ O6

Table 6.3: The reduced QG for magnesite and calcite which corresponds to
a rhombohedral setting.

The second translational automorphism defines the same node and edge
orbits and therefore a reduction results into the same QG. The QG in ta-
ble 6.3 possesses no reduction vector and consequently cannot be further
reduced. This shows that both structures have a maximal translational sym-
metry and displacive phase transition can not lead to a structure with fewer
atoms in a primitive cell. In other words, if G is the space group of the struc-
ture that corresponds to the reduced QG and a displacive phase transition
results in a structure which has the symmetry of space group H, then

• G and H are translatonsgleiche3 (but not klassengleiche4) space groups,
or

• H is not a translatonsgleiche supergroup of G.

3A space group G is a translatonsgleiche subgroup of H if all translations in H are
elements in G Hahn [1992].

4Space groups G and H are klassengleiche space groups if they belong to the same point
group Hahn [1992].

80



6.6 Barytocalcite

Given that calcite (CaCO3) and barytocalcite (BaCa(CO3)2) have a similar
chemical make-up, one may suspect that the nets defined by these structures
are isomorphic (structure see figure 6.10 and QG table A.1). This suspicion
is supported by the matching coordination of the atoms in these structures.
That calcite crystallises in R3̄c and barytocalcite in P21 may be attributed
to a distortion of the later structure. However, a direct comparison of the

Figure 6.10: The barytocalcite structure (BaCa(CO3)2, see table A.1).

two nets is difficult as the QG of barytocalcite has twice the number of nodes.

The barytocalcite QG (table B.1) possesses three translational automor-
phisms: two with the reduction vector (1

4
, 1

2
, 1

2
) and one with the vector

(1
2
, 0, 0). All corresponding translations of the structure mismatch cation

types, which implies that a displacive phase transition to a structure with
a smaller primitive cell is impossible. However, a complete Ba-Ca disorder
would cause a phase transition to a structure with primitive cell containing
only a quarter of the number of atoms. Only the second reduction vector
can be used in the presented approach to reduce the QG. The resulting QG
can again be reduced, resulting in a QG with the edges given in table 6.4
(‘A’ stands in for the earth alkali atoms). This QG comprises only half the
number of nodes and edges of the maximally reduced calcite QG (see sec-
tion 6.5). This conclusively shows that the two structures are not isomorphic.
The comparative sizes of the barytocalcite QG and the twice reduced QG
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A
(−1,0,1)
−−−−→ O1 A

(0,0,0)
−−−→ O1 A

(0,−1,1)
−−−−→ O2

A
(1,0,0)
−−−→ O2 A

(0,0,1)
−−−→ O3 A

(0,1,0)
−−−→ O3

C
(0,0,0)
−−−→ O1 C

(0,0,0)
−−−→ O2 C

(0,0,0)
−−−→ O3

Table 6.4: The twice reduced barytocalcite QG.

imply that, if a disordered barytocalcite structure exists, this structure has
a primitive cell holding half a formula unit.

6.7 Celsian and strontium feldspar

In this section it is shown phase transitions to non-translationsgleiche struc-
tures with a higher translational symmetry (i.e. with smaller primitive cells)
resulting from order-disorder transitions can be predicted. This is achieved
by an observation of the automorphisms used to reduce a QG.

Two structures are used to support this claim: celsian and a synthetic
strontium feldspar. Celsian is a barium feldspar (BaAl2Si2O8) which occurs
in space group I2/c (see figure 6.11, table A.3, [Newnham and Megaw, 1960]).
The four tetrahedral sites in this partially ordered structure are occupied by
Al and Si in site depended concentrations.

The synthetic strontium feldspar (SrAl2Si2O8) crystallises from melt in
space group C2/m with Al and Si in a metastable disordered configuration.
Thermal treatment evolves this structure to a partial Al-Si order and, as a
result of this order, a phase transition to a structure in space group I2/c
with a reduced translational symmetry. In other words, the phase transition
to the ordered structure creates a klassengleiche, but not translationsgleiche,
structure with a reduced symmetry. The partially ordered structure is shown
in table A.15. This structure very similar to the celsian structure. During
the transformation of the structures into QGs, atoms types and occupancy
ratios were ignored (or, in other words, positions instead of atom types were
considered).

First, QGs for non-primitive cells (corresponding to eight formula units)
were created. Both QGs are essentially identical; only the atom types and
occupancies associated with node differ (see table B.2). This QG possesses
3 reduction vectors:

1. t1 = (1
2
, 1

2
, 1

2
) is expected for a centred cell in space group I2/c.

2. t2 = (1
2
, 1

2
, 1) reflects a translation that is not compatible with the

symmetry of the crystal. In this reduction, sites that show different
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Figure 6.11: The celsian structure (BaAl2Si2O8). The Al-Si sites are labelled
with ‘T’ (compare table A.3).
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occupancies by Al and Si are mapped on each other: T1(0) on T1(z)
and T2(0) on T2(z). A translation of the structure with (1

2
, 1

2
, 0) brings

these sites in close proximity.

3. t3 = (1, 1, 1
2
) is equally incompatible with the crystal symmetry and,

except that the translation is equal to (0, 0, 1
2
), everything stated for t2

applies.

All reductions corresponding to these three vectors halve the size of the QG.
All resulting QGs have a reduction vector which, if applied, halves the QG
again (the maximally reduced QG is given in table B.3). All QGs - original
and reduced - show the same stretched cycle sequence and it can therefore
be assumed that the QGs, and the nets they represent, are isomorphic. Only
vector t1 is compatible with the symmetry of the structure and leads to
a QG that is isomorphic to the QG obtained using a primitive cell. The
other two reduction vectors correspond to mappings of tetrahedral sites with
incompatible averages of Al and Si content.

The first two reduction vectors fall into the category discussed in sec-
tion 6.1.2, the third is discussed in section 6.1.1.

The Sr-feldspar was prepared by annealing a crystal in which the Al
and Si are disordered. One may therefore speculate that, after a ‘better’
annealing, the tetrahedral positions are always occupied by the atom type
that dominantly occupies T positions (Benna and Bruno state, though, that
this is unlikely achievable). Similarly, it may be suspected, that a complete Al
and Si order in celsian causes a phase transition to a structure with a higher
translational symmetry. In order to make a case, the QGs which correspond
to primitive cells of the two structures were reduced. This reduction, however,
implies for both feldspars a mapping of Si-dominated T1(0) sites onto Al-
dominated T1(z) sites and similarly for the two T2 sites. This is compatible
with the observation that if ordering causes a change of the translational
symmetry, this transition leads to a structure with a larger primitive cell.

In conclusion, even a ‘better’ annealing or different geological history
leading to a complete Al-Si order cannot result into a structure with a higher
translational symmetry (that is a unit cell with a smaller volume). A phase
transition to a structure with higher translational symmetry can only be
caused by an Al-Si disorder. This is kinetically impossible once the feldspars
are in an ordered state except maybe if the feldspars are exposed to temper-
atures close to their melting points.

It maybe worth noting that the conclusions concerning the phase transi-
tion were drawn without considering atom positions or a (visual) inspection
of the structures. The statement that celsian (in space group I2/c) cannot
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undergo a phase transition to a structure with a higher translational sym-
metry without inducing a complete Al-Si disorder (e.g. applying heat) was
made by the observation of the QG only (but was confirmed by comparison
with the behaviour of the Sr-feldspar).

6.8 Remarks

The QGs were generated using TOPOLAN and a modified version of Jmol
[Jmol]. A graphical user interface developed by the author was used to
determine automorphisms and reductions. The later program is written in
Java5 and allows an examination of all QG automorphisms, node and edge
orbits, and determines the symmetry operations except for the locational
part of the Seitz symbol. The executable can be obtained from [Thimm,
2007].

5Java is a trademark by Sun Microsystems, Inc.
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Chapter 7

Conclusion

The presented work explores the benefits of interpreting crystal structures as
infinite graphs called nets, where atoms are mapped onto atoms and bonds
onto edges. These nets are then described by so-called quotient graphs which
have the advantage of being finite and can therefore be manipulated more
easily. This approach allows to analyse crystal structures in ways difficult or
impossible by approaches based on lattices and space groups.

A procedure for the enumeration of nets was revised with special attention
on constrains arising from the aim to enumerate crystallographic structures.
The proposed constraints on quotient graphs are shown to reduce the number
of quotient graphs which do not correspond to a crystal structure greatly and
therefore permit an enumeration of previously inaccessible structures.

The enumeration procedure was implemented and used to enumerate all
nets that represent crystal structures with four four-coordinated atoms in
a unit cell. Three of the nets resulted in plausible, to the author unknown
carbon modifications.

The enumeration procedure uses certain constraints to eliminate redun-
dant structures and those that cannot represent crystal structures. Two of
these constraints arise from limits on specific densities and maximal unit
cell volumes. The minimal specific density is determined from coordination
sequences and the maximal volume of a unit cell from the topology of the
nets.

This is complemented by an analysis of quotient graphs towards whether
the equivalent nets are connected. Two sets of disconnected nets are distin-
guished: penetrating and non-penetrating. In non-penetrating nets, sub-nets
are classified in islands, chains, or planes. In the case of penetrating nets (e.g.
the net describing cuprite), the number of disconnected sub-nets is directly
determined from a quotient graph and a limit on the number of sub-nets is
given under the condition that edges (inter-atomic bonds) are shorter then
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the lateral dimension of the unit cell.
It is shown that cycle sequences allow to efficiently distinguish between

net topologies and therefore offer a way to classify crystals. The proposed
fully stretched cycle sequences have an apparent 100% specificity in distin-
guishing topologies with nodes of degree two and above while being compu-
tationally much less onerous than conventional cycle sequences.

Nets, as used in publications prior to this work, are exclusively derived
from crystals and therefore are encumbered by atom positions and cell pa-
rameters. In order to overcome this limitation, nets are redefined. Then,
isomorphisms of nets are shown to have their equivalent in their finite rep-
resentation (the quotient graphs). Based on this result, automorphisms of
quotient graphs are put into a strong relationship with the symmetries of
possible embeddings of the corresponding net (structures). It is shown that
for a connected quotient graph the space group of an embedding or structure
with a maximal symmetry is determined by the topology alone (with the
exception of the setting). In detail, an automorphism of the quotient graph
determines the vector corresponding to a possible screw or glide component
of the corresponding symmetry operation (under the condition that two iso-
morphic nodes are connected by some path). Thus, without knowledge of the
spatial arrangements of atoms in a structure, possible symmetry operations
of all possible embeddings of a net are determined. As a result, for a specific
structure, it is possible to determine if a displacive (bond-preserving) phase
transition to a structure with higher symmetry is possible. Should this be
the case, the space groups of these phases can be determined.

The theoretical deductions are complemented with worked examples for
the 2D hexagon net, two FeS2 modifications, α- and β-quartz, and three
graphite modifications.

The set of automorphisms of a quotient graph can include several auto-
morphisms that correspond to translational symmetries that are not compat-
ible with the lattice of the net-defining structure. In a sense, this corresponds
to a situation where a supercell of the structure is used to determine a quo-
tient graph. For these quotient graphs, a procedure is given that allows to
see which positions in the original structure would be mapped on each other.
Furthermore, this allows to reduce the size of the quotient graph in a man-
ner comparable to reducing the size of a supercell or centred cell. This is
demonstrated for two 2-dimensional examples and several structures. Among
these structures are celsian and a strontium feldspar with partially ordered
Al- and Si-positions. The analysis suggests that a complete ordering of the
structures would not induce a phase transition to a structure with a higher
translational symmetry (that is the unit cell is unchanged). A reduction of
the barytocalcite net is used to show that its structure is not isomorphic to
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the calcite structure. Overall, this work shows that the examination of QGs
allows to predict or exclude possible displacive phase transitions to structures
with reduced translational symmetry.

7.1 Future work

Cycle sequences and net isomorphism

From numerous examples, is seems to be plausible that sufficiently long
(plain, stretched or fully stretched) cycle sequences of a yet to be deter-
mined length completely define the topology of a net under the constraint
that all nodes are of a minimal degree of two and the net is simply connected.

If this proposition is true, the (non-)isomorphism of QGs with non-
isomorphic base graphs could be shown conclusively.

Physical properties versus topology

Only little is yet known on which physical properties are reflected in a crys-
tal’s topology. One may, though, speculate that there are many more links
than those presented in this and the work of other researchers: the topology
determines to some extend the space group of a crystal, which in turn is
closely linked to many physical properties.

Investigate structures with displacive phase transitions

It would be interesting to systematically investigate, which crystal structures
are in space groups with a lower symmetry than suggested by the topological
analysis presented here. Such structures are likely to undergo displacive
(thus requiring little energy) phase transitions to structures with a higher
symmetry. As phase transitions often cause a considerable change in the
macroscopic properties of a crystal, such structures may be of technological
interest.
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Appendix A

Crystal Structures

Cell parameters are given in Ångström (Å) and atom positions in fractional
coordinates. Symmetrically equivalent positions are not shown.

space group: P21

cell parameters:
a = 8.15, b = 5.22, c = 6.58,
α = γ = 90◦, β = 106.13◦

atom positions:
Ba 0.14200 0.25000 0.28300
Ca 0.38300 0.73400 0.80000
C1 0.08300 0.20500 0.77000
C2 0.35800 0.74000 0.29900
O1 0.01200 0.15000 0.89300
O2 0.10500 0.44400 0.69700
O3 0.13300 0.02000 0.63900
O4 0.28700 0.68000 0.42200
O5 0.37900 0.97400 0.22600
O6 0.40700 0.55000 0.16800

Table A.1: The crystal structure of barytocalcite (BaCa(CO3)2) from Downs
and Hall-Wallace [2003].
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space group: R3̄c
cell parameters: a = b = 4.9900,c = 17.0615,
α = β = 90◦,γ = 120◦

atom positions:
Ca 0 0 0
C 0 0 0.25
O 0.2578 0 0.25

Table A.2: The structure of calcite (CaCO3) [Graf, 1961].

space group: I2/c
cell parameters: a = 8.627, b = 13.045,
c = 14.408, α = γ = 90◦, β = 115.22◦

Atom x y z occ

Ba 0.2826 0.00 0.0653
AlT1(0) 0.0091 0.1828 0.1096 .22
SiT1(0) 0.0091 0.1828 0.1096 0.78
AlT1(z) 0.0073 0.1832 0.6142 0.65
SiT1(z) 0.0073 0.1832 0.6142 0.35
AlT2(0) 0.7058 0.1205 0.1733 0.62
SiT2(0) 0.7058 0.1205 0.1733 0.38
AlT2(z) 0.7004 0.1165 0.6735 0.20
SiT2(z) 0.7004 0.1165 0.6735 0.80
OA(1) 0.9996 0.1382 0.0003
OA(2) 0.6238 0.00010 0.1429
OB(0) 0.8223 0.1388 0.1111
OB(z) 0.8221 0.1368 0.6133
OC(0) 0.0224 0.3072 0.1233
OC(z) 0.0300 0.3130 0.6321
OD(0) 0.1826 0.1298 0.1947
OD(z) 0.1904 0.1232 0.7079

Table A.3: The celsian structure (BaAl2Si2O8, from Newnham and Megaw
[1960]).
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space group: C2/c
cell parameters: a = 7.1356, b = 12.3692,
c = 7.1736, α = γ = 90◦, β = 120.34◦

atom positions:
O1 0 0 0
O2 .5 .1163 .75
O3 .2660 .1234 .9401
O4 .3114 .1038 .3282
O5 .0172 .2117 .4782
Si1 .14033 .10833 .07227
Si2 .50682 .15799 .54077

Table A.4: The crystal structure of coesite (SiO2) at ambient conditions
[Levien and Prewitt, 1981].

space group: P41212
cell parameters: a = b = 4.9717,
c = 6.9223, α = β = γ = 90◦

atom positions:
Si 0.30028 0.30028 0.0000
O 0.2392 0.1044 0.1787

Table A.5: The structure of α-cristobalite (SiO2) [Downs and Palmer, 1994].

space group: Pn3̄
cell parameters: a = b = c = 4.2696,
α = β = γ = 90◦

atom positions:
Cu 0.25 0.25 0.25
O 0.00 0.00 0.00

Table A.6: The structure of synthetic cuprite (Cu2O) [Downs and Hall-
Wallace, 2003].

space group: Fd3̄m
cell parameters: a = b = c = 3.56679,
α = β = γ = 90◦

atom positions:
C 0.000 0.000 0.000

Table A.7: The structure of diamond.
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space group: R3̄c
cell parameters: a = b = 4.635,
c = 15.019, α = β = 90◦, γ = 120◦

atom positions:
Ca 0.0000 0.0000 0.0000
C 0.0000 0.0000 0.2500
O 0.2778 0.0000 0.2500

Table A.8: The crystal structure of magnesite (MgCO3) at ambient condi-
tions (from Downs and Hall-Wallace [2003]).

space group: Pnnm
cell parameters: a = 4.436, b = 5.414,
c = 3.381, α = β = γ = 90◦

atom positions:
Fe 0.000 0.000 0.000
S 0.200 0.378 0.000

Table A.9: The marcasite (FeS2) structure from CCMS [2007]

space group: Pbnm
cell parameters: a = 5.380, b = 5.440,
c = 7.639, α = β = γ = 90◦

atom positions:
Ti 0.0000 0.5000 0.0000
Ca 0.0065 0.0356 0.2500
O .5711 -0.0161 0.2500
O 0.2897 0.2888 0.0373

Table A.10: The perovskite structure (CaTiO3) [Beran et al., 1996]

space group: Pa3̄
cell parameters: a = b = c = 5.4166,
α = β = γ = 90◦

atom positions:
Fe 0.0000 0.5000 0.0000
S 0.38510 0.38510 0.38510

Table A.11: The structure of cubic pyrite (FeS2) [Bayliss, 1977]
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space group: P3221
cell parameters: a = 4.916, b = 4.916,
c = 5.4054, α = β = 90◦, γ = 120◦

atom positions:
Si 0.4697 0.0000 0.0000
O 0.4135 0.2669 0.1191

Table A.12: One of the enantiomorphic α-quartz structures (SiO2) [Levien
et al., 1980].

space group: P6222
cell parameters: a = b = 4.9965,
c = 5.4570, α = β = γ = 90◦

atom positions:
Si 0.500 0.0000 0.0000
O 0.4135 0.2076 1/6

Table A.13: One of the enantiomorphic β-quartz structures (SiO2) [Downs
and Hall-Wallace, 2003].

space group: P42/mnm
cell parameters: a = b = 4.59373,
c = 2.95812, α = β = γ = 90◦

atom positions:
Ti 0.00000 0.00000 0.00000
O 0.30530 0.30530 0.00000

Table A.14: The rutile structure (TiO2) [Downs and Hall-Wallace, 2003].
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space group: C2/m
cell parameters: a = 8.379, b = 12.963,
c = 14.245, α = γ = 90◦, β = 115.46◦

Atom x y z occ

Sr 0.2691 -0.0021 0.0656
AlT1(0) 0.0070 0.1747 0.1086 0.19
SiT1(0) 0.0070 0.1747 0.1086 0.81
AlT1(z) 0.0032 0.1776 0.6162 0.81
SiT1(z) 0.0032 0.1776 0.6162 0.19
AlT2(0) 0.6939 0.1203 0.1705 0.76
SiT2(0) 0.6939 0.1203 0.1705 0.24
AlT2(z) 0.6854 0.1133 0.6716 0.14
SiT2(z) 0.6854 0.1133 0.6716 0.86
OA(1) 0.0044 0.1294 0.0002
OA(2) 0.5914 -0.0001 0.1428
OB(0) 0.8280 0.1264 0.1066
OB(z) 0.8089 0.1267 0.6111
OC(0) 0.0134 0.2981 0.1184
OC(z) 0.0182 0.3091 0.6304
OD(0) 0.1876 0.1247 0.1961
OD(z) 0.1975 0.1188 0.7037

Table A.15: The strontium feldspar structure (SrAl2Si2O8) at ambient con-
ditions (from [Benna and Bruno, 2001, Downs and Hall-Wallace, 2003].
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space group: C2/c
cell parameters: a = 5.26,
b = 9.10, c = 18.81,
α = β = 90◦, β = 100.00◦

atom positions:
Mg1 0 0 0
Mg2 0 0.333 0
Si1 -.239 00 0.143
Si2 0.261 0.167 0.143
O1 0.203 0.5 0.058
O2 0.203 0.167 0.058
O3 0.025 0.083 0.176
O4 -.475 0.083 0.176
O5 0.275 0.333 0.176
OH1 0.203 -.167 0.058

Table A.16: The talc structure (Mg3Si4O12H2) [Gruner, 1934, Downs and
Hall-Wallace, 2003].
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Appendix B

Quotient Graphs

This appendix lists QGs for some selected structures.

Table B.2 – continued on next page

A1
(−1,0,0)
−−−−→ OA(2)7 A1

(0,0,0)
−−−→ OA(1)1 A1

(0,0,0)
−−−→ OA(1)7

A1
(0,0,0)
−−−→ OB(0)7 A1

(0,0,0)
−−−→ OB(z)2 A1

(0,0,0)
−−−→ OD(0)7

A1
(0,0,0)
−−−→ OD(z)5 A2

(−1,1,0)
−−−−→ OA(1)2 A2

(0,1,−1)
−−−−→ OB(z)5

A2
(0,1,0)
−−−→ OA(2)3 A2

(0,1,0)
−−−→ OD(0)1 A2

(0,0,−1)
−−−−→ OA(1)8

A2
(0,0,−1)
−−−−→ OB(0)8 A2

(0,0,0)
−−−→ OD(z)4 A3

(1,1,0)
−−−→ OA(1)6

A3
(0,1,0)
−−−→ OA(2)6 A3

(0,1,0)
−−−→ OB(z)1 A3

(0,1,0)
−−−→ OD(0)6

A3
(0,0,0)
−−−→ OA(1)4 A3

(0,0,0)
−−−→ OB(0)3 A3

(0,0,0)
−−−→ OD(z)8

A4
(−1,0,0)
−−−−→ OA(1)4 A4

(0,1,0)
−−−→ OA(1)6 A4

(0,1,0)
−−−→ OB(0)5

A4
(0,1,0)
−−−→ OD(z)2 A4

(0,0,0)
−−−→ OA(2)4 A4

(0,0,0)
−−−→ OB(z)8

A4
(0,0,0)
−−−→ OD(0)4 A5

(1,0,0)
−−−→ OA(1)8 A5

(0,1,1)
−−−→ OA(1)2

A5
(0,1,1)
−−−→ OB(0)1 A5

(0,1,0)
−−−→ OD(z)6 A5

(0,0,1)
−−−→ OB(z)3

A5
(0,0,0)
−−−→ OA(2)8 A5

(0,0,0)
−−−→ OD(0)8 A6

(1,0,0)
−−−→ OA(2)1

A6
(0,0,−1)
−−−−→ OA(1)5 A6

(0,0,−1)
−−−−→ OB(0)4 A6

(0,0,−1)
−−−−→ OB(z)6

A6
(0,0,0)
−−−→ OA(1)3 A6

(0,0,0)
−−−→ OD(0)2 A6

(0,0,0)
−−−→ OD(z)1

A7
(1,0,0)
−−−→ OA(2)2 A7

(0,0,0)
−−−→ OA(1)1 A7

(0,0,0)
−−−→ OA(1)7

A7
(0,0,0)
−−−→ OB(0)6 A7

(0,0,0)
−−−→ OB(z)4 A7

(0,0,0)
−−−→ OD(0)3

A7
(0,0,0)
−−−→ OD(z)3 A8

(−1,0,0)
−−−−→ OA(2)5 A8

(0,0,1)
−−−→ OA(1)3

A8
(0,0,1)
−−−→ OB(0)2 A8

(0,0,1)
−−−→ OB(z)7 A8

(0,0,0)
−−−→ OA(1)5

A8
(0,0,0)
−−−→ OD(0)5 A8

(0,0,0)
−−−→ OD(z)7 OA(1)1

(0,0,0)
−−−→ T1(0)4
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OA(1)1

(0,0,0)
−−−→ T1(z)5 OA(1)2

(1,0,0)
−−−→ T1(0)1 OA(1)2

(0,0,−1)
−−−−→ T1(z)6

OA(1)3

(0,0,−1)
−−−−→ T1(z)7 OA(1)3

(0,0,0)
−−−→ T1(0)2 OA(1)4

(1,0,0)
−−−→ T1(0)3

OA(1)4

(0,0,0)
−−−→ T1(z)8 OA(1)5

(0,0,1)
−−−→ T1(z)2 OA(1)5

(0,0,0)
−−−→ T1(0)5

OA(1)6

(−1,0,0)
−−−−→ T1(0)6 OA(1)6

(0,0,0)
−−−→ T1(z)1 OA(1)7

(0,0,0)
−−−→ T1(0)7

OA(1)7

(0,0,0)
−−−→ T1(z)3 OA(1)8

(−1,0,0)
−−−−→ T1(0)8 OA(1)8

(0,0,1)
−−−→ T1(z)4

OA(2)1

(0,0,0)
−−−→ T(2)3 OA(2)1

(0,0,0)
−−−→ T2(z)8 OA(2)2

(0,0,0)
−−−→ T(2)1

OA(2)2

(0,0,0)
−−−→ T2(z)2 OA(2)3

(0,−1,0)
−−−−→ T2(z)3 OA(2)3

(0,0,0)
−−−→ T(2)2

OA(2)4

(0,1,0)
−−−→ T2(z)1 OA(2)4

(0,0,0)
−−−→ T(2)4 OA(2)5

(0,0,0)
−−−→ T(2)6

OA(2)5

(0,0,0)
−−−→ T2(z)5 OA(2)6

(0,−1,0)
−−−−→ T2(z)4 OA(2)6

(0,0,0)
−−−→ T(2)8

OA(2)7

(0,0,0)
−−−→ T(2)7 OA(2)7

(0,0,0)
−−−→ T2(z)6 OA(2)8

(0,1,0)
−−−→ T2(z)7

OA(2)8

(0,0,0)
−−−→ T(2)5 OB(0)1

(1,0,0)
−−−→ T1(0)1 OB(0)1

(0,0,0)
−−−→ T(2)2

OB(0)2
(0,0,0)
−−−→ T1(0)2 OB(0)2

(0,0,0)
−−−→ T(2)3 OB(0)3

(1,0,0)
−−−→ T1(0)3

OB(0)3

(0,0,0)
−−−→ T(2)4 OB(0)4

(0,0,0)
−−−→ T1(0)5 OB(0)4

(0,0,0)
−−−→ T(2)6

OB(0)5

(−1,0,0)
−−−−→ T1(0)6 OB(0)5

(0,0,0)
−−−→ T(2)8 OB(0)6

(0,0,0)
−−−→ T1(0)7

OB(0)6

(0,0,0)
−−−→ T(2)7 OB(0)7

(0,0,0)
−−−→ T1(0)4 OB(0)7

(0,0,0)
−−−→ T(2)1

OB(0)8

(−1,0,0)
−−−−→ T1(0)8 OB(0)8

(0,0,0)
−−−→ T(2)5 OB(z)1

(1,0,0)
−−−→ T1(z)1

OB(z)1

(0,0,0)
−−−→ T2(z)1 OB(z)2

(0,0,0)
−−−→ T1(z)3 OB(z)2

(0,0,0)
−−−→ T2(z)2

OB(z)3

(1,0,0)
−−−→ T1(z)4 OB(z)3

(0,0,0)
−−−→ T2(z)3 OB(z)4

(0,0,0)
−−−→ T1(z)5

OB(z)4

(0,0,0)
−−−→ T2(z)6 OB(z)5

(−1,0,0)
−−−−→ T1(z)6 OB(z)5

(0,0,0)
−−−→ T2(z)7

OB(z)6

(0,0,0)
−−−→ T1(z)7 OB(z)6

(0,0,0)
−−−→ T2(z)5 OB(z)7

(0,0,0)
−−−→ T1(z)2

OB(z)7

(0,0,0)
−−−→ T2(z)8 OB(z)8

(−1,0,0)
−−−−→ T1(z)8 OB(z)8

(0,0,0)
−−−→ T2(z)4

OC(0)1

(0,0,0)
−−−→ T1(0)3 OC(0)1

(0,0,0)
−−−→ T(2)1 OC(0)2

(0,0,0)
−−−→ T1(0)1

OC(0)2

(0,0,0)
−−−→ T(2)3 OC(0)3

(0,0,0)
−−−→ T1(0)2 OC(0)3

(0,0,0)
−−−→ T(2)2

OC(0)4

(0,0,0)
−−−→ T1(0)5 OC(0)4

(0,0,0)
−−−→ T(2)5 OC(0)5

(0,0,0)
−−−→ T1(0)6

OC(0)5

(0,0,0)
−−−→ T(2)7 OC(0)6

(0,0,0)
−−−→ T1(0)4 OC(0)6

(0,0,0)
−−−→ T(2)4

OC(0)7

(0,0,0)
−−−→ T1(0)7 OC(0)7

(0,0,0)
−−−→ T(2)8 OC(0)8

(0,0,0)
−−−→ T1(0)8

OC(0)8

(0,0,0)
−−−→ T(2)6 OC(z)1

(0,0,0)
−−−→ T1(z)4 OC(z)1

(0,0,0)
−−−→ T2(z)8

OC(z)2

(0,0,0)
−−−→ T1(z)1 OC(z)2

(0,0,0)
−−−→ T2(z)2 OC(z)3

(0,0,0)
−−−→ T1(z)3

OC(z)3

(0,0,0)
−−−→ T2(z)1 OC(z)4

(0,0,0)
−−−→ T1(z)5 OC(z)4

(0,0,0)
−−−→ T2(z)4

OC(z)5

(0,0,0)
−−−→ T1(z)2 OC(z)5

(0,0,0)
−−−→ T2(z)3 OC(z)6

(0,0,0)
−−−→ T1(z)6
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OC(z)6

(0,0,0)
−−−→ T2(z)5 OC(z)7

(0,0,0)
−−−→ T1(z)7 OC(z)7

(0,0,0)
−−−→ T2(z)7

OC(z)8

(0,0,0)
−−−→ T1(z)8 OC(z)8

(0,0,0)
−−−→ T2(z)6 OD(0)1

(0,0,0)
−−−→ T1(0)1

OD(0)1
(0,0,0)
−−−→ T(2)8 OD(0)2

(0,0,0)
−−−→ T1(0)2 OD(0)2

(0,0,0)
−−−→ T(2)7

OD(0)3
(0,0,0)
−−−→ T1(0)4 OD(0)3

(0,0,0)
−−−→ T(2)6 OD(0)4

(0,0,0)
−−−→ T1(0)3

OD(0)4
(0,0,0)
−−−→ T(2)5 OD(0)5

(0,0,0)
−−−→ T1(0)5 OD(0)5

(0,0,0)
−−−→ T(2)1

OD(0)6
(0,0,0)
−−−→ T1(0)6 OD(0)6

(0,0,0)
−−−→ T(2)2 OD(0)7

(0,0,0)
−−−→ T1(0)7

OD(0)7
(0,0,0)
−−−→ T(2)3 OD(0)8

(0,0,0)
−−−→ T1(0)8 OD(0)8

(0,0,0)
−−−→ T(2)4

OD(z)1
(0,0,0)
−−−→ T1(z)2 OD(z)1

(0,0,0)
−−−→ T2(z)6 OD(z)2

(0,0,0)
−−−→ T1(z)1

OD(z)2
(0,0,0)
−−−→ T2(z)7 OD(z)3

(0,0,0)
−−−→ T1(z)3 OD(z)3

(0,0,0)
−−−→ T2(z)5

OD(z)4
(0,0,0)
−−−→ T1(z)4 OD(z)4

(0,0,0)
−−−→ T2(z)4 OD(z)5

(0,0,0)
−−−→ T1(z)5

OD(z)5
(0,0,0)
−−−→ T2(z)8 OD(z)6

(0,0,0)
−−−→ T1(z)6 OD(z)6

(0,0,0)
−−−→ T2(z)1

OD(z)7
(0,0,0)
−−−→ T1(z)7 OD(z)7

(0,0,0)
−−−→ T2(z)2 OD(z)8

(0,0,0)
−−−→ T1(z)8

OD(z)8

(0,0,0)
−−−→ T2(z)3

Table B.2: The QG of celsian and a synthetic Sr-feldspar
(structures tables A.3 and A.15). ‘A’ stands for the Ba-
and Sr-atoms.

Si:

O:

(1,0,0) zero labels
were omitted(0,0,1)

(1,1,0)

(1,0,0)
(0,0,1)

(0,1,0)

(0,1,0)

(−1,−1,1)
(0,0,1)

(0,0,1)

Figure B.1: The coesite QG (structure: table A.4). Zero-labels are omitted.
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Ba1
(−1,−1,0)
−−−−−→ O11 Ba1

(0,0,−1)
−−−−→ O12 Ba1

(−1,0,0)
−−−−→ O21

Ba1
(0,0,0)
−−−→ O31 Ba1

(0,−1,0)
−−−−→ O41 Ba1

(0,0,0)
−−−→ O51

Ba2
(0,0,1)
−−−→ O11 Ba2

(1,0,0)
−−−→ O12 Ba2

(1,1,0)
−−−→ O22

Ba2
(0,0,0)
−−−→ O32 Ba2

(0,0,0)
−−−→ O42 Ba2

(0,1,0)
−−−→ O52

C11
(0,0,0)
−−−→ O11 C11

(0,0,0)
−−−→ O21 C11

(0,0,0)
−−−→ O32

C12
(0,0,0)
−−−→ O12 C12

(0,0,0)
−−−→ O22 C12

(0,0,0)
−−−→ O31

C21
(0,0,0)
−−−→ O42 C21

(0,0,0)
−−−→ O52 C21

(0,0,0)
−−−→ O62

C22
(0,0,0)
−−−→ O41 C22

(0,0,0)
−−−→ O51 C22

(0,0,0)
−−−→ O61

Ca1
(0,0,0)
−−−→ O21 Ca1

(0,−1,0)
−−−−→ O32 Ca1

(0,0,0)
−−−→ O42

Ca1
(0,0,0)
−−−→ O51 Ca1

(0,−1,0)
−−−−→ O61 Ca1

(0,0,−1)
−−−−→ O62

Ca2
(0,1,0)
−−−→ O22 Ca2

(0,0,0)
−−−→ O31 Ca2

(0,0,0)
−−−→ O41

Ca2
(0,1,0)
−−−→ O52 Ca2

(0,0,1)
−−−→ O61 Ca2

(0,0,0)
−−−→ O62

Table B.1: The QG of barytocalcite (structure table A.1).
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A1
(0,0,0)
−−−→ OA11 A1

(0,0,0)
−−−→ OA12 A1

(1,0,0)
−−−→ OA22

A1
(0,0,0)
−−−→ OB02 A1

(0,0,0)
−−−→ OB01 A1

(0,1,0)
−−−→ OD03

A1
(0,0,1)
−−−→ OD04 A2

(0,0,0)
−−−→ OA11 A2

(0,0,0)
−−−→ OA12

A2
(−1,0,1)
−−−−→ OA21 A2

(0,1,0)
−−−→ OB03 A2

(0,0,1)
−−−→ OB04

A2
(0,0,0)
−−−→ OD01 A2

(0,0,0)
−−−→ OD02 OA11

(0,0,0)
−−−→ SiT11

OA11
(0,1,0)
−−−→ SiT12 OA12

(0,0,0)
−−−→ SiT13 OA12

(0,0,1)
−−−→ SiT14

OA21
(0,0,0)
−−−→ SiT201 OA21

(0,0,0)
−−−→ SiT202 OA22

(0,0,0)
−−−→ SiT203

OA22
(0,0,0)
−−−→ SiT204 OB01

(0,0,0)
−−−→ SiT11 OB01

(0,0,0)
−−−→ SiT201

OB02
(0,0,0)
−−−→ SiT13 OB02

(0,0,0)
−−−→ SiT202 OB03

(0,0,0)
−−−→ SiT12

OB03
(0,−1,1)
−−−−→ SiT203 OB04

(0,0,0)
−−−→ SiT14 OB04

(0,0,0)
−−−→ SiT204

OC01
(0,1,−1
−−−−→)SiT13 OC01

(0,0,0)
−−−→ SiT201 OC02

(0,0,0)
−−−→ SiT11

OC02
(−1,1,0)
−−−−→ SiT202 OC03

(0,0,0)
−−−→ SiT12 OC03

(0,0,0)
−−−→ SiT204

OC04
(0,0,0)
−−−→ SiT14 OC04

(1,−1,0)
−−−−→ SiT203 OD01

(0,0,0)
−−−→ SiT11

OD01
(0,0,0)
−−−→ SiT203 OD02

(0,0,0)
−−−→ SiT13 OD02

(0,0,0)
−−−→ SiT204

OD03
(0,0,0)
−−−→ SiT12 OD03

(0,−1,1)
−−−−→ SiT201 OD04

(0,0,0)
−−−→ SiT14

OD04
(0,0,0)
−−−→ SiT202

Table B.3: The twice reduced QG of celsian and a synthetic Sr-feldspar. ‘A’
stands for the Ba- and Sr-atoms.

C2
(0,1,0)
−−−→ C1

C1
(0,0,0)
−−−→ C2

C2
(1,0,0)
−−−→ C1

C2
(0,0,1)
−−−→ C1

(0,0,0)
C1

(0,1,0)

(0,0,1)

C2

(1,0,0)

Table B.4: The diamond QG (structure: table A.7).
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Nomenclature

If not stated otherwise, this work follows the notations proposed by Hahn
[1992].

ρ̂ specific topological density.
φ isomorphism or automorphism of nets or quotient

graphs.
� (n

d
) function returning 1

d
(n and d integer with greatest

common divisor equal to 1) .
� a cycle in a graph (a closed path without repetition

of nodes or edges).
|� | the size of a cycle (the number of nodes or edges).
�+ the sum over the edges’ oriented labels.
⊘(ni) the diameter of atoms associated with node ni.
x + y if x mod 1 = y mod 1 is true, that if is both sides of

the equation are equal “modulus 1”.
a, b, c, α, β, γ unit cell parameters.
D dimension of an embedding (D > 1, usually D = 3).

d̂ dimensionality (of a net).

ei =
(

ni
v
−→ nj

)

an edge in a QG.

G, GN , GE a net (or a voltage graph 〈Q, ZD〉) with nodes GN

and edges GE .
x mod 1 represents the real value 0 ≤ r < 1 for which exists

an integer i such that r + i = x.
m̂ multiplicity (of a net).
ni node in a QG.
ni(x) node in a net. x ∈ Z

D the coordinates of the node.
ni(x) ↔ nk(y) an edge in a net.
O the order of a symmetry operation.
p = (ei, ej , . . . , ek) a path in a quotient graphs represented as a sequence

of edges.
Q, QN ,QE a quotient graph with nodes QN and edges QE .
〈Q, ZD〉 a net defined as a voltage graph.
R the domain of real numbers.
(sni

1 , sni

2 , . . . ) a coordination sequence with elements sni

k the number
of nodes connected by a path of length k (but not
shorter) to node ni(0).

(s̄ni

1 , s̄ni

2 , . . . ) an average coordination sequence.
t a reduction vector.
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(W|w) the Seitz symbol for a symmetry operation with rota-
tional matrix W and translation w.

w(i) the intrinsic translation of a symmetry element (a pos-
sible glide or screw component).

w(ℓ) the translation proper to each symmetry element:
w = w(i) + w(ℓ).

x, y, z fractional atom positions.
V volume.
v, vk an edge label / the label of edge k.
V matrix formed from edge labels.
Z the domain of integer numbers.
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Index

�, 20, 28
�+ , 8
+, 49
ρ̂, 25
δ, 25
� (·), 70
⊘, 25
⊘, 25
φ, 41

automorphism, 47
translational, 67

BaAl2Si2O8, 82, 83, 92
BaCa(CO3)2, 81, 91
barytocalcite, 81, 91, 102
base graph, 8, 10

CaCO3, 77, 92
calcite, 77, 81, 92
CaTiO3, 26, 94
cell

centred, 65
parameters, 28
super-, 65
volume, 27

celsian, 82, 83, 92, 101, 103
coesite, 21, 27, 93, 101
connected

simply, 36
coordination sequence, 11, 24
copper, 65, 66
cristobalite, 14, 27, 93
crystallographic embedding, 7

Cu, 65, 66
CuDy, 65, 66
Cu2O, 14, 93
cuprite, 14, 27, 93
cycle

fully stretched, 21
sequence, 20, 89
stretched, 21

cycle sum, 8, 28
cycles, 20

D, 18
d̂, 13
density

specific, 11, 24
specific topological, 25
topological, 11

diameter
atom, 25
graph, 26

diamond, 27, 28, 37, 93, 103
disconnected net, 14
distance, 21

e, 39
edge, 39

anti-parallel, 34
parallel, 34

êk, 67
enumeration, 31, 33

FeS2, 54, 94

G, 7, 40
GE , 7, 40
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GN , 7, 40
graphite, 13, 14, 16, 62

halite, 76

invariant, 10
isomorphism

net, 7, 40
quotient graph, 8, 40

lattice type, 10
lonsdaleite, 37
loop, 33

m̂, 16
magnesite, 77, 94
marcasite, 54, 56, 58, 94
Mg3Si4O12H2, 13, 97
MgCO3, 77, 94
modulus 1, 49
morphology, 8
multiplicity, 18

NaCl, 77
net, 2, 5, 40

crystallographic, 32
dimensionality, 13, 35
disconnected, 13, 14
dual, 14
embedding, 47
isomorphic, 35
multiplicity, 16
pathological, 32
square, 74

n̂i, 67
ni(x), 40
ni(x) ↔ nj(x

′), 40

ni
v
−→ nj , 39

node, 39
non-penetrating, 35

O, 50
order, 50

P, 45
penetrating, 35
perovskite, 27, 94
phase transition, 53, 59, 61
point group, 10
pseudo-symmetries, 53
pyrite, 54, 55, 94

Q, 39
Q̂, 71
QE , 39, 40
Qmarc, 56, 58
QN , 39
Q♠, 47, 48
Q�, 74
Q△, 74
quartz, 60
α-quartz, 60, 61, 95
β-quartz, 60, 61, 95
quotient graph, 2, 5, 39

disconnected, 73
〈Q, ZD〉, 40

R, 45
reduction, 32, 65

vector, 69, 70
rings, 21
rutile, 56, 57, 95

(s1, s2, . . . ), 11
(sni

1 , sni

2 , . . . ), 11
Seitz symbol, 50
SiO2, 21, 60, 61, 93, 95
space group, 1

klassengleiche, 80
translatonsgleiche, 80

sphere packings, 31
SrAl2Si2O8, 82, 96, 101, 103
strontium feldspar, 82, 96, 101, 103
sub-lattice, 67
sub-nets, 14
symmetry, 47
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T, 45
talc, 13, 97
tiling, 31
TiO2, 56, 57, 95
trail, 20
translation

intrinsic, 50
location, 50

V, 44
V̄, 44
voltage graphs, 39

W, 43
w(i), 50
w(ℓ), 50
(W|w), 50
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