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1 Abbreviations and reagents 

1.1 Abbreviations 
 

[3H]-AA  tritium labelled arachidonic acid 

AB antibody 

A(β)-BA 3-O-acetyl-β-boswellic acid  

(A)KBA 3-O-(acetyl-)-11- keto boswellic acid 

ADP / ATP adenosine diphosphate / adenosine triphosphate 

Akt / PKB protein kinase B 

2-APB 2-aminoethyldiphenyl borinate 

AUC area under the curve 

(β)-BA β-boswellic acid 

BAs boswellic acids 

BAPTA/AM 1,2-bis(aminophenoxy)ethane-N,N,N`,N`-tetraacetic acid tetrakis / 

acetoxymethylester 

BS Boswellia serrata 

BSA bovine serum albumin 

B.spec. Boswellia species 

[Ca2+]i intracellular Ca2+ concentration 

CaCl2 calcium chloride 

CatG cathepsin G 

CD62 cell surface protein 62 

CDC cinnamyl-3,4-dihydroxy-alpha-cyanocinnamate 

CGI cathepsin G inhibitor 

CLP coactosine-like protein 

COPD chronic obstructive pulmonary disease 

COX cyclooxygenase 

CpG-DNA/-ODN cytosine/guanine-rich DNA fragments / -oligodesoxynucleotides 

cPLA2 cytosolic phospholipase A2 

CytB cytochalasin B 

DAG diacylglycerol 

DMEM Dulbecco´s modified Eagle medium 

DMSO dimethylsulfoxide 
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DNA-PK(I) DNA-dependent protein kinase (inhibitor) 

DTT dithiothreitol 

EC50 effective concentration (50% of stimulation or inhibition) 

EDTA ethylenediaminetetraacetate 

EGF endothelial growth factor 

eNOS endothelial nitric oxide synthase 

ERK extracellular signal-regulated kinase 

ETP endogenous thrombin potential 

FCS fetal calf serum 

FLAP 5-LO-activating protein 

fMLP N-formyl-methionyl-leucyl-phenylalanine 

FPP(s) farnesyl-pyrophosphate (synthase) 

Fura-2/AM [1-[2-(5-carboxyoxazol-2-yl)-6-aminobenzofuran-5-oxyl]-2-(2`-

amino-5`-methyl-phenoxy)ethane-N,N,N`,N`-tetraacetic acid, 

pentaacetoxymethylester] 

Glut-(K)BA 3-O-glutaroyl-11-(keto)-boswellic acid 

GPCRs G protein-coupled receptors 

GSH glutathione 

HL-60 human leukemia cell line 

HLE human leukocyte elastase 

H(P)ETE hydro(per)oxyeicosatetraenoic acid 

HPLC high performance liquid chromatography 

IC50 inhibiting concentration (50% of inhibition) 

IGF-1 insulin-like growth factor 

IgG / IgM immunoglobuline G / M 

IκB inhibiting factor of kappa B 

IL-6 interleukin 6 

IKK IκB-kinase 

IMAC  ion metal affinity chromatography 

IP3 inositoltrisphosphate 

IPP isopentenylpyrophosphate 

IPTG isopropyl-β-D-thiogalactopyranoside 

(K)BA-Seph 11-(keto) boswellic acid coupled to Sepharose 

LB-medium Luria Broth base - medium 
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LNCaP human prostate cancer cell line 

5/12-LO 5/12-lipoxygenase 

LPS lipopolysaccharide 

LTs leukotrienes 

M9 minimal medium 9 

MALDI-TOF-MS matrix-assisted laser desorption ionisation – time of flight – mass 

spectrometry 

MAPK mitogen-activated protein kinase 

MCF-7 human mamma carcinoma cell line 

11-me-BAs 11-methylene-boswellic acids  

MFI mean channel fluorescence intensity 

MM6 human monocytic cell line 

MQ Milli Q water 

MS mass spectrometry 

mTOR mammalian target of rapamycin (kinase) 

MWCO mol weight cut off 

NFκB nuclear factor κ B 

NMR nuclear magnetic resonance spectroscopy 

NSAIDs non-steroidal anti-inflammatory drugs 

OD optical density 

p12-LO platelet-type 12-lipoxygenase 

PAC-1 cell surface protein  

PAF platelet-activating factor 

PAR-4 protease-activated receptor 4 

PBS phosphate-buffered saline 

PDGF platelet-derived growth factor 

PDK-1 3-phosphoinositol-dependent kinase 

PGC buffer PBS plus 1 mg/ml glucose plus 1 mM CaCl2 

PG  prostaglandin 

PI3K phosphatidylinositol 3 kinase 

PIP3 phosphatidylinositol-trisphosphate 

PKA, PKB, PKC protein kinase A, B, C 

PLC phospholipase C 

PMNL polymorphonuclear leukocytes 
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PMSF phenylmethylsulfonylfluoride 

PRP platelet rich plasma 

pTyr phosphotyrosine 

r12-LO / his12-LO recombinant 12-lipoxygenase / 6-his-tagged 12-lipoxygenase 

Rap 1b Ras-related protein 1b 

RBL-1 rat basophilic leukemia cell line 

RFU relative fluorescence units 

ROS reactive oxygen species 

RT room temperature 

RTK receptor tyrosine kinases 

SDS  sodium dodecylsulfate 

SDS-b 2x SDS loading buffer 

SDS-PAGE SDS-polyacrylamide gel electrophoresis 

Seph EAH-Sepharose 4B 

Suc-AAPF-pNA N-succinyl-alanyl-alanyl-prolin-phenylalanine-p-nitroanilide 

TBS tris-buffered saline 

TCM traditional Chinese medicine 

TFA trifluoro acetic acid 

TG thapsigargin 

TGFβ transforming growth factor beta 

TNFα tumour necrosis factor alpha 

TRAP thrombin receptor-activating peptide 

TXA2 thromboxane A2 

WB western blot 

w/o without 
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1.2 Reagents 
 

- Boswellic acids (BAs) were prepared by Dr. J. Jauch 1 (Saarbrücken) 

- Boswellia serrata (BS) extracts were generous gifts from Burg-Apotheke, Königstein, 

Germany and Pharmasan GmbH, Freiburg, Germany 

- Celecoxib, etoricoxib, rofecoxib were sythesized by WITEGA Laboratories Berlin-

Adlerhof GmbH, Germany 

- Insulin was a generous gift from Aventis Deutschland GmbH, Frankfurt, Germany 

- 5-LO antibody was provided by Dr. O.Rådmark, Stockholm, Sweden 

- 12-LO antibody was provided by Dr. C.Funk, Kingston, Canada 

- TGFβ was prepared  from human platelets as described 2 

- BAPTA/AM, Fura-2/AM were from Alexis Corp, Lausen, Switzerland 

- Ampicillin, Coomassie brilliant blue G250, IPTG, leupeptin, oxalacetic acid, were 

from Applichem, Darmstadt, Germany 

- Antibodies against CD41-PC7, CD62-PE, and PE-labelled isotype IgG1 control were 

purchased from Beckman Coulter, Krefeld, Germany 

- Antibodies against PAC1-FITC and FITC-isotype IgM and matrigel were from Becton 

Dickinson Biosciences, Freiburg, Germany 

- CatG antibody, CDC and fluorescence dye secondary antibodies (Rockland Inc.) were 

from Biomol GmbH, Hamburg, Germany 

- Bradford and Lowry reagents were from Biorad, München, Germany 

- α-Cyano-4-hydroxycinnamic acid was purchased from Bruker Daltonics Inc., 

Manning Park Billerica, MA, USA 

- Alendronate, cathepsin G inhibitor I, chymotrypsin, DNA-PK inhibitor, elastase, PP2, 

PP3; Protein kinase assay kit (non-radioactive); staurosporine, SU6656 and tryptase 

were from Calbiochem, Schwalbach/Ts., Germany 

- 5-HETE, LTB4 and zileuton were from Cayman chemical company, Ann Arbor, MI, 

USA 

- Antibodies against Akt and pAkt, pBad, DNA-PK, Ras; Akt1 kinase and Akt kinase 

assay kit were from Cell Signaling / New England Biolabs, Frankfurt, Germany 

- Boc-Ala-Ala-Nva-SBzl, Cathepsin G, elastin-sepharose, N-Suc-AAPF-pNA, 

proteinase 3 were from Elastin Products Company Inc., Owensville, MS, USA 

- α-Amyrin and ursolic acid were from Extrasynthèse, Genay, France 
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- [3H]-arachidonic acid, [32P]-ATP, CM Sephadex C-50, EAH-Sepharose 4B, [14C]-

isopentenylpyrophosphate, TNFα release kit, nitrocellulose and PVDF membrane 

were from GE Healthcare, Amersham Bio-Sciences, Freiburg, Germany 

- Plastic/PS-materials were from Greiner bio-one GmbH, Frickenhausen, Germany 

- DMEM, glutamine, LB, LPS, penicillin/streptomycin, RPMI were from Invitrogen 

GmbH, Karlsruhe, Germany 

- WB blocking buffer, fluorescence dye secondary antibodies were from LiCor 

Biosciences GmbH, Bad Hombug, Germany 

- Grams violet, β-mercaptoethanol, methanol,  trifluoracetic acid were from Merck 

Chemicals, Darmstadt, Germany 

- Collagen reagent Horm was from Nycomed, Singen, Germany 

- CpG ODN 1018 were from Operon biotechnologies GmbH, Köln, Germany 

- Nycoprep and sodium pyruvate were from PAA, Pasching, Austria 

- Optiphase HiSafe scintillation liquid was from Perkin-Elmer Deutschland, Rodgau-

Jügelsheim, Germany 

- DNA-PK, DNA-PK peptide substrate were from Promega Deutschland GmbH, 

Mannheim, Germany 

- Ni2+-NTA resin was from Qiagen GmbH, Hilden, Germany 

- Trypsin (sequencing grade) was from Roche, Mannheim, Germany 

- Antibodies against β-actin, cPKC, pTyr were from Santa Cruz Biotechnology, 

Heidelberg, Germany 

- ATP, glucose, GSH, PBS were from Serva, Heidelberg, Germany 

- ADP, arachidonic acid, ASS, ATP-agarose, N-α-benzoyl-DL-arginine-pNA, 

bromophenolblue, BWA4C, chymase, cytochalasin B, dextran, diclofenac, DMSO, 

DTNB, DTT, farnesol, fatty acid free BSA, FCS, fMLP, geranylpyrophosphate, γ-

globulin, ionomycin,  ionophore A-23187, isopentenylpyrophosphate, lysozyme, N-

methoxysuc-AAPV-pNA, m-3M3FBS, n-octyl-β-glucopyranoside, non essential 

amino acids, NP-40 (Igepal), PAF, PEG 4000, PGB1, phosphatidylcholine, SDS, 

soybean trypsin inhibitor, sucrose, thapsigargin, thrombin, triethanolamine, trypan 

blue, Tween 20, Tx-100,  U-73122, U-73343, wortmannin, zileuton and all other 

chemicals were purchased in analytical grade from Sigma-Aldrich Chemie, Steinheim, 

Germany 

- Vivaspin cut-off columns were from Vivascience AG, Hannover, Germany 
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2 Introduction 

2.1 Boswellic acids in traditional medicine and treatment of 
chronic diseases 

  

Frankincense, the gum resin of the Boswellia serrata (BS) tree (fig.211), was known to 

ancient civilisations and is still used for ritual purposes in the Catholic Church and traditional 

ceremonies in Northern Africa. The first documentation of incense was the Papyrus Ebers 

written at the time of Pharao Amenophes I around 1500 BC 3. The gum resin extracts of BS 

have traditionally been applied in folk medicine for centuries to treat various chronic 

inflammatory diseases, and experimental data from animal models and clinical studies on 

humans confirmed an anti-inflammatory potential of lipophilic BS extracts, for review see 4-7. 

Detailed analysis of the ingredients of these extracts revealed that the pentacyclic triterpenes 

boswellic acids (BAs) (fig.212) possess pharmacological activities which may be responsible 

for the respective anti-inflammatory properties 6. Among the pentacyclic triterpenes, 

derivatives of tirucallic acid, dehydro boswellic acid and lupeolic acid are major ingredients 

with pharmocological effects.  

A number of relevant targets of BAs including 5-lipoxygenase (5-LO) 8, platelet-type 12-LO 

(p12-LO) 9, human leukocyte elastase (HLE) 10, toposiomerase I and II 11 and IκB kinases 

(IKK) 12 were identified. BAs induce apoptosis in tumour cells, 13, 14 accompanied by 

decreased  
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extracellular signal-regulated kinase (ERK) phosphorylation 16 and enhanced caspase activity 
14. BAs differentially interfere with signalling molecules and pathways related to 

inflammatory processes and tumour growth including Ca2+-influx, mitogen-activated protein 

kinases (MAPK) and Akt 17, 18. Colon cancer proliferation is inhibited by BAs due to a p21-

dependent pathway 19. All these effects are dependent on the structure of the BAs, since 11-

keto-BAs have different targets than 11-me-BAs. 

Several functional effects of BS extracts on animals and humans have been described; 

however, the underlying molecular mechanisms still seem to remain unclear. The extracts 

reduce carrageenan-induced oedema and chemical-induced colitis in rats and mice 20 and 

several studies on humans investigated the effectiveness of BS extracts in chronic 

inflammatory diseases like arthritis, Crohn´s disease and ulcerative colitis. In a placebo-

controlled (randomized, double-blind) study of patients with osteoarthritis, all patients (n = 

30) receiving drug treatment reported a decrease in knee pain, increased knee flexion and 

increased walking distance, which is statistically significant and clinically relevant 21. The 

effect of BS extract (3 x 350 mg/d) was compared to sulfasalazine treatment (3 x 1 g/d) in 

patients suffering from ulcerative colitis grade II and III. All clinical parameters improved and 

82% of treated patients went into remission; in the case of sulfasalzine, the remission rate was 

75% 22. Studies in patients with Crohn´s disease led to similar results: BS extracts were either 

as effective or even more effective than mesalazine or sulfasalazine 23, 24. BS extracts (H15®) 

were successfully tested for cancer treatment in palliative therapy of patients with brain 

tumours and radiochemotherapy-related leukoencephalopathy. Oedema were reduced and all 

patients with leukoencephalopathy improved clinically for several months 25. Due to these 

results, the medicinal product H15® (containing BS extract) was designated by the EMEA as 

an orphan drug and is approved in part of Switzerland for the treatment of peritumoral brain 

oedema. 

It is generally believed that the anti-inflammatory properties of BAs are mainly due to 

interference with 5-LO product synthesis 4, 5 and also to interference with the nuclear factor κ 

B (NFκB) signalling pathway 12. Moreover, BAs modulate central signal transduction 

pathways such as Ca2+ signalling and MAPK activation 17, relevant for diverse functions of 

inflammatory cells. Despite these numerous putative target molecules of (11-keto-)BAs, the 

pharmacological relevance of the interactions with these targets is a matter of debate. Most of 

these interactions occur at relatively high concentrations that are far above the plasma levels 

of (11-keto-)BAs (<1 µM) reached following oral application of a standard dosage of B. spec 
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extracts, and are considered not relevant in vivo 26, 27. In summary, direct interactions of BAs 

with high-affinity targets that are pharmacologically relevant in vivo still remain to be shown.  

 

 

2.2 Cathepsin G; a neutrophil serine protease and its role in 
disease 

 

Cathepsin G (CatG) is a neutral serine protease with a molecular weight (MW) of 25.8 kDa, 

mainly expressed in pro-inflammatory leukocytes (i.e. polymorphonuclear leukocytes 

(PMNL) and macrophages), where it is stored in azurophilic granules in their active form and 

released upon exposure to inflammatory stimuli by degranulation 28, 29. Neutrophil infiltration, 

which is mediated by CatG, is a common pathological feature in acute inflammatory disorders 

and is necessary for phagocytosis and eradication of microorganisms 30. It was demonstrated 

that CatG is crucial for resistance against infection with Staphylococcus aureus 31. In addition, 

CatG contributes to protection against certain fungal infections 32, 33. However, neutrophils are 

also present in inflammatory diseases which are not caused by microorganisms, and active 

CatG is detectable at sites of inflammation 30. It is known that ligation of cell-surface 

receptors, such as β2-integrins, activates a cascade of cytoplasmic signalling molecules and 

triggers an influx of calcium ions (Ca2+). The increase in the intracellular concentration of 

Ca2+ ([Ca2+]i) mediates the fusion of granules to the plasma membrane 34. Once released, 

neutrophil serine proteases are potentially fully active because they function optimally in a 

neutral environment. Biochemical studies indicate that CatG preferentially hydrolyses peptide 

bonds after aromatic amino-acid residues 35. Following release into the plasma, it cleaves 

extracellular matrix proteins including laminin, proteoglycans, collagen, fibronectin and 

elastin, implying a role in local destruction of connective tissue at sites of injury 36. Under 

normal circumstances, this extracellular protease activity is inhibited by serpins, which are 

endogenous serine protease inhibitors that form complexes with these extracellular proteases. 

Therefore, anti-chymotrypsin binds to and inhibits CatG 35, 37. In addition, neutrophil elastase 

and CatG are also inhibited by secretory leukocyte protease inhibitor 37. It was recognized 

several years ago that serpins not only inhibit proteolysis but also prevent recruitment of 

inflammatory cells 38, 39. Although the role of CatG in host defence is acknowledged, 

neutrophil serine proteases have also been implicated in various non-infectious, inflammatory 

processes. In support of this idea, inhibition of neutrophil serine proteases has been shown to 

reduce neutrophil infiltration and neutrophil-mediated injury 40-42, and mice with a CatG 
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deficiency are resistant to experimental arthritis 43, 44. Based on these properties, CatG is 

implicated in many inflammatory disorders including asthma, chronic obstructive pulmonary 

disease (COPD), emphysema, reperfusion injury, psoriasis and rheumatoid arthritis 30. In 

addition, CatG may stimulate platelets via the protease-activated receptor (PAR)-4 for 

aggregation and secretion 45. Truncation of chemokines and cytokines by CatG increased its 

monocyte chemotactic activity about 1,000-fold 46. Another study by Sun et al. demonstrated 

that CatG is a chemotactic agonist for the G protein-coupled formyl peptide receptor (FPR) 47. 

CatG binds FPR with low affinity, inducing a modest Ca2+ flux and weak activation of 

MAPK. However, the stimulation with CatG of cells that express FPR induced the 

translocation of protein kinase C ξ (PKCξ) from the cytoplasm to the plasma membrane, 

which is essential for FPR-dependent chemotaxis. Therefore, extracellular CatG might 

contribute to leukocyte recruitment in vivo by binding to FPR on neutrophils and monocytes 
48. The agonistic activity of CatG on FPR might not depend on proteolysis, since no small and 

soluble molecules were released during the interaction of the enzyme with the receptor 48, 49. 
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2.3 DNA-dependent protein kinase and Akt 
 
Human DNA-dependent protein kinase (DNA-PK) and the protein kinase B (Akt/PKB) are 

important signal transducers for growth, survival and apoptosis50-52. DNA-PK is a nuclear 

serine/threonine protein kinase that, when activated by DNA 52, phosphorylates several DNA-

binding substrates, including the tumour suppressor protein p53 50. DNA-PK and Akt 

signalling pathway has emerged as a critical mediator of diverse cellular processes including 

metabolism, gene expression, migration, angiogenesis, proliferation and cell survival. Since 

Akt is tightly controlled, the consequences of its deregulation have been implicated in the 

development of cancers and diabetes 53, 54. The activity of Akt is markedly stimulated in a 

phosphatidylinositol 3-kinase (PI3K)-dependent manner. Akt is phosphorylated at Thr-308 by 

the PI3K-activated 3-phosphoinositol-dependent kinase (PDK1). However, active Akt does 

not only depend on Thr-308 phosphorylation, but is also phosphorylated at Ser-473. The 

responsible kinase remained unclear for a long time, but was recently identified as DNA-PK 

(fig. 213) 55. 

 
figure 213: Model for Akt (PKB) activation by upstream kinases. Upon stimulation by growth factors, PI3K is 
activated, which in turn generates the second messenger PIP3 to recruit Akt and PDK1 to the membrane lipid 
rafts, where Akt is subsequently phosphorylated on Thr-308 and the hydrophobic motif Ser-473 by PDK1 and 
DNA-PK, respectively.  
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It has been shown that efficient DNA repair requires growth factor signalling 56 and that this 

effect may be due to the physical association of DNA-PK with epidermal growth factor 

receptor 57. DNA-PK is activated upon DNA damage by UV irradiation 58 and bacterial 

products such as lipopolysaccharides (LPS) and CpG-DNA 59, and these signals or factors 

also activate Akt 59. Induction of apoptosis by cisplatin was explained by a decrease in DNA-

PK activity through proteolytic degradation of DNA-PK 60; in parallel, Akt activity and Ser-

473 phosphorylation are also significantly inhibited by cisplatin treatment 61. A number of 

oncogenes and tumour suppressor genes that function upstream of Akt have been found to 

influence cancer progression by regulating Akt through increasing PI3K activity, including 

activated Ras and Bcr / Abl 62. PTEN has also been identified as a human tumour suppressor 

and loss of PTEN correlates with increased Akt activity 54.  

The survival factor Bad is a protein downstream of Akt which regulates (via co-recruitment of 

other proteins like Bcl-2 or 14-3-3) cell survival or apoptosis 53. It is possible to determine 

Akt activity in vivo by measuring phosphorylation of Bad at residue Ser-136 (fig. 214). The 

pathways leading to DNA-PK/PI3K-Akt activation by LPS and CpG-DNA still remain poorly 

defined. Furthermore, DNA-PK and Akt are involved in activation of IKK and NFκB 18, 63, 

though cancer and inflammation are hardly influenced as well as bacterial infections. In 

conclusion, Akt is an important key mediator in survival / apoptosis mechanisms. 

 

 
figure 214: Downstream signalling of Akt: Bad is phosphorylated by Akt on Ser-136 residue. Co-
recruitment of other proteins (14-3-3 or Bcl-xL) is related to cell survival or apoptosis. 
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2.4 Cellular signalling: Ca2+-homeostasis and MAP kinases 
 
Many cellular processes are mediated by changes in [Ca2+]i. Stimulation of cells causes 

depolarisation of the plasma membrane and an opening of Ca2+ channels. The Ca2+ 

concentration between cytosol (10-100 nM) and extracellular space (1.5 – 2 mM) differs by 

factor 104 to 105 64. [Ca2+]i does not only rise by opening plasma membrane channels, 

intracellular Ca2+ stores like sarcoplasmatic reticulum (SR) or endoplasmatic reticulum (ER) 

may also release Ca2+, contributing to substantial elevations in [Ca2+]i . Rapid influx of Ca2+ 

acts as second messenger and influences important signalling cascades like the MAPK 

pathway. Because of cytotoxicity of high [Ca2+]i, Ca2+ pumps like Ca2+-ATPase rapidly 

remove Ca2+ into intracellular storage sites or export it into extracellular lumen.  

BAs influence Ca2+-homeostasis, but the functional properties and the potencies of the BAs 

depend on their structure (fig. 212), in particular on the absence or presence of the 11-keto 

group. Indeed, 3-O-acetyl-11-keto-β-BA (AKBA) is frequently the most effective analogue 4, 

9, 65, 66, although in some instances the 11-keto-free BAs possess superior efficacy, depending 

on the target/effect but also on the respective cell type 11, 13, 17, 67 However, in PMNL, KBA 

and AKBA elevated [Ca2+]i, whereas the 11-methylene BAs failed in this respect 66. Finally, 

in monocytes, AKBA but not 11-methylene BAs suppressed intracellular Ca2+ levels 17. 

Platelets play a critical role in the homeostasis of the cardiovasculature but also in the 

inflammatory pathophysiology 68. Activation of platelets may lead to secretion of granular 

contents and release of arachidonic acid (AA), shape change, adhesion, and aggregation 69. 

Thrombin or collagen are strong agonists of platelets, whereas platelet-activating factor 

(PAF), adenosine diphosphate (ADP), serotonin, or thromboxane (TX)A2 require autocrine 

stimulation for the entire platelet response 69. Soluble platelet agonists, such as thrombin, 

ADP, PAF, or TXA2, typically activate specific G protein-coupled receptors (GPCRs), 

leading to the activation of certain phospholipase (PL)C isoforms that eventually results in 

elevation of [Ca2+]i
 and activation of central signalling protein kinases (PK), including 

phosphatidylinositol 3-kinase (PI3K)/Akt, PKC isoforms and MAPK 68, 70-72.  Besides these 

effects in platelets, the four major BAs influence several signalling pathways in other cell 

types like MonoMac6 or HL-60 cells 17.  
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MAPK cascades are key signalling pathways involved in the regulation of normal cell 

proliferation, survival and differentiation. Aberrant regulation of MAPK cascades contributes 

to cancer and other human diseases. The ERK pathway in particular has been the subject of 

intense research for inhibitors for the treatment of cancer 73. ERK is a downstream component 

of an evolutionary conserved signalling module that is activated by the Raf serine/threonine 

kinases (fig. 213) 73. Raf, MEK and ERK are downstream effectors of Ras and receptor 

tyrosine kinases (RTK) like EGFR, which is mutationally activated and / or overexpressed in 

a wide variety of human cancers. RTK typically regulate cell growth and survival via several 

pathways, including Ras-Raf-MEK-ERK and PI3K-Akt-IKK cascades74. Not only RTK 

inhibitors are important for the treatment of cancers, modulation and inactivation of 

downstream targets could also facilitate the cure of many diseases. BAs interact with MAPK, 

an interesting finding that could possibly lead to new approaches in (cancer) therapy. 
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2.5 COX and LOs: Key enzymes in eicosanoid biosynthesis  
 
Inflammation is one of the most important processes in host defense; however, it often 

progresses to painful or chronically harmful diseases that require pharmacological treatment. 

The inflammatory response involves many effector mechanisms which produce a multiplicity 

of vascular and cellular reactions. One of the major findings since the discovery of the role of 

histamine in vascular processes of inflammation at the beginning of the twentieth century, is 

that many chemical mediators are involved in activating and coordinating various aspects of 

the inflammatory process 75, 76. Now we know that vasodilatation, increased microvascular 

permeability, chemotaxis, cellular activation, pain and finally repair are mediated by the local 

production and release of several specific mediators. The arachidonic acid (AA) derivatives 

prostaglandins (PGs), thromboxanes (TXs) and leukotriens (LTs), together with cytokines, 

oxygen and possibly nitrogen radicals, play a pivotal role. The non-steroidal anti-

inflammatory drugs (NSAIDs), mainly the cyclooxygenase (COX) inhibitors, which have 

been used since the introduction of acetylsalicylic acid in 1899, share many pharmacological 

properties (and side effects) and are the main drugs used to reduce the unwanted 

consequences of inflammation 76-78.  

 
As a result of proinflammatory stimuli or injuries, cytosolic phospholipase (cPL) A2 releases 

AA from cell membrane phospholipids. AA is the substrate of either lipoxygenases (LOs) or 

COX. COX-1/2 form the cyclic peroxide PGH2 as an intermediate product which is further 

converted to PGs and TXs. In addition to PGs derived from the COX pathways, LTs are 

formed by LOs from AA that exert pivotal biological functions. For LT biosynthesis, AA is 

first metabolized by 5-LO to LTA4 (fig. 215A). The unstable LTA4 is the precursor of the 

bioactive LTs such as LTB4 and the cysteinyl-LTs C4, D4, and E4. Interestingly, next to 

inflammatory and allergic diseases, 5-LO products play a crucial role in cancer development 

and atherosclerosis 79. Polymorphonuclear leukocytes (PMNL) and monocytes/macrophages 

are the major cells capable of synthesizing LTs and express high amounts of 5-LO. These 

cells are major players in chronic inflammatory diseases. In the treatment of asthma, zileuton 

is the only 5-LO inhibitor that came into the market (USA). New potent and biocompatible 

inhibitors would open a new field in therapy of asthma, several cancers and atherosclerosis, 

because 5-LO is a major target in chronic inflammation. For example, 5-LO is overexpressed 

in prostate cancer, and other malignant (compared with benign) tumour tissues80.  

The activity of 5-LO in the cell is tightly controlled. The amount of free AA, released by 

cPLA2, and its accessibility to 5-LO are determinants of LT biosynthesis. Thus, stimuli 



22 

capable of inducing leukotriene formation (e.g. fMLP, PAF and Ca2+-ionophores) cause 

activation of 5-LO81.  

The conversion of endogenously provided AA to LTA4 occurs at the nuclear membrane, and 

it seems that leukotriene formation can be particularly prominent at this locus82. On cell 

stimulation, 5-LO migrates from a soluble compartment to the nuclear membrane. Membrane-

bound FLAP might facilitate the transfer of AA to 5-LO. In cells lacking FLAP, or where 

FLAP is pharmacologically inhibited, transformation of endogenous AA by 5-LO is 

efficiently blocked 82. 5-LO is phosphorylated in vitro by the protein kinases p38 MAPK-

regulated MAPKAPK-2/3, ERK1/2, CaMKII and PKA 81. Phosphorylation does not, 

however, seem to increase 5-LO activity in vitro, but PKA-mediated phosphorylation can 

inhibit 5-LO activity83.  

Because catalysis by 5-LO requires oxidation of Fe2+ to the active Fe3+ state by lipid 

hydroperoxides, the redox tone is an important parameter of cellular 5-LO activity. 

Conditions that promote lipid peroxidation, such as formation of reactive oxygen species by 

phorbol 12-myristate 13-acetate, addition of peroxides, inhibition of glutathione perxidase 

(GPx) enzymes and depletion of glutathione, upregulate 5-LO product synthesis, whereas 

reduction of peroxides by GPx-1 and GPx-4 suppresses 5-LO product formation81. Oxidative 

stress also activates p38 MAPK; thus, an increase in peroxide tone might activate 5-LO in the 

cell by promoting phosphorylation of 5-LO 84, 85.  

Leukotriene synthesis was first observed after cell stimulation by a Ca2+ ionophore 86. 

Considerably lower concentrations of Ca2+ (~200 nM) seem to be sufficient for substantial 

activation of 5-LO in intact cells 87, as compared with purified 5-LO (which requires 1–10 μM 

Ca2+), indicating that cellular events and context modulate the Ca2+ requirement. Activation of 

5-LO in intact cells, however, might not necessarily involve Ca2+. When exogenous AA was 

provided to intact human neutrophils, substantial 5-LO product formation occurred even when 

extra- and intracellular Ca2+ had been depleted by chelating agents such as EDTA and 

BAPTA/AM 79, 88.  
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A 

 

B 

figure: 215: (A) Arachidonic acid metabolism: Arachidonic acid 
is released in inflammation and injuries by phospholipases and 
metabolized by lipoxygenases (5-LO; 12-LO; 15-LO) and 
cyclooxygenases (COX-1; COX-2)  to leukotrienes (LTs) and 
prostaglandins (PGs), respectively. (B) Structure of celecoxib   
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NSAIDs are used for the treatment of pain, fever and inflammation. Traditional NSAIDs 

inhibit both isoforms of COX which are key enzymes in the conversion of AA to PGs (fig. 

215A). The housekeeping enzyme COX-1 is primarily responsible for maintenance of 

homeostasis (gastric and renal protection, platelet function),  whereas COX-2 is mainly 

induced in response to growth factors and various cytokines at sites of inflammation and 

tumour growth 89, 90. Thus, COX-2-selective drugs, such as celecoxib, etoricoxib, valdecoxib 

and rofecoxib, showed anti-inflammatory, analgesic and antipyretic efficacies similar to those 

of traditional NSAIDs, but displayed a lower incidence of symptomatic ulcers and ulcer 

complications 91.  

 

Concomitantly with the introduction to the market, the COX-2-selective inhibitor, celecoxib 

(fig.215B) was shown to significantly reduce polyp formation and polyp size in patients with 

familial adenomatous polyposis at rather high doses (2 x 400 mg/d) 92. Clear evidence that 

COX-2-inhibition alone is not responsible for the anticarcinogenic effects of celecoxib has 

been obtained from cell culture and animal studies showing antiproliferative effects of this 

drug in human colon carcinoma cells irrespective of COX-2 expression 93, 94. Several COX-2-

independent molecular mechanisms with unclear in vivo relevance were identified and 

assumed to contribute to the anticarcinogenic effects of celecoxib, for instance 3-

phosphoinositide-dependent kinase-1 (PDK-1, IC50 = 48 µM for celecoxib) and its 

downstream target Akt kinase. It was also shown that an inhibition of the endoplasmatic 

reticulum Ca2+-ATPase (IC50 ≈ 35 µM) is associated with the induction of apoptosis 95-98. 

However, the impact of these findings was discussed controversially, since a significant 

discrepancy exists between the concentrations of celecoxib found in the plasma of patients 

under tumour therapy (3-8 µM) 99 and those concentrations needed to affect intracellular non-

COX-2 targets (≥ 30 µM, in vitro assays). Hence, the exact molecular mechanisms 

responsible for the effects of celecoxib at higher doses are still a matter of intensive research. 
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2.6 Aim of this work 

 
Extracts of B. spec. containing bioactive BAs have proven to be effective in the treatment of 

chronic inflammatory diseases such as rheumatoid arthritis and ulcerative colitis and have 

been applied in the Indian ayurvedic medicine and traditional Chinese medicine (TCM) for 

centuries. Due to a growing public interest in Germany in natural (plant-derived) compounds 

as safe and well-tolerable drugs during the last decades, the scientific community is 

increasingly focussing on the elucidation of the mechanisms by which these remedies act on 

the molecular and cellular level. This interest is substantiated by recent clinical trials 

demonstrating beneficial effects of BS extracts in several inflammatory diseases such as 

Crohn´s disease, ulcerative colitis and certain types of cancer. However, the utilised extracts 

consist of a plethora of different compounds. Although BAs represent the largest fraction and 

are considered to be important pharmacological principles, application of this mixture in 

cellular experiments for the purpose of identifying molecular targets is not feasible, due to the 

heterogeneity of the extract and the diversity of the ingredients. Thus, investigations on the 

cellular level should start with the purified BAs. Research started 15 years ago, and has 

yielded a number of relevant target proteins, including 5-LO6. AKBA was regarded as the 

most potent BA but the other BAs are also active in several experimental settings. Modulation 

of LT formation, which are key mediators of inflammation with additional implications in 

carcinogenesis, was described by a series of studies. Other targets (e.g. HLE, IKK, NFκB), 

related to cell proliferation and apoptosis, were also identified 18, 100. None of these findings, 

however, can presently provide a satisfying explanation for the anti-inflammatory effects of 

the extracts observed in clinical settings and in traditional folk medicine because of the high 

effective concentrations required. Hence, this thesis was designed to find pharmacologically 

relevant targets of BAs. Haematopoietic cells (leukocytes, platelets) and cancer cell lines 

(MCF-7, LNCaP, MM6, HL-60) were used as model systems. Investigations of the cellular 

and molecular effects of BAs were started in this group by Oliver Werz 101. An initial thesis 

focussing on the effects of BAs on neutrophils was provided by Anja Altmann102. Based on 

these initial findings 66, studies were continued and expanded toward other related cell types 

(monocytic cells, platelets) in Daniel Poeckel’s thesis 103. He examined a putative correlation 

of intracellular Ca2+ mobilisation and ERK1/2 activation by 11-keto-BAs 66 to the generation 

of ROS, release of AA and formation of eicosanoids104.  
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In this thesis, the antagonistic effects of BAs on Ca2+ mobilisation and functional responses in 

blood cells were investigated. The results with human platelets further underscored the 

interactions of BAs with platelet-type 12-LO. A construct of immobilised BAs was utilised to 

identify putative target proteins in cell lysate supernatants via a pulldown approach (protein 

fishing) and MS analysis. The functional consequences of the interactions of BAs with the 

identified proteins were studied. The most interesting proteins found were cathepsin G 

(CatG), DNA–dependend protein kinase (DNA-PK), Akt, PKC and farnesyl pyrophosphate 

synthase (FPPs).  

 

Celecoxib is a well-known selective COX-2 inhibitor. Celecoxib was introduced to the 

European market in 1998 as Celebrex® and quickly captured the NSAIDs market. After 

rofecoxib (Vioxx®) was withdrawn, news surrounding the well-tolerated drug celecoxib 

quieted down. Several patients with colon carcinoma or strong polyp formation taking 

celecoxib strongly benefited from it and polyps or tumours regressed, but that occurred 

independently of COX inhibition 94. Previous work suspected a role of leukotrienes in the 

formation of colon carcinoma, and this was the reason to test celecoxib for interference with 

5-lipoxygenase in vitro and in vivo 94.  
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3 Methods 

3.1 Cells and cell culture 

3.1.1 Cell culture 

All cell lines were cultured in incubators (WTB Binder Labortechnik, Tuttlingen, Germany) 

at 37°C, 5% CO2 and saturated humidity. The cultures were seeded at a density of 2 x 105 

cells per ml. Cells were harvested by centrifugation (200 x g, 10 min at room temperature) 

and washed once in PBS, pH 7.4. To exclude toxic effects of BAs during various incubation 

periods, the viability of cells was analysed by means of trypan blue exclusion. Incubation with 

30 µM of BAs at 37°C for 30 min caused no significant change in the number of viable cells. 

 

3.1.2 Mono Mac 6 cells  

MM6 cells (monocyte like cell line) were obtained from Dr. Ziegler-Heitbrock (Munich, 

Germany) and maintained in RPMI 1640 medium with glutamine supplemented with 10% 

fetal calf serum, 100 µg/ml streptomycin, 100 U/ml penicillin, 1 mM sodium pyruvate, 1x 

nonessential amino acids, 1 mM oxalacetic acid and 10 µg/ml insulin. MM6 cells were treated 

with 2 ng/ml TGFβ and 50 nM calcitriol for 4 days in order to obtain differentiated cells 105. 

 

3.1.3 LNCaP / HL-60  

LNCaP (human prostate cancer cells) and HL-60 (human leukemic cells) were maintained in 

RPMI 1640 medium with glutamine supplemented with 10% fetal calf serum, 100 µg/ml 

streptomycin, 100 U/ml penicillin. 

 

3.1.4 MCF-7  

MCF-7 (human mamma carcinoma cells) were maintained in DMEM high glucose medium 

supplemented with 10% fetal calf serum, 100 µg/ml streptomycin, 100 U/ml penicillin and 1 

mM sodium pyruvate. 
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3.1.5 RBL-1 

RBL-1 (rat basophilic leukemia cells) were maintained in RPMI 1640 medium with glutamine 

supplemented with 10% fetal calf serum, 100 µg/ml streptomycin, 100 U/ml penicillin, 1 mM 

sodium pyruvate, 10 mM HEPES and 1x nonessential amino acids. 

 

3.2 Isolation of human PMNL (polymorphonuclear leukocytes) from 

venous blood 

Human PMNL were freshly isolated from leukocyte concentrates obtained from St. Markus 

Hospital (Frankfurt, Germany). In brief, venous blood was taken from healthy adult donors 

and subjected to centrifugation at 4,000 x g for 20 min at 20°C for preparation of leukocyte 

concentrates. PMNL were promptly isolated by dextran sedimentation, centrifugation on 

Nycoprep cushions (PAA Laboratories, Linz, Austria), and hypotonic lysis of erythrocytes 85, 

106, 107. PMNL (7.5 x 106 cells/ml; purity > 96−97 %) were finally resuspended in PBS pH 7.4 

plus 1 mg/ml glucose and 1 mM CaCl2 (PGC buffer). 

 

3.3 Isolation of human platelets from venous blood 

Platelets were isolated from supernatants (800 x g, 10 min, RT) after centrifugation of 

leukocyte concentrates on Nycoprep cushions (see above) to obtain platelet rich plasma 

(PRP). PRP was then mixed with PBS pH 5.9 (3:2, v/v), centrifuged (2,000 x g, 15 min, RT) 

and the pelleted platelets were resuspended in PBS pH 5.9 / 0.9% NaCl (1:1, v/v), washed by 

centrifugation (2,000 x g, 10 min, RT) and finally resuspended in PBS pH 5.9. For 

incubations with solubilized compounds, ethanol or DMSO was used as vehicle, never 

exceeding 1 % (v/v). 

 

3.4 Human in vitro whole blood assay. 
 
Aliquots of freshly heparinized human blood (450 µl) obtained from healthy male and female 

informed volunteers were pre-incubated with the drugs or vehicle (DMSO) for 30 min at 

37°C. Formation of 5-LO products was initiated by the addition of Ca2+-ionophore dissolved 

in 50 µl autologous plasma to obtain a final concentration of 20 µM A23187 (final DMSO 

concentration was < 1 %, final volume 0.5 ml). The reaction was terminated after 15 min by 

rapid cooling of the plate on ice. Then, the samples were centrifuged at 1000 x g and 4°C for 



29                        

15 min and eicosanoid concentrations (5-HETE, LTB4, 12(S)-HETE, 15(S)-HETE and PGE2) 

in the plasma supernatant were analyzed using LC/MS-MS. LC-MS/MS analysis was 

performed on a API 4000 triple quadrupole mass spectrometer (Applied Biosystems, 

Darmstadt, Germany). Linearity of the calibration curve was proven from 0.5 to 2500 ng/mL 

for each eicosanoid. Mean accuracy of the assay was found to be 99.9 +- 3.25% for LTB4, 

99.85 +- 4.8% for 5-HETE, 100.2 +- 4.8% for 12-HETE and 99.76 +- 4.4% for 15-HETE. 

This work was done in collaboration with Dr. TJ Maier and Dr. Geisslinger, Department of 

Clinical Phamracology, University of Frankfurt 

 

3.5 Expression and purification of 5-LO from Escherichia coli 

Human recombinant 5-LO protein was expressed in E. coli JM 109 cells, transfected with the 

plasmid pT3-5LO, and purification of 5-LO was performed via affinity chromatography as 

described 108. Cells were grown overnight in LB medium supplemented with 100 µg/ml 

ampicillin, transferred to M9 minimal medium (48 mM Na2HPO4, 22 mM KH2PO4, 8.5 mM 

NaCl, 19 mM NH4Cl, 6.3 mM NaOH, glycerol 2% and 100 µg/ml ampicillin, pH 7.4 casein 2 

g/l) and expression of 5-LO was induced with 200 µM IPTG. Cells were harvested by 

centrifugation (1,500 x g, 15 min, 4°C) lysed by incubation in 50 mM triethanolamine/HCl 

pH 8.0, 5 mM EDTA, soybean trypsin inhibitor (60 µg/ml), 1 mM 

phenylmethylsulfonylfluoride (PMSF), 1 mM DTT, and lysozyme (500 µg/ml), homogenized 

by sonification (Bandelin, Sonoplus HD 200) (3 x 15 s) on ice and centrifuged at 19,000 x g 

(Sorvall RC 5B plus) for 15 min at 4°C. The pellet was discarded. After centrifugation of the 

supernatant at 100,000 x g (Beckman Optima LE-80K) for 70 min at 4°C, the resulting 

supernatant was applied to an ATP-agarose column (Sigma-Aldrich, Munich, Germany), and 

the column was eluted with 20 mM ATP in PBS / EDTA 105. Partially purified 5-LO was used 

immediately for in vitro activity assays. 
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3.6 Expression and purification of his-tagged platelet-type 12-LO 

from Escherichia coli 

Human recombinant his-tagged platelet-type 12-LO (his12-LO) protein was expressed in E. 

coli JM 109 cells, transfected with the plasmid pT3-his12LO, and purification of 12-LO was 

performed via ion-metal affinity chromatography (IMAC). Cells were grown overnight in LB 

medium supplemented with 100 µg/ml ampicillin, transferred to M9 minimal medium (48 

mM Na2HPO4, 22 mM KH2PO4, 8.5 mM NaCl, 19 mM NH4Cl, 6.3 mM NaOH, glycerol 2% 

and 100 µg/ml ampicillin, pH 7.4, casein 2 g/l) and expression of his12-LO was induced with 

200 µM IPTG. Cells were harvested by centrifugation (1,500 x g, 15 min, 4°C) lysed by 

incubation in lysis buffer (50 mM NaH2PO4, 300 mM NaCl, pH 8.0), 10 mM imidazol, 

soybean trypsin inhibitor (60 µg/ml), 1 mM phenylmethylsulfonylfluoride (PMSF), and 10 

mM β-mercaptoethanol, homogenized by sonification (3 x 15 s) on ice and centrifuged at 

19,000 x g for 15 min at 4°C. The pellet was discarded. After centrifugation of the 

supernatant at 100,000 x g for 70 min at 4°C, the resulting supernatant was applied to a Ni2+-

NTA-agarose column (Qiagen, Hilden, Germany), and the column was washed with 4 

volumes of lysis buffer plus 20 mM imidazol and eluted with lysis buffer plus 250 mM 

imidazol (4 ml/l bacteria culture). Partially purified his12-LO was used immediately for in 

vitro activity assays 105. 

 

3.7 Determination of 5-LO product formation in intact cells 

For assaying the 5-LO product formation of intact cells, 7.5 x 106 freshly isolated PMNL 

were resuspended in 1 ml PGC buffer. After pre-incubation with the test compounds or 

vehicle at 37°C for 10 min at the indicated concentrations, 5-LO product formation was 

started by the addition of the various stimuli (ionophore A23187, NaCl) as indicated. After 10 

min at 37°C, the reaction was stopped by addition of 1 ml ice-cold methanol and 30 µl of 1 N 

HCl, 200 ng PGB1, and 500 µl of PBS were added. 5-LO metabolites formed were extracted 

by solid phase extraction and analyzed by C-18 reversed phase HPLC (Waters, Eschborn) as 

described 109. Mobile phase was 76% methanol, 24% H2O and 0.007% trifluoracetic acid with 

a flow rate of 1.2 ml/min. PGB1 (internal standard) and 5-LO products were detected and 

calculated by Empower Pro software (Waters, Eschborn). 
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3.8 Determination of 5-LO product formation in cell-free systems 

For determination of 5-LO activity in cell homogenates, 7.5 x 106 freshly isolated PMNL 

were resuspended in PBS containing 1 mM EDTA, sonicated (3 x 10 s) at 4°C, and 1 mM 

ATP was added. For determination of the activity of recombinant 5-LO, partially purified 5-

LO (0.5 µg in 5 µl PBS) was added to 1 ml of a 5-LO reaction mix (PBS, pH 7.4, 1 mM 

EDTA, 25 µg/ml phosphatidylcholine, 1 mM ATP, and 20 µg/ml γ-globulin). In some 

experiments DTT (1 mM) or GSH (5 mM) was added to the reaction mixtures as indicated. 

After incubation with test compounts or vehicle for 10 min at 4°C, samples were warmed up 

for 30 s at 37°C and 2 mM CaCl2 and AA at the indicated concentrations were added to start 

5-LO product formation. The reaction was stopped after 10 min by the addition of 1 ml ice-

cold methanol and 30 µl of 1 N HCl, 200 ng prostaglandin B1, and 500 µl of PBS were added 
108.  Metabolites formed were analyzed by HPLC as described above. 

 

3.9 Determination of 12-LO product formation 

To determine p12-LO product formation in intact cells, freshly isolated platelets (108 /ml PG 

buffer) were supplemented with either 1 mM CaCl2, 1 mM EDTA, or 1 mM EDTA plus 30 

µM BAPTA/AM. Platelets were preincubated with the indicated agents for 15 min at 37°C. 

After addition of stimuli and further incubation at 37°C for the times indicated, the reaction 

was stopped by the addition of 1 ml ice-cold methanol and 30 µl of 1 N HCl, 200 ng 

prostaglandin B1, and 500 µl of PBS were added. p12-LO products (12(S)-hydro(pero)xy-6-

trans-8,11,14-cis-eicosatetraenoic acid (12-H(P)ETE) were extracted and then analyzed by 

HPLC 107. 12-HETE and 12-HPETE elute as one major peak, integration of this peak 

represents p12-LO product formation, expressed as ng metabolites per 108 cells.  

For determination of p12-LO product formation in broken cell preparations, platelets (108 /ml 

PG buffer plus 1 mM EDTA and 1 mM PMSF) were sonicated (3 × 10 s) and lysates were 

centrifuged (100,000 x g / 70 min / 4°C). To the resulting 100,000 x g supernatant or to 

partially purified his12-LO, BAs were added and samples were pre-warmed at 37°C for 30 

sec. CaCl2 (2 mM) was added as indicated and his- or p12-LO product formation was started 

by addition of AA (10 µM). After 10 min at 37°C, the formation of 12-H(P)ETE was 

determined as described for intact cells. 
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3.10 [3H]-Arachidonic acid release 

PRP was labeled with 19.2 nM [3H]-AA (1 µCi/ml, specific activity 200 Ci/mmol) for 2 h at 

37°C in the presence of 100 µM aspirin to avoid clotting. Then, cells were washed twice with 

PBS pH 5.9 plus 1 mM MgCl2, 11.5 mM NaHCO3, 1 g/l glucose and 1 mg/ml fatty acid free 

BSA and finally resuspended in PG buffer (108 cells /ml). Preparations of cells at pH 5.9 is 

thought to minimize temperature-induced activation 110. After 15 min at room temperature, 1 

mM CaCl2 was added 2.5 min prior stimulation with the indicated agents at 37°C. After 5 

min, incubations were put on ice for 10 min, followed by centrifugation (5,000 x g, 15 min). 

Aliquots (300 µl) of the supernatants were measured (Micro Beta Trilux, Perkin Elmer) to 

detect the amounts of [3H]-labeled AA released into the medium. 

 

3.11  Immobilization of boswellic acids and protein pull-down 

assays 

For immobilization of BAs at EAH Sepharose 4B beads, the free 3-OH group of the BAs was 

used (manuscript: Kather, N., Tausch, L., Poeckel, D., Werz, O., Herdtweck, E. and Jauch, J. 

(2008)). In brief, β-BA and KBA were treated with glutaric anhydride to form the half-esters 

Glut-BA and Glut-KBA, respectively, and analyzed by 1H- and 13C-NMR as well as by MS. 

These substances were linked to EAH Sepharose 4B by standard amide coupling procedures. 

The carboxylic acid of the BA-core was unlikely to react under standard conditions due to 

steric crowding. The success of the coupling reaction was determined by two methods: a) 

Glut-BAs were used in defined excess (2 μmol of the Glut-BAs per 1 μmol NH2-groups of the 

EAH Sepharose 4B). After the coupling reaction, the hypothetical excess of Glut-BAs (1 

µmol) could be indeed recovered. b) Treatment of Glut-BAs with KOH in isopropanol under 

reflux for ca. 3 h cleaved the ester bond and gave BA and KBA respectively, analyzed by thin 

layer chromatography. Preparation of immobilized BAs was performed by Dr. J. Jauch, 

Saarbrücken. 

For protein pull-down experiments, 3 × 107 PMNL, 5 x 107 RBL-1, 3 x 109 platelets, 1 x 107 

MM6, 3 x 107 HL-60, 5 x 107 LNCaP or 8 x 107 MCF-7 were lysed in 1 ml lysis buffer (50 

mM HEPES pH 7.4, 200 mM NaCl, 1 mM EDTA, 1% Triton X-100, 2 mM PMSF, 10 µg/ml 

leupeptin, 120 µg/ml soybean trypsin inhibitor). 50 µl of the sepharose slurries (50%, v/v) 

were added to the lysates and incubated at 4°C over night under continuous rotation. The 

Seph-beads were intensively washed 3 times with 5 volumes of binding buffer (HEPES pH 
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7.4, 200 mM NaCl, 1 mM EDTA) and precipitated proteins were finally separated and 

denatured by addition of SDS-b (20 mM Tris pH 8.0; 2 mM EDTA; 5% SDS; 10% β-

mercaptoethanol). After boiling (95°C, 6 min), beads were removed by centrifugation and the 

supernatant containing proteins were separated by SDS-PAGE and visualized by WB, 

coomassie or silver staining, respectively. 

 

3.12  SDS-PAGE  

Freshly isolated PMNL, HL-60, or MM6 cells (5 x 106 each) were resuspended in PGC 

buffer; the final volume was 100 µl. After addition of the indicated stimuli (DMSO, final 

concentration < 1% (v/v)), samples were incubated at 37°C and the reaction was stopped by 

addition of 100 µl of ice-cold 2 x sodium dodecylsulphate–polyacrylamide gel electrophoresis 

(SDS–PAGE) sample-loading buffer (SDS-b; 20 mM Tris/HCl, pH 8, 2 mM EDTA, 5% SDS 

(w/v), 10% β-mercaptoethanol), vortexed and heated for 6 min at 95°C. Total cell lysates (20 

µl) were mixed with 4 µl of glycerol/0.1% bromophenolblue (1:1, v/v) and analysed by SDS–

PAGE using a Mini Protean III system (Bio-Rad, Hercules, CA, U.S.A.) on a 4-20% gel, 

unless stated otherwise.  

 

3.13  Western Blot 

After electroblot to nitrocellulose membrane (Amersham Pharmacia, Little Chalfont, UK), 

membranes were blocked with LiCor blocking buffer mixed with 50 mM Tris/HCl, pH 7.4, 

and 100 mM NaCl (Tris-buffered saline (TBS)) (1:1, v/v) for 1 h at RT. Correct loading of the 

gel and transfer of proteins to the nitrocellulose membrane was confirmed by Ponceau 

staining. Membranes were washed and then incubated with primary antibody (AB) overnight 

at 4°C. Antibodies were diluted 1 : 1000 in LiCor blocking buffer. The membranes were 

washed and incubated with 1 : 5000 dilution of fluorescence dye-conjugated immunoglobulin 

G (LiCor, Lincoln, NE, USA) for 45 min at RT. After washing (4 x with TBS plus 0.1% 

Tween 20 and TBS), visualisation of proteins was performed using a LiCor Odyssey 2-color 

Western detection system (LiCor, Lincoln, NE, USA), according to the manufacturer’s 

instructions.  
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3.14  Colloidal Coomassie staining 

Washed (in MQ) gels from SDS-PAGE were fixed and stained 6 - 12 h on a shaking table at 

room temperature in colloidal staining solution (0.08% Coomassie Brilliant Blue G250, 1.6% 

ortho-phosphoric acid, 8% ammonium sulfate, 20% methanol) and destained in MQ until 

background was clear. 1% acetic acid (v/v) was added as indicated 111. 

 

3.15  Silver staining 

After SDS-PAGE, proteins in the gels were fixed in 5% acetic acid and 10% methanol (v/v, 

4x for 30 min), washed in MQ and sensitized 2 min in freshly prepared 0.02% Na2S2O3 

solution. After washing in MQ and incubation in “silver solution” (0.1% AgNO3) for 30 min 

the gel was developed several minutes under slow shaking in 2.5% Na2CO3 plus 300 µl/l 

formaline. The developed gel was fixed in 1% acetic acid and scanned in a scanner (AGFA 

Arcus II). 

 

3.16  In-gel digestion  

All gels were subjected to manual gel cutting using a razor blade. Dissected gel pieces were 

subjected to in-gel digestion protocols 112, 113 which were adapted for use on a Microlab Star 

digestion robot (Bonaduz, Switzerland) 114. Samples were reduced, alkylated and 

subsequently digested over night using bovine trypsin (sequencing grade, Roche, Mannheim, 

Germany). The gel pieces were extracted and the extracts were dried in a vacuum centrifuge 

and stored at -20°C until analysis. 

 

3.17  MALDI-TOF-MS  

MALDI-TOF-MS experiments were performed on an Ultraflex TOF/TOF mass spectrometer 

(Bruker Daltonics Inc., Manning Park Billerica, MA) in cooperation with Dr. M. Karas, 

Institute of Pharmaceutical Chemistry, University of Frankfurt. The samples were dissolved 

in 5 µL of water/acetonitrile/TFA (29.5/70/0.5, v/v/v). α-cyano-4-hydroxycinnamic acid (3 

mg/ml, Bruker Daltonics Inc., Manning Park Billerica, MA) in water/acetontrile/TFA 

(29.5/70/0.5, v/v/v) was used as matrix. Analyte and matrix were spotted consecutively in a 

1:1 ratio on a stainless steel target and dried under ambient conditions. The dried sample was 

washed with ice-cold 5% formic acid to reduce salt contamination prior to analysis. 
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Spectra were externally calibrated with a SequazymeTM Peptide Mass Standard Kit (Applied 

Biosystems, Foster City, CA) and internally calibrated on a tryptic auto digestion peptide (m/z 

2163.0564). The spectra were processed in flexAnalysis version 2.2 (Bruker Daltonics Inc., 

Manning Park Billerica, MA) using the SNAP algorithm (signal to noise threshold: 3, 

maximal number of peaks: 150, quality factor threshold: 40). 

Proteins were identified by Mascot (www.matrixscience.com, Matrix Science, Boston, MA) 

(peptide mass tolerance: 100 ppm; maximum missed cleavages: 1) using the NCBInr database 

(2314886 sequences; 1066605192 date 26.01.2005). Proteins with a score of 76 or higher 

were considered significant (p < 0.05). 

 

3.18  In vitro kinase assay for DNA-PK 

To determine kinase activity of DNA-PK, 20 U of the kinase were incubated with the BAs for 

10 min at 30°C in 50 µl reaction buffer (50 mM HEPES pH 7.5, 100 mM KCl, 10 mM 

MgCl2, 0.2 mM EGTA, 0.1 mM EDTA, 1 mM DTT) with 10 µg/ml CpG-ODN 1018, 80 

µg/ml BSA, 200 µM ATP, 3 µCi [32P]-ATP and 100 µg DNA-PK peptide substrate or 600 ng 

Akt-1 as substrate. Reaction was stopped by adding 20 µl of 30% acetic acid, samples were 

separated by SDS-PAGE and bands were visualized by Coomassie-staining. The dried gel 

was exposed to a radioactivity sensitive-film and [32P] incorporation was measured with a 

FLA-3000 reader (Fuji Film)63. 

 

3.19  In vivo phosphorylation 

LNCaP or MCF-7 cells were cultured overnight in a 24-well cell culture plate (8 x 104, 7 x 

104 per well, respectively), and cells were starved in serum-free media for 24 h. After 

preincubation with the BAs for 1 h, cell activity was stimulated with 10 µg/ml CpG-ODN 

1018 for 20 min. Cells were lysed with icecold lysis buffer (160 mM NaCl, 20 mM Tris pH 

7.4, Tx-100 0.1%, NP-40 0.1%, 1 mM EDTA) and phosphorylation of Akt was detected by 

Western Blot using a phospho-specific antibody. 

 

 

 

http://www.matrixscience.com/
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3.20  Akt activity assay 

Active recombinant Akt-1 (50 ng) was incubated with eNOS (Ser-1177) biotinylated peptide 

in 50 µl assay buffer (25 mM Tris pH 7.5, 10 mM MgCl2, 5 mM β-glycerolphosphate, 0.1 

mM Na3VO4, 2 mM DTT, 200 µM ATP, 1.5 mM peptide) for 30 min at room temperature. 

Reaction was stopped with 50 mM EDTA, pH 8.0, and an aliquot was transferred to a 

streptavidin coated 96-well plate. After incubation with phospho-eNOS (Ser-1177) antibody 

and a fluorescence dye-conjugated secondary antibody, visualisation was performed using a 

LiCor Odyssey 2-color Western detection system (LiCor, Lincoln, NE, USA), according to 

the manufacturer’s instructions. The amount of phosphorylated peptide is given as percent of  

maximum fluorescence115. 

 

3.21  In vitro kinase assay of PKC 

To preparate crude PKC containing samples, 6 x 107  HL-60 cells were harvested, washed and 

sonicated (5 x 10 s on ice) in 1 ml sample preparation buffer (50 mM Tris, 50 mM β-

mercaptoethanol, 10 mM EGTA, 5 mM EDTA, 1 mM PMSF, 10 mM benzamidine, pH 7.5) 

and centrifuged (100,000 x g, 60 min, 4°C). Protein concentration was determined by 

Bradford-assay. 

4.5 – 5.0 µg of the protein mixture were incubated (25 mM Tris, pH 7.0, 3 mM MgCl2, 0.1 

mM ATP, 2 mM CaCl2, 50 µg/ml phosphatidylserine, 0.5 mM EDTA, 1 mM EGTA, 5 mM β-

mercaptoethanol) for 15 min at 25°C in a 96-well plate, coated with a PKC-pseudosubstrate (-

-RFARKGSLRQKNV). The reaction was stopped with 20% H3PO4 , the wells were washed 

and treated with a biotinylated antibody against the pseudosubstrate. After incubation with a 

streptavidin-coated peroxidase and development with o-phenylenediamine, the OD 492 nm 

was measured in a plate reader. 

 

3.22  Farnesyl pyrophosphate synthase activity assay 

Farnesyl pyrophosphate synthase activity was determined in vitro. 100 mio HL-60 cells were 

homogenized in 5 ml ice-cold homogenisation buffer (0.3 M sucrose, 10 mM EDTA, 1.2 mM 

β-mercaptoethanol, pH 7.4) by sonication (3 x 8 s) on ice and centrifuged (900 x g, 5 min, 

4°C) to remove cell debris. To obtain the peroxisomal fraction, the supernatant was 

centrifuged twice (8,700 x g, 10 min, 4°C and 10,000 x g, 10 min, 4°C). The resulting pellet 

was resuspended in ice-cold resuspension buffer (20 mM imidazol, 5 mM DTT, pH 7.4). 
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Protein concentration was measured by Lowry-assay. The reaction was started by addition of 

100 µg of total protein in 150 µl assay buffer (25 mM HEPES pH 7.4, 2 mM MgCl2, 1 mM 

DTT, 5 mM KF, 1% n-octyl-β-glucopyranoside, 20 µM geranylpyrophosphate, 13.3 µM 

[14C]-IPP (55 mCi/mmol)) with the indicated BAs or alendronate. After 45 min at 37°C the 

reaction was stopped by addition of 150 µl stop buffer (2.5 N HCl in 80% ethanol, 100 µg/ml 

farnesol), the mixture was hydrolysed (30 min, 37°C) and pH normalized with 150 µl NaOH 

10%. The farnesyl pyrophosphate was extracted with 1 ml n-hexane and 200 µl of the organic 

phase was pipetted into 3 ml scintillation liquid to measure (Micro Beta Trilux, Perkin Elmer) 

the produced [14C]-FPP . 

 

3.23  Release of TNFα in MM6 

Differentiated MM6 cells (106 / well) were preincubated in a 24-well plate for 30 min with the 

indicated compounds. After incubation with stimuli for 4 h, 50 µl of cell supernatants were 

transferred together with a biotinylated TNFα antibody (source: rabbit) into a 96-well plate 

(coated with an anti-rabbit antibody). After washing and incubation with a streptavidin-

peroxidase, colour development of the ELISA-substrate was determined within 30 min at 450 

nm. 

 

3.24  Protease activity assays 

Inhibition of the enzymatic activity of all proteases was determined in a 96-well plate format 

by mixing the protease with the test compounds or DMSO as vehicle (never exceeding 0.5%) 

as control in the respective assay buffer in a total volume of 200 µl and subsequent incubation 

for 20 min at 25°C. The reaction was then started by addition of the respective chromogenic 

protease substrate and the proteolysis was monitored at 410 nm by spectrophotometrical 

measurement using a Victor2 plate reader (PerkinElmer). Inhibition of the protease is given as 

the percentage of control without inhibitor (DMSO as vehicle).  

For analysis of crude CatG, the enzyme was freshly prepared from PMNL (2.5 × 107 /ml PGC 

buffer) that were stimulated with 10 µM cytochalasin B and 2.5 µM fMLP for 5 min at 37°C 
116. After centrifugation at 1,200 x g for 5 min at 4°C the resulting supernatant (containing 

approx. 10 µg CatG/ml) was immediately used for CatG activity assays. For analysis of 

isolated CatG, the enzyme was purified from PMNL as described below. The assay was 

composed of 100 ng crude CatG (approx. 10 µl supernatant) or alternatively 200 ng of 
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purified enzyme, diluted in 180 µl HEPES 0.1 M, NaCl 0.5 M, pH 7.4. As substrate for CatG, 

N-Suc-Ala-Ala-Pro-Phe-pNA (Suc-AAPF-pNA) (1 mM final concentration) was used and the 

absorbance was measured at 410 nm at 25 or 37°C. Kinetic studies were performed with 

substrate concentrations from 0.1 to 4 mM and the Km was determined from initial rate of 

hydrolysis by the Lineweaver-Burk method 117. 

Inhibition of related proteases was performed in analogy to CatG adjusting the amount of 

protease, the assay buffer and the substrate individually to each type of protease as follows: 

Tryptase, 0.5 µg purified enzyme, Tris-HCl 0.1 M, pH 8.3 as assay buffer, and N-α-benzoyl-

DL-arginine-pNA (1 mM) as substrate. Chymase, 0.1 µg purified enzyme, Tris-HCl 0.45 M, 

NaCl 1.8 M, pH 8.0, and 0.5 mM Suc-AAPF-pNA as substrate. Chymotrypsin, 0.1 µg 

purified enzyme, Tris-HCl 0.1 M, CaCl2 25 mM, pH 8.3 and 0.2 mM Suc-AAPF-pNA as 

substrate. Elastase, 0.15 µg purified enzyme, HEPES 0.1 M, NaCl 0.5 M, pH 7.4 and 0.2 mM 

N-methoxysuccinyl-Ala-Ala-Pro-Val-pNA as substrate. Proteinase 3, 0.5 µg purified enzyme, 

MOPS 0.1 M, NaCl 0.5 M, 5,5´-dithiobis-(2-nitro-benzoic acid) 0.1 mM, pH 7.5, and 1 mM 

Boc-Ala-Ala-Nva-SBzl as substrate.  

 

3.25  Docking experiments 

Rigid automated molecular docking was performed in collaboration with Dr. G. Schneider, 

Institute of Organic Chemistry and Chemical Biology, University of Frankfurt, using GOLD 

3.01. (Cambridge Crystallographic Data Centre, Cambridge, UK, http://www.ccdc.cam.uk) 

which relies on a genetic algorithm 118. We used the known crystal structure of CatG (1T32) 

from the database PDB. Hydrogens were added, and then energy minimized using the 

AMBER99 force field within the software MOE 119. For the co-crystallized inhibitor (2-[3-

{methyl[1-(2-naphthoyl)piperidin-4-yl]amino}carbonyl)-2-naphthyl]-1-(1-naphthyl)- 2-

oxoethylphosphonic acid) hydrogen atoms were added, and energy minimization was 

performed using the MMFF94x force field 120. The 3D structure of AKBA was recently 

determined (manuscript: Kather, N., Tausch, L., Poeckel, D., Werz, O., Herdtweck, E. and 

Jauch, J. (2008)). GOLD parameter settings for the genetic algorithm were: number of 

generations = 100000, population size = 100, selection pressure = 1.1, number of islands = 5, 

niche size = 2, migrate = 10, mutate = 95, crossover = 95. A 20 Å radius around the active site 

defined the binding pocket. The default Goldscore function 118 was employed for scoring the 

predicted receptor-ligand complexes. Larger positive score values indicate more favourable 

receptor-ligand complexes, negative values indicate unfavourable binding modes (non-
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binding). Each docking run was repeated ten times to obtain average score values with 

standard deviations. The same method was used for the redocking of the co-crystallized 

inhibitor. RMSD values between the coordinates determent via x-ray crystallography and the 

docking solutions were computed, and a mean value with standard deviation was calculated. 

PyMOL was used for visualization of docking poses 121. This work was almost completely 

done by Lutz Franke, Dr. G. Schneider, Institute of Organic Chemistry and Chemical 

Biology, University of Frankfurt.  

 

3.26  Measurement of platelet aggregation (turbidimetric) 

Aggregation of platelets in (PRP or diluted PRP) washed platelets was determined using a 

turbidimetric light-transmittance device (ChronoLog 490 2D, Haverton, PA, USA). 30 ml 

whole blood was centrifuged (200 x g, 15 min, without brake) and 500 µl of ACD (85 mM 

trisodium citrat, 65 mM citric acid, 100 mM dextrose) were added to 6 ml of PRP. After 

centrifugation for 10 min at 800 x g the pellet was resuspended carefully in Tyrode´s buffer 

(129 mM NaCl, 8.9 mM NaHCO3, 0.8 mM KH2PO4, 0.8 mM MgCl2, 5.6 mM glucose, 10 

mM HEPES, pH 7.4) without Ca2+ and 500 µl of the suspension was gently prewarmed in 

temperated aggregation cuvettes for 2 min and 15 min incubated at 37°C with the indicated 

substances or DMSO as control, solvent concentration never exceeded 0.5%.  

For aggregation, the response is given as percent of the maximal light transmission Amax. In 

Ca2+-containing samples, 1 mM CaCl2 was added right before the start of the measurement. 

Aggregation was recorded for 7 min. 

 

3.27  Measurement of platelet activation markers CD62 and PAC-1 

by flow cytometry 

Whole blood samples (containing 3.13% sodium citrate), recalcified PRP, or washed platelets 

resuspended in PGC were incubated with β-BA, AKBA, thrombin receptor-activating peptide 

(TRAP), or vehicle (DMSO, control) for 2 or 15 min at RT. To measure CD62 and PAC-1, 

samples were diluted 1 : 1 in 20 mM HEPES, 137 mM NaCl, 2.7 mM KCl, 1 mM MgCl2, 5.6 

mM glucose, 1 mg/ml BSA, pH 7.4, and aliquots of 5 ml were incubated with saturating 

concentrations of CD41-PC7, CD62-PE, and PAC1-FITC at RT for 15 min in the dark. 

Samples were fixed with formaldehyde 1% (in PBS), washed twice (CellWash, Becton-

Dickinson, Heidelberg, Germany), and resuspended in 300 µl PBS. Isotype-matched IgG and 
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IgM antibodies were used to correct for the nonspecific binding of the specific antibodies. P-

selectin (represented by CD62) and PAC-1 antigen expression were quantified. Three-color 

flow cytometric analysis was used with logarithmic modes set for all channels. A gate was set 

around the platelet population (CD41), and 5000 events were acquired from each probe. The 

percentage of CD62- positive cells (%) as well as their mean channel fluorescence intensity 

(MFI) was determined at a level which yields a value of 1% for mouse IgG1-PE labelled 

sample. A histogram of PAC1-FITC against cell events was generated and MFI of the total 

platelet population was recorded. Acquisition of data was carried out using a FACSCalibur 

flow cytometer with CELLQuest software (Becton-Dickinson). The instrument calibration 

and compensation was assured daily with calibration beads (CaliBRITE Beads, Becton-

Dickinson) and FACSCompt. Fluorescence-conjugated antibodies CD41-PC7, CD62-PE, and 

PE-labelled isotype IgG1 control were obtained from Beckman Coulter (Krefeld, Germany), 

PAC1-FITC and FITC-isotype IgM were from Becton- Dickinson. 

 

3.28  Endogenous thrombin potential 

Thrombin generation was assessed by using a fluorometric assay, based on the cleavage of a 

thrombin-specific fluorogenic substrate resulting from stimulation of recalcified or citrate-

chelated PRP, yielding the so-called endogenous thrombin potential (ETP) 122. 80 µl of PRP 

and 20 µl of buffer containing the thrombin generation trigger were added to each well of a 

96-well microtitre plate. The Fluoroskan Ascent Type 374 plate fluorometer (Labsystems; 

Finland) was used with excitation wavelength of 390 nm, emission wavelength of 460 nm, 

and a measurement integration time per well of 20 ms. The first derivative of the 

fluorescence–time curve reflects the course of thrombin activity in the sample. The parameter 

of interest in the samples using recalcified PRP was the maximal generation rate, which is the 

peak of the first derivative (ETP peak velocity, relative fluorescence units (RFU) per min) of 

the thrombin generation curve, or, due to low peak values in Ca2+-free samples, the ETP–area 

under the curve (AUC). 
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3.29  Intracellular Ca2+ measurement  

Platelets (5 × 109 /ml PBS plus 1 mg/ml glucose) were incubated with 2 µM Fura-2/AM for 

30 min at 37°C. After washing, 109 platelets were resuspended in 1 ml PBS plus 1 mg/ml 

glucose and 1 mM EDTA and incubated in a thermally controlled (37°C) fluorimeter cuvette 

in a spectrofluorometer (Aminco-Bowman series 2, Thermo Spectronic, Rochester, NY) with 

continuous stirring. After preincubation with the indicated inhibitors, stimuli and Ca2+ (2mM) 

were added and the fluorescence was measured, [Ca2+]i was calculated according to 

Grynkiewicz et al. 123. Fmax (maximal fluorescence) was obtained by lysing the cells with 1% 

Triton-X 100 and Fmin by chelating Ca2+ with 10 mM EDTA. 

 

3.30  PMNL chemoinvasion assay 

Freshly isolated PMNL (2 × 106) were resuspended in 1 ml HEPES-buffered RPMI 1640 

medium with 10% (v/v) fetal calf serum (FCS) and preincubated with test compounds or with 

vehicle (DMSO, never exceeding 0.5% DMSO). 150 µl of the cell suspension were then 

placed on the upper chamber of two compartment Boyden chamber (8 µm pore-size filters) in 

a 24-well format. Cells were allowed to migrate through matrigel-coated pore-size filters for 

40 minutes in the lower chamber containing buffer (negative control) or buffer plus fMLP 

(0.1 µM) as chemoattractant. Cells on the bottom of the wells were fixed with 3.7% 

formaldehyde, stained with grams violet, washed and the stain was solubilized using acetic 

acid. The absorption of the eluted stain was measured at 570 nm / 620 nm, respectively. 

 

3.31  Purification of CatG from PMNL 

CatG was purified as previously described 124 with slight modifications. All purification steps 

were performed at 4°C. Human isolated PMNL (1010) were suspended in ice-cold 0.15 M 

NaCl and sonicated (5 × 30 s, 65%). Remaining nuclei and cell debris were removed by 

centrifugation (600 x g, 10 min). The supernatant was again centrifuged (16,000 x g, 30 min) 

to separate the granular fraction (pellet) from the post-granular supernatant fraction. The 

granular fraction was resuspended in 1 M NaCl plus 0.05% Triton X-100, and stored for 36 h 

for protease extraction. The suspension was centrifuged at 16,000 x g for 30 min, and four 

volumes of water added to restore isotonicity. Proteins were precipitated by ammonium 

sulfate (60% saturation) and the pellet was resuspended in 40 ml 0.05 M Tris-HCl, pH 8.0. 

After centrifugation (16,000 x g, 30 min), the supernatant was subjected to elastin-Sepharose 
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affinity chromatography column (2.5 × 20 cm) equilibrated with 0.05 M Tris buffer, pH 8.0 

(ÄKTA explore, GE Healthcare, Freiburg, Germany). The protein was loaded and the column 

was eluted with the equilibration buffer until the OD280 returned to baseline. The column was 

then washed with two volumes of 0.05 M Na-acetate, 1 M NaCl, pH 5.0, and fractions 

containing CatG activity were eluted with 0.05 M Na-acetate, 1 M NaCl, 20% DMSO, pH 

5.0. Active fractions were pooled, dialyzed in vivaspin cut-off columns (5,000 MWCO) 

versus 20 mM Na-acetate, 0.15 M NaCl, pH 5.5, and subjected to ion-exchange 

chromatography (CM Sephadex C-50) column, equilibrated in the same buffer. The sample 

was applied, washed with equilibration buffer and bound material was eluted by a linear NaCl 

gradient from 0.15 M to 1 M. The total elution volume was 300 ml and fractions of 6 ml were 

collected at a flow rate of 30 ml/h. The homogeneity of the purified material was checked by 

SDS-PAGE and CatG activity assays. 

 

3.32  Determination of protein concentration 

3.32.1 Lowry 

BSA was diluted in Tris buffer (5 mM, pH 7.4) in the range 0.1 to 1 mg/ml. 25 µl of Biorad 

Lowry reagent A (alk. coppertartrate) were mixed with 5 µl standard or protein sample in 

triplicates in a 96-well plate. Under slow agitation, 200 µl of Biorad Lowry reagent B (Folin-

ciocalteau) was added and incubated for 15 min. The OD was determined at 620 nm in a 

microplate photometer (Digiscan, High Tech)125, 126. 

 

3.32.2 Bradford 

Standard (BSA or γ-globulin) and protein of interest was diluted in appropriate buffer and 

pipetted in triplicates, 80 µl per well in a 96-well plate. After addition of 5x Biorad Protein 

assay Bradford reagent (20 µl) the plate was agitated for 15 min and measured in a microplate 

reader (Dynatech MR5000) at 620 nm127, 128. 
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3.33  Crystallography and X-ray determination 

Purified CatG from granules of human PMNL were used (see above). We screened for 

crystallization conditions with Sigma screen kits I and II (Sigma-Aldrich) and grew 

diffraction quality crystals by the hanging drop vapour diffusion method and at 20°C over 28 

days. CatG (10 mg/ml) and Aβ-BA were mixed in a 1:2 molar ratio, and the crystals were 

grown from 30% poly(ethylene glycol) 4000, 0.2 M lithium sulfate, 20 mM zinc sulfate, and 

0.1 M Tris, pH 8.5 129, 130. A second screen with Structure screen I & II HT 96 (Molecular 

Dimensions Limited, Suffolk, UK) with the sitting drop vapour diffusion method in a 96 well 

plate and CatG mixed with AKBA in a 1:2 molar ratio related to crystals grewing in 0.2 M 

sodium chloride, 0.1 M Na acetate pH 4.6, 30% (v/v) MPD and in 0.1 M Na citrate pH 5.6, 

20% (v/v) 2-propanol, 20% (w/v) PEG 4000. 

Crystals grew as long needles or cubes. For cryoprotection crystals were transferred into 

mother liquor containing 10% glycerol (v/v) and immediately frozen in liquid nitrogen. Data 

were collected at beamline ID23-1 at ESRF, in one degree oscillations. Diffraction was 

observed to a useable resolution of 2.7 Å processing and scaling were performed with HKL-

2000. Crystallography and x-ray measurement was done in collaboration with Dr. J. Chen, 

Institute for Biophysical Chemistry, University Frankfurt. 

 

3.34  Statistics 

All data are presented as mean + s.e.m (standard error of the mean). For statistical analysis 

GraphPad Prism version 4.00 (GraphPad Software, San Diego, California, USA) was used. 

Data were subjected to Kolmogorov-Smirnov test to confirm Gaussian distribution followed 

by one-way ANOVA coupled with Bonferroni post hoc test for multiple comparisons (in 

celecoxib assays, ex vivo data were subjected by one-way ANOVA coupled with Dunnett´s 

post t-test for multiple comparisons). All other data were subjected to paired, 2-sided t-tests. 

The IC50 and ID50 values were analysed using GraphPad Prism version 4.00 and a sigmoid 

curve fitting model. 
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4 Results 

4.1 Target identification of BAs using a protein-fishing strategy 
 

4.1.1 Pulldown experiments 
 
An elegant technique for the identification of a high-affinity small molecule (ligand) - protein 

(target) interaction is the protein-fishing approach using an affinity matrix composed of the 

small molecule linked covalently to an insoluble resin 131. Prominent examples for a 

successful application of this strategy are the identification of human histone deacetylase as 

target for trapoxin 132 or of rapamycin binding protein (FKBP) as the target of the 

immunosuppressant FK-506 (rapamycin) 133. A protein fishing strategy for the identification 

of molecular targets of BAs was developed in collaboration with Dr. J. Jauch, University of 

Saarland. Thus, KBA was linked at the C3-OH moiety to glutaric acid forming the half ester 

3-O-glutaroyl-KBA (glut-KBA). The remaining free carboxylic group of glut-KBA was 

amide-coupled with the primary amine of EAH Sepharose 4B yielding KBA-Seph as an 

affinity resin (fig. 411). Freshly prepared lysates of Triton X-100 (1 %)-treated cells were 

incubated with KBA-Seph, EAH Sepharose 4B without glut-KBA (Seph) was used as 

negative control to exclude unspecific protein binding. The precipitates were intensely 

washed; proteins were detached from the resin using SDS-b. 

 
 
figure 411: Chemical structure of the KBA-Seph affinity matrix. KBA is linked to glutaric acid by 
esterification of the C3-OH group of KBA to EAH Sepharose 4B (Seph) via amide coupling, yielding the KBA-
Seph affinity matrix. 
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4.1.2 Separation of precipitated proteins by SDS-PAGE 
 
Proteins from pulldown experiments were separated by SDS-PAGE. The absolute amounts of 

precipitated proteins were comparable in pull-downs obtained with Seph and KBA-Seph. 

Proteins were visualized by Coomassie- and silver-staining (fig. 412A-C). 

A                                                  B 

   
C                                                           

 
figure 412: SDS-PAGE of different fishing experiments. The gels were stained with silver or Coomassie, 
Biorad. All-blue protein marker (M) was used for estimation of the protein-size. Differential bands in KBA-
Sepharose and Sepharose lanes were marked by arrows, results are given in table 411: (A) SDS-PAGE 10%, 
silver stain, PMNL-lysate, 1: lysate as control, 2: PMNL + Sepharose (Seph), 3: PMNL + KBA-Sepharose 
(KBA-Seph); (B) SDS-PAGE 4-20%, Coomassie, 1: PMNL + Seph, 2: PMNL + KBA-Seph, 3: platelets + Seph, 
4: platelets + KBA-Seph; (C) SDS-PAGE 8%, Coomassie, 1-3: LNCaP-lysate (Seph, KBA-Seph, β-BA-Seph), 
4-6: MCF-7-lysate, 7-9: PMNL-lysate  
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Control-lanes with samples of Seph-precipitated protein were compared with lanes of KBA-

Seph-precipitated samples and bands visible in both lanes were excluded. Bands only existent 

in the KBA- or β-BA-Seph lane (arrows in fig. 412A-C) were analysed by mass spectrometry. 

These proteins bind specifically to KBA-Sepharose and could be a target for BAs. 

 

 

4.1.3 Analysis of proteins by mass spectrometry 
 
The protein bands of KBA-Seph pulldowns indicated by the arrows (fig. 412) were excised 

from the gel. Parallel to that, a corresponding piece of gel was excised from the neighboring 

lane, where proteins of the Seph-precipitates were separated. Proteins were in-gel-digested by 

trypsin and subjected to MALDI-TOF-MS in cooperation with Dr. M. Karas, Institute of 

Pharmaceutical Chemistry, University of Frankfurt. Analysis of the obtained peptide 

fragments using the peptide sequence data base www.matrixscience.com clearly indicated that 

the major proteins were significantly identified and could not be detected in the control 

sample (selection in table 411). Some proteins listed in table 411 were further analysed by 

Western blot. An example of database searching of protein fragments identified by MS is 

given in fig. 413. With a threshold of p<0.01, the analysed protein in the gel-band is 

considered as CatG.  

 

 

MS data             
cell type species size [kDa] found protein (statistically significant)   

PMNL homo sapiens 19.5 cathelicidin antimicrobial peptide CAP18   
platelets homo sapiens 21.2 Ras-related protein Rap-1b    
     MS/MS: O-Krev precursor; Complexed With Gppnhp  
     And The Ras-Binding-Domain Of Human C-Raf1, Residues 51-131 
PMNL homo sapiens 25.8 Cathepsin G     
PMNL homo sapiens 26.1 proteinase 3     
LNCaP homo sapiens 29.8 prohibitin     
RBL-1 Rattus norvegicus 41.1 Farnesyl pyrophosphate synthetase (FPP synthetase) 
PMNL homo sapiens 41.6 vesicle amine transport protein 1 VAT1   
LNCaP homo sapiens 51.1 ATP synthase beta subunit    
PMNL homo sapiens 60 ATP synthase, H+ transporting   
PMNL homo sapiens 76.4 UNC-112 related protein 2    
platelets homo sapiens 76.5 UNC-112 related protein 2    
LNCaP homo sapiens 470.1 DNA dependent protein kinase   

 
table 411: MS data pulldown experiments. KBA-Seph bound significant proteins in four different cell types. 
Proteins are assorted by size.  
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figure 413: Identification of CatG by MS and data base search 
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4.1.4 Immunodetection of proteins 
 

The identity of selected proteins was analysed further by Western blot. A part of the results is 

shown in fig. 414. KBA-Sepharose significantly binds Ras, protein kinase C (cPKCβ), platelet 

12-LO, Akt, and several tyrosine-phosphorylated proteins with approximate sizes of 50, 60 

and 80 kDa, whereas Seph as negative control does not bind these proteins. Because of 

unspecific protein-binding at the same size, proteins in fig. 414 could not be detected 

selectively by MALDI-MS. 

A 

 
B 

 
C                                                                 D 

 
E                                                                  F 

 
figure 414: Western blot analysis of selected proteins. Pulldowns of cell lysates (from 5 x 107 RBL-1, 3 x 
107 PMNL, 1 x 107 MM6, 3 x 109 platelets or 5 x 107 LNCaP) were separated by SDS-PAGE, blotted and 
immunostained with the indicated antibody. Visualization was performed with an Odyssey reader. Reference = 
cell lysate (A) Ras (21kDa); (B) cPKC (80kDa); (C) 12-LO (72kDa); (D) Akt (60kDa); (E) pTyr (band at appr. 
80kDa); (F) pTyr (bands at appr. 50/60kDa). Each blot is representative for at least three independent 
experiments. 
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4.1.5 FPPs activity 
 
One of the identified proteins was farnesyl pyrophosphate synthase (FPPs). FPPs is one of the 

major proteins for terpene synthesis in humans and the target for bisphosphonates (like 

alendronate) in osteoporosis. As shown in table 411, it binds selectively to KBA-Sepharose 

but is not inhibited in vitro by BAs up to 30 µM (fig. 416). 

 

***

figure 415: Radioactive test system for FPPs activity in vitro. FPPs from the peroxisomal fraction of HL-
60 cells was incubated with [14C]-isopentenylpyrophosphate and geranylpyrophosphate to form [14C]-FPP. 
Product was extracted and measured in a beta counter. DMSO was used as vehicle (veh.), alendronate 3 µM 
(Ale) as positive control and BAs were used in concentrations of 30 µM. Results are given as mean + s.e.m., n = 
4-6, and analysed by one-way ANOVA followed by a Bonferroni post-hoc test: ***p<0.001. 
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4.1.6 PKC activity 
 

Protein kinase C is involved in several diseases like cancer and diabetes via diverse signal 

cascades (see fig. 213). As shown in fig. 414B, PKC is bound to immobilized BAs whereas 

Sepharose as negative control does not bind PKC. The inhibition of the enzyme by BAs was 

tested in an activity assay in vitro (fig. 417). Only β-BA inhibits moderately at a concentration 

of 30 µM, but is not statistically significant. 

 

***

figure 416: PKC activity in vitro. In a 96-well plate, HL-60 lysate, preincubated with the indicated test 
compounds (U-73122 (U), BAs at 10 µM, staurosporine (stauro)  = 1 µM) or vehicle (veh., DMSO) for 2 min at 
25°C, converted a PKC-pseudo substrate and product was detected by ELISA as described in the Methods 
section. Data is given as mean + s.e.m., n = 3 and analysed by one-way ANOVA followed by a Bonferroni post-
hoc test: ***p<0.001. 
 
 
 
 
 



51                        

4.1.7 Rap1b 
 
The small guanine-nucleotide-binding protein Ras-related protein Rap1b is involved in signal 

transduction of apoptosis and cell survival in nearly all cells, but is essential for normal 

function of human platelets 134. Rap1b efficiently activates various integrins including the 

platelet integrin αIIbβ3 , which mediates fibrinogen binding required for platelet aggregation 
135. Rap1b is a common target of many different activation pathways in platelets. ADP, 

thrombin, collagen, epinephrine and platelet-activating factor induce Rap1-GTP formation. 

The pathways leading to Rap1 activation in platelets are not clearly defined 136. For example, 

ADP has been suggested to activate Rap1 by Ca2+-dependent as well as Ca2+-independent 

mechanisms involving the Gαi -coupled P2Y12 receptor 137, 138. Recently, phosphatidylinositol 

3-kinase (PI3K) was reported to mediate Rap1b activation by different platelet agonists 139. 

Rap1b is a key mediator in the development of several cancers and atherosclerosis. 

Rap1b was precipitated with KBA-Seph, therefore it was plausible to investigate the influence 

of BAs on Rap1b activity. AKBA but not β-BA inhibits ADP-induced Rap1 activation in 

human platelets (fig 417). This work was done in collaboration with Dr. Albert Smolenski, 

Institute of Biochemistry II, University of Frankfurt and will be continued in the thesis of Ulf 

Siemoneit, University of Tübingen.  

 

 

 
 
figure 417: Inhibition of ADP-induced Rap1 activation. ADP 10µM, various time points, β-BA/AKBA 
10µM, preincubation 10 min. The blot is representative of at least three independent experiments.  
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4.2 Cathepsin G 
 

4.2.1 Protein fishing with immobilized boswellic acids selectively 
precipitates cathepsin G 

 
As shown in fig. 421, a number of proteins from PMNL were bound to the EAH-Sepharose 

4B material and thus were detectable in both pull-downs. However, a 25.8 kDa protein was 

significantly enriched in KBA-Seph precipitates as compared to Seph lacking the ligand. No 

other protein selectively present in KBA-Seph but not in Seph precipitates was readily 

detectable. The sequence coverage using MALDI-TOF-MS was about 63% (fig. 422A). In 

order to confirm the identity of CatG as the select protein precipitated by KBA-Seph, the 

Seph and KBA-Seph pulldowns were subjected to SDS-PAGE and analysed by WB using 

CatG antibodies. Whereas no CatG was detected in the sample derived from the negative 

control (Seph precipitates), a strong immunoreactive band was apparent in the sample of 

KBA-Seph (fig. 422B). Moreover, purified CatG from human leukocytes was bound to KBA-

Seph as detected by WB, but not to Seph, implying a specific and direct interaction with the 

BA (fig. 422C). 

                                                            
figure 421: 12,000 x g supernatants of PMNL lysates were incubated over night at 4°C with either KBA-Seph 
or crude Seph. Precipitates separated by SDS-PAGE and proteins were visualized by Coomassie- and by silver-
staining. The band of interest at 25.8 kDa for KBA-Seph and a corresponding piece of gel from the Seph sample 
were excised, in-gel digested and analysed by MALDI-TOF-MS. 
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A 

 

 

B                                                         C         

 
figure 422: (A) MALDI-TOF-MS data: Peptides matched to the protein sequence of human cathepsin G 
(chain A) (sequence coverage: 63%). The matched peptides are shown in bold (red) letters. Similar results were 
obtained in at least three additional experiments. (B) PMNL-lysate precipitates and (C) purified enzyme 
precipitates (Seph and KBA-Seph) analysed by SDS-PAGE and Western-blotting using specific antibodies 
against CatG.  
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4.2.2 Boswellic acids inhibit the proteolytic activity of cathepsin G 
 
In order to investigate whether or not the interaction of BAs with CatG may alter its 

enzymatic activity, the proteolytic activity of CatG, secreted from cytochalsin B/fMLP-

stimulated human PMNL, was analyzed in the presence of structurally different BAs and the 

related triterpenes α-amyrin and ursolic acid (10 µM each) 116. As can be seen from fig. 423A, 

all BAs potently inhibited CatG activity, comparable to a synthetic CatG inhibitor (0.5 µM, 

used as a reference compound) 129, whereas α-amyrin and ursolic acid caused no significant 

inhibition. Note that also the glutaroyl-linked-KBA (glut-KBA) was an effective inhibitor. 

Concentration-response curves (fig. 423B) for the BAs demonstrate concentration-dependent 

inhibition of CatG with IC50 values of 0.6 µM for AKBA, 0.8 µM for β-BA, 1.1 µM for Aβ-

BA and 3.7 µM for KBA. Variation of the peptide substrate concentration reduced the 

potency of BAs, and Lineweaver-Burke plots indicate a competitive inhibition of CatG (fig. 

423C). Potent inhibition of 10 µg CatG by 10 µM AKBA (final concentration) obtained after 

incubation for 20 min at 37°C was reversed upon 50-fold dilution (fig. 423D), suggesting a 

reversible inhibition mode of CatG by BAs. 
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A                                                      B 

 
C                                                      D 

 
figure 423: BAs inhibit the proteolytic activity of CatG (A) Isolated CatG (200 ng) from PMNL was 
diluted in 180 µl HEPES 0.1 M, NaCl 0.5 M, pH 7.4 and preincubated with the indicated test compounds (all at 
10 µM, except CGI = 0.5 µM) or vehicle (veh., DMSO) for 20 min at 25°C. Then, Suc-AAPF-pNA (1 mM final 
concentration in 200 µl final volume) was added to start the reaction and the absorbance was measured at 410 
nm. The enzyme activity was determined by the progress curve method. Results are presented as percentage of 
control (veh.) and data are given mean + s.e.m., n = 4-6. (B) Concentration-response curves of BAs on CatG 
activity. Inhibition of the activity of CatG (200 ng isolated enzyme from PMNL) by BAs was determined as 
described above. Data are given as mean + s.e.m., n = 4. (C) Kinetic analysis of CatG inhibition by 10 µM Aβ-
BA and 0.1 µM CGI. Data are given as mean of three independent experiments and results are presented as 
Lineweaver-Burke plots. The CatG substrate concentrations were 0.1, 0.2, 0.3, 0.5, 1, 2, and 4 mM. (D) 
Reversibility analysis of Cat G inhibition by Aβ-BA.  Cat G is preincubated with 10 µM Aβ-BA for 5 min. After 
1:10 dilution with incubation buffer, Cat G activity was determined as described above. Data are given as mean 
+ s.e.m., n = 3. Data was further analysed by one-way ANOVA followed by a Bonferroni post-hoc (A, B) test or 
by a Dunnett post-hoc test (D): *p<0.05; **p<0.01, ***p<0.001. 
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4.2.3 Effects of boswellic acids on related serine proteases 
 
In order to assess the selectivity of BAs for inhibition of CatG, the effects of BAs on the 

activity of the closely related serine proteases chymase, tryptase, HLE, proteinase-3 and 

chymotrypsin were determined under individually optimized, yet comparable experimental 

conditions. As shown in fig. 424, AKBA and Aβ-BA (10 µM, each) failed to significantly 

inhibit chymase and tryptase. However, both BAs suppressed proteinase-3, and Aβ-BA (but 

not AKBA) also inhibited HLE and chymotrypsin, although less efficient as compared to 

CatG. Concentration response studies showed that for HLE and for proteinase-3 the IC50 

values of AKBA and Aβ-BA were ≥ 30 µM, whereas for chymotrypsin an IC50 = 4.8 µM for 

Aβ-BA was apparent. Together, AKBA and Aβ-BA are potent inhibitors of CatG, and apart 

from the inhibitory effect of Aβ-BA on chymotrypsin, these BAs are rather selective for 

CatG.  

A 
figure 424: Effects of Aβ-BA and AKBA on the 
activity of various serine proteases. (A) Aβ-BA and 
AKBA (10 µM, each) or vehicle (DMSO) were 
preincubated with the serine proteases for 20 min at 
25°C and the activities of the respective proteases were 
assayed under standard conditions as described in the 
Methods section. Results are presented as percentage of 
control (vehicle) and data are given as mean + s.e.m., n 
= 4-5. (B) Concentration-response curves of Aβ-BA and 
AKBA on the activities of HLE, proteinase-3 and 
chymotrypsin. Inhibition of the activity of the proteases 
by the BAs was determined as described above. Data are 
given as mean + s.e.m., n = 3-4 and analysed by one-
way ANOVA followed by a Bonferroni post-hoc test: 
**p<0.01, ***p<0.001. 
 

B
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4.2.4 Docking of boswellic acids to cathepsin G 
 
Automated molecular docking of AKBA in collaboration with Dr. G. Schneider, Institute for 

Biophysical Chemistry, University of Frankfurt using the protein data base (PDB) structure 

1T32 as a reference for CatG, was performed for the purpose of finding a potential binding 

mode within the active site. To verify the validity of the GOLD software, we successfully re-

docked the 1T32 co-crystallized inhibitor (2-[3-{methyl[1-(2-naphthoyl)piperidin-4-

yl]amino}carbonyl)-2-naphthyl]-1-(1-naphthyl)- 2-oxoethylphosphonic acid) 129, with an 

RMSD of 0.4 ± 0.06. The acquired binding mode was identical to the X-ray structure and 

yielded a Goldscore of 102.6 ± 2.5. Docking of AKBA into the same docking box resulted in 

an average docking score of 44.1 ± 1. Both inhibitors partially occupy the same part of the 

active center (fig. 425).  

 

 

 

figure 425: Rigid automated 
molecular docking of AKBA into 
CatG. Active site of CatG (PDB: 1T32) 
together with the co-crystallized CGI 
displayed in orange. The orientation of 
AKBA in an overlapping binding mode 
is shown in green. 
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4.2.5 Boswellic acids inhibit (cathepsin G-mediated) PMNL 
chemoinvasion  

 
Since CatG is assumed to contribute to invasion and migration of PMNL along 

chemoattractant gradients by degrading extracellular matrix proteins 36, we determined the 

effects of AKBA and Aβ-BA on PMNL migration through matrigel towards the 

chemoattractant fMLP in a modified Boyden chamber assay. fMLP caused a 4.2-fold increase 

in the numbers of migrated cells and this was efficiently blocked by AKBA and Aβ-BA (IC50 

approx. 2.7 and 2.9 µM, respectively). Comparison of the effect of CGI at 0.1 µM 

demonstrated that AKBA and Aβ-BA at 8 to 9 µM cause quantitatively the same inhibitory 

effect (approx. 75 % inhibition) on chemoinvasion of PMNL (fig. 426). 

 

A                                                                       B 

 
figure 426: BAs suppress CatG-mediated functional cellular responses. (A) Aβ-BA and AKBA inhibit 
PMNL chemoinvasion. PMNL were pretreated with the test compounds or with vehicle (DMSO) and placed on 
the upper chamber of a two compartment Boyden chamber. Cells that migrate through matrigel-coated pore-size 
filters in the lower chamber containing buffer (control; DMSO) or 0.1 µM fMLP (positive control) within 40 
minutes were fixed, stained with grams violet, and after washing the absorption of the solubilized stain was 
measured at 570 nm / 620 nm, respectively. CatG inhibitor 0.1 µM (CGI) and AKBA 10 µM were used as 
invasion inhibitors. Results are presented as fold-increase of the number of migrated cells where vehicle-treated 
cells were set to 1. (B) Concentration-response curves of β-BA and AKBA on the invasion inhibition of PMNL. 
Cells migrating toward the chemoattractant fMLP were set as 100% Data are given as mean + s.e.m., n = 5 and 
analysed by one-way ANOVA followed by a Bonferroni post-hoc test:  *p<0.05. 
.  
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4.2.6 Boswellic acids inhibit cathepsin G-mediated Ca2+ mobilisation 
in human platelets 

 
CatG released from fMLP-stimulated PMNL can cleave the PAR-4 on platelets resulting in 

the mobilisation of Ca2+, suggesting that PAR-4 mediates platelet responses to CatG 45. 

Accordingly, BAs should be able to block Ca2+ mobilisation in platelets evoked by fMLP-

activated PMNL. Addition of fMLP to Fura-2-loaded platelets caused no Ca2+ mobilisation 

(not shown), but when PMNL were co-incubated then addition of fMLP resulted in a transient 

elevation of [Ca2+]i in platelets (fig. 427B). In the presence of 3 µM AKBA or 0.1 µM CGI, 

this elevation of [Ca2+]i was strongly suppressed. These data suggest that AKBA is able to 

block Ca2+ mobilisation in platelets due to inhibition of CatG (fig. 427A). 

A 
figure 427: (A) AKBA inhibits Ca2+ 
mobilisation in platelets induced by fMLP-
stimulated PMNL. Fura-2-loaded platelets 
(108 cells) were mixed with 107 unloaded 
PMNL in 1 ml PG buffer containing 0.1 mM 
EDTA and incubated with AKBA (3 µM), 
CGI (0.1 µM) or vehicle (DMSO). After 5 
min the measurement of [Ca2+]i was started. 
After 30 sec, 100 nM fMLP was added and 
the fluorescence was recorded for another 
100 sec. Curves are representative of at least 
4 experiments. (B) Molecular mechanism of 
calcium influx in platelets via CatG-PAR4-
receptor interaction 
 

 

B 
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4.2.7 Inhibition of cathepsin G by Boswellia serrata extracts ex vivo  
 
A multicentered, double-blind, randomized and placebo-controlled clinical trial aiming to 

protract an acute attack in patients with Crohn´s disease was conducted by Pharmasan GmbH. 

Patients were in remission and use of aspirin, nonsteroidal anti-inflammatory drugs and 

glucocorticoids were not allowed in the 3 weeks before enrollment. The orally administered 

BS extract (Pharmasan GmbH, PS0201Bo, 400 mg) was taken twice daily in the 

morning/evening over a 12-month period and endpoint was an acute attack. Between October 

2006 and October 2007, 13 healthy subjects were enrolled and randomization was computer-

generated by using block randomization in two groups, but only one patient did not drop out 

until December 2007. 

The effectiveness on CatG inhibition in plasma ex vivo was measured as part of this study. 

After screening and randomization, venous blood was first taken prior to medication (verum 

or placebo) and again after 4 weeks of treatment with 2 x 400 mg extracts/d (steady state). 

Citrated blood was stimulated with 10 µM cytochalasin B and 2.5 µM fMLP for 5 min and 

plasma was prepared for determination of CatG activity. As shown in fig. 428A, a mean 

reduction (47 ± 18 %) of CatG activity in the plasma of patients was measured after treatment 

as compared to plasma prior treatment. After partial deblinding in December 2007, data of 

seven patients could be analysed. CatG activity in patients who had taken verum (n=2) was 

reduced by 64 % ± 23 % and in patients who had taken placebo (n=5) by 15 % ± 25 % (fig. 

428B). Plasma levels of BAs were 3380 / 2470 ng/ml (6.4 ± 1 µM) for β-BA, 2190 / 2670 

ng/ml (4.9 ± 1 µM) for Aβ-BA, 188 / 135 ng/ml (0.34 ± 0.05 µM) for KBA and 21.8 / 22.5 

ng/ml (0.04 ± 0.01 µM) for AKBA. 

A B 

 
figure 428: BS extracts lower the CatG levels in human subjects ex vivo. Blood was taken from subjects prior 
medication as well as after four weeks of continuous administration of 2 x 400 mg/d BS extracts. After 
venipuncture, the blood was promptly stimulated with 10 µM cytochalasin B and 2.5 µM fMLP for 5 min, and 
plasma was prepared. Aliquots (20 µl) of the plasma were immediately used for determination of CatG as 
described in the Methods section. (A) CatG activity prior and after treatment with BS extracts, n = 7. (B) CatG 
activity after 4 weeks treatment (steady state). Data are shown as mean + s.e.m.  
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In a second trial, an adult healthy male volunteer (28 years old) took three times a day three 

capsules with 400 mg BS extract (BS extract, acid fraction;Ch.B.: 2605010, BAs 91.37%; 

Euro OTC Pharma GmbH, Bönen; in total 3.6 g/d) over four weeks to demonstrate safety, 

tolerability, pharmacokinetics of BS extracts and to determine plasma levels of BAs in steady 

state. Co-medication was not allowed three weeks before and during the treatment. Blood was 

taken three times before treatment and three times during the fourth week under therapy and 

stimulated as described above to determine CatG activity ex vivo. CatG activity was reduced 

by intake of BS extract significantly by 24 +/- 1.5% (fig. 429). 

Plasma levels of BAs were 8013 ± 479 ng/ml (17.6 ± 1 µM) for β-BA, 6612 ± 82 ng/ml (13.3 

± 0.2 µM) for Aβ-BA, 355 ± 83 ng/ml (0.76 ± 0.2 µM) for KBA and 37 ± 6 ng/ml (0.07 ± 

0.01 µM) for AKBA. BA plasma levels were determined by LC-MS/MS analysis 140 in 

collaboration with Dr. Geisslinger, Clinical Pharmacology, University of Frankfurt. No side-

effects appeared during intake, thus the BS extract was safe and tolerable. 

 

 
A B 

 
 
figure 429: CatG activity in human plasma before and after continuous treatment with 3.6 g extract per day. 
Blood was promptly stimulated with 10 µM cytochalasin B and 2.5 µM fMLP for 5 min, and plasma was 
prepared. Aliquots (20 µl) of the plasma were immediately used for determination of CatG as described in the 
Methods section. (A) Dose response of treatment of the volunteer on CatG activity in plasma. (B) Activity of 
endogenous CatG ex-vivo before and after treatment with extract (3 x 1200 mg/d). Data are shown as mean + 
s.e.m, n = 3 and analysed by ANOVA followed by Bonferroni post-hoc test, *p<0.05. 
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In experiments with rats, animals were fed with gelatinous slurry as negative control or with 

three different extract slurries, containing BS extract, Boswellia carterii extract or BS 

solubilisate. Four hours after feeding, rats were sacrified; whole blood was prepared and 

stimulated with 10 µM cytochalasin B and 2.5 µM fMLP for 5 min. Then plasma was 

prepared for determination of CatG activity. Absolute activity measured in OD at 405 nm is 

shown in fig. 4210A. Only blood of rats treated with BS extract exhibited lower activity of 

CatG ex vivo as control (w/o), but not significantly because of high variations between 

individuals as well as the low number (n = 5). When exogenous Aβ-BA (10 µM) was 

accessorily added to the plasma samples, CatG activity was only lowered in untreated animals 

and animals treated with the solubilisate (fig. 4210B), while CatG activity was already fully 

inhibited in extract-treated rats. 

 

A                                                          B 

 
figure 4210: Cathepsin G activity ex vivo in rat plasma. Four hours after feeding with gelatinous slurry 
(w/o), BS extract (BS), Boswellia carterii extract (BC) or BS solubilisate (solub.), whole blood was prepared and 
stimulated with CytB and fMLP as described in the Methods section. Stimulated plasma was divided in two parts 
and CatG activity was measured with 1 µl DMSO as vehicle (A) or with 10 µM exogenous Aβ-BA (B). Results 
are shown as mean + s.e.m, n = 5 and analysed by ANOVA followed by Bonferroni post-hoc test. 
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4.2.8 Crystallography of CatG and Aβ-BA 
 
CatG was purified as described in Methods (3.30). Concentrated protein (10 mg/ml) was 

mixed with Aβ-BA (1:2 molar ratio) and incubated at 22 °C for 15 min prior to crystallization 

trials 129, 141. Crystals were grown by using the hanging drop method at 22 °C, with 0.2 M 

lithium sulfate, 20 mM zinc sulfate, 0.1 M Tris pH 7.4 and 30% (w/v) PEG 4000, as the 

precipitant. Crystals grew as long needles (fig. 4210) within 2 weeks to a maximum size. For 

cryoprotection, crystals were transferred into mother liquor containing 10% glycerol (v/v) and 

immediately frozen in liquid nitrogen. Data were collected at beamline ID23-1 at the 

European Synchrotron Radiation Facility in 1° oscillations. Diffraction was observed to a 

resolution of 3.0 Å. Aβ-BA was expected as inhibitor in the catalytic center. The crystals 

grew in space group P6(3), with a = 73.4 and b = 70.2.  Because of the weak diffraction 

pattern and strong ice rings at 3 Å, indexing was only done to 3.5 Å. Solving the structure by 

molecular replacement appeared very problematic and no inhibitor could be observed at this 

resolution. Further condition screening and modifications in the freezing procedure should 

solve the problems. 

 

 
 
figure 4211: CatG crystals under microscope. Crystals grew as long needles or in the form of a brush. 
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4.3 DNA-PK and Akt are influenced by boswellic acids 
 

4.3.1 Akt phosphorylation is inhibited by BAs in vivo and in vitro 
 
Downstream of receptor tyrosine kinases (RTK) (fig. 213), DNA-PK and Akt play critical 

roles in cell growth, apoptosis and the immune response 50, 51. LNCaP were incubated for 1 

hour with the indicated test compounds (AKBA, Aβ-BA, DNA-PK-inhibitor (DNA-PKI) or 

wortmannin), and then stimulated with CpG-ODNs for 20 min to activate DNA-PK 52. As 

shown in fig. 431 and 432, AKBA significantly inhibits phosphorylation of Akt at position 

Ser-473 in prostate cancer cells (LNCaP), acts synergistically with the PI3K-inhibitor 

wortmannin, and inhibition is concentration-dependent (fig. 431B). Bad is a downstream 

target of Akt, therefore, phosphorylation of Bad at residue Ser-136 is an indicator for the 

activity of Akt 53. Beside Akt phosphorylation, Bad phosphorylation is also potently inhibited 

by AKBA (20 µM) and the combinations of wortmannin (200 nM) and DNA-PKI (600 nM; 

fig. 432), but not by wortmannin or by DNA-PKI alone. 

A 

 
 
B  

 
figure 431: Inhibition of Akt-phosphorylation in LNCaP cells by BAs. LNCaP were incubated for 1 hour 
with the test compounds prior to stimulation with CpG-ODNs (10 µg/ml). Cells were lysed and immunoblotted 
against pAkt or pBad. (A) Akt-phosphorylation is inhibited by AKBA (20 µM) and the control inhibitors 
wortmannin (200 nM) and DNA-PKI (600 nM); unstimulated or stimulated with CpG-ODNs. (B) Concentration-
response of AKBA in Akt-phosphorylation, Aβ-BA 10µM, wortmannin 200 nM and DNA-PKI 600 nM and the 
combinations were used as controls. Blots are representative of at least four experiments. 
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figure 432: Correlation of Akt- and Bad-phosphorylation. Bad is a downstream-target of Akt and an 
indicator of active Akt (used concentrations: AKBA 20 µM, wortmannin 200 nM and DNA-PKI 600 nM). Blots 
are representative of at least four experiments. 
 
 
 
Akt phosphorylation by DNA-PK was tested in a radioactive ([32P]-ATP) in-vitro-kinase 

assay. Active DNA-PK (20 U) was incubated for 10 min at 30°C with BAs, CpG-ODNs (10 

µg/ml), [32P]-ATP (3 µCi) and 100 µg DNA-PK peptide-substrate or 600 ng Akt-1 as 

substrate. After separation, the [32P]-phosphorylated proteins were exposed to a radioactivity-

sensitive film. Phosphorylation of Akt (fig. 433A) and the DNA-PK peptide-substrate (fig. 

433B) by DNA-PK is inhibited concentration-dependently by BAs. 

 
A 

 
B 

 
 
figure 433: Akt-phosphorylation is inhibited in-vitro. DNA-PK (20 U) was incubated for 10 min at 30°C 
with BAs, CpG-ODN (10 µg/ml), [32P]-ATP (3 µCi) and 100 µg DNA-PK peptide substrate or 600 ng Akt-1 as 
substrate. Samples were separated as described in the Methods section and [32P]-phosphorylated proteins were 
detected with a radioactivity-sensitive film. (A) In-vitro-kinase assay with recombinant Akt-1 and DNA-PK, (B) 
In-vitro-kinase assay with DNA-PK-peptide-substrate (1.75 kDa) and DNA-PK. Gel-loading was controlled with 
DNA-PK (upper band). Similar results were obtained in at least three additional experiments. 
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4.3.2 Akt-activity is directly inhibited by boswellic acids 
 
In pulldown experiments with KBA-Seph and isolated recombinant DNA-PK and Akt, only 

Akt but not DNA-PK was detectable by immunoblotting in the precipitates (fig. 434). No Akt 

was detected in the sample derived from the negative control (Seph precipitates).  

To determine the activity of Akt in vitro, purified enzyme was incubated with the test 

compounds and the specific substrate as described in the Methods section and fluorescence 

was quantified. BAs and ursolic acid (10 µM each) potently inhibit Akt-activity. 

Staurosporine (1 µM) was used as positive control; it inhibits the phosphorylation of substrate 

in an effective manner (fig. 435A). The 11-me-BAs are very potent inhibitors of Akt with an 

IC50 of 300 nM for Aβ-BA and 1 µM for β-BA whereas the 11-keto-BAs are less effective 

(AKBA 5 µM; KBA 10 µM). Akt inhibition by BAs is concentration-dependent (fig. 435B). 

 

 
figure 434: Purified enzyme 
precipitates (Seph and KBA-Seph) 
analysed by SDS-PAGE and 
Western-blotting using specific 
antibodies against Akt (60 kDa). 
Similar results were obtained in at 
least three additional experiments. 
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figure 435: BAs inhibit Akt activity in vitro. Purified active Akt enzyme was incubated with the test 
compounds at RT. After 15 min, eNOS was added as described in Methods section and fluorescence of 
secondary antibodies were detected and quantified with the Odyssey-system. (A) Akt inhibition by BAs, ursolic 
acid (each 10 µM) and staurosporine (stauro 1 µM) as positive control; (B) concentration-response curves of Akt 
inhibition by AKBA and Aβ-BA. Results are shown as mean + s.e.m, n = 5 and analysed by a one-way ANOVA 
followed by Bonferroni post-hoc test, **p<0.01, ***p<0.001. 
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4.4 Modulation of signal transduction and functionality of platelets 
and monocytes by boswellic acids 

 

4.4.1 Modulation of Ca2+ mobilization in washed human platelets by 
boswellic acids. 

 
This study investigates, whether or not BAs, in particular the 11-keto-BAs, may have 

detrimental actions on agonist-evoked mobilization of intracellular free Ca2+. Thus, thrombin, 

collagen, platelet-activating factor (PAF) and the stable synthetic thromboxane analogue U-

46619 were chosen as relevant platelet agonists 69. Concentration-response studies in Fura-2-

loaded washed human platelets revealed approximate EC50 values of these agonists for Ca2+ 

mobilization as follows: 0.5 U/ml thrombin, 8 µg/ml collagen, 100 nM PAF, and 1 µM U-

46619 (not shown). These concentrations were used for subsequent analysis of BA effects. 

Although ADP is known as potent physiological stimulus, it failed to mobilize Ca2+ in 

platelets under our assay conditions. 

In the presence of extracellular Ca2+ (1 mM), BAs lacking the 11-keto moiety (Aβ-BA and β-

BA, 10 mM each) induced a transient but robust elevation of [Ca2+]i in washed platelets that 

peaked 18–30 s following exposure, whereas KBA was ineffective and AKBA caused only a 

weak and rather slow Ca2+ mobilization (fig. 441A and B). β-BA was effective already at 3 

µM, though not yet significant (fig. 441A). At 10 µM, the maximum elicited increase in 

[Ca2+]i (381 ± 28 nM) was comparable to that obtained by thrombin (0.5 U/ml; 364 ± 34 nM), 

and exceeded the signal obtained by PAF (100 nM; 62 ± 5 nM, fig. 441C). However, 

thrombin- and PAF-induced Ca2+ mobilization was more rapid, peaking 5–10 s after exposure 

and (for thrombin) was more sustained. Collagen (8 µg/ml) caused a slow and only moderate 

elevation of [Ca2+]i (78 ± 7 nM, after 90 s).  

[Ca2+]i was also measured in the absence of extracellular Ca2+ (not shown). BAs as well as 

thrombin evoked an internal Ca2+ release (no extracellular Ca2+) with similar kinetics 

observed for the total Ca2+ response in the presence of extracellular Ca2+, respectively. 

Nevertheless, in the absence of extracellular Ca2+, elevation of [Ca2+]i was reduced to about 

37 ± 14% for thrombin and 28 ± 17% for β-BA, as compared to the total Ca2+ response. 
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A                                                            B 

 

C 

figure 441: BAs induce intracellular Ca2+ 
mobilization. To Fura-2-loaded platelets (108 /ml PG 
buffer), 1 mM CaCl2 was added 2 min prior 
stimulation, and [Ca2+]i was determined. (A) Ca2+ 
mobilization in the presence of extracellular Ca2+. 
BAs (10 mM, each) were added 30 s after the 
measurement was started. (B) Concentration–response 
curves of BAs in the presence of extracellular Ca2+. 
The maximal increase in [Ca2+]i obtained within 100 s 
of measurement is given. (C) Ca2+ mobilization 
induced by various agonists. The following agonists 
were used: β-BA (10 µM), thrombin (0.5 U/ml), 
collagen (8 µg/ml), and PAF (100 nM). Values are 
given as mean + s.e.m., n = 5; curves are 
representative of at least five experiments. One-way 
ANOVAs followed by Tukey HSD tests were applied 
to data related to unstimulated controls in (B), 

0.05 or **p<0.01.  

 

 

*p<
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In agreement with previous studies, at a concentration of 10 µM, AKBA (or KBA, not shown) 

caused only a slight and delayed (and transient) elevation of [Ca2+]i, whereas β-BA and Aβ-

BA (10 µM, each) led to substantial Ca2+ mobilization (fig. 441A). At higher concentrations 

(≥ 30 µM), AKBA caused a slow yet continuous increase of [Ca2+]i (not shown). Interestingly, 

pre-incubation of platelets for 15 min with AKBA (10 µM) reduced Ca2+ mobilization 

442A-D).  

induced by U-46619, PAF and collagen, but not when thrombin was used as agonist (fig. 
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figure 442: Differential effects of boswellic acids on [Ca2+]  in human washed platelets. Fura-2 loaded 
latelets (108/ml PG buffer) were preincubated with 10 µM AKB

i
A or with vehicle (DMSO) as indicated. After 

5 min at 37°C the suspension was supplemented with CaCl2 (1 mM) and the measurement of [Ca2+]i was 
arted. After 30 s, (A) 0.5 U/ml thrombin, (B) 1 µM U-46619, (C) 8 µg/ml collagen, or (D) 100 nM PAF were 
dded. Curves are representative of at least four experiments.  
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Next, the efficacy of BAs (10 µM, each) to prevent agonist-induced Ca2+ mobilization was 

compared. As shown in fig. 443, for platelets stimulated with collagen, PAF or U-46619, 

AKBA was most efficient to inhibit Ca2+ mobilization, followed by β-BA. Aβ-BA was 

somewhat less potent, whereas KBA even enhanced Ca2+ mobilization when compared to 

AKBA. Notably, all BAs essentially failed to prevent Ca2+ mobilization induced by thrombin 

(fig. 443A). IC50 values of AKBA and β-BA for collagen-induced Ca2+ mobilization were 3 

and 7 µM, respectively, for PAF-induced Ca2+ mobilization 2 and 7 µM and for U-46619-

induced Ca2+ mobilization 5 and 8 µM, respectively (fig. 444A-D). When thrombin was used 

as agonist, the IC50 values for AKBA and β-BA were > 30 µM. Pretreatment of platelets with 

AKBA also prevented the elevation of [Ca2+]i induced by β-BA similar to that observed for 

collagen or U-46619.  

A  
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figure 443: Boswellic acids selectively suppress agonist-induced Ca2+ mobilization in human washed 
platelets.  Fura-2 loaded platelets (108/ml PG buffer) were supplemented with CaCl2 (1 mM) and preincubated 
with the indicated BAs (10 µM, each) or with vehicle (DMSO, negative control) as indicated. After 15 min at 
37°C, the measurement of [Ca2+]i was started and after another 30 sec, (A) 0.5 U/ml thrombin, 1 µM U-46619,  
(B) 8 µg/ml collagen, or 100 nM PAF, were added. The maximal increase in [Ca2+]i determined within 100 sec 
of measurement is expressed as percentage of control (DMSO). Values are given as mean + s.e.m., n = 4-6 One-
way ANOVAs followed by Tukey HSD tests were applied to data related to unstimulated controls in figs A to D, 
p<0.05 (*) or <0.01 (**) 
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Since β-BA (≥ 3 µM), and to a minor degree also AKBA (≥ 10 µM), caused a transient 

elevation of [Ca2+]i returning to baseline after about 5 to 7 min 67, it appeared possible that 

such an unspecific increase in [Ca2+]i leading to desensitized platelets could be the reason for 

the subsequent failure of Ca2+ mobilization upon addition of other agonists. Accordingly, U-

46619 which causes a transient Ca2+ mobilization similar to that observed for 11-methylene-

BAs, was first added to platelets and after 15 min, platelets were stimulated with either 

collagen or thrombin. In contrast to 11-methylene-BAs, preincubation with U-46619 failed to 

substantially suppress elevation of [Ca2+]i evoked by either collagen or thrombin, although a 

slight reduction of the signals was detected. Taken together, depending on the structure (e.g. 

the presence of the 11-keto- and 3-O-acetyl group), BAs differentially modulate Ca2+ 

mobilization in platelets which is further influenced by the nature of the platelet agonist. 

 
A                                                         B 

 
C                                                         D 

 
 
figure 444: Concentration-response curves for AKBA and β-BA. Fura-2 loaded platelets (108/ml PG 
buffer, supplemented with 1 mM CaCl2 ) were preincubated with the indicated concentrations of AKBA or β-BA 
and after 15 min at 37°C, the measurement of [Ca2+]i was started. After 30 s, (A) 0.5 U/ml thrombin, (B) 1 µM 
U-46619, (C) 8 µg/ml collagen, or (D) 100nM PAF were added and the maximal increase in [Ca2+]i was 
determined within 100 s, expressed as percentage of control (DMSO). Values are given as mean + s.e.m., n = 4-
5.  
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4.4.2 Src family kinases are involved in β-BA-induced Ca2+  

mobilization 

 

The role of Src family kinases in β-BA-induced Ca2+ mobilization was assessed using the 

selective Src family kinase inhibitors PP2 (and its inactive analogue PP3) 142 and SU6656 143. 

PP2 (3 µM) blunted the Ca2+ response initiated by β-BA (92 ± 2% inhibition, n = 7, fig. 445), 

whereas the inactive analogue PP3 (3 µM) was hardly effective (89 ± 8% residual activity, n 

= 4, fig. 445). In addition, the structurally unrelated Src kinase inhibitor SU6656 (10 µM) also 

abolished the β-BA signal (93 ± 1% inhibition, n=4, fig. 445). In sharp contrast, no such 

inhibitory effects of PP2 on Ca2+ signals induced by thrombin, PAF, or AKBA were apparent 

(not shown). 

 

 
figure 445: Effects of Src family kinase inhibitors. Fura-2-loaded platelets (108 /ml PG buffer) were 
preincubated with PP2 (3 µM), PP3 (3 µM), SU6656 (10 µM), or vehicle (DMSO) for 15 min. CaCl2 (1mM) and 
β-BA (10 µM) were added, and [Ca2+]i was determined. Curves are representative of at least four experiments. 
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4.4.3 BAs and modulation of thrombin generation and expression of 
activation markers 

 
β-BA was tested for its ability to generate thrombin from PRP, expressed as the endogen 

thrombin potential (ETP). β-BA (10 µM) potently stimulated thrombin generation, whereas 

AKBA (10 µM) was inactive (fig. 446A, left panel). Although collagen was only moderately 

superior to β-BA in the peak thrombin generation velocity, there was again a delayed onset of 

the β-BA effect, visualized by the kinetic progression of the ETP (fig. 446B). In the absence 

of Ca2+, neither stimulus induced a marked increase in the ETP over time although analysis of 

the ETP-AUCs revealed a slight stimulatory effect of β-BA (10 µM) as compared to DMSO 

and collagen that both were inactive (fig. 446A, right panel). 

Finally, the expression of the activation markers PAC-1 (the activated GPIIb/IIIa-receptor for 

fibrinogen) and CD62, which indicates the release of platelet alpha-granules, were assessed. 

Incubations were carried out in (I) whole blood (containing 3.13% citrate), (II) recalcified 

PRP, and (III) washed platelets in Ca2+-containing PGC buffer, for 2 or 15 min. Neither β-BA 

(30 or 100µM) nor AKBA (30 µM) led to a significant expression of CD62 and PAC-1 under 

all experimental settings (I–III), whereas TRAP (used as positive control) was a strong 

activator (fig. 446C). 
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A                                                          B 

 

C 

 
figure 446:Thrombin generation and activation marker expression. (A) Thrombin generation was 
assessed in recalcified PRP (given as ETP peak velocity, left bar chart), or citrate-chelated PRP (given as ETP-
AUC, right bar chart). PRP and buffer containing the indicated stimuli were added to each well of a 96-well 
microtitre plate. β-BA (10 µM), AKBA (10 µM), collagen (2 µg/ml, final concentrations each), and vehicle 
(DMSO) were tested for their ability to induce thrombin generation. Data are expressed as mean + s.e.m., n = 4 
(β-BA, AKBA, collagen) or n=8 (vehicle). One-way ANOVA and Tukey HSD tests were performed, **p<0.01. 
(B) Representative original traces of the ETP kinetic progression. Cells in recalcified PRP were stimulated as 
described above. (C) Expression of the platelet activation markers CD62 and PAC-1. Flow cytometry in 
recalcified PRP was performed as described in the Methods section. Expression of CD62 (left bar chart) and 
PAC-1 (right bar chart) after stimulation with vehicle (DMSO), β-BA (30 µM), AKBA (30 µM), or TRAP (10 
µM) is given. The percentage of CD62-positive cells (%) as well as their mean channel fluorescence intensity 
(MFI) was determined (left diagram). Right, a histogram of PAC1-FITC against cell events was generated and 
MFI of total platelet population was recorded, n = 4. One-way ANOVA and Tukey HSD tests were performed, 
*p<0.05 or **p<0.01. 
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4.4.4 β-BA induces aracidonic acid release in human platelets 
 
An elevation of [Ca2+]i and/or activation of members of the MAPK family are considered 

important for the liberation of AA by the cPLA2 144. In platelets AA is the substrate of COX 1 

and platelet-type 12-LO. AA-metabolism by COX and 12-LO leads to prostaglandins, 12-

HETE and other signal molecules in atherosclerosis and inflammation. On the other hand, AA 

is an important component of the lipid bilayer responsible for the fluidity of the cell 

membrane. Incubation of [3H]-AA-labelled platelets with β-BA caused a concentration-

dependent increase in the amounts of [3H]-AA released into the medium. At about 50 µM, β-

BA was equipotent to 2 U/ml thrombin (fig.447). 

 

 
 
figure 447: β-BA induces the release of AA. Platelets were labelled with [3H]-AA for 2 h. CaCl2 (1 mM) was 
added to the cells (108 in 1ml PG buffer), and after 2.5 min, cells were stimulated with the indicated 
concentrations of β-BA or 2 U/ml thrombin (tb). [3H]-AA released into the medium was measured after 5 min at 
37°C. Data are expressed as increase over unstimulated cells, values are given as mean + s.e.m., n = 5. Statistical 
analysis (directed t-tests for correlated samples) was applied to original data prior to normalisation, *p<0.05. 
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4.4.5 AKBA attenuates agonist-induced elevation of [Ca2+]i in MM6 
 

The attempt was made to investigate whether or not AKBA could also prevent agonist-

induced elevations of [Ca2+]i in monocytes. Agents that elevate [Ca2+]i involving PLC/IP3 

signalling (e.g. PAF, fMLP and m-3M3FBS) but also stimuli that raise [Ca2+]i independent of 

the PLC/IP3 pathway like ionomycin were added to MM6 cells that received BAs, 20 s prior 

to agonist addition. As shown in fig. 448, AKBA, but not Aβ−BA, potently inhibited the 

subsequent Ca2+ mobilization induced by PAF or fMLP as well as by the direct PLC activator 

m-3M3FBS 145. The IC50 value for AKBA was in the range of 10 – 30 µM, depending on the 

stimulus. In contrast, initial elevation of [Ca2+]i induced by the ER/SR Ca2+- ATPase inhibitor 

thapsigargin (TG) or by the Ca2+-ionophore ionomycin were not affected (not shown).  

 

 

 

 
figure 448: AKBA antagonizes agonist-induced Ca2+ mobilization. Fura-2 loaded MM6 cells (3x106/ml PG 
buffer, supplemented with 1 mM CaCl2) were treated with vehicle (v), AKBA (3, 10, 30 µM), or Aβ-BA (Aβ, 30 
µM) followed by the addition of PAF (0.1 µM), fMLP (0.1 µM), or m-3M3FBS (50 µM) after 20 s as indicated. 
The amplitude of the agonist-induced elevation of [Ca2+]i was determined. Values are given as mean + s.e.m., n 
= 4 - 5, and compared to the positive controls. 
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4.4.6 AKBA attenuates Ca2+
 mobilization from intracellular stores in 

monocytic cells. 
 
Next, the test was carried out to investigate wether or not AKBA may also affect the PAF-

induced release of Ca2+ from intracellular stores, a process that is typically PLC/IP3-

dependent. MM6 cells were resuspended in Ca2+-free buffer containing 1 mM EDTA and 

treated with AKBA or Aβ-BA, followed by the addition of PAF after another 20 s. Neither 

AKBA nor Aβ−BA exhibited an effect on basal [Ca2+]i in resting cells under these conditions. 

However, AKBA reduced the release of Ca2+ from internal stores elicited by PAF (fig. 449B 

left panel), although slightly higher concentrations of AKBA were required as compared to 

those needed to suppress total Ca2+ mobilization in the presence of extracellular Ca2panel) 

was also partially antagonised by AKBA, implying that PLC inhibition may not be the sole 

mechanism by which AKBA affects [Ca2+]i, since TG-mediated Ca2+ mobilization 

circumvents the PLC/IP3 route. 
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circumvents the PLC/IP3 route. 

A A 

figure 449: Effects of 
BAs on Ca2+ release from 
internal stores. MM6 cells 
were prepared as described 
in fig. 448, except that 1 
mM EDTA was added 
instead of 1 mM Ca2+. (A) 
Original [Ca2+]i recordings 
of samples stimulated by 
PAF (0.1 µM) after 
preincubation with vehicle 
(veh), AKBA (3, 10, 30 
µM), or Aβ-BA (30 µM) 
for 20 s. Curves are 
representative of 3 - 4 
independent determinations. 
(B) Cells were treated with 
vehicle (v), AKBA (3, 10, 
30 µM), or Aβ-BA (Aβ, 30 
µM) followed by the 
addition of PAF (0.1 µM, 
left panel), or thapsigargin 
(TG, 0.1 µM, right panel). 
The amplitude of the 
stimulus-induced elevation 
of [Ca2+]i was determined. 
Values are given as mean + 
s.e.m., n = 4, p<0.05 (*) or 
<0.01 (**). 

figure 449: Effects of 
BAs on Ca2+ release from 
internal stores. MM6 cells 
were prepared as described 
in fig. 448, except that 1 
mM EDTA was added 
instead of 1 mM Ca2+. (A) 
Original [Ca2+]i recordings 
of samples stimulated by 
PAF (0.1 µM) after 
preincubation with vehicle 
(veh), AKBA (3, 10, 30 
µM), or Aβ-BA (30 µM) 
for 20 s. Curves are 
representative of 3 - 4 
independent determinations. 
(B) Cells were treated with 
vehicle (v), AKBA (3, 10, 
30 µM), or Aβ-BA (Aβ, 30 
µM) followed by the 
addition of PAF (0.1 µM, 
left panel), or thapsigargin 
(TG, 0.1 µM, right panel). 
The amplitude of the 
stimulus-induced elevation 
of [Ca2+]i was determined. 
Values are given as mean + 
s.e.m., n = 4, p<0.05 (*) or 
<0.01 (**). 
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4.4.7 Effects of boswellic acids on TNFα-release in MM6 cells 
 
Macrophages and monocytes are considered to be the main source of TNFα 146, which as a 

prototypical proinflammatory cytokine, plays a key role not only in chronic inflammatory 

diseases but also in innate immunity 147. To  investigate  whether Aβ-BA or AKBA are able to 

affect the TNFα generation in fMLP- and in LPS-stimulated MM6 cells (fig. 4410). TNFα is 

synthesized as a precursor, which is processed and released from the membrane 148, implying 

that regulation can occur at any of those steps. Unstimulated cells did not release detectable 

amounts of TNFα. AKBA and Aβ-BA (10 µM each) slightly inhibit fMLP- or LPS-induced 

TNFα-release. 

 

figure 4410: Effects of BAs on TNFα-release in MM6 cells. 3 x 106 MM6 cells were preincubated with 
AKBA or Aβ-BA (10 µM each) for 1 h and then stimulated with either LPS 50 ng/ml or fMLP 1 µM. 
Supernatants were tested by ELISA for TNFα as described in the methods section. Results are given as mean + 
s.e.m., n = 3. 
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4.4.8 Suppression of agonist-evoked Ca2+ mobilization in PMNL and 
HL-60 cells by boswellic acids 

The influence of BAs on Ca2+-influx in agonist stimulated PMNL and HL-60 was 

investigated. The following agents were used: PAF, LTB4, 5-HETE and fMLP for PMNL (fig. 

4411A-D) and PAF for the leukemic cell line HL-60 (fig. 4411E). Preincubation with AKBA 

results in a concentration-dependent inhibition of agonist-evoked Ca2+-influx (fig. 4411), the 

IC50 values were determined at 5 to 15 µM. AKBA is the most potent boswellic acid, 11-

methylene BAs are less effective and KBA is even inactive (not shown). 
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figure 4411: AKBA antagonizes agonist-induced 
Ca2+ mobilization in PMNL and HL-60. Fura-2 
loaded PMNL or HL-60 cells (107 /ml PG buffer, 
supplemented with 1 mM CaCl2) were treated with 
vehicle or AKBA (1, 3, 10, 30 µM) for 15 min, 
followed by the addition of (A) LTB4 (1 µM), (B) 5-
HETE (1 µM), (C and E) PAF (0.1 µM), or (D) fMLP 
(0.1 µM) after 20 s as indicated. The amplitude of the 
agonist-induced elevation of [Ca2+]i was determined. 
Values are given as mean + s.e.m., n = 4 - 5 (A –D) 
PMNL, (E) HL-60 
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4.4.9 Suppression of agonist-evoked aggregation of washed human 
platelets by boswellic acids 

Rapid and pronounced elevation of [Ca2+]i in platelets is a determinant for platelet 

aggregation in response to various stimuli 69, 149. Recently, β-BA (10 to 30 µM) strongly 

elevates [Ca2+]i in platelets also causes platelet aggregation, although moderately and in a 

delayed manner, whereas in contrast AKBA was barely active even at high concentrations (30 

µM). Since AKBA potently prevented the elevation of Ca2+ in platelets stimulated by collagen 

and U-46619 at rather low effective concentrations (≤ 3 µM), it seemed reasonable that keto-

BAs could inhibit aggregation induced by these agonists in a similar manner. First, the 

capacity of selected agonists and BAs themselves were analyzed for their ability to induce 

aggregation of washed platelets. As shown in fig. 4412A, collagen, thrombin and U-46619 

caused marked aggregation of platelets within seconds or a few minutes. Differential effects 

for the BAs were observed: Whereas both 11-methylene BAs at 30 µM efficiently induced 

platelet aggregation, the 11-keto-BAs AKBA as well as KBA (30 µM, each) failed in this 

respect (fig. 4412B).   

 

 

A     B 

 

 
figure 4412: Aggregation of human platelets. To 500µl of prewarmed recalcified washed platelets (1mM 
CaCl2) the indicated agents were added and aggregation was recorded for 7 min. (A) Aggregation induced by 
various stimuli; (B) BAs induced aggregation. 
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Next, washed platelets were preincubated with BAs (3 µM, each) for 15 min and subsequently 

stimulated with collagen, thrombin, and U-46619 and aggregation was analyzed. Among the 

four BAs, only AKBA potently suppressed collagen-induced aggregation (fig. 4413B). In 

contrast, thrombin-evoked aggregation was not prevented by AKBA (up to 30 µM) or any 

other BA (not shown). This is of interest since U-46619-induced aggregation AKBA was 

hardly efficient and KBA did not inhibit the effect of U-46619 (fig. 4413A). Detailed 

concentration-response studies showed that AKBA prevented platelet aggregation induced by 

collagen with an IC50 value of 1.1 µM, whereas for U-46619 the IC50 value was approximated 

at 25 µM (fig. 4413C). Despite the robust inhibition of collagen-induced aggregation by 

AKBA, only a moderate effect was measured with KBA (IC50 = 10 µM). Apparently, the 3-

O-acetyl group and the 11-keto moiety present in AKBA render this β-configurated BA a 

potent inhibitor of collagen-evoked platelet aggregation, implying that defined structure-

activity relationships exist excluding unspecific effects of AKBA.   

 

A  B 

 

C 

figure 4413: Aggregation of human platelets. 
500 µl of prewarmed washed platelets (1mM CaCl2) 
were preincubated for 5 min with the indicated 
agents, aggregation stimulus was added and 
aggregation was recorded for 7 min. (A) Inhibition 
of U-46619-induced aggregation, (B) inhibition by 
collagen-induced aggregation by four different BAs, 
(C) concentration-response curves for AKBA in 
agonist-induced aggregation in human platelets 
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4.5 Celecoxib 

4.5.1 Suppression of 5-LO product formation in human whole blood 

To investigate the effects of COX-2-selective inhibitors on eicosanoid formation, a human 

whole blood assay using Ca2+-ionophore A23187 as stimulus was applied, equipped with a 

highly sensitive LC/MS-MS methodology capable of selectively detecting a broad number of 

eicosanoids 140. Celecoxib but no other COX-2 inhibitor (up to 100 µM) concentration-

dependently inhibited the formation of the 5-LO products LTB4 and 5-HETE with IC50 values 

≈ 30.9 and 42.3 µM, respectively (fig. 451 A and B). Zileuton, a well-known iron-ligand 

inhibitor of 5-LO 150 used as positive control, caused significant reduction of LTB4 and 5-

HETE already at 1 µM. All COX inhibitors reduced PGE2 formation with diclofenac and 

celecoxib showing the highest efficacy (fig. 451 C). Interestingly, celecoxib failed to 

significantly suppress the levels of 12(S)-HETE (fig. 451D), and the formation of 15(S)-

HETE (fig. 451E) was only slightly decreased (IC50 > 100 µM). Therefore, besides inhibition 

of PGE2 synthesis, celecoxib has the unique property among COX inhibitors tested to 

suppress the formation of 5-LO products151. This work was done in collaboration with Dr. T.J. 

Maier. 
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figure 451: Effects of COX inhibitors on eicosanoid formation in human whole blood. The experimental 
procedure is described in Methods. The eicosanoids in the plasma supernatant analyzed by LC/MS-MS were 
LTB4 (A), 5-HETE (B), PGE2 (C), 12(S)-HETE (D) and 15(S)-HETE (E). For LTB4, 5-HETE and 12(S)-HETE 
data are given as mean + s.e.m. of 8 (celecoxib and zileuton; n = 14-26 values), 4 (etoricoxib, rofecoxib; n = 11-
13 values) and 2 (diclofenac; n = 6 values) independent experiments. For PGE2 and 15-HETE data are given as 
mean + s.e.m. of ≥ 4 (celecoxib, n = 12-15 values ) or ≥ 2 (rofecoxib, etoricoxib, diclofenac, n = 5-6 values) 
independent experiments. 
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4.5.2 Inhibition of 5-LO product formation in activated human PMNL 

The efficacy of celecoxib was assessed in A23187-stimulated human PMNL, a frequently 

used model for evaluation of 5-LO inhibitors 152. Pretreatment (10 min) of PMNL with 

celecoxib caused a concentration-dependent inhibition of 5-LO product formation with an 

IC50 ≈ 8.4 µM (fig. 452A). To exclude effects of celecoxib on the availability of endogenous 

AA as substrate and consequently circumvent cPLA2 activity, exogenous AA (2, 10, or 20 

µM) was provided. No alteration in the efficacy of celecoxib on 5-LO product formation was 

observed. Data are shown in fig. 452A for incubations with 20 µM AA (IC50 ≈ 7.0 µM) and 

without AA.  In agreement with the results obtained from whole blood assays, other coxibs 

(i.e. etoricoxib and rofecoxib) as well as the unselective COX-inhibitor diclofenac (up to 30 

µM, each), showed no or only weak inhibition of 5-LO activity in A23187-activated PMNL, 

irrespective of the presence of exogenous AA (fig. 452B). BWA4C, a potent 5-LO inhibitor, 

structurally related to zileuton, was used as positive control. In summary, only celecoxib 

among various COX inhibitors suppresses 5-LO product synthesis in activated intact human 

PMNL. 
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figure 452: (A) Inhibition of 5-LO product formation in intact PMNL by celecoxib. 5-LO activity in absence 
or presence of AA (20 µM) was assayed as described in Methods and expressed as percentage compared to 
vehicle control (100 %).  Results are mean + s.e.m., n = 6. (B) 5-LO-inhibitory activity of celecoxib, rofecoxib, 
etoricoxib, diclofenac and BWA4C in intact PMNL in the absence (black bars) or presence (striped bars) of 20 
µM AA as compared to vehicle control (100 %). For experimental procedures see Methods. Results are mean + 
s.e.m., n = 5. ***, p ≤ 0.001; *, p ≤ 0.05. cel, celecoxib; eto, etoricoxib; rof, rofecoxib; dic, diclofenac; AA, 
arachidonic acid 
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4.5.3 Inhibition of 5-LO activity of in cell-free assays 

 
5-LO is a tightly regulated enzyme and suppression of cellular product formation by any 

compound does not unequivocally indicate a direct interference with 5-LO catalysis. Thus, 

cellular regulatory components or mechanisms such as FLAP, mitogen-activated protein 

kinases (MAPKs), Ca2+ mobilization, nuclear membrane association 79 and interaction with 

CLP 153 might theoretically be targeted by celecoxib. To demonstrate a direct action on 5-LO, 

the effects of celecoxib on 5-LO product synthesis were analyzed in cell free assays. 

Celecoxib concentration-dependently inhibited 5-LO product formation in homogenates 

supplemented with 20 µM AA, though less potent (IC50 ≈ 23.4 µM, fig. 453A) as compared to 

intact cells (IC50 ≈ 8.4 µM, fig. 451A). Such a loss of efficacy in cell-free assays was 

observed also for nonredox–type 5-LO inhibitors, 154 but addition of thiols (to reduce the lipid 

hydroperoxide levels via glutathione (GSH) peroxidases) restored potent inhibition. However, 

addition of GSH had no significant effect on the efficacy of celecoxib (fig. 453A, IC50 ≈ 20.5 

µM). In accordance with the results obtained from the whole blood assay, celecoxib (up to 30 

µM) did not suppress the formation of 12(S)-HETE or 15(S)-HETE in homogenates of human 

platelets or eosinophils, respectively (fig. 453B). Finally, celecoxib concentration-

dependently inhibited the activity of partially (ATP-affinity) purified human recombinant 5-

LO with an IC50 ≈ 30.9 µM (fig. 453C). Rofecoxib, etoricoxib and diclofenac (up to 100 µM) 

caused no or only modest inhibition of 5-LO activity in the cell free assays (fig. 453D and E). 

Taken together, celecoxib can thus be said to be a direct inhibitor of 5-LO. 
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figure 453: Effect of celecoxib, etoricoxib, rofecoxib, diclofenac and BWA4C on 5-LO activity in cell-
free assays. 5-LO activity is expressed as percentage compared to vehicle control (100 %). Respective 5-LO 
activities were determined as described in Methods. (A) Inhibition of 5-LO product formation in broken cell 
homogenates by celecoxib in presence or absence of 5 mM GSH. Results are given as mean + s.e.m., n = 4. (B) 
Determination of 5-, 12- and 15-LO product formation in broken cell homogenates in the presence of increasing 
concentrations of celecoxib, 20 µM AA and 25 mM GSH. Results are given as mean + s.e.m., n = 3. (C) 
Inhibition of partially purified human recombinant 5-LO by celecoxib as compared to intact PMNL. Results are 
given as mean + s.e.m., n ≥ 5. (D) Comparison of the 5-LO-inhibitory activity of celecoxib, rofecoxib, 
etoricoxib, diclofenac and BWA4C in PMNL homogenates in the absence (black bars) or presence (striped bars) 
of 5 mM GSH as compared to vehicle control (100 %). Results are given as mean + s.e.m., n = 4. (E) Effect of 
celecoxib, rofecoxib, etoricoxib, diclofenac and BWA4C on recombinant 5-LO activity as compared to vehicle 
control (100 %). Results are given as mean + s.e.m., n ≥ 3. ***, p ≤ 0.001; **, p ≤ 0.01; *, p ≤ 0.05. cel, 
celecoxib; eto, etoricoxib; rof, rofecoxib; dic, diclofenac. 
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5 Discussion 
 

5.1 Cathepsin G is a target of boswellic acids 
 
Our findings provide strong evidence that human CatG is a high-affinity target of BAs. By 

means of a protein-fishing approach, besides several other proteins, a 25.8 kDa protein from 

lysates of human PMNL was found to selectively bind to an affinity matrix composed of 

KBA, linked covalently to insoluble EAH Sepharose 4B. MALDI-TOF-MS analysis 

combined with immunological detection revealed that this 25.8 kDa BA-binding protein is 

CatG. All four β-configurated BAs inhibited the activity of human CatG in vitro. With IC50 

values of 0.6 and 0.7 µM, respectively, AKBA and β-BA were most potent. The proteolysis 

of related serine proteases was less efficiently inhibited, confirming the selectivity of BAs for 

CatG. Moreover, BAs potently inhibited CatG-mediated cellular responses such as 

chemoinvasion of PMNL, and Ca2+ mobilization in platelets evoked by fMLP-stimulated 

PMNL. Hence, BAs not only bind CatG but also functionally interact with this protease. 

Along these lines, AKBA with a high average docking score docked into the active site of 

CatG, where the proteolysis of the substrate takes place. Since CatG plays a role in 

inflammatory diseases such as asthma, psoriasis and rheumatoid arthritis 28, 155 for which B. 

spec extracts have proven to possess therapeutic benefit 5, the high-affinity BA-CatG 

interaction may provide a molecular basis for these beneficial effects and might be of 

pharmacological relevance. 

BAs, in particular AKBA, have been proposed as the main active principles of B. spec 

preparations that are traditionally used to cure chronic inflammatory disorders 4, 5. Initial 

attempts to elucidate the molecular mechanisms responsible for the pharmacological actions 

of B. spec extracts identified 5-LO as a reasonable target of AKBA. Thus, AKBA as well as 

B. spec extracts reduced the formation of LTs in activated leukocytes 8, 65, 156, 157 and AKBA 

inhibited 5-LO activity in cell-free assays 65, 101, 156 or isolated 5-LO enzyme 156. Aside from 

AKBA, other BAs were either hardly active or not active at all 65. Since LTs play pivotal roles 

in inflammatory reactions 79 and because B. spec extracts show clinical effects similar to 

typical 5-LO inhibitors, it appeared reasonable that intervention of BAs with 5-LO and thus 

with LT formation, is the molecular basis underlying the anti-inflammatory effectiveness of 

B. spec extracts observed in vivo 5. 

Besides 5-LO, AKBA was shown to interfere with several other enzymes or signalling events 

that contribute to inflammation including HLE 10, p12-LO 9, the NFκB pathway 12, 



88 

intracellular Ca2+ levels and MAPKs activities 17. However, the required concentrations in the 

respective experimental systems frequently appeared rather high (> 10 µM) 10, 18, 101, 157, 

whereas the plasma concentrations of AKBA obtained after oral application of standardised 

B. spec extracts are in the submicromolar range 26, 27. The most affine AKBA target was 

proposed to be 5-LO, but strikingly different potencies (IC50 = 1.5 up to 50 µM) were 

reported 8, 65, 101, 104. These discrepancies seemingly depend on the different experimental 

settings (intact cells or cell-free assays, different species and cell type, AA concentration etc.). 

Thus, AKBA was most efficient to inhibit 5-LO in Ca2+ ionophore-stimulated PMNL from rat 

(IC50 = 1.5) 8, whereas for direct interference with isolated human 5-LO, the IC50 was 

determined at 16 µM 156, a phenomenon that needs to be resolved. Taken together, the 

pharmacological relevance of most of the proposed target interactions and effects of AKBA 

observed in vitro and the pharmacological relevance in vivo are a matter of debate.  

In fact, isolated CatG binds to KBA-Seph, but not to Seph without ligand, in the same manner 

as CatG in PMNL lysates. Most of the other identified proteins that selectively bind to KBA-

Seph are directly or indirectly involved in inflammatory processes, immune responses or 

cancer formation 30, 53, 63, 134, 158. 

The successful identification of CatG as target of BAs by means of the fishing approach using 

the affinity resin is the result of the combination of several fortunate circumstances. First, 

CatG is a rather abundant protein in PMNL. Second, the relatively high affinity of CatG to 

KBA-Seph enabled binding under the stringent conditions (1% Triton X-100) and the ability 

to endure the thorough and long-lasting washing (overnight) of the precipitates. Third, KBA 

is a highly rigid molecule with only few conformations favourable for binding to CatG. 

Finally, the C3-OH moiety used to link KBA to the resin via an ester bound is not detrimental 

for binding, in fact esterified BAs (i.e. AKBA or Aβ-BA) are virtually equipotent or even 

more potent than those with a free OH group (i.e. KBA and β-BA).  

In collaboration with HLE, CatG is largely responsible for the destruction of bacteria by 

neutrophils 28. Both proteases as well as proteinase-3 are not only involved in defence against 

bacterial infections, these enzymes are also important players in ulcerative colitis and 

rheumatoid arthritis 159-162 where BS extracts are beneficial 49, 163. Moreover, this work 

demonstrates that CatG activity can be reduced by oral administration of BS extracts in 

healthy volunteers and patients with ulcerative colitis in remission (ex vivo). Our findings 

might prove useful for the development of new drugs for treatment of bowel diseases.  
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5.2 DNA-PK and Akt are targeted by BAs 
 
The ability of apoptotic stimuli to induce cell death is counteracted by the activity of 

antiapoptotic proteins. The PI3K/Akt pathway downstream of RTKs plays an important role 

in cell survival. It was shown before that PKCξ acts as an antiapoptotic protein during TNFα-

induced cell death 164 and that there is a cross-talk between PKCξ and Akt. PKCξ acts 

upstream of Akt/PKB to exert its antiapoptotic function 165. Activation of Akt by PKCξ is 

mediated by DNA-PK, a member of the PIKK subfamily of protein kinases, and depletion of 

DNA-PK reversed the antiapoptotic function of PKCξ during TNFα-induced apoptosis 165. 

The observation that inhibition of DNA-PK can reverse antiapoptotic signalling by Akt 

establishes a new role for DNA-PK in the extrinsic cell death pathway. Multiple signalling 

pathways that exist in certain cell types might regulate/influence the final outcome of cell 

death or survival. Cells that are resistant to TNFα contain constitutively active Akt 166. 

Activation of Akt is an early event following binding of TNFα to its cell surface receptors. 

Complete activation of Akt requires phosphorylation at Thr308 and Ser473 by PDK1 and 

PDK2, respectively167. Since phosphorylation of Akt at Ser473 is mediated by PDK2 and 

since DNA-PK has been recently identified as PDK2 55, the recruitment of DNA-PK during 

DNA damage-induced apoptosis is reasonable. In fact, DNA-PK is activated in response to 

DNA damage 168 and autophosphorylation of DNA-PK has been shown to inhibit DNA-PK 

activity 169. These results suggest that DNA-PK may also play a critical role in receptor-

initiated cell survival via activation of Akt/PKB. The mechanism of how DNA-PK localizes 

to the membrane is not clear, but DNA-PK has been reported to be associated with epidermal 

growth factor receptor 57.  

It was shown, that activation of Akt via DNA-PK inhibits TNFα-induced apoptosis in breast 

cancer cells 165. BAs inhibit LPS-mediated TNFα induction in monocytes 100. The cross-talk 

between multiple signalling pathways is an important determinant of cell survival and cell 

death, but is currently not well understood. The involvement of DNA-PK during DNA 

damage induced apoptosis is well known and a new role for DNA-PK during receptor-

initiated apoptosis was established 55. DNA-PK is activated upon DNA damage by UV 

irradiation, as is Akt 58. Induction of apoptosis by cisplatin was explained by a decrease in 

DNA-PK activity through proteolytic degradation of DNA-PK 60. Interestingly, Akt activity 

and Ser473 phosphorylation are also inhibited by cisplatin treatment 61, 170. Mouse and human 

cells deficient in DNA-PK are hypersensitive to ionizing radiation and to radiomimetic drugs 
171-173; a similar phenotype can be observed in Akt1/PKB knock-out mice 174 and with mouse 
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embryo fibroblasts derived from such mice 175. It was often reported that BAs induce 

apoptosis in several cancer cell lines in vitro and reduce tumour growth in vivo 13, 14, 16, 18 

Modulation of DNA-PK and inhibition of Akt by BAs may be responsible for induction of 

apoptosis in several tumour cell lines 13 14 16. 

Akt is an upstream kinase of the IKK pathway which is indirectly inhibited by boswellic acids 
12, 18. Akt is bound selectively by immobilized KBA (KBA-Seph). Beneath NFκB pathway 

(IKK) and MAPK pathway, Akt influences several other pathways like cell growth, cell 

death, cardiovascular homoeostasis (eNOS), JNK and glycogen synthesis. Akt is inhibited 

potently (Aβ-BA IC50 = 300 nM) and directly in vitro but also in vivo by BAs. 

Phosphorylation of Akt on Ser473 was reduced by BAs and phosphorylation of the direct 

downstream-target Bad by Akt was inhibited (Bad phosphorylation in LNCaP). These results 

provide strong evidence that Akt is a high affinity target of BAs. The fact that also Akt 

phosphorylation by DNA-PK is inhibited in vitro and in vivo implies that BAs may inhibit the 

interaction of Akt and DNA-PK, which results in the inactivation of their activity. 

The DNA-PK pathway plays a crucial role in controlling transcription, cell cycle progression, 

and apoptosis 171. Similarly, Akt is also implicated in the regulation of many different cellular 

processes 53, 54. It was shown that BAs induce apoptosis in cancer and cancer cell lines13, 14, 18. 

These anticarcinogenic effects may be influenced by inhibition of DNA-PK and Akt. 

Hyperproliferation and overactivation of RTKs in cancers lead to invasiveness and metastasis 

of tumours. BAs block the growth signal on an early stage of the pathway. Because Akt is 

potently inhibited by Aβ-BA (IC50 = 300 nM), in vivo relevance could be implicated; plasma 

levels up to 6.4 µM β-BA / 4.9 µM Aβ-BA have been achieved. In conclusion, the RTK/PI3K 

pathway is directly modulated by BAs, DNA-PK and Akt are the main targets.  

 

Beneath Akt and DNA-PK, other BA-binding proteins are involved in cancer development 

and immune response 30, 53, 63, 134, 158. Farnesyl pyrophosphate synthetase (FPPs) is the target of 

the bisphosphonates, which are effective in the treatment of osteoporosis. Though FPPs is not 

influenced by BAs in vitro, there could still be a certain relevance in vivo 176. Proteinase-3 is a 

human protease involved in tissue degradation and penetration of macrophages. Proteinase-3 

is very similar in sequence and structure to CatG and HLE, but inhibition by BAs is weak 

(IC50 ~ 30 µM). Moreover, other proteins found by pulldown experiments, e.g. cathelicidin 

antimicrobial peptide (hCAP18), UNC-112 and prohibitin are important key mediators in 

inflammation and the autocrine immune response, but the whole context still remains unclear 
158.  
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5.3 Modulation of signal transduction and functionality of platelets 
and monocytes by boswellic acids 

 

The current opinion regarding the molecular mechanisms underlying the anti-inflammatory 

properties of BS extracts or BAs, favours 5-LO as the most relevant target 5, but AKBA 

interferes with several other relevant enzymes or signalling events that contribute to 

inflammation as described above. In this work, additional anti-inflammatory implications of 

AKBA, that is, suppression of agonist-induced Ca2+ mobilization in platelets and platelet 

aggregation, are implicated. These inhibitory actions may contribute to the anti-inflammatory 

effectiveness of AKBA-containing extracts of B. spec. observed in vivo as well. Moreover, 

inhibition of platelet aggregation suggests novel beneficial properties of AKBA in 

cardiovascular diseases such as atherosclerosis, heart attack and stroke that are characterized 

by aggregating platelets and thrombotic states 177. However, besides AKBA, BS extracts also 

contain 11-methylene-BAs that activate platelets and when BS extracts were analysed, the 

overall effects on platelets resembled those of 11-methylene-BAs.  

As mentioned before, there is a discrepancy between plasma levels of BAs and the 

concentrations required for inhibition of proposed targets. Along these lines, it was previously 

shown that in platelets, AKBA at concentrations ≥ 30 µM caused moderate elevation of 

[Ca2+]i and activation of MAPKs, accompanied by the release of AA 67. Furthermore, our 

group showed before that relatively high concentrations of AKBA (10 up to 100 µM) 

stimulated the mobilization of Ca2+ and the activation of MAPK in PMNL 66, coupled to the 

formation of reactive oxygen species (ROS), the release of AA and its metabolism to 

leukotrienes, similarly as observed for the chemoattractants fMLP or PAF 104. Such actions of 

AKBA suggest a pro-inflammatory rather than an anti-inflammatory potential. However, 

these events were evoked only at quite high concentrations of AKBA (≥ 10 µM) 17, 66, 67, 104 

that we consider not pharmacologically relevant in vivo. Intriguingly, in the present study, 

effective concentrations of AKBA (≤ 3 µM) significantly antagonised Ca2+ mobilization 

evoked by the platelet agonist collagen and suppressed agonist-induced platelet aggregation. 

Note that AKBA itself is unable to activate platelets at such low concentrations 67. AKBA was 

somewhat less efficient to suppress Ca2+ mobilization and platelet aggregation induced by U-

46619, and when thrombin was used to evoke these responses, AKBA even failed. 

Presumably, AKBA targets a component pivotal in the signal transduction of collagen (and U-

46619), which apparently is dispensable for thrombin-induced pathways leading to Ca2+ 

mobilization and platelet aggregation. It should be noted that the signal transduction pathways 
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of collagen and U-46619 or thrombin are quite distinct and, at least in part, utilize different 

types of signalling molecules. U-46619 and thrombin act on GPCRs and signals via Gi/q 

proteins and PLC to rapidly release Ca2+ from IP3-sensitive stores 178, whereas collagen binds 

integrin α2β1 and glycoprotein VI and slowly allows Ca2+ entry via a Src family kinase/PLCγ-

mediated pathway 179. For β-BA, Src family kinases and the PLC/IP3 pathway seem to be 

involved in Ca2+ mobilization, and β-BA causes activation of ERK2 and the PI3K/Akt route. 

Moreover, β-BA induces the release of AA, a pronounced generation of thrombin, and Ca2+-

dependent platelet aggregation. In contrast, AKBA-induced Ca2+ mobilization is not 

connected to Src family kinases and PLC/IP3 signalling, and AKBA failed to induce 

phosphorylation of Akt and ERK2, as well as functional platelet responses. Detailed analysis 

of the interference of AKBA with these signalling pathways is needed to reveal the molecular 

modes of action.  

 

Among the BAs tested for induction of Ca2+ mobilization, β-BA is the most potent analogue. 

At 10 µM, the effectiveness of β-BA exceeded that of PAF or collagen, and was comparable 

with that of the potent platelet agonist thrombin. Such β-BA concentrations are in the range of 

β-BA levels in human plasma (10.1 µM), determined after oral application of 4 x 786 mg BS 

extract/day within 10 days 27. The 3-O-acetyl group slightly hampers (receptor-)activation and 

the 11-keto moiety significantly decreases the potency and also alters the signalling routes in 

platelets. In sharp contrast to platelets, only 11-keto BAs, but not 11-me-BAs, caused 

stimulation of PMNL 66, 104. Possibly, PMNL and platelets selectively express closely related 

but not identical receptors specific for AKBA or 11-me-BAs, respectively. Important 

receptors for soluble agonists known to regulate [Ca2+]i in platelets are the purinergic P2X1 

and P2Y12 receptors, the TXA2 receptor, the PAF receptor, the 5-HT2A receptor, and the PAR-

1 and – 4 180. Whether β-BA acts at one (or more) of these receptors is unknown. However, 

antagonists of thrombin (argatroban), PAF (WEB 2086), and ADP (NF449 and MRS2179) 

did not affect β-BA-induced Ca2+ mobilization. Thrombin is the most potent platelet agonist 

acting via PAR-1 and -4 181, 182 and the influence of 2-APB on cellular Ca2+ influx systems has 

been reported 183. Interestingly, the proximal routes mediating PLC/IP3-dependent Ca2+ 

mobilization appear to be different for β-BA and thrombin (or PAF). Thus, Src family kinase 

inhibitors abolished the β-BA-induced response, but not the responses elicited by thrombin or 

PAF. PLCγ is the most abundant PLC isoform in platelets 184 and is an operative element in 

Ca2+ mobilization in response to activation by adhesion receptors 185. Whereas, soluble 

ligands such as thrombin, ADP, PAF, or TXA2 act via GPCRs to stimulate PLCβ isoenzymes, 
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the PLCγ isoforms are regulated through phosphorylation by Src family kinases 185. In 

analogy to agonists that act via adhesion receptors but unlike thrombin, β-BA may utilise the 

Src family kinases/PLCγ pathway to induce Ca2+ mobilization. Another difference between β-

BA- and thrombin-mediated Ca2+-mobilization is the significant delay of the response to β-

BA as compared to the rapid effect of thrombin. Aside from acting as a direct ligand at a 

certain (adhesion) receptor, β-BA may possibly first induce the generation of an endogenous 

agonist that in turn causes PLC-γ/IP3-coupled Ca2+ mobilization via (adhesion) receptors. 

Attempts to unravel a putative autocrine mode of action are in progress in our laboratory. 

 

Typical platelet agonists such as thrombin, collagen, or TXA2 activate PI3K and its 

downstream effector Akt, important mediators of agonist-induced platelet activation 186, as 

well as p38 MAPK and ERKs 71, 72, 187. The MAPK are a point of convergence of complex 

signalling networks, regulating cell proliferation and differentiation 72. In platelets, the 

functions of MAPK are mainly uncharacterised and the signal transduction steps are poorly 

understood. All BAs tested activated p38 MAPK with similar efficacy, but only β-BA (and 

Aβ-BA) rapidly and significantly activated ERK2. Also, β-BA, but not AKBA, evoked Akt 

phosphorylation, and in analogy to thrombin, the PI3K and/or the PLC/Ca2+ pathway are 

involved. Therefore, the receptor for BAs mediating p38 MAPK activation might differ from 

those transmitting signals to activate ERK2 and Akt. The latter (11-me-BA specific) receptor 

may also mediate increases in [Ca2+]i, generation of thrombin, release of AA and aggregation, 

since AKBA and KBA failed to elicit these events. Investigation of the platelet functions 

elicited by β-BA provided controversial results. As a rule, the distinct responses of activated 

platelets depend on the strength (potency) of the agonist, and these responses can be arranged 

in an activation sequence: (1) aggregation, (2) granule secretion, (3) AA liberation, and (4) 

acid hydrolase secretion 188. The magnitude of Ca2+ mobilization is an important parameter 

for the induction of these responses. In fact, β-BA (10–30 µM) substantially elevated [Ca2+]i 

and potently induced thrombin generation, being equipotent in this respect with collagen at 2 

mg/ml in a model utilising native platelets. Also, β-BA potently evoked the liberation of free 

AA from washed platelets, although at concentrations slightly higher than those required for 

Ca2+ mobilization, probably due to the presence of fatty acid-free albumin that may bind BAs. 

In general, liberation of free AA is a response distal of aggregation and degranulation, and its 

induction normally requires potent agonist-activating platelets with high strength. 

Surprisingly, however, the efficacy of β-BA was greatly reduced by the induction of 

aggregation. In contrast to collagen, the response of β-BA was strictly dependent on the 
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presence of extracellular Ca2+. Therefore, β-BA may facilitate aggregation by other factors 

rather than being a full agonist. Moreover, β-BA failed to induce degranulation and fibrinogen 

receptor activation (CD62, PAC-1 expression). Together, despite the pronounced elevation of 

[Ca2+]i, only select functional platelet responses were observed after stimulation with β-BA. 

Along these lines it was found that platelets in polycythaemia vera exhibit decreased 

aggregation after stimulation with PAF, although an equal increase in [Ca2+]i was seen as 

compared to platelets from healthy donors 189. Furthermore, a patient was described with 

defective platelet aggregation in response to Ca2+ ionophore A23187, despite normal 

increases in [Ca2+]i 190. Hence, elevation of [Ca2+]i in platelets is one important signalling step 

for eliciting various platelet responses, but must not necessarily lead to the induction of all 

Ca2+-dependent platelet functions. It is conceivable that β-BA on one hand is a platelet agonist 

that potently induces central signalling pathways (Ca2+ mobilization, MAPK/Akt 

phosphorylation) and select responses such as thrombin generation and AA release, but on the 

other hand lacks the stimulation of certain signalling components or executing molecules 

particularly important for a rapid aggregation, degranulation, and fibrinogen receptor 

activation. At the present time, the findings cannot be readily related to the antiinflammatory 

properties of BS extracts, observed in animal models or in studies with human subjects 6. 

Nevertheless, due to its high effectiveness and the importance of the signalling molecules and 

the select platelet functions induced, the receptor(s) mediating the actions of β-BA in platelets 

warrant further elucidation. Effective concentrations of β-BA (10 µM) are in range of β-BA 

levels in human plasma (see above), but platelet agonism does not appear to be relevant in 

vivo (see above).  

 

Besides the agonism of 11-me-BAs to Ca2+-influx in human platelets, particularly the keto-

BAs antagonize potently agonist-induced increases in [Ca2+]i  in monocytes, PMNL and HL-

60-cells. These findings indicate that keto-BAs especially AKBA desensitize blood cells to 

endogenous inflammation-stimuli.  
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Based on present findings and previous studies, the 3-O-acetyl group and the 11-keto moiety 

strongly determine the pharmacodynamics in the particular assay system, and AKBA is 

frequently the most effective or the exclusive active analogue 9, 17, 65, 66. In this work, AKBA 

suppressed Ca2+ mobilization induced by collagen or U-46619 with almost equal potencies 

(IC50 = 3 and 5 µM), implying the interference with a common type of target or pathway 

distal of Ca2+ release. Besides AKBA, also β-BA reduced U-46619- and collagen-induced 

Ca2+ mobilization, though less efficient (IC50 = 7 and 8 µM, respectively). Accordingly, one 

would expect that KBA, containing an 11-keto moiety or Aβ-BA, possessing a 3-O-acetyl-

group should be more potent than β-BA. However, KBA caused no suppression at all but 

rather enhanced the signals induced by collagen, U-46619 and also by thrombin, and Aβ-BA 

was less effective than AKBA or β-BA. It is possible that AKBA and β-BA act at different 

targets both leading to suppression of Ca2+ mobilization.  

The finding that β-BA (and Aβ-BA) suppressed agonist-induced Ca2+ mobilization was 

actually quite surprising, since these 11-methylene-BAs themselves cause a transient increase 

of [Ca2+]i in platelets (this study and 67). Such transient increase of [Ca2+]i could desensitize 

platelets by unspecific actions (e.g. depletion of intracellular Ca2+ stores) and thus be the 

reason for the subsequent failure of Ca2+ release evoked by a second agonist. However, 

elicitation of Ca2+ mobilization by U-46619 and subsequent stimulation of platelets with 

collagen or thrombin did not substantially prevent the effects of the agonists as in the case of 

BAs.  

 

At the moment it is not possible to provide a molecular basis explaining the puzzling effects 

of the various BAs on the Ca2+ homeostasis in platelets. Nonetheless, since elevation of 

[Ca2+]i is a determinant for aggregation of washed platelets 69, 149, it is reasonable to speculate 

that inhibition of collagen-induced aggregation by AKBA could be the result of suppressed 

Ca2+ mobilization. On the other hand, lower concentrations of AKBA were sufficient to 

suppress collagen-evoked aggregation (IC50 = 1.1 µM) as compared to those required to 

inhibit Ca2+ mobilization (IC50 = 3 µM). Moreover, AKBA was about equipotent for 

suppression of Ca2+ mobilization in response to U-46619 as compared to collagen, but U-

46619-evoked aggregation was hardly affected by AKBA (IC50 = 25 µM) . Therefore, the 

inhibitory effects of ABKA on agonist-induced Ca2+ mobilization and on aggregation also 

might be separated. However, it is possible that already a minimal impairment of [Ca2+]i as in 

the case of collagen is sufficient to substantially affect aggregation. In contrast to AKBA, β-

BA at higher concentrations caused aggregation itself 67. Once again, this indicates that 
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AKBA interacts with other molecules required for aggregation, and thus concrete structure-

activity relationships may exist in this respect.  

 In summary, AKBA (and to a minor extent also β-BA) acts as an efficient blocker of select 

agonist-induced Ca2+ mobilization, and AKBA but no other BA, potently inhibits collagen-

evoked aggregation of platelets. Importantly, the concentrations of AKBA needed to block 

aggregation are in the range of plasma levels of AKBA detected in vivo after oral 

administration of standardized doses of B. spec extracts. For patients taking such BS 

preparations, the amounts of AKBA reached in the blood may be sufficient to antagonise 

collagen-mediated pathophysiological events, particularly platelet aggregation.  
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5.4 Celecoxib is an inhibitor of 5-LO 
 
Celecoxib, a well-tolerated antirheumatic drug, reduces familial adenomatous polyp 

formation92. This effect could not merely be explained by COX-2 inhibition. The COX-2-

selective drug is, as shown here, also an inhibitor of 5-LO both in vitro and in vivo. Celecoxib 

inhibited 5-LO product synthesis in different cellular models using A23187 as agonist, that is, 

in human whole blood and human isolated PMNL. A direct interaction between 5-LO and 

celecoxib is visualized in cell-free assays, where celecoxib blocked the activity of isolated 

human recombinant 5-LO or 5-LO in homogenates from human PMNL. Together, the data 

strongly suggest that pharmacologically relevant doses of celecoxib affect 5-LO activity in 

leukocytes and may thus contribute to the unique pharmacology of this drug.  

5-LO contains a non-heme iron in the active site coordinated by three His and a C-terminal Ile 

residue that cycles between the ferrous and the ferric state, being essential for catalysis 191. 

Most pharmacological 5-LO inhibitors target this iron by retaining the ferrous state and/or by 

chelation, whereas nonredox-type inhibitors interfere with fatty acid binding cleft(s) 191. 

Based on the structure of celecoxib, an iron-chelating- or a redox-related mechanism for 

inhibition can be excluded and a typical pattern of a nonredox-type 5-LO inhibitor is not 

evident. Besides direct inhibition of 5-LO, interference with FLAP (by e.g. MK-886) blocks 

cellular 5-LO product formation 192. Although the cellular environment influences inhibition 

of 5-LO product synthesis by celecoxib, FLAP is apparently not involved in 5-LO inhibition 

in intact cells.  

A number of studies were conducted to identify non-COX-2 targets of celecoxib responsible 

for its pharmacological profile. The pharmacological effects include a distinctive chemo-

preventive and tumour-regressive efficacy at higher celecoxib doses as well as a favourable 

gastrointestinal tolerability as compared to classical NSAIDs. Various COX-independent 

mechanisms predominantly in the higher µM range were considered to explain the unique 

pharmacology of celecoxib such as inhibition of 3-phosphoinositide-dependent kinase-1 

(PDK-1, IC50 = 48 µM) 97 or endoplasmatic reticulum Ca2+-ATPase (IC50 ≈ 35 µM) 95 in 

human prostate cancer cells, degradation of the oncogenic survival factor beta-catenin in 

human colon carcinoma cells at 60-100 µM 98 or inhibition of adenylyl-cyclases (IC50 = 375 

µM) 96. However, due to the strong discrepancy between the plasma concentrations of 

celecoxib after a single intake of 800 mg (cmax ≈ 8 µM) 99 and those concentrations required to 

affect non-COX-2 targets (≥ 30 µM, in vitro assays) the relevance of these findings is 

discussed controversially. 



98 

Inhibition of 5-LO product synthesis occurs at comparably low celecoxib concentrations (IC50 

≈ 8 µM, cellular assay) similar to the plasma levels in humans after intake of high celecoxib 

doses 99. The findings are supported by a study of Chen et al. demonstrating that high doses of 

celecoxib in chow (1000 ppm) reduced the content of LTB4 by approx. 50 % in oesophageal 

adenocarcinoma xenografts of rats, whereas lower doses were almost ineffective 193. Also, a 

50% reduction of LTB4 and 5-HETE formation in A23187-stimulated human whole blood by 

100 µM celecoxib was described using different experimental conditions as compared to the 

present study 194. In contrast, Mao et al. showed that administration of celecoxib 400 mg twice 

daily to active smokers increased the production of LTB4 in broncho alveolar lavage fluids 

(BAL) by around 36 % 195 , indicating that modulation of 5-LO product synthesis by 

celecoxib may depend on the tissue type and its state of health.  

Distinctive inhibition of tumour growth as a pharmacological effect arising from 5-LO 

inhibition was reported for human prostate, oesophageal, pancreatic, lung and colorectal 

cancer 196. Interestingly, all these tumour types were susceptible to celecoxib treatment 197 

providing a possible link between the antiproliferative potency of celecoxib and inhibition of 

5-LO. Indeed, the celecoxib-mediated antiproliferative effects are mechanistically similar to 

those observed during 5-LO inhibitor-triggered cell death. For instance, both 5-LO inhibitors 

and celecoxib attenuated the growth of human carcinoma cells by releasing cytochrome c 

from mitochondria, by activating caspase-3 and -9 followed by cleavage of  poly(ADP-

ribose)polymerase (PARP), and by inducing the cell cycle inhibitor p21kip1 94, 198, 199. 

Moreover, inhibition of 5-LO was described to implicate downregulation of LTD4-mediated 

beta-catenin-signalling 200 , and this pathway is suppressed also by celecoxib 98. Finally, LTB4 

was reported to activate Akt by PI3-kinase/PDK-1-mediated phosphorylation 201 , suggesting 

that inhibition of LTB4 formation by celecoxib may contribute to the downregulation of 

cellular Akt activity as described for this drug few years ago 97. Taken together, celecoxib 

may exert its antiproliferative effects via inhibition of 5-LO product synthesis. 

Dual inhibitors of COXs and the 5-LO pathway, such as licofelone, constitute a valuable 

alternative to classical NSAIDs since they cause less severe gastrointestinal (GI) side effects 

than non selective COX-inhibitors alone 202. Recent studies showed that the gastroprotective 

effects of licofelone can substantially be attributed to an inhibition of LT-mediated leukocyte 

adhesion to intestinal blood vessels and subsequent mucosal inflammation 203. Together, since 

celecoxib combines COX-2 selectivity with 5-LO-inhibitory activity, it may counteract such 

ulcerogenic effects by reducing LTB4 levels which is highly chemotactic for leukocytes and  

plays an important role in the development of NSAID-induced gastrointestinal lesions 204. 



99                        

Interestingly, it has been shown that celecoxib has a favourable gastrointestinal tolerability 

profile superior to that of unselective NSAIDs 205-207, perhaps partly due to its  5-LO-

inhibitory activity.  

In conclusion, this work shows that celecoxib inhibits human 5-LO in cell-free assays, in 

cellular systems and in human whole blood. These findings may contribute to a better 

understanding of the unique pharmacological profile of celecoxib among coxibes, 

characterized by a distinctive antiproliferative efficacy and a favourable gastrointestinal 

tolerability. 
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6  Summary 
 
Extracts of Boswellia serrata, also known as Indian frankincense, have been used to treat 

inflammatory diseases in the Indian ayurvedic medicine or Chinese traditional medicine 

(TCM) for over 3000 years, but the molecular mechanisms of the anti-inflammatory effects 

are still not well understood. It is obvious that the boswellic acids, the major compounds in 

the extracts, are responsible for the efficacy. This work employed a protein fishing technique 

to identify putative targets of boswellic acids at different stages within the inflammatory 

cascade. For fishing experiments, boswellic acids were immobilized to sepharose and 

incubated with cell lysates. After washing and boiling, fished proteins were separated by 

SDS-PAGE and analysed by MALDI-TOF-MS. CatG, DNA-PK and the protein kinase Akt 

were identified by protein pulldowns with immobilised BAs and characterised as selective 

and important targets for BAs with an IC50 in the range of physiologically achievable plasma 

levels up to 5 µM. In addition, the influence on several signal transductions by BAs was 

tested. Calcium influx, arachidonic acid release, platelet aggregation and TNFα-release were 

assayed to reveal further pharmacological effects of BAs.  

 

Celecoxib is a well-known selective COX-2 inhibitor that is in clinical use. In this work, it is 

demonstrated that celecoxib is also a highly potent direct 5-LO inhibitor. Celecoxib is used in 

arthritis and its gastro-intestinal side effects are reduced compared to non-selective NSAIDs. 

In patients with a familiar disposition to polyp forming, celecoxib reduced polyps and the 

incidence of colon cancer. Because of lowered leukotriene levels in patients under celecoxib 

therapy it was plausible to test whether celecoxib interferes with 5-LO. Here it is shown that 

the activity of 5-LO is inhibited in PMNL and cell-free assays with IC50 of 8 µM in intact 

cells, 20 µM with supplemented arachidonic acid and 30 µM in cell-free systems. Thus, 

celecoxib is a dual inhibitor of COX-2 and 5-LO. Since 2006, celecoxib has been approved as 

an orphan drug for the treatment of familial adenomatous polyposis. Aside from this 

indication, it could be useful for treatment of asthma and other diseases where 5-LO is 

implicated. 
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7 Zusammenfassung 
 
Extrakte des indischen Weihrauchs werden seit mehr als 3000 Jahren in der Volksmedizin zur 

Behandlung chronisch entzündlicher Erkrankungen sowie in der ayurvedischen Medizin in 

Indien und in der Traditionellen Chinesischen Medizin (TCM) verwendet. Pharmakologisch 

wirksame Inhaltsstoffe sind vor allem Boswelliasäuren, die den Hauptbestandteil der 

Säurefraktion des Harzes ausmachen. Bislang sind die molekularen Mechanismen nur 

unvollständig aufgeklärt. Diese Arbeit befasst sich mit der Auffindung und Charakterisierung 

von Zielstrukturen, die innerhalb der Entzündungskaskade von Boswelliasäuren moduliert 

werden. Zur Identifizierung wurden 11-Keto-Boswelliasäure sowie β-Boswelliasäure an 

Sepharose-Beads gebunden und damit immobilisiert. Die immobilisierten Boswelliasäuren 

wurden zusammen mit Zelllysaten aus verschiedenen Zelltypen (PMNL, Thrombozyten, 

MM6, LNCaP, MCF-7, HL-60 und RBL-1) inkubiert. Die Beads wurden von dem Überstand 

getrennt, gewaschen und mittels SDS-PAGE aufgetrennt. Als Vergleichsprobe diente 

ungebundene Sepharose, die unter gleichen Bedingungen behandelt wurde. Banden, die nur in 

den Präzipitaten der BA-Sepharosen auftraten, wurden mittels MALDI-TOF-MS analysiert. 

Bei diesem als „Fischen“ bezeichneten Verfahren wurden selektiv folgende Proteine als 

mögliche Interaktionspartner von BAs gefunden: CatG, Rap1b, DNA-PK, Akt, Proteinase-3, 

Prohibitin, UNC-112, cathelicidin antimicrobial peptide (hCAP18), farnesylpyrophosphate 

synthase (FPPs), VAT-1 und ATP-synthase. 

 

Die meisten dieser Proteine sind wichtige Mediatoren in der Zelltransduktion, im 

Immunsystem oder spielen eine Rolle im Entzündungsgeschehen sowie bei der Apoptose. Der 

Einfluss der BAs auf PKC und FPPs ist noch unklar, da ex vivo und in vitro Experimente zwar 

negativ ausfielen, Untersuchungen in klinischen Studien aber auf eine Beeinflussung 

schließen lassen176. Rap1b wird durch BAs in seiner Aktivität gehemmt, hier sind noch 

weitere Studien zur genaueren Charakterisierung nötig. CatG, DNA-PK und die Proteinkinase 

Akt konnten als Zielstrukturen von BAs mit hoher Affinität (IC50-Werte < 5 µM) identifiziert 

werden, wobei die erreichbaren Plasmakonzentrationen mancher BAs pharmakologische 

Relevanz implizieren. Andere in der Literatur beschriebene Interaktionspartner benötigen für 

eine Hemmung sehr hohe Konzentrationen an BAs (z.B. 5-LO: 15-30 µM), so dass eine 

pharmakologische Relevanz in vivo bei der 5-LO und der HLE fraglich erscheint. Die 

proteolytische Aktivität von CatG wird konzentrationsabhängig, kompetitiv und reversibel 

mit IC50-Werten von 0,6 µM (AKBA), 0,8 µM (β-BA), 1,1µM (Aβ-BA) und 3,7 µM (KBA) 
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gehemmt. Den BAs ähnliche Triterpene wie Amyrin oder Ursolsäure konnten die Aktivität 

von CatG bis zu einer Konzentration von 30 µM nicht signifikant supprimmieren. Auch die 

Aktivität anderer Serinproteasen wurde zum Teil sehr potent inhibiert, so konnte für 

Chymotrypsin ein IC50-Wert von 4,8 µM (Aβ-BA) ermittelt werden, die anderen BAs waren 

weniger stark wirksam. Insgesamt ist die Effektivität bei CatG aber am höchsten. Nicht nur 

die proteolytische Aktivität von CatG wird in vitro inhibiert, auch die CatG-induzierte 

Migration von PMNL durch Matrigel wird mit einem IC50 von 2,9 µM (Aβ-BA) gehemmt. In 

unserem kleinen pharmakokinetischen Test (Phase I) konnte gezeigt werden, dass bei einem 

Plasmaspiegel von 6 µg/ml Aβ-BA die proteolytische Aktivität von CatG nur noch ca. 75% 

des Ausgangswertes beträgt. 

 

DNA-PK und Akt sind Kinasen in der Signaltransduktion von Rezeptor-Tyrosinkinasen, 

deren Liganden Wachstumsfaktoren sind. Durch zellbasierte und zellfreie Experimente wurde 

gezeigt, dass BAs die Aktivität von DNA-PK und Akt hemmen und somit Wachstumssignale 

inhibieren. Die Phosphorylierung von Akt wird intrazellulär und im zellfreien System durch 

BAs stark reduziert, und die Aktivität von Akt wird extrazellulär durch BAs 

konzentrationsabhängig im nanomolaren Bereich inhibiert. 

 

Weiterhin wurde der Einfluss von BAs auf verschiedene Elemente der 

Signaltransduktionskette untersucht. Hierbei stellen vor allem Ca2+-Einstrom, Beeinflussung 

des MAP-Kinaseweges, Arachidonsäurefreisetzung, Thrombozytenaggregation und TNFα-

Freisetzung interessante Ansatzpunkte dar. Die gefundenen Ergebnisse beleuchten die 

pharmakologischen Wirkungen der Weihrauchextrakte ein wenig besser, vor allem die sehr 

guten Ergebnisse bei chronisch entzündlichen Darmerkrankungen könnten nun aufgrund der 

sehr potenten Hemmung von Cathepsin G erklärbar sein.  

Mittels sepharose-gebundener Boswelliasäuren konnten Zielstrukturen entdeckt werden, die 

selektiv und hochaffin an die BA-Sepharosen binden. Diese Strukturen sind größtenteils in 

wichtige Prozesse der zellulären Signalkaskade involviert. Durch die Identifizierung dieser 

hochaffinen Targets ist es möglich, die zelluläre Wirkung der BAs genauer aufzuklären und 

die BA-Grundstruktur zur Entwicklung neuer selektiver Arzneistoffe gegen chronisch 

entzündliche Erkrankungen und Krebs zu nutzen. 

 

 

 



103                        

Des Weiteren wurde gezeigt, daß Celecoxib, ein gut charakterisierter, selektiver COX-2-

Inhibitor, als hoch potenter 5-LO Inhibitor fungiert. Der Wirkstoff wird zur Therapie von 

Arthrosen und Rheumatoider Arthritis angewendet und kam als erster selektiver COX-2-

Hemmer auf dem Markt. Die gastrointestinalen Nebenwirkungen sind gegenüber den 

unselektiven NSAR deutlich reduziert, zusätzlich konnte durch klinische Studien gezeigt 

werden, dass die Gefahr für kardiovaskuläre Ereignisse im Vergleich zu den anderen Coxiben 

– Rofecoxib (Vioxx®) wurde deshalb vom Markt genommen – stark erniedrigt ist und auf 

dem Niveau der klassischen Antirheumatika wie Ibuprofen oder Diclofenac liegt.  

Durch Zufall wurde entdeckt, dass neben der bisher bekannten Wirkung Celecoxib bei 

Patienten mit familiärer Prädisposition die Polypentstehung im Darm stoppen kann. Diese 

Darmpolypen sind eine Vorstufe von Darmkrebs. Dieser Effekt konnte weder mit klassischen 

NSAR noch mit den anderen Coxiben erzielt werden, weshalb neben der COX-2 noch weitere 

Zielstrukturen beeinflusst werden mussten. Bei weiteren Studien konnte mit 800 mg/d 

Celecoxib bei einigen Patienten eine Remission von Darmtumorvorstufen erreicht werden, 

unzureichend mit einer COX-Hemmung erklärbar ist. Durch Untersuchungen an 

Patientenvollblut konnten verminderte Level an Leukotrienen unter Therapie gezeigt werden, 

die auf eine Beeinflussung des Leukotrienstoffwechsels hindeuten. Als interessante 

Zielstrukturen wurden FLAP und die 5-LO ausgewählt und bearbeitet. Schon schnell stellte 

sich heraus, dass FLAP nicht gehemmt wird (Untersuchungen von Dr. Maier und M. Hörnig). 

Die Aktivität der 5-LO wird sowohl in PMNL als auch in zellfreien Systemen inhibiert und 

zwar mit folgenden IC50-Werten: 8 µM in intakten PMNL, 20 µM nach Zugabe von 20 µM 

Arachidonsäure und 30 µM im zellfreien System.  

Seit 2006 ist Celecoxib in Europa als Orphan Drug zur Therapie der adenomatösen familiären 

Polyposis zugelassen. Weitere Anwendungen bei Erkrankungen mit hoher Beteiligung der 5-

LO wie zum Beispiel Asthma bronchiale, entzündliche Erkrankungen oder bestimmte 

Krebsarten sind sinnvoll. Die duale Hemmung von 5-LO und COX eröffnet neue 

Behandlungsmöglichkeiten, so dass neben verstärkter antientzündlicher Wirkung die 

Nebenwirkungsrate gesenkt werden kann. Celecoxib ist zur Zeit der einzige zugelassene 

Arzneistoff, der über diesen dualen Wirkmechanismus verfügt. 
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