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Abstract

While the adaptor SKAP-55 mediates LFA-1 adhesion on T-cells, it is not known whether the adaptor regulates other aspects
of signaling. SKAP-55 could potentially act as a node to coordinate the modulation of adhesion with downstream signaling.
In this regard, the GTPase p21ras and the extracellular signal-regulated kinase (ERK) pathway play central roles in T-cell
function. In this study, we report that SKAP-55 has opposing effects on adhesion and the activation of the p21ras -ERK
pathway in T-cells. SKAP-55 deficient primary T-cells showed a defect in LFA-1 adhesion concurrent with the hyper-
activation of the ERK pathway relative to wild-type cells. RNAi knock down (KD) of SKAP-55 in T-cell lines also showed an
increase in p21ras activation, while over-expression of SKAP-55 inhibited activation of ERK and its transcriptional target ELK.
Three observations implicated the p21ras activating exchange factor RasGRP1 in the process. Firstly, SKAP-55 bound to
RasGRP1 via its C-terminus, while secondly, the loss of binding abrogated SKAP-55 inhibition of ERK and ELK activation.
Thirdly, SKAP-552/2 primary T-cells showed an increased presence of RasGRP1 in the trans-Golgi network (TGN) following
TCR activation, the site where p21ras becomes activated. Our findings indicate that SKAP-55 has a dual role in regulating
p21ras-ERK pathway via RasGRP1, as a possible mechanism to restrict activation during T-cell adhesion.
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Introduction

Conjugate formation between T cells and antigen-presenting cells

(APCs) is mediated by lymphocyte function-associated antigen (LFA)-

1 and is accompanied by the rearrangement of receptors at the

immunological synapse [1,2]. This adhesion process is regulated by

an array of adaptors that include SLP-76 (76-kD src homology 2

domain–containing leukocyte phosphoprotein), ADAP (adhesion and

degranulation–promoting adaptor protein), SKAP-55 (55-kD src

kinase–associated phosphoprotein) [3–5], as well as the GTP-binding

protein Rap1, RapL (regulator of cell adhesion and polarization

enriched in lymphoid tissues) and Riam (Rap1-GTP-interacting

adapter molecule). Of these, SKAP-55 has a unique NH2-terminal

region followed by a pleckstrin homology domain and a COOH-

terminal SH3 domain [6]. It is expressed predominately in T cells

and is needed for TcR induced ‘inside-out’ signaling that up-regulates

LFA-1 clustering, adhesion and T cell–APC conjugation [7–10]. The

SH3 domains of SKAP-55 and ADAP mediate reciprocal binding

[11,12–14], while the loss of the SH3 domain results in impaired

LFA-1 adhesion [7]. Similarly, the loss or reduction of SKAP-55

expression resulted in an impairment of TcR induced LFA-1

clustering and adhesion [10]. Two-hybrid and over-expression

studies have also reported binding to the phosphatase CD45 [15].

Despite its importance in adhesion, it has not been clear

whether SKAP-55 can influence other signaling events in T-cells.

In this respect, p21ras operates upstream in the activation of

extracellular signal-regulated kinase-1 and 2 (ERKs 1,2) [16,17].

The cascade involves MAPK kinase kinase (MEK3) and MAPK

kinase (MEK or MKK) [16,17]. Ligation of the antigen-receptor

on T-cells can activate p21ras by means of either guanine

nucleotide exchange factor (GEF), Son of sevenless (Sos) or Ras

guanyl nucleotide releasing protein-1 (RasGRP1) [16,18,19,20].

SOS participates by binding to Grb2 (growth factor receptor-

bound protein 2) that in turn binds to the adaptor LAT (linker for

activation in T cells) [5]. This probably represents a minor

pathway. By contrast, RasGRP1 appears to predominate in p21ras

activation as shown with impaired T-cell activation and thymocyte

development in deficient T-cells [21–24]. RasGRP1 is expressed

primarily in T-cells and is comprised of a diacylglycerol (DAG)-

binding C1 domain, an atypical pair of calcium-binding

elongation factor (EF) hands and a catalytic domain with a

p21ras exchange motif. The C1 domain mediates membrane

recruitment in response to phorbol ester and TcR activation [25].

Mutations in RasGRP1 have been linked to autoimmunity [26],

while most p21ras activation in T-cells in response to anti-CD3

ligation appears to occur in the trans-Golgi network [27,28].
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Here, we report the unusual finding that SKAP-552/2 primary

T-cells and shRNA knock down (KD) T-cells have increased anti-

CD3 induced ERK activation, concurrent with defective LFA-1

mediated adhesion. RNAi knock down (KD) of SKAP-55 in T-cell

lines also showed an increase in p21ras activation. SKAP-55 bound to

the Ras guanine nucleotide exchange factor RasGRP1 in an SH3

dependent manner. Loss of RasGRP1 binding with SKAP-55DSH3

reversed SKAP-55 inhibition of ERK and ELK phosphorylation

and ELK-dependent transcriptional activity. Lastly, SKAP-552/2

primary T-cells resulted in an increased presence of RasGRP1 in the

trans-Golgi network where p21ras becomes activated. These findings

indicate that SKAP-55 has a negative regulatory role on the p21ras-

ERK pathway, while positively regulating T-cell adhesion.

Results

ERK hyper-activation in SKAP-55 deficient T-cells
We have recently reported that the SKAP-55 deficient mouse

shows major defects in T-cell adhesion [10]. Given this, we were

surprised by the observation that T-cells with reduced or a loss of

SKAP-55 expression showed a consistent amplification of the

activation of extracellular receptor kinases (ERKs) in response to

anti-CD3 ligation. Initially, SKAP-55+/+ and 2/2 T-cells were

compared by staining with AlexaFluor647 labeled anti-pERK to

the phosphorylation sites pThr185/pTyr187 followed by flow

cytometric analysis. Mean fluorescent intensity (MFI) and percent

of positive cells were measured. As shown in one representative

experiment, anti-CD3 increased the MFI staining of SKAP-55+/+
T-cells from 6.53 to 8.58 (upper left panel; upper right histogram).

Interestingly, the same stimulation increased pERK staining of

SKAP-55+/2 T-cells from 7.51 to 9.68 and SKAP-552/2 T-cells

from 6.87 to 12.9 MFI (middle left panels; upper right histogram).

The lower left panel shows a comparison of the different pERK

staining patterns relative to that induced by pervanadate

treatment. Further, enhanced pERK staining was more evident

with the percentage of cells of positively stained cells. While anti-

CD3 ligation increased the percentage of pERK positive wild-type

cells from 4.79 to 17.64 percent of cells, the same treatment of

SKAP-552/2 cells underwent a shift from 7.24 to 53.70 percent of

cells (left panels; lower right panel). The difference between

SKAP-55, SKAP-55+/2 and 2/2 T-cells was consistently

observed in more than seven experiments. Further, retroviral

transduction of primary SKAP-552/2 T-cells restored the level of

pERK staining to wild-type levels (data not shown).

Enhanced ERK phosphorylation in SKAP-552/2 CD4+ T-

cells was observed with anti-CD3 ligation in a time-course

followed by anti-pERK blotting (Figure 1B). Anti-CD3 ligation

induced an increase in phospho-ERK from 1 to 10 min (lanes 2–5,

9–12) followed by a decrease in both SKAP-552/2 and +/+ T-

cells by 15–30 minutes (lanes 13,14 vs. 6,7). SKAP-552/2 T-cells

showed a 2–4 fold greater level of pERK staining from 1–

10 minutes. Occasionally, the signal for SKAP-552/2 T-cells

returned more rapidly to baseline levels than for wild-type cells,

although this was not a consistent observation. As we recently

reported [10], under the same conditions of anti-CD3 ligation,

SKAP-552/2 T-cells showed a reduction in adhesion to ICAM-1

(Figure 1C). Overall, these observations indicate that the loss of

SKAP-55 expression has opposing effects on anti-CD3 induced

activation of T-cells, enhanced activation of ERK concurrent with

a reduction in integrin adhesion of primary T-cells.

Enhanced ERK activation in SKAP-55KD T-cells
To confirm this finding with a different system, shRNA clones

(SKAP-55KDs) derived from T8.1 cells were used for analysis.

Three independent cell lines (Z.21; Z.22; Z.23) were derived using

distinct SKAP-55 shRNAs, as outlined in Material and Methods.

Each shRNA was unique to SKAP-55. As shown in Figure 2A,

each of the SKAP-55KD cells showed greatly reduced (i.e. .90

percent) SKAP-55 expression (lanes 2, 3, 4 vs. 1). No effect was

noted on the expression of other proteins such as SKAP-

55Related/Hom (data not shown; 8). Surface staining for anti-

CD3 confirmed that the cells expressed similar levels of the TcR/

CD3 complex (data not shown). Anti-pERK blotting confirmed

the enhanced activation of ERK in the shRNA knock-down (KD)

cells (Figure 2B). Anti-CD3 increased levels of phospho-ERK in

WT cells over 2–10 minutes (Figure 2B). The same stimulation of

Z.21, Z.22 and Z.23 cells showed a two to five fold higher level of

pERK (lanes 2–4 versus lanes 8–10; 14–15; 20–22). The 42Kd

form of ERK generally was affected more than the 44Kd form.

For unknown reasons, a difference in the relative expression of the

44 versus 42Kd isoform was observed in different cell lines.

However, this variation had no effect on the observed increase in

pERK observed in SKAP-55KD cells. As a control, anti-ERK

blotting showed similar levels of ERK (lower panels). These

findings confirmed using three distinct SKAP-55 shRNA express-

ing cells that reduced SKAP-55 expression leads to an increase in

ERK activation in response to anti-CD3 ligation.

Using a complementary third approach, SKAP-55 was over-

expressed in DC27.10 cells followed by an assessment of ERK

phosphorylation (Figure 2C). The expression of SKAP-55 markedly

reduced anti-CD3 induced pERK over the 5–15 min time-course

(upper panel, lanes 6–8 versus 2–4). Anti-ERK served as a control for

ERK protein expression (middle panel). Anti-SKAP-55 blotting

confirmed the increased expression of SKAP-55 (lanes 5–8 versus 1–

4). Therefore, using the reverse approach, over-expression of SKAP-

55 confirmed its inhibition for ERK activation in T-cells.

Enhanced p21ras activation in SKAP-55KD cells
The regulatory effect of SKAP-55 on ERK activation could be

due to an effect upstream on p21ras. To assess whether SKAP-55

influences p21ras, WT, Z.21 and Z.23 KD cells were cross-linked

with anti-CD3 and assessed for GTP-bound p21ras in a pull-down

assay using GST-Raf-1 binding domain (RBD) fusion protein

(Figure 3). While anti-CD3 increased the level of active p21ras in

WT cells at 2 and 7.5 min (upper panel, lanes 2,3 vs. 1), Z.21 and

Z.23 KD cells showed higher levels of p21ras at both time points

(lanes 5,6; 8, 9 vs. 2,3). As a control, the lower panel shows levels of

Ras in the different cells. The level of Ras expression was found to

decrease slightly in response to anti-CD3 activation in wild-type

and KD cells. Normalized RasGTP/Ras ratios showed a

significant increase in Ras-GTP occupancy in Z.21 and Z.23

relative to wild-type cells (lower histogram). These observations

indicated that SKAP-55 directly alters the activation of p21ras, the

upstream regulator of the ERK pathway.

SKAP-55 binds to RasGRP1
Given that p21ras was affected by SKAP-55, the next question

concerned the identity of the upstream regulator. The main

regulator of Ras in T-cells is the guanine nucleotide exchange

factor RasGRP1 [22–24]. To assess initially whether SKAP-55

interacts with RasGRP1, Jurkat cells were ligated with anti-CD3,

anti-LFA-1 or anti-CD3/LFA-1 followed by an anti-SKAP-55

precipitation and anti-RasGRP1 blotting (Figure 4A). Significant-

ly, anti-SKAP-55 precipitated a band at 90Kd that was recognized

by anti-RasGRP1 (lanes 5–8) and co-migrated with a band

recognized in cell lysates (lanes 1–4). Rabbit anti-mouse served as

a negative control (lane 9). Anti-CD3 ligation increased the level of

precipitated RasGRP-1 (lane 6), as did anti-LFA-1 (lanes 7) and a
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combination of anti-CD3/LFA-1 (lane 8). Blotting with anti-

SKAP-55 showed equal levels of SKAP-55 in each of the lysates

for immunoprecipitation (data not shown). No co-precipitation

was observed with other p21ras regulators such as SOS or 3CG

(data not shown). An estimate of 10–12% of total cellular

RasGRP1 was found associated with SKAP-55 in resting cells

based on a comparison of the intensity of signal in lysates versus

immunoprecipitates as normalized against cell numbers (right

histogram). This increased to 13–17 percent in response to anti-

CD3 and LFA-1 ligation (right histogram).

Consistent with this, immunofluoresence microscopy showed a

partial overlap between anti-SKAP-55-AlexaFluor488 and anti-

RasGRP1-AlexaFluor568 staining patterns in DC27.10 T-cells

(Figure 4B). As previously reported [21–24], RasGRP1 of resting

cells localized predominately in the trans-Golgi network (TGN) as

stained with anti-Syntaxin (panel a vs. b; panel c shows overlap). This

Figure 1. SKAP-55 deficient T-cells show enhanced anti-CD3 induced ERK activation. Panel A: FACS profile of T-cells from SKAP-55+/+, +/2
and 2/2 mice stained with AlexaFluor647 labeled anti-pERK. T-cells from lymph-nodes were left unstimulated, or stimulated with anti-CD3-biotin
(10 mg/ml) and streptavidin for 5 min. Upper panel: SKAP-55+/+; upper middle panel: SKAP-552/+; lower middle panel: SKAP-552/2; lower panel:
comparison of anti-CD3 stimulated SKAP-55+/+, SKAP-55+/2 and SKAP-552/2 cells vs. pervanadate treated cells. Right upper panel: histogram
showing the difference in MFI values for SKAP-55+/+, SKAP-55+/2 and SKAP-552/2 cells. Right lower panel: histogram showing the difference in the
percentage of SKAP-55+/+, SKAP-55+/2 and SKAP-552/2 cells staining for pERK. Panel B: Anti-pERK immunoblotting of anti-CD3 activated SKAP-55+/
+ versus SKAP-552/2 T-cells. T-cells were activated with 5 mg/ml anti-CD3 for 1–30 minutes. Upper panel: anti-pERK blot; middle panel: anti-ERK
blotting; lower panel: anti-SKAP-55 blot. SKAP-55+/+: lanes 1–7; SKAP-552/2: lanes 8–14; Resting: lanes 1, 8; Stimulated: 1 min: lanes 2,9; 2 min: lanes
3, 10; 5 min: lanes 4,11; 10 min: lanes 5,12; 15 min: lanes 6, 13; 30 min: lane 7, 14. Panel C: SKAP-55 deficient T-cells have impaired adhesion to ICAM-
1. Cells were stimulated with anti-CD3 followed by a measurement of binding to immobilized ICAM-1 on plates as described in Material and Methods.
doi:10.1371/journal.pone.0001718.g001
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contrasted with the broader anti-SKAP-55 staining that partially

overlapped with the RasGRP1 staining (panel e vs. d; panel f shows

overlap) and was also found in other regions of the cytoplasm and/or

near the plasma membrane (panels e and f). Over four experiments,

a range of 15–30 percent of stained SKAP-55 overlapped with the

RasGRP1 pattern. This partial RasGRP1-SKAP-55 co-localization

was also observed in activated primary T-cell blasts (panel g).

Overall, using the approaches of biochemistry and microscopy, our

findings are consistent with the notion that a subset of SKAP-55 and

RasGRP1 molecules interact with each other.

Disruption of SKAP-55 binding to RasGRP1 prevents
adaptor mediated inhibition of pERK pathway

Mapping studies showed that the deletion of the C-terminal

region of SKAP-55 (i.e. SH3 domain) eliminated binding to

RasGRP1 (Figure 5A, upper panel, lanes 4 vs. 5). Anti-SKAP-55

blotting confirmed expression of the SKAP-55 and SKAP-55DSH3

constructs (lower panel, lanes 2,3). This effect does not reflect a loss

of SH3 domain function since mutation of key WW residues in the

SH3 domain that are needed for SH3 domain binding did not

interfere with binding between SKAP-55 and RasGRP1 (data not

shown). Instead, the C-terminal region mediates binding via

another as yet established mechanism. To assess the influence of

SKAP-55-RasGRP1 interaction on the ERK pathway, proteins

were co-expressed and assessed for effects on ERK activation and

its downstream target, the ETS transcription factor ELK

(Figure 5B). ELK is a well-established substrate and a downstream

target of ERK [29]. Anti-CD3 increased both ERK (upper panel,

lane 2 vs. 1) and ELK phosphorylation (lower panel, lane 2 vs. 1).

Myc-RasGRP1 expression resulted in a weak increase in ERK and

ELK phosphorylation (lane 4 vs. 2). Significantly, while SKAP-55

expression strongly inhibited anti-CD3 induced ERK and ELK

Figure 2. SKAP-55 knock-down and knock-up T-cells show
altered ERK activation. Panel A: Upper panel: Reduction in SKAP-55
expression in SKAP-55KD cells. Z.21, Z.22 and Z.23 cell lines were
derived from distinct SKAP55 shRNAs as described in Material and
Methods. Panel B: Increased pERK in response to anti-CD3 in SKAP-55 KD
cells. T8.1 WT and T8.1 SKAP-55 KD cells (Z.21, Z.22, Z.23) were either
left untreated (lanes 1, 7,13, 19) or stimulated with anti-CD3 (10 mg/ml)
(lanes 2–6; lanes 8–12; lanes 14–18; lanes 20–24). Upper panels: anti-
pERK blotting; lower panels: anti-ERK blotting. Panel C: Reduction of
ERK activation in DC27.10 cells. DC27.10 cells (lanes 1–4) and cells
transfected with SKAP-55 (lanes 5–8) were either left untreated (lanes
1,5) or stimulated with anti-CD3 (5 mg/ml) for the indicated times (lanes
2–4 and 6–8). Upper panels: anti-pERK blotting; middle panels: anti-ERK
blotting; lower panels: anti-SKAP-55 blotting.
doi:10.1371/journal.pone.0001718.g002

Figure 3. Hyper-activation of p21ras in SKAP-55 KD cells. Upper
panel: WT, Z.21 and Z.23 cells were ligated with anti-CD3 for various times
and lysates were subjected to a pull-down assay using GST-Raf-1-RBD and
blotted with Ras specific antibody. Middle panel: Anti-Ras blotting of cell
lysates. Lanes 1–3: WT; lanes 4–6: Z.21; lanes 7–9: Z.23. Untreated: lanes
1,4,7; anti-CD3 ligation: 2 min: lanes 2,5,8; 7.5 min: lanes 3,6,9. Lower
panel: Histogram showing the relative intensity of signal in the blot.
doi:10.1371/journal.pone.0001718.g003
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phosphorylation (upper and lower panels, lane 6 vs. 4), the

RasGRP1 binding mutant SKAP-55DSH3 failed to reduce

phosphorylation (upper and lower panel, lane 8 vs. 4). In fact, in

some experiments, SKAP-55DSH3 even increased ERK phos-

phorylation (upper panel, lane 8 vs. 6).

Consistent with this observation, SKAP-55 vs. SKAP-55DSH3

also differed in their effect on anti-CD3 plus RasGRP1 activation of

a Gal-ELK promoter assay (Figure 5C). In this case, the expression

of RasGRP1 markedly increased ELK driven promoter activity.

This was seen using different concentrations of anti-CD3 and most

clearly in response to sub-optimal (i.e. 0.25 mg/ml) concentrations of

anti-CD3. As seen with the pERK and pELK assay, expression of

SKAP-55 almost entirely (i.e. .95%) blocked the anti-CD3 driven

ELK transcription activity (left histogram). By contrast, the

expression of SKAP-55DSH3 failed to block and even potentiated

the RasGRP1 effect further. Anti-SKAP-55 blotting confirmed the

expression of SKAP-55 and SKAP-55DSH3 (right upper panel) and

of myc-RasGRP1 (right lower panel). Although further analysis will

be needed to define the exact basis of RasGRP1-SKAP-55 binding,

these findings show that the loss of RasGRP1 binding correlated with

the loss in the ability of SKAP-55 to suppress the ERK pathway.

SKAP-552/2 T-cells show enhanced RasGRP1
localization in the TGN

Studies have shown that Ras is activated preferentially in the

Golgi apparatus of T-cells in response to anti-CD3 [20,28]. Since

SKAP-55 can bind to RasGRP1, the regulator of p21ras in T-

cells, we addressed whether there was any difference in the

Figure 4. SKAP-55 associates with a subset of RasGRP1 and co-localizes with RasGRP1 in the TGN. Panel A: SKAP-55 binds to RasGRP-1.
DC27.10 T-cells were stimulated with anti-CD3 or anti-CD18 (LFA-1) for 15 minutes. Cells were then lysed and subjected to precipitation with anti-
SKAP-55 followed by anti-RasGRP1 blotting (lanes 1–9). Lanes 1–4: cell lysates; lane 9: rabbit anti-mouse control. Right panel: histogram showing the
percent of RasGRP1 associated with SKAP-55 in resting and stimulated cells. Panel B: SKAP-55 partially co-localizes with RasGRP-1 in the TGN of
DC27.10 cells. Cells were stained with anti-rabbit RasGRP-1/anti-rabbit AlexaFluor568 and anti-mouse Syntaxin6/anti-mouse AlexaFluor647 or anti-
mouse SKAP-55/anti-mouse Alexa647. Upper panels: RasGRP-1 staining occurs in the TGN. Panel a: anti-RasGRP-1; panel b: anti-syntaxin 6; panel c:
anti-RasGRP1/Syntaxin. Lower panels: panel d: anti-RasGRP1; panel e: anti-SKAP-55; panel f; anti-SKAP-55/RasGRP-1; panel g: anti-SKAP-55/RasGRP-1
staining of activated C57BL/6 primary T-cells. For analysis, at least 100 cells were counted.
doi:10.1371/journal.pone.0001718.g004
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Figure 5. Loss of the RasGRP1 binding region in SKAP-55 abrogates its ability to inhibit ERK activation and ELK transcriptional activity.
Panel A: RasGRP1 binding to SKAP-55 depends on the C-terminal domain of SKAP-55. Upper panel: deletion of the SKAP-55 SH3 domain prevents RasGRP1
binding. Lanes 1,2: myc-RasGRP1 expression in Jurkat cells transfected with SKAP-55 and SKAP-55DSH3. Lanes 3–5: association of RasGRP1 with SKAP-55
depends on the C-terminal domain of SKAP-55. Cell lysates: Lanes 1,2; anti-SKAP-55 precipitates: lanes 3–5. SKAP-55 transfection: Lanes 1, 4. SKAP-55DSH3
transfection: Lanes 2, 5. Lower panel: anti-SKAP-55 blot. Lane 1: transfection with myc-RasGRP1; lane 2: transfection with myc-RasGRP1 and SKAP-55; lane
3: transfection with myc-RasGRP1 and SKAP-55DSH3. Panel B: Loss of the RasGRP1 binding region in SKAP-55 abrogates its ability to inhibit ERK and ELK
activation. Upper panel: anti-pERK blot of lysates from cells transfected with myc-RasGRP1 plus SKAP-55 or SKAP-55DSH3. Resting cells: lanes 1,3,5,7; anti-
CD3: lanes 2,4,6,8. Middle panel: anti-ERK blot; Lower panel: anti-pELK blot. Panel C: Loss of the RasGRP1 binding region in SKAP-55 abrogates its ability to
inhibit ELK transcriptional activity. Left panel: histogram showing inhibition of ELK transcription activity by SKAP-55 and lack of inhibition by SKAP-
55DSH3. Right panel: anti-SKAP-55 (upper) and anti-myc (myc-RasGRP1) blot of cell lysates.
doi:10.1371/journal.pone.0001718.g005
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localization of the exchange factor in the Golgi of SKAP-552/2

and +/+ T-cells in response to anti-CD3 ligation. An increased

RasGRP1 localization in the TGN might therefore explain the

enhanced activation of the ERK pathway observed in SKAP-552/

2 T-cells. To this end, cells were either left untreated or ligated

with anti-CD3 for 15 min followed by the staining of RasGRP1

with anti-RasGRP1 coupled to Alexa Fluor568, while the TGN

was stained with anti-Syntaxin coupled to Alexa Fluor647.

RasGRP1 co-localized with anti-Syntaxin staining of the trans-

Golgi with both SKAP-552/2 and +/+ T-cells (left histogram and

right upper panels). Interestingly, anti-CD3 stimulation reduced

the number of cells with co-localized RasGRP1 in SKAP-55+/+ T-

cells from 80 to 55 percent of SKAP-55+/+ T-cells. Examples of

the co-localized images are shown in left panels. By contrast,

SKAP-552/2 T-cells resulted in the maintenance of RasGRP1 in

the TGN following anti-CD3 activation (i.e. from 75 to 78 percent

of cells) (left histogram). The percentage of cells with TGN

localized RasGRP1 was the same as in resting cells. This was

observed in four independent experiments. Further, this was not

the result of an overall increase in RasGRP1 expression in one

group of cells versus another since anti-RasGRP1 analysis by

FACS confirmed comparable levels of RasGRP1 (Figure 6B).

SKAP-55+/+ and 2/2 cells also showed not difference in

RasGRP1 levels in activated T-cells. SKAP-552/2 T-cells

therefore differ from SKAP-55+/+ T-cells with the presence of

greater levels of RasGRP1 in the TGN of T-cells following anti-

CD3 ligation. This appears to result from the reduced exit or loss

of RasGRP1 from the TGN in SKAP-552/2 T-cells relative to

WT cells. Anti-CD3 induced Ras activation has been reported to

occur in the TGN of T-cells [27,28]. Overall, our observations

demonstrate that SKAP-55 binds to RasGRP1 and affects the

localization of RasGRP1 in the TGN where p21ras activation

occurs. Although this observation does not prove cause and effect,

the increased presence of RasGRP1 in the TGN in SKAP-552/2

Figure 6. Increased RasGRP1 in the trans-Golgi network of SKAP-552/2 T-cells. Left panel: histogram showing % of T-cells expressing
RasGRP-1 in the TGN (i.e. co-localization with Syntaxin) in SKAP-55+/+ versus SKAP-552/2 T-cells. Right panel: images of cells showing co-localization
of RasGRP-1and TGN under resting and anti-CD3 activated conditions. For analysis, at least 100 cells were counted. Panel B: SKAP-55 +/+ and SKAP-
552/2 T-cells show equal amounts of RasGRP1. Upper panel: Cells were stained with anti-RasGRP1/anti-rabbit AlexaFluor647 and analysed by FACS.
Lower panel: histogram showing the MFI values of SKAP-55 +/+ and SKAP-552/2 T-cells.
doi:10.1371/journal.pone.0001718.g006
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cells is consistent with the increased activation of the ERK

pathway in these cells.

Discussion

While SKAP-55 has been established as a mediator of integrin

adhesion in T-cells, an outstanding question has been whether the

adaptor can regulate other aspects of T-cell signaling and function.

In this way, SKAP-55 could act as a node to integrate or modify

signals for adhesion (i.e. conjugation) and TCR signaling. This

would also be in keeping with the observation that other adaptors

such as SLP-76 and ADAP can regulate more than one event in

cells. Distinct regions of SLP-76 can regulate cytokine production

versus adhesion [30], while ADAP has recently been connected to

the NFkB pathway [31]. In this study, we have identified a novel

function of SKAP-55 in the negative regulation of the p12ras-

ERK pathway in T-cells, in addition to its positive regulation of

LFA-1 adhesion. SKAP-552/2 primary T-cells showed an increase

in TCR mediated ERK activation, while the use of multiple

independent shRNA knock down (KD) T-cells showed an increase in

TCR mediated ERK and p21ras activation. Conversely, SKAP-55

over-expression inhibited ERK phosphorylation at pThr185/

pTyr187 and the activation of its downstream target ELK. In turn,

the loss of RasGRP1 binding to the C-terminus of SKAP-55

abrogated the ability of SKAP-55 to inhibit ERK/ELK phosphor-

ylation and ELK-dependent transcriptional activity. Lastly, SKAP-

552/2 primary T-cells showed an increase in RasGRP1 in the

trans-Golgi network in response to anti-CD3 ligation, the location

where p21ras is primarily activated in T-cells. These findings indicate

that SKAP-55 has a dual regulatory function of enhancing LFA-1

mediated adhesion, while suppressing or raising the threshold

needed for the activation of the ERK pathway.

The finding that SKAP-55 suppresses the p21ras-ERK pathway

was observed in models that included primary SKAP-55 deficient

T-cells, the Jurkat cell line, the DC27.10 hybridoma and the use of

three independent shRNAs to knock-down SKAP-55 expression.

The loss of SKAP-55 by genetic ablation or the reduction in

expression by shRNA consistently resulted an increase in anti-

CD3 induced ERK activation, and an increased RBD binding to

p21ras, while the over-expression of SKAP-55 suppressed ERK

activation (Figs 1–3). Intriguingly, these effects occurred under

conditions where an opposing effect on LFA-1 clustering and

adhesion was observed (Fig. 1). Reduced or a loss of SKAP-55

expression caused an impairment of LFA-1 adhesion (Fig. 1) [10],

while increased SKAP-55 expression enhanced adhesion [7–10].

This points to a highly unusual situation in T-cells where a single

mediator has opposing effects on p21ras-ERK activation and

adhesion. To our knowledge, this opposing dichotomy in T-cells

has not been previously reported. What might therefore be the

purpose of these opposing effects? Could it be related to a need for

dampening TCR signalling during the adhesion of T-cells, or a

requirement for reduced adhesion during T-cell activation? One

possibility could relate to the temporal regulation of TCR

signaling events during T-cell/APC conjugation, or the migration

of T cells along vessel surfaces where they exit into lymph nodes

and/or other tissues. Lymphocytes use LFA-1 that binds to

ICAMs expressed by APCs and on epithelial cells lining the blood

vessels. In the context of conjugation, contact between T-cells and

APCs is initially induced by chemokines followed by TCR induced

‘inside-out’ signals that leads to a major increase in the number of

TCR-MHC peptide interaction events. The dampening of p21ras-

ERK activation during an increase in adhesion and conjugation

induced by SKAP-55 could alter the threshold of T-cell activation.

In the context of certain MHC-peptide interactions, this could

prevent the generation of partial activation signals that leads to

anergy induction or non-responsiveness. Similarly, it could

dampen the activation process during the initial contact period

between T-cell and APC, before the T-cell has had an opportunity

to assemble sufficient TCR-MHC interactions to produce a

sufficiently strong signal needed for activation. By concurrently

suppressing ERK activation, it would guard against incomplete or

partial signaling linked to the induction of anergy [32–34].

Impaired ERK activation has also previously been shown to

participate in anergy [34]. Likewise, SKAP-55 may act to prevent

responses to low affinity ligand such as auto-antigen. Lastly, it may

also operate to reduce integrin activation of the ERK pathway in

the absence of TcR stimulation. In this context, VLA-4 ligation

has been shown to activate ERK [35]. In the same vein, SKAP-55

may act to prevent inappropriate T-cell responses during the

migration of T cells along vessel surfaces where they exit into

lymph nodes and/or other tissues. Further studies will be needed

to test this hypothesis.

The suppression of ERK activation could have resulted from the

direct regulation of ERKs or their upstream regulator p21ras.

Although p21ras was not assayed in SKAP-552/2 T-cells, shRNA

knock-down of the adaptor in cell lines showed an increased

activation of p21ras (Fig. 3). The increased p21ras activation was also

frequently observed in resting T-cells. This pointed to a connection

with a regulator of p21ras that in turn led to the identification of

SKAP-55 binding to RasGRP1 (Fig. 4). During the preparation of

this paper, the same observation was independently made by

another group [36]. This would fit nicely in a scheme where SKAP-

55 binding reduces the guanine nucleotide exchange activity of

RasGRP1 and/or its intracellular localization in the cell. Binding to

other GEFs such as SOS or 3CG was not observed (data not shown).

RasGRP1 GEF activity is difficult to measure and so we have

initially focused on the effect of the loss of RasGRP1 binding on

SKAP-55 inhibition of ERKs and its localization in cells (Fig. 6). The

loss of binding to the C-terminus of SKAP-55 resulted in a

concurrent loss of RasGRP1 binding and its suppression of ERK and

ELK (Fig. 5). This has provided initial evidence to link the two

events. The one complication is that mutations of WW residues of

the SH3 domain that are essential for SH3 domain function did not

interfere with RasGRP1/SKAP-55 binding (data not shown).

Therefore, instead of classic SH3 domain binding, there is a

requirement for the C-terminal region for the binding to RasGRP1

that includes residues that comprise an SH3 domain. In this way, the

loss of residues in the C-terminus was used to connect RasGRP1

binding to a loss of SKAP-55 suppressor activity, a result consistent

with the need for RasGRP1 binding in the regulator of ERK.

Further work will be needed to clearly define in a more precise way

the molecular basis of binding between these two proteins.

Our findings differ from Kosco et al. who found that over-

expression of SKAP-55 increased TCR-dependent AP-1 transcrip-

tional activity, while the knock-down of SKAP-55 decreased ERK

phosphorylation [36]. Although the basis for this difference is not

clear, it could be related to different cell conditions and levels of over-

expression. The same study found different effects depending on

levels of SKAP-55 over-expression. The strength of our study is in

the consistency of findings using both SKAP-552/2 primary cells

and over-expression or knock-down analysis in different cell lines.

SKAP-55 deficient primary T-cells clearly showed an enhancement

of ERK activation, and this was observed in our shRNA knock-down

studies with cell lines. We also directly assessed the status of p21ras in

our KD cells. In all cases, the loss or reduction in SKAP-55

expression resulted in enhanced p21ras or ERK activation.

Lastly, another observation that implicated RasGRP1 in the

suppression ediated by SKAP-55 was the greater level of
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RasGRP1 in the TGN in anti-CD3 activated SKAP-552/2

primary cells (Fig. 6). Philips and coworkers have shown that the

active form of p21ras in T-cells induced by anti-CD3/TcR ligation

is found in the Golgi [27,28]. Although the molecular basis of the

observation needs greater definition, it is compatible with the

notion of greater p21ras activation in T-cells linked to a

connection between SKAP-55 and RasGRP1. The increased

presence of the GEF could be due to increased migration to the

TGN, or more likely, a lesser degree of RasGRP1 movement from

the TGN in response to TCR signals. Active p21ras has been

reported in both the TGN and the plasma membrane, depending on

the cell type examined. In Jurkat T-cells activated by anti-CD3

alone, active p21ras has been reported to remain in the TGN, while

coligation with LFA-1 promotes more translocation to the plasma

membrane [19,20]. Our findings are compatible with the notion of a

weaker TcR signalling or decoupling in SKAP-55 deficient T-cells.

The net result was to maintain more RasGRP1 in the Golgi, the

location where p21ras is activated in T-cells. We also observed an

increase in the expression of Ras in the Golgi (data not shown).

Overall, this would fit with the model where SKAP-55 plays a role in

modulating the coupling of the TCR with the localization of

RasGRP1, although this observation will require more work to

define this clearly. RasGRP1 activates Ras with the involvement of

diacylglycerol via phospholipase C-c and actin polymerization

[37,38]. Future studies will be needed to assess whether SKAP-55

can act as a chaperone for the translocation of RasGRP1 to the

plasma membrane. The PH domain of SKAP-55 could provide a

mechanism to facilitate the movement of a portion of RasGRP-1

from different intracellular compartments.

Materials and Methods

Cells and Antibodies
Murine hybridoma T8.1, a kind gift from Dr. Oreste Acuto

(Oxford University, Oxford, UK) were cultured in DMEM

supplemented with 200 nM methotrexate, 1 mg/ml G418, 10

percent fetal calf serum (FCS), 10 mM Hepes, 2 mM L-

Glutamine, 100 U/ml penicillin/streptomycin, and 561025 M

2-mercaptoethanol. The generation of SKAP-55 knock-out mice

has been described elsewhere [10]. Antibodies against SKAP-55,

RasGRP1 and Ras were purchased from Transduction Labora-

tories (San Diego, CA); anti-Syntaxin 6 from BD Biosciences, anti-

CD3e (2C11; hamster anti–mouse CD3), and anti-CD11a (LFA-1

a-chain) or anti-CD18 (LFA-1 b-chain) from Pharmingen (Oxford,

UK). Alexa Fluor546, Alexa Fluor633, AlexaFluor568 or Alexa-

Fluor647 conjugated secondary Abs were purchased from

Molecular Probes (Eugene, OR). Anti-phospho ERK1/2 T202/

Y204 or T185/Y187 was purchased from Biosource (BioSource

United Kingdom, Belgium).

FACS staining and Immunofluorescence
For detection of phospho-ERK by flow cytometry, cells were

permeabilized, stained with AlexaFluor647 tagged anti-phospho-

ERK1/2 and analyzed by FACS (BD FacsCalibur), as described

[39]. For immunofluoresence, resting and cells stimulated with

anti-CD3 (5 mg/ml; 15 min) were fixed in 4% PFA, permeabilized

with 0.3% saponin and stained with anti-RasGRP-1, anti-Ras,

anti- SKAP-55, anti-Syntaxin 6 and appropriate fluorochrome-

labelled secondary antibody, respectively. For nucleus staining,

Hoechst was added together with secondary antibodies. Negative

controls were run with unstained, single stained samples or without

primary antibody. Stained cells were mounted on slides and

analyzed by confocal microscopy.

Generation of T8.1 SKAP-55 knock down (KD) cells
T8.1 cells were transfected with three different shRNA SKAP-

55 oligonucleotide pairs which were ligated into the BbsI sites of

the psiRNA-hH1 vector (InvivoGen, San Diego, CA): 59AC-

CTCATAACGTAATCAAGCAAGGATTCAAGAGATCCTT-

GCTTGATTACGTTATTT 39 and 59CAAAAAATAACGT-

AATCAAGCAAGGATCTCTTGAATCCTTGCTTGATTAC-

GTTATG 39 (resulting clones termed Z.21); 59ACCTCAGGA-

CAGCTCTGATGATAATCTCAAGAGGATTATCATCAGA-

GCTGTCCTTT 39 and 59 CAAAAAAGGACAGCTCTGAT-

GATAATCCTCTTGAGATTATCATCAGAGCTGTCCT 39

(resulting clones termed Z.22); 59 ACCTCATAACGTAAT-

CAAGCAAGGATTCAAGAGATCCTTGCTTGATTACGTT-

ATTT 39 and 59CAAAAAATAACGTAATCAAGCAAGGATC-

TCTTGAATCCTTGCTTGATTACGTTATG 39 (resulting

clones termed Z.23). The transfected cells were cultured in Zeocin

containing medium and stable clones were screened for the loss or

reduction of SKAP-55 greater than 90% and unaffectiveness of

other proteins as described [8].

Immunoblotting
DC27.10 cells transiently transfected with pSRaSKAP-55, T8.1

SKAP-55 KD cells and primary SKAP-55 KO cells were

stimulated with anti-CD3 (5 mg/ml for DC27.10 and SKAP-

55KO cells; 10 mg/ml for T8.1SKAP-55KD cells) and rabbit anti-

hamster (half the concentration of primary mAb) antibodies for

various times. Cells then were lysed and subjected to immuno-

blotting with anti-phospho-ERK1/2 and total ERK1/2. The levels

of bound antibody were measured using HRP-conjugated anti-

mouse/rabbit antibodies followed by detection with enhanced

chemiluminescence. Stimulation experiments with anti-CD3 or

anti-LFA-1 and immunoblotting were conducted as described [40].

Ras activation assay
For the Ras activation assay, T8.1SKAP-55 KD cells were

stimulated with anti-CD3 (10 mg/ml) and rabbit anti-hamster

(5 mg/ml) antibodies for various times. Activated Ras was isolated

from stimulated cell lysates using agarose-coupled GST-Raf1-

RBD (Upstate Biotechnology) as described [41]. Complexes were

analyzed by SDS-PAGE and immunoblotting with Ras-specific

antibody. The densitometric analysis of the bands was performed

using NIH Image software.
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