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Abstract

We performed a bioinformatical analysis of protein export elements (PEXEL) in the putative proteome of the malaria parasite
Plasmodium falciparum. A protein family-specific conservation of physicochemical residue profiles was found for PEXEL-
flanking sequence regions. We demonstrate that the family members can be clustered based on the flanking regions only
and display characteristic hydrophobicity patterns. This raises the possibility that the flanking regions may contain
additional information for a family-specific role of PEXEL. We further show that signal peptide cleavage results in a positional
alignment of PEXEL from both proteins with, and without, a signal peptide.
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Introduction

Plasmodium falciparum (P.falciparum) is an intracellular parasite of

the human red blood cell and the cause of the most virulent form

of malaria. The severe pathology is at least partly a result of a

modification of the host cell plasma membrane by proteins

synthesized and exported by the parasite [1]. From a cell biological

point of view this is unusual, as the non-infected human

erythrocyte lacks a machinery to facilitate directed protein

transport. An additional obstacle is the location of the parasite

within a so-called ‘‘parasitophorous vacuole’’ (PV), which

separates the parasite from the host cell cytosol, the vacuolar

membrane thereby forming a further barrier for proteins destined

for the host cell. In two elegant studies, Hiller et al. [2] and Marti et

al. [3] identified a short peptide sequence, referred to as the

vacuolar transport signal (VTS) or Plasmodium export element

(PEXEL), respectively. This motif is frequently found in parasite

proteins that are transported beyond the confines of the vacuolar

membrane. Although VTS and PEXEL differ slightly in their

structure, they share the conserved five-residue motif Rx(L,I)x(-

D,E,Q).

Dominant protein families of the P.falciparum ‘‘exportome’’ are

parasite-encoded surface proteins such as the erythrocyte mem-

brane protein 1 (PfEMP1)–the major P.falciparum virulence factor

[4–6]–and the RIFIN and STEVOR surface antigen families

[7,8]. We found that 28% of the putative P. falciparum proteome

contain the PEXEL/VTS pattern. This is a large number of

proteins, and raises the question whether the presence of the motif

is the sole defining criterion for exported parasite proteins. In fact,

residues surrounding the PEXEL motif were found to be

important in correct trafficking or folding of exported proteins

[9,10], and a recent study suggests that the short pentameric core

motif alone is insufficient to cause protein traffic across the PV

membrane [11]. Apparently, additional factors need to be taken

into account when predicting the size and members of the

Plasmodium exportome as well as antigens at the surface of the

infected erythrocyte. This hypothesis is substantiated by the

observation that members of the RIFIN protein family locate in

different cellular compartments despite the fact that all members

of the RIFIN protein family contain a PEXEL sequence: A-type

RIFINs are transported to the surface of infected erythrocytes via

Maurer’s clefts, whereas B-type RIFINs remain inside the parasite

[12]. Wahlgren and coworkers already speculated that residue

positions in the PEXEL motif and additional family-specific

conserved stretches of amino acids are required for differential

protein targeting [12], which is in agreement with the studies by

Przyborski et al. [10]. One question arising from these preliminary

findings is whether the PEXEL-flanking sequence regions contain

family-specific information.

Results and Discussion

So motivated, we analyzed residue positions surrounding the

PEXEL motif. We compiled a set of 5,571 unique proteins from

P.falciparum, extracted from PlasmoDB [13], TIGR/NCBI clone

3D7 [14], and EMBL-EBI [15]. Pattern matching with SEED-

TOP [16] retrieved 1,557 (28%) sequences containing the PEXEL

motif. 412 (7.4%) hits were found by a generalized Hidden-

Markov-Model (false-positive rate: 5%), which requires, in

addition to the PEXEL motif, a preceding hydrophobic region

for prediction of exported proteins [17]. For further analysis, we

extracted stretches of 25 amino acids from these 412 predicted

proteins containing the central five-residue PEXEL motif and ten

additional residues on both sides (data available as supplementary

material). When multiple PEXEL motifs existed in one protein

sequence, only the most N-terminal occurrence was extracted.

We performed all-against-all pair-wise alignment of the 25-

residue fragments using BLAST ([16]; Gapped BLAST was run

with the BLOSUM62 matrix, [18], and gap-open cost = 11, gap-

elongation = 1). Only 6% of the sequences aligned to proteins
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outside their family, and 78% of all fragments aligned to sequences

of the corresponding protein family with average E-values up to

0.1. These results indicate that the residues flanking the PEXEL

motif contain family-specific information. It is evident that the

shortness of the sequences used (25 residues), and the failure to

align 22% of the sequence fragments limit this approach for

general prediction of potentially exported proteins and protein

family assignment. It has been argued before that straightforward

sequence alignment may not be appropriate to find all members of

the P.falciparum exportome because individual protein families are

particularly deviating in their primary sequences, for example

beta-barrel proteins from outer bacterial and organelle mem-

branes [9].

In a complementary approach, we encoded the sequence

fragments by seven physicochemical amino acid properties [19]:

hydrophilicity [20] and hydrophobicity [21] scales, volume [22],

surface [23], bulkiness, refractivity, and polarity [24]. This led to a

2567 = 175-dimensional vectorial sequence representation. We

employed Kohonen’s self organizing map (SOM) technique [25]

for visualizing the data distribution by nonlinear projection of this

high-dimensional sequence space [26]. As a result of SOM

training, the topology of the data distribution is shown on a two-

dimensional map, and cluster formation of RIFIN, STEVOR, and

PfEMP1 sequences is observed (Figure 1). The physicochemical

sequence representation led to a reasonable grouping of the three

dominant PEXEL-containing protein families.

Noteworthy, based on relative amino acid frequency only

(calculated from full-length sequences), the three protein families

cannot be distinguished (Kolmogorov-Smirnov test significance at

the 5% level).

The SOM is grounded on a non-deterministic process. Thus the

projections slightly differ in repeated runs. We selected a SOM

projection with a small mean quantization error. Clustering

strength was evaluated by calculating the topological intra-family

distance of proteins on the SOM. We found that the PEXEL

containing families RIFIN (average distance: 4.17), PfEMP1

(average distance: 2.99), and STEVOR (average distance: 2.20)

have smaller pair-wise distances than the remaining ‘‘hypotheti-

Figure 1. SOM projection of the PEXEL containing sequence
fragments from P.falciparum proteins. The SOM contains 10615
topologically ordered data clusters (‘‘neurons’’). Locations of RIFIN
(green), STEVOR (red), and PfEMP1 (yellow) proteins are highlighted.
The location of hypothetical proteins is shown in magenta. Blue color
indicates ‘‘other’’ PEXEL-containing fragments. A neuron is assigned one
particular class if more than 50% of its clustered proteins belong to one
family. White neurons do not contain any proteins (‘‘empty sequence
space’’). Map generated with the software SOMMER [27].
doi:10.1371/journal.pone.0001560.g001

Figure 2. Occurrence of hydrophobic and hydrophilic residues
up and downstream the PEXEL motif. Information plot of the
PEXEL motif and surrounding residue positions in the protein families
STEVOR (N = 30) (a), RIFIN (N = 125) (b) and PfEMP1 (N = 58) (c). Large
values indicate sequence positions with conserved hydrophobic (H) or
hydrophilic (O) residues (see text for residue classification). The position
of the PEXEL motif is highlighted.
doi:10.1371/journal.pone.0001560.g002
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cal’’ proteins (average distance: 5.99). This supports our notion

that RIFIN, PfEMP1, and STEVOR form local distributions.

The RIFIN cluster contains two major sub-families, A-RIFIN

and B-RIFIN proteins [28]. The average topological distance of

SOM neurons containing B-RIFIN is 2.5, and for A-RIFIN 3.5,

indicating that B-RIFIN proteins are more similar to each other

than the A-RIFINs, based on the sequence fragments analyzed.

The SOM projection was then used to predict the family

membership of the remaining 180 PEXEL-containing hypothet-

ical P.falciparum proteins. A conservative prediction was performed

as we focused only on neurons containing at least 50% members

from one protein family. Among the candidate proteins, one co-

localizes with the RIFIN, five with the STEVOR, and one with

the PfEMP1 family on the SOM (see supplementary material).

Noteworthy, these suggested assignments are based on the

similarity of the PEXEL motif flanking regions only.

The hypothetical sequences that do not co-cluster with known

members of the RIFIN, PfEMP1, and STEVOR families are not

necessarily false-positives. They might belong to other PEXEL

containing protein families. In our study, we focused only on the

three dominant PEXEL-containing protein families from P.

falciparum. For determination whether they represent actual false-

positives with regard to intracellular localization, biological

experiments are required. This is beyond the scope of the present

study.

The formation of clusters of protein families on the SOM

corroborates the hypothesis that family-related information exists

in the flanking areas of the PEXEL motif. This would not be

without precedent, as precursor proteins targeted to cellular

compartments such as the mitochondria and chloroplasts often

contain essential protein targeting information at their N-terminus,

sometimes encoded on an extra 59 exon. A similar situation can be

found in proteins targeted to the apicoplast of P. falciparum, and,

e.g., in exported P. falciparum homologues of the HSP40 chaperone

family [29].

The apparent positional conservation of the PEXEL motif

(approximately 20 amino acids C-terminal to the hydrophobic

sequence, and situated 15-20 amino acids N-terminal to the

beginning of the mature protein) has been suggested to be required

for correct recognition by the transport machinery [30]. As of

today, there is no experimental evidence to suggest that the

PEXEL containing region is actually cleaved. N-terminal protein

sequencing of exported proteins has been attempted, but so far

without success [31]. Additionally, Western blot analysis shows no

size difference between proteins within the parasite’s secretory

pathway and those that have reached the erythrocyte cytosol,

although this size shift should be able to be detected [32,33].

In the present study, we show an apparent family-specific

conservation of physicochemical residue profiles for short PEXEL-

flanking regions (vide infra). This raises the possibility that this

region may be more than just a ‘‘simple transport signal’’, e.g.

playing a role in alternative transport mechanisms, or in regulation

of protein transport. To this end, it is noteworthy that a PEXEL

containing RESA-GFP chimera was only correctly transported to

its correct sub-cellular location when expressed under control of its

endogenous promoter. Expression of the same protein under

control of a heterologous promotor led to retention of the reporter

within the lumen of the PV [34]. We speculate that the PEXEL-

flanking regions might therefore influence regulated secretion of

proteins, either temporally, or even in response to external stimuli.

In other systems, evidence is also accumulating to suggest that

Table 1. Pearson correlation between family-derived
hydrophilicity profiles and 25-residue sequence fragments
containing the central PEXEL motif.

Profile from Fragments from

PfEMP1 RIFIN STEVOR

PfEMP1 0.75 (0.09) 0.15 (0.09) 0.07 (0.11)

RIFIN 0.15 (0.07) 0.73 (0.08) 0.46 (0.10)

STEVOR 0.07 (0.12) 0.43 (0.09) 0.80 (0.16)

Standard deviation in brackets.
doi:10.1371/journal.pone.0001560.t001

Figure 3. Average position-specific hydrophobicity in 25-residue fragments containing the central PEXEL motif (at positions 11-15).
Color indicates the protein family (black: PfEMP1, gray: RIFIN, light gray: STEVOR). Error bars give standard deviations. Asterisks indicate positions
characteristic for one of the families. Note that the Hopp & Woods scale [20] is a ‘‘hydrophilicity’’ scale with negative values for hydrophobic residues.
doi:10.1371/journal.pone.0001560.g003

The Plasmodium Export Element

PLoS ONE | www.plosone.org 3 February 2008 | Volume 3 | Issue 2 | e1560



targeting signals, such as endoplasmic reticulum (ER) signals, far

from being ‘‘just greasy peptides’’, can contain important

regulatory information [35,36].

In all three Plasmodium protein families studied, the downstream

flanking regions show high information content with regard to

hydrophobic and hydrophilic residues. Noteworthy, the upstream

flanking region of the STEVOR examples exhibits additional

conserved patterns not present in the known PfEMP1 and RIFIN

proteins (Figure 2).

For calculation of the position-specific information content the

software H-BloX was used [37] (Eq. 1). The 25-residue fragments

were encoded by a two-letter alphabet containing ‘‘hydrophobic’’

(A,C,F,G,I,L,M,T,V,W) and ‘‘hydrophilic’’ residues (D,E,H,K,

N,P,Q,R,S,Y).

I~Hbackground{Hobserved , where ðEq:1Þ

Hobserved~{ phydrophobic log2 phydrophobic

�

zphydrophilic log2 phydrophilic

�
:

The expected distribution Hbackground of hydrophobic and

hydrophilic residues was calculated from the amino acid

distribution found in the predicted P.falciparum proteome (in

percent: A = 1.9, C = 1.8, D = 6.5, E = 7.2, F = 4.4, G = 2.8,

H = 2.4, I = 9.2, K = 11.7, L = 7.5, M = 2.2, N = 14.5, P = 2.0,

Q = 2.7, R = 2.6, S = 6.4, T = 4.1, V = 3.9, W = 0.5, Y = 5.7).

Site-directed mutagenesis of charged residues within this region

has previously been shown to cause an accumulation of chimeric

reporter proteins within the parasite’s endoplasmic reticulum [10].

This region is predicted to contain several putative chaperone

binding sites, suggesting that disruption of chaperone binding sites

may interfere with chaperone mediated protein folding and quality

control, leading to an aggregation of incorrectly folded protein,

and a corresponding reduction in protein export. Mutation of

residues ‘‘downstream’’ of the PEXEL motif had minimal or no

effect on the localization of a STEVOR protein [10], highlighting

the relative importance of its PEXEL preceding sequence.

We then computed averaged hydrophobicity profiles of PEXEL

plus flanking residues for each of the three protein families, using

the hydrophilicity scale according to Hopp and Woods [20].

Table 1 gives the correlation coefficients for matching the family-

specific profiles against the fragments from the three families. We

observe that there is only low cross-family correspondence of the

property patterns, again suggesting family specificity of the

flanking regions.

More detailed analysis of the position-specific preference of

hydrophobic or hydrophilic residues indicate that position 8 is

important for discrimination of STEVOR proteins, whereas

positions 17–19, 21, 23 are characteristic of PfEMP1 proteins

(Figure 3). Position 18 is dominated by glycine in PfEMP, resulting

in high information content (Figure 2) yet a hydrophobicity value

of close to zero (Figure 3).

A further hint towards a family-specific function of the N-

terminal flanking region is that, according to our analysis, only

24% of the proteins with a PEXEL motif actually possess a

standard signal sequence. It has been reported that PEXEL

is preferably located 15–20 amino acids downstream of an

N-terminal hydrophobic signal sequence [2,3]. In Figure 4a, the

PEXEL motif distribution in our set of 412 proteins is shown. We

observe three groups of sequences with preferences around

positions 20, 43, and 85. All PfEMP1 proteins lack a standard

signal peptide, and the PEXEL location is near the protein

N-terminus between residue positions 12 and 28. In contrast, in

proteins containing a predicted signal peptide we find the PEXEL

motif in a range of approximately 30 residues, between positions

37 and 63. We then artificially cleaved off the signal peptide in

precursors with a predicted cleavage site and analyzed the

resulting mature proteins: PEXEL motifs shift to positions 13–

29, which is now comparable to the position of the PEXEL motif

in PfEMP1 proteins lacking a signal peptide (Figure 4b).

The group of proteins with a PEXEL preference around

position 85 does not contain a canonical signal peptide, but rather

a recessed N-terminal hydrophobic segment, which has previously

been shown to function as an ER targeting signal [2,33,39]. The

proteins with a PEXEL preference around positions 35–50 are

predicted to be exported as they, in addition to a PEXEL

sequence, possess a hydrophobic N-terminal segment (Figure 4b,

gray bars). Many of these proteins may actually contain an export

signal which is not recognized by SignalP. As no standard

algorithm predicts cleavage of these sequences and it is unclear

whether these sequences are actually cleaved at all, no shift in the

position of PEXEL is predicted in the analyses shown in Figure 4b.

Figure 4. Distribution of the first position of the PEXEL motif.
A) position of the PEXEL motif in sequences of the PfEMP1 protein
family (red), exported proteins with a predicted signal peptide (blue),
and exported proteins lacking a predicted signal peptide (gray). In B)
the blue bars show the positions of the PEXEL motif after cleaving off
the predicted signal peptide. Only sequences with a predicted signal
peptidase cleavage site (score .0.5 according to SignalP [38,39]) are
included. Gray bars in B) represent the unchanged distribution of
PEXEL in proteins lacking a predicted signal sequence. Note that all
bars are displayed on top of each other.
doi:10.1371/journal.pone.0001560.g004
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These analyses support the hypothesis that, although different

mechanisms may exist for initial entry of PEXEL containing

proteins to the secretory pathway, mediated either by an N-

terminal signal sequence, or another, as yet uncharacterized

mechanism, certain positional constraints are exerted on the

PEXEL motif, potentially related to the nature of the protein

translocation machinery. As a consequence, recessed signal

sequences2such as those present in glycophorin-binding protein

130 (GBP130) and the ring-infected erythrocyte surface antigen

(RESA)2might be actually cleaved to bring the PEXEL motif into

the correct positional preferences required for further transport.

On this note, the strong conservation of the initial arginine

residue in the PEXEL motif is of interest. Arginine residues can

often be found in protein targeting motifs such as the TAT (twin

arginine translocation) signal peptide [41], and arginine based ER

retention signals. It is possible that the arginine residue in the

PEXEL motif associates the exported protein with the membrane

of the parasitophorous vacuole prior to passage through the

putative translocon. Such membrane binding properties have

recently been shown for arginine residues in the TAT signal [42].

Summarizing, we found conserved hydrophobicity profiles

rather than conserved residue patterns in the PEXEL-flanking

regions. This hints toward potential recognition of the PEXEL

motif and flanking regions by an interacting macromolecule and

supports earlier experimental findings [12]. Any conserved

property profile most likely is a result from gene duplication and

other evolutionary events leading to the formation of different

protein families. Bioinformatical analysis alone will not be able to

undoubtedly determine whether these patterns are part of a

PEXEL-related targeting signal or responsible for a completely

different function. Still, our study provides a well-motivated basis

for the necessary biochemical experiments. Although we may use

the PEXEL motif to speculate about the nature of the P.falciparum

‘‘exportome’’, we are only now beginning to understand the

processes governed by this sequence, their biological importance,

and how such processes are regulated, possibly by residues directly

abutting the PEXEL sequence itself.
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