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Abstract. Since the last 20 years, modern heuristic algorithms and machine learning have
been increasingly used for several purposes in accelerator technology and physics. Since
computing power has become less and less of a limiting factor, these tools have become part of
the physicist community’s standard toolkit [1][2] [3] [4] [5]. This paper describes the construction
of an algorithm that can be used to generate an optimised lattice design for transfer lines under
the consideration of restrictions that usually limit design options in reality. The developed
algorithm has been applied to the existing SIS18 to HADES transfer line in GSI.

1. Introduction
Beside the necessary instrumentation, transfer lines usually consist of quadrupoles, dipoles,
steerer magnets and buncher cavities. Sometimes the dipole positions are more or less fixed and
therefore boundary conditions for the optimisation. For showing the idea, assumed that the
geometry of the transfer line is given, which means that the number and position of the dipole
magnets, as well as the start and end point. The goal is, to place 2 types of quadrupoles in
between the dipoles such that a given particle distribution will be guided through the beam line
with maximal transmission and focused on a target. The algorithm has been designed in such
a way that minimizes both the power consumption and the required number of components.

2. Genotype parameterisation
Without limiting the generality we assume to have in stock 2 standard quadrupoles Qa and
Qb with associated lengths La and Lb, where Lb > La. Another assumption is, that each
quadruple type is used for a different area of values for the normalized integrated field gradient
kl = B′l/(Bρ). These areas are distinct and do not overlap.

area 1: (kl)0 < |kl| ≤ (kl)a

area 2: (kl)a < |kl| ≤ (kl)b

The simplest transfer line is a straight line and contains no further elements. Such a transfer
line of a given length L can be divided in n sections of equal length. If we consider the solution
with maximal number of the longest quadrupoles Qb, in general the number n can not be bigger
than L/Lb. In order to accommodate free space between the quadrupoles, one quadrupole is
left out. Therefore the number of sections is
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n =
L

Lb
− 1

In order to be able to use a metaheuristic optimization method such as a genetic algorithm
[6], it is necessary to find a suitable parameterization for the corresponding problem. The
parameters (an array of real numbers) are called the genes. For this work, the number of genes
within a genome G is 2n. Even genes νi represent the kl value of quadrupoles and odd genes µi
represent the relative distance between the quadrupoles. All genes are real numbers.

G = {µ1, ν1, µ2, ν2, ..., µn, νn}

3. Phenotype construction
The phenotype of the genome G is then constructed in the following way. For all νi, the
constructed element Ei is either one of the standard quadrupoles or a drift line D, depending
on the value of νi. For quadrupoles, νi is an expression of the kl value.

0 < |νi| ≤ (kl)0 =⇒ Ei = D

(kl)0 < |νi| ≤ (kl)a =⇒ Ei = Qa

(kl)a < |νi| ≤ (kl)b =⇒ Ei = Qb

In this manner it can be assured, that a quadrupole with more focusing power is used only, if
more focusing power is really needed. The length of the constructed quadrupole (li) is defined
by its type (Ei = Qa =⇒ li = La, Ei = Qb =⇒ li = Lb) and its strength can be calculated
from

ki =
νi
li

A discontinuity at the transition from Qa to Qb type quadrupoles can not be avoided, if both
types have different lengths. The continuity can only be conserved for the kl value (Figs. 1, 2).

(kl)00 (kl)a (kl)b
ν

(kl)0

0

(kl)a

(kl)b

kl

D Qa Qb

Figure 1. dependence of kl on ν value.

In cases where the focusing power is lower than the threshold (kl)0, a zero field quadrupole
(drift line) D is used. The length of this drift line is set to

li =
|νi|

(kl)0
La

A continuity in length can be created in this way, but a jump for kl is unavoidable, between
drift and quadrupole elements. A smooth transition of kl to zero, would create quadrupoles for
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Figure 2. dependence of length l on ν value.

even smallest kl values and all transfer lines would end up full of quadrupoles. So the resulting
strength k of the created element has by default two discontinuities (Fig. 3).

(kl)00 (kl)a (kl)b
ν

(kl)0/La

0

(kl)a/Lb

(kl)a/La

(kl)b/Lb

k

D Qa Qb

Figure 3. dependence of quadrupole strength k on ν value.

Table 1 contains the properties of the standard quadrupole types as they can be extracted
from the genome.

Table 1. standard elements Ei (quadrupoles and drift).

Ei condition length li strength ki

D 0 < |νi| ≤ (kl)0
νi

(kl)0
La 0

Qa (kl)0 < |νi| ≤ (kl)a La
νi
La

Qb (kl)a < |νi| ≤ (kl)b Lb
νi
Lb

Once the standard quadrupoles are constructed, the distances between the elements (and
therefore their positions) are calculated. The remaining space is

Lr = L−
n∑
i=1

li

and the distances between the elements are proportional to the share of µi.
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di =
µi∑n
i=1 µi

Lr

4. Evaluation function
A given genotype is tested with regards to its fitness. Therefore the phenotype or rather the
lattice of the transfer line is constructed for each genome. If the solution should match a given
acceptance by the user, an additional aperture is appended. Subsequently m particles with a
given distribution are tracked through each solution via matrix multiplication 1 and the following
indicators are collected.

Lp ... the flight distance for each particle
T ... the overall transmission (Nend/Ninit)
Nq ... the resulting number of quadrupoles
Σ|kl| ... the sum of absolute value of strengths

The evaluation function for each genome F (G) is the weighted sum of all indicators normalised
to 1. The weights ωi can be chosen according to the priorities of the different indicators.

F (G) = ω1 · (1− (1/m) · Σp(Lp/L))

+ ω2 · (1− T )

+ ω3 ·Nq/n

+ ω4 · Σ|kl|/(n · (kl)b)

A simple genetic algorithm has now been used to minimise F . Any other algorithm that
avoids local minima (such as particle swarm algorithm [7] or BOBYQA [8]) could be used as
well.

5. Results
The developed algorithm has been tested against theoretical cases (trivial, doublet and target
focusing) and a realistic one. The latter concerns the transfer line between SIS18 and HADES
[9] at GSI. In all of them space charge is not considered and the weights have been set to ω1 = 1,
ω2 = 1, ω3 = 0.01 and ω4 = 0.0001. A common circular vacuum chamber of 0.12 m diameter
is assumed throughout the entire transfer line. The particle distribution contains 1000 particles
entering on-axis and features a Gaussian shape in all 5-coordinates x, x′, y, y′ and ∆p/p (see
Table 2).

Table 2. Characteristic dimensions of the standard particle distribution of SIS 18 (slow
extraction parameters from synchrotron SIS18 @ GSI [10]).

dimension 1-sigma dimension 1-sigma

x 2.941 mm y 3.531 mm
x′ 0.353 mrad y′ 0.567 mrad
∆p/p 0.001

The genetic algorithm uses 200 individuals (genomes) per generation, therefore 200000
particles have to be tracked in each optimisation step.

1 drift and quadrupole elements are represented by a 5x5 matrices Ref. [11]
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5.1. Trivial solution
In case of no additional aperture limitations besides the vacuum chamber, one can estimate the
length of the transfer line where the beam (with the given particle distribution) goes through
without losses.

ymax = 0.06 m > 3σy + 3σy′L =⇒ 29.0 m > L

So, for a distance of L = 25 m, the beam could be transported without additional focusing
(assuming the σy and σ′y given in Table 2). The optimisation has been executed 20 times and
in all cases, the algorithm found the optimal solution within less than 30 generations.

5.2. Doublet solution
The next example is a 60 m transfer line, where a 100 % Transmission is not possible without
additional focusing and hence there is no solution without quadrupoles.

Table 3 shows the 2 found solutions ad and bd. In any case the solution is a quadrupole
doublet, in 70 % of the solutions the doublet starts using a vertical focusing (blue) and in 30 %
with a horizontal focusing (red) quadrupole. The needed quadrupole strength for solution ad is
slightly lower than solution bd.

Table 3. lattice solutions for the 60 m case.

# lattice

ad
bd

60m

5.3. Target focusing
Next considered case is a 100 m transfer line with a target circular aperture limitation of 5 mm
(diameter) at the end of it. 3 solutions have been found (at, bt and ct) with 100 % transmission
(see Table 4). The prevalence of solutions can be suppressed by varying the weights ωi.

Table 4. lattices for 100 m transfer line with final aperture limitation.

# lattice

at
bt
ct

100m

5.4. Transfer line SIS18 to HADES experiment
Our last case of study concerns the 160 m long transfer line that transports the beam from the
SIS18 synchrotron to the HADES experiment. This transfer line is presently under review [9], as
well as all the existing GSI transfer lines [12], due to need for improving the transmission when
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running at high intensity [13]. The algorithm assumes a 5 cm long target with 2.2 mm diameter
[14] at the end of the tranfer line. The result obtained with 100 % transmission and smallest F
is shown in Table 5 (b) against the present transfer line (a).

Table 5. both HADES lattices (length ca. 160 m), the existing version (a) and the solution
from the algorithm (b), cyan elements are bending dipoles.

# lattice

a
b

The result looks quite different to the existing version. The strength of element number (14
vs. 20) is much lower and the strong quadrupole (Qb) is only used twice. Since intermediate foci
are not excluded by the algorithm, they are part of the solution (Fig. 4). This beam line is also
used for other purposes (the dipoles (cyan) distribute the beam also to other target stations)
and for fast extraction, where the horizontal emittance is higher by a factor of 6, so some margin
for deviations should be foreseen. This could easily be added to the algorithm by artificially
limiting the aperture. At the moment the full aperture is used at some positions.

Figure 4. HADES lattice and optics, found by the algorithm, top = horizontal beam size,
bottom = vertical beam size.
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6. Conclusion
In all the considered transfer lines, the algorithm has found optimal solutions in terms of
transmission while minimising energy consumption and number of elements. The algorithm
will be further developed and investigated. Additional elements as buncher cavities are about
to be included as well as high current effects. Next step is the comparison with experiments and
existing solutions. All transfer lines of GSI/FAIR [15] will be reviewed and future lines could
even be designed by the use of this algorithm.
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