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Abstract
Classically, encoding of images by only a few, important
components is done by the Principal Component Analy-
sis (PCA). Recently, a data analysis tool called Inde-
pendent Component Analysis (ICA) for the separation of
independent influences in signals has found strong inter-
est in the neural network community. This approach has
also been applied to images. Whereas the approach
assumes continuous source channels mixed up to the
same number of channels by a mixing matrix, we assume
that images are composed by only a few image primi-
tives. This means that for images we have less sources
than pixels. Additionally, in order to reduce unimportant
information, we aim only for the most important source
patterns with the highest occurrence probabilities or
biggest information called „Principal Independent Com-
ponents (PIC)“.

For the example of a synthetic picture composed by
characters this idea gives us the most important ones.
Nevertheless, for natural images where no a-priori prob-
abilities can be computed this does not lead to an ac-
ceptable reproduction error. Combining the traditional
principal component criteria of PCA with the independ-
ence property of ICA we obtain a better encoding. It
turns out that this definition of PIC implements the clas-
sical demand of Shannon’s rate distortion theory.

Keywords: Principal Component Analysis PCA, Inde-
pendent Component Analysis ICA, Principal Independent
Component Analysis PICA, Rate Distortion Theory

1 Introduction
One of the most interesting and ambitious properties of
artificial neural networks is grounded in the active in-
formation processing of real world data: the unsupervised
analysis of  signals.

1.1 Principal components and PCA

An interesting approach has been developed throughout
the recent years: the linear transformation of the input
space to the base of principal components which mini-
mizes the mean squared error when dropping some of the
transformed channels. This transformation called
‘Principal Component Analysis’ (PCA) and obtained by
aligning the base vectors to the directions of  maximal
variance, is identical to a discrete Karhunen-Loève or
Hotelling transformation.

Here, we decompose the n signals (x1,…,xn)
T ≡ x by a

linear transform

y = Wx with y = (y1,…,yn)
T   (1)

such that a subset y’ = (y1,…,ym)T of m < n components
used with the matrix Wm

–1 (consisting of m columns of
W–1) to reconstruct the original signals by

x’ = Wm
–1y’

obtains the smallest mean squared error

〈(x–x’)2〉 = min

in the reconstruction process. It is well known that this is
the case for the projections of the input x on the m eigen-
vectors with the biggest eigenvalues λ1,…,λm of the co-
variance matrix

Cxx=〈(x–〈x〉)(x–〈x〉)T〉

Thus, the variance of a component yi is given by

λi = 〈(yi–〈yi〉)2〉  = σi
2,

and the rows of W meet the conditions for orthonormal-
ity

wi
Twi = 1 and  wi

Twj = 0  for i ≠ j (2)

We see that the whole signal is decomposed by a non-
scaling linear transformation into different directions wi.
To obtain the smallest error of reconstruction, we use the
directions with the biggest variances. So, the components
(and the corresponding directions or base vectors) are
ordered according to a criterion. The selected m ones are
called the ‘principal components’.

Many neural networks have already been proposed
which let their associated weight vectors converge to the
base of principal components, the eigenvectors of the
input covariance matrix, by proper learning rules, see
e.g. [OJA92], [BRA93a].

For images, the search for the principal components
(called "transform image coding") can be organized as a
local process. Thus, a whole picture can be encoded in
parallel by many neurons on a sensory plane with local
interactions (e.g. lateral inhibition), using only the self-
organized principal components [BRA96] obtained by
analog circuits [BRA94].

1.2 Independent components and ICA

The approach of PCA is only optimal for the perform-
ance measure of the mean squared error and assumes no
specific information about the higher order statistics of
the observed signals. If we want to maximize other
measures of information processing, for instance the
information capacity of the encoding coefficients (i.e. the
output signals of the transforming system), we have to
obtain other properties.

Here, the mutual information H(y1;y2;…;yn) between
the output channels is a good measure for an efficient
output coding. The output information H(y1,y2) of two
channels y1 and y2

H(y1,y2) = H(y1) + H(y2) – H(y1;y2)
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becomes maximal if for constant channel information
H(yi) the mutual information becomes minimal. This is
the case if

H(y1,y2) = H(y1) + H(y2)

which means for the probability density functions (pdf)

p(y1,y2) = p(y1)p(y2)

Thus, the demand for minimal transinformation is iden-
tical with the demand for independent channel pdf
("factorial code"). For n channels this means

p(x) = p(x1)p(x2)⋅⋅⋅p(xn) (3)

Let us assume that all observed signals x = (x1,…,xn)
T are

derived from a linear mixture of n unknown independent
source signals s = (s1,…,sn)

T with an unknown mixing
matrix M with rows mi

x = Ms,      xi = mis (4)

How can the original source signals be reconstituted?
Another linear transformation with a matrix B

y = Bx = BMs (5)

might obtain the sources if

y = s     ⇔  BM = I (6)

the demixing matrix B becomes the inverse of M.
The problem of finding the demixing matrix is known

as the problem of "blind separation of sources" or
"Independent Component Analysis" (ICA) and is a fast
growing topic in neural network research, see e.g.
[ACY96], [BUR92],[COM94], [DEO96], [HYO96].

The independent signals are obtained by using objec-
tive functions (called ‘contrast functions’ [COM94]). One
of them is the demand for minimal transinformation
between the signals and can be used to obtain learning
rules for the unknown base vectors of the inverse trans-
formation B of ICA, see [ACY96].

There are several conditions involved in the demixing
process in order to get the source signals (see [COM94]):

• The mixing matrix M must be regular to have the
inverse B=M–1 to exist with Bx = BMs = M–1Ms = s.
This means that we have to have the same number n
of sources as of observed mixtures.

• The source is determined regardless of the order
(index) of the channels in s. This is due to the fact
that the crucial condition for independence, the fac-
torization p(s) = p(s1)p(s2) ⋅⋅⋅ p(sn) of the probability
distribution function (pdf) by the marginal pdfs, is
still valid for p(s) = p(s1)p(sn) ⋅⋅⋅ p(s2) or any other
permutation of the indices.

• In eq.(4), the same mixture x is produced if we scale a
source si by a factor ci and the corresponding column
Mi of M by a factor 1/ci. Thus, without further knowl-

edge, we cannot determine the scale of the source
signals: the ICA is an "ill-posed problem".

• For two Gaussian sources s1 and s2 a simple decorre-
lation procedure (PCA) gives us independent sources.
Nevertheless, it is well known that the PCA decorre-
lation is done by an orthogonal matrix composed by
the eigenvectors of Cxx, see eq.(2). Since we assume
M to be generally not orthogonal (i.e. it does perform
more than a rotation), we cannot demix the signals
just by a rotation: the demixing is not correct. The
operation of separating the signals into s1 and s2 is
not unique; without any further information the am-
biguity for Gaussian signals cannot be resolved. For
additional Gaussian sources, this problem aggravates.
This means for successful demixing at most one
source can have a pdf with Gaussian characteristic.

Thus, we cannot expect to recover the exact source sig-
nals s but only their scaled and permutated versions

y = DPs

with a diagonal scaling matrix D and a permutation
matrix P. This relaxes the conditions on the demixing
matrix B in eq.(5) to

BM = DP (7)

Here, B is in general not equal to M−1 although in the
following we still call B "the inverse matrix of M" and y
"the source signals".

In order to enable a solution it is convenient to as-
sume that the recovered source signals yi have unit vari-
ance σi² since D is unknown. Furthermore we assume
that the yi are centered, i.e. 〈y〉 ≡ 0. This requires the
demixing process to center the observed signals x as well
for their average 〈x〉 might be non-zero. Consequently,
we get the relation

y = B (x-〈x〉) = BM (s-〈s〉) = DP (s-〈s〉) (8)

The standard ICA procedure consists mainly of the fol-
lowing stages (shown in Fig.1).

B

→ →→ → →

mix center whiten indep.

M x-〈x〉 WPCA WICA

s x x’ v y

Fig.1 The processing stages in ICA

The observed signals x are diminished by their first and
second moments: They are centered, decorrelated and
whitened to unit variance by a linear transform with a
matrix WPCA, and then separated by their higher mo-
ments in the last stage by another linear transform WICA.
The latter which uses the preprocessed input is often
referred as "the  ICA matrix". So far we have
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y = B (x-〈x〉) = WICAWPCA (x–〈x〉) (9)

with B = WICAWPCA .
If we use a PCA process for the decorrelation process

in WPCA we also can additionally scale the rows wi of
WPCA which are the eigenvectors of Cxx by their eigen-
values

wi → wi λi
–½  such that wi

2 = λi
–1

This normalizes the variance of v because we have

〈v2〉 = 〈(wi
Tx’)2〉 = wi

T〈x’x’T〉wi = wi
TCxxwi

= wi
Twi

 λi = 1

The whitening process gives us an advantage: For whit-
ened, decorrelated input of 〈vvT〉 = I the ICA matrix
WICA is orthogonal, i.e. just a rotation of the base of the
input space. This can be easily shown: With v ≡ WPCAx’
and the assumptions of centered and independent sources
having unit variance (i.e. 〈y〉 ≡ 0 and 〈yyT〉 = I), we get

I = 〈yyT〉 =  WICA〈vvT〉WICA
T = WICAWICA

T

Thus, the inverse matrix WICA
–1 is identical to the trans-

posed matrix WICA
T which implies that WICA has to be

orthogonal.
The classical ICA encoding system above can be

trained using separate layers of neural networks. The first
stage is obtained by learning the expectation value as an
offset in order to center the input:

x0(t+1) = x0(t) + 1/t  (x(t)–x0(t))

For the second stage standard PCA learning rule can be
used, see e.g. [OJA92], coupled by a rescaling described
above. Otherwise, special whitening learning rules can be
used, see [SIL91],[PLUM93],[BRA98]. For the third
stage, the ICA layer, one of the ICA learning rules may
be taken, e.g. [HYO96].

Now, for encoding pictures by a decomposition with
the most important, independent components we will run
into trouble. Let us assume that we have just 4 independ-
ent visual objects on a picture of 256×256 = 65536 pix-
els. Certainly, we want to obtain a significant smaller
number of outputs to describe the picture than 65536. But
if we use less neurons for data compression, this becomes
in conflict with the demand of the same number for
sources and mixtures, the first condition for ICA cited
above. What can we do ?

One common solution, taken in [BES96] and
[OLS96a,b] is to cut the images into smaller patches, say
12×12=144 pixels, present many patches of many images
(preferably natural scenes) and then make an ICA of the
144 channels. This gives us 144 independent "base pic-
tures".

Nevertheless, not all ICA components are equally im-
portant. Some of them are just spurious patterns with a
low occurrence probability. Since we want to obtain a
stable code which covers most of the input data, we aim
for the m ICA components with the highest occurrence
probability. Here, we encounter a serious problem: how
can we order the components, e.g. by an occurrence
probability, which the ICA model so far did not provide?
In standard ICA applications, all (time series) channels
are always present, i.e. equally probable.

However, this is not the case for real world objects. In
order to cover this aspect also, we have to develop a new
image model which is composed by signals and events.

2 An event-oriented image model
Let us model the images as a superposition of many
small, independent image patches, just like a single neu-
ron of the retina sees the world by a very restricted focus.
Our task consists now of finding the most probable ones.

2.1 Image event primitives, signals, and ICA

As an introductory example, let us consider as input
events several pictures composed of four pixels. The four
sample pictures are shown in Fig.2. The black pixels are
coded as –1, the white ones as +1 and the gray ones as
zero.

M1=(1,-1,0,0)T  M2=(0,1,1,1)T     M3=(-1,1,1,0)T   M4=(0,-1,-1,0)T

Fig.2 The four sample pictures

In the following state-time diagram (Fig.3) four events
are presented independently. Here, each event is denoted
by two states, present (on) or not present (off). The time
order of the independent events is assumed to be random.

time step  1     2    3     4    5    6

on

off

picture i

1

2

3

4

t

Fig.3 The state-time diagram of input events
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Each event ωi manifests itself on all four pixels or four

channels. Assigning a signal vector sωi to the event ωi

="picture i appears" we note the events by the vectors

, sω4 =, sω3 =, sω2 =sω1 =

⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜

⎝

⎛

0

0

0
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⎟
⎟
⎟

⎠
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⎜
⎜
⎜
⎜

⎝

⎛

0

0

1

0

⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜

⎝

⎛

0

1

0

0

⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜

⎝

⎛

1

0

0

0

The picture itself can be described by the influence of the
event on the pixels. Formally, we can write this as a
linear mixture performed according to eq.(4) by the
mixing matrix

M = (M1, M2, M3, M4) = 

⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜

⎝

⎛

−
−−

−

0000

1110

1111

0101

The superposition of the influences can be observed at
each pixel as the time series of superposed signals. In
Fig.4 the intensity of all four pixels is shown for the
introductory example.

+1

 0

-1

pixel
value

time step  1     2    3     4    5    6          pixels

+1

 0

-1

+1

 0

-1

+1

 0

-1

1

2

3

4

t

Fig.4 The time series of the pixel channels

In Fig.5 the corresponding images are shown.

   x1=(1,-1,0,0)T      x2=(0,0,0,1)T       x3=(0,0,1,0)T      x4=(0,-1,-1,0)T

x5=(0,1,1,1)T      x6=(0,-1,0,0)T

Fig.5 The six sample pictures

Since we assume the four events to be independent, we
can see our task as not only separating the four channels
of the source signal s from the linear mixture x without

any knowledge about the mixture matrix M, but also to
deduce the occurrence probabilities P(ωi) for the inde-
pendent events ωi .

2.2 Ordering the Independent Components

To introduce the main idea for computing the probabili-
ties for the principle independent components, we notice
that the source signals are defined as

si  =
⎩
⎨
⎧

ω¬
ω

i

i

for 0

for 1

Thus, we have as the average source signal

si ≡ 〈si〉 = P(si=1)⋅1+ P(si=0)⋅0 = P(ωi) (10)

The variance σis
2 of the source signal si is

σis
2 = 〈(si– si )2〉 = 〈si

2–2si si + si
2〉

= 〈si
2〉 – si

2

= P(si=1)⋅1+ P(si=0)⋅0 – si
2

= si – si
2

 = si (1– si ) (11)

Suppose that we have already computed the demixing
matrix B satisfying eq.(8). The recovered source signals
yi are derived from the centered source signals si by
scaling and permutation with a matrix A ≡ BM = DP. As
stated in section Independent components and ICA it is
impossible to determine the permutation matrix P so we
assume P ≡ I and A ≡ D. For one component yi we get

yi = aii (si– si ) (12)

where aii denotes the corresponding diagonal, non-zero,
coefficient of A. Since yi is centered and has unit vari-
ance σiy

2 the following relation holds:

1 = σiy
2 = 〈(yi)

2〉 = 〈(aii (si– si ))2〉
= aii

2 σis
2 = aii

2 si (1– si ) (13)

The average 〈s〉 of the source signals is transformed by
the mixing matrix to the observed average signal

〈x〉 = M 〈s〉 (14)

and by the demixing matrix B to the average transform
output

〈y〉 = B 〈x〉 = BM 〈s〉 = A 〈s〉 (15)

Note that here 〈y〉 is obviously non-zero since we omitted
the centering stage. Therefore we have

〈yi〉 = aii si (16)

Combining eqs.(13) and (16) gives us the relation be-
tween the observed, non-centered output and the needed
occurrence probabilities
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1 = (〈yi〉/ si )2 si (1– si )

or
P(ωi) = si = 〈yi〉2 / (1+〈yi〉2) (17)

By this we have a measure to order the obtained ICA
components according to their associated occurrence
probabilities P(ω1) > P(ωi) > P(ωm). Since the most prob-
able events should not be neglected at all they are the
most important ones.

There is also an correspondence to the average infor-
mation of each component. With the definition of the
average Shannon information

H(y) = ∑ Ω∈− α αα ))(log()( PP (18)

and setting the state space to Ω ≡ {ωi ,¬ωi} we obtain the
marginal information for one recovered source yi

H(yi)=  − P(ωi) log(P(ωi))
 − (1−P(ωi)) log(1−P(ωi)) (19)

By assigning an order to the components according to
their information we define with H1 ≥ H2 ≥ … ≥ Hm an-
other order.

How is this order related to the previous criterion of
maximal occurrence probability? In Fig.6 the information
of one component is shown as a function of its probabil-
ity.

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0 0,25 0,5 0,75 1
pi

Hi

p0

Fig.6 The information of one component as function of its
occurrence probability

Since information is a convex function, probability and
information are both monotonically increasing up to the
local maximum which is located at

∂Hi(p)/∂p = –log(p0) + log(1–p0) = 0

or
p0 = 0.5

Thus if we order the components in this range according
to

i ≤ j ⇔⎥ P(ωi)−p0⎥ ≤⎥ P(ωj)−p0⎥ ⇔ Hi ≥ Hj (20)

we get the desired decreasing entropy order stated above.

3 Simulations and results
In this section we want to visualize our theoretical results
of the previous section and show the validity of our im-
age model.

3.1 Recovering the occurrence probabilities of events

For the start we want to show that it is possible to obtain
the occurrence probabilities of independent events. For
this purpose we use very basic image events. We chose
16 letters ‘A’…’P’, represented by a very coarse matrix
of 8x8 pixels, see Fig.7.

Fig.7 The image encoding of the events

For each one of 4096 training patterns, a random linear
combination of the letters was computed and presented to
a network of 16 neurons. In Fig.8 fifteen input sample
pictures out of the 4096 are shown.

Fig.8 Sample input pictures of mixed events

The input events are transformed to decorrelated compo-
nents by a PCA stage. Initially, we used the full alphabet,
but after the PCA stage some components with zero ei-
genvalues were observed. This means that some letters of
the alphabet can be decomposed by a linear combination
of others. To obtain really independent sources we chose
the subset of 16 letters shown in Fig.7.

The eigenimages formed in the PCA stage, i.e. the
rows of matrix WPCA, correspond to the decorrelated
components found by the PCA stage and are shown in
Fig.9.

Fig.9 The eigenimages of the input pictures
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Here, we observed a near-Gaussian probability distribu-
tion of the signal values, see Fig.10.

w.PCA1

0
10
20
30
40
50
60

-3 -2 -1 0 1 2 3

w.PCA2

0

10

20

30

40

50

-3 -2 -1 0 1 2 3

w.PCA3

0
10
20
30
40
50
60

-3 -2 -1 0 1 2 3

w.PCA4

0

10

20

30

40

50

-3 -2 -1 0 1 2 3

Fig.10 The probability distribution of four image signals ob-
tained after the PCA and whitening stages

To obtain the histograms the 4096 samples were quanti-
fied into 256 intervals on the horizontal axis.

After the ICA stage, we recovered the source signals.
Since we want to concentrate on the topic of principle
components we do not describe the algorithms used to
obtain the PCA and ICA in detail. Nevertheless, it should
be mentioned that the statistical nature of the source
signals presented a severe problem for some algorithms.
For the concrete events of this section, we have exclu-
sively bimodal source distributions with negative kurto-
sis, see Fig.13. Our simulations showed that some of the
algorithms had problems with bimodal images, i.e. nega-
tive kurtosis [BES96], and some with the natural images
of positive kurtosis [ACY96]; they did not converge for
these mixtures. In order to obtain the desired results, we
used versions of the algorithms described in [HYO96].

The inverse of the resulting matrix B is the mixing
matrix M, containing the letters. The images corre-
sponding to the B matrix are shown in Fig.11, the in-
verted B matrix gives us the reconstructed source images
in Fig.12.

Fig.11 The inverse source images obtained after the ICA stage

Fig.12 The source images obtained after the ICA stage

We see that neither the initial order nor the sign of the
sources were preserved. The occurrence probability dis-
tribution of four components is shown in Fig.13.

ICA1

0
100
200
300
400
500
600

-3 -2 -1 0 1 2 3

ICA2

0

100

200

300

400

-3 -2 -1 0 1 2 3

ICA3

0

100

200

300

400

-3 -2 -1 0 1 2 3

ICA4

0

100

200

300

400

500

-3 -2 -1 0 1 2 3

Fig.13 The probability distribution of four image signals ob-
tained after the ICA stage

Ideally, the peaks seen in Fig.13 are just spikes with zero
variance. Thus, the function values in a small interval
around each local average can be summed up in the cen-
ter of the associated interval, and set to zero afterwards.
This kind of quantization should give us a better estimate
of the original probability distribution.
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The initial and estimated occurrence probabilities of
the source letters are listed in table 1. The error is due to
the imperfectly learned ICA stage.

source probability error

letter used observed

D 0,715 0,732 -0,017

F 0,696 0,732 -0,036

I 0,743 0,695 0,049

B 0,692 0,673 0,019

G 0,577 0,628 -0,051

M 0,624 0,618 0,006

L 0,520 0,534 -0,014

O 0,538 0,532 0,006

C 0,423 0,484 -0,061

A 0,492 0,466 0,027

J 0,444 0,463 -0,019

H 0,275 0,396 -0,121

E 0,454 0,362 0,092

N 0,408 0,342 0,066

K 0,415 0,322 0,092

P 0,341 0,310 0,031

Table 1 The source letters, their associated and their recov-
ered occurrence probabilities

Now, our initial goal is still the efficient encoding of the
image signals. This is obtained by reducing the marginal
entropy of the channels. Table 2 shows the approximated
average information, the entropy, of the first four chan-
nels before and after the ICA stage (calculated from the
probability distribution in Fig.10 and Fig.13).

component observed
entropy

component observed
entropy

original
entropy

w.PCA1 7.398 ICA1 ('J') 3.800 0.991
w.PCA2 7.408 ICA2 ('K') 4.555 0.980
w.PCA3 7.322 ICA3 ('F') 4.745 0.886
w.PCA4 7.405 ICA4 ('M') 4.164 0.955

Table 2 The  marginal entropy of four channels (in bits)

Obviously, minimizing the mutual information dramati-
cally reduces the single channel information. Since the
probability distributions of the ICA components are
slightly “blurred” their marginal entropy is still higher
than the original entropy according to eq.(19). However,
by applying a rigorous quantization strategy we should be
able to achieve further reduction as stated above.

In linear image coding and restoration, we know that
by definition the principal decorrelated components ob-
tained after the PCA stage yield the minimal mean
squared error (MSE). Thus, we cannot expect that the
principal independent components will give us a smaller
MSE. Nevertheless, what we can attend is that they can

be encoded with a smaller number of bits. Now, for fur-
ther considerations, let us change to natural images.

3.2 Reconstructing natural images

Image encoding by very few number of coefficients is
still a demanding task and has a lot of applications. Per-
haps, by using the ICA approach, we might obtain an
encoding with a fewer number of components.  For this
purpose, let us regard the independent components of
natural images.

The method to obtain these components is similar to
the one in conventional transform coding: the whole
image is split into subimages containing n pixels, and
each subimage is used as one training sample.

In our simulations the picture called Cactus (Fig.14)
was divided into 4543 subimages (size: 8×8=64 pixels)
which were randomly chosen as training samples.

Fig.14 The training picture Cactus

First, we centered and decorrelated the 64 components of
the subimage ensemble. The obtained PCA eigenimages
are shown in Fig.15 (page 9).

After this, the components are transformed linearly.
The transform coefficients are updated by an iterative
ICA learning algorithm giving us the matrix WICA used
in eq.(9). The columns of matrix B are shown as images
in Fig.16.

The inverse of B is the mixing matrix M. The col-
umns of this matrix are the source images, shown in
Fig.17. The source images obtained are very similar to
those already known in the literature, see e.g. [BES96],
[OLS96b].
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Fig.15 The PCA eigenimages of Cactus

Fig.16 The base ICA images of Cactus

Fig.17 The source images of Cactus

Now, what are the most important events? Here, the
measured probability distributions of the sources were not
bimodal. This excluded our event model of section
Recovering the occurrence probabilities of events for
calculating the occurrence probabilities and therefore
prevents an order of importance of the sources for ana-
lyzing the observed situations by important events. Nev-
ertheless, we still can use the marginal information to
compute the order of the components instead.

Interestingly, the initial order given by the ICA algo-
rithm is characterized by increasing entropy. This is due
to the goal of our (sequential) ICA algorithm which tries
to minimize the marginal entropy for the first component
by choosing the ICA component which differs the most
from a Gaussian distribution, i.e. which has the smallest
available entropy.

To answer the basic question if there are principal in-
dependent components which contain considerably more
or less average information than others we calculated the
marginal entropy of all components the same way as in
section Recovering the occurrence probabilities of events.
The cumulated marginal entropy of the first k whitened
PCA components (in order of decreasing eigenvalues)
and ICA components (in order of increasing entropy) is
shown in Fig.18.
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Fig.18 The cumulated marginal entropy of the first k whitened
PCA components (dotted line) and ICA components

The difference between the two cumulation functions can
hardly be seen: the marginal entropy of the ICA compo-
nents is just slightly smaller than the one of the whitened
PCA components. Furthermore, the cumulated entropy of
both the PCA and the ICA grows approximately propor-
tional. This means that especially all the ICA compo-
nents of the image have nearly the same information;
there are no components which differ much from the
others.

If not in occurrence probability or average informa-
tion, are there ICA components which differ in
„importance“? Are there some which are more important
than the others so we have to concentrate on them?
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3.3 Component ordering by information

One criterion for „importance“ is the quality of the image
reconstructed by the remaining components. In Fig.19 a
cutout of the original image Cactus is shown.

Fig.19 The cutout of the image Cactus

The cutout, reconstructed by the 16 ICA components
with the smallest average information, and by the 16 ICA
components with the biggest average information, can be
seen in Fig.20 and Fig.21.

Fig.20 The reconstruction by the first 16 ICA components

Fig.21 The reconstruction by the last 16 ICA components

In both cases, the reconstruction quality is not acceptable,
especially, when compared with the reconstruction result
of the first 16 PCA components, shown in Fig.22.

Fig.22 The reconstruction by the first 16 PCA components

It seems that the pure information criterion is not appro-
priate for image reconstruction. In contrast to this, the
PCA transform seems to give better results.

Reconstructing the image by its first k components
and comparing it with the original one gives us the aver-
age error for neglecting the n–k components. Certainly,
by using the k eigenimages of the PCA stage with the
biggest eigenvalues, the mean squared error MSE is
minimized because the PCA operation is defined to ob-
tain the smallest possible MSE.

Are there principal ICA components which also
minimize the error? Let us compare the MSE contribu-
tion by the PCA components by those by the ICA. In
Fig.23, this is shown for the image Cactus. Obviously,
using the components with the biggest entropy does de-
crease the MSE significantly faster than using the ones
with the smallest entropy. Certainly, the smallest MSE is
produced using the PCA components (dotted line).
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Fig.23 Decreasing the MSE by adding components
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3.4 Component ordering by virtual variance

How can we further improve the performance of the
selected ICA components? The PCA sorting criterion is
the decreasing value of the eigenvalues. Since we know
that the eigenvalue λi is

λi = σi
2 = var(yi)

equal to the variance of the component, we might order
the ICA components also appropriate to their variance.
Here, we encounter a problem: the ICA transform is such
that all variances of the components are made equal.
How to select the ones with the biggest variance?

Inspecting the transform closer we notice that the
output variances are equal, but not the length of the cor-
responding basis vectors wi of the ICA transform (rows of
matrix W). To compare it to the PCA transform which
has unit length basis vectors, we have to normalize the
ICA basis vectors. Thus, we might define a virtual vari-
ance of a component by

2
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i
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(21)

Ordering the ICA components by this criterion, we ob-
tain a better MSE-adapted reconstruction while preserv-
ing the performance of the cumulated entropy. In Fig.24
the best ICA ordering of Fig.23 is compared to the vir-
tual variance ordering.
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Fig.24 The MSE of the ICA ordering by virtual variance

To obtain an impression of the reconstruction quality, we
present the reconstructed image cutout of Cactus by us-
ing the ICA components with the biggest virtual variance
in Fig.25. Clearly, this ordering performs better than the
two previous ones, but it is still inferior to the classical
PCA approach.

Fig.25 The reconstructed image cutout

Now, without using any other image reconstruction
quality measure (like, for instance, the psycho-
physiological approach, see e.g. [CHR90]), we ask: what
can the ICA approach do for encoding and reconstructing
images when the minimal MSE of the reconstruction is
given by the number of PCA components?

3.5 Principal independent components and rate
distortion theory

When we reduce the number of components in the
transform approach for encoding images we reduce the
full space of image components (dimensions) to a sub-
space. The subspace of the ICA components is charac-
terized by its information content whereas the subspace
of the PCA components is characterized by its low MSE
reconstruction error. Now, if we cannot replace the prin-
cipal components of PCA for obtaining a small MSE,
what about reducing their encoding information by ICA?
This idea can be performed in two ways:

• Get the first k PCA components with an acceptable
MSE. Then, by an ICA transform, we will get the
same number of encoding coefficients but with less
information, i.e. less encoding bits.

• For the same amount of encoding information as the k
PCA components take, we can also get p more ICA
transformed PCA components. Since these p+k base
vectors of the ICA transform span the same space as
the p+k PCA components, the resulting image quality
will be enhanced like adding p more PCA compo-
nents.

Thus our approach, starting with the search for inde-
pendent image primitives, leads us to the error-bounded
maximal information for each channel. This is not new:
the approach of maximizing the information for a time
step in a channel when an upper bound for the error
(more general: for a distortion measure) exists or, vice
versa, to minimize the error for a channel with a constant
information per time step is classically known as the rate
distortion theory [SHA49] and has a broad range of ap-
plications in the classical telecommunication area.
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The first one of the ideas above can be expanded if we
order the k ICA components according to their decreas-
ing virtual variance and encode only the first k' < k com-
ponents with low additional reconstruction error. This
results in a further reduction of the number of encoding
bits.

To validate the latter idea we computed the ICA com-
ponents of the first k PCA components (Fig.15) for
k = 16,…,21. In Fig.26a,b the ICA base vectors and im-
ages can be seen for k = 17. Note that they are different
to those obtained in Fig.16 because the data space is also
different.

a)

b)

Fig.26 The 17 ICA base vectors and 17 images

Then the cumulated entropy was calculated and com-
pared to the cumulated entropy of the first k whitened
PCA components. We found that for the same informa-
tion rate at most one additional ICA component can be
encoded with an error reduction of 5%. An example for
17 ICA components is shown in Fig.27: the reconstructed
image is slightly better than the one of Fig.22.

Fig.27 The reconstrucion by 17 ICA components

Until now we estimated the overall encoding amount by
calculating the marginal entropy of the components
without considering efficient quantization techniques. In
the next section we shall take a closer look at this task.

3.6 Robust encoding of natural images with princi-
pal independent components

Suppose we have an image decomposed into subimages
which we want to encode as efficient as possible (see
section Independent components). Since we are dealing
with digitized images the n components (pixels) xi of an
arbitrary subimage x = (x1,…,xn)

T are discrete, i.e. each
xi stores one of N different values. Thus there is a number
N n of different image patches or "image states" that can
be assigned to x.

Obviously, a lot of these image patches are unlikely to
occur in natural image data (e.g. very noisy structures)
while others are quite similar (differing in only a few
pixels): we assume that we have to encode only a small
number Lε<<N n of "necessary" states of x which are
sufficient to describe natural images at an acceptable
error ε. Lε is called the error-bounded descriptional
complexity of the subimages [BRA93b].

The main idea of transform coding is to derive an op-
timized error-bounded representation y = (y1,…,yn)

T of x
according to the image statistics, i.e. y has to encode the
Lε necessary states of x as efficient as possible. Conse-
quently, we demand the relation

Lε ≤ ∏ i Qi < N n (22)

where Qi denotes the number of different values that can
be assigned to a component yi 

1. The determination of the
Qi at a given error ε is a non-trivial task which will not
be addressed in this paper. Instead, from an opposite
point of view, we ask for the reconstruction error ε at
given numbers Qi, i.e. at a given quantization of the yi.

In the previous section we used the (virtual) variance
of a component yi to decide whether its quantization
number was set to Qi=256 or to Qi=1. But variance can
tell us even more about "importance": in case of the PCA
or the DCT (Discrete Cosine Transform) it is well-known
that decreasing the quantization number Qi (i.e. the
resolution) of a component yi with low variance reduces
the overall encoding amount without affecting the recon-
struction error perceived by the human visual system.
This is why PCA or DCT components with lower vari-
ance are encoded at coarser resolution, and the same
should hold for ICA.

To prove the idea we used the k = 16,…,21 ICA and
PCA components of the previous section. The ICA com-

                                               
1 Note that the marginal entropy of a component yi will
not increase if Qi is decreased; furthermore, yi will be set
to a constant value (e.g. zero) if Qi=1.
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ponents were scaled with the reciprocal norm of the asso-
ciated base vectors to set their former unit variance to the
virtual variance in order to be comparable to the PCA
components.

Since the coefficients of both the PCA and the scaled
ICA lay within an interval ℑ = [ℑmin,ℑmax] ⊂ ℜ we uni-
formly divided ℑ into Q subintervals ℑq of same length;
the quantization was done by assigning each (PCA or
ICA) coefficient c ∈ ℑq the arithmetical mean of ℑq.
After this procedure me made the following observations:

• The boundaries ℑmin and ℑmax of ℑ were given by the
smallest and the biggest coefficient of the PCA com-
ponent with highest variance.

• The components yi with low variance were encoded
with lower relative resolution than the components
with high variance because the length of the quanti-
zation intervals were not adapted to the range of the
yi.

We computed both the MSE and the cumulated entropy
for different k and Q. Fig.28 shows the resulting MSE as
a function of the entropy.
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Fig.28 The MSE as a function of the cumulated entropy at
different quantization levels Q

For both the PCA and the ICA the functional dependency
of reconstruction error and cumulated entropy is ap-
proximately the same if k is equal. As in section
Principal independent components and rate distortion
theory, for the same amount of cumulated entropy it is
possible to encode about one ICA component more than
PCA components since the marginal entropy of the ICA
components is lower.

Note that for k=16 components and quantization level
Q=256 the MSE and the entropy are lower if we use
more components (k=20) at lower resolution (Q=64).
According to this observation we may state that "variety"
is more important than "accuracy", i.e. to reduce the
reconstruction error we should encode more components
instead of increasing the quantization resolution. The

systematic investigation of this behavior is subject to
future research.

4 Discussion
In this paper we showed that the concept of independent
components known in Principal Component Analysis
(PCA) can be enlarged to cover also the occurrence prob-
abilities and the information content of an Independent
Component Analysis (ICA). Whereas the ICA approach
assumes continuous source channels mixed up to the
same number of channels by a mixing matrix, we applied
the ICA to images assuming that they are composed by
only a few image primitives.

Certainly, the components with the highest probabil-
ity are also the ones which should not be neglected. As
shown in section 3.2, this corresponds roughly to the
mean squared error induced by neglecting the compo-
nents, but is not identical to it. Theses components can be
termed the „Principal Independent Components PIC“.
For distinctive images, e.g. characters this idea gives us
the most important ones.

Nevertheless, for natural images we have no a-priori
probabilities. Using the ICA components with most of
the information did not lead to an acceptable reproduc-
tion error. The situation changed when we applied the
ICA transform to the first principal PCA components
which resulted in a compact and robust encoding. This
approach combines the traditional principal component
criteria of PCA with the independence property of ICA.
It turned out that this definition of PIC implements the
classical demand of the rate distortion theory of Shan-
non.
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