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Zusammenfassung

Zwecks Untersuchung der neuronalen Verarbeitung im Kurzzeit-Gedächtnis

nahmen wir im präfrontalen Kortex zweier Affen, welche eine visuelle Kurzzeitge-

dächtnisaufgabe lösten (0, 5 Sekunden Aufnahme, 3 Sekunden Verzögerung,

2 Sekunden Test), gleichzeitig LFPs und Spikes auf. Wir untersuchten das

aufgenommene Signal auf der Grundlage der Richtig-Falsch-Antworten der

Affen nach einem zugrunde liegenden Mechanismus im Kurzzeit-Gedächtnis

des Affen.

Zunächst analysierten wir verhaltensabhängige Veränderungen der Kopplung

zwischen simultan abgeleiteten lokalen Feld-Potentialen (,LFPs’) und der Ak-

tivität einzelner (,Single-Unit-Aktivität’) oder kleiner Gruppen von Neuro-

nen (,Multi-Unit-Aktivität’), um die neuronalen Mechanismen im Kurzzeitge-

dächtnis bei der Informations-Kodierung und -Aufrechterhaltung über ver-

schiedene räumliche Skalen hinweg zu untersuchen.

Informationsverarbeitungs-Abläufe beinhalten neuronale Kreisläufe auf ver-

schiedenen räumlichen Skalen. Ihr Beitrag kann mittels der Analyse ver-

schiedener Signale wie von einzelnen oder wenigen einzelnen Neuronen (,Mikroskopisch’),

kleineren Populationen von Neuronen (,Mesoskopisch’), und Massen-Signalen

wie LFP (,Makroskopisch’) studiert werden.

Interaktionen zwischen diesen verschiedenen Ebenen sind von besonderem In-

teresse, wenn die Informationsverarbeitung Verhaltensübergängen oder Zu-

standsänderungen unterliegt, selbst wenn diese klein sind. Wir studierten
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diese Interaktionen und testeten, ob eine Änderung der Beziehung zwischen

der synaptischen Aktivität, gemessen durch das mesoskopische Signal des

LFP und der Spike-Aktivität kleiner neuronaler Populationen im lateralen

präfrontalen Kortex, wenn aufgenommene Information gespeichert und beim

Vergleichen mit neuem Sinneseindruck wieder abgerufen werden muss, die

Grundlage zur Wahl der passenden Verhaltensantwort ist.

Um die Interaktionen zwischen der lokalen mikroskopischen und dem mesoskopis-

chen LFP zu charakterisieren, nutzten wir die Kohärenz zwischen der Spike-

Aktivität und dem lokalen Feld-Potential (,Spike-Feld-Kohärenz’) und analysierten,

ob und auf welche Weise sich diese Spike-Feld-Kohärenz verhaltensabhängig

während einer visuelle Kurzzeitgedächtnisaufgabe verändert. Dazu verglichen

wir die Aktivität, die während Versuchsdurchgängen mit richtigen und falschen

Antworten aufgenommen wurde. Unsere Ergebnisse zeigten, dass die Haupt-

veränderliche bei der Feststellung aufgabenbezogener Änderungen in der Spike-

Field-Kohärenz die Verhaltensleistung war.

Geschätzt wurde die Spike-Field-Kohärenz mit der Multitaper-Methode, welche

eine optimale Konzentration spektraler ”Power” erlaubt und dadurch den

Leakage-Effekt minimiert. Um der niedrigen Anzahl Spikes zu begegnen,

welche im präfrontalen Kortex bei weniger als 1 − 5 Spikes pro Sekunde

liegen kann, entwickelten wir einen kombinierten Ansatz, mit welchem wir

die Zuverlässigkeit der Veränderungen in der Spike-Field-Kohärenz in experi-

mentellen Daten schätzen sowie die Dynamik des zugrundeliegenden Prozesses

quantifizieren können. Unser Ansatz setzt sich aus drei Schritten zusammen.

Der erste Schritt besteht in der Multitaper-basierten Analyse leistungsbezo-

gener Veränderungen in der Spike-Field-Kohärenz in experimentellen Daten.

Im zweiten Schritt formulierten wir ein Modell für die zeitliche Koordinierung

von Spike- und LFP-Signalen, simulierten künstliche Daten anhand des Mod-

ells und wendeten schließlich die selbe Analyse auf die simulierten künstliche
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Daten an, um die Zuverlässigkeit der experimentellen Ergebnisse zu unter-

suchen.

Die Multitaper-Methode ist eine spezielle Spektral-Analyse, die angewendet

wird, um die Leakage zu reduzieren und die Power zu konzentrieren. Der di-

rekte spektrale Schätzer ist stark verzerrt, wenn der Prozess über eine große

dynamische Spannbreite verfügt. Die Multitaper-Methode überwindet dieses

Problem, indem sie die spektralen Schätzer von verschiedenen orthogonalen

Tapers mittelt. Darüber hinaus können die Verzerrung und das Konfidenz-

Intervall der Analyse nach der Anwendung der Multitaper-Methode auf ein-

fache Weise geschätzt werden. Wir wendeten die Multitaper-Methode auf

Daten zum Kurzzeitgedächtnis von Affen an, und es zeigte sich, dass bei

hinreichend großem Datenumfang das zusätzliche Glätten der Multitaper-

Methode nicht nötig ist, um die Varianz zu verringern oder wichtige Frequenz-

Komponenten sichtbarer zu machen.

In einem letzten Schritt schätzten wir die statistische Signifikanz der ver-

haltensabhängigen Unterschiede in der Spike-Feld-Kohärenz. Dazu nutzten

wir Permutationstests. Permutationstests sind nicht-parametrische statistis-

che Instrumente. Sie liefern eine einfache und zuverlässige Methode, die H0-

Hypothese ohne zusätzliche mathematische Annahmen abzuleiten. Diesen

Signifikanztest wendeten wir auf jedes Paar von Spike und lokalem Feld-

Potential an und berechneten anschließend wie viele der gesamten Paare von

Spikes und lokalen Feld-Potentialen je Experiment eine signifikante Erhöhung

oder Verringerung bei richtigen oder falschen Antworten zeigten. Diesen Wert

bezeichnen wir als λ-Wert für die verschiedenen Antworten des Affen. Als

ersten Befund stellten wir fest, dass die Veränderung des λ-Werts für un-

terschiedliche Frequenzen sehr unterschiedlich ausfällt. Als zweites fanden

wir, dass der λ-Wert für Spike-Field-Kohärenz-Unterschiede im Hochfrequenz-

Band (25 − 70 Hz) für experimentelle und für simulierte Daten vergleichbar
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war: 3, 5% bzw. 2, 7%. Das gleiche gilt für den mittleren Basiswert von λ

und seine Variabilität in den experimentellen und simulierten Daten. Da-

her zeigte die Analyse beider Datensätze die gleiche, als Änderung der z-

Punktzahl von etwa 40 ausgedrückte, maximale relative Modulation von λ.

Dies macht deutlich, dass, obwohl die Variabilität der individuellen Schätzer

für Spike-Field-Kohärenz recht hoch sein kann, die auf einer hohen Zahl

von Schätzern basierende Bewertung leistungsbezogener Unterschiede in λ

sehr zuverlässig ist. Quantitative Vergleiche der beiden Typen simulierter

Daten, wobei der eine Phasengenauigkeit und der andere Synchronisation-

sstärke modelliert, zeigten, dass experimentelle Ergebnisse im Hochfrequenz-

Band höchstwahrscheinlich auf präzisen, phasengekoppelten Spikes basieren,

welche mit kleiner Häufigkeit auftreten. Angesichts der Analyseergebnisse

bei den simulierten Daten müssen Spikes mit einer Präzision von weniger als

2 ms an LFP-Oszillationen von 50 Hz (Phasen-Genauigkeit 0, 2π) gekoppelt

sein, um λ-Werte nahe der in den experimentellen Ergebnissen beobachteten

maximalen Werte (3, 5%) zu erreichen. Angesichts der eher kurzen Periode

(w = 2 ms), einer Oszillationsfrequenz von 50 Hz und einer Rate r1 = 25

Spikes/Sekunde erwarten wir 0, 5 phasengekoppelte Spikes pro Analysefen-

ster. Dies illustriert erstens die hohe Sensitivität der Methode und zweitens,

dass, obwohl Unterschiede zwischen Verhaltenszuständen auf eher wenigen

Ereignissen phasengekoppelter Spikes zu beruhen scheinen, die aufgabenbe-

zogenen Effekte auf die Spike-Field-Kohärenz hoch-zuverlässig sind und nicht

durch Zufall erklärt werden können, wie der Vergleich der Analysen von exper-

imentellen und von simulierten Daten zeigt. Die differentielle Kopplung von

präfrontalen Neuronen-Populationen mit zwei verschiedenen Frequenzbändern

in ihren Eingangssignalen legt es nahe, dass die dem Kurzzeitgedächtnis im

präfrontalen Kortex zugrunde liegende neuronale Aktivität vorübergehend ko-

rtikale Kreisläufe auf verschiedenen räumlichen Skalen nutzt, und dies ver-
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mutlich mit dem Zweck, verteilte Prozesse zu koordinieren. Des weiteren

erklärt die präzise Kopplung zwischen Spike- und LFP-Oszillationen während

Verhaltensübergängen, dass vorübergehende Koordination zwischen lokalen,

mikroskopischen und globaleren, entweder mesoskopischen oder makroskopis-

chen Kreisläufen während Gedächtniskodierung und -abfrage nötig sein könnte.

Zweitens untersuchten wir verschiedene Muster in Spike-Feuerraten, welche

auf die Verhaltensleistung des Affens zurückzuführen sind. Neuronale Ak-

tivitäten im Kurzzeitgedächtnis wurden mit anhaltenden Erhöhungen der Feuer-

raten von Neuronen im präfrontalen Kortex assoziiert. Es ist jedoch unklar,

auf welche Weise große Populationen von Neuronen Informationen aufeinander

abgestimmt abspeichern.

Um die Bedeutung von synchronem Feuern in Bezug auf Informationsverar-

beitung im Gehirn zu testen, ist zu untersuchen, ob synchrones Feuern und

seine Stärke mit dem Zustand des neuronalen Systems oder dem Verhalten

und der Aufgabe des Probanden korrelieren. Dies erfordert ein Instrument,

welches die Stärke des synchronen Feuerns über mehrere Zustände (,Fak-

toren’) hinweg vergleichen kann, während es gleichzeitig andere Merkmale

neuronalen Feuerns wie Spike-Raten-Modulationen oder die Autostruktur der

Spike-Aktivität, die gemeinsam mit synchronem Feuern auftreten könnten,

berücksichtigt. Die bisherige Methode NeuroXidence ist für den univariaten

Fall konzipiert und wurde optimiert, um synchrones Feuern, welches über das

erwartete Maß hinausgeht, zuverlässig zu erkennen. Sie erlaubt es jedoch

nicht, die Stärke über Faktoren hinweg zu vergleichen.

Wir stellen hier eine bi- und multivariate Erweiterung von NeuroXidence vor.

Diese Erweiterung erlaubt es, für ein festes Spike-Muster den Umfang syn-

chronen Feuerns in verschiedenen Faktoren zu vergleichen. Diese Erweiterung

ist robust gegenüber Ratenveränderungen einzelner Neurone und gegenüber

Raten-Kovariation von Neuronengruppen. Sie berücksichtigt die gesamte Au-
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tostruktur ebenso wie Variabilität über einzelne Durchgänge.

Die grundlegende Idee der bi- und multivariaten Erweiterung ist die, zunächst

die Häufigkeit gewisser Aktivitätsmuster gleichzeitig aktiver Neurone (”Joint-

Spike-Events” (JSEs)) für jeden Durchgang und für jeden Faktor des Ex-

periments zu bestimmen. Dann werden Ersatz-Daten (,Surrogate’) erzeugt,

bei denen jeder Ersatz-Spiketrain identisch ist mit dem entsprechenden ur-

sprünglichen Spiketrain, bei denen aber jegliche feine zeitliche Quer-Struktur

zwischen simultan aufgenommenen Spiketrains durch Verschieben (,Jittern’)

des gesamten Spiketrains um eine zufällige Zeit zerstört wird. Hierzu definieren

wir zwei Zeitskalen. Die erste, τc , definiert die erwartete Präzision von JSEs

und beträgt in der Regel wenige Millisekunden. Die zweite Zeitskala, τr, ist

um ein η-faches langsamer als τc und definiert die untere Schranke der Raten-

Modulation.

Diese Ersatz-Daten dienen uns als Schätzung für die Häufigkeit zufälliger JSEs

unter der H0-Hypothese, dass Neuronen nicht auf einer feinen zeitlichen Skala

gekoppelt sind. So nutzen wir also die Häufigkeit der JSEs in den Ersatz-

daten, um die Häufigkeit der JSEs in den ursprünglichen Daten zu korrigieren.

Wir berechnen die Differenz zwischen der Häufigkeit im ursprünglichen und

im Ersatz-Datensatz für jeden Versuchsdurchgang und jeden Faktor. Unter-

schiede, welche auf unterschiedliche Faktoren zurückzuführen sind, werden

durch bivariate Mittelwert- oder Mediantests (t-Test und Mann-Whitney U-

Test) oder durch Varianzanalyse-Tests im multivariaten Fall aufgedeckt. Der

p-Wert gibt an, wie gut Modulationen des synchronen Feuerns auf der Zeit-

skala τc über Faktoren hinweg durch Zufall erklärt werden können.

Bevor wir die Methode auf die experimentellen Daten anwendeten, kalibri-

erten wir die Erweiterung von NeuroXidence für bi- und multivariate Fälle.

Dazu verwendeten wir die simulierten Daten. Besonders bei nicht-stationären

Prozessen sortiert NeuroXidence Artefakte aus, die verschiedene Prozesse ( γ-
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Prozess, Poisson-Prozess und Latenzzeit-Kovariationen von Aktivitätsmodulationen)

in Bezug auf die Häufigkeiten von JSEs produzieren können.

Was die Test-Power betrifft, so können im Mittel Unterschiede von nur 3 JSEs

in verschiedenen Zuständen entdeckt werden, was von der hohen Sensitivität

von NeuroXidence in bi- und multivariaten Fällen zeugt. Wenn es darum

geht, JSEs in Prozessen mit verschiedenen Ratenniveaus aufzuspüren, spielt

neben den Parametern τc and τr die Anzahl S der Ersatz-Daten eine wichtige

Rolle. Wenn NeuroXidence auf zwei Prozesse oder mehr angewendet wird, die

unterschiedliche Raten aufweisen, und insbesondere wenn einige der Prozesse

eine niedrige Feuerrate besitzen, sollte die Anzahl S an Ersatz-Daten auf 1

gesetzt werden, um unverzerrte Schätzer für die JSEs zu erhalten.

Kurz zusammengefasst konnten wir zeigen, das die Anwendung von NeuroX-

idence auf die Kurzzeitgedächtnis-Daten aufgenommen im Affen einen sig-

nifikanten Anstieg von JSE-Mustern, die von der Aktivität von bis zu 7 Neu-

ronen gebildet werden und vermehrt in den Versuchsdurchgängen auftreten, in

denen der Affe richtig antworte, ergab. Besonders spannend war der zeitliche

Verlauf dieser Erhöhungen. Es zeigten sich Erhöhungen vor allem während

Zeitintervallen, in denen Informationsverarbeitung, Informationsverschlüsselung

und Informationserhaltung notwendig sind.

In einem letzten Schritt verglichen wir die Ergebnisse der verhaltensabhängigen

Modulation der Spike-Feld-Kohärenz und der Spike-Spike-Synchronisation,

um Interaktionen auf verschieden räumlichen Skalen vergleichen zu können.

Beide Analysen zeigen konsistente Erhöhungen oder Verringerungen, so dass

wir auf eine enge Beziehung zwischen den Aktivitäten auf verschiedenen räumlichen

Skalen schließen können.
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Abstract

To investigate neuronal processing during short-term memory, we recorded

simultaneously local field potentials and spikes from prefrontal cortex of two

monkeys, who performed a visual short-term memory task. Then, we applied

two different methods to analyze these two signals.

First, we analyzed the behavior-related modulations of coupling between sig-

nals on two spatial scales: very local multi-unit activity and local field po-

tentials. Coupling was assessed by spike-field coherence based on multitaper

method. To overcome limitations of spike-field coherence estimates in case of

low firing rates, we developed a new method that estimates the percentage

of pairs of spike and local field potential signals that expressed differences

between behavioral conditions, here trials with correct or incorrect responses.

Based on simulated data, we demonstrated that the new method allows for a

reliable estimation of differences in spike-field coherence, even in case of very

low firing rates. Application to recordings in prefrontal cortex of two monkeys

revealed that locking of spikes was differentially modulated with two different

frequency bands depending on behavioral performance.

Second, we studied the difference of spike firing patterns due to monkey’s

behavioral performance. We extended the NeuroXidence method (Pipa et al.,

in press.) to detect joint-spike events in bi- and multi-variate cases. Based

on simulated data, we verified the reliability and sensitivity of NeuroXidence

for detecting joint-spike events among several conditions. After application

1



to the short-term-memory data set, the results showed the difference in firing

patterns during the early delay of the task. Comparing the results with that

of spike-spike coherence, we demonstrate that NeuroXidence method is a good

way to detect more than pair-wise relations of spike trains.

Key words: short-term memory, oscillations, scale integration, spike-field

coherence, multitaper estimation, bootstrapping permutation test, monkey pre-

frontal cortex, joint-spike event, NeuroXidence method, spike-spike coherence
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Chapter 1

Introduction

1.1 Neural signals: spike and local field po-

tentials

There are more than 100 billion neurons in the human brain. Neurons are

interconnected by synapses, which transfer information among neurons and

from one part of the brain to another. Neurons also form a network to enable

people to feel the world and control their behavior. To understand and explain

people’s behavior, one needs to study the activities of the brain. Therefore

many different signals in the brain are recorded and analyzed. Spikes and

local field potentials are two of the most interesting signals.

1.1.1 Spike

In order to transfer information from one neuron to another, electrical pulses

are generated by a neuron and are transferred rapidly along long nerve fibers.

This electrical pulse is called an action potential or spike ([1], [2]).
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Generation of spikes

Each neuron has four characteristic parts: the cell body (soma), the dendrites,

the axon, and presynaptic terminals. Neurons receive inputs on dendrites and

transfer spikes along axons to presynaptic terminals. Because of the branching

structure of the dentritic tree, neurons can receive inputs from many other

neurons. There are many different ion channels on dendrites, which allow the

ions (sodium (Na+), potassium (K+), calcium (Ca2+), chloride (Cl−)) to flow

in and out of the cell. The direction of the ion flow is determined by voltage

and concentration gradients. Under resting conditions, the inside potential of

the neuron is about −70 mv lower than that of the outside. If the flow of

the ions into the neuron is sufficient to raise the membrane potential above a

threshold level, an action potential is generated by the neuron (Fig. 1.1).

Figure 1.1: An action potential recorded intracellularly

from a cultured rat neocortical pyramidal cell ([3]).
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Electrode recording

There are generally two ways of recording spike signals: intracellular recording

and extracellular recording. In Fig. 1.2, an electrode is placed quite near a

neuron but it does not pierce the membrane. Such recordings can detect

the action potentials fired by the neuron, but not its subthreshold membrane

potentials. Extracellular recordings are typically used in vivo experiments.

Intracellular recordings are sometimes used in vivo, but are more often used

in vitro preparations and experiments.

Figure 1.2: Extracellular recording in the tissue.

Spike sorting

As shown above, in the extracellular recording, individual spikes are not di-

rectly recorded. When multi-electrodes or tetrodes are implanted, each elec-

trode will record the electrical activities from an unknown number of neurons.

From these recorded electrical activities, the number of neurons must be de-

termined. Each spike must be separated from others, and each spike must be

assigned to the neuron that generates it ([4, 5, 6]). This process is called ’spike

sorting’. The accuracy of the spike sorting could affect a lot on the accuracy

5



of all subsequent analyses.

Many algorithms have been developed for spike sorting, and until now, none

of them is better than the others. Different algorithms applied to the same

dataset can get different results, which shows the complication of the spike

sorting. Meanwhile, it is quite hard to identify the number of neurons. One

could assume a number of neurons, usually larger than the believed number,

and later combine the clusters that are close enough ([6]). Also, for different

numbers of multiple electrodes or multiple electrodes with different geometries,

it is hard to find a general spike-sorting algorithm.

Spike and point process

Since spikes have a characteristic shape, people believe that only the sequence

of time points, when the neuron generates its action potentials, contains the

information which is transferred by a neuron. Thus, people usually neglect

the detailed structure of the spike unless one is interested in the intracellular

spike-generating mechanism or distinguishing the activities of one neuron from

others. Hence, the most common way to study spike trains is that spikes are

treated as sequences of time points, which show the occurrence of the spikes.

In mathematics, such process is called a ’point process’.

1.1.2 Local field potential

In extracellular recordings, the spikes are not recorded directly. Because of

the geometry and the symmetry of the alignment of neurons, the electrodes

record the activities of a number of neurons. Such unfiltered signal reflects

not only the sum of action potentials from different neurons ([7]; [8]), but also

the slow ion flow current ([9]). Then the signal is low-pass filtered, cut off at

∼ 300 Hz, to obtain the local field potential.

Since the local field potential is a low-pass-filtered signal, fast changes in
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the potential are filtered out, and only the slow changes remain. The fast

changes are caused by the currents of the action potential. Thus the local

field potential contains no information of the spike signal, and it only reflects

the local sustained ionic current in the tissue. The major slow current is the

postsynaptic potential. Due to these properties of local field potential, it is

believed that the local field potential reflects the input into the observed area,

which is different from the spike signal, which represents the output from the

area.

1.1.3 Relations between slow wave signal and spike ac-

tivity

As described above, spikes reflect the output of the neurons that transfers

information among the neurons, while local field potentials contain informa-

tion of neuronal synaptic activities. The relations between these two signals

become interesting for two reasons. First, it is important to relate the spike

activity with continuous processes, which represent either stimuli or the re-

sponses to them. When the continuous signal represents the stimuli, the

relation between neural responses and stimuli could tell more about the neu-

ral unique responses to different stimuli and help people to understand the

function of spike activity. On the other hand, the continuous signal could also

represent responses to spike activity, such as the movements of joints that are

driven by the spikes generated by motoneurons. Such study of relations be-

tween stimuli and response of the two types of processes could help people to

know more about the neural system function and help to build more reason-

able mathematical models of nervous system. The second reason for studying

the relations between these two types of processes is that they provide a way

to study the slow-wave and spike activity that can always be detected in the

brain, especially when there are no external stimuli. The relations between
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these two types of electrical signals are one of the most fundamental stud-

ies to understand nervous system functions. To figure out these relations,

analyses that are suited to both continuous and point processes should be ap-

plied. Among these analyses, spike-field coherence is a good choice. Although

it is a linear relationship between these two signals, it still can provide the

preliminary description of relations that are thought to be nonlinear([10]).

1.2 Tools to analyze spike signal

With the development of experiment techniques, people now can control a

stimulus and record simultaneously neural activities from part of the brain,

which is thought to be the response to the stimulus. The stimulus could be

physical in nature, such as light used to stimulate retinal, or sound used to

stimulate neural activity in the auditory cortex. Also, the stimulus could

be abstract, such as in a short-term memory task, where the stimulus causes

neural activities in prefrontal cortex. With the development of multi-electrode

recording ([11]), people now can study the simultaneous spiking activity of

many neurons. Thus, it helps to understand how groups of neurons could

coordinate with each other and transfer information from one part of the

brain to other regions. Such studies bring up the problem of how to analyze

the multiple simultaneously recorded spike trains in a proper way.

1.2.1 Cross-correlogram

Most current methods for neural spike-train analysis concern only relations

between pairs of neurons. These methods can be divided into two types:

time-domain and frequency-domain analysis. Among time-domain analysis,

the most commonly used method for measuring relations between neurons is

the cross-correlogram. The cross-correlogram is a function that computes the
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cross-covariance between two spike trains with a pre-assigned bin width. To

apply this method, it requires that the two spike trains are stationary. In

other words, it is required that the stochastic properties of the neurons do not

change in time. In many cases, the ’stationarity’ property of the spike trains

can not be guaranteed, since the neural responses are caused by time-varying

stimuli, and the responses to the same stimulus could also change in time.

However, non-stationarity can be solved by performing the analysis in moving

windows.

1.2.2 Spectral analysis

If we assume the stationarity property of the neurons, frequency-domain anal-

ysis of the neural signals can be achieved by taking the Fourier transform of the

signals. Based on the spectra of the signals, cross-spectra or coherence between

signal pairs could be accessed ([10], [12], [13],[14]). The coherence is a sim-

ple frequency-dependent relation between two processes, which is computed

by the auto- and cross-spectra of the signals. Compared with time-domain

analysis, coherence has two advantages: the normalization does not depend

on bin size, and it can reveal linear pair-wise relations among all the neuron

pairs. At the same time, coherence can be applied both to point processes and

continuous-valued processes. Thus it allows for the study of the linear relations

in each process and those between two processes. Since the non-stationarity

is an important feature of spike signals, the time-frequency spectra can be

assessed by moving-window estimates ([15]). Some time-domain functions

could also be computed by inverse Fourier-transforming the corresponding

frequency-domain functions.
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1.2.3 Spike pattern classification methods

Since the methods mentioned above only concern the pair-wise relations be-

tween neurons, there are also many algorithms that can detect different pat-

terns of multiple neuronal spike trains ([16], [17], [18]). These methods can

evaluate the high-order neural relations ([19]) and tell more about the syn-

chronized firing of the neurons. For instance, some method could achieve the

statistical significance of spike triplet occurrences or that of similar patterns

among many neurons ([20]). Meanwhile, methods for detecting statistically

distinct spike patterns have also been developed. Such patterns are called

’unitary events’ or ’joint-spike event’, when the occurrences of the patterns

are statistically significant more than that expected by chance ([21], [22], [23]).

The occurrence of different spike patterns is studied in relation to behavioral

events or different stimuli. These spike-pattern classification methods require

that the complexity or size of the patterns should be chosen, the null hy-

pothesis should be assessed in a proper way, and the test statistic should be

formulated. Thus it can evaluate the correct significance level of the spike

patterns afterwards.

1.2.4 Likelihood method

Likelihood methods are the most important tools for modeling and analysis in

statistical research ([24]). They can also be applied in neuroscience data anal-

ysis. Most likelihood methods require a specific parametric probability model

for the studied process. Under the assumption of the model, the likelihood is

defined as the joint probability density of the data from the process, which

is a function of the model’s unknown parameters. The unknown parameters

can be estimated later from the experimental data by formal procedures such

as the maximum likelihood method. If the probability model assumed be-

fore is a good approximation to the process, the likelihood method then can
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provide an optimal way to analyze the experimental data ([24]). Meanwhile,

likelihood methods can also be applied to spike-train analysis, both for sin-

gle spike-train analysis ([12], [25], [26], [27], [28]) and for multiple spike-train

analysis ([12], [29]). Since multiple neural spike trains imply multivariate

point processes in the analysis, the challenge in applying likelihood methods

to multiple spike-trains analysis is to build a proper model that represents

the joint-spiking activity and to develop an algorithm to judge the model’s

goodness-of-fit ([29]).

1.2.5 Information theory

Information theory measures are widely used in analysis of neural spike trains

([30], [31], [32], [33]), such as entropy to measure spike train variability, and

mutual information to study the relations between two spike trains. Informa-

tion theory measures use single numbers to describe the complicated relations

between spike trains. These measures, which usually estimate the relevant

probability densities, have been applied to study how much information a sin-

gle spike train can transfer. The basis of these methods is that some parts of

the nervous system, such as visual pathways, could be modeled as communi-

cation channels ([30]) with some underlying principles. When these methods

are applied, usually the details of the system properties are left out. However,

there are limitations to this approach. For any neural system, the optimal

’word’ length is unknown and must be estimated. Thus different word lengths

could bring different results, and longer word requires large amount of exper-

imental data ([33]). Moreover, whether the nervous system can be treated as

conventional communication channels has been questioned ([35]).
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1.3 Prefrontal cortex and its function

The cerebral cortex plays a central role in many complex brain functions,

including language, cognition, and memory. In each cerebral hemisphere,

from an anatomical view, the cortex is divided into four distinct lobes: frontal,

parietal, temporal, and occipital (Fig. 1.3). The prefrontal cortex lies in the

anterior part of the frontal lobes of the brain.

These four lobes have different functions. The frontal lobe is involved with

planning and partly motor function; the parietal lobe with integrating sensory

information from various parts of the body; the occipital lobe with vision; and

the temporal lobe with hearing.

Figure 1.3: The four lobes of the cerebral cortex.

1.3.1 Study on human prefrontal cortex

The classic study of human prefrontal cortex function in the nineteenth cen-

tury involved an accident of Phineas Gage. A tamping iron was driven through

Gage’s frontal lobes by an explosion. After the accident, he survived and had
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no problems with talking, walking or normal memory. However, due to injury

to his prefrontal cortex, his personality was remarkably changed. From then

on, he could not manage his work or personal life in a proper way.

Subsequent studies have shown that the patients who have prefrontal injuries

can describe the proper behavior under certain circumstances, but when ac-

tually performing, they only care for the instant satisfaction and have no

consideration of the long-term results.

These results indicate that the prefrontal cortex has the function of comparing

the instant satisfaction with the more rewarding long-term satisfaction and

the function of making the correct choice. It shows that the prefrontal cortex

plays a central role in long-term planning and judgement.

1.3.2 Study on monkey prefrontal cortex

In the nineteenth century, some researchers made experiments on the mon-

keys without the prefrontal cortex ([37]). Based on the observations of these

experiments, the experimental psychologists made the conclusion that the pre-

frontal cortex is involved in intellectual and cognitive, rather than sensory or

motor, functions. Later, more structured and comparative studies were car-

ried out to investigate the effect of frontal lesions. Some researchers argued

that with the removal of the frontal lobes, it becomes difficult for the animal

to gather various incoming percepts and make further motor commands ([38]).

Other researchers applied objective behavioral testing methods to study the

effects of the frontal lobe removal ([39]). However, they all failed to build a

proper framework of what role the prefrontal cortex might play in high-level

cognition. They couldn’t find a reliable and proper way to investigate and

capture the relations between an animal’s behavior and the prefrontal lesions.

The delayed-response task (Fig. 1.4) that Jocobsen ([40]) and Hunter ([41])

used in experiments became the cornerstone of study on prefrontal lesion.
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Jacobsen’s theory described the delayed-response and visual discrimination

capabilities of monkeys that had been tested in prefrontal, pre-motor, or tem-

poral lobe lesions. He found that only monkeys with prefrontal lesions showed

a selective and delay-dependent deficit on delayed-response tasks. Delayed-

response tasks examine the animal’s ability to maintain the information of the

stimulus over a period of delay. When the animal is asked to make a choice,

the related information must guide the behavior to give the correct response,

since there were no other signals for that. Based on these ideas, Jacobsen

made the conclusion that the deficit due to prefrontal lesion was related to

memory process. Specifically, the monkey’s ability to use ’immediate memory’

to guide its behavior was damaged by the prefrontal removal.

Based on the work of Goldman-Rakic ([42], [43], [44], [45], [46], [47], [48],

[49]), damage to the dorsolateral prefrontal cortex (Fig. 1.5), causes great

deficits in spatial working memory. Performance is generally unchanged on

tests of non-spatial short-term memory, unless executive control processes are

required, as shown by Petrides ([50]).

Some evidence shows that lesions to the ventrolateral prefrontal cortex may

result in non-spatial short-term memory deficits. However, there are several

problems with this explanation: First, no study has shown a selective deficit

in the spatial as compared with the non-spatial domain. When deficits were

found in the spatial domain, they also occurred in the non-spatial domain.

Second, there is no study on the relation between deficits and the delay period.

Third, damage to the ventrolateral prefrontal cortex also causes deficits with

the tasks that require no short-term memory process([53], [54], [55], [56]).

Therefore, deficits caused by ventrolateral prefrontal cortex lesions may be

better explained as an incapability to form and/or use associations between

cues and motor responses, or may be more associated with incapability to use

learning strategies ([57]).
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Figure 1.4: Schematic description of short-term memory

tasks used to test the function of prefrontal cortex. The

spatial delayed-response task (left) is focused on spatial short-term

memory and requires the monkey to remember the baited location

of a food well over a delay. The delayed matching-to-sample task

(right) is a non-spatial working memory task and requires the monkey

to remember an object over a delay. After the delay, only the well

beneath the sample object is baited. A common variant (not shown)

is the delayed non-matching-to-sample task, in which the monkey

remembers the sample object, but after the delay must select an

object that does not match the sample object’s form.
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Figure 1.5: Subdivisions of the macaque prefrontal cortex as

defined by Petrides and Pandya ([51]). The mid-dorsolateral

prefrontal cortex is composed of areas 46 and 9/46d, and mid-

ventrolateral prefrontal cortex of areas 47/12, 45A, and 9/46v. Also

shown are the dorsal and ventral streams that respectively process

spatial and non-spatial visual information ([52]).
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Chapter 2

Spike-field coherence in monkey

prefrontal cortex

2.1 Introduction

Mechanisms of information processing involve neuronal circuits at various spa-

tial scales ([58], [59], [60], [61], [62], [63], [64], [65], [66], [67], [68]). Their

contributions can be studied by analyzing different signals like single units,

populations of neurons, local field potential and other mass signals. Interac-

tions between these different levels are particularly interesting if information

processing is subject to behavioral transitions or state changes, even if they

are subtle. In this chapter we tested whether the relation between synaptic

inputs - as reflected in the local field potentials - and the spiking output of lo-

cal neuronal populations in lateral prefrontal cortex changes, when perceived

information needs to be stored and recalled later when comparison to new

sensory input, is the basis for choosing the appropriate behavioral response.

As spike-field coherence has been shown to change dynamically with mem-

ory processing [69, 70, 71], we analyzed spike-field coherence computed from

simultaneously recorded local field potential and multi-unit activities in lat-
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eral prefrontal cortex of two monkeys performing a visual short-term memory

task (0.5 second sample, 3 seconds delay, 2 seconds test presentation; Fig.

2.1). The primary variable for assessing task-related changes of spike-field

coherence was behavioral performance, for which we compared trials with er-

roneous responses to a matched set of trials with correct responses. Spike-field

coherence was assessed with a multitaper method [14, 72] that allows for an

optimal concentration of spectral power and therefore minimizes the effect of

leakage. To overcome the low number of spikes, which can be as low as 1 − 5

spikes per second in the prefrontal cortex, we developed a combined approach

with which we can estimate the reliability of spike-field coherence modula-

tions in experimental data as well as quantify the dynamics of the underlying

neuronal process. Our approach consists of three steps. The first step is the

multitaper-based analysis of performance-related spike-field coherence modu-

lations in experimental data. In the second step, we formulated a model for

the temporal coordination between the spike and local field potential signals,

and applied the same analysis as on the experimental data to investigate the

reliability of the experimental results. In a third step, we modified the tem-

poral correlation in the model and compared these results with the results of

the experimental data.

2.2 Experiment on monkey prefrontal cortex

Two adult female rhesus monkeys (Macaca mulatta), weighing 6 and 8 kg,

were implanted with head bolts and recording chambers over lateral prefrontal

cortex around the posterior half of the principal sulcus, mostly ventral of the

principal sulcus. Stimulus presentation and behavioral control was provided

by a custom-made program running under DOS. Anatomical MRI scans (T1-

flash) were performed on a 1.5T magnet and used to guide implantation of

recording chambers and reconstruct recording positions (Fig. 2.2). Eye move-
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Figure 2.1: Time course of visual short-term memory task

([76]). After a 0.5 − 1 second baseline, a sample stimulus was pre-

sented for 500 ms which was followed by a 3 seconds delay. Then a

test stimulus was presented for 2 seconds during which the monkey

had to respond by a differential button press. In case of a matching

test stimulus, the monkey had to press the left of two buttons, and

the right button should be pressed if a non-matching test stimulus is

shown. This visual memory task combines the classical matching-to-

sample and non-matching-to-sample tasks. The reward was delivered

after the monkey released the button which happened on average

200 − 300 ms later.

ments and all behavioral responses were recorded at the same resolution as

neuronal signal[73]. All procedures were performed in accordance with the

German Law for the Protection of Experimental Animals and NIH guidelines.

We used up to 16 individually movable platinum-tungsten fiber microelec-

trodes (Thomas RECORDING GmbH, Giessen, Germany) that were arranged

in an array with 500 μm spacing. The spacing of the matrix was chosen to

approach the spacing of microcolumns in lateral prefrontal cortex [74]. Sig-

nals, digitized at 1 kHz, were preprocessed by rejecting artifacts (movements,

licking) and removing line noise at 50 ± 0.5 Hz. Local field potentials and
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multi-unit activities were recorded from the same microelectrodes by employ-

ing two band-pass filters (5 − 150 Hz, 0.5 − 5 kHz, 3 dB/octave). In total,

we could analyze 4124 trials in 12 sessions (1593 pairs) for two monkeys. On

average, the monkeys gave correct responses in 80% of the trials.

2.3 Methods for analyzing spike-field coher-

ence

In order to get an unbiased estimations of performance-related changes in

spike-field coherence, subsets of correct trials, for each experiment, were se-

lected such that pairs of correct and incorrect trials were as close as possible

in time, leading to subsets containing in total 2402 trials (7 Sessions / 86

sites) for Monkey 1 and 1722 trials for Monkey 2 (5 Sessions / 66 sites).

Then multitaper method was applied to get the spike-field coherence for each

condition. To assess significant differences between trials with erroneous and

correct responses, we permutated trials between conditions to construct H0

which predicts no performance-dependent difference.

2.3.1 Spectral analysis: Multitaper method

There are two broad classes of time series analysis: time domain techniques

and frequency domain techniques. Spectral analysis is the prime example of a

frequency domain technique and it has several advantages compared with time

domain analysis. Firstly it is easier to detect subtle changes in signals when

frequency domain estimator is computed. Secondly, due to non-stationary

properties of neural signal, moving window estimate of spectra is less biased

than that of time domain. Meanwhile it can give reasonably accurate confi-

dence intervals.

A naive way to carry out nonparametric spectral analysis is Periodogram,
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Figure 2.2: MRI-based reconstruction of recording positions

([76]). (A,B) 3D-MRI datasets for Monkey 1 and 2 which were used

to guide implantation of recording chambers. The red crosses point

to the principle sulcus of the left hemisphere very close to the ac-

tual positions of the chamber centers. The coordinates refer to the

anterior commissure. (C,D) Lateral view on surface reconstructions

of the frontal cortex of both monkeys. The labels denote princi-

ple sulcus (PS), arcuate sulcus (AS) and central sulcus (CS). The

3D-positions of the chambers were measured in a stereotaxic frame

relative to the ear bars and the bone above the center of the left eye.

The brown rods represent the axes of the actual chamber positions

which came to be at x = −17, y = 7, z = 16 for Monkey 1 and

x = −17, y = 11, z = 13 for Monkey 2. These coordinates indicate

displacements of maximally 2 − 3 mm in the anterior-posterior and

dorso-ventral directions relative to the planned target positions. The

red circles represent the walls of the recording cylinders which were

placed into the scull at 45 in the frontal plain and 10 in the transver-

sal plain. The 4 × 4 dot matrices illustrate the electrode-grids over

ventral prefrontal cortex at the level of insertion through the surface

of the cortex which was always in the ventral half of the chambers.

([76])
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which takes the modulus squared of the Fourier transform of the data. This

is the simplest example of a direct spectral estimator. The bias in the peri-

odogram is negligible for some stationary processes. But if the dynamic range

(10 log10
maxf S(f)

minf S(f)
, S(f) denotes the power spectrum of the signal) of the un-

derlying process is high, the periodogram estimator is badly biased and could

cause serious leakage([72]).

In order to lessen the bias in the periodogram, tapering method is usually

applied. Tapering can reduce bias and minimize leakage. But only one taper

is not sufficient to reduce the bias, since the sample size is effective reduced

after tapering. After smoothing across frequencies, this reduction results in a

loss of information in the form of an increase in variance.

Multitaper was introduced in a seminal paper by Thomson [77] and involves

the use of multiple orthogonal tapers. The basic idea of multitaper spectral

estimation is to average the spectral estimates from several orthogonal tapers.

The orthogonality of the tapers ensures that the estimates are uncorrelated

for large samples. This makes it certain that multitaper is a scheme for recov-

ering information. The choice for the independent tapers are discrete prolate

spheroidal sequences (DPSS) or Slepian sequences, which are defined by the

property that they are maximally localized in frequency.

Because of the non-stationary properites of the neural signals, a sliding-

windowed multitaper analysis was applied (window length 200 ms, window

shift 20 ms, 4 DPSS tapers with order 0 to 3). We computed the grand av-

erage spike-field coherence across all pairs (excluding signal pairs recorded at

the same electrode) and all experiments for frequencies of interest (5 − 100

Hz, frequency steps 5 Hz). Later we focused on the frequency band 5−70 Hz,

which covers alpha-, beta- and gamma-band signal.
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2.3.2 Significance test: Permutation test

We tested the hypothesis that increases or decreases of spike-field coherence

were performance related. To this end, we used the difference of spike-field

coherence of correct and incorrect trials as the test statistic. Thus for each

individual sliding window (t), frequency of interest (f), and pair of spike and

local field potential signal (p), the test static is chosen as

Θ = Θc
t,f,p − Θi

t,f,p (2.3.1)

where ’c’ and ’i’ stands for correct and incorrect trials respectively.

To evaluate the statistical significance of Θ, we applied permutation test [75]

to derive H0 distribution (H0: Θ is not performance related). The null hy-

pothesis (H0) here means, if spike-field coherence is not modulated by different

responses of the monkey, Θc
t,f,p and Θi

t,f,p should come from the same unknown

distribution F . To generate the null hypothesis, permutation test gives us a

simple and robust way, which is free of mathematical assumptions (see Fig.

2.3). After H0 is accessed by permutation test, the p-value could be estimated

directly by comparing the original value Θ and the value from null hypothesis

Θ∗. In other words, p-value could be obtained by computing pl (Θ < Θ∗) for

left sided test and pr (Θ > Θ∗) for right sided test(test level 1.5%). Based

on these p-value, we computed for each frequency bin and sliding window the

percentage of pairs per session that showed a significant increase in spike-field

coherence for correct or incorrect responses. To estimate the expected proba-

bility of pairs with significant modulation in a given frequency band (band 1:

5 − 20 Hz and band 2: 25 − 70 Hz), the results were averaged across sessions

and across the respective frequencies of the same band.
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Figure 2.3: Basic principles of the permutation test. The ba-

sic idea of permutation test is that samples from permutated trial-set

forms H0. To estimate the distribution H0, permutation is resam-

pling the combined trial-sets. Based on the set of all potentially

existing permutated samples, H0 can be approximated by and ideal

estimated.

2.3.3 λ-maps

To allow for variability in the timing and frequencies of states or processes

related to behavioral performance across sessions and subjects, time-frequency

maps of the results were smoothed with a Gaussian kernel (σt = 200 ms

/ σf = 5 Hz). Smoothed time-frequency maps are referred to as λ-maps,

where λc describes the percentage of pairs with a significant increase in spike-

field coherence for correct trials, while λi describes that for incorrect trials.

Due to the fact that λc describes the percentage of sites with a significant
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difference between correct and incorrect trials, an increase in λc does not

imply a decrease in λi for incorrect response. Two different subpopulations

could still behave in an opposite fashion. To assess task-related modulation of

λ, we derived baseline-corrected modulations by computing the z-score that

compares λ during task execution between 0 second and 4.5 second to the mean

value and the variability during the pre-sample period (−0.5 to 0 second). In

other words, the z-score is defined as

z ≡ λ − E{λb}
σλb

(2.3.2)

where λb stands for the λ value of the baseline. Frequencies were treated sepa-

rately to allow for frequency band specific pre-sample difference like attention

related increases.

2.4 Results of experimental data

After applying multitaper method as described above, we got the spike-field

coherence of correct and incorrect responses respectively (Fig. 2.4).

From the figures of the spectra, we cannot clearly distinguish the results from

correct and incorrect responses. Since the spike signal gives a broad-band

spectra in frequency domain, the modulations of the spike-field coherence due

to different performance is hardly to see directly from the figure. Thus, to

evaluate the significance of these spectra becomes the key point of the study.

Since the permutation test could give us the nonparametric evaluation of the

p value, we pooled the original dataset and applied permutation test.

When permutation test was applied to the experimental data, we chose the

permutation replications to 100 and the test level was set as 1.5%. It was

shown ([76]) before that the Bperm = 100 gives enough confidence in the

empirical distribution to be used for a hypothesis test based on a testlevel of

1.5%. To further investigate whether it is still valid in our case, permutation
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Figure 2.4: Grand average time-frequency (’TF’) plots for

spike-field coherence. (A,B) TF plots of grand average spike-field

coherence of all simultaneously recorded signals from two monkeys

recorded in 12 sessions with a total of 4124 trials, from 146 sites and

1593 pairs. (A) Grand average spike-field coherence for trials with

correct responses; (B) Grand average spike-field coherence for trials

with incorrect responses.

test was applied on session 5122 to testify the assumption. We chose the

permutation replications as 100 and 1000 respectively and applied the same

methods to get the λ-map (Fig. 2.5). From the figure we could see that,

although the left-hand plots are not exactly the same with the right-hand ones,

the stronger effect occurs at the same period (correct: 0.5 second, incorrect:

1.5 second) and the effect of increase in spike-field coherence is in the same

range (0.03 − 0.035), which indicates that in this case 100 replications with

significance level 1.5% is good enough for us to evaluate the significance of the
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spectrum of spike-field coherence.

Figure 2.5: λ-map of Session 5122 with different permutation

replications. (A) λ-map with 100 replications for correct trial-set.

(B) λ-map with 1000 replications for correct trial-set. (C) λ-map

with 100 replications for incorrect trial-set. (D) λ-map with 1000

replications for incorrect trial-set.

λ-maps of spike-field coherence revealed values ranging from 0.5% (significance

threshold, see Fig. 2.6) to 3.5% for the different frequency bands and different

periods of the task. As shown in Fig. 2.6, for the correct trials, there are strong

modulations in gamma-band oscillation during the stimulus and delay periods.

Just after the stimulus and during the test period, there is a significant increase

in spike-field coherence in beta- and gamma-band for correct trials. This shows

that when the monkey had a correct response, the coding of the stimulus

and the maintenance of the information are mainly involved in gamma-band
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oscillation.
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Figure 2.6: Performance-dependent increase of γ-

oscillations in spike-field coherence in prefrontal area.

(A) Time-frequency λc-maps. It provides the percentage of

sites/pairs with significant increases of spike-field coherence in trials

with correct responses. (B) Time-frequency λf -maps provides the

results of incorrect response.

In order to rule out spontaneous fluctuations as the cause for these compar-

atively small changes, we performed a z-transform with respect to variability

during the pre-stimulus baseline. The time course of z-transformed spike-field

coherence was found to be modulated in two frequency bands (Fig. 2.7) and

shows remarkable differences for trials with correct and incorrect responses

(compare Fig. 2.7 a and b). The most prominent modulation was observed

for the gamma frequency band (25−70 Hz) in correct trials (λc), which yielded

z-scores between −15 and more than 40. In contrast, the maximal modulation
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of λi only reached values that were about 4 times smaller than λc. Interest-

ingly, the lower frequencies (5 − 20 Hz) comprising the classical theta, alpha,

and beta range exhibited a task-related modulation during trials with correct

responses, which differed from the modulation in the gamma band in two

respects: it occurred earlier in response to the sample stimuli and did not re-

flect the processing of test stimuli at all. This demonstrates that the observed

modulations, even though they are rather small, are tightly correlated with

the task and the monkey’s performance.

2.5 Simulated-data model and method cali-

bration

As shown previously [71], there is a lower bound beyond which additional

smoothing of multitapered spectra does not further decrease the variance.

This lower bound is approximately reached when the degrees of freedom

roughly equal twice the total number of spikes in all trials. The degree of

freedom of the multitaper method is given by: υ0
∼= 2TrKt with Tr represent-

ing the number of trials and Kt the number of tapers. Since the expected

total number of spikes is given by the product of the spike rate, the number

of trials, and the length of the sliding window (l), the lower bound rl of the

spike rate is: rl
∼= Kt/l , which amounts to rl = 20 spikes/sec (spikes/second)

for Kt = 4 and l = 0.2 s as used for analyzing the experimental data.

Since recordings in prefrontal cortex are characterized by spike rates in the

range of a few spikes per second, which is below the critical r0, estimates of

spike-field coherence for individual pairs might yield large variability. Nev-

ertheless, the experimental results assessed by λ are based on the average

of more than 1500 estimates for performance-related differences in spike-field

coherence. Thus, to judge the reliability of λ, we generated simulated data
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Figure 2.7: Time course of significance for spike-field co-

herence with respect to the pre-sample period. (a) Z-score

of average λc, which represents the percentage of pairs with robust

increases of spike-field coherence during correct trials. The dotted

line represents the average λc value in the frequency band from 5

to 20 Hz, while the solid line represents the average λc value in

the frequency band from 25 to 70 Hz. (b) Corresponding z-score

of average λi, for increases of spike-field coherence during incorrect

trials. Z-values larger than 3.76 and smaller than −3.76 (Bonferroni

corrected test level for 1.5% and 170 sliding windows) indicate signif-

icant task-related increases and decreases at a 5% significance level,

respectively.
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comprised of exactly the same data structure, i.e. the same number of ex-

periments, trials, and pairs of local field potentials and spike signals, and we

applied the same analysis as on the experimental data.

To model local field potential signals, we simulated a sinusoidal oscillation

with additive white noise that had half the amplitude of the oscillation (Fig.

2.8 a). That is to say, the local field potential signal was chosen as

s(t) = A ∗ sin(2πf0t) +
A

2
∗ ζ(t), (2.5.1)

where A stands for the amplitude of the local field potential signal, f0 stands

for the central frequency of the sinusoidal oscillation, ζ(t) denotes white noise

with expectation E{ζ(t)} = 0. To model effects in the low- and high-frequency

bands, we generated simulated local field potentials containing frequencies

(12.5 Hz and 50 Hz) at the centers of the two frequency bands analyzed in

the experimental data (see Fig. 2.7). Spike data were modeled as Poisson

processes. In order to compare the results for simulated and experimental

data, we modeled two classes of spike data analogous to trials with correct

and incorrect responses. Spike data corresponding to incorrect trials were

modeled by a homogenous Poisson process with a spike rate r0 = 5 spikes/sec

, which is comparable to the lower bound of experimental spike rate. Spike

data corresponding to correct trials were modeled by an inhomogeneous Pois-

son process based on a spike-rate profile with periods of length w and rate

increasing from r0 to r1 = 25 spikes/sec, which then were phase-locked to

the local field potentials. To further investigate the nature of the processes

underlying spike-field coherence, we modified the temporal correlation of the

model and compared the results based on the simulated data and the actual

recordings. Spikes induced during these short epochs were phase-locked to the

local field potential oscillations if w was small compared to the period length

(T) of the oscillation (Fig. 2.8 b). Thus, modifying w enabled us to manip-

ulate spike-field coherence based on the modulation of the phase-precision.
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Given different sinuous oscillations, the same w value could lead to different

phase relations between local field potentials and spike signals. For instance,

if the underlying frequency of sinuous oscillation is chosen as 12.5 Hz, the

corresponding period of the simulated local field potential is 80 ms. When w

is 2 ms for spike signals, the phase relation between these two signals is

φ = w/T ∗ 2π = 2/80 ∗ 2π = 0.05π (2.5.2)

Using the same w value, if the central frequency of sinuous oscillation is 50

Hz, the phase relation between simulated spikes and local field potentials is

0.2π (Fig. 2.8 c).

To model different strengths of synchronization rather than the phase-precision,

we changed the maximal rate modulation r1 from 25 spikes/sec to 45 spikes/sec.

Hence, we controlled two parameters that could cause changes of spike-field

coherence in the simulated data: first, the period width w that modifies the

phase-precision between local field potentials and spike signal and second, the

difference in r1 to change the strength of synchronization.

The analysis of the simulated data revealed maximal λ values of 40% for

r1 = 25 and 55% for r1 = 45 in the low frequency band 1, which means that

the corresponding experimental data with a maximum of 3.5% were far less

well locked, while maximum λ values in the high frequency band 2 amounted

to 2.7% and were equal for both r1 = 25 and r1 = 45. Increasing w to

values compatible with T diminished λ to values of about 0.5% for all models

(Fig. 2.8 e, g). Nevertheless, the relation of T , w, and the modulation of

r1 interact (Fig. 2.8 d-g) as the decreases of test power were not monotonic

with changes of w. Only for the smaller r1 values and larger values of w does

test power decrease monotonically at high frequencies. At lower frequencies,

the test power reached its maximum at intermediate values of w (Fig. 2.8 e).

The reason for this is that longer windows, which are small compared to T,

contain more spikes and are therefore more precisely locked to the local field
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potentials. The average λ and its standard error in the case of H0 amount to

0.5% and 0.05%, respectively. The average λ is below the test level (1.5%),

which indicates a conservative significance. The variability of λ is very low,

due to the large number of pairs used. Hence, λ values larger than 0.6 cannot

be explained by chance (mean + 2 ∗ std). This demonstrates that our new

approach is a reliable and sensitive method to detect differences in spike-field

coherence, even at low spike rates.

Figure 2.8: Test power of simulated data. (a) Local field po-

tential signal composed of a sinusoidal oscillation and additive white

noise with amplitude half of the oscillation. (b) The rate profile of

spike trains has a strong phase relation with the local field potential

signal. (c) Polar plots of the rate profile for f0 = 50 Hz and w = 4

ms in C1 and w = 16 ms in C2. (d-g) Test power for spike-field co-

herence between local field potential and spike signals. (d: f0 = 12.5

Hz, r1 = 25 spikes/sec (spikes/second); e: f0 = 12.5 Hz, r1 = 45

spikes/sec; f: f0 = 50 Hz, r1 = 25 spikes/sec; g: f0 = 50 Hz, r1 = 45

spikes/sec)
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2.6 Discussion

The value of λ for spike-field coherence performance-related differences in the

high-frequency band (25 − 70 Hz) amounted to compatible values for the ex-

perimental and simulated data: 3.5% and 2.7%, respectively. The same is true

for the average baseline value of λ and its variability in the experimental and

simulated data. Therefore, the analysis of both datasets revealed the same

maximal relative modulation of λ expressed as a change in z-score of about

40. This demonstrates that even though the variability of individual spike-

field coherence estimates might be rather large, assessments of performance-

related differences of λ based on a large number of estimates is highly reliable.

Quantitative comparison of the two types of simulated data, the one mod-

eling phase-precision and the one modeling the strength of synchronization,

indicates that experimental results in the high-frequency band are most likely

based on precisely phase-locked spikes that have a low probability of occur-

rence. Given the results of the simulated-data analysis, spikes must be locked

with a precision of less than 2 ms to local field potential oscillations at 50 Hz

(phase-precision: 0.2π ) to reach λ values close to the maximal values (3.5%)

observed in the experimental results. However, given the rather short period

(w = 2 ms), an oscillation frequency of 50 Hz, and a rate r1 = 25 spikes/sec,

we expect 0.5 phase-locked spikes per sliding window. This illustrates, first,

that the method is very sensitive and second, that differences in spike-field

coherence due to behavioral performance might be based on rather few syn-

chronous events in prefrontal cortex, which cannot be explained by chance.

2.7 Summary

Although differences among behavioral conditions appear to be based on a

rather few instances of phase-locked spikes, the task-related effects on spike-
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field coherence are highly reliable and cannot be explained by chance, as the

comparison of experimental results and the results from simulated-data anal-

ysis shows. The differential locking of prefrontal neuron populations with two

different frequency bands in their input signals suggests that neuronal ac-

tivity underlying short-term memory in prefrontal cortex transiently engages

cortical circuits on different spatial scales, probably in order to coordinate

distributed processes. Moreover, the precise locking between spike and local

field potential oscillations during behavioral transitions elucidates that tran-

sient coordination of local and more global circuits might be necessary during

memory encoding and retrieval.
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Chapter 3

Bi- and multi-variate spike train

analysis

3.1 Introduction

To test the importance of synchronous neuronal firing according to informa-

tion processing in the brain, one has to investigate if synchronous firing and its

strength are correlated to the state of the neuronal system, or the behavior and

the task of the experimental subject ([80], [81], [82]). This requires a tool that

can compare the strength of the synchronous firing across different conditions

(’factors’), while it corrects at the same time for other features of neuronal

firing such as spike rate modulation or the auto structure of the spike trains

that might co-occur with synchronous firing. Previously developed method

NeuroXidence [76, 78, 79] is for uni-variate case and therefore optimized to

detect synchronous firing beyond that expected by chance reliably, but do not

allow to compare the strength across factors, or suitable for comparing differ-

ent factors and was not robust against features that were discussed to induce

false positives. In this chapter we present a bi- and multivariate extension of

NeuroXidence. This extension allows comparing the amount of synchronous
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firing between different factors for the same spiking pattern. The new ex-

tension is robust against rate changes of individual neurons and against rate

co-variation of groups of neurons. It considers the full auto structure as well

as trial by trial variability. The basic idea of the bi- and multivariate exten-

sion is that one first determines the frequency of a certain joint-spike event

(JSE) for each trial and each factor of the experiment. Next, surrogate data is

generated such that each surrogate spike train is identical to the original data

but any fine temporal cross structure between simultaneously recorded spike

trains is destroyed by jittering the whole spike train by a random amount time

step. To this end we define two timescales. The first time scale τc defines the

expected precision of JSE and it is usually in the order of a few milliseconds.

The second time scale is τr, which is η times slower than τc, and it defines the

lower bound of rate modulation. This surrogate data serves the estimation of

the frequency of chance JSE under the H0 assumption that neurons are not

coupled in a fine temporal timescale. Hence, the frequencies of JSE occurring

in the surrogate dataset are used to correct the frequency of JSE in the orig-

inal dataset. To this end the difference is computed between the original and

the surrogate dataset for each trial and each factor. Differences due to differ-

ent factors are detected based on bi-variate mean or median tests (t-test, and

Mann-Whitnes U test) or by ANOVA test in the multivariate case. Hence the

result of p-value tells us how likely it is to explain modulations of synchronous

firing on the time scale τc across factors by chance.

3.2 Method

We used the same way of detection of JSEs as shown in the previous paper

[78, 79]. First, we defined two parameters: τc and τr. τc is the timescale of

synchronous firing which ranges between 1 and 10 ms; while τr is distinguish-

ably slower than τc, with a factor η introduced as the ratio between these two
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timescales τr = η ∗ τc, which ranges from 2 to 5. Then we generated surrogate

data by jittering the original individual spike train within slow timescale τr,

which destroys the fine temporal cross-structure less than τr but keeps the

auto-structure and other features. Thus for a particular JS-pattern k, trial

t and condition ξ, the difference between original and surrogate dataset for

each condition could be computed as

Δfk
t,ξ =

1

S

S∑

s=1

Δfk
t,ξ,s = fk

t,ξ(org) − 1

S

S∑

s=1

fk
t,ξ,s(sur), (3.2.1)

where fk
t,ξ(org) ∈ N0, Δfk

t,ξ ∈ Q, for trial t = 1, 2, ..., Tr and JS-pattern

k = 1, 2, ..., K, surrogate s = 1, 2, ..., S and condition ξ = 1, 2, ..., M .

In bi-variate case, we chose the difference of JSEs between two conditions

as the test statistic. In other words, for each trial t and each JS-pattern k,

we compute the difference ΔΘk
t = Δfk

t,1 − Δfk
t,2, where Δfk

t,1 and Δfk
t,2 are

the average differences between original and surrogate dataset for condition 1

and condition 2 respectively. If ΔΘk
t is larger than zero, it means an excess

of JSEs for one particular JS-pattern k in condition 1; while ΔΘk
t is smaller

than zero, it means an excess of JSEs in condition 2. The difference ΔΘk
t for

one particular JS-pattern k from all trials form the set ΔΘk:

ΔΘk = {ΔΘk
1, ΔΘk

2, ..., ΔΘk
Tr
}. (3.2.2)

We applied mean test (t-test) and median test (Mann-Whitnes U test) to set

ΔΘk to check whether the excess or lacking of JSEs between two conditions

is significant and consistent across trials.

As for multivariate case, for each condition ξ and each particular JS-pattern

k from all trials t = 1, 2, ..., Tr, the differences Δfk
t,ξ form the set ΔF k

ξ :

ΔF k
ξ = {Δfk

1,ξ, Δfk
2,ξ, ..., Δfk

Tr ,ξ}. (3.2.3)

where condition ξ = 1, 2, ..., M . Thus the differences from all conditions form

the set

ΔΘk = {ΔF k
1 , ΔF k

2 , ..., ΔF k
M}. (3.2.4)
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ANOVA was then applied to the set of differences ΔΘk to check whether one

of ΔF k
ξ is significantly different from others.

3.3 Method calibration (Part I)

First, we carry out method calibration for bivariate case. As described above,

we compared ΔΘk for two simulated datasets to examine the detection of

JSEs of NeuroXidence method.

3.3.1 False positives for two stationary processes

We generated two simulated datasets to stand for two conditions, and each

of them has 8 neurons and each spike train is generated by independent and

stationary Possion processes. Here we used two scenarios to generate Possion

spike trains for both conditions.

Scenario one: we set the mean spike rates of two simulated datasets to

the same value and changed them together, then we applied NeuroXidence

to check whether the JSEs from two simulated datasets were significantly

different.

Scenario two: we set the mean rate of one simulated dataset to a fixed

value (for example 15 spikes/sec (spikes/second)), and changed the mean rate

of the other simulated dataset. NeuroXidence was applied to check whether

JSEs from one condition is significantly different from the other.

The standard set of parameters for scenario one was defined by 50 trials (Tr),

mean spike rate of 15 spikes/sec (r), 20 surrogates samples (S), and η equals

5. From the standard parameter set , 8 different combinations of parameters

were derived by varying the number of trials (Tr = 20, 50, 100) and the mean

spiking rate (r1 = r2 = 7, 10, 30, 60, 90 spikes/sec). And the standard set of

parameters for scenario two was defined by 50 trials (Tr), mean spike rate of
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Figure 3.1: Percentage of false positives estimate by Neu-

roXidence used to detect joint-spike patterns of complexity

2 to 6 for bivariate cases with test level 5%. Two simulated

datasets were generated by independent and homogenous Poisson

processes and NeuroXidence was used to estimate joint-spike events

(JSEs) based on 200 independent realizations for each simulated

data model. The difference between these two estimates is taken

as the test statistic to evaluate the false-positive rate. The stan-

dard parameter set is as follows: trial= 50, spike-rate= 15 spikes/sec

(spikes/second), and η = 5. (A1) and (A2): mean spike rates of two

conditions change together (r1 = r2 = 7, 10, 30, 60, 90 spikes/sec),

after applying NeuroXidence to detect the joint-spike patterns, we

use t-test (A1) and Mann-Whitnes U test (A2) respectively, with

variation the number of trials (Tr = 20, 50, 100). Here we set sur-

rogate to 20. (B1) and (B2): we set mean spike rate of condition

one to 15, and that of condition two changes from 7 to 90 (r1 = 15,

r2 = 7, 10, 30, 60, 90 spikes/sec), then applied NeuroXidence and used

t-test (B1) and Mann-Whitnes U test (B2) to evaluate the false pos-

itive rates with variation the number of trials (Tr = 20, 50, 100). Here

we set surrogate to 1.
40



15 spikes/sec (r), 1 surrogates samples (S), and η equals 5. From the standard

parameter set, 8 different combinations of parameters were derived by varying

the number of trials (Tr = 20, 50, 100) and the mean spiking rate (r1 = 15,

r2 = 7, 10, 30, 60, 90 spikes/sec). We applied NeuroXidence to each simulated

dataset using a sliding window with duration of l = 200 ms. In total, 8

different simulated data models were used to get the false-positive-rate for

five JS-patterns of complexity 2 − 6. None of the results from any of the

parameter sets exceeded the chance-level, for either test-level 5% (Fig. 3.1) or

1% (Fig. 3.2). This shows that NeuroXidence detects JSEs in a conservative

way for bivariate case.

Figure 3.2: Percentage of false positives estimate by Neu-

roXidence used to detect joint-spike patterns of complexity

2 to 6 for bivariate cases with test level 1%. The notation is

the same as Fig 3.1.
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3.3.2 Test-power for stationary process

To access the test power of NeuroXidence for bivariate case, one simulated

dataset was modeled as single-interaction process based on Poisson process,

while the other was generated by independent and homogenous Poisson pro-

cess. Each dataset contains 8 simultaneous spike trains. For single-interaction

process, correlated spike trains were characterized by a background rate, which

corresponds to the independent spiking of neurons, and by a JSE rate, defin-

ing the expected frequency of the JS-pattern of interest beyond that of the

other condition.

The standard parameter set is chosen as 50 trials (Tr), the background spike

rate of 15 spikes/sec (r), 20 surrogates numbers (S), and η equals 5. Eleven

parameter sets were used to study how the test-power of NeuroXidence is

affected by the number of trials (Tr = 20, 50, 100), the background spike rate

(r1 = r2 = 10, 15, 30, 60, 90 spikes/sec), and the number of surrogates (S =

1, 20, 50). Based on 11 simulated datasets, the test-power was derived from

five JS-patterns of complexity 2 − 6. The test-level was set to 5%. From

Fig. 3.3, we could see that increasing the number of trials would lead to

an increase of test-power. Given the same frequency of excess JSEs, higher

complexity patterns are more likely to be detected than lower complexity

patterns. With increasing the background rate, one need more JSEs to get

the same test power. However, for higher complexity patterns, this effect is

reduced. As for lower complexity patterns, larger number of surrogates (S) is

required, for example, S = 20 is good enough for the test power. While for

higher complexity patterns, number of surrogates doesn’t show an important

effect on the test power. Thus one could choose S = 1 for higher complexity

patterns.
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Figure 3.3: Test power of NeuroXidence in relation to the

number of trials (Tr), spike rate(r) and number of surro-

gates (S) in bi-variate case. One simulated dataset was mod-

eled as single-interaction process based on Poisson process, while

other was generated by independent and homogenous Poisson pro-

cess. NeuroXidence was used to estimate the JSEs for each simulated

dataset. The test statistic is chosen as the difference between differ-

ent frequencies of JSE for each simulated data model. Subfigures

plot the test-power of NeuroXidence as a function of the frequency

of JSEs beyond chance level. Rows 1 − 4 show the test-power de-

pendencies on the complexities of the analyzed joint-spike pattern

ranging from 2 to 5. (A1-A4) variations in the number of trials

Tr, (B1-B4) variations in the spike rate r, (C1-C4) variations in

the number of surrogates S from standard parameter set (Tr = 50,

r = 15 spikes/sec, S = 20, η = 5, l = 200ms).
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3.3.3 Sub- and Supra-patterns of induced JS-patterns

Sub-patterns and supra-patterns are defined in the way as shown in the pre-

vious paper [78, 79]. A single-interaction process and an independent and

homogenous Poisson process were used to generate two simulated datasets.

Each dataset contained 50 trials of 8 simultaneous spike trains.

To study the test-power of sub-patterns and supra-patterns of two different

processes, we applied a statistical evaluation of the frequency of occurrence

of any potentially existing JS-patterns in four complexities of the mother-

patterns, which are the JS-patterns induced by the single-interaction process.

Any JS-pattern of complexity higher than 2 includes sub-patterns that are ex-

pected to be detected because of existence of mother-pattern. If sub-patterns

are only induced by one mother-process and not by additional correlations

with orders equal to or smaller than the complexity of the sub-patterns, the

test-power is expected to decrease with the decreasing complexity of the sub-

pattern. Supra-patterns are composed of the mother-pattern itself and spikes

from additional neurons, which are by chance coinciding with the mother-

pattern. The maximal frequency of a supra-pattern is bound by the maximal

frequency of any sub-pattern, including the induced mother-pattern. Since the

additional spikes are coinciding by chance, the frequency of the supra-pattern

occurrence is expected to be smaller than that for the mother-pattern. Thus,

as long the excess frequency of the mother-pattern is not so high, the test-

power of the supra-pattern is expected to be substantially reduced in relation

to the mother-pattern (Fig. 3.4).

3.3.4 False Positives for a non-stationary process

By generating datasets from non-stationary processes, we derived the per-

centage of false positives of JSEs detected by NeuroXidence. Each of the two

simulated datasets comprised 18 simultaneous units and 50 trials, which were
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Figure 3.4: Test-power of NeuroXidence for an induced

mother-pattern and its supra-patterns and sub-patterns.

Two sets of simulated data were generated as two processes described

before. Each sub-figure shows the grey-coded test-power of a certain

mother-pattern, all sub-patterns of lower complexities, and all supra-

patterns of higher complexities. The excess rate of JSEs beyond the

chance-level, which corresponds to the mother-pattern, is given on

the x-axis. The data used to derive the test-power consisted of 50

trials of 8 spike trains. A spike rate r = 15 spikes/sec, S = 20

surrogates, and η = 5 were used by NeuroXidence for deriving the

statistical significance. A-D shows the variations of mother-pattern

of complexity 2 to 5.

based on 12 periods, each lasts 2 seconds (Fig. 3.5). The simulated datasets

contained features that are often observed in real datasets, such as low rates

(Period 3, 4) , rate modulation (Periods 5-10), and latency co-variation of rate

responses across neurons (Periods 8, 10).

NeuroXidence was applied to each dataset in a sliding window of length 800
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Figure 3.5: False positives for non-stationary processes eval-

uated by NeuroXidence. Generated two simulated datasets and

each consisted of 50 trials of 18 ’simultaneous’ spike trains. A: PSTH

displays the rate profile of the used inhomogeneous processes. Dur-

ing period 10 − 12 second, rate had been modulated between 5 and

50 spikes/sec with a Gaussian shape with t = 250 ms, while during

Periods 6, 7, 8, t = 50 ms. The rates in Periods 9 and 10 were

modulated between 5 and 30 spikes/sec by a step function. B: The

number of individual and unique JS-patterns of complexities 2 − 6

that were detected in each sliding window (τc = 5ms,’SW’ = slid-

ing window: 800ms). C: The percentage of JS-patterns that show

significant difference between two conditions (test-level 5%).
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ms, and it performed significance tests on excess or lacking of JSEs between

two simulated datasets with complexity 2 to 6. The statistical significance

was evaluated for each occurring JS-pattern. We derived the percentage of JS-

patterns that occurred significantly different between two conditions. To make

comparisons across complexities, the number of significant JS-patterns per

complexity was normalized by the total number of identified JS-patterns with

corresponding complexity. Between two conditions, spike trains during all the

periods were independent, which implied that H0 should not be rejected, if the

actual-false-positive-rate were conservative. The percentage of false rejections

of H0 corresponding to the actual-false-positive-rate is clearly below 5% for

all complexities and throughout all sliding windows during all the periods.

Therefore, NeuroXidence is a hypothesis test with a conservative actual-false-

positive-rate that is affected neither by low rates, rate modulation, latency

variability, and cross-trial rate changes, nor by the different model processes

( γ-process, Poisson process) used to generate the spike trains.

3.4 Method calibration (Part II)

Secondly, we applied NeuroXidence to multivariate cases. As described be-

fore, more than two simulated datasets were generated and NeuroXidence was

applied to evaluate the JSEs for each simulated data set. ANOVA was applied

to the set ΔΘk to evaluate the significance.

3.4.1 False positives for stationary processes

We generated six simulated datasets as six conditions, and each of them has

8 neurons and each spike train is generated by independent and stationary

Possion process. NeuroXidence was then applied to evaluate the false positives

of excess or lacking of JSEs among these conditions. Here we also used two
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scenarios to generate Possion spike trains for all the conditions.

Scenario one: we change the mean spike rates of six simulated datasets

together.

Scenario two: we set the mean spike rate of one simulated dataset to a fixed

value (15 spikes/sec), and changed the mean spike rate of other simulated

datasets.

The standard set of parameters for scenario one was defined by 50 trials (Tr),

mean spike rate of 15 spikes/sec (r), 20 surrogates samples (S), and η equals

5. From the standard parameter set , 8 different combinations of parameters

were derived by varying the number of trials (Tr = 20, 50, 100) and the mean

spiking rate (r1 = r2 = 7, 10, 30, 60, 90 spikes/sec). And the standard set of

parameters for scenario two was defined by 50 trials (Tr), mean spike rate

of 15 spikes/sec (r), 1 surrogates samples (S), and η equals 5. From the

standard parameter set, 8 different combinations of parameters were derived

by varying the number of trials (Tr = 20, 50, 100) and the mean spiking rate

(r1 = 15, r2 = 7, 10, 30, 60, 90 spikes/sec). We applied NeuroXidence to each

simulated dataset using a sliding window with duration of l = 200 ms. In

total, 8 different simulated data models were used to get the false-positive-

rate for five JS-patterns of complexity 2 − 6. None of the results from any of

the parameter sets shows significant difference among six conditions, for either

test-level 5% (Fig. 3.6) or 1% (Fig. 3.7). This shows that NeuroXidence, for

multivariate case, can detect additional JSEs among several conditions in a

conservative way.

3.4.2 Test power for multivariate case

We generated six simulated datasets to stand for six conditions. One of them

is modelled as a single-interaction process based on Poisson process, while

others were generated by independent homogenous processes. For the single-
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Figure 3.6: Percentage of false positives estimate by NeuroXi-

dence used to detect joint-spike patterns of complexity 2 to 6

for multivariate cases with test level 5%.Six simulated datasets were

generated by independent and homogenous Poisson processes and NeuroX-

idence was used to estimate JSEs based on 100 independent realizations

for each simulated data model. ANOVA was applied to evaluate the false-

positive rate of the differences between original data and surrogates data

for six conditions. The standard parameter set is as follows: trial= 50,

spike-rate= 15 spikes/sec, and η = 5. (A) and (C): mean spike rates of six

conditions change together (r1 = r2 = r3 = r4 = r5 = r6 = 7, 10, 30, 60, 90

spikes/sec), after applying NeuroXidence to detect the JS patterns, we

applied ANOVA mean test (A) and Kruskal-Wallis test (C) respectively,

with variation the number of trials (Tr = 20, 50, 100). Here we set sur-

rogate to 20. (B) and (D): we set mean spike rate of condition one

to 15, and those of other conditions change from 7 to 90 (r1 = 15,

r2 = r3 = r4 = r5 = r6 = 7, 10, 30, 60, 90 spikes/sec), then applied

NeuroXidence and ANOVA mean test (B) and Kruskal-Wallis test (D)

to evaluate the false positive rates with variation the number of trials

(Tr = 20, 50, 100). Here we set surrogate to 1.
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Figure 3.7: Percentage of false positives estimate by Neu-

roXidence used to detect joint-spike patterns of complexity

2 to 6 for multivariate cases with test level 1%. The notation

is the same as Fig 3.6.

interaction process, correlated spike trains were characterized by a background

rate and a JSE rate. The background rate corresponds to the independent

spiking of neurons, while JSE rate defines the expected frequency of the JS-

pattern of interest beyond that of other conditions. The standard parameter

set is chosen as 50 trials (Tr), the background spike rate of 15 spikes/sec (r),

20 surrogates numbers (S), and η equals 5. Here we show how the test power

changes according to different trials (Tr = 20, 50, 100) and number of surro-

gates (S = 1, 20). As shown in Fig. 3.8, the test power of higher complexity

patterns increases faster than that of lower complexity patterns. Comparing

left-hand and right-hand figures, we could find that changing number of sur-

rogates from S = 1 to S = 20 doesn’t affect test power so much, which means
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NeuroXidence is sensitive enough to detect small difference in JSE frequencies

for each JS-pattern. Therefore, in later study number of surrogates can be

set to 1, and NeuroXidence still keeps the sensitivity in detecting the JSEs,

which are significantly different among several conditions.

Figure 3.8: Test power of NeuroXidence in multivariate

case. One simulated dataset was modelled as a single-interaction

process based on Poisson process, while the other five simulated

datasets were generated by independent and homogenous Poisson

processes. NeuroXidence was applied to estimate the JSEs for each

simulated dataset. Then ANOVA was applied to evaluate the differ-

ent frequencies of JSE for each simulated data model. Rows 1 − 4

show the test-power dependencies on the complexities of the ana-

lyzed JS pattern ranging from 2 to 5. (A1-A4) Test power with

surrogates S = 20. (B1-B4) Test power with surrogates S = 1. The

standard parameter set was chosen as r = 15 spikes/sec, and η = 5.
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3.5 Results of JSEs in short-term-memory ex-

periment

Neuronal activities in short-term memory have been associated with sustained

delay firing of prefrontal neurons ([83], [84]). But it is not clear how large

populations of neurons store information coordinately. Neuronal interactions

in frontal cortex of behaving monkeys have been described to extend over

several hundred milliseconds ([85]), while others reported millisecond precise

synchrony in prefrontal ([86]) and parietal cortex ([71]). From the calibration

results described before, the extension of NeuroXidence showed its reliability

and sensitivity of detecting the modulation of occurring frequency of JSEs

which are different among several conditions. In this section we applied Neu-

roXidence on the monkey’s short-term memory datasets, investigated the rela-

tion of neuronal firing patterns and the process of encoding and maintenance

of information during short-term memory. As described in Chapter 2, the

dataset contains 2402 trials (7 Sessions / 86 sites) for monkey 1 and 1722 tri-

als (5 Sessions / 66 sites) for monkey 2. In total there are 18150 different JSE

patterns for both correct and incorrect responses. In individual experiments,

units participate in up to 450 performance-dependent JS-patterns per second.

We carried out the analysis in three steps. First we concerned the encoding

process of the task and focused on the different modulation of neural synchro-

nized firing between correct and incorrect responses. Then we consider the

occurring frequencies of JSEs for the whole task. Thus, we can compare dif-

ferent synchronization of neuronal firing between not only different behavior,

but also different processes of the task. Finally, we focused on the stimulus

specific modulations of JS-patterns.

As described above, in the first step, we focused on the encoding process of the

task and investigated the differences of occurring frequencies of JSEs between
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correct and incorrect responses. Raster plots of spikes in the experiment

C002 during the sample period are shown in Fig. 3.9. Directly from the

raster plot, the spike patterns are quite difficult to identify and there is no

obvious difference between correct and incorrect responses of the monkey.

After applying NeuroXidence to the datasets, JSEs with different complexities

during the sample period are computed. The parameters were chosen as τc = 3

ms and sliding window length l = 100 ms. Then the occurring frequencies of

each JS-pattern were compared between correct and incorrect responses. The

JS-patterns with significant increases for each condition are shown in Fig.

3.10. From the figure we can see that the occurring time of JS-patterns,

especially for higher complexity of JS-patterns, differs a lot between correct

and incorrect responses during the sample period. For instance, neurons had

stronger synchronization of firing at about 0.3 second after sample onset for

correct responses, which is lacking for incorrect responses.

To illustrate the rate changes for the encoding process, we derived the PSTH

(bin-width: 5 ms) based on 27 single-unit activities during the sample period

in experiment C002 (Fig. 3. 11 (A1) and (A2)). It turns out that the rate in-

creased from about 125 ms after sample onset. However, there is no difference

between (A1) and (A2), which is corresponding to the PSTH of correct and

incorrect responses respectively. NeuroXidence was then applied to the same

datasets and the occurring frequencies of JSEs were computed. The timescale

for synchronized firing was chosen as 3 ms. Based on the occurring frequencies

of JS-patterns, we computed how often each individual neuron participated

in JS-patterns that showed performance-related modulation of synchrony. To

be more specific, we compared the occurring frequencies of JS-patterns be-

tween correct and incorrect responses, and concentrated on the JS-patterns

which shows significant increase for each condition. Thus, after calculating

the frequencies that each neuron participated in these JS-patterns, the re-
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Figure 3.9: Raster plot of spikes for different responses of

monkey. Raster plot of 14 out of 27 cells simultaneously recorded

in a single dataset C002. (B1) shows the spikes for correct response

of the monkey, while (B2) shows those for incorrect response.

sults for each condition are shown in Fig. 3.11 (B1) and (B2). Each neuron

could participate in more than one JS-pattern, and there are some neurons

that participated in up to 400 performance-modulated JS-patterns. After the

sample onset, the different modulation of synchronized firing occurred mainly

after 125 ms. More neurons fired synchronously for correct than for incor-

rect responses. However, before 125 ms, there are still some neurons firing

synchronously for correct responses. The difference between correct and in-

correct results was shown in (B3). This figures tells us that more neurons had

coordinate firing for correct responses than for incorrect responses during the

sample period. Thus, the coordinate firing of neurons might be the key point

for the monkey to encode the sample properly.

In the second step, NeuroXidence was applied to the whole period of the task
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Figure 3.10: JS-patterns for different responses of monkey.

(A) Time course of the visual short-term memory task. (B1, B2)

Raster plot of 14 out of 27 cells simultaneously recorded in a sin-

gle dataset C002. Joint-spike activity patterns are indicated with

squares. All the JS-patterns shown in (B1) indicate neurons had

stronger synchronized firing for correct responses than for incorrect

responses, while in (B2) shows the opposite. Each square marks the

spike that participated in the JS-pattern, which showed performance-

modulated synchronized firing in a window of 3 ms. Different col-

ors indicate different JS-pattern complexities. Yellow indicates syn-

chronous activity of pairs of neurons (duplets), while dark red sym-

bolizes synchronous activities of at least 5 neurons (quintets) in 3 ms

time frame.
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Figure 3.11: PSTH and JSEs for different responses of mon-

key. For the same data as shown in Fig. 3.10, but for all 27

single-unit-activity that were recorded simultaneously. We derived

the PSTH (bin-width= 5 ms) for all correct (A1) and incorrect tri-

als (A2). (B1) shows how often a neuron participates in the JS-

patterns, on a timescale τc of 3 ms, that are more synchronous for

correct trials, while (B2) shows the opposite. (B3) shows the dif-

ference between (B1) and (B2). Green indicates that a neuron par-

ticipates more often in JS-patterns that are more synchronous for

correct trials.
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and compared the occurring frequencies of JSEs between monkey’s different

behavior. The parameters of NeuroXidence were chosen as 1 surrogate num-

bers (S), 3 ms of precise timing of JSE (τc), and scale separation equals 3 (η).

Due to the non-stationary properties of the process, we applied NeuroXidence

with the sliding window (window length: 400 ms) analysis. The results are

shown in Fig. 3.12. Comparing (A1) and (B1), we can see that, for different

responses of the monkey, synchronization of neuronal firing occurred at differ-

ent time points. To be more specific, the most prominent synchronization of

neuronal firing was observed in complexity 3 to 7 JS-patterns during sample

and early delay in correct trials, which yielded the occurring frequencies of

JSEs above 30. In contrast, the maximal occurring frequencies of JSEs during

these periods in incorrect trials only reached values that were about 15. This

difference between correct and incorrect responses is much clearer when we

examined the results during the sample period (Fig. 3.12 (A2),(B2)). Thus, in

correct trials, more neurons fired synchronously during the sample and early

delay period, which is corresponding to the encoding and maintenance process

respectively.

Then, we shuffled the correct and incorrect trial sets and recomputed the dif-

ference between permutated ’correct’ and ’incorrect’ results. In this step, since

we only shuffled the correct and incorrect trial sets and kept other properties

of the data, we can tell whether the original difference of frequencies of JSEs

is coming from the different responses of the monkey. From the results of the

permutated classes (Fig. 3.13 (B)), we can see that the dominate color of the

figure is white, which means there is almost nothing different between permu-

tated ’correct’ and ’incorrect’ trial sets. Based on the original and permutated

difference, we computed the z-score of the original difference of correct and

incorrect responses. For each complexity and sliding window, the z-score is

computed given the absolute difference between correct and incorrect results,
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Figure 3.12: JSEs for different responses of monkey. (A)

Frequency of occurrence of JS-patterns of complexities 2 to 8 with

performance correlated increases of synchrony in correct trials. On

the contrary, figure (B) shows the frequency of occurrence of JS-

patterns with performance correlated increases of synchrony in in-

correct trials. The left column (A1), (B1) shows the analysis for

400 ms long sliding windows and the whole temporal cores of the

paradigm, including 600 ms of baseline activity. In addition, (A2),

(B2) shows the same but with 100 ms long sliding windows and only

for the period during sample presentation.

and divided by the standard deviation of the difference for permutated ’cor-

rect’ and ’incorrect’ trial sets. To be more specific, similar with Equation

(2.3.2), we defined z-score here as

z ≡ λ − E{λp}
σλp

(3.5.1)

. where λ is the difference of frequencies of JSEs, and λp stands for the λ

value of the permutated results. From Fig. 3.13 (C), we can see that when

the monkey had the correct response, there is a significant excess of JSE
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with complexity 3 to 7 JS-pattern during the sample and early delay, which

means performance-related modulation of synchrony occurred mainly during

the process of information encoding and maintenance. Thus, the task- and

performance-dependent modulation of synchrony reflects that the dynamic

formation of group of neurons contributes to short-term memory.

Figure 3.13: Significance results of JSEs for different re-

sponses of monkey. Fig. (A) shows the difference between the

frequencies of JS-patterns with increases of synchrony for correct

and incorrect behavior. (B) shows the difference between permu-

tated ’correct’ and ’incorrect’ trial sets. Based on the average level

of differences in (B) and the standard deviation of these differences,

the difference in (A) was expressed as a z-score in (C). The critical

z-value is 4.2 given a test-level of 1% and a Bonferroni correction for

48 sliding windows and 7 complexities.

In the final step, we evaluated the modulation of stimulus specific JS-patterns.
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For monkey’s correct responses, we used the identical datasets and the iden-

tical number of trials per stimulus, but permutated the stimulus randomly

across all trials and recomputed the frequencies of JS-patterns. Then, the

z-score is derived based on the difference between the numbers of JS-pattern

with stimulus specific modulation of synchrony for the original stimulus classes

and the permutated stimulus classes. Thus, statistical evaluation of the fre-

quency is shown in Fig. 3.14 (A). In a second step, this difference is normalized

by the standard deviation of the frequency for permutated classes (Fig. 3.14

(B)). This normalization is done for each individual complexity and based on

the standard deviation evaluated across the whole time course starting at −0.5

s and ending at 4.3 s. It turned out that the JS-patterns with complexity 3

to 5 had a strong modulation with some specific stimulus, especially during

the test period.

3.6 Spike-spike coherence and joint-spike-event

Since coherence reveals the basic linear pair-wise relations between two signals,

it can also be applied to two point processes - spike signals. Meanwhile,

NeuroXidence is a proper tool to detect the co-activities of groups of neurons.

Thus, we compared the results based on these two methods and investigated

whether the pair-wise relation is good enough to detect the performance-

dependent changes of the short-term memory task. We applied multitaper

method as described in Chapter 2 to compute the spike-spike coherence. The

standard parameters were chosen as window length 200 ms, window shift 20

ms, 4 DPSS tapers with order 0 to 3. The grand average of the experimental

results are shown in Fig. 3.10. Since the spike spectrum has a broad dynamic

range, when spike-spike coherence was computed by means of cross-spectra in

frequency domain, the difference between the results of correct and incorrect

responses are subtle and hardly to detect.
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Figure 3.14: Stimulus specific JS-patterns. (A) Frequency of

occurrence of JS-pattern of complexities 2 to 6 with stimulus specific

modulation. (B) shows the z-score of (A). The critical z-value was

4.08 given a test-level of 1% and a Bonferroni correction for 48 sliding

windows and 5 complexities.

Permutation test was then applied to detect the significant modulations due

to behavioral performance. The results are shown in Fig. 3.11. Comparing

the spike-spike coherence of correct and incorrect responses, we can see the

different modulations due to monkey’s different responses occurred during

pre-sample, sample, early delay, late delay and test period. When the monkey

had a correct response, there is a significant increase of spike-spike coherence

of γ-band during these periods. This result is in the line with the results of

NeuroXidence. Since the NeuroXidence reveals more than pair-wise relation

between neurons, it can provide a better explanation of the synchronous firing

of the neurons. As we mentioned the sub- and supra-patterns before, the
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Figure 3.15: Grand average time-frequency (’TF’) plots of

spike-spike coherence. (A) The grand average of spike-spike co-

herence for trials with correct response. (B) The grand average of

spike-spike coherence for trials with incorrect response.

existence of supra-pattern JSE could lead to an increase of JSE in the sub-

patterns. Thus, during the short-term memory task, neurons in monkey’s

prefrontal cortex might fire synchronously, especially in groups of 3 − 7, to

ensure the correct response.

3.7 Discussion

It has been shown before the detection of JSEs by NeuroXidence is reliable and

robust for univariate case ([78, 79]). The method is therefore optimized to de-

tect synchronous firing beyond that expected by chance reliably, but does not

allow to compare the strength across factors, or suitable for comparing differ-
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Figure 3.16: Performance-dependent increase of γ-

oscillations in spike-spike coherence in prefrontal area. (A)

Time-frequency λc-maps. It provides the percentage of sites/pairs

with significant increases of spike-field coherence in trials with cor-

rect responses. (B) λf -maps shown provides the results of incorrect

response.

ent factors and was not robust against features that were discussed to induce

false positives. After extending the method to bi- and multi-variate cases,

NeuroXidence method keeps its advantage of detecting the different modula-

tion of JSEs among different factors. Especially in the non-stationary process,

NeuroXidence rejects the artifact, which different processes (γ-process, Pois-

son process and latency covariations) bring to the occurring frequencies of

JSEs. As for the test power, on average only 2 JSEs more or less than other

conditions can be detected, which exhibits the high sensitivity of NeuroXi-

dence for the bi- and multi-variate cases. When NeuroXidence was applied to

63



detect JSEs in the processes with different rate level, except for τc and τr, sur-

rogates number (S) becomes another important parameter in the method. To

be more specific, when NeuroXidence is applied to two or more processes with

different rates, especially some of the processes with low firing rates, number of

surrogates should be set to 1 to ensure the non-biased estimates of JSEs. After

applying NeuroXidence to the monkey’s short-term memory data, it reveals

that neurons in prefrontal cortex fired synchronously during the early delay

and sample period for monkeys to make the correct response. This result is

consistent with that of spike-spike coherence analysis. Furthermore, compar-

ing the results from NeuroXidence and spike-spike coherence, NeuroXidence

showed its unique way of detecting the high-order relations among groups of

neurons, which is lacking in the spike-spike coherence analysis.

3.8 Summary

Extended to bi- and multi-variate cases, NeuroXidence remains its sensitive

and conservative properties of detecting coordinate firing events for different

factors. Based on this extension, we found in monkey’s prefrontal cortex

during short-term memory task, encoding and maintenance of the information

rely on the formation of neuronal assemblies characterized by precise and

reliable synchronization of spiking activity on a millisecond time scale.
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Chapter 4

Discussion

4.1 Multitaper method, permutation test and

NeuroXidence

When we analyzed the datasets from monkey prefrontal cortex during short-

term memory task, three main methods were applied: multitaper method,

permutation test and NeuroXidence method. The first two were applied to

evaluate the spike-field coherence, while the last one was used to detect dif-

ferent JS patterns.

4.1.1 Multitaper method

Spectral analysis is carried out in frequency domain, which could reveal the

information of the underlying oscillation of the process. It has several advan-

tages comparing with time domain methods. Especially for the spike signal,

which people deal with as point process, spectral analysis smoothes the spike

signal in a proper way and treats it as a continuous one. Thus the rhythm of

the spikes and the relations between spikes and other continuous signals can

be studied.
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Multitaper method is a special spectral analysis that people apply to reduce

the leakage and concentrate power. The direct spectral estimator is severely

biased when the process has a large dynamic range. Multitaper method over-

comes this problem by averaging the spectral estimates from several orthog-

onal tapers. Furthermore, after applying multitaper method, the bias and

confidence interval of the analysis can be estimated in a simple way. We ap-

plied multitaper method to the monkey’s short-term memory datasets and

it revealed that when the datasets are large enough, the extra smoothing of

multitaper method is not necessary to decrease the variance or make the im-

portant frequency component more obvious. From Fig. 2.4 we can see that

sometimes multitaper method could even obscure the important frequency

component by the additional smoothing.

4.1.2 Permutation test

Permutation test is a non-parametric statistical tool. It provides a simple

and proper way to derive the H0 hypothesis with no additional mathematical

assumptions. After applying permutation test, based on the spectral results

of spike-field coherence,we got the λ value for monkey’s different responses.

Comparing the results of the experimental and simulated datasets, we found

that the λ values of experimental and simulated datasets are in the same

range. After corrected for the baseline effect, the values are still compatible.

This shows permutation test is a robust and powerful tool to evaluate the

significance of the results.

4.1.3 NeuroXidence method

In the last years, there are two different ways for people to interpret neuronal

coding: single cell coding or cooperative neuronal coding. One is based on

spike rate and the other is base on the assembly spike patterns. NeuroXidence
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method is a newly developed method that belongs to the second type. It has

already been shown that the detection of JSEs by NeuroXidence is reliable,

sensible and robust for uni-variate case. The two important parameters τc

and τr determines the precise spike patterns and the spike rate modulation

range, respectively. After extending to bi- and multi-variate case, NeuroX-

idence method remains its advantage of detecting the modulation of JSEs

which are different among several conditions, especially NeuroXidence meth-

ods separates the rate and assembly patterns coding in the non-stationary

processes (Fig. 3.5). No matter how the process changes, from γ-process to

Poission process or even latency covariations, the JSEs that NeuroXidence de-

tected among several conditions is still below the chance level. When several

different processes were analyzed by NeuroXidence, only 2 JSEs more/less

among different processes can be detected, which exhibits the high sensitivity

of NeuroXidence for the bi- and multi-variate cases. If NeuroXidence is ap-

plied to detect JSEs in processes with different rate level, except for τc and τr,

surrogates number (S) becomes the most important parameter in the method.

Number of surrogates should be set to 1 to ensure the non-biased estimates

of JSE of different rate level processes.

4.2 Short-term memory process in monkey pre-

frontal cortex

Based on the three methods mentioned above, we analyzed the spike and local

field potential signals from prefrontal cortex of two monkeys who performed

a visual discrimination task. Since the monkey had correct and incorrect

responses, we compared the results from each response and tried to find the

difference between different behavioral performance.

After applying multitaper method and permutation test, we found the modu-
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lation of two frequency bands (5−20 Hz, 25−70 Hz) are completely different.

Since the results come from a rather small percentage of significant pairs of

spike-field coherence, we generated the simulated datasets and applied the

same methods to the simulated datasets. It turned out that the results of

simulated and experimental datasets are compatible. This demonstrates that

even though the variability of individual spike-field coherence estimates might

be rather large, assessments of performance-related differences of λ based on

a large number of estimates is highly reliable. Quantitative comparison of

the two types of simulated data, the one modeling phase-precision and the

one modeling the strength of synchronization, illustrates that experimental

results in the high-frequency band are most likely based on precisely phase-

locked spikes that have a low probability of occurrence. Given the results of

the simulated data analysis, spikes must be locked with a precision of less than

2 ms to local field potential oscillations at 50 Hz (phase-precision: 0.2π ) to

reach λ values close to the maximal values (3.5%) observed in the experimen-

tal results. However, given the rather short period (w = 2 ms), an oscillation

frequency of 50 Hz, and a rate r1 = 25 spikes/sec, we expect 0.5 phase-locked

spikes per sliding window. This illustrates, first, that the method is very sen-

sitive and second, that differences in spike-field coherence due to behavioral

performance might be based on rather few synchronous events in prefrontal

cortex, which cannot be explained by chance.

After applying the extension of NeuroXidence to the monkey’s short-term

memory datasets, the occurring frequencies of JS-patterns show different mod-

ulations for correct and incorrect responses of the monkey. The differences of

frequencies of JSEs between behavioral performance are in the range of −5

to 5. The strongest increase of synchrony in correct trials occurs during early

delay. Performance related modulation of synchrony exists in JS-pattern com-

plexities from 3 to 7. The complexity 2 JS-pattern, which corresponds to the
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pair-wise JS-pattern, are not performance modulated. When we permutated

the trial-sets between correct and incorrect responses, the difference of JS-

patterns for permutated behavioral performance is no longer significant. This

shows that assembly of neurons in prefrontal cortex fired synchronously dur-

ing the early delay and sample period for monkeys to make correct response.

This result is consistent with that of spike-spike coherence analysis.
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Chapter 5

Conclusion

5.1 Scale Integration

Based on the results of spike-field coherence, the underlying process of short-

term memory seems to involve networks of different sizes within and, most

probably, beyond prefrontal cortex. Spikes, which were generated by single

neurons, cooperate with local field potentials, which were the slower fluc-

tuations of the environment. Although differences among behavioral condi-

tions appear to be based on rather few instances of phase-locked spikes, the

task-related effects on spike-field coherence are highly reliable and cannot be

explained by chance, as the comparison of results from experimental and sim-

ulated data shows. The differential locking of prefrontal neuron populations

with two different frequency bands in their input signals suggests that neu-

ronal activity underlying short-term memory in prefrontal cortex transiently

engages cortical circuits on different spatial scales, probably in order to coor-

dinate distributed processes.
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5.2 NeuroXidence method and Synchronized

firing

Based on the results of the calibration datasets, for bi- and multi-variate cases,

the extension of NeuroXidence remains its sensitivity and reliability of detect-

ing coordinate firing events for different processes. Based on this extension

of NeuroXidence, we demonstrated that in monkey’s prefrontal cortex during

short-term memory task, encoding and maintenance of the information rely

on the formation of neuronal assemblies characterized by precise and reliable

synchronization of spiking activity on a millisecond time scale, which is con-

sistent with the results from spike-spike coherence. The task and performance

dependent modulation of synchrony reflects the dynamic formation of group

of neurons has large effect on short-term-memory.
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Appendix A

Appendix: Coherence

The coherence function is a measure based on the spectral properties of the

processes. The coherence function, or squared coherence, is defined as

coh2
xy(f) =

|Sf(xy)|2
|Sf(x)|2|Sf(y)|2 (1.0.1)

Since the absolute value of |Sf(xy)|2 has the range from 0 to |Sf(x)|2|Sf(y)|2,
coh2

xy(f) could be interpreted as the square of the cross spectrum normal-

ized by the product of the auto-spectra. The normalization is very important

because it guarantees that only the coupling between two processes is consid-

ered. For example, if X or Y process has larger power at some frequency f

and leads to the large values of the cross spectrum, the normalization compen-

sates this phenomenon. If the X and Y processes are identical, it is valid that

at all frequencies |Sf(xy)| = |Sf(x)|2 = |Sf(y)|2 and coh2
xy(f) = 1. On the

contrary, if X and Y are totally independent, it follows that at all frequencies

Sf (xy) = 0 and coh2
xy(f) = 0. Between these two extremes, coherence func-

tion reveals different possible relations between the processes. For example, if

X and Y are strongly coupled only over a limited range of frequencies, which

could be the case if X and Y both have strong responses to a sinusoidal signal

of frequency f0, the coherence function is nearly 1 at f0 and zero elsewhere.

Meanwhile, the coherence function suppresses any phase information of the
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single process, since it considers the relationship between two processes only

in terms of power at a given frequency.

Coherence is a useful frequency-domain function, which makes a rough descrip-

tion of the relations between two processes. However, the estimator coh2
xy(f)

in the coherence function should be defined carefully. Since the coherence func-

tion estimator based on raw auto- and cross-spectra cannot have a meaningful

interpretation, it requires the spectra to be smoothed before computing the

coherence. Thus it requires more concern to the smoothing process of auto-

and cross-spectra, especially the bias and resolution during the smoothing.

Their effect on the coherence function estimator is more difficult to deter-

mine, simply because of the way that coherence function is defined. Although

the general solutions for the bias and resolution of coherence function estima-

tor haven’t been achieved, the main interesting property of coherence is that

the estimator from the smoothed spectral estimates is quite robust. That is to

say, this estimator is not sensitive to the Gaussian or non-Gaussian processes.

Thus one can apply coherence function estimator with no concern on whether

the results of the analysis are sensitive to the amplitude distributions of the

particular process.
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Appendix B

Appendix: Bonferroni

correction

In statistics, Bonferroni correction is one of the multiple-comparison correction

methods. It requires that, if n independent hypotheses are tested on a set of

data, the statistical significance level for each hypothesis should be 1/n times

as it would be if only one hypothesis is tested. For instance, if two independent

hypotheses are tested on the same data with significance level 0.05, one should

use the p-value threshold of 1/2 ∗ 0.05 = 0.25 for each of the hypothesis.

The Bonferroni correction guarantees the validity of the hypothesis test on

multiple-comparison conditions. Without the multiple-comparison correc-

tions, 1 out of 20 independent hypothesis-tests will appear to be significant

with significance level 0.05, which is purely due to chance.
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