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Kurzzusammenfassung der vorgelegten Arbeit

Die Funktion aller Zellen wird durch ein komplexes Netzwerk von Proteinen auf-

rechterhalten, welches nach Bedarf neue Proteine synthetisiert und beschädigte,

beziehungsweise nicht benötigte Enzyme/Proteine abbaut. Dieses Netzwerk

der sogenannte Proteinhomeostase benötigt Regulation auf unterschiedlichen

Ebenen um korrekt zu arbeiten. Störungen dieser Maschinerie sind an der

Pathogenese von malignen Neoplasien und neurodegenerativen Erkrankungen

beteiligt. Außerdem beeinträchtigen verschiedene humanpathogene Bakterien

und Viren dieses Netzwerk der Proteinhomeostase. Um diese Krankheitsbilder

besser zu verstehen ist es daher notwendig die Regulation dieses Netzwerks

und die Auswirkungen von Pertubationen auf zellulärer Ebene zu beobachten

um Rückschlüsse auf die Pathogenese ziehen zu können. Es konnten bereits für

einige Krankheiten Therapieansätze entwickelt werden, die das Proteinhomeostase-

Netzwerk gezielt modulieren1–3. Trotz dieser Fortschritte ist weiterhin für viele

Störfaktoren unklar, wie sie das Proteinnetzwerk der Zelle beeinflussen. Dies

ist teilweise dem Umstand geschuldet, dass die resultierenden Effekte innerhalb

der Zelle hochdynamisch und daher oft schwer messbar sind. Teil dieser Arbeit

war es eine Messmethode zu entwickeln, die es ermöglicht die Auswirkungen von

proteotoxischem Stress, d.h. Störungen der Proteinhomeostase, auf die Dynamik

von Proteinsynthese und –abbau in der Zelle mit Hilfe von Massenspektrome-

trie (MS) zu untersuchen. Um diese Messungen zu ermöglichen wurde eine

neue Methode entwickelt, multiplexed enhanced protein dynamic (mePROD)

MS, welche durch besondere Probenzusammenstellung und Datenanalyse er-

möglicht, schnelle und transiente Veränderungen (im Zeitraum von Minuten) in

der Proteinbiosynthese von tausenden Proteine zu messen4. Zwei der prominen-

testen Regulatoren der Proteinbiosynthese die Integrated Stress Response (ISR)

und mammalian target of rapamycin (mTOR) werden mit vielen verschiedenen

Krankheiten in Verbindung gebracht2,5 und sind unter anderem Ziele für neue

Therapien in der Onkologie. Obwohl beide die Proteinbiosynthese beeinflussen,

wurden sie bisher als Signalwege mit unterschiedlichen Effekten auf die Protein-
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synthese gesehen. Mittels der neu entwickelten mePROD-Methode konnte im

Rahmen dieser Arbeit erstmals der globale Effekt beider Regulationswege auf das

Proteinnetzwerk gezeigt werden. Es fanden sich überlappende Muster zwischen

mTOR- und ISR-vermittelter Regulation der Proteinsynthese. Dies verändert die

bisherige Modellvorstellung für diese zellulären Vorgänge und stellt eine wichtige

Ressource für das Forschungsfeld dar4,6. Des Weiteren wurde die entwickelte

mePROD Methodik verbessert um den Probendurchsatz zu erhöhen7. Durch

die Kombination mit logik-basierter Messmethoden, konnte die Anzahl der durch

mePROD quantifizierten Proteinen bei gleicher Messzeit verdreifacht werden.

Die Dynamik von Proteinsynthese und -abbau wird häufig während Infektionen

verändert um die Vermehrung des Krankheitserreger zu ermöglichen oder sel-

biges zu bekämpfen. Für eine rationale Entwicklung von Therapien gegen diese

Infektionen ist es daher unumgänglich die Veränderungen ausgehend von dem

Erreger zu erfassen, zu verstehen und die Antwort der Wirtszelle auf die Infek-

tion zu charakterisieren. Ende des Jahres 2019 wurde ein neues Virus entdeckt,

SARS-CoV-2, welches sich, hochinfektiös, rasant verbreitet hat und zu einer welt-

weiten Pandemie geführt hat8–10. Um das neuartige Virus zu verstehen und auf

Basis molekularbiologischer Erkenntnisse Therapieansätze zu entwickeln, haben

wir die zuvor entwickelte mePROD Methode angewandt um die dynamischen

Veränderungen im Wirtsproteom zu erforschen. Es konnte erstmals beobachtet

werden, dass nach Infektion mit SARS-CoV-2 verschiedenste Prozesse dereg-

uliert wurden (mRNA Splicing, Glykolyse, DNS Synthese oder Proteinhomeo-

stase)11. Durch gezielte Inhibierung dieser Prozesse konnte gezeigt werden, dass

diese Funktionen der Wirtszelle wichtig für die Replikation von SARS-CoV-2 und

durch Medikation modulierbar sind. In einer weiteren Studie konnte zudem durch

Analyse von zellulären Signaltransduktionswegen nachgewiesen werden, dass

die Aktivierung von Wachstumsfaktor-Signalwegen für die effiziente Replikation

der Viren notwendig ist12. Die getestete Anwendung von Medikamenten, die

bereits zugelassen (Ribavirin, Sorafenib) oder sich in klinischen Studien befinden,

blockierte die Virusreplikation vollständig in vitro und zeigt somit mögliche, in die

Klinik übertragbare, Therapieansätze.
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Short summary of the presented work

Correct cellular function is ensured by a complex network of proteins and en-

zymes, regulating protein synthesis and degradation. This protein network, main-

taining the so-called protein homeostasis, regulates those processes on multiple

levels, producing new or degrading old proteins to cope with changing intra- and

extracellular environments. Disturbance of this tightly regulated machinery can

have severe effects on the cell and can lead to a variety of pathologies on or-

ganism level. Diseases including cancer, neurodegeneration and infections are

associated with causative or consequent alterations in protein homeostasis. To

understand the pathologies of these diseases, it is therefore critical to examine

how perturbations of protein homeostasis affect cellular pathways and physiol-

ogy. In the recent years, analysis of protein homeostasis networks has resulted in

the development of novel therapeutic approaches1–3. However, for many factors

it remains unclear how the cell is affected, if they are disturbed. Protein synthe-

sis and degradation represent immediate responses of the cell to changes and

need to be studied in the right timeframe, making them difficult to access by com-

mon methodology. In this work we developed a new mass spectrometry (MS)

basedmethod to study protein synthesis and degradation on a system-wide scale.

Multiplexed enhanced protein dynamic (mePROD) MS was developed, overcom-

ing these limitations by special sample mixing and novel data analysis protocols.

MePROD thereby enables the measurement of rapid and transient (e.g. minutes)

changes in protein synthesis of thousands of proteins4. During responses of the

cell to stressors (e.g. protein misfolding, oxidation or infection), two major path-

ways regulate the protein synthesis: the Integrated Stress Response (ISR) and

mammalian target of rapamycin (mTOR). Both pathways have been connected

with various diseases in the past2,5 and are common therapy targets. Although

both pathways target protein synthesis in stress responses, the set of targets reg-

ulated by these pathways was believed to differ. Through the new mePROD MS

method we could measure a comprehensive comparison of both pathways for

the first time, revealing comparable system-wide patterns of regulation between
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the two pathways. This changed the current view on the regulation elicited by

these pathways and furthermore represents a useful resource for the whole field

of research. We could further develop the mePROD method and decrease MS

measurement time needed to obtain an in-depth dataset7 . Through implemen-

tation of logic based instrument methods, it was possible to enhance the number

of measured proteins by approximately three-fold within the same measurement

time.

The dynamics of protein synthesis and degradation are frequently modulated by

pathogens infecting the cell to promote pathogen replication. At the same time, the

cell counteracts the infection by modulating protein dynamics as well. To develop

useful therapy approaches to fight infections, it therefore is necessary to under-

stand the complex changes within the host cell during infections on a system-wide

scale. In 2019, a novel coronavirus spread around the world, causing a world-wide

health-crisis8–10. To better understand this novel virus and its infection of the host

cell we conducted a study applying the mePROD methodology and classical pro-

teomics to characterize the dynamic changes during the infection course in vitro.

We discovered that the infection remodeled a diverse set of host cell pathways

(e.g. mRNA splicing, glycolysis, DNA synthesis and protein homeostasis) and

thereby showed possible targets for antiviral therapy11. By targeted inhibition of

these pathways, we could observe that these pathways indeed are necessary for

SARS-CoV-2 replication and their inhibition could reduce viral load in the cells. An-

other experimental approach focused on the dynamic changes of protein modifica-

tion, namely phosphorylation, after infection with SARS-CoV-212. Here, we could

show the very important participation of growth factor signaling pathways in viral

proliferation. Both studies together revealed critical pathways that are needed

for the viral proliferation and hence are promising candidates for further thera-

pies. Subsequent targeting of these pathways by either already approved drugs

(Ribavirin and Sorafenib) or drugs in clinical trials (2-deoxyglucose, Pladienolide-

B, NMS-873, Pictilisib, Omipalisib, RO5126766 and Lonafarnib) could block viral

replication in vitro and suggests important clinical approaches targeting SARS-

COV-2 infection.
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Acronyms

AHA Azido-homoalanine (methionine analogue)

ATP Adenosine triphosphate

DDA Data dependent acquisition

GFR Growth factor receptor

ISR Integrated stress response

mePROD Multiplexed enhanced protein dynamics

MS Mass spectrometry

mTORC1 mTOR complex I

mTOR Mammalian target of rapamycin

NGS Next generation sequencing

SILAC Stable isotope labeling in cell culture

TMD Targeted mass difference

TMT Tandem mass tags

UPRmt Mitochondrial unfolded protein response
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Introduction

Protein dynamics

The central dogma of cell biology relies on the protein synthesis from mRNA tran-

scribed complementary to the genomic DNA. While it is nowadays easily possible

to predict all possible protein sequences derived from the genome, the synthesis

event itself is highly regulated and not every protein is expressed in every tissue

and condition. Furthermore, in recent years, studies showed that the level of total

transcribed mRNA often does not correlate with the resulting protein levels in the

cell13. This phenomenon is the result of multiple layers of regulation at the pro-

tein level, starting with synthesis, followed by, often transient, modifications and

finally, ending with degradation (Fig. 1). Each layer on its own has an influence

on the final protein amount and function.

The synthesis machinery of proteins is controlled by a plethora of events manag-

ing the translational status of an mRNA14. Regulatory networks integrate a vari-

ety of signals (such as metabolic states, extracellular changes or stressors) and

differentially control mRNA translation accordingly. Subsequently, the produced

polypeptides emerging from the ribosome can be heavily modified by enzymes or

chemicals. These modifications can be highly dynamic and often regulate protein

function15. While somemodifications (e.g. some oxidation states) are irreversible,

others, such as phosphorylation, are not. Modification of proteins and enzymes

thereby represents a fast molecular switch for their functions, without the energy

needed to synthesize or degrade the protein. The last major component of the

proteome dynamic regulatory network is the degradation machinery. Proteins are

constantly turned over, either due to irreversible modification, damage or func-

tional reasons, by several systems working in conjunction to control protein lev-

els16,17. The degradative system as well is highly dynamic and constantly adapts

to the cellular needs.

The dynamic equilibrium of these processes has been termed “protein home-

12



ostasis” (or “proteostasis”). Disturbance of protein homeostasis and subsequent

deregulation of protein dynamics can be both cause and/or effect of various dis-

eases, such as cancer, infection or neurodegeneration2,5,18–20, thus, having high

pathological relevance. During these pathologies, protein dynamics are subject

to several regulatory events. On one hand, diseases can cause the proteostasis

to collapse, altering the properties and composition of the proteome. On the other

hand, cells have innate sensors for irregular protein homeostasis, triggering re-

sponse mechanisms trying to restore proteome balance. Both aspects happen at

the same time, making quantitative assessment of the resulting changes manda-

tory. To therapeutically tip this balance in favor of the patient, it is therefore critical

in the first step to measure and understand the proteome changes happening

during human pathologies, to derive potential candidates to target by therapies.

Figure 1: Scheme of the central dogma of cell biology. Gene information is tran-

scribed into mRNA, which in turn is translated into the protein. The pool of the

resulting protein is partially modified and degraded, reaching a dynamic equilib-

rium of protein synthesis, modification and degradation.

The effect of cellular stress on protein dynamics

As stated before, the regulatory networks controlling proteostasis sense and inte-

grate diverse cellular stress signals. Stress in this context can range frommetabo-

lic stress, such as adenosine triphosphate (ATP) depletion, over viral or bacterial

infections to proteotoxic stress elicited by damage to proteins/enzymes or muta-

tions. These stresses are recognized by various sensors in the different cellular

compartments and signaled to downstream targets. The signaling events from
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stress are diverse and have different results, depending on cell type and stres-

sor. For example, some cascades can result in inflammatory responses, elevat-

ing expression levels of cytokines, while some others can increase the capacity

of chaperones to increase cellular maintenance capacity. While some response

types are specific for certain stressors (e.g. antioxidant genes during oxidative

stress; strong immune reponse during infection), some pathways are common

between most stressors. These common pathways are signaling hubs inside the

cell that integrate information from different potential stress sources (Fig. 2). A

prominent and important example is the translational control after sensing cellular

stress. There are two major pathways controlling protein translation upon stress

on multiple levels: 1) the integrated stress response (ISR), which acts by dy-

namic phosphorylation of the eukaryotic translation initiation factor 2 alpha (eIF2α

or EIF2S1), thereby limiting its activity21–23 and, 2) the mammalian target of ra-

pamycin complex 1 (mTORC1), which regulates protein synthesis by phosphory-

lation of ribosomal protein S6 kinase 1 (S6K1) and the eukaryotic initiation factor

4E binding protein 1 (EIF4EBP1)24,25. Both pathways have been extensively stud-

ied for their translational regulation26–28, mainly by next generation sequencing

(NGS) based methods, and have been viewed as substantially different in con-

text of their effect on translation. Notably, both pathways not only directly regulate

protein synthesis, but also elicit transcriptional and degradative changes, shaping

the stress response proteome.

Protein dynamics during infection

Both ISR and mTOR pathways and the corresponding changes in protein dynam-

ics have not only found associated with cancer or neurodegeneration, but also

been linked to various infectious diseases. Both bacterial and viral infections are

known to modulate protein synthesis, modification and degradation, resulting in

diverse effects on the host cell, which are not yet fully understood. Bacteria, such

as Legionella sp. or Salmonella sp., can secrete effector proteins into the host

cell that modulate cellular translation via mTORC1 or reshape the ubiquitin sys-

tem to change autophagy and degradation29–31. While bacteria usually secrete
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Figure 2: Simplified scheme of cellular stress responses. The integrated stress

response (ISR) and mammalian target of rapamycin complex 1 (mTORC1) in-

tegrate stress signals from various sources (e.g. unfolded/damaged proteins in

different compartments [cytosol, endoplasmic reticulum or mitochondria; UPRmt],

energy stress, starvation or infections) and trigger multiple signaling cascades.

Both pathways inhibit protein synthesis and drive expression of different sets of

stress response genes (e.g. inflammatory genes such as cytokines, chaperones

or antioxidant responses).

proteins to interact with the host proteome, viruses release their genome into the

host to hijack machineries for virus production. Both RNA and DNA viruses are

known to manipulate the host translation machinery to efficiently translate viral

proteins3,20,32–34.

In case of RNA viruses, protein synthesis is not only regulated by the synthesized
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viral proteins, but is in turn also commonly repressed by the host cell via the ISR as

a countermeasure35,36. The viral RNA genome is sensed by the double-stranded

RNA activated kinase protein kinase R (PKR), which is one of the four kinases

driving the ISR23, thus leading to translational modulation and important antiviral

signaling. However, many viruses are able to evade such antiviral responses by a

variety of different mechanisms34,37. Direct interaction with the cellular translation

components can force production of viral genes, albeit antiviral signaling34,38,39. In

addition, the directed degradation of important host molecules can lead to antag-

onistic effects on inflammatory responses and antiviral signaling40,41.

Notably, pathogens not only affect protein synthesis and degradation, but they

also dynamically modulate protein function either directly42 or indirectly by changes

in the modification states43. Hence, during infections the host proteome is re-

shaped on multiple levels, creating a tug-of-war between pathogen and host

over the host cellular machineries. Assessment of these changes has proven

important to understand the disease and reveal treatment options43,44.

Measurements of protein dynamics

In the recent years mass spectrometry has taken the lead in proteomics and

currently represents the state of the art technology to measure protein levels45.

With more sensitive machines and sophisticated workflows, quantitative measure-

ments of levels from >12,000 proteins46 are possible together with deep profiling

of modification sites, such as phosphorylation47,48. However, the quantitative as-

sessment of protein synthesis and degradation has provenmore difficult and fewer

advances have been made so far. Protein dynamics are commonly measured

by incorporation of labeling agents, such as isotope marked amino acids (sta-

ble isotope labeling in cell culture; SILAC49), unnatural amino acids (e.g. Azido-

homoalanine; AHA50) or puromycin51. These labeling reagents enable to distin-

guish the pre-existing proteins from newly synthesized proteins during the labeling

time by amass shift. Due to the higher complexity of the sample, the depth of such

measurements is intrinsically reduced. Additionally, while studying rapid changes

in protein synthesis/degradation the signal of interest is usually of very low inten-

16



sity and thus measurement is restrained by technical limitations. To overcome

these limitations several approaches have been developed by either multiplexing

samples by TandemMass Tags (TMT)52 or enrichment of labeledmoieties by affin-

ity purification50,51. TMT reagents enable the pooling of up to 16 samples in one

measurement by modifying peptides with different isobaric reporter reagents. Af-

ter labeling, the modified peptides from different samples can be pooled and mea-

sured simultaneously. The labeling reagents will modify peptides from all samples

with the same mass, thereby adding no additional complexity in the survey scan.

Upon fragmentation (that is commonly done to identify the peptide sequence) the

labeling reagent will fall apart into (up to 16) different reporter ions, depending on

the sample. This then allows accurate quantification of the multiplexed samples

within the same MS run, strongly reducing technical variation. Nevertheless, for

measurements of protein dynamics these approaches still lack either the detection

of rapid changes due to long labeling times (pulsed SILAC / TMT52) or reasonable

depth50,51. Additionally, the incorporation of unnatural amino acids intrinsically

disturbs the observed system, due to differences in biology6,53, rendering them

prone to experimental artifacts.

Manuscripts

Multiplexed enhanced protein dynamics mass spectrometry

In the manuscript “Functional Translatome Proteomics Reveal Converging

and Dose-dependent Regulation by mTORC1 and eIF2α”, a novel advance-

ment in protein dynamic profiling has been established4. Pulsed SILAC combined

with TMTmultiplexing and subsequent addition of a “boost” channel, amplified the

signal of interest, which can now bemeasuredmore reliably by theMS-instrument.

This, in conjunction with a custom-built data analysis algorithm, significantly en-

hanced the identification rates for newly synthesized proteins, while allowing short

labeling times (time-scale of minutes) to study rapid changes within the cell. Appli-

cation of this novel method to study the direct effects of cellular stress on protein
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synthesis regulation revealed that the two major pathways responsible for stress

integration to translation (ISR and mTORC1) have a largely overlapping set of

translationally regulated targets. Contrasting the commonly held view picture of

translation regulation upon stress, our results showed an intrinsic tendency of

each mRNA for translational repression upon stress, independent of the under-

lying pathway, that takes place in a gradual manner. Protein synthesis is pre-

dominantly fine tuned on a gradual and continuous scale rather than being strictly

binary and switching between an ’on’ and ’off’ state in response to cellular needs.

Since both pathways are frequent target of therapies and implicated in a variety

of diseases2,18,54,55, these findings shed new light on the effect of such therapies

and might implicate novel approaches to modulate protein synthesis. Besides the

biological insights gained through this study, the methodology presents a major

advancement in the field of protein dynamics. The mePROD method allows short

labeling times to reach high temporal resolution, while allowing in-depth analysis,

in an unbiased system. Previous approaches, as described above, used the in-

corporation of non-canonical substances, thereby disturbing the biological system

studied. This issue is also discussed in our authors view manuscript - “Unbiased

translation proteomics upon cell stress”6.

Albeit reaching sophisticated depth of analysis during mePROD measurements,

extensive pre-fractionation and measurement time was needed to perform these

experiments. Although boosted by the carrier channel, the signal of interest, com-

pared to the rest of the sample, still only represents 10% of the intensity range.

Hence, during classical measurements (data dependent acquisition; DDA) on MS

instruments, most of the measurement time is used to quantify the pre-existing

proteome and rather than the newly synthesized fraction. Mass spectrometers

usually select precursors ranked by their intensity, intrinsically biasing the data

towards the highly abundant background proteome. To enable higher identifica-

tions, while reducing the sample input required, an alternative approach to DDA

was introduced and benchmarked in our follow up study “Instrument Logic

Increases Identifications during Mutliplexed Translatome Measurements”7.

Here we introduced an alternative instrument set up to identify the introduced label

directly during the measurement together with its unlabeled counterpart, subject-
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ing both to quantification. This selection is mostly independent on the intensity of

the labeled moiety, overcoming previous limitations. Thereby, the bias towards

the background proteome is reduced, since for each high-abundant background

peptide, the low-abundant counterpart is also quantified. In addition, themeasure-

ments of both (labeled and unlabeled) partner peptides enables robust normal-

ization, solidifying the resulting quantification. The more efficient use of machine

time, hence, enables higher sample throughput, since less time is needed per

sample, makes the method suitable for low input samples (e.g. patient samples

or primary cells) and, extensive pre-fractionation can be avoided.

Protein dynamics upon infection with SARS-CoV-2

The proteome of host cells during infection is subject to highly dynamic changes

on many layers. Hence, measuring protein dynamics during an infection can

provide with critical data to understand the course of disease and suggest treat-

ment options. In 2019, a novel and highly infectious coronavirus, SARS-CoV-

2, emerged causing a worldwide health crisis. Although exhibiting similarities to

other coronaviruses, such as SARS-CoV56, pathophysiological differences could

be observed57. Besides extensive screening for drugs, rational selection of candi-

date drugs based on cell-biological insights is needed to rapidly suggest treatment

options. In the study “Proteomics of SARS-CoV-2-infected host cells reveals

therapy targets”11, the previously developed mePROD method was applied, in

conjunction with classical quantitative proteomics, to a cell line model infected with

SARS-CoV-2 intact virus, previously isolated in Frankfurt58. The study showed

that the used Caco-2 cell line was highly permissive for SARS-CoV-2 and repre-

sents a valid model system to study the viral infection. Furthermore, protein dy-

namic profiling revealed, that in contrast to other RNA viruses3,20,32, SARS-CoV-2

exhibited only minor effects on protein synthesis, which likely is the effect of strong

increase in the host translational machinery as measured by mePROD. By mea-

suring the proteome´s course during infection, it was observed that several ad-

ditional pathways were significantly altered (splicing, glycolysis, proteostasis and

DNA synthesis), suggesting important changes during infection. Indeed, targeting
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these pathways by repurposing drugs previously used in clinical tests (ementine,

pladienolide-B, 2-deoxy-glucose, ribavirin and NMS-873)59–64 showed significant

repression of viral replication at clinically achievable concentrations. The results

of this in vitro proteomics dataset offers promising potential treatment options.

Previous studies on other viruses revealed strong changes in the dynamics of

protein phosphorylation during infection43,44. However, comprehensive data for

SARS-CoV-2 was not available. Hence, we performed deep phospho-proteomic

profiling combined with quantitative proteomics to study system-wide signaling

network dynamics upon infection12. The study “Growth factor receptor signal-

ing inhibition prevents SARS-CoV-2 replication” shows extensive reprogram-

ming of host cell protein modification and signaling. Bioinformatic drug-target net-

work analysis of the most significantly changed signal transduction pathways re-

vealed a central role of the growth factor receptor (GFR) signaling cascade in viral

proliferation. Downstream inhibition of two major axes (phospho-inositol 3 kinase

; PI3K and mitogen activated protein kinase ; MAPK) of GFR signaling by re-

purposed drugs (pictilisib, omipalisib, sorafenib, lonafarnib and RO5126766)65–68

could efficiently block SARS-CoV-2 replication. These results significantly added

to the understanding of the new disease and opened new treatment options that

now need to be validated in clinical settings.

Taken together, a new major advancement for the field of protein dynamics mass

spectrometry was established, used to dissect fundamental cell biological pro-

cesses under stress conditions and transferred to a highly relevant diseasemodel.

Profiling proteome dynamics on multiple levels successfully revealed treatment

options for a novel disease. In combination with quantitative modification profiling

and whole cell proteomics, system-wide proteome measurements could discover

critical pathways during SARS-CoV-2 infection. Modulation of these pathways by

available drugs lead to a complete block of viral proliferation at clinically achiev-

able concentrations and is currently independently evaluated69,70 in the clinic.
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Discussion

Unbiased measurements of protein synthesis

While the measurement of total protein levels by proteomics improved a lot dur-

ing the last years, the assessment of protein dynamics has intrinsic challenges

- 1) During protein synthesis measurements the signal of interest usually has a

very low intensity, making reproducible detection difficult. Enrichment of this sig-

nal by affinity purification has been established in the past71 and widely used.

However, the necessary use of non-canonical amino acids intrinsically influences

the observed system by altering protein synthesis kinetics6,53. 2) Non-biased ap-

proaches using SILAC require long labeling times to reach sufficient signal inten-

sity. Thus, no good temporal resolution can be achieved. 3) NGS based meth-

ods have an inherent bias during sample preparation and data analysis, render-

ing them unable to detect global changes72,73. Although they exhibit high mea-

surement depth, quantification is biased. mePROD profiling largely overcomes

these limitations, by combining SILAC based labeling with TMT multiplexing and

a unique sample combination strategy4,7. The used amino acids enable labeling

without interfering with the studied system, since they harbour naturally occurring

isotopes. The combination of samples with a boost channel greatly increases the

signal intensity of labeled peptides, thereby increasing the identification and quan-

tification rate without affecting quantification quality. Increasing the signal intensity

also greatly enhances temporal resolution, making labeling times of minutes pos-

sible without the need for enrichment. Through the simultaneous measurement

of already existing and newly synthesized proteins, quantification bias is elimi-

nated, making global changes accurately accessible. We further broadened this

approach applyingmachine logic filters to themeasurement method7. Deep trans-

latomemeasurements by the original mePROD protocol originally required a large

amount of sample material, easily obtainable in cell culture, but difficult to obtain

when working with primary cells or patient material. By efficient use of acquisi-

tion time on the mass spectrometer, 1) the previously required fractionation depth

was reduced, decreasing the input material required, making it more applicable
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to limited (patient) material, and 2) the total measurement time on the instrument

is reduced, which limits costs and enables higher throughput of samples.

Translational control upon stress

The power of the developed method was successfully demonstrated by the appli-

cation to various scenarios. We showed that mePROD enables faithful quantifi-

cation of cellular translation upon induction of stress response pathways4. This

unbiased approach shed new light on translation regulation upon stress. mRNA

translation was believed to be targeted specifically by stress response pathways,

such as the ISR or mTOR. Through our comprehensive datasets, we showed that,

in contrast to the common view, the majority of mRNAs is translationally regulated

independent of the upstream pathway. The bulk pool of mRNAs exhibits a dose-

dependent translation attenuation that is dependent on the global levels of protein

synthesis within the cell. While the majority of mRNAs follows global translation

trends, subsets of mRNAs seem intrinsically resistant (or especially sensitive) to

repression of the translation machinery. The nature of this resistence (or sen-

sitivity, respectively) remains unclear and will require further studies. Possible

mechanisms include RNA structural elements, which are a common strategy of

viral mRNAs to modulate their efficient translation74. Interaction with the translat-

ing or initiating ribosomes could drive differential sensitivity to translational arrest

by shaping the accessibility of the mRNA to the limited ribosome pool. Another hy-

pothesis would be the participation of RNA binding proteins, that modulate trans-

lation efficiency. In the past years newly developed methods identified hundreds

of previously unknown proteins with the ability to bind mRNA75. These proteins

likely control translational, as has been shown for some single cases76. Differ-

ential control of protein synthesis on the level of the ribosome expands the list of

possible regulatory events. Specialized ribosomes, exhibiting alternative compo-

sitions and/or modifications, have been described77, but so far our understanding

of these mechanisms is limited. The mechanisms of translation regulation will

most likely include a number yet unknown factors and functions. Understanding

such mechanisms in detail, will change the understanding of proteostasis-related
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diseases (e.g. neurodegeneration) and could lead to the discovery of new thera-

peutics.

Implications for disease biology

Deregulation of translation control is a hallmark of many diseases. Aberrant

mTOR signaling is often found in various cancers. Common mutations in the

pathway include activation of the PI3K/AKT axis (e.g. PIK3CA H1047 or AKT

E17K), inactivation of the TSC1/TSC2 complex or activating mutants of mTOR

itself78. Through promoting translation, activated mTOR drives cancer prolifera-

tion. Hence, it has been selected as a therapeutic target and various inhibitors

(mainly rapamycin analogues; Sirolimus, Everolimus or Temsirolimus) are in clin-

ical use. However, the success of these treatments for cancer is limited, since

often feedback loops confer resistance to the treatment79–81. Understanding the

translational outcome of sustained mTOR inhibition could be critical for the knowl-

edge of resistance formation. Diseases linked with the ISR paint a similar picture.

Mutations in ISR components mostly affect brain and pancreas and are linked

with a plethora of cognitive disorders and neurological symptoms82. These muta-

tions often target the eukaryotic initiation complex eIF2 and thereby have direct

effects on translation control. Although the molecular mechanism how these mu-

tations affect translation (limitation of the ternary initiation complex) are known,

the result for cells and tissue is not clear. Translatome studies employing me-

PROD to dissect the translation and proteome landscape in a disease reflecting

mutational background might shed new light on these pathologies. Especially in

the light of recent studies, where modulation of the ISR with the small molecule

ISRIB27,83, blocking the translation repression, shows in vitro efficiency against

the MEHMO syndrome84 , in vivo effects in a down syndrome mouse model85,

and other disease models2,86. These results additionally highlight the importance

of our understanding of translation control for many diseases.
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Dynamic protein changes upon viral infection

Studying dynamic protein networks can be useful to unravel infection related

pathways, for direct medical intervention. Application of multiple proteomic ap-

proaches led to the discovery of important pathways in SARS-CoV-2 infection that

are targetable by small molecule compounds. We observed significant changes

in the expression of spliceosome components and several metabolic pathways

(e.g. glycolysis, nucleotide biosynthesis). Interestingly, many of the identified

components of the splicing machinery have been found to be associated with

other viruses previously87–89. Indeed, targeting the spliceosome with pladieno-

lide B90 showed impaired viral replication within the host cell. Similar effects we

observed with the metabolic pathways found, where inhibition of the glycolytic

enzymes by 2-DG and interference with the nucleotide biosynthesis by ribavirin

showed antiviral effects in our system. Notably, ribavirin is already approved for

therapy and used to treat other viral infections (hepatitis C61 and RSV60), enabling

rapid repurposing studies to treat COVID-19.

Protein modification are commonly altered during infection, changing signal-

ing cascades and/or protein functions. While some important pathways exhibit

changes directly on protein levels (i.e. synthesis or total protein pool), others

can only be identified while profiling protein modification states. We performed

global phosphorylation analysis of cells infected with SARS-CoV-2 and, by com-

prehensive network analysis we identified additional pathways important for viral

replication. Our analysis showed growth factor signaling downstream signaling

to play a central role during SARS-CoV-2 infection. These results are consistent

with other studies, showing a clear connection between GFRs and diverse viral

infections91–95. GFRs and their downstream effectors have been extensively stud-

ied for cancer therapeutics96,97 and a variety of drugs have been developed66,98,99.

We clearly showed that interference with these signaling axes, by repurposing

available drugs blocked SARS-CoV-2 replication in vitro.

Taken together, our work shows that the examination of global protein dynamics

(i.e. translation, dynamic protein level changes and modification) can improve
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understanding of diseases and lead directly to the discovery of druggable path-

ways. The quantification of translation, total protein levels and protein modifica-

tion upon infection, combined with sophisticated bioinformatic network analysis

revealed several key pathways needed for viral replication. Transferring the can-

didates to antiviral assays, in which we treated with already available drugs (such

as ribavirin or sorafenib), showed significant reduction of viral load inside cells in

vitro. This provides with the first step from bench-to-bedside. These drugs are

now independently tested for their clinical efficiency for fighting the infection69,70.

Analysis of protein network changes can reveal phenotypes and effects not visible

on the level of single genes/proteins. Thus, protein dynamic measurements have

broad future applications for medical and cell biological research, spanning nearly

all disease relevant fields.
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SUMMARY

Regulation of translation is essential during stress.
However, the precise sets of proteins regulated by
thekey translational stress responses—the integrated
stress response (ISR) and mTORC1—remain elusive.
We developed multiplexed enhanced protein dy-
namics (mePROD) proteomics, adding signal amplifi-
cation to dynamic-SILAC and multiplexing, to enable
measuring acute changes in protein synthesis. Treat-
ing cells with ISR/mTORC1-modulating stressors, we
showedextensive translatomemodulationwith�20%
of proteins synthesized at highly reduced rates.
Comparing translation-deficient sub-proteomes re-
vealed an extensiveoverlapdemonstrating that target
specificity is achieved on protein level and not by
pathway activation. Titrating cap-dependent transla-
tion inhibition confirmed that synthesis of individual
proteins is controlled by intrinsic properties respond-
ing to global translation attenuation. This study re-
ports a highly sensitive method to measure relative
translation at the nascent chain level and provides
insight into how the ISRandmTORC1, twokeycellular
pathways, regulate the translatome to guide cellular
survival upon stress.

INTRODUCTION

Stress response mechanisms control cellular fate through multi-

layered regulation. Attenuation of translation is a rapid cellular

response triggered by various stresses, such as the induction

of the integrated stress response (ISR) and mTOR inhibition

(Sonenberg and Hinnebusch, 2009). The ISR is driven by the

phosphorylation of eukaryotic initiation factor 2 subunit 1

(eIF2a/EIF2S1) by one of four eIF2a kinases (EIF2AK1-4) and

activated by diverse stresses, such as heme depletion (EI-

F2AK1/HRI), viral infection (EIF2AK2/PKR), ER stress (EIF2K3/

PERK), or amino acid deprivation (EIF2AK4/GCN2) (Taniuchi

et al., 2016). Phosphorylation of eIF2a causes tightened bind-

ing to guanine nucleotide exchange factor eIF2B, preventing

formation of the 40S preinitiation complex and leading to cellular

translation attenuation (Kozak, 1999; Krishnamoorthy et al.,

2001). Control of cellular translation by the ISR plays a central

role in various diseases, such as diabetes, cancer, and viral

infection (Back et al., 2009; Clavarino et al., 2012; Pak-

os-Zebrucka et al., 2016).

The mammalian target of rapamycin complex 1 (mTORC1) is

the second major pathway mediating translational control in

cells. Under basal conditions, mTORC1 phosphorylates the

EIF4E binding proteins EIF4EBP1-3 and ribosomal protein S6

kinase (p70S6K1) (Sonenberg and Hinnebusch, 2009). EIF4EBP

phosphorylation leads to dissociation from eIF4E, enabling

binding to eIF4G and the formation of the initiation complex at

the 50-cap of mRNAs. Phosphorylation of p70S6K1 activates

its kinase function and regulates translation by targeting

EEF2K, EIF4B, and ribosomal protein S6 (Holz et al., 2005;

Raught et al., 2004; Wang et al., 2001). In response to low

nutrient concentrations, mTORC1 becomes inactivated, result-

ing in hypo-phosphorylated EIF4EBP that subsequently binds

eIF4E and represses cap-dependent translation. Consequently,

mTORC1 has major control over cellular behavior, and its regu-

lation is modulated in numerous cancers (Sabatini, 2006).

Studies monitoring EIF4EBP- and eIF4E-dependent translation

regulation identified a small subset of mRNAs to be controlled

via this route (De Benedetti and Graff, 2004; Colina et al., 2008;

Dowling et al., 2010; Graff and Zimmer, 2003; Roux and Topisir-

ovic, 2012).

Despite both pathways regulating (albeit different) processes

in translation initiation, eIF2a and mTORC1 are generally viewed

as separate, translation-controlling pathways with specific out-

comes (Wengrod and Gardner, 2015). A major focus of study

of these translation-regulating pathways has been the analysis

of downstream effects. Global analyses identifying and quanti-

fying the specific translational output of translation regulation

by eIF2a and mTOR have largely been carried out by ribosome

profiling (Hsieh et al., 2012; Jiang et al., 2017; Reid et al., 2014;

Sidrauski et al., 2015; Thoreen et al., 2012). These studies re-

vealed a low number of differentially translated transcripts,

despite showing extensive global downregulation of translation.

This is largely due to a normalization procedure bias (Chen et al.,

2015; McGlincy and Ingolia, 2017) that redistributes translation
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values back to unchanged global relative translation rates. As a

result, transcripts do not reach sufficient statistical signifi-

cance and/or fold changes (FC) to be identified as downregu-

lated during translation attenuation by eIF2a or mTORC1 (Masvi-

dal et al., 2017). Until today, conclusive datasets representing

the set of proteins with reduced translation following eIF2a- or

mTORC1-driven translation attenuation are not available. Thus,

it remains unclear which proteins are translationally regulated

by eIF2a and mTORC1 and whether these sets are indeed

distinct and may be discriminated by additional features besides

being capped.

In the last years, mass spectrometry (MS) approaches have

helped in assessing protein dynamics by detecting protein

degradation and synthesis, employing pulse-labeling of nascent

peptide chains with heavy amino acid isotopes (SILAC) or click-

reactive amino acids/puromycin (Becher et al., 2018; Jovanovic

et al., 2015; Mathieson et al., 2018; Savitski et al., 2018;

Schwanh€ausser et al., 2009; Welle et al., 2016). A major limiting

factor in the use of pulse-labeling newly synthesized proteins is

the low stoichiometry of labeled proteins, preventing accurate,

precise, and in-depth quantification (M€unch and Harper, 2016).

For basal protein degradation and synthesis experiments that

monitor proteins over several days (Schwanh€ausser et al.,

2011), this issue has been overcome by combining pulse-label-

ing MS and tandem-mass tag (TMT)-based multiplexing (Welle

et al., 2016). TMT allows isobaric tagging and pooling of up to

11 samples into one multiplexed sample. Combining pulse-la-

beling with TMT can achieve a balanced distribution of unlabeled

and labeled protein species. However, these methods do not

allow studying acute processes in response to cellular stimula-

tion, such as cellular stress affecting translation via eIF2a/

mTORC1.

Here, we describe multiplexed enhanced protein dynamics

(mePROD) MS that allows quantifying heavy label incorporation

after very short labeling times without a loss of depth or accu-

racy. mePROD is based on addition of a booster channel that

increases the signal of interest in a TMT-multiplexed and dy-

namic SILAC-labeled sample. This method enables acute moni-

toring of global translation rates and captures global translation

attenuation by quantifying newly synthesized proteins. Employ-

ing mePROD, we provide insight into the global rearrangement

of cellular translation upon modulation of eIF2a and/or mTORC1

activity to reveal common mechanisms in these distinct stress

responses.

RESULTS

mePROD Enables Detecting SILAC Incorporation at Low
Stoichiometry
Effects of stress on cellular translation are rapid and occur within

a few hours (Prostko et al., 1993). Therefore, time-resolved

methods are required to quantify translatome changes upon

acute stresses. However, since the median half-life of proteins

is about 46 h (Schwanh€ausser et al., 2011), only a small fraction

of every protein is to be newly synthesized in the first hours upon

cellular modulation. To simulate this situation, we mixed heavy

and light peptides at set ratios to assess the capability of

pulsed-SILAC to monitor acute changes in translation. Peptides

derived from digested HeLa whole-cell lysates grown in light

SILAC medium (from here on referred to as light) or in heavy

SILAC medium (K8 and Arg10 labeled, from here on referred to

as heavy) were mixed at ratios ranging from 0.1% to 10%

heavy/total (H/T) and analyzed by LC-MS2 (Figure 1A). Exam-

ining the range of measured H/T ratios revealed low accuracy,

in particular for low H/T ratios, with the measured median for

samples mixed at an H/T ratio of 0.1% deviating by about 100-

fold from the expected ratio (Figure 1B). At low H/T ratios, only

216 peptides were identified, at least partially explaining the

high variation observed (Figure 1C). The number of identified

peptides increased at higher H/T ratios consistent with an

inherent H/T threshold required for correct quantification of

H/T ratios. Thus, as previously described (Schwanh€ausser

et al., 2011), pulsed SILAC allowed us to monitor relative trans-

lation rates; however, for low H/T ratios, representing translation

activity occurring in the time span of few hours, identification

rates and accuracy of quantificationwas insufficient, since heavy

peaks were below the detection limit (Figure 1D, top).

When combining pulsed-SILAC with TMT-labeling, the MS1

signals of (heavy) peptides sum up across all samples due to

the isobaric nature of the TMT tag. We hypothesized that we

could take advantage of that property by adding a booster

channel containing peptides from fully SILAC-labeled cell ly-

sates. This approach can increase the summed heavy peak in-

tensity across all samples and enable accurate measurement of

protein translation at small H/T ratios (Figure 1D, bottom). To

validate this hypothesis, we prepared a TMT-labeled 10-plex

sample containing equimolar amounts of a dilution range of

H/T ratios (from 0.1%–10% H/T, as in Figure 1A), a fully SI-

LAC-labeled cell digest to increase the signal of heavy-labeled

MS1 peaks (booster channel), and a non-SILAC-labeled cell

digest (noise channel) to determine noise levels and allow base-

line subtraction for individual peptides (Figure 1E). We identified

and quantified 1,346 heavy peptides for all channels, improving

the identification rate by up to 6-fold across the range of

measured H/T ratios (Figure 1F) while using 12.5% of the ma-

chine time necessary for individual SILAC samples (Figures

1A and 1B). mePROD correctly determined H/T ratios across

the whole range (Figure 1G) and improved accuracy by three or-

ders of magnitude, especially for lower H/T ratios (Figure 1H).

Together, these results demonstrated the capacity of mePROD

to both increase the identification rate of H/T ratios and

accuracy.

Measuring Translation by mePROD
We next tested whether increasing the amount of booster chan-

nel added could further improve identification rates. Indeed,

increasing the amount of booster channel resulted in higher iden-

tification rates of heavy SILAC-labeled peptides without

affecting overall quantification results (Figures 2A and 2B). As

the variance of quantification increased 4- to 5-fold with booster

channel levels at or above 300% (Figure 2C), we continued with

using the booster channel at double-molar ratio (200%).

Next, we analyzed the dynamic range and accuracy of me-

PROD (Figure 2D). Plotting measured against input ratios

showed linear behavior across the whole range with a R2 value

of 0.998 (Figures 2E–2G), demonstrating the capability of
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mePROD to accurately measure a wide dynamic range of H/T

peptide ratios. Comparing MS2 versus MS3 methods did not

reveal any major changes (Figure S1A), with the addition of the

baseline channel being sufficient to overcome ratio compression

(Figure S1B).

To determine the applicability and temporal resolution of me-

PROD in cells, we labeled HeLa cells for 15–120 min and

measured H/T ratios (Figure 2H), revealing linear behavior (R2

of 0.9916) and indicating that 15 min of labeling time was

sufficient for quantification (Figures 2F–2H, S1C, and S1D). To

determine the dynamic range of mePROD for translation rate

analysis, we inhibited total cellular translation by addition of

different concentrations of cycloheximide (CHX) and analyzed

the global translation levels. We observed a CHX concentration

dependent decrease in global translation across the full range

(Figure 2I). Together, these findings demonstrated that

mePROD could determine acute changes in cellular translation

with high accuracy.

mePROD MS Quantifies the Functional Translatome
upon UPR Induction
Although the unfolded protein response (UPR) causes severe

ablation of global translation via phosphorylation of eIF2a (Har-

ding et al., 2000), the precise set of individual proteins, whose

translation is reduced upon UPR induction, remains unknown.

We determined if mePROD can measure acute changes in

translation and identify global translation effects that faithfully

reproduce the �50% ablation of translation observed by 35S

incorporation experiments (DuRose et al., 2009). Cells were

treated in triplicate with DMSO, 1 mM thapsigargin, or a co-treat-

ment of 1 mM thapsigargin and 500 nM ISRIB (a small molecule

reversing the effect of eIF2a phosphorylation (Sidrauski et al.,

2015)) and translation measured after 2 h of label incorporation

(Figures 3A and 3B; Table S1). Global translation attenuated by

approximately 50%, confirming data observed by othermethods

(Preston and Hendershot, 2013), andwas fully reversed by ISRIB

(Figure 3C). In addition to detecting global changes in translation,
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Figure 1. mePROD Proteomics Overcomes Low Accuracy and Identifications of Peptides at Low Heavy-to-Light Ratio

(A) Scheme of experimental design. Heavy and light peptides were mixed at indicated ratios.

(B) Measured heavy to total ratios on peptide level. Boxes indicate 25%/50% quartiles and the median; whiskers show standard deviation.

(C) Number of heavy labeled peptides quantified in (B).

(D) Underlying principle of mePROD to increase signals of interest. Low labeling stoichiometry prevents reaching the measurement threshold using standard

dynamic SILAC approaches (top). In mePROD, a booster channel comprised of a fully heavy labeled proteome boosts the signal of interest above the MS1

detection level (bottom). Heavy/total ratios for individual samples are then then determined from TMT signals quantified in MS2 (right).

(E) Experimental mePROD design and data processing. Samples from (A) were combined with noise and booster channels, TMT-labeled, pooled, analyzed by

LC-MS2, and raw files processed. Reporter ion intensities for peptides were sum normalized and heavy peptide intensities extracted. To enhance accuracy,

baseline values derived from the non-SILAC labeled channel were subtracted from each peptide.

(F) Samples as in (A) were analyzed using mePROD (using 1/8th of the LC-MS2 machine time used in A). Comparison of measured versus expected heavy/total

ratios. Boxes indicate 25%/50% quartiles and the median; whiskers show standard deviation.

(G and H) Comparison of median measured heavy/total peptide ratios (G) or variance (H) for samples measured by SILAC or mePROD. See also Figure S1.
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we quantified individual relative translation levels of 5,237 pro-

teins. Multidimensional scaling analysis (MDS) showed repli-

cates clustering together and that samples co-treated with thap-

sigargin and ISRIB behaved like control samples (Figures 3D and

S2). We next investigated proteins displaying significant

changes in translation upon UPR induction (adjusted [adj.] p

value < 0.05, FC (log2) < 0.5 or > 0.5), when compared to control

treatment. Translation of 1,780 proteins was significantly

decreased and nine proteins showed increased translation

upon UPR induction (Figure 3E). Proteins with increased transla-

tion upon UPR contained known UPR targets, such as XBP1 and

HERPUD1, that are mediated by the UPR receptor IRE1 and are

thus not reliant on eIF2a and not affected by ISRIB (Lee et al.,

2003; Miura et al., 2010; Ron and Walter, 2007; Yoshida et al.,

2001) (Figure 3F). Taken together, mePROD can measure acute

changes in translation with high overall depth. Strikingly, me-

PROD translation data strongly overlapped with data derived

from ribosome profiling under similar conditions while revealing

a much more significant portion of proteins reduced upon UPR

induction (Paolini et al., 2018; Reid et al., 2014; Sidrauski et al.,

2015) (Figure S3). Moreover, an extensive rearrangement of the

cellular translatome upon UPR induction was driven by eIF2a,

as shown by the nearly complete reversal of translational atten-

uation when co-treating with ISRIB (Figures 3C, 3D, 3G, and

S4A–S4C). Notably, there was no apparent difference in overall

translation ablation of cytosolic versus ER-resident proteins

(Figure 3H).

We next sought to analyze the fraction of 623 proteins

whose translation did not change upon thapsigargin treat-

ment, suggesting that translation of their mRNAs is resistant

to the eIF2a phosphorylation-induced changes observed.

GO term enrichment analysis of biological processes showed

six significant clusters (Figure 3I). However, the identified

clusters overlapped with clusters found for proteins with

decreased translation (Figure S4D). This observation strongly

suggested that global GO analyses could not explain the

observed complexity as subsets of the generalized GO terms

appear to be regulated in different ways. Therefore, we

analyzed the set of proteins with unchanged translation after

thapsigargin treatment on the level of individual proteins

using ReactomeFI gene set analysis (Figure 3J). We found

23 different clusters of interacting proteins, with a cluster

size larger than two, annotated to different cellular pathways

(q < 0.001). The identity of those clusters suggests that stress

conditions in the ER attenuate global translation while main-

taining critical parts of central pathways to maintain cell

function. In summary, we could employ mePROD MS to pre-

cisely and accurately measure protein translation at high
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Figure 2. High Dynamic Range of mePROD to Measure Heavy/Light Peptide Ratios and Translation

(A–C) mePROD 6-plex samples were prepared mixing noise channel, two replicates of each 5% and 10% heavy/total peptide mix, and indicated amounts

(relative to samples) of fully labeled booster channel. Shown are numbers of identified and quantified peptides (A), measured heavy/total (H/T) ratios (B), and

variance (C).

(D–G) Experimental design (D). Two mePROD 10-plex samples including samples ranging from 0.1% to 10% and 2.5% to 80% heavy labeled peptides were

mixed with noise and booster channel as indicated, fractionated, and analyzed. Comparison of measured versus expected heavy/total ratios (E). Histograms

depicting count distributions of measured heavy/total ratios of 10-plexes ranging from 0.1%–10% (F) and 2.5%–80% (G).

(H) Measured heavy/total peptide ratios of cells incorporating heavy amino acids into newly synthesized proteins for different lengths of time measured by

mePROD (n = 2).

(I) Cells were pre-treated for 2 h with indicated concentrations of cycloheximide and pulse-labeled for an additional 2 h with SILAC medium. Median global

translation was measured and plotted against cycloheximide concentration. See also Figure S1.
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Figure 3. Changes in the Cellular Translatome upon Activation of the Integrated Stress Response by Protein Misfolding in the Endoplasmic

Reticulum

(A) Experimental layout. Three different conditions were pooled (in triplicate) with noise and booster channels and analyzed by mePROD MS.

(B) Scheme of translational repression during the UPR, induced by PERK activation.

(C and D) Global translation levels assessed by mePROD MS for cell treated with DMSO, 1 mM thapsigargin (Tg), or 1 mM thapsigargin and 500 nM ISRIB (Tg +

ISRIB) for 2.5 h. Shown are median intensities of heavy labeled peptides (C). Error bars indicate standard deviation (n = 3). ***p < 0.001; n.s., not significant (two-

sided, unpaired Student’s t test with equal variance). AU, arbitrary units. Multidimensional scaling analysis of samples standardized by unit variance (D).

(E) Volcano plot showing fold change of relative translation versus adjusted p value of thapsigargin versus control treated cells. Orange dots indicate significantly

changing proteins (p values < 0.05 and fold change [log2] % �0.5 or R 0.5). Samples for which abundances in thapsigargin treated samples dropped below

baseline and no fold change could be calculated are indicated as not determinable (n.d.).

(F) Changes in translation levels of XBP1, HERPUD1, andHSPA5 (better known asBIP) measured bymePRODMS.Mean heavy abundancewas plotted with error

bars indicating standard deviation (n = 3). ***p < 0.001; n.s., not significant (two-sided, unpaired Student’s t test with equal variance). Tg, thapsigargin.

(G) Volcano plot showing fold change versus adjusted p value between thapsigargin and thapsigargin+ISRIB treated samples. Significantly changing proteins in

orange (as in E).

(H) Histogram depicting translation changes for cytosolic versus endoplasmic reticulum resident proteins.

(I) EnrichmentMap network showing significantly (q value < 0.001) enriched GO terms for proteins without significantly changed relative translation rates upon

thapsigargin treatment.

(J) ReactomeFI cluster analysis for proteins not changing relative translation rates upon thapsigargin treatment. Proteins were FI annotated, clustered, and

clusters analyzed for significantly enriched Reactome pathways (q value < 0.001). The most prominent pathway of each cluster is indicated. Connecting lines

show interaction of protein nodes. See also Table S1 and Figures S2–S4.
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sensitivity (i.e., below 2 h) to determine the effect of acute

thapsigargin treatment on translation.

Different Stress Response Pathways Share Common
Translational Programs
We next asked if diverse ISR activating stressors reshape the

cellular translatome in a similar fashion. Therefore, we induced

ISR-dependent eIF2a phosphorylation with commonly used

treatment paradigms for osmotic or oxidative stress (400 mM

sodium chloride or 500 mM arsenite, respectively) (Andreev

et al., 2015; Rabouw et al., 2019; Taniuchi et al., 2016) andmoni-

tored translation (Figure 4A; Table S2). Consistent with previous

studies (Bevilacqua et al., 2010; McEwen et al., 2005), both

treatments induced extensive translational attenuation (Fig-

ure 4A). Quantifying proteins on an individual level showed

3,204 proteins and 2,686 proteins with significant translation

decrease for osmotic stress and oxidative stress, respectively

(Figures 4B and 4C), with an overlap of �87% (Figure 4D). As

expected, only few proteins showed increased translation.

When comparing the translational effects of these stresses

with the ones induced by the UPR, we found distinctively

different classes of clusters for specific treatments (Figure 4E):

(1) several clusters were exclusive to ER stress. (2) Clusters

shared between all three treatments, suggesting a core require-

ment to maintain cell function. (3) One cluster for ER-to-Golgi

transport only observed upon NaCl or arsenite treatment.

Strikingly, this cluster was distinct from another ER-to-Golgi

transport cluster that is specific to thapsigargin treatment,

revealing that different subsets of this pathway are sensitive to

separate stresses (Figure S4E).

mTORC1 and eIF2a Attenuate Translation of
Overlapping Protein Sets
Comparing translatomes for the three ISR-inducing stressors

showed an overlap of�30% of proteins with reduced translation

(Figure S5A). Thapsigargin treatment caused a significantly

smaller translational effect on individual proteins than the other

treatments, suggesting potential differences in translational

control (Figure 4F). Indeed, we found NaCl and arsenite to lead

to decreased phosphorylation of the mTORC1 substrate

EIF4EBP1 (Figure 4G), consistent with previous publications (An-

dreev et al., 2015; Plescher et al., 2015). Thus, the observed

translatome differences by thapsigargin versus NaCl or arsenite

treatments may be driven by mTORC1. To dissect possible

overlapping effects of mTORC1 inhibition and eIF2a phos-

phorylation, we co-treated cells with NaCl or arsenite and

ISRIB, which we had found to abolish effects seen by eIF2a

phosphorylation (Figure 3). As expected, ISRIB had no effect

on mTORC1 activity or eIF2a phosphorylation (Figures 4G and

S5B). However, when monitoring global translation using me-

PROD, translation repression by NaCl or arsenite was partially

rescued by ISRIB (Figure 4H; Table S3). We compared the frac-

tion of proteins with rescued translation upon ISRIB, as they

should be targeted solely by eIF2a (Figure S5C). Surprisingly,

we only found a small overlap in this fraction between all

three treatments, while proteins still displaying translation

attenuation upon ISRIB and NaCl or arsenite treatment showed

a substantial overlap with proteins regulated solely by the ISR/

eIF2a (i.e., seen by thapsigargin treatment, Figure 4I). This sug-

gested that eIF2a and mTORC1 might control translation of the

same subsets of proteins.

Comparing translation changes of individual proteins following

treatment alone or upon co-treatment with ISRIB revealed an

increased, but not rescued, translation for the whole population

of proteins after ISRIB co-treatment (Figure 4J). The same

trend was observed in the global translation behavior (Figures

4A and 4H). Clustering analyses further supported these obser-

vations showing similar translation patterns of the co-treatments

compared to the single treatments (Figure 4K). ISR andmTORC1

modulation also cause transcriptional changes, such as via

modulating ATF4 (Park et al., 2017; Ron and Walter, 2007), that

could explain overlapping translation changes across the two

Figure 4. Translatome Repression Patterns Shared across Stress Response Pathways

(A) Mean median translation levels of samples treated with water, 400 mM NaCl, or 0.5 mM arsenite for 2.5 h measured by mePROD MS. Individual values are

indicated. Error bars show standard deviation (n = 3). ***p < 0.001 (Two-way Student’s t test).

(B and C) Volcano plot showing fold change versus p value for NaCl (B) or arsenite (C) versus control. Orange dots indicate significantly changing proteins. n.d.,

not determinable (intensities for treated samples below noise levels).

(D) Overlap between translational repressed proteins (fold change [log2] < �0.5 and adj. p < 0.05) in NaCl or arsenite-treated cells.

(E) ReactomeFI cluster network (q value < 0.001). Unchanged proteins in three treatments (thapsigargin, NaCl, arsenite, fold change [log2] >�0.35) were merged

into one network, clustered by functional enrichment, and clusters analyzed for reactome pathway enrichment. Proteins were colored according to dataset and

most prominent pathways of each cluster annotated. Connecting lines show interaction of protein nodes.

(F) Ternary plot comparing fold changes for each protein between thapsigargin, NaCl, or arsenite treatments. For each protein and treatment, fold changes were

summed and ratios to total fold changes determined and plotted.

(G) Western blot showing phosphorylation of EIF4EBP1 upon control, NaCl, or arsenite treatment with or without ISRIB co-treatment. EIF4EBP1 antibody reveals

both non-phosphorylated and phosphorylated species.

(H) Cells were treated as in (A) with addition of 500 nM ISRIB. Histogram of global translation relative to control with standard deviation (n = 3). **p < 0.01;

***p < 0.001 (Two-sided Student’s t test).

(I) Overlap of proteins translationally repressed via eIF2a phosphorylation (by thapsigargin) and proteins not showing reversal by co-treatment with ISRIB and

NaCl and arsenite.

(J) Density plots showing translation fold changes for each protein between stressor alone and co-treatment with ISRIB. Grey lines represent the reference line for

equal fold changes.

(K) Heatmap and hierarchical clustering summarizing result for all shown treatments (Figures 3 and 4). Datasets were combined, Z scores calculated, and

hierarchical clustering performed using Euclidean distance between the samples. Depicted are Z score values for each treatment and replicate (n = 3).

Colored circles indicate the 11plex experiment in which the sample was included. I, ISRIB; Ars, arsenite; Tg, thapsigargin. See also Tables S2 and S3 and

Figures S4 and S5.
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pathways. However, when comparing published RNA-seq data-

sets upon ISR activation or mTORC1 inhibition, we found no

changes in global or individual transcript changes that could

explain the observed translatome rearrangements (Figures

S5D–S5F).

These findings indicate that both translational control path-

ways—ISR and mTORC1—directly regulate translation of the

same proteins. This observation was not apparent from previ-

ous Ribo-seq analyses. However, it is consistent with the notion

that both ISR and mTORC1 control cap-dependent translation

initiation, suggesting that translational targets of the two path-

waysmay indeed overlap. Strikingly, our observations (Figure 4J)

also suggested a correlation between individual and global

protein translation rates.

Intrinsic Features Define mTORC1 and ISR Translation
Repression Targets
To further evaluate this hypothesis, we compared translation

profiles of cells upon using conditions inhibiting global transla-

tion to a similar extent via the ISR (Thapsigargin, 2 h) or

mTORC1 (Torin1, 9 h) in one mePROD sample (Figure 5A).

Treatment with Torin1 decreased global translation levels by

59% (Figure 5B; Table S4), consistent with previous studies

observing �65% attenuation (Thoreen et al., 2012). Torin1-

induced translatome differences were largely direct effects

on translation, not due to transcriptome changes (Figures

S5D and S5G), and showed an 87% overlap with previously

published Ribo-seq data (Figure 5C) (Thoreen et al., 2012).

In addition, mePROD identified over 786 additional, signifi-

cantly attenuated proteins (Figure 5D). Analyzing the overlap

of translationally repressed targets (FC [log2] < �0.5) in both

sample sets, we observed 66% of proteins controlled by the

ISR and mTORC1 alike (Figures 5E and 5F), confirming a

high overlap between translation attenuation targets when

inhibiting global translation to similar levels. Overall,

comparing changes in the translatome upon treatment with

thapsigargin or Torin1 confirmed that (1) the majority of

translation targets was indeed regulated by both pathways,

and (2) target specificity was not achieved by spe-

cific activation of the ISR or mTORC1 inhibition. Thus, transla-

tion of sets of proteins did not appear to be controlled by the

respective extrinsic pathways (i.e., ISR or mTORC1), instead

implying intrinsic factors, such as differential sensitivity of

mRNA translation to stress, to control individual protein trans-

lation. Consistently, we observed translation of some proteins

to be more sensitive to global translation attenuation than

others, suggesting inherent differences.

Individual Protein Synthesis Levels Correlate with
Global Translation Rates under Stress Conditions
To validate the hypothesis that translation rates of most indi-

vidual proteins correlate with global translation rates, we

monitored dose-dependent translation attenuation using

different concentrations of thapsigargin and Torin1 (Figure 6A).

Clustering analysis showed that samples clustered based on

global translation attenuation rate rather than on pathway
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Figure 5. Converging Translatome Regulation by the Integrated Stress Response and mTORC1

(A) Experimental scheme. Cell were treated with thapsigargin or Torin1 for different lengths of time to achieve comparable global translation attenuation.

(B) Bar plot showing median global translation levels normalized to the respective control with standard deviation (n = 2).

(C) Overlap of proteins with reduced relative translation rates upon Torin1 treatment determined by ribosome profiling data (Thoreen et. al. 2012), or mePRODMS

(A). No overlap indicates proteins only showing reduction in ribosome profiling dataset.

(D) Volcano plot showing relative translation changes for Torin1 versus control treated cells plotted against p value (n = 2).

(E) Venn diagram displaying the overlap of proteins with reduced relative translation (fold change [log2] < �0.5).

(F) Heatmap of translation changes for individual treatments and replicates. Data were row-normalized by computing Z scores. See also Table S4.
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(Figure 6B). We next analyzed the behavior of individual pro-

teins after different treatment concentrations (Figure 6C). The

biggest clusters of individual proteins followed a similar trend

as the global translation (Figures 6A and 6C).

To evaluate this model on translation level without effects of

the upstream pathways (i.e., ISR and mTORC1), we inhibited

cap-dependent translation directly, using EIF4E/EIF4G inter-

action inhibitor 1 (4EGI) (Moerke et al., 2007). Titrating 4EGI

caused dose-dependent translation attenuation (Figure 6D;

Table S5). Comparing this data to translation inhibition with

thapsigargin or Torin1 titration again showed clustering ac-

cording to the grade of translation inhibition (Figure 6E), not
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Figure 6. Reduction of Individual Protein Translation Rates Is Defined by the Extent of Global Translation Attenuation

(A) Median relative translation for cells treated with DMSO, 0.25 mM, 1 mM, or 6 mM thapsigargin (Tg) for 2.5 h (left panel) or DMSO, 0.75 mM, or 2 mMTorin1 for 9 h

(right panel).

(B) Heatmap showing Z scores of relative translation rates for individual proteins across treatments (Z scores were calculated for each experiment). Clustering of

samples were performed with Euclidean distance. Relative median translation rates compared to control are plotted on top of the heatmap for each sample.

(C) Standardized (Z score) relative translation rates for the subset of proteins showing a decrease in translation correlating with global translation attenuation after

titration of treatments. Clustering was performed on data from (B) and values of the most prominent cluster plotted for each treatment. Black lines indicate

averaged curves from all displayed proteins.

(D) Median relative translation rates of cells treated with indicated concentrations of 4EGI.

(E) Heatmap displaying correlation of samples treated with different concentrations of either 4EGI, thapsigargin (Tg) or Torin1. Values represent Euclidean

distance between samples. Clustering was performed over Euclidean distance. Apparent clusters are marked in red.

(F) Heatmap displaying standardized relative translation values (Z score) for individual proteins following 4EGI treatment.

(G) Standardized translation rates (Z score) for all proteins showing linear behavior of translation repression upon 4EGI titration (Figure S6B). See also Figure S6

and Table S5.
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inhibitor used, with three apparent major clusters representing

different global translation rates. Cluster analysis on the level

of individual proteins showed a major cluster correlating with

global translation levels and with a near linear behavior of in-

dividual proteins (Figures 6F and S6A). Carrying out linear

fits across all detected proteins revealed 2,190 proteins

following this linear trend (Figure 6G and S6B), demonstrating

that translation rates of the majority of cellular proteins directly

correlate with global translation attenuation irrespective of the

origin of translation attenuation (i.e., ISR or mTORC1).

Notably, also these analyses exposed a fraction of proteins

evading repression at all examined concentrations, consistent

with previously published data describing core cellular

pathways to be unaffected by inhibition of cap-dependent

translation (Figure S6C) (Marques-Ramos et al., 2017).

Together, these results demonstrate that individual protein

translation upon stress is controlled by intrinsic factors, largely

defining a threshold of global translation attenuation upon

which translation of individual proteins ablates (Figure 7).

DISCUSSION

Determining the transcriptomes and proteomes of cells under

various conditions has become a well-established standard

used in many biological and medical applications. However,

it has become clear that they correlate poorly and that moni-

toring the translatome as well is essential to understand protein

synthesis and the regulation thereof (Ingolia et al., 2012; Maier

et al., 2009). Ribo-seq has become the standard method to

determine translation rates applied tomany biological questions.

However, it remains laborious, typically requires large amounts

of sample material, and remains expensive (Ingolia et al., 2012;

McGlincy and Ingolia, 2017). Thus, for many cellular conditions

and stresses, particularly also in primary cells, translatome

data are lacking, and its status and regulation is unknown,

preventing understanding their role in cellular physiology.

Furthermore, ribosome profiling can introduce a bias when

measuring translation in states of global repression (Gandin

et al., 2016; Masvidal et al., 2017), partially explaining critical dif-

ferences in conclusions drawn from different experimental

setups (Hsieh et al., 2012; Larsson et al., 2012; Morita et al.,

2013; Thoreen et al., 2012).

To provide with a proteomics method complementary to Ri-

bo-seq and to overcome some of its challenges, we developed

mePROD that offers: (1) high sensitivity, allowing the measure-

ment of highly acute differences in protein synthesis, (2) determi-

nation of translatome changes upon conditions with strong

global translation shifts without normalization artifacts, and (3)

an approach to quantify the translatome with limited sample

input (i.e., around 100,000 cells) and at low cost (standard MS

protocols and machines). Naturally, proteomic methods,

including mePROD, do currently not provide with the same

depth as Ribo-seq. Instead, mePROD offers direct information

on nascent and newly synthesized proteins that present another

layer of information directly related to translation. Due to its

simplicity, sensitivity, and low price, mePROD may be applied

to numerous biological questions not previously studied or

applicable to Ribo-seq.

Key feature of mePROD is the inclusion of a ‘‘booster’’

channel that enables measurement of the signal of interest

(newly synthesized peptides) by providing distinctive advan-

tages: first, the booster channel only contains the signal of in-

terest—heavy labeled peptides—thus specifically boosting the

signal of newly translated proteins to reliably pass the limit of

detection and identification. Second, the booster channel

serves as an absolute reference point to allow determining

translation relative to the booster channel and enables the

comparison of samples analyzed in different LC-MS runs. In

addition, mePROD also contains a noise channel comprised

of light peptides to determine background noise levels and

co-isolation interference for each individual peptide. This

makes ratio compression, caused by co-isolation of non-tar-

geted ions, as typically observed in TMT MS2-based methods,

largely negligible. As a result, mePROD data acquisition

can be carried out with MS2 methods, offering higher sensi-

tivity and identification and quantification rates (Figures S1A

and S1B). Together, mePROD enables translation proteomics

with a temporal resolution capable of examining short-term
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Figure 7. Model of Translation Regulation by mTORC1 and the Inte-

grated Stress Response

Model illustrating that the integrated stress response and mTORC1 regulate

translation of an overlapping set of proteins despite their altering upstream

regulation. Translation of individual proteins is largely explained by intrinsic

factors with differential sensitivity of global translation inhibition as major

determinant.
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changes of relative translation rates, as seen during stress

responses.

mePROD offers various advantages for global translation

quantification: (1) direct quantification of nascent chains, not

relying on indirect sequence information, and (2) low input re-

quirements in the range of typical proteomics experiments

(< 100,000 cells) without the need of ribosome purification.

Thus, mePROD is especially suitable for setups with limited

starting material, such as clinical samples or primary cells. (3)

No normalization bias, allowing ready quantification of individual

and global protein translation rates, even in situations with global

translation defects. At the same time, there are also method-

inherent disadvantages driven by the use of mass spectrometry

as a readout including an imperfect coverage or lack of detect-

ability of proteins (due to sequence, abundance, and physical

properties of peptides) and its limited depth, when compared

to NGS based methods, where coverage mainly is a scalable

function of sequencing depth. In addition, mePROD does not

provide information on ribosome occupancy.

Despite eIF2a and EIF4EBP1—and thus the ISR and

mTORC1—affecting processes in cap-dependent translation, it

was generally assumed that the translational targets of eIF2a

and EIF4EBP1 differ (Wengrod and Gardner, 2015). This is

largely due to previous ribosome profiling analyses only uncov-

ering small subsets of mRNAs with decreased translation that

showed only minimal overlap between ISR and mTORC1 targets

(Hsieh et al., 2012; Sidrauski et al., 2015; Thoreen et al., 2012).

However, mePROD revealed the full extent of the extensive

remodeling of the translational landscape upon stress induction

(Figures 3 and 4). Comparison with previous datasets showed

that mePROD identified most translationally regulated proteins

revealed by ribosome profiling (Figures 5 and S3). It also de-

tected the remodeling of translation in greater depth, resembling

the global changes seen by 35S-Met metabolic labeling. By

analyzing the detailed sets of translationally repressed proteins,

we found that both pathways—ISR and mTORC1—have

converging sets of targets (Figure 5). Crosstalk between both

pathways is emerging as an interesting concept (Nikonorova

et al., 2018; Zhang et al., 2018) in recent years, pointing to a

complex picture of stress responses driving translational and

transcriptional control. Nevertheless, the vast majority of

translational changes cannot be explained by transcriptional

patterns, since previous RNA-sequencing experiments did not

show major effects when compared to our data (Figures S5D–

S5G) (Andreev et al., 2015; Paolini et al., 2018; Thoreen

et al., 2012).

We found the set of repressed target proteins to be deter-

mined by the strength of global translation repression rather

than by the upstream pathway activated (Figures 4 and 6). In

agreement with this hypothesis, titrating either the stress-

inducing agents or a cap-dependent translation inhibitor

showed dose-dependent effects on translation for the majority

of proteins (Figure 6). Thus, features of each individual

messenger RNA may reflect their sensitivity to translational

changes (Figure 7). This model explained the vast majority of

changes in the translatome upon modulating global translation.

Strikingly, there is a small fraction of proteins not following

this pattern, likely controlled by alternative translation initiation,

or the specific transcriptional changes brought about by the

ISR or mTORC1. These proteins include clusters of core cellular

functions to retain their translation upon stress induction (Fig-

ures 3J, 4E, S4, and S6C). Consistent with previously published

data (Marques-Ramos et al., 2017), we also found core signaling

pathways to be maintained, most prominently the phosphate-

inositol pathway and the mTOR pathway (Figure S6C). This

might play a major role in cellular response to stresses that

will result in a shut-down of protein translation of various subsets

of proteins, dependent on the extent of stress (i.e., global trans-

lation attenuation), while keeping core pathways intact to ensure

survival and function of cells during and after recovery from

stress.
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ACTB SantaCruz Cat#sc-69879; RRID:AB_1119529

EIF4EBP1 Cell Signaling Technologies Cat#9644; RRID:AB_2097841

EIF2S1 Abcam Cat#ab5369; RRID:AB_304838

p-EIF2S1(S51) Abcam Cat#ab32157; RRID:AB_732117

IRDye 680RD anti-mouse Li-Cor Cat# 925-68070; RRID:AB_2651128

IRDye 800CW anti-rabbit Li-Cor Cat# 925-32211; RRID:AB_2651127

Chemicals, Peptides, and Recombinant Proteins

Thapsigargin Abcam Cat#ab120286

2-Chloracetamide Sigma Aldrich Cat#C0267

Arginine 10 Cambridge Isotope Laboratories Cat#CNLM-539-H-PK

Lysine 8 Cambridge Isotope Laboratories Cat#CNLM-291-H-PK

Sodium (meta)arsenite Sigma Aldrich Cat#S7400

ISRIB Sigma Aldrich Cat#SML0843

4EGI-1 Selleckchem Cat#S7369

TMT reagents Thermo Fisher Scientific Cat#90111, Cat#A37724, Cat#90061

Torin1 Cell Signaling Technologies Cat#14379

Critical Commercial Assays

mBCA microplate assay Thermo Fisher Scientific Cat#23235
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Andreev et.al. 2015
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https://doi.org/10.1016/j.cell.2014.08.012,
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https://doi.org/10.7554/eLife.0397
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pandas 0.23.4 McKinney, 2010 https://scipy.org/

Proteome Discoverer 2.2 ThermoFisher Scientific Cat#OPTON-30795; RRID:SCR_014477

MaxQuant 1.6 Cox and Mann, 2008 https://www.maxquant.org/; RRID:SCR_014485

Perseus 1.6.2.3 Tyanova et al., 2016 https://www.maxquant.org/; RRID:SCR_015753

Numpy 1.15.4 van der Walt et al., 2011 https://scipy.org/; RRID:SCR_008633

Cytoscape 3.5.1 Shannon et al., 2003 https://cytoscape.org/; RRID:SCR_003032

BiNGO 3.0.3 Maere et al., 2005 https://www.psb.ugent.be/cbd/papers/BiNGO/

Home.html; RRID:SCR_005736
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enrichmentmap; RRID:SCR_016052

Origin Pro 2018 OriginLab https://www.originlab.com/2018;

RRID:SCR_014212

ReactomeFI 6.1.0 Wu and Haw, 2017 http://apps.cytoscape.org/apps/reactomefiplugin
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LEAD CONTACT AND MATERIALS AVAILABILITY

Further information and requests for resources and reagents should be directed to and will be fulfilled by the Lead Contact, Christian

M€unch (ch.muench@em.uni-frankfurt.de).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Cell lines and culture conditions
HeLa (human epithelial cervix-adenocarcinoma, female) cells were cultured in a humidified growth chamber at 37�Cwith 5%CO2 with

RPMI1640 medium (GIBCO, 21875034) containing 10% FBS (GIBCO, 10270-106). To obtain fully labeled samples, cells were

shifted to RPMI1640 medium for SILAC (GIBCO, 88365) containing 100 mg/mL Arg10 (Cambridge Isotope Laboratories),

100 mg/mL Lys8 (Cambridge Isotope Laboratories), 10% FBS and cultured for two weeks to ensure full label incorporation until cells

were harvested.

For pulse labeling experiments, cells were untreated or treated for 30 min before pulse labeling (unless stated otherwise) with

the desired compound (1 mM Thapsigargin [Abcam, ab120286]; 400 mM NaCl [Sigma Aldrich]; 0.5 mM Arsenite [Sigma Aldrich];

500 nM ISRIB [Sigma Aldrich, SML0843]; 1 mM Torin1 [CST, 14379]; 4EGI [Selleckchem, S7369]) before washing two times with

pre-warmed PBS (GIBCO) and incubation with SILAC medium containing the same concentration of the compound (where appli-

cable) as the normal medium. Cells were grown in SILAC medium for an additional two hours (unless stated otherwise) until

harvest.

METHOD DETAILS

Cell harvest and lysis
After labeling, cells were washed three times with warm PBS and lysed on the plate with lysis buffer (2% SDS, 50 mM Tris-HCl pH8,

150 mMNaCl, 10 mM TCEP, 40 mM chloracetamide, protease inhibitor cocktail tablet [EDTA-free, Roche] and Easy-phos phospha-

tase inhibitor tablet [Roche]). Lysates were scraped and transferred to 2 mL ProteinLoBind Eppendorf tubes (Eppendorf, Z666505).

Samples were incubated for 5 min at 95�C before sonication with Sonic Vibra Cell at 1 s ON/ 1 s OFF pulse for 30 s at a maximal

amplitude of 30% to shear genomic DNA. After sonication, samples were incubated for 10 min at 95�C.

Sample preparation for LC-MS2

Lysates were precipitated using three volumes of ice-cold methanol, one volume chloroform and 2.5 volumes ddH2O. After

centrifugation at 14,000 g for 45 min at 4�C, the upper aqueous phase was aspirated and three volumes of ice-cold methanol

added. Samples were mixed and proteins pelleted by centrifugation at 14,000 g for 5 min at 4�C. Supernatant was discarded

and pellets washed one additional time with ice-cold methanol. Protein pellets were dried at room temperature for further use.

Proteins were resuspended in 8 M Urea, 10 mM EPPS pH8.2, and 1 mM CaCl2 and protein concentration determined using a

mBCA assay (ThermoFisher Scientific, 23235). Samples were then diluted to 2 M urea using digestion buffer (10 mM EPPS

pH8.2, 1 mM CaCl2) and incubated with LysC (Wako Chemicals) at 1:50 (w/w) ratio overnight at 37�C. The next day digestion

reactions were further diluted to 1 M Urea using digestion buffer and incubated at a 1:100 (w/w) ratio of Trypsin (Promega,

V5113) for an additional 6 h at 37�C. Digests were acidified using trifluoroaceticacid (TFA) to a pH of 2-3 and peptides purified

using SepPak C18 columns (Waters, WAT054955) according to the manufacturer’s protocol. Eluates were dried and stored for

further processing.

Peptides were resuspended in TMT-labeling buffer (0.2 M EPPS pH8.2, 10% Acetonitrile) and peptide concentration determined by

mBCA.Peptidesweremixedwith TMT reagents (ThermoFisher Scientific, 90111, A37724, 90061) in 1:2 (w/w) ratio (2mgTMT reagent per

1 mg peptide). Reactions were incubated for one hour at RT and subsequently quenched by addition of hydroxylamine to a final concen-

tration of 0.5% at RT for 15 min. Samples were pooled in equimolar ratio (unless stated otherwise), acidified, and dried for further

processing.

Before MS-analysis, peptide samples were purified using Empore C18 (Octadecyl) resin material (3M Empore). Material was

activated by incubation with Methanol for 5 min, followed by one wash each with 70% acetonitrile/0.1% TFA and 5% acetonitrile/

0.1% TFA. Samples were resuspended in 5% acetonitrile, 0.1% TFA and loaded to resin material. Peptides were washed with

Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

Other

QExactive HF Orbitrap MS Thermo Fisher Scientific Cat#IQLAAEGAAPFALGMBFZ

Orbitrap Fusion Lumos Tribrid MS Thermo Fisher Scientific Cat#IQLAAEGAAPFADBMBHQ
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5% acetonitrile/0.1% TFA and eluted with 70% acetonitrile (ACN). Samples were dried and resuspended in 0.1% formic acid (FA) for

LC-MS2/3.

High-pH Reverse Phase fractionation
Peptides were either fractionated using a Dionex Ultimate 3000 analytical HPLC or a High pH Reversed phase fractionation kit

(ThermoFisher Scientific). The latter was used according to manufacturer’s instructions.

For high pH reversed phase fractionation on the Dionex HPLC, 500 mg of pooled and purified TMT-labeled samples were resus-

pended in 10 mM ammonium-bicarbonate (ABC), 5% ACN, and separated on a 250 mm long C18 column (Aeris Peptide XB-C18,

4.6 mm ID, 2.6 mm particle size; Phenomenex) using a multistep gradient from 100% Solvent A (5% ACN, 10 mM ABC in water)

to 60%Solvent B (90%ACN, 10mMABC in water) over 70min. Eluting peptides were collected every 45 s into a total of 96 fractions,

which were cross-concatenated into 24 fractions and dried for further processing.

Mass spectrometry
Unless stated otherwise, peptides were resuspended in 0.1%FA and separated on an Easy nLC 1200 (ThermoFisher Scientific) and a

22 cm long, 75 mm ID fused-silica column, which had been packed in house with 1.9 mmC18 particles (ReproSil-Pur, Dr. Maisch), and

kept at 45�C using an integrated column oven (Sonation). Peptides were eluted by a non-linear gradient from 5%–38% acetonitrile

over 120 min and directly sprayed into a QExactive HF mass spectrometer equipped with a nanoFlex ion source (ThermoFisher Sci-

entific) at a spray voltage of 2.3 kV. Full scan MS spectra (350-1400 m/z) were acquired at a resolution of 120,000 at m/z 200, a

maximum injection time of 100 ms and an AGC target value of 3 3 106. Up to 20 most intense peptides per full scan were isolated

using a 1 Th window and fragmented using higher energy collisional dissociation (normalized collision energy of 35). MS/MS spectra

were acquiredwith a resolution of 45,000 atm/z 200, amaximum injection time of 80ms and an AGC target value of 13 105. Ions with

charge states of 1 and > 6 as well as ions with unassigned charge states were not considered for fragmentation. Dynamic exclusion

was set to 20 s to minimize repeated sequencing of already acquired precursors.

Unfractionated test samples were separated on an Easy nLC II (ThermoFisher Scientific) and a 15 cm long, 75 mm ID fused-silica

column, which has been packed in house with 3 mm C18 particles (ReproSil-Pur, Dr. Maisch), and kept at 45�C using an integrated

column oven (Sonation). Peptides were eluted by a non-linear gradient from 5%–35% acetonitrile over 125 min and directly sprayed

into a LTQ Orbitrap Elite mass-spectrometer equipped with a nanoFlex ion source (ThermoFisher Scientific) at a spray voltage of 2.3

kV. Full scan MS spectra (350-1650 m/z) were acquired at a resolution of 120,000 at m/z 200, a maximum injection time of 100 ms

and an AGC target value of 1 3 106 charges. Up to 20 most intense peptides per full scan were isolated in the ion-trap using a 2 Th

window and fragmented using higher energy collisional dissociation (normalized collision energy of 35). MS/MS spectra were ac-

quired with a resolution of 60,000 at m/z 200, a maximum injection time of 200 ms and an AGC target value of 5 3 104. Ions with

charge states of one as well as ions with unassigned charge states were not considered for fragmentation. Dynamic exclusion

was set to 60 s to minimize repeated sequencing of already acquired precursors.

For MS2 and MS3 comparison, samples were shot on a Fusion Lumos Mass Spectrometer (Thermo Fisher Scientific). Peptides

were resuspended in 0.1% FA and separated on an Easy nLC 1200 (ThermoFisher Scientific) and a 22 cm long, 75 mm ID fused-silica

column, which has been packed in house with 1.9 mmC18 particles (ReproSil-Pur, Dr. Maisch), and kept at 45�C using an integrated

column oven (Sonation). Peptides were eluted by a non-linear gradient from 5%–38% acetonitrile over 120 min and directly sprayed

into a Fusion Lumos mass spectrometer equipped with a nanoFlex ion source (ThermoFisher Scientific) at a spray voltage of 2.6 kV.

Full scan MS spectra (350-1400 m/z) were acquired at a resolution of 120,000 at m/z 200, a maximum injection time of 100 ms and

an AGC target value of 1 3 106 charges. Up to 15 most intense peptides per full scan were isolated using a 1 Th window and frag-

mented using higher energy collisional dissociation (normalized collision energy of 38). MS2 spectra were acquired with a resolution

of 50,000 at m/z 200, a maximum injection time of 110 ms and an AGC target value of 53 104. Ions with charge states of 1 and > 6 as

well as ions with unassigned charge states were not considered for fragmentation. Dynamic exclusion was set to 45 s to minimize

repeated sequencing of already acquired precursors.

For MS3measurements, MS2 scans were performed in the IonTrap (Turbo) with an isolation window of 0.4 Th, a maximum injection

time of 120 ms and CID fragmented using a collision energy of 35% for 10 ms. SPS-MS3 was performed on the 10 most intense MS2

fragment ions with an isolation window of 0.7 Th (MS1) and 2 m/z (MS2). Ions were fragmented using HCD with a normalized collision

energy of 60 and analyzed in theOrbitrapwith a resolution setting of 50,000 atm/z 200, scan range of 100-1000m/z, AGC target value

of 1.5 x105 and a maximum injection time of 150 ms.

Western Blotting
Protein samples were separated by SDS-PAGE under reducing conditions. Proteins were transferred to 0.45 mMnitrocellulose mem-

branes and probed with primary antibodies. Primary antibodies were used in 5% BSA in PBS in stated dilution (ACTB [SantaCruz]

1:5,000, EIF4EBP1 total [CST] 1:50,000, p-EIF2S1 [S51 Abcam] 1:2,000) for one hour at room temperature. Secondary antibodies

(IRDye 680RD Donkey anti-mouse [Li-Cor], IRDye 800CW Donkey anti-rabbit [Li-Cor]) were used in 1:20,000 dilution in PBS and

incubated for 30 min in the dark. Membranes were washed and imaged using an Odyssey CLx imager (Li-Cor).
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QUANTIFICATION AND STATISTICAL ANALYSIS

Processing of raw files
Raw files were analyzed using Proteome Discoverer (PD) 2.2 software (ThermoFisher Scientific). Files were recalibrated using the

Homo sapiens SwissProt database (TaxID:9606, version 2017-06-07) with methionine oxidation (+15.995) as dynamic modification

and carbamidomethyl (Cys,+57.021464), TMT6 (N-terminal, +229.1629) and TMT6 (+229.1629) at lysines as fixed modifications.

Spectra were selected using default settings and database searches performed using SequestHT node in PD. Database searches

were performed against trypsin digested Homo sapiens SwissProt database and FASTA files of common contaminants (‘contami-

nants.fasta‘ provided with MaxQuant) for quality control. Fixed modifications were set as TMT6 at the N terminus and carbamido-

methyl at cysteine residues. As dynamic modifications TMT6 (K), TMT6+K8 (K, +237.177), Arg10 (R, +10.008) and methionine

oxidation were set. After search, posterior error probabilities were calculated and PSMs filtered using Percolator using default set-

tings. Consensus Workflow for reporter ion quantification was performed with default settings, except the minimal signal-to-noise

ratio was set to 5. Results were then exported to Excel files for further processing.

For SILAC only samples, raw files were analyzed using MaxQuant 1.6 (Cox and Mann, 2008), with default settings using the Homo

sapiens SwissProt database (TaxID:9606, version 2017-06-07).

Data Analysis and statistics
Excel files were used as input for a custom made in-house Python pipeline. Python 3.6 was used together with the following

packages: pandas 0.23.4 (McKinney, 2010), numpy 1.15.4 (van der Walt et al., 2011), matplotlib 3.0.1 (Hunter, 2007). Excel files

with peptide data were read in and each channel was normalized to the lowest channel based on total intensity. For each peptide

sequence, all possible modification states containing a heavy label were extracted and the intensities for each channel were aver-

aged between all modified peptides. Baseline subtraction was performed by subtracting the measured intensities for the non-SI-

LAC-labeled sample from all other values. Negative intensities were treated as zero. For relative quantification, channel values

were divided by the abundance in the booster channel. The heavy label incorporation at the protein level was calculated by taking

the median of all peptide sequences belonging to one unique protein accession. These values were combined with the standard

protein output of PD 2.2 to add annotation data to the master protein accessions.

Log2 fold changes were calculated by log2 transformation of the ratio between the mean of the replicates of treated samples

versus the control samples. Significance was assessed by unpaired, two-sided Student’s t test. P values were adjusted by Benja-

mini-Hochberg FDR correction. Adjusted P values lower than 0.05 were considered as significant. N represents number of indepen-

dent replicates. Error bars, unless stated otherwise, indicate the standard deviation of replicates. Unless stated otherwise signifi-

cance was defined as adjusted P values < 0.05. Adjusted P value and fold change cutoffs were applied as indicated. For

clustering and enrichment analyses (see below) q value cutoffs of 0.001 were used for significance definition.

Plotting and fitting of data was performedwith Origin Pro 2018. For linear regression P values were calculated with Origin and raw P

values used for statistics.

Multidimensional scaling
MDSwas performed with Python 3.6 with scikit-learn 0.20.1 (Pedregosa et al., 2011) and pandas 0.23.4. Samples were standardized

by removing the mean and scaled to unit variance. Resulting Z scores were subjected to MDS analysis with default settings. Dimen-

sions were plotted using Origin Pro 2018 software.

Hierarchical clustering
Hierarchical cluster analysis for all samples was performed using Perseus (Tyanova et al., 2016) software package (version 1.6.2.3)

with default settings after centering and scaling of data (Z scores).

Network analysis
For network analysis, Cytoscape 3.5.1 (Shannon et al., 2003) software was used with BiNGO 3.0.3 (Maere et al., 2005) plugin for GO

term analysis, EnrichmentMap 3.1.0 (Merico et al., 2010) and ReactomeFI 6.1.0 (Wu and Haw, 2017). For GO-term analyses, gene

sets were extracted from data as indicated using fold change and significance cutoffs. Gene sets were analyzed using BiNGO plugin

with default settings for overrepresentation with GO sets for biological processes. Enrichment files were loaded into EnrichmentMap

plugin for filtering. Q value cutoff was set to 0.001 as default and edge similarity cutoff was adjusted to 0.6.

For analysis on individual protein level, gene sets were analyzed using ReactomeFI. Gene sets were then FI annotated, clustered

andmodules were analyzed for Reactome pathway enrichment with a q-value cutoff of 0.001. Clusters were thenmanually annotated

using the most prominent enriched pathways.

DATA AND CODE AVAILABILITY

The mass spectrometry proteomics data have been deposited to the ProteomeXchange Consortium via the PRIDE (Perez-Riverol

et al., 2019) partner repository with the dataset identifiers PXD015438 and PXD014377.
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ABSTRACT: Pulsed Stable Isotope Labeling in Cell culture
(SILAC) approaches allow measurement of protein dynamics,
including protein translation and degradation. However, its use for
quantifying acute changes has been limited due to low labeled
peptide stoichiometry. Here, we describe the use of instrument
logic to select peaks of interest via targeted mass differences
(TMD) for overcoming this limitation. Comparing peptides
artificially mixed at low heavy-to-light stoichiometry measured
using standard data dependent acquisition with or without TMD
revealed 2−3-fold increases in identification without significant loss
in quantification precision for both MS2 and MS3 methods. Our
benchmarked method approach increased throughput by reducing
the necessary machine time. We anticipate that all pulsed SILAC
measurements, combined with tandem mass tagging (TMT) or
not, would greatly benefit from instrument logic based approaches.

Most protein dynamics measurements by mass spectrom-
etry rely on metabolic labeling, such as Stable Isotope

Labeling in Cell culture (SILAC) or unnatural amino acid
analogues.1−3 Combining these labeling approaches with
tandem mass tagging (TMT) enables highly reproducible
multiplexed measurements.4−9 However, a major challenge
when using pulsed SILAC (pSILAC) approaches to study
protein dynamics in a time-resolved manner is the low
stoichiometry of labeled peptides, preventing their identifica-
tion and quantification. We recently described multiplexed
enhanced PROtein Dynamics (mePROD) proteomics that use
a booster channel (peptides derived from fully SILAC labeled
cells) to specifically increase the signal of labeled peptides only,
to allow their quantification.10 However, labeled peptides
remain at low stoichiometry compared to their nonlabeled
counterparts, resulting in only a small fraction of mass
spectrometer measurement time to be used to measure labeled
peptides.
The new generation of Orbitrap mass spectrometers, such as

the Orbitrap Fusion, Orbitrap Fusion Lumos, Orbitrap Eclipse,
and Exploris480, offer the possibility to use instrument logic
workflows, which we reasoned could potentially overcome this
problem to a large extent. These filters enable on-the-fly
identification of label pairs in the survey scan, such as that
produced by SILAC, and subsequent targeting of one or both
ions for MS2. We hypothesized that low stoichiometry SILAC
samples would greatly benefit from targeted mass difference
(TMD) based instrument methods. A similar rationale has
previously been used for targeted experiments11 but, to our

knowledge, not for data dependent acquisition (DDA)
measurements.
Here, we assessed whether TMD can improve identification

rates of TMT-multiplexed pSILAC samples. We found that
label identification increased to approximately 2.5-fold in an
unfractionated sample, without influencing quantification
accuracy.

■ EXPERIMENTAL SECTION

Cell Culture. HeLa cells were cultured as described
previously.10

Sample Preparation. Lysates for MS sample preparation
were obtained and TMT-SILAC samples prepared as
previously described.10

Liquid Chromatography Mass Spectrometry. Samples
were prepared for mass spectrometry analysis as described
previously.10 After sample preparation, 1 μg of peptide was
resuspended in 2% acetonitrile (ACN)/1% formic acid (FA)
and separated on an Easy nLCII (Thermo Fisher Scientific)
using a 25 cm long, 75 μM inner diameter fused-silica column
packed in house with 3 μM C18 particles (ReproSil-Pur, Dr.
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Maisch) and kept at 45 °C. Peptides were eluted by a
nonlinear gradient from 4 to 40% ACN over 120 min and
sprayed into an Orbitrap Fusion Lumos mass spectrometer.
The exact settings for each of the examined methods can be
found in the Supporting Information.
Data Analysis. Raw files were analyzed using Proteome

Discoverer (PD) 2.4 (ThermoFisher Scientific). Spectra were
selected using default settings and database searches performed
using the SequestHT node in PD. Database searches were
carried out with databases of trypsin digested proteomes
(Homo sapiens SwissProt database [TaxID:9606, 2017-06-07/
2018-11-21]) and FASTA files of common contaminants
(“contaminants.fasta” provided together with MaxQuant) for
quality control. Fixed modifications were set as TMT6 at the
N-terminus and carbamidomethyl at cysteine residues. As
dynamic modifications, TMT6 (K), TMT6+K8 (K, +237.177),
Arg10 (R, +10.008), and methionine oxidation were set. After
a search, posterior error probabilities were calculated and
perfect spectrum matches (PSMs) were filtered using
Percolator using default settings. Consensus Workflow for
reporter ion quantification was performed with default settings,
except the minimal signal-to-noise ratio was set to 5. Results
were then exported to Excel files for further processing. Excel
files were used as input for a custom-made in-house Python
pipeline. Python 3.6 was used together with the following
packages: pandas 0.23.4,12 numpy 1.15.4,13 and scipy 1.3.0., as
described previously.10 For injection time normalization,

summed TMT intensities per PSM were divided by the
injection time for that PSM, scaled by a factor of 1000, and
split on the individual channels by their original ratios.
Isolation interference was calculated by summing the

intensities for all TMT channels per PSM and dividing the
baseline value by the sum. Assuming isolation interference to
be stochastically even across all channels, the resulting value
was multiplied by the number of channels used.

■ RESULTS AND DISCUSSION

During mePROD or comparable experimental measurements,
the signal of interest (e.g., the heavy peptide, representing
newly synthesized proteins) usually ranges up to around 10%
of the corresponding light peptide intensity. During DDA, the
top N most intense ions are selected for the dependent
scan(s), which are most likely nonlabeled peptides, due to their
inherently higher intensity. Thus, we hypothesized that
identifying the isotope pair in the survey scan and targeting
both ions of the pair for MS2 or MS3, respectively, would
increase the amount of measured signal of interest while
enabling normalization on total protein level (Figure 1A).
To assess whether instrument logic based workflows using

TMD targeting are beneficial for pSILAC-TMT methods, we
constructed a mePROD experiment with artificially mixed,
substoichiometric heavy peptide ratios (Figure 1B). The
sample contained a mix of peptides derived from lysates of
nonlabeled or heavy (SILAC) labeled HeLa extracts at heavy/

Figure 1. Instrument logic measurements increase identification and quantification rate in pulsed SILAC-TMT experiments. (A) Scheme of
instrument logic based methods. Isotope pairs are identified online and subsequent scans only performed on identified pairs. (B) Experimental
scheme, low stoichiometry SILAC ratios were mixed and combined with baseline and boost channel, labeled with TMT11 and measured either by
data dependent acquisition (DDA) or targeted mass difference (TMD) with MS2 or MS3 acquisition settings. Data processing was performed using
Proteome Discoverer 2.4 and Python 3.7. (C) Number of identified heavy peptides for all tested methods (n = 2). Bar represents mean. (D)
Comparison between heavy and light lysines identified. (E) Percentage of heavy light distribution over all replicates and methods. (F) Number of
MS/MS scans performed during same gradient time by DDA and TMD (n = 2). (G) Mean MS2 summed intensity for DDA and TMD based
methods (n = 2). Bars represent mean of replicates.
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total ratios between 1 and 10% in triplicate. In addition, we
included a TMT-labeled booster channel and a nonlabeled
noise channel for a mePROD measurement setup that allows
heavy peptide signal amplification and noise determination,
respectively.10 We observed a 2.5-fold increase in identified
heavy peptides from the same sample when comparing TMD
to standard DDA measurements, irrespective of acquisition by
MS2 or MS3 methods (Figure 1C). The majority of measured
heavy peptide sequences was also identified in their non-
isotopic form (Figure 1D). TMD improved the percentage of
isotope labeled peptides identified relative to total by about 3-
fold to about 50% in MS2 and MS3 measurements (Figure 1E).
The total number of scans performed by the spectrometer
remained the same (Figure 1F). We observed a drop in mean
MS2 intensities consistent with a higher percentage of scans
carried out for low abundant peptides (Figure 1G).
Next, we examined the accuracy of heavy peptide

quantification by comparing the signal of all channels after
data analysis to the booster channel. Total intensity normal-
ization of the full data set (light and heavy) resulted in an
overestimation of the measured heavy to total ratios in both
MS2 and MS3 (Figure S1). We expected this to be the result of
the normalization procedure, rather than the measured data.
Due to the constrained nature of the population of ions

measured in a TMT experiment,14 the extracted intensities of
the reporter ions are not faithfully reflecting the peptide
intensity. For MS/MS scans, a fixed amount of ions is
collected, independent of the precursor abundance, thus
creating technical constraint for reporter ion intensities that
can be reached. As a result, normalization by summing TMT
intensities during SILAC hyperplexing might distort the
calculated results. We therefore included an additional
calculation in the data analysis: measured abundances were
corrected for the injection time, which was needed to reach the
AGC-target value, as an experimentally determined value
approximating ion abundance (Figure 2A). Subsequently,
corrected values were normalized and processed as before.
This additional correction step reduced ratio distortion
observed in MS2 and MS3 TMD measurements, with only
minor effects on DDA-based quantifications. While TMD-MS2

measurements still showed a 1.5-fold overestimation of the
heavy to total ratio, TMD-MS3 exhibited the most accurate
quantification over the whole range of ratios tested. When
assessing relative fold changes instead of absolute values (i.e.,
heavy/total ratios), DDA and TMD methods performed
equally well, irrespective of MS2 or MS3 measurements used
(Figure 2B). In most experimental setups, only relative
quantification is required. For these, we recommend using

Figure 2. Absolute and relative quantification accuracy of TMD measurements. (A) Scheme of normalization approach used for determination of
heavy/total ratio. Median measured ratio of all heavy PSMs compared to fully labeled booster (n = 6, over two multiplexes) for DDA and TMD
measurements. Gray lines indicate mixed ratios, black lines indicate mean of replicates. (B) Comparison of dynamic range of MS2 and MS3 based
relative quantification to reference samples (5% mixed ratio) for TMD and DDA approaches. Gray line indicates reference diagonal.

Figure 3. Narrower isolation window reduces isolation interference and variation while maintaining identification rate. (A) Scheme of experimental
determination of coisolation for each PSM. Light-only baseline channel abundance represents coisolated light peptides in heavy PSM. Noise
subtraction can overcome ratio compression. (B) Density plot for measured isolation interference and isolation interference predicted from survey
scan (PD 2.4). (C) Heavy peptide identifications by TMD in dependency of isolation width. (D) Measured interference in dependency of different
isolation windows. ***P < 0.001. Boxes represent 25−75% quantiles, and whiskers indicate SD. (E) Coefficient of variation of measured heavy/
total ratios with different isolation windows. *P < 0.05 (n = 9, one multiplex). Middle bars represent median, and error bars indicate SD.
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MS2 methods as these outperform MS3 in the number of
identifications.
A common problem during MS2 and (to a lesser extent)

MS3 based quantification is the isolation of interfering peptides
distorting quantification results. Precursor ion contamination
in MS2 results in ratio compression and was overcome by
multinotch MS3 approaches.15 We recently showed that the
inclusion of a baseline channel for background subtraction in
mePROD measurements is sufficient to overcome ratio
compression.10 Strikingly, the baseline channel in mePROD
experiments provides with an experimental system to measure
isolation interference by determining isolation interference
from highly abundant light peptides (Figure 3A). Notably, we
observed that the measured isolation interference did not
correlate with the isolation interference predicted from survey
scans for filtering of perfect spectrum matches (PSMs)
(Figures 3B and S2A/B). This was irrespective of MS2 or
MS3 methods being used (Figure S2A/B). Using an MS3

method reduced the measured isolation interference while still
observing a broad range of interference values among heavy
PSMs. TMD approaches in general exhibited a higher isolation
interference as expected due more low abundant peaks being
targeted for subsequent scans (Figure S3B). We next examined
whether isolation window narrowing reduces measured
isolation interference. Narrowing the isolation window to 0.4
Th significantly reduced isolation interference while only
resulting in a slight reduction of heavy peptide and protein
identification (Figures 3C/D and S2C). Combining post-
acquisition baseline correction with isolation window narrow-
ing significantly increased accuracy with smaller variation
observed (Figure 3E).
Isolation window reduction resulted in higher median MS2

fill time and decreased mean summed MS2 intensities (Figure
S2D). We next asked whether increasing maximum fill times
would result in an additional benefit for quantification.
Increasing maximum MS2 injection time (while keeping the
isolation window fixed at 0.4 Th) resulted in a smaller number
of identified peptides as expected due to the increase in cycle
times (Figure S2E). Overall, the loss in MS2 intensity was only
partially rescued with median summed intensities increased by
28%, while the injection time was tripled (Figure S2F).
Therefore, we concluded that the reduction of the isolation
window can enhance the data quality and does not need to be
supplemented by higher injection times, resulting in most
efficient use of the cycle time.
Taken together, we showed that instrument logic based

measurements significantly increase the identification of low
abundant pSILAC signals while maintaining relative quantifi-
cation accuracy. This significantly reduces the machine time
required and improves identifications and quantification. The
benefit of TMD was particularly pronounced in conditions
with large ratio differences between the used SILAC labels. In
equally distributed samples, TMD increased identification and
ensured measurement of both labels to calculate ratios.
We showed that experimental setups such as those in

mePROD experiments allow one to experimentally assess co-
isolation interference in isobaric-multiplexed experiments and
could provide the bases for statistical approaches to reduce
ratio compression. We anticipate that instrument logic based
approaches are beneficial for any pSILAC experiment
(including triple SILAC labeled samples), especially when
requiring high throughput or low sample input amounts.
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ABSTRACT
The mammalian target of rapamycin and the integrated stress response are central cellular hubs
regulating translation upon stress. The precise proteins and pathway specificity of translation targets
of these pathways remained largely unclear. We recently described a new method for quantitative
translation proteomics and found that both pathways control translation of the same sets of proteins.
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Measurements of protein dynamics are a useful tool to study rapid
cellular changes introduced by various sorts of stimuli. Those
changes are often masked in classical proteome measurements,
hiding their potential for providing direct evidence of regulatory
mechanisms resulting in the studied phenotype. However, protein
dynamics are rarely monitored and data for most cellular stresses
and modulations remains lacking. This is largely due to the limited
number of methodologies available to quantify protein dynamics
on a system-wide scale. In addition, many available techniques
suffer from limited resolution, depth, or technical bias. Thus, new
technologies and advances in proteomics approaches are needed to
drive this important area of research.

Protein homeostasis is a tightly and rapidly regulated net-
work balancing synthesis and degradation. The two central
cellular hubs are the integrated stress response (ISR), causing
translation attenuation and extensive remodulation of tran-
scription upon activation, and the mammalian target of rapa-
mycin complex 1 (mTORC1), inactivation of which inhibits
translation, induces autophagy, and alters transcription.1,2

Both pathways integrate numerous stimuli emerging from
a range of stresses and cell environmental conditions and
ultimately result in broad remodeling of cells. Despite their
central roles, the precise set of their specific translation targets
had been missing. Their study is particularly difficult as the
ISR and mTORC1 integrate a range of cellular stresses and
conditions and are thus highly sensitive to any perturbation
caused by the experimental method.

To quantify changes in the translatome, two approaches are
commonly used 1) ribosome profiling (Ribo-seq), based on
sequencing of mRNA pieces protected by ribosomes, 2) proteo-
mics approaches following labeling of newly synthesized pro-
teins to quantify translation. Both methods pose technical
challenges. When monitoring conditions with strong global
translation effects, such as for the ISR or mTORC1, Ribo-seq
suffers from an extensive normalization bias.3 Proteomics
approaches however are challenged by the low rate of newly

synthesized proteins relative to the preexisting pool of (old)
proteins.4,5 To overcome this issue, translation proteomics are
commonly carried out using incorporation of click-reactive
reagents, such as the non-natural amino acid azido-
homoalanine (AHA) or puromycin, to allow biotinylation and
enrichment of newly synthesized proteins before analysis.6

However, these compounds themselves cause cell stress and
affect translation: 1) AHA is a methionine analogue incorpo-
rated into nascent changes through tRNA charging. To ensure
high-level incorporation, cells are typically starved for methio-
nine before addition of AHA, causing cell starvation and result-
ing in translation attenuation via mTORC1 inhibition.2 In
addition, tRNA charging with AHA is ~400 fold less efficient
than with methionine.7 Uncharged tRNAs are sensed by the
eukaryotic translation initiation factor 2 alpha kinase 4
(EIF2AK4, also known as GCN2), causing translation inhibition
via ISR activation,1 thereby affecting the system studied. 2)
Puromycin is a translation inhibitor prematurely terminating
protein synthesis leading to the release of truncated proteins.
Thus, puromycin labeling directly affects translation itself.

To allowmonitoring translation without perturbing the system,
we used pulsed stable isotope labeling of amino acids in cell culture
(SILAC, i.e. heavy amino acids) labeling to mark new proteins.8

These heavy amino acids are biologically indistinguishable from
their light counterpart and have no effect on cellular behavior.
However, they cannot be enriched, which has largely prevented
the use of pulse-SILAC labeling for measuring acute translation
changes, as the intensity (amount) of newly synthesized versus old
proteins is too low to be reasonably detectable by mass spectro-
metry with sufficient depth and accuracy.4,5 To overcome this
problem, we developed multiplexed enhanced Protein Dynamics
(mePROD) proteomics, combining pulsed-SILAC and tandem
mass tag (TMT) multiplexing,9 with the addition of spike-ins
specifically enhancing the signal of newly synthesized peptides to
allow their determination.5 Overall, this equipped us with amethod
capable of quantifying translation of thousands of proteins in
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multiplexed experiment with up to nine samples (14 for 16-plex
TMTpro), with small input requirements (e.g. <100,000 HeLa
cells), and short required labeling times (i.e. minutes).

The ISR and mTORC1 both target translation of capped
mRNAs. Nevertheless, the specific groups of proteins whose
translation is inhibited by these pathways had been broadly
assumed to be separate, despite their similar features in vivo.10

We applied mePROD translation proteomics to conditions
activating the ISR or inhibiting mTORC1.5 Measured global
translation rates reflected the extensive reduction observed by
other unbiased methods. A large set of proteins showed sig-
nificantly reduced relative translation rates. Strikingly, trans-
lation targets of the ISR and mTORC1 extensively overlapped,
revealing that both pathways target the same translational
processes (Figure 1). Surprisingly, our analyses also revealed
that not pathway, but intrinsic features drive target specificity.
Translation of a fraction of proteins is reduced under mild
global translation inhibition, while others (mainly housekeep-
ing proteins) are largely resistant to translation attenuation.
This implies some features within the mRNA sequence, or
specific proteins binding to these, that define how quickly or
slowly translation of mRNAs is reduced upon stress. What
these features are will be an important future question to
address.

In summary, we developed a proteomics method to
measure highly acute changes in translation by boosting
the signal of interest. We employed this system to charac-
terize target specificity of ISR or mTORC1-driven

translation attenuation. Our analyses revealed the sets of
proteins, for which the ISR or mTORC1 inhibit translation.
Strikingly, both pathways largely regulated the same set of
proteins. Instead, translation rates were dependent on glo-
bal protein translation inhibition. Further work will be
required to determine which elements or cellular compo-
nents drive this behavior and what the functional cellular
consequences are.
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Figure 1. Overlapping control of translation by the ISR and mTORC1.
Both activation of the integrated stress response (ISR), via phosphorylation of
eukaryotic translation initiation factor 2 alpha (eIF2α), and inhibition of mam-
malian target of rapamycin complex 1 (mTORC1) result in an extensive reduction
in global proteins synthesis (bottom). Using multiplexed enhanced protein
dynamic (mePROD) proteomics, a newly developed unbiased translatome pro-
teomics method, revealed that the set of proteins, whose translation is con-
trolled by the ISR or mTORC1, largely overlaps. Instead, regulation is mediated
by intrinsic factors that remain unknown.
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Proteomics of SARS-CoV-2-infected host 
cells reveals therapy targets

Denisa Bojkova1,7, Kevin Klann2,7, Benjamin Koch3,7, Marek Widera1, David Krause2,  
Sandra Ciesek1,4, Jindrich Cinatl1 ✉ & Christian Münch2,5,6 ✉

A new coronavirus was recently discovered and named severe acute respiratory 
syndrome coronavirus 2 (SARS-CoV-2). Infection with SARS-CoV-2 in humans causes 
coronavirus disease 2019 (COVID-19) and has been rapidly spreading around the globe1,2. 
SARS-CoV-2 shows some similarities to other coronaviruses; however, treatment options 
and an understanding of how SARS-CoV-2 infects cells are lacking. Here we identify the 
host cell pathways that are modulated by SARS-CoV-2 and show that inhibition of these 
pathways prevents viral replication in human cells. We established a human cell-culture 
model for infection with a clinical isolate of SARS-CoV-2. Using this cell-culture system, 
we determined the infection profile of SARS-CoV-2 by translatome3 and proteome 
proteomics at different times after infection. These analyses revealed that SARS-CoV-2 
reshapes central cellular pathways such as translation, splicing, carbon metabolism, 
protein homeostasis (proteostasis) and nucleic acid metabolism. Small-molecule 
inhibitors that target these pathways prevented viral replication in cells. Our results 
reveal the cellular infection profile of SARS-CoV-2 and have enabled the identification of 
drugs that inhibit viral replication. We anticipate that our results will guide efforts to 
understand the molecular mechanisms that underlie the modulation of host cells after 
infection with SARS-CoV-2. Furthermore, our findings provide insights for the 
development of therapies for the treatment of COVID-19.

At the end of 2019, a cluster of cases of severe pneumonia of unknown 
cause was described in Wuhan (eastern China), and a SARS-like acute 
respiratory distress syndrome was noted in many patients. Early in  
January 2020, next-generation sequencing revealed that a novel corona-
virus (named SARS-CoV-2) was the causal factor for the disease1, which 
was later designated COVID-19. SARS-CoV-2 shows high infectivity, 
which has resulted in rapid global spreading2.

Currently, there is no established therapy for the treatment of COVID-19.  
Treatment is based mainly on supportive and symptomatic care4,5. 
Therefore, the development of therapies that inhibit infection with or 
replication of SARS-CoV-2 are urgently needed. Molecular examination 
of infected cells by unbiased proteomics approaches offers a potent 
strategy for revealing pathways that are relevant for viral pathogenic-
ity to identify potential drug targets. However, this strategy depends 
on the availability of cell-culture models that are amenable to virus 
infection and sensitive proteomics approaches that can be used for 
temporal infection profiling in cells. SARS-CoV-2 was recently success-
fully isolated using the human colon epithelial carcinoma cell line6 
Caco-2. SARS-CoV-2 replicates in gastrointestinal cells in vivo7 and is fre-
quently detected in stool—regardless of the occurrence of diarrhoea8. 
Caco-2 cells were extensively used to study infection with SARS-CoV 
and can be used for SARS-CoV-2 infection6,9. For proteome analysis, 
a method—multiplexed enhanced protein dynamics (mePROD) pro-
teomics—was recently described that enables the determination of 
translatome and proteome changes at high temporal resolution3. Owing 

to the quantification of translational changes by naturally occurring 
heavy isotope labelling using stable isotope labelling by amino acids 
in cell culture (SILAC), this method does not affect cellular behaviour 
and therefore enables the perturbation-free and unbiased analysis of 
the response of cells to viral infection.

In this study, we used quantitative translatome and proteome 
proteomics to obtain an unbiased profile of the cellular response to 
SARS-CoV-2 infection in human cells. We monitored different time 
points after infection and identified key determinants of the host 
cell response to infection. These findings revealed pathways that are 
relevant for SARS-CoV-2 infection. We tested several drugs that tar-
get these pathways, including translation, proteostasis, glycolysis, 
splicing and nucleotide synthesis pathways. These drugs inhibited 
SARS-CoV-2 replication at concentrations that were not toxic to the 
human cells, potentially providing therapeutic strategies for the  
treatment of COVID-19.

SARS-CoV-2 rapidly replicates in cells
To investigate potential antiviral compounds that inhibit SARS-CoV-2, 
we established a highly permissive SARS-CoV-2 cell-culture model 
in Caco-2 cells. Addition of SARS-CoV-2 at a multiplicity of infection 
(MOI) of one (to enable the infection of most of the cells while prevent-
ing multiple infections) led to a fast progression of viral infection and 
visible cytopathogenic effects were apparent after 24 h (Fig. 1a). To 
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determine whether productive viral infection takes place in this model, 
we measured the number of viral RNA copies in the supernatant during 
a 24-h time period. SARS-CoV-2 RNA molecules increased continuously 
after infection (Fig. 1b), indicating that the virus underwent full replica-
tion cycles. Staining for viral nucleoprotein additionally revealed the 
production of viral proteins in most cells (Extended Data Fig. 1). Taken 
together, we established a functional SARS-CoV-2 cell-culture model 
that enables the investigation of the different steps of the life cycle of 
SARS-CoV-2 in cells.

Translation inhibitors block replication
To determine the temporal profile of SARS-CoV-2 infection, we infected 
Caco-2 cells with SARS-CoV-2, cultured them for a range of 2–24 h and 
quantified translatome and proteome changes by mePROD proteomics 
compared with time-matched mock-infected samples (Fig. 2a). Across 
all replicates, we quantified translation for 2,715 proteins and total 
protein levels for 6,382 proteins (Supplementary Table 1). Principal 
component analysis showed that replicates clustered closely and that 
infected samples showed the first separation from control clusters 
after 6 h (Extended Data Fig. 2a). Many RNA viruses decrease protein 
synthesis in cells, as has been suggested for SARS-CoV10. When moni-
toring global translation rates, only minor changes in translation were 
observed (Fig. 2b and Extended Data Fig. 2b). We detected translation 
rates for five viral proteins, all of which exhibited increasing transla-
tion rates over time (Fig. 2c). To identify pathways that are potentially 
important for virus amplification, we determined host proteins that 
exhibited translation kinetics, which correlated with viral proteins. 
Averaged profiles of all quantified viral proteins were used as reference 
profiles; the distance to this profile was calculated for all quantified 
host proteins and a network analysis was carried out for the top 10% 
quantile of nearest profiles (244 proteins) (Extended Data Fig. 2c–f). 
Pathway analyses of the network revealed an extensive increase in the 
translation machinery of the host (Fig. 2d and Extended Data Fig. 2g). In 
addition, we detected significant enrichment of components of several 
other pathways, such as splicing and nucleobase synthesis (Fig. 2d).

Host translation has previously been targeted to pharmacologically 
inhibit the replication of diverse coronaviruses, such as SARS-CoV or 
MERS-CoV11,12 (Extended Data Fig. 2h). As components of the translation 
machinery were translated at higher rates (Fig. 2d), we hypothesized 
that SARS-CoV-2 replication might be sensitive to inhibition of transla-
tion. We tested two translation inhibitors—cycloheximide (an inhibitor 
of translation elongation) and emetine (an inhibitor of the 40S ribo-
somal protein S14)—for their ability to reduce SARS-CoV-2 replication. 
Both compounds significantly inhibited SARS-CoV-2 replication at 

concentrations that are not toxic to human Caco-2 cells (Fig. 2e, f and 
Extended Data Fig. 2i, j). Taken together, translatome analyses of cells 
infected with SARS-CoV-2 revealed the temporal profile of viral and host 
protein responses with prominent increases in the translation machin-
ery. Translation inhibitors prevented SARS-CoV-2 replication in cells.

Pathways changed by SARS-CoV-2 infection
To obtain a general understanding of changes in the host proteome after 
infection, we analysed system-wide differences in protein levels over 
time (Fig. 3a and Supplementary Table 2). Whereas early time points 
showed only minor changes in the host proteome, the proteome under-
went extensive modulation 24 h after infection (Fig. 3a and Extended 
Data Fig. 3). Hierarchical clustering identified two main clusters of 
proteins that were differentially regulated. The first cluster consisted 
of proteins that were reduced during infection and was enriched in pro-
teins that belonged to cholesterol metabolism (Extended Data Fig. 4a, 
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b and Supplementary Table 3). The second cluster was composed of 
proteins that were increased by infection and revealed strong increases 
in RNA-modifying proteins, such as spliceosome components (consist-
ent with translatome measurements in Fig. 2d), and carbon metabolism 
(Fig. 3b, c, Extended Data Fig. 5a and Supplementary Table 4). Notably, 
for 14 out of 25 spliceosome components that were increased after 
infection with SARS-CoV-2, direct binding to viral proteins of SARS-CoV 
or other coronaviruses had been shown13–16 (Extended Data Fig. 5b). 
We therefore tested whether the inhibition of splicing or glycolysis 
may be able to prevent SARS-CoV-2 replication. Addition of pladien-
olide B, a spliceosome inhibitor that targets the splicing factor SF3B117, 
prevented viral replication at concentrations that were not toxic to 
the human Caco-2 cells (Fig. 3d and Extended Data Fig. 5c), revealing 
that splicing is an essential pathway for SARS-CoV-2 replication and a 
potential therapeutic target.

Next, we assessed the effects of the inhibition of carbon metabolism 
(that is, glycolysis) on SARS-CoV-2 replication. 2-deoxy-d-Glucose, an 
inhibitor of hexokinase (the rate-limiting enzyme in glycolysis), has 
previously been shown to be effective against other viruses in cell 
culture and suppressed infection with rhinovirus in mice18. Blocking 
glycolysis with non-toxic concentrations of 2-deoxy-d-glucose pre-
vented SARS-CoV-2 replication in Caco-2 cells (Fig. 3e and Extended 
Data Fig. 5d). Notably, we also observed changes in proteins that reside 
in the endoplasmic reticulum and that are involved in lipid metabolism 
(Extended Data Fig. 6), consistent with previous reports on other coro-
naviruses19. Together, our quantitative analyses of proteome changes 

after infection with SARS-CoV-2 revealed host pathways that change 
after infection and revealed that spliceosome and glycolysis inhibitors 
are potential therapeutic agents for the treatment of COVID-19.

Kinetic profiling of the infection proteome
To identify additional potential inhibitors of SARS-CoV-2 replication, 
we determined proteins with abundance trajectories that were similar 
to the nine detected viral proteins (Fig. 4a and Extended Data Fig. 7a–d; 
measurement depth does not allow us to distinguish polyprotein from 
processed protein). We compared the distance and false-discovery 
rate (FDR) for each protein to an averaged viral protein profile and 
performed gene ontology analysis (459 proteins with a FDR-adjusted 
P < 0.01). We identified a major cluster of metabolic pathways, which 
consisted of diverse nucleic acid metabolism sub-pathways (Fig. 4b 
and Supplementary Table 5). Coronavirus replication depends on the 
availability of cellular nucleotide pools20. Compounds that interfere 
with nucleic acid metabolism, such as ribavirin, have been used in the 
past to inhibit viral replication21. We tested the effect of the inhibition 
of nucleotide synthesis on SARS-CoV-2 replication in cells. Ribavirin, 
which inhibits inosine monophosphate dehydrogenase (IMPDH), 
the rate-limiting enzyme in de novo synthesis of guanosine nucleo-
tides, inhibited SARS-CoV-2 replication at low micromolar and clini-
cally achievable concentrations22 (Fig. 4c and Extended Data Fig. 7e), 
consistent with data in monkey cells23. Inhibition of IMPDH had been 
shown to prevent replication of coronaviruses HCoV-43, CoV-NL63 
and MERS-CoV but not of SARS-CoV24. Considering the clinical use of 
ribavirin to treat viruses such as hepatitis C and respiratory syncytial 
virus25,26, it may be regarded as a treatment option for patients with 
COVID-19.
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Components of the proteostasis machinery also acted in a compa-

rable manner to the viral proteins (Extended Data Fig. 3e), consist-
ent with the perturbation of host cell proteostasis due to the higher 
folding load, which is the results of the high translation rates of viral 
proteins. We therefore tested the effects of proteostasis perturbation 
on SARS-CoV-2 replication using NMS-873, a small-molecule inhibitor 
of the AAA ATPase p97. p97 is a key component of proteostasis, which 
affects protein degradation, membrane fusion, vesicular trafficking and 
disassembly of stress granules27. NMS-873 has previously been shown 
to inhibit the replication of influenza A and B28. We show that NMS-
873 inhibits SARS-CoV-2 replication at low nanomolar concentrations 
(Fig. 4d and Extended Data Fig. 7f). In summary, analyses of the effects 
of SARS-CoV-2 infection on the host cell proteome revealed major read-
justments in cellular function, particularly of splicing, proteostasis and 
nucleotide biosynthesis. Compounds that modulate these pathways 
prevented SARS-CoV-2 replication in human cells.

Discussion
Identifying and testing potential drug candidates for the treatment 
of COVID-19 is of high priority. So far, only limited data have been 
obtained that describes the response of the host cell to infection 
with SARS-CoV-2, preventing a databased assessment of treatment 
options. We describe a SARS-CoV-2 cell-infection system that can be 
used to determine the changes in host cell pathways after infection, 
which result from host cell (antiviral) responses or viral effector pro-
teins, and assess inhibitors. At the MOI used, most of the cells were 
infected, enabling us to determine global changes across the whole 
cell population with minimal ratio compression from uninfected cells. 
We found that the expression of the previously described SARS-CoV-2 
entry receptor ACE2 was mildly reduced after infection (Extended 
Data Fig. 8), consistent with a drop in ACE2 levels due to shedding by 
ADAM10 that has been described for SARS-CoV29. Temporal proteome 
and translatome proteomics showed limited translation attenuation 
and revealed core cellular pathways that were modulated after infection 
(Fig. 2). For SARS-CoV and other RNA viruses, severe effects on transla-
tion have been described30. Our observations suggest that SARS-CoV-2 
reshapes host cell translation, probably by increasing the production 
of translation machinery components to compensate for the inhibi-
tion of host cell translation. We tested two translation inhibitors with 
different modes of action and found that these to efficiently prevented 
viral replication in cells. These findings encourage further testing of 
translation inhibitors for the prevention of SARS-CoV-2 replication.

Overall, our proteomics analyses highlight cellular pathways for thera-
peutic interventions, including a marked increase in components of the 
spliceosome, proteostasis and nucleotide biosynthesis pathways. This 
enabled us to assess new drug targets, which were based on the behaviour 
of SARS-CoV-2 in human cells and which had not previously been tested 
with other coronaviruses. Some of the inhibitors, for which we observed 
inhibition of SARS-CoV-2, are approved drugs, such as ribavirin, or are 
undergoing clinical trials (that is, 2-deoxy-d-glucose). A clinical trial 
for ribavirin was recently initiated (ClinicalTrials.gov; NCT04356677).

Analysis of pathways that are important for viral infection in cells by 
combinatorial profiling using proteomics and translatomics represents 
a useful tool to propose likely pathways that inhibit viral replication. 
Determining possible compounds based on the specific cellular infec-
tion profile of the virus enables an unbiased determination of potential 
drug targets. Here, using such an experimental-data-driven approach, 
we identified several drugs that prevent SARS-CoV-2 replication in cells 
for further testing in clinical settings for the treatment of COVID-19.
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Methods

Cell culture
Human Caco-2 cells, derived from colon carcinoma, were obtained 
from the Deutsche Sammlung von Mikroorganismen und Zellkul-
turen (DSMZ; AC169). The cell-authentification certificate from  
DSMZ is available and cells have been tested negative for mycoplasma 
infection.

Cells were grown at 37 °C in minimal essential medium (MEM)  
supplemented with 10% fetal bovine serum (FBS) and containing 100 IU/ml  
penicillin and 100 μg/ml streptomycin. All culture reagents were  
purchased from Sigma.

Virus preparation
SARS-CoV-2 was isolated from samples of travellers returning from 
Wuhan (China) to Frankfurt (Germany) using the human colon car-
cinoma cell line Caco-2 as described previously6. SARS-CoV-2 stocks 
used in the experiments had undergone one passage on Caco-2 cells 
and were stored at −80 °C. Virus titres were determined as TCID50/ml 
in confluent cells in 96-well microtitre plates.

Quantification of viral RNA
SARS-CoV-2 RNA from cell-culture supernatant samples was isolated 
using AVL buffer and the QIAamp Viral RNA Kit (Qiagen) according 
to the manufacturer’s instructions. Absorbance-based quantifica-
tion of the RNA yield was performed using the Genesys 10S UV-Vis  
Spectrophotometer (Thermo Scientific). RNA was subjected to OneStep 
qRT–PCR analysis using the Luna Universal One-Step RT-qPCR Kit (New 
England Biolabs) and a CFX96 Real-Time System, C1000 Touch Ther-
mal Cycler. Primers were adapted from the WHO protocol31 targeting 
the open-reading frame for RNA-dependent RNA polymerase (RdRp): 
RdRP_SARSr-F2 (GTGARATGGTCATGTGTGGCGG) and RdRP_SARSr-R1 
(CARATGTTAAASACACTATTAGCATA) using 0.4 μM per reaction. 
Standard curves were created using plasmid DNA (pEX-A128-RdRP) 
that contained the corresponding amplicon regions of the RdRP target 
sequence according to GenBank accession number NC_045512. For 
each condition three biological replicates were used. Mean ± s.d. were 
calculated for each group.

Antiviral and cell viability assays
Confluent layers of Caco-2 cells in 96-well plates were infected with 
SARS-CoV-2 at a MOI of 0.01. Virus was added together with drugs and 
incubated in MEM supplemented with 2% FBS with different drug dilu-
tions. Cytopathogenic effects were assessed visually 48 h after infec-
tion. To assess the effects of drugs on Caco-2 cell viability, confluent cell 
layers were treated with different drug concentration in 96-well plates. 
The viability was measured using the Rotitest Vital (Roth) according to 
the manufacturer’s instructions. Data for each condition were collected 
for at least three biological replicates. For dose–response curves, data 
were fitted with all replicates using OriginPro 2020 with the following 
equation:

y A
A A

= 1 +
2 − 1

1 + 10 x x p(log − )0

IC50 values were generated by Origin together with metrics for curve fits.

Detection of the nucleoprotein of SARS-CoV-2
Viral infection was assessed by staining of SARS-CoV-2 nucleoprotein. 
In brief, cells were fixed with acetone:methanol (40:60) solution and 
immunostaining was performed using a monoclonal antibody directed 
against the nucleoprotein of SARS-CoV-2 (1:500, Sinobiological, 
40143-R019-100ul), which was detected with a peroxidase-conjugated 
anti-rabbit secondary antibody (1:1,000, Dianova), followed by addi-
tion of AEC substrate.

Isotope labelling and cell lysis
In brief, 2 h before collection, cells were washed twice with warm 
PBS to remove interfering medium and cultured for an additional 2 h 
with DMEM medium containing 84 mg/l l-arginine (13C615N4 (R10); 
Cambridge Isotope Laboratories, CNLM-539-H) and 146 mg/l l-lysine 
(13C615N2 (K8), Cambridge Isotope Laboratories, CNLM-291-H) to label 
nascent proteins. After labelling culture, the cells were washed three 
times with warm PBS and lysed with 95 °C hot lysis buffer (100 mM EPPS 
pH 8.2, 2% sodium deoxycholate, 1 mM TCEP, 4 mM 2-chloracetamide, 
protease inhibitor tablet mini EDTA-free (Roche)). Samples were then 
incubated for an additional 5min at 95 °C, followed by sonication for 
30 s and a further 10-min incubation at 95 °C.

Sample preparation for LC–MS/MS
Samples were prepared as previously described3. In brief, proteins 
were precipitated using methanol:chloroform precipitation and resus-
pended in 8 M urea and 10 mM EPPS pH 8.2. Isolated proteins were 
digested with 1:50 w/w LysC (Wako Chemicals) and 1:100 w/w trypsin 
(Promega, Sequencing-grade) overnight at 37 °C after dilution to a 
final urea concentration of 1 M. Digests were then acidified (pH 2–3) 
using TFA. Peptides were purified using C18 (50 mg) SepPak columns 
(Waters) as previously described. Desalted peptides were dried and 
25 μg of peptides were resuspended in TMT-labelling buffer (200 mM 
EPPS pH 8.2, 10% acetonitrile). Peptides were subjected to TMT label-
ling with 1:2 peptide TMT ratio (w/w) for1 h at room temperature.  
The labelling reaction was quenched by addition of hydroxylamine to 
a final concentration of 0.5% and incubation at room temperature for 
an additional 15 min. Labelled peptides were pooled and subjected to 
high pH reverse Phase fractionation with the HpH RP Fractionation kit 
(ThermoFisher Scientific) following the manufacturer’s instructions. All 
multiplex reactions were mixed with a bridge channel, which consists 
of a control sample labelled in one reaction and split to all multiplexed 
reactions in equimolar amounts.

LC–MS/MS
Peptides were resuspended in 0.1% formic acid and separated on 
an Easy nLC 1200 (ThermoFisher Scientific) and a 22-cm-long, 
75-μm-inner-diameter fused-silica column, which had been packed in 
house with 1.9-μm C18 particles (ReproSil-Pur, Dr. Maisch), and kept 
at 45 °C using an integrated column oven (Sonation). Peptides were 
eluted by a nonlinear gradient from 5–38% acetonitrile over 120 min and 
directly sprayed into a QExactive HF mass spectrometer equipped with 
a nanoFlex ion source (ThermoFisher Scientific) at a spray voltage of 
2.3 kV. Full-scan MS spectra (350–1,400 m/z) were acquired at a resolu-
tion of 120,000 at m/z 200, a maximum injection time of 100 ms and an 
AGC target value of 3 × 106. Up to 20 most intense peptides per full scan 
were isolated using a 1 Th window and fragmented using higher-energy 
collisional dissociation (normalized collision energy of 35). MS/MS 
spectra were acquired with a resolution of 45,000 at m/z 200, a maxi-
mum injection time of 80 ms and an AGC target value of 1 × 105. Ions with 
charge states of 1 and >6 as well as ions with unassigned charge states 
were not considered for fragmentation. Dynamic exclusion was set to 
20 s to minimize repeated sequencing of already acquired precursors.

LC–MS/MS data analysis
Raw files were analysed using Proteome Discoverer 2.4 software  
(ThermoFisher Scientific). Spectra were selected using default set-
tings and database searches performed using SequestHT node in 
Proteome Discoverer. Database searches were performed against a 
trypsin-digested Homo sapiens SwissProt database, the SARS-CoV-2 
database (Uniprot pre-release) and FASTA files of common contami-
nants (‘contaminants.fasta’ provided with MaxQuant) for quality 
control. Fixed modifications were set as TMT6 at the N terminus 
and carbamidomethyl at cysteine residues. One search node was 
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set up to search with TMT6 (K) and methionine oxidation as static  
modifications to search for light peptides and one search node was set 
up with TMT6+K8 (K, +237.177), Arg10 (R, +10.008) and methionine 
oxidation as static modifications to identify heavy peptides. Searches 
were performed using Sequest HT. After each search, posterior error 
probabilities were calculated and peptide spectrum matches (PSMs) 
filtered using Percolator using default settings. Consensus Workflow 
for reporter ion quantification was performed with default settings, 
except the minimal signal-to-noise ratio was set to 5. Results were  
then exported to Excel files for further processing. For proteome 
quantification all PSMs were summed intensity normalized, followed 
by IRS32 and TMM33 normalization and peptides corresponding to a 
given UniProt accession were summed, including all modification 
states.

For translatome measurements, Excel files were processed in Python, 
as previously described3. Python 3.6 was used together with the follow-
ing packages: pandas 0.23.434, numpy 1.15.435 and scipy 1.3.0. Excel files 
with normalized PSM data were read in and each channel was normal-
ized to the lowest channel based on total intensity. For each peptide 
sequence, all possible modification states containing a heavy label were 
extracted and the intensities for each channel were averaged between 
all modified peptides. Baseline subtraction was performed by subtract-
ing the measured intensities for the non-SILAC-labelled sample from 
all other values. Negative intensities were treated as zero. The heavy 
label incorporation at the protein level was calculated by summing 
the intensities of all peptide sequences belonging to one unique pro-
tein accession. These values were combined with the standard protein  
output of Proteome Discoverer 2.4 to add annotation data to the master 
protein accessions.

Hierarchical clustering and profile comparison
Hierarchical cluster analysis and comparison with viral protein  
profiles for all samples was performed using Perseus36 software package 
(version 1.6.5.0) after centring and scaling of data (Z-scores). K-means 
pre-processing was performed with a cluster number of 12 and a maxi-
mum of 10 iterations. For the comparison of profiles, the viral profiles 
were Z-scored and averaged to generate reference profile. Profiles of 
all proteins were compared to the reference (Pearson), distances and 
FDRs were computed.

Network analysis
For network analysis, Cytoscape 3.7.137 software was used with the 
BiNGO 3.0.338 plugin for gene ontology analysis, EnrichmentMap 3.1.039 
and ReactomeFI 6.1.040. For gene ontology analyses, gene sets were 
extracted from data as indicated using fold change and significance 
cut-offs.

Statistical analysis
No statistical methods were used to predetermine sample size. Signifi-
cance was, unless stated otherwise, tested using unpaired two-sided 
Student’s t-tests with equal variance assumed. Statistical analysis was 
performed using OriginPro 2020 analysis software. For network and 
gene ontology analysis all statistical computations were performed 
by the corresponding packages.

Reporting summary
Further information on research design is available in the Nature 
Research Reporting Summary linked to this paper.

Data availability
The LC–MS/MS proteomics data have been deposited in the Pro-
teomeXchange Consortium via the PRIDE41 partner repository with 
the dataset identifier PXD017710. We furthermore created a webpage 
(http://corona.papers.biochem2.com/), in which the presented data 
is visualized for easy access of the published data.
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Summary 

SARS-CoV-2 infections are rapidly spreading around the globe. The rapid development of 
therapies is of major importance. However, our lack  of understanding of the molecular 
processes and host cell signaling events underlying  SARS-CoV-2 infection hinder therapy 20 

development. We employed a SARS-CoV-2 infection sys tem in permissible human cells to 
study signaling changes by phospho-proteomics. We i dentified viral protein 
phosphorylation and defined phosphorylation-driven host cell signaling changes upon 
infection. Growth factor receptor (GFR) signaling a nd downstream pathways were 
activated. Drug-protein network analyses revealed G FR signaling as key pathway 25 

targetable by approved drugs. Inhibition of GFR dow nstream signaling by five 
compounds prevented SARS-CoV-2 replication in cells , assessed by cytopathic effect, 
viral dsRNA production, and viral RNA release into the supernatant. This study describes 
host cell signaling events upon SARS-CoV-2 infectio n and reveals GFR signaling as 
central pathway essential for SARS-CoV-2 replicatio n. It provides with novel strategies for 30 

COVID-19 treatment. 

Introduction  

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), a novel coronavirus, has been 
rapidly spreading around the globe since the beginning of 2020. In people, it causes coronavirus 
disease 2019 (COVID-19) often accompanied by severe respiratory syndrome (Chen et al., 35 

2020). To conquer the global health crisis triggered by COVID-19, rapidly establishing drugs is 
required to dampen the disease course and relieve healthcare institutions. Thus, repurposing of 
already available and (ideally) approved drugs might be essential to rapidly treat COVID-19. 
Many studies for proposing repurposing of specific drugs have been conducted in the last 
months, but mostly remain computational without tests in infection models (Smith and Smith, 40 

2020; Wang, 2020). In addition, they are hindered by the lack of knowledge about the molecular 
mechanisms of SARS-CoV-2 infection and the resulting host-cell responses required to allow 
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viral replication. To rationally repurpose drugs, a molecular understanding of the infection and 
the changes within the host cell pathways is essential. Experimentally identifying viral targets in 
the cell allows candidate drugs to be selected with high confidence for further testing in the 45 

clinics to reduce the risks for patients resulting from tests with drugs lacking in vitro validation. 

Growth factor receptor (GFR) signaling plays important roles in cancer pathogenesis and has 
also been reported to be crucial for infection with some viruses (Beerli et al., 2019; Kung et al., 
2011; Zhu et al., 2009). GFR activation leads to the modulation of a wide range of cellular 
processes, including proliferation, adhesion, or differentiation (Yarden, 2001). Various viruses, 50 

such as Epstein-Barr virus, influenza, or hepatitis C, have been shown to use the epidermal 
growth factor receptor (EGFR) as an entry receptor (Eierhoff et al., 2010; Kung et al., 2011; 
Lupberger et al., 2011). In addition, EGFR activation can suppress interferon signaling and thus 
the antiviral response elicited in respiratory virus diseases, for instance influenza A and 
rhinovirus (Ueki et al., 2013). Activation of GFR signaling might play an important role also in 55 

other respiratory viruses, such as SARS-CoV-2. 

In the last years, it has been shown for many viruses that modulation of host cell signaling is 
crucial for viral replication and might exhibit strong therapeutic potential (Beerli et al., 2019; 
Pleschka et al., 2001). However, how SARS-CoV-2 infection changes host cell signaling has 
remained unclear. We recently established an in vitro cell culture model of SARS-CoV-2 60 

infection using the colon epithelial cell line Caco-2, which is highly permissive for the virus and 
commonly used for the study of coronaviruses (Herzog et al., 2008; Ren et al., 2006). Here, we 
determine changes in the cellular phospho-protein networks upon infection with SARS-CoV-2 to 
gain insight into infection-induced signaling events. We found extensive rearrangements of 
cellular signaling pathways, particularly of GFR signaling. Strikingly, inhibiting GFR signaling 65 

using prominent (anti-cancer) drugs – namely pictilisib, omipalisib, RO5126766, lonafarnib, and 
sorafenib – prevented SARS-CoV-2 replication in vitro, assessed by cytopathic effect and viral 
RNA replication and release. These compounds prevented replication at clinically achievable 
concentrations. Due to their clinical availability, these drugs could be rapidly transitioned towards 
clinical trials to test their feasibility as COVID-19 treatment option.  70 

Results 

Phospho-proteomics of cells infected with SARS-CoV- 2 

In a previous study, we analyzed the effect of SARS-CoV-2 infection on the host cell translatome 
and proteome (Bojkova et al., 2020). This study found the effects 24 hours after SARS-CoV-2 
infection especially useful for identifying druggable host pathways. To evaluate changes in 75 

intracellular signaling networks brought about by SARS-CoV-2 infection, we quantified phospho-
proteome changes 24 hours after infection (Figure 1A). Caco-2 cells were mock-infected or 
infected with SARS-CoV-2 patient isolates (in five biological replicates at an MOI of 1) for one 
hour, washed, and incubated for 24 hours before cell harvest. Extracted proteins were digested 
and split to 1) carry out whole-cell proteomics of a tandem mass tag (TMT) 10-plex samples 80 

using liquid chromatography synchronous precursor selection mass spectromety (LC-SPS-MS3), 
or 2) use Fe-NTA phosphopeptide enrichment (achieving 98% enrichment) for phospho 
proteome analyses of a TMT 10-plex analyzed by LC-MS2, due to the higher precision and 
identification rates of MS2 based methods during phosphopeptide measurements (Hogrebe et 
al., 2018). We identified and quantified 7,150 proteins and 16,715 different phosphopeptides for 85 

a total of 15,093 different modification sites (Figure 1B, C, S1, and Table S1, S2). The main 
fraction of phosphopeptides were modified serines (86.4%), followed by threonine (13.4%), and 
tyrosine (0.2%) (Figure 1D). Upon infection, 2,197 and 799 phosphopeptides significantly 
increased or decreased respectively (log2 FC > 1, p value < 0.05). 
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Viral proteins are produced in the host cell and underlie (and often require) post-translational 90 

modification (PTM) by host cell enzymes (Wu et al., 2009). Accordingly, we assessed viral 
proteins phosphorylated in the host cell. We identified 33 modification sites on 6 different viral 
proteins (Figure 1E-J). Possible functions of the observed modifications largely remain unclear 
due to a lack of understanding of their molecular function and regulation. SARS-CoV-2 protein 
3a was phosphorylated on the luminal side of this transmembrane protein (Figure 1E) Membrane 95 

protein M was phosphorylated at three serines in close proximity, at the C-terminal, cytoplasmic 
region of the protein (Figure 1F), suggesting a high-activity modification surface. SARS-CoV-1 
protein 6 was described to accelerates infections in murine systems (Tangudu et al., 2007). We 
found a single phosphorylation of the SARS-CoV-2 protein homologue non-structural protein 6 in 
host cells (Figure 1G) Protein 9b was modified at two sites (Figure 1H). However, its function in 100 

SARS-CoV-1 or SARS-CoV-2 remains unknown. Polyprotein 1b is a large 7,096 amino acid 
protein heavily processed to generate distinct proteins in SARS-CoV-1 (Tangudu et al., 2007). 
We found polyprotein 1b to be modified at three residues, two in a region of unknown function 
and one in the non-structural protein 11 (NSP11) part of the protein (Figure 1I). Our data cannot 
distinguish whether phosphorylation occurred before or after cleavage and whether 105 

phosphorylation may affect processing. SARS-CoV-2 nucleoprotein was heavily phosphorylated 
(Figure 1J). Mapping phosphosites to the structure (residues 47 to 173, PDB: 6vyo) revealed a 
small surface region, suggesting specific regulation and interaction changes (Figure 1K). To 
reveal host kinases potentially phosphorylating viral proteins, we bioinformatically assessed 
identified phosphorylation motifs using NetPhos 3.1 and GPS5 (Blom et al., 2004; Wang et al., 110 

2020) (Table S3). Some motifs present in nucleoprotein were predicted to be modified by CMGC 
kinases. Among several others, casein kinase II (CK2) kinases are part of the CMGC family and 
have been independently identified as interaction partners of the nucleoprotein, when expressed 
in cells (Gordon et al., 2020). Inhibition of CK2 kinases, could be employed to study possible 
functional interactions between kinase and viral protein.  115 

Taken together, we identified extensive changes in phosphorylation of host and viral proteins 
after SARS-CoV-2 infection. The roles of viral protein modifications remain unclear. However, 
targeting the corresponding host kinases may offer new treatment strategies. 

Signaling pathways modulated upon infection 

To identify the key host signaling pathway networks modulated by infection, we carried out 120 

protein-protein co-regulation analysis on all proteins quantified in phosphorylation and total 
protein level. We first standardized phosphorylation and total protein levels by individual Z-
scoring to compare the different datasets. Subsequently, to merge phosphorylation and 
proteome data, we collapsed all phospho-sites for each protein into one average profile and 
calculated combined Z-scores. Patterns of co-regulation were identified using protein-protein 125 

correlation and hierarchical clustering (Figure 2A). This generalized approach allows to study 
large scale patterns of dependencies of protein and phosphorylation levels, that then can be 
dissected into individual phosphorylation sites and protein levels for downstream analysis. The 
dynamic landscape of the proteome revealed three main clusters of co-regulated proteins, each 
one representing different sets of pathways (discussed in detail below): 130 

The first cluster was mainly comprised of receptor signaling and endocytic pathways (Figure 2B). 
Prominent among these pathways were platelet derived growth factor receptor (PDGFR), ErbB1 
(EGFR) signaling, metabolism, and various pathways associated with vesicle trafficking (Table 
S4). As changes in phospho-peptide abundance can represent different ratios in phosphorylated 
versus non-phosphorylated peptide or a change in protein abundance (with the same ratio of 135 

protein being phosphorylated), we integrated our phospho-proteome dataset with total proteome 
data (Figure 2C). When comparing abundances of individual phosphopeptides and their protein 
levels, extensive changes were observed in the phospho-proteome; however, no general 
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changes were seen for the total proteome (Figure 2C, Table S2). Thus, phosphorylation changes 
were induced by signaling activity alteration resulting in increased phosphorylation and not due 140 

to protein abundance differences.  

The second cluster was mainly comprised of proteins decreased in phosphorylation and was 
highly connected to cell cycle and translation initiation (Figure 2D and Table S4). We reported 
recently that inhibition of cellular translation prevented SARS-CoV-2 replication in cells (Bojkova 
et al., 2020), consistent with regulation of translation by altering phosphorylation patterns. To 145 

further distinguish the regulations within this cluster, we correlated protein levels with differential 
phosphorylation abundance (Figure 2E) and found two groups of proteins: The first was 
contained translation related pathways (identified in Figure 2E) and was predominantly regulated 
by decreased modification. The second set of proteins was decreased in phosphorylation and on 
total protein level. The majority of proteins found in the second cluster belonged to diverse cell 150 

cycle pathways. Consistent with these findings, cell cycle pathways were also enriched in the set 
of proteins significantly decreased on protein level (Figure 2F, S2, and Table S4 and S5). 
Translation pathways were not regulated on protein level to this extent.  

Analysis of the third cluster revealed signaling events of the splicing machinery (Table S4) 
possibly explaining previously observed changes in splicing machinery abundance upon SARS-155 

CoV-2 infection (Bojkova et al., 2020). Consistent with previous literature (Grimmler et al., 2005; 
Ilan et al., 2017; Mathew et al., 2008; Mermoud et al., 1994), we therefore hypothesized that the 
host splicing machinery is extensively reshaped during viral infection. This finding further 
supports splicing as a potential therapeutic target, in agreement with decreased SARS-CoV-2 
pathogenic effects when inhibiting splicing by pladeinolide B. Additionally, we found carbon 160 

metabolism among the pathways showing significantly increased phosphorylation upon SARS-
CoV-2 infection (Table S4) in addition to previously described changes of total protein levels of 
enzymes part of glycolysis and carbon metabolism (Bojkova et al., 2020)(Figure S3). 

Taken together, we showed that, during SARS-CoV-2 infection, specific rearrangements of 
signaling pathways were elicited in the cellular proteome. Regulation was mainly comprised of 165 

cellular signaling and translational pathways as well as proteins regulated not only by 
phosphorylation, but also in total protein abundance. Proteins exhibiting decreased protein levels 
were significantly enriched in cell cycle proteins. 

Drug-target network reveals growth factor signaling  as potent therapy candidate 

We observed over 2,000 phospho-peptides to be increased in abundance while their protein 170 

levels stay constant upon infection (Figure 2C and S4). This reveals differential modification 
activity (e.g. signaling events) for these phospho-proteins. For many kinases in cellular signaling 
pathways there are already approved drugs available. Hence, we investigated the potential to 
repurpose drugs to treat COVID-19 by mapping already available drugs via ReactomeFI to the 
set of proteins increased in phosphorylation. We filtered the network for drugs and direct targets 175 

and found EGFR as one of the central hits, including a number of regulated proteins in the 
downstream signaling pathway of EGFR (Figure 3A). These downstream targets are also 
regulated by other GFRs and could thus also be explained by their observed activation upon 
SARS-CoV-2 infection (Figure 2). 28 clinically approved drugs (largely used in cancer therapy) 
are already available to target EGFR or downstream targets. Indeed, we found a subnetwork of 180 

GFR signaling components remodeled (Figure 3B). We mapped identified members of GFR 
signaling and their respective phosphorylation differences upon SARS-CoV-2 infection (Figure 
3C) revealing an extensive overall increase in phosphorylation of the whole pathway, including 
related components for cytoskeleton remodeling and receptor endocytosis. How GFR signaling 
might regulate SARS-CoV-2 infection is still matter for speculation. However, GFR signaling 185 
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inhibition might provide a useful approach already implicated in SARS-CoV induced fibrosis 
therapy (Venkataraman and Frieman, 2017) and might be a viable strategy to treat COVID-19.  

Inhibition of growth factor signaling prevents vira l replication 

Since GFR signaling seemed to be central during SARS-CoV-2 infection, we examined the use 
of inhibitors as antiviral agents. Since there are several GFRs integrating their signaling and 190 

regulating a number of processes inside the cell, directly targeting downstream signaling 
components is likely to be more successful to prevent signaling of different GFRs and to avoid 
mixed effects of multiple pathways. GFR signaling, amongst others, results in activation of 1) the 
RAF/MEK/ERK MAPK signaling cascade and 2) integrates (via phosphoinositide 3 kinase [PI3K] 
and protein kinase B [AKT]) into mTORC1 signaling to regulating proliferation (Figure 4A). To 195 

explore the antiviral efficiency of targeting proteins downstream of GFRs, we first tested the PI3K 
inhibitors pictilisib and omipalisib (Ippolito et al., 2016; Sarker et al., 2015; Schmid et al., 2016). 
Both compounds inhibited viral replication, based on their propensity to prevent cytopathogenic 
e�ect (CPE) and viral RNA production in cells (Figure 4B-D, S5, and S6). Our drug-target 
analyses identified mitogen activated protein kinase kinase (MAP2K2, better known as MEK) 200 

and the RAF inhibitor sorafenib (Wilhelm et al., 2006) as promising targets inhibiting downstream 
signaling of GFRs (Figure 4A). Thus, we tested sorafenib and the dual RAF/MEK inhibitor 
RO5126766 in our viral replication assays. Both compounds inhibited cytopathic effects during 
infection and the viral replication (Figure 4B-D, S5, and S6). To validate our findings in another 
cell line, we repeated the treatments in UKF-RC-2 cells infected with SARS-CoV-2. Quantifying 205 

the viral RNA copies in the supernatant, we observed that the compounds efficiently inhibited 
virus replication (Figure 4E and S7A) at non-toxic conditions (Figure S7B, except for sorafenib). 
Overall, five compounds, inhibiting downstream signaling of GFRs, prevented SARS-CoV-2 
replication at clinically achievable concentrations (Figure 4B and 5) (Eskens et al., 2001; Fucile 
et al., 2014; Martinez-Garcia et al., 2012; Munster et al., 2016; Sarker et al., 2015), emphasizing 210 

the importance of GFR signaling during SARS-CoV-2 infection and revealing clinically available 
treatment options as drug candidates for COVID-19. 

Discussion 

With the rapid spreading of the COVID-19 pandemic, investigating the molecular mechanisms 
underlying SARS-CoV-2 infection are of high importance. In particular, the processes underlying 215 

infection and host-cell response remain unclear. These would offer potential avenues for 
pharmacological treatment of COVID-19. Here, we report global, differential phosphorylation 
analysis of host cells after infection with intact SARS-CoV-2 virus. We could identify 
phosphorylation sites on numerous viral proteins in cells, showing that they can undergo efficient 
modification in infected cells. Until now, we can only speculate about the host kinases involved 220 

and the functions driven by PTMs, which will be an important topic for follow-up studies. For 
SARS-CoV-1, it was shown that modification of viral proteins can lead to regulation of RNA 
binding of the nucleoprotein (Wu et al., 2009) and is needed for viral replication. Although similar 
effects in SARS-CoV-2 are likely, this remains to be studied in this novel virus. A recent paper 
analyzed the interaction profile of SARS-CoV-2 proteins expressed in HEK293T cells (Gordon et 225 

al., 2020). For the heavily phosphorylated nucleoprotein they could identify interactions the host 
casein kinases, which might indicate possible modification events by the latter. Also for the 
ORF9b/protein 9b that we found modified in cells, interaction mapping identified MARK kinases 
as interaction partners. 

By exploring the signaling changes inside the host cell, we could gain important insights into host 230 

cell signaling during infection. We found essential GFR signaling pathways activated such as 
EGFR or PDGFR, together with a plethora of RhoGTPase associated signaling molecules. We 
could furthermore show modulation of the splicing machinery, in line with previous results 
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indicating dependency of viral in vitro pathology on the host spliceosome (Bojkova et al., 2020). 
The same is true for metabolic reprogramming, for which we found differential post-translational 235 

modification of most members of the carbon metabolic pathways, namely glycolysis, pentose 
phosphate and TCA cycle. These metabolic pathways were significantly up-regulated on total 
protein levels in the presented dataset, consistent with our previous study (Bojkova et al., 2020), 
suggesting that these key pathways are regulated on multiple levels.  

A number of drugs to treat COVID-19 have been suggested, largely based on bioinformatics 240 

analyses of genetics or cellular data (Gordon et al., 2020; Li et al., 2020; Wang, 2020). However, 
for many of these compounds, studies explaining their working mechanisms in the context of 
SARS-CoV-2 or viral assays to determine their efficacy of blocking viral replication in cell models 
of SARS-CoV-2 infection, are missing. While monitoring signaling changes in host cells, we 
observed activation of GFR signaling cascades after infection, consistent with other viruses 245 

relying on the receptors themselves or elicited signal transduction (Eierhoff et al., 2010; Kung et 
al., 2011; Lupberger et al., 2011; Ueki et al., 2013; Wu et al., 2017; Zhu et al., 2009). From our 
data we could not clearly conclude which GFR might be activated and thus tested whether GFR 
downstream signaling inhibition can prevent SARS-CoV-2 replication, as reported for some other 
viruses (Baturcam et al., 2019; Pleschka et al., 2001). Previously, temporal kinome analysis 250 

identified antiviral potential of RAS/RAF/MEK and PI3K/AKT/ for MERS-CoV (Kindrachuk et al., 
2015). By targeting the RAS/RAF/MEK and PI3K/AKT/mTOR downstream axes of GFR 
signaling, we found efficient inhibition of viral replication in two different cell lines derived from 
different tissues (Figure 4). GFR signaling was shown to play a role in diverse virus infections as 
well as in fibrosis induction by SARS-CoV-1 (Beerli et al., 2019; Kung et al., 2011; Lupberger et 255 

al., 2011; Pleschka et al., 2001; Ueki et al., 2013; Venkataraman et al., 2017). Thus, our results 
in cytopathic effects might indeed indicate cytoprotective roles for GFR signaling axes during 
SARS-CoV-2 infection and possible development of fibrosis (Luo et al., 2020). Notably, some 
inhibitors used in our study such as omipalisib were shown to suppress fibrosis progression in 
patients with idiopathic pulmonary fibrosis, which may share deregulation of signaling pathways 260 

involved in lung fibrosis of coronavirus patients (Venkataraman et al., 2017). These findings 
suggest that inhibitors of GFR downstream signaling may bring benefit to COVID-19 patients 
independently of their antiviral activity. 

Taken together, this study provides new insights into molecular mechanisms elicited by SARS-
CoV-2 infection. Proteomic analyses revealed several pathways that are rearranged during 265 

infection and showed that targeting of those pathways is a valid strategy to inhibit cytopathic 
effects triggered by infection. 

Limitations 

In this study, cancer cell lines were used to assess the effect of SARS-CoV-2 on host cells 
during infections. We chose the experimental time-point, based on previous analysis of the 270 

infection course in these cells (Bojkova et al., 2020). Notably, the kinetics of infection are likely to 
be different in other cell lines or primary material, since we also observed a different MOI needed 
for UKF-RC-2 cells. In addition, we tested the efficiency of the presented drugs only in the 
context of in vitro cell line experiments. Thus, the results do not represent direct evidence for the 
use of these therapeutics in patients, as the effects might differ in primary tissue. The results 275 

presented indicate potential anti-viral effects that have to be further validated in other models 
and clinical trials to assess their usefulness for the treatment of COVID-19. 
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Figure Legends 

Fig. 1. Phospho proteomic profiling of SARS-CoV-2 i nfected cells.   300 

(A) Experimental scheme. Caco-2 cells were infected with SARS-CoV-2 for one hour (MOI: 1), 
washed and incubated for additional 24 hours. Proteins were extracted and prepared for bottom-
up proteomics. All ten conditions were multiplexed using TMT10 reagents. 250 µg of pooled 
samples were used for whole cell proteomics (24 Fractions) and the remainder (~1 mg) enriched 
for phosphopeptides by Fe-NTA. Phosphopeptides were fractionated into 8 fractions and 305 

concatenated into 4 fractions. All samples were measured on an Orbitrap Fusion Lumos.  

(B) Volcano plot showing fold changes of infected versus mock cells for all quantified 
phosphopeptides. P values were calculated using an unpaired, two-sided student’s t-test with 
equal variance assumed and adjusted using the Benjamini Hochberg FDR method (N = 5 
biological replicates). Orange or blue points indicate significantly increased or decreased 310 

phosphopeptides, respectively.  

(C) Volcano plot showing differences between SARS-CoV-2 and mock infected cells in total 
protein levels for all quantified proteins. P values were calculated using an unpaired, two-sided 
student’s t-test with equal variance assumed and adjusted using the Benjamini Hochberg FDR 
method (N = 5). Orange or blue points indicate significantly increased or decreased 315 

phosphopeptides, respectively.  

(D) Distribution of phosphorylation sites identified across modified amino acids. See also Figure 
S1 and Tables S1 and S2.  

(E – K) Domain structures of SARS-CoV-2 proteins predicted by InterPro. Identified 
phosphorylation sites are indicated. Protein 3a (E), Membrane Protein M (F), Non-structural 320 

protein 6 (G), Protein 9b (H), Replicase Polyprotein 1b (I) and Nucleoprotein N (J). (K) X-ray 
structure of the RNA binding domain (PDB: 6vyo, residues 47-173) with identified 
phosphorylation sites marked in red.  

See also Table S1, S2, S3 and Figure S1.  

Fig. 2. Correlation of co-regulated proteins identi fies cellular signaling pathways 325 

modulated upon infection.   

(A) Correlation map of all detected phospho-proteins indicating Euclidean distance between 
proteins. To determine correlation, Z-scores of phospho-peptides and total protein levels were 
added and all peptide values for one protein collapsed into an average Z score. Correlation 
clustering was performed by Euclidean distance on combined Z scores for all conditions. Red 330 

dashed line indicates main clusters found and identified.  

(B) Reactome pathway enrichment of proteins found in Cluster I in (A). Shown are the number of 
proteins identified in the respective cluster versus statistical significance of enrichment. Circles 
are increasingly sized according to the number of proteins found in the pathway.  

(C) Scatter plot showing fold changes of phospho-peptides compared to fold changes of total 335 

protein levels. The yellow oval indicates peptides for which phosphorylation is not driven by 
changes in protein abundance.  

(D) Reactome pathways found enriched in Cluster II in (A). Analyses and presentation as in (B).  

(E) Scatter plot showing correlation between fold changes of phosphopeptides compared to fold 
changes of total proteins levels. Two subsets of phosphopeptides were detected: one was 340 
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mainly regulated by differential modification (indicated in yellow), the second by changes in 
protein abundance.  

(F) STRING network analysis of proteins decreased in total protein levels (Figure 1C). Inserts 
indicate pathways found in the network. 

See also Table S1, S2, S4, S7, Figure S2 and S3. 345 

Fig.3. Drug-target phosphoprotein network analysis identifies growth factor signaling as 
central hub for possible intervention by repurposed  drugs.   

(A) Proteins significantly increased in phosphorylation (FC > 1, FDR < 0.05) were subjected to 
ReactomeFI pathway analysis and overlaid with a network of FDA-approved drugs. The network 
was filtered for drugs and drug targets only, to identify pathways that could be modulated by 350 

drug repurposing. Red lines indicate drug-target interactions, grey lines protein-protein 
interactions. Identified drugs are represented with yellow rectangles, while proteins are 
represented by blue circles. 

(B) Search across all proteins with significant phosphorylation changes upon SARS-CoV-2 
infection for proteins related to the EGFR pathway. STRING network highlighting all proteins 355 

annotated for EGFR signaling and their direct interaction neighbors. Red lines indicate direct 
EGFR interactions,black lines indicate interactions between pathway members. Grey lines 
represent filtered interactions to represent the whole network.  

(C) Pathway representation of proteins identified in (B) to be direct functional interactors of 
EGFR, according to the STRING interaction database (confidence cutoff 0.9). Phosphorylation 360 

changes of all significantly regulated sites are indicated by color-coded pie charts. Red indicates 
upregulation and blue indicates down-regulation.   

See also Figure S4. 

Fig. 4. Inhibition of growth factor receptor downst ream signaling prevents SARS-CoV-2 
replication.   365 

(A) Schematic representation of growth factor signaling pathways activated upon SARS-CoV-2 
infection. Inhibitors tested are indicated and their targets shown.  

(B) Viral replication assay. Percentage inhibition of cytopathic effects (CPE) is plotted versus 
compound concentration (N = 3 biological replicates for all compounds). Grey dots indicate 
replicate measurements, red lines dose-response curve fits.  370 

(C) Quantification of viral RNA in the supernatant of Caco-2 cells. Supernatant of control cells, 
infected cells (MOI 0.01) and infected cells treated either with Pictilisib, Omipalisib, Sorafenib, 
RO5126766 or Lorafenib at indicated concentrations was analyzed by quantitative PCR for viral 
genome. N = 3, bar indicates mean of replicates, error bars indicate SD.  

(D) Microscopy pictures showing staining for dsRNA to determine viral dsRNA production and 375 

CPE. Mock or SARS-CoV-2 infected cells are shown on the left. SARS-CoV-2 infected cells 
were treated with different concentrations of inhibitors (as indicated) and imaged after 24 hours. 
Pictilibsib: 0.625 µM, 2.5 µM, 10 µM; omipalisib: 0.01 µM, 0.625 µM, 2.5 µM; sorafenib: 2.5 µM, 
5µM, 10 µM; RO5126766: 2.5 µM, 5 µM, 10 µM; lonafarnib: 0.6 µM, 2.5 µM, 10 µM. N = 3 
technical replicates, one representative picture is shown, two more areas of the same well are 380 

shown in Figure S4. Scale bar represents 100 µm. 

(E) Quantification of viral RNA in the supernatant of UKF-RC-2 cells. Supernatant of control 
cells, SARS-CoV-2 infected cells (MOI 0.1) untreated or treated with Pictilisib, Omipalisib, 
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Sorafenib, RO5126766 or Lorafenib at indicated concentrations were analyzed by quantitative 
PCR for viral genome. N = 3 biological replicates, bar indicates mean of replicates, error bars 385 

indicate SD. 

See also Figure S5. 

Fig. 5. Effect of growth factor signaling on SARS-C oV-2 replication.   

Upon infection growth factor signaling is activated and leads among others to the induction of 
Phosphoinositol 3 Kinase (PI3K) and Mitogen Activated Protein Kinase (MAPK) signaling events. 390 

Inhibition of either axis of the two (by Sorafenib, RP5126766, Lonafarnib, Pictilisib or 
Omapalisib) leads to decreased replication of SARS-CoV-2 inside the host cell.  
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STAR methods 395 

Resource Availability 

Lead contact 

Further information and requests for resources and reagents should be directed to and will be 
fulfilled by the lead contact: 

Christian Münch: ch.muench@em.uni-frankfurt.de (C.M.)  400 

Materials Availability 

UKF-RC-2 human kidney cells derived from renal carcinoma are available upon request. 

Data and Code Availability 

The mass spectrometry proteomics data have been deposited to the ProteomeXchange 
Consortium via the PRIDE (Perez-Riverol et al., 2019) partner repository with the dataset 405 

identifiers PXD018357. Annotated spectra of new SARS-CoV-2 phospho-peptides were 
deposited at Mendeley Data under https://doi.org/10.17632/4g2zzdfd47.1 . Additional 
supplementary items are available under https://doi.org/10.17632/kpnzwh6v6j.1 . 

Experimental model and subject details 

Cell culture  410 

Human Caco-2 cells, derived from colon carcinoma, was obtained from the Deutsche Sammlung 
von Mikroorganismen und Zellkulturen (DSMZ; Braunschweig, Germany). Cells were grown at 
37°C in Minimal Essential Medium (MEM) supplemented with 10% fetal bovine serum (FBS) and 
containing 100 IU/ml penicillin and 100 µg/ml streptomycin. All culture reagents were purchased 
from Sigma. 415 

Cell line designated UKF-RC-2 was established from a tumor sample of a patient with a 
diagnosis of renal carcinoma hospitalized at Department of Urology, University Hospital 
Frankfurt. Tumor tissue was cut in pieces and dissociated using 0.2% trypsin solution. Primary 
tumor cells and passaging of cell line was performed using IMDM medium supplemented with 
10% FCS and antibiotics. UKF-RC-2 cells between passages 15 and 20 were used for antiviral 420 

experiments. All culture reagents were purchased from Sigma. 

Virus preparation  

SARS-CoV-2 was isolated from samples of travelers returning from Wuhan (China) to Frankfurt 
(Germany) using human colon carcinoma cell line CaCo-2 as described previously12. SARS-
CoV-2 stocks used in the experiments had undergone one passage on CaCo-2 cells and were 425 

stored at –80° C. Virus titers were determined as TCID50/ml in confluent cells in 96-well 
microtiter plates. 

Method details 

Antiviral and cell viability assays  

Confluent layers of CaCo-2 cells in 96-well plates were infected with SARS-CoV-2 at MOI 0.01. 430 

Virus was added together with drugs and incubated in MEM supplemented with 2% FBS with 
different drug dilutions. Cytopathogenic e�ect (CPE) was assessed visually 48 h after 
infection. To assess effects of drugs on Caco-2 cell viability, confluent cell layers were treated 
with different drug concentration in 96-well plates. The viability was measured using the Rotitest 
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Vital (Roth) according to manufacturer’s instructions. Data for each condition was collected for at 435 

least three biological replicates. For dose response curves, data was fitted with all replicates 
using OriginPro 2020 with the following equation: 

 

IC50 values were generated by OriginPro 2020 together with metrics for curve fits. 

For UKF-RC-2 cells, the assay was performed as described above, except for usage of a MOI of 440 

0.1 as staining experiments for SARS-CoV-2 infection in UKF-RC-2 cells revealed the need of a 
higher MOI to achieve comparable effects to CaCo-2 cells.  

Quantification of viral RNA 

SARS-CoV-2 RNA from cell culture supernatant samples was isolated using AVL buffer and the 
QIAamp Viral RNA Kit (Qiagen) according to the manufacturer's instructions. Absorbance-based 445 

quantification of the RNA yield was performed using the Genesys 10S UV-Vis 
Spectrophotometer (Thermo Scientific). RNA was subjected to OneStep qRT-PCR analysis 
using the Luna Universal One-Step RT-qPCR Kit (New England Biolabs) and a CFX96 Real-
Time System, C1000 Touch Thermal Cycler. Primers were adapted from the WHO protocol 
(Corman et al., 2020) targeting the open reading frame for RNA-dependent RNA polymerase 450 

(RdRp): RdRP_SARSr-F2 (GTG ARA TGG TCA TGT GTG GCG G) and RdRP_SARSr-R1 
(CAR ATG TTA AAS ACA CTA TTA GCA TA) using 0.4 µM per reaction. Standard curves were 
created using plasmid DNA (pEX-A128-RdRP) harboring the corresponding amplicon regions for 
RdRP target sequence according to GenBank Accession number NC_045512. All quantification 
experiments have been carried out with biological replicates.  455 

Detection of viral load by microscopy 

Effect of selected compounds on viral replication was assessed by staining of double-stranded 
RNA, which has been shown to be sufficient for measurement of SARS-CoV-1 replication(Weber 
et al., 2006). Briefly, cells were fixed with acetone/methanol (40:60) solution 48 h post infection. 
Immunostaining was performed using a monoclonal antibody directed against dsRNA (1:150 460 

dilution, SCICONS J2, mouse, IgG2a, kappa chain, English & Scientific Consulting Kft., Szirák, 
Hungary), which was detected with biotin-conjugated secondary antibody (1:1000 dilution, 
Jackson ImmunoResearch) followed by application streptavidin, peroxidase conjugate (1:3000 
dilution, Sigma Aldrich). Lastly, the dsRNA positive cells were visualized by addition of AEC 
substrate. Wells were imaged at different areas to visualize a larger area (presented in 465 

Supplementary figures). 

Sample preparation for mass spectrometry 

For all proteomics analysis, Caco-2 cells were infected at an MOI of 1 and the sample 
preparation was performed as described previously (Klann et al., 2020). Briefly, lysates were 
precipitated by methanol/chloroform and proteins resuspended in 8 M Urea/10 mM EPPS pH 470 

8.2. Concentration of proteins was determined by Bradford assay and 300 µg of protein per 
samples was used for digestion. For digestion, the samples were diluted to 1 M Urea with 10mM 
EPPS pH 8.2 and incubated overnight with 1:50 LysC (Wako Chemicals) and 1:100 Sequencing 
grade trypsin (Promega). Digests were acidified using TFA and tryptic peptideswere purified by 
tC18 SepPak (50 mg, Waters). 125 µg peptides per sample were TMT labelled and the mixing 475 

was normalized after a single injection measurement by LC-MS/MS to equimolar ratios for each 
channel. 250 µg of pooled peptides were dried for offline High pH Reverse phase fractionation 
by HPLC (whole cell proteome) and remaining 1 mg of multiplexed peptides were used for 
phospho-peptide enrichment by High-Select Fe-NTA Phosphopeptide enrichment kit (Thermo 
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Fisher) after manufacturer`s instructions. After enrichment, peptides were dried and 480 

resuspended in 70% acetonitrile/0.1% TFA and filtered through a C8 stage tip to remove 
contaminating Fe-NTA particles. Dried phospho-peptides then were fractionated on C18 
(Empore) stage-tip. For fractionation C18 stagetips were washed with 100% acetonitrile twice, 
followed by equilibration with 0.1% TFA solution. Peptides were loaded in 0.1% TFA solution and 
washed with water. Elution was performed stepwise with different acetonitrile concentrations in 485 

0.1% Triethylamine solution (5%, 7.5%, 10%, 12.5%, 15%, 17.5%, 20%, 50%). The eight 
fractions were concatenated into four fractions and dried for LC-MS. 

Offline high pH reverse phase fractionation 

Peptides were fractionated using a Dionex Ultimate 3000 analytical HPLC. 250 µg of pooled and 
purified TMT-labeled samples were resuspended in 10 mM ammonium-bicarbonate (ABC), 5% 490 

ACN, and separated on a 250 mm long C18 column (X-Bridge, 4.6 mm ID, 3.5 µm particle size; 
Waters) using a multistep gradient from 100% Solvent A (5% ACN, 10 mM ABC in water) to 60% 
Solvent B (90% ACN, 10 mM ABC in water) over 70 min. Eluting peptides were collected every 
45 s into a total of 96 fractions, which were cross-concatenated into 24 fractions and dried for 
further processing. 495 

Liquid chromatography mass spectrometry 

All mass spectrometry data was acquired in centroid mode on an Orbitrap Fusion Lumos mass 
spectrometer hyphenated to an easy-nLC 1200 nano HPLC system using a nanoFlex ion source 
(ThermoFisher Scientific) applying a spray voltage of 2.6 kV with the transfer tube heated to 
300°C and a funnel RF of 30%. Internal mass calibration was enabled (lock mass 445.12003 500 

m/z). Peptides were separated on a self-made, 32 cm long, 75µm ID fused-silica column, 
packed in house with 1.9 µm C18 particles (ReproSil-Pur, Dr. Maisch) and heated to 50°C using 
an integrated column oven (Sonation). HPLC solvents consisted of 0.1% Formic acid in water 
(Buffer A) and 0.1% Formic acid, 80% acetonitrile in water (Buffer B). 

For total proteome analysis, a synchronous precursor selection (SPS) multi-notch MS3 method 505 

was used in order to minimize ratio compression as previously described (McAlister et al., 2014). 
Individual peptide fractions were eluted by a non-linear gradient from 7 to 40% B over 90 
minutes followed by a step-wise increase to 95% B in 6 minutes which was held for another 9 
minutes. Full scan MS spectra (350-1400 m/z) were acquired with a resolution of 120,000 at m/z 
200, maximum injection time of 100 ms and AGC target value of 4 x 105. The 20 most intense 510 

precursors with a charge state between 2 and 6 per full scan were selected for fragmentation 
(“Top 20”) and isolated with a quadrupole isolation window of 0.7 Th. MS2 scans were 
performed in the Ion trap (Turbo) using a maximum injection time of 50ms, AGC target value of 
1.5 x 104 and fragmented using CID with a normalized collision energy (NCE) of 35%. SPS-MS3 
scans for quantification were performed on the 10 most intense MS2 fragment ions with an 515 

isolation window of 0.7 Th (MS) and 2 m/z (MS2). Ions were fragmented using HCD with an NCE 
of 65% and analyzed in the Orbitrap with a resolution of 50,000 at m/z 200, scan range of 110-
500 m/z, AGC target value of 1.5 x105 and a maximum injection time of 120ms. Repeated 
sequencing of already acquired precursors was limited by setting a dynamic exclusion of 45 
seconds and 7 ppm and advanced peak determination was deactivated. 520 

For phosphopeptide analysis, each peptide fraction was eluted by a linear gradient from 5 to 
32% B over 120 minutes followed by a step-wise increase to 95% B in 8 minutes which was held 
for another 7 minutes. Full scan MS spectra (350-1400 m/z) were acquired with a resolution of 
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120,000 at m/z 200, maximum injection time of 100 ms and AGC target value of 4 x 105. The 20 
most intense precursors per full scan with a charge state between 2 and 5 were selected for 525 

fragmentation (“Top 20”), isolated with a quadrupole isolation window of 0.7 Th and fragmented 
via HCD applying an NCE of 38%. MS2 scans were performed in the Orbitrap using a resolution 
of 50,000 at m/z 200, maximum injection time of 86ms and AGC target value of 1 x 105. 
Repeated sequencing of already acquired precursors was limited by setting a dynamic exclusion 
of 60 seconds and 7 ppm and advanced peak determination was deactivated. An MS2 based 530 

method was chosen, because of higher precision and identification rates (Hogrebe et al., 2018). 
Phospho-peptide fractions intrinsically exhibit lower complexity, rendering them less prone to 
ratio compression by isolation interference. 

Mass spectrometry data analysis  

Raw files were analyzed using Proteome Discoverer (PD) 2.4 software (ThermoFisher 535 

Scientific). Spectra were selected using default settings and database searches performed using 
SequestHT node in PD. Database searches were performed against trypsin digested Homo 
Sapiens SwissProt database, SARS-CoV-2 database (Uniprot pre-release). Static modifications 
were set as TMT6 at the N-terminus and lysines and carbamidomethyl at cysteine residues. 
Search was performed using Sequest HT taking the following dynamic modifications into 540 

account: Oxidation (M), Phospho (S, T, Y), Met-loss (Protein N-terminus), Acetyl (Protein N-
terminus) and Met-loss acetyl (Protein N-terminus). For whole cell proteomics, the same settings 
were used except phosphorylation was not allowed as dynamic modification. For phospho-
proteomics all peptide groups were normalized by summed intensity normalization and then 
analyzed on peptide level. For whole cell proteomics normalized PSMs were summed for each 545 

accession and data exported for further use. Peptide and protein identifications were validated 
using a concatenated target-decoy strategy and FDR was estimated using q-values calculated 
by Percolator applying 1% and 5% cut-offs for high and medium confidence hits, while only high 
confident proteins are reported. Phosphosite localization probabilities were calculated using the 
ptmRS-node working in “PhosphoRS mode” and using default settings. 550 

 

Quantification and statistical analysis 

Significance testing 

Unless otherwise stated significance was tested by unpaired, two-sided students t-tests with 
equal variance assumed. Resulting P values were corrected using the Benjamini-Hochberg FDR 555 

procedure. Adjusted P values smaller/equal 0.05 were considered significant. For phospho-
proteomics an additional fold change cutoff was applied (log2 > |1|), while for total protein levels, 
due to different dynamic range, a fold change cutoff of log 2 > |0.5| was applied.  

Prediction of kinase motifs  

Kinase motifs of phosphopeptides from SARS-CoV-2 proteins were predicted using NetPhos 3.1 560 

(Blom et al., 1999) and GPS 5.0 (stand-alone version) using the fasta-file of the Uniprot pre-
release which was also used for the proteomics data analysis.(Blom et al., 2004; Wang et al., 
2020). For NetPhos, only Kinases with a score above 0.5 were considered as positive hits. For 
GPS 5.0, sequences were submitted separately for S/T- and Y-kinases and the score threshold 
was set to “high”. For the final list in Supplementary Table 3, only the top hits with the highest 565 

scores were considered. 
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Protein co-regulation analysis 

Z-scores were calculated for each phospho-site and the total protein levels individually. 
Phosphosites were collapsed by average. For merging phosphorylation and total protein levels 
Z-scores for collapsed phosphorylation and protein level were added for each condition and 570 

replicate. Thus, both negative Z-scores (downregulation) will produce a lower combined Z-score 
and vice versa two positive Z-scores will produce a larger combined Z-score. Next, Euclidean 
distance correlation for all possible protein-protein pairs were calculated, taking all conditions 
and replicates individually into account. A heatmap was then build by Euclidean distance 
hierarchical clustering of the correlation matrix. 575 

Pathway enrichment analysis 

Pathway enrichment analysis was performed by ReactomeFI cytoscape plugin or by STRING 
functional enrichment analysis. Both analysis used Reactome database for pathway annotations.  

Drug-target network analysis 

All proteins were loaded into ReactomeFI cytoscape plugin to visualize protein-protein functional 580 

interaction network. Next, drugs were overlaid by ReactomeFI and network was filtered for the 
drugs and the first interacting partners. Layout was calculated by yFilesLayout algorithm.  

Interaction network analysis 

All proteins showing significant regulation were loaded by OmicsVisualizer cytoscape plugin and 
STRING interaction network was retrieved with a confidence cutoff of 0.9. For EGFR 585 

subnetwork, EGFR was selected with first interacting neighbors.  
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Supplementary Table Legends 

Supplementary Table 1: Quantification of phospho-pe ptide data, Related to Figure 1, 2 
and 3.  590 

Shown are Protein UniProt accessions together with gene names and modification sites 
(numbers in brackets indicate localization confidence). Log2 ratios between mock and SARS-
CoV-2 infected cells were calculated together with P values. P values were adjusted using 
Benjamini Hochberg FDR adjustment. Additionally, replicate quantification values are given. 

Supplementary Table 2: Quantifications of total pro tein levels of SARS-CoV-2 infected 595 

cells and control cells, Related to Figure 1, 2 and  3.  

Uniprot Accessions, Protein description, number of PSMs used for quantification, gene symbol, 
replicate quantifications, log2 ratio and adjusted P values are shown. P values were adjusted 
using Benjamini Hochberg FDR adjustment. 

Supplementary Table 3: Viral modification sites, Re lated to Figure 1 . 600 

Modified amino acid, position in peptide, site probability, peptide sequence, number of modified 
PSMs, unmodified PSMs, protein accession, protein description, position in protein and 
modification motifs are given for all identified viral modification sites. Additionally, results of 
kinase predictions by NetPhos 3.1 and GPS5 are added. 

Supplementary Table 4: Reactome Pathway enrichment analysis for proteins found 605 

belonging to clusters identified in correlation ana lysis, Related to Figure 2.  

Reactome pathway, number of genes found in pathway, enrichment FDR and individual genes in 
pathway are given for all identified clusters. 

Supplementary Table 5: Reactome Pathway enrichment analysis for proteins found 
significantly decreased in total protein levels, Re lated to Figure 1 and 2 .  610 

Reactome pathway, number of genes found in pathway, enrichment FDR and individual genes in 
pathway are given.  
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Highlights: 

• Phosphoproteomics of SARS-CoV-2 infected cells reveal the signaling landscape 

• SARS-CoV-2 proteins are extensively phosphorylated in host cells 

• Infection leads to activation of growth factor receptor signaling 

• Drugs inhibiting growth factor receptor signaling prevent viral replication 

In this study, Klann et al. dissected the host cell signaling landscape upon infection with SARS-CoV-2. 

Mapping differential signaling networks identified a number of pathways activated during infection. 

Drug-target network analysis revealed potential therapeutic targets. Growth factor receptor signaling 

was highly activated upon infection and its inhibition prevented SARS-CoV-2 replication in cells. 
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