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Abstract

The realization of a fast and robust closed orbit feedback (COFB) system for the on-ramp

orbit correction at SIS18 synchrotron of FAIR project is reported in this thesis. SIS18

has some peculiar behaviors including on-ramp optics variation, very short lengths of the

ramps (200 ms to 1 s) and a cycle-to-cycle variation of beam parameters. The realized

fast COFB system being robust against above mentioned features of SIS18 is a first of

its kind and the course to its realization led to some novel contributions in the field of

closed orbit correction. A new method relying on the discrete Fourier transform (DFT)-

based decomposition of the orbit response matrix (ORM) has been introduced, exploiting

the symmetry in the arrangement of beam position monitors (BPMs) and the corrector

magnets in the synchrotrons. A nearest-circulant approximation has also been introduced

for synchrotrons having slight deviation from the symmetry, making the method applicable

to a vast majority of synchrotrons. Moreover, the performance and the stability analysis of

COFB systems in the presence of ORM mismatch between the synchrotron and the feedback

controller is presented. The COFB systems are divided into slow and fast regimes and a

new stability criterion consistent with measurements, is introduced. The practicality of the

criterion is verified experimentally at COSY Jülich and is used for the analysis of various

sources of ORM mismatch at SIS18. The commissioning of the SIS18 COFB system is also

reported in detail which relies on Libera Hadron as the main hardware resource for the

controller implementation. The on-ramp orbit correction is demonstrated for the horizontal

plane of SIS18, for the disturbance rejection up to 600 Hz.
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Zusammenfassung

Thema dieser Doktorarbeit ist die Entwicklung eines Systems zur schnellen Orbitkorrektur
(Englisch: closed orbit feedback, COFB) Systems und dessen Anwendung an den GSI-
Schwerionensynchrotrons SIS18 bzw. SIS100. Das wichtigste Ziel ist es eine Ortsstabil-
ität (RMS-Wert) unterhalb 1 mm zu erreichen insbesondere auch während der Beschleuni-
gungsrampe; diese Ortsstabilität entspricht ca. 10% der RMS-Strahlbreite. Das COFB-System
soll desweiteren möglichst breitbandig wirken können – die natürliche obere Grenzfrequenz ist
hier durch die erreichbare Bandbreite der Korrektordipolmagnete gegeben. In Synchrotron-
Lichtquellen und Hadronen-Beschleunigern sind COFB Systeme integraler Bestandteil eines
ordnungsgemäßen Betriebs.
Die Korrekturen eines COFB-Systems basiert auf der Messung der transversalen Ortsablage
an diskreten Stellen im Synchrotron und die Korrektur mit Hilfe von ebenfalls an diskreten
Stellen installierten Korrektordipolmagneten. Die lineare Antwort zwischen der Wirkung
der Korrekturmagnete auf die Ortsablagen wird durch die Orbit Response Matrix (ORM)
beschrieben. Im Gegensatz zu den meisten Synchrotrons hat das SIS18 die Besonderheit, dass
diese ORM während der Beschleunigung variiert, da die Fokussierung durch die Quadrupol-
Magnet verändert wird. Die maximale Bandbreite üblicher COFB-System liegt im Bereich
vom maximal 150 Hz, während hier eine höhere Bandbreite notwendig ist. Für den Fall
von SIS18 sind starke Störungen durch die Netzgeräte Variation bei 150 Hz und ihren har-
monischen Frequenzen vorhanden, die während der Beschleunigungsrampe (typische Dauer
zwischen 200 ms und 1000 ms) korrigiert werden müssen. Um nun die oben genannten Ziele
zu erreichen, müssen folgende Fragen beantwortet werden:

• Welche Methode der Orbitkorrektur funktioniert am besten während der Beschleuni-
gungungsrampe, bei der sich die Beschleunigeroptik und damit die ORM ändert?

• Wie häufig soll die zur Korrektur verwendete ORM während der Beschleunigungsrampe
aktualisiert werden, damit die geforderte Ortsstabilität und Bandbreite durchgehalten
werden kann?

• Falls aus technischen Gründen die ORM nicht aktualisiert werden kann, wie sind dann
die festen oder variablen Regelparameter zu wählen?

• Unter welchen Bedingungen kann eine Instabilität der Rückkopplung vermieden werden?

• Welche Auswirkungen hat die strahlintensitätsabhängige Verschiebung des Arbeitspunk-
tes (tune shift) auf die Stabilität des COFB-Systems?
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Die Antworten auf diese Frage sind ausschlaggebend für das Design und die Realisierung des
COFB-Systems am SIS18 und wurden deshalb in dieser Arbeit ausführlich untersucht. Sie
führten außerdem zu neuartigen Einsichten, die auch für andere Beschleuniger Anwendung
finden können.
COFB-Systeme werden schon seit einigen Jahrzenten unter Verwendung verschiedener Meth-
oden realisiert. In letzter Zeit wird meistens ein auf der Singulärwertzelegung (SVD) der
ORM-basierendes Verfahren verwendet. Formal werden zur Orbitkorrektur die gemessenen
Strahlpositionen ausgewertet und die entsprechenden Korrekturmagnetfeldstärken mithilfe
der inversen ORM berechnet. Zur (Pseudo-)Invertierung ist hier das SVD-Verfahren günstig,
die die reellwertige ORM in zwei orthogonale Matrizen U und V sowie eine Diagonalmatrix
S zerlegt, so dass gilt ORM =:R = USVT . Die Einträge der Diagonalmatrix S heißen Sin-
gulärwerte. Die Pseudo-Inverse R+ wird realisiert, indem man die Reziprokwerte derjenigen
Singulärwerte durch Null ersetzt, die unterhalb einer gewissen Schelle liegen. Die Spalten
der orthogonalen Matrizen sind eindeutig durch die Singulärwerte verkoppelt, so dass eine
modenbasierte Rückkopplung durchführbar ist.
In dieser Arbeit wird das SVD-basierte Verfahren detailliert untersucht und die Vor- und
Nachteile zusammengestellt. Z.B. müssen im Rahmen der SVD alle Matrizen (U, S und V)
neu berechnet werden, wenn sich die Beschleunigeroptik und damit die ORM ändert, wie im
Fall von SIS18 während der Beschleunigungsrampe vorkommt.
Ein auf diskreter Fouriertransformation (DFT) basierendes Verfahrenes der ORM-Zerlegung
wurde in dieser Arbeit erstmalig detailliert beschrieben. Die Grundlage der Methode ist die
periodische Anordnung der BPMs und Korrekturmagnete, die zu einer ORM mit sogenannter
zyklischer bzw. blockzyklischer Symmetrie führt. Für das SIS18 ist die vertikale ORM ein
Beispiel für eine zyklische Matrix, da jedes Segment einen BPM sowie einen Korrekturmagnet
enthält und sich die Positionierung über die 12 Segmente wiederholt. In einer zyklischen
bzw. blockzyklischen Matrix sind die Zeilen bzw. Spalten verbunden durch zyklische Permu-
tation ihrer Elemente/Blöcke. Die DFT-Zerlegung der ORM führt auf ein Produkt dreier
Matrizen FΛF, wobei F die Standardfouriermatrix beschreibt und die Diagonalmatrix Λ die
Fourierkoeffizienten auf der Diagonalen entält. Für zyklische ORMs derselben Dimension
ändert sich die Standardfouriermatrix nicht. Daher ist die Information der ORM in der
Diagonalmatrix Λ konzentriert. Dies führt zu geringem Rechen- und Speicheraufwand, sobald
die ORM aktualisiert werden soll (z.B. während der Beschleunigungsrampe). Weiterhin
stellen die Spalten der Standardfouriermatrix Fouriermoden dar, die eine einfach physikalische
Interpretation bzgl. verschiedener Strahlphänomene zulassen. Weiterhin kann damit der
closed orbit zwischen den BPM Stationen interpoliert werden. Die Äquivalenz der DFT- und
SVD-basierten Zerlegung zyklischer ORMs wurde in dieser Arbeit gezeigt.
Das DFT-basierte Verfahren wird in dieser Arbeit auch auf gebrochene Symmetrien bzgl.
der BPM- und Korrekturmagnetanordnung angewandt durch die Einführung einer Approx-
imation, die eine Matrix auf eine zyklische Matrix abbildet. Damit ist das DFT-basierte
Verfahren für Synchtrotrons allgemein anwendbar, auch für Synchtrotron-Lichtquellen inklu-
sive der Modifikationen der optischen Funktionen durch insertion devices. Die Verhältnisse
für die horizontale Korrektur am SIS18 werden diskutiert, da dort die ORM durch die
nicht-symmetrische Position zweier Korrekturmagnete gestört ist. Die Orbitkorrektur wird
experimentell mit Hilfe der originalen ORM durchgeführt. Die Differenz der RMS-Werte des
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closed orbit zwischen der vollständigen ORM und der approximiert-zyklischen ORM ist nur
ca. 9 % und somit kann das DFT-basierte Verfahren auch für diesen Fall angewendet werden.
Auch für SIS100 kann die blockzyklische Approximation der ORM benutzt werden, obwohl
dort durch beta-beating die Symmetrie nicht ganz erfüllt ist.
In der Arbeit wird die Robustheit des DFT-basierten Verfahrens gegenüber Fehlmessungen
der Strahlposition, sogenannter ‚missing BPM‘ gezeigt, da die Strahlposition am Ort des
fehlenden BPMs durch die erwähnte physikalische Interpretation der DFT-Moden rekonstru-
iert werden kann. Der Vorteil der DFT-basierten gegenüber der SVD-basierten Methode wird
experimentell demonstriert durch die Manipulation der disperionsinduzierten Abweichungen
vom closed orbit in der Horizontalebene des SIS18.
Ein zweiter wichtiger Inhalt dieser Dissertation ist die Modellierung des Verhaltens der ORM
um deren Robustheit gegenüber Variationen des räumlichen Modells zwischen Synchrotron
und Regler zu untersuchen. Damit kann ein Stabilitätskriterium angegeben werden um die
Leistungsfähigkeit eines COFB-System zu beschreiben. Dies ist wichtig, da sich am SIS18 die
ORM während der Beschleunigung ändert und somit eventuell die Reglerparameter angepasst
werden müssen. Zur Beschreibung wird das COFB-System konzeptionell in zwei Bestandteile
zerlegt: Dies ist einerseits der zeitabhängige Anteil der die zeitliche Reaktion der beteiligten
Hardware und der Rückkoppelschleife angibt. Der zweite Teil betrifft den räumlichen Anteil,
der mit Hilfe der ORM beschrieben wird. Somit kann nicht nur die Änderung während der
Beschleunigung beschreiben werden, sondern auch Strahlstrom-abhängige Effekte wie die
Verschiebung des Arbeitspunktes oder beta-beating Effekte.
Für eine zusätzliche Analyse wird das COFB-System konzeptionell zerlegt in ein sogenan-
ntes schnelle und langsames Regime: In dem langsamen Regime sind die Zeitschritte der
Orbitkorrektur mindestens eine Größenordnung langsamer als alle Zeitverzögerungen in dem
elektronischen System (Systemverzögerung und offene Schleifenverstärkung, im folgenden
offener Regelkreis genannt). Damit kann der zeitliche Anteil der Regelung zunächst vernach-
lässigt werden und die Stabilität ist nur durch das Verhalten der ORM zu charakterisieren.
Die Korrektur-Matrix M = I−RR+

Θ beschreibt die Abweichung zwischen der systemischen
ORM R und der in der Steuerung benutzten ORM RΘ. Die Stabilitätscharakterisierung
erfolgt mit Hilfe des spektralen Radius ρ(M); Stabilität wird erreicht falls ρ(M) < 1 ist,
was in dieser Arbeit erstmalig für ein COFB-System gezeigt wurde. Ein Vergleich mit dem
üblicherweise verwendeten Kleinsignaltheorem wurde durchgeführt mit dem Ergebnis, dass
unter Verwendung der Spektralradiusbedingung größere Toleranzbänder realisiert werden
können im Vergleich zum Kleinsignaltheorem. Eine Relation des spektralen Radius zu der
messbaren RMS Ortsabweichung nach einem Korrekturschritt δ1 wurde hergeleitet. Die
Gültigkeit dieses Stabilitätskriterium wurde durch Simulationen sichergestellt und deren
Richtigkeit durch strahlbasierte Messungen am COSY Speicherring beim FZ-Jülich durch
Variation von ρ(M) bestätigt.
Verschiedene Quellen der räumlichen Fehlanpassung für das SIS18 wurden simuliert wie z.B.
die Variation der ORM während der Beschleunigungsrampe, intensitätsabhängige Arbeit-
spunktverschiebung und beta-beating. Der spektrale Radius wurde für diese Fälle berechnet:
Beispielsweise ist für die ORM Variation während der Beschleunigungsrampe des SIS18 der
maximale spektrale Radius 0.56 für die horizontale Ebene und 0.13 für die vertikale Ebene,
wenn man statt der variierenden ORM ausschließlich die ORM bei Injektion benutzt. Für
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diesen Fall ist zu erwarten, dass das COFB System über die gesamte Beschleunigungsrampe
stabil bleibt; allerdings unter signifikanter Einschränkung der Regelbandbreite. Für die
intensitätsabhängige Arbeitspunktvariation wird ein Anstieg des spektralen Radius mit der
Größe der Arbeitspunktverschiebung vorhergesagt, allerdings mit einer größeren Steigung in
Abhängigkeit von der Änderung in Richtung eines ganzzahligen Arbeitspunkts verglichen
mit einer entfernenden Bewegung. Das entsprechende Verhalten wurde für die Parameter
am SIS18 simuliert und experimentell an COSY für ein langsames Regime bestätigt; dabei
wurde das COFB durch Arbeitspunkt-verschiebende ORM-Werte in Richtung eines instabilen
Bereichs geschoben. Weiterhin wurde gezeigt das beta-beating nicht zu Instabilitäten führt,
so lange ein ganzzahligen Arbeitspunkt nicht erreicht wird.
Die Stabilitätsuntersuchungen wurden auch für das schnelle Regime unter Beachtung der
System- und Rückkoppeldynamik durchgeführt. Die Transferfunktionen für den geschlossener
Regelkreis werden als Funktionen von ρ(M) hergeleitet. Auch hier kann der spektrale Ra-
dius als Stabilitätskriterium genutzt werden. Dabei zeigt sich erwartungsgemäß, dass die
erreichbare Bandbreite der Korrekturen abnimmt bei steigenden ρ(M). Benutzt man die
Transfunktionen, so lassen sich die benötigten Aktualisierungsraten der ORM vorhersagen,
um eine feste Bandbreite während des Rampens zu erreichen. Die geschlossener Regelkreis
Instabilitäten entsprechen den rechtsseitigen Koordinaten der Polestellen der Transferfunktion
innerhalb der komplexen Ebene (im mathematischen Sinne). Es wurde durch Simulationen
gezeigt, dass die Pole bei steigenden ρ(M) von der links- auf die rechtsseitige Ebene wandern.
Die den Polestellen zugeordneten Frequenzen und die Instabilitätsschwellwert von ρ(M) hän-
gen von dem zeitlichen Verhalten des offener Regelkreis System ab und erreichen ρ(M) = 1
im Fall vernachlässigbarer Systemverzögerung. Für den Fall ρ(M) > 1 wird das COFB-
System auf jeden Fall instabil unabhängig von der Rückkopplungsdynamik. Die Skalierungen
der Rückkoppelparameter als Funktion von ρ(M) wurde hergeleitet und Schwellwerte der
Instabilität bestimmt.
Das im Rahmen der Doktorarbeit entwickelte SIS18 COFB wurde mithilfe der Libera Hadron
Hardware für die horizontale Ebene in Betrieb genommen. Die Libera Hadron Hardware
wurde zur BPM Datenverarbeitung, Reglerimplementation und Berechnung der Korrektur-
magnetfeldstärke benutzt. Dabei wurden 3 Liberas für die 12 im SIS18 installierten BPMs
und 12 horizontalen Korrekturmagnete verwendet. Die System-Antwort hängt von den
Subsystemen ab: Zunächst wurden die Charakteristik der Netzgeräte und deren Steuereinheit
bestimmt, sowohl durch sinusartige Anregung bei fest Korrekturstrom (0.78 A) als auch mit
Pulsen variabler Amplitude (0.78 bis 36 A mit Sollanstiegszeiten von 10 µs). Die Flanken-
steilheit (slew-rate dependence) wurde gemessen und führt zu einer Abnahme der Frequenz
des dominierenden Pols für größere slew-rates des Eingangssignals. Die Charakterisierung des
Gesamtsystems wurde zusätzlich durch strahlbasierte Messungen mit sinusartiger Anregung
(0.78 A) durchgeführt. Dabei wurden neue Pole und Nullstellen im Bereich von 300 bis
400 Hz festgestellt, die sich für die einzelnen Netzgeräte unterscheiden. Die Parameter der
proportional–integral Regelung (PI controller) der Libera Hardware Implementierung wurden
mit Hilfe der Charakterisierung des Gesamtsystems bestimmt. Diese Werte sind nur eine erste
Abschätzung, da sich auf Grund der Abhängigkeit von der slew-rate die Transfer-Funktion
während der Beschleunigungsrampe ändert.
Die ORM wurde während der gesamten Beschleunigungsrampe am SIS18 für zwei unter-
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schiedliche Beschleunigereinstellungen vermessen, indem der Strahl sinusartig mit einer Ampli-
tude von 1 mrad angeregt wurde. Die räumliche Fehlanpassung (charakterisiert durch ρ(M))
wurde zu verschiedenen Zeitpunkten innerhalb der Beschleunigungsrampen in Beziehung
zu MADX modellierten sowie gemessenen ORMs bei Injektion gesetzt. Das Maximum von
ρ(M) bei Extraktionsenergie ist vergleichbar mit dem zuvor berechneten Wert von 0.56
für die horizontale Ebene. Andererseits zeigte sich bei den strahlbasierten Messungen eine
intrinsische Fehlanpassung zum MADX Model (0.4 < ρ(M) < 0.6) schon bei Injektion sowie
das Überschreiten des kritischen Werts von ρ(M) > 1 während der Beschleunigungsrampe.
Der Grund der Abweichung konnte nicht genau bestimmt werden und wird zukünftig noch
zu untersuchen sein.
Am SIS18 wurde die Funktionalität des COFB-Systems demonstriert mit Hilfe der durch
MADX berechneten ORM sowie unter Verwendung der gemessenen ORM bei Injektion,
jeweils für konstante Regelparameter. Die maximal erreichte Bandbreite war etwa 600 Hz
im Fall der gemessenen ORM (bei relativ kleinem Wert von ρ(M)) während im Fall der
berechneten ORM (bei relativ großem Wert von ρ(M)) eine Bandbreite bis 300 Hz erreicht
wurde. Dies bestätigt die zuvor beschriebenen theoretischen Überlegungen, nämlich dass
räumliche Fehlanpassungen die maximale Bandbreite signifikant beeinflusst. Höhere Werte
für die Regelparameter bei Benutzung der MADX ORM resultierten in einer Instabilität des
closed orbit. Die Frequenz des instabilen Pols liegt bei 335 Hz; ein Wert der nahe am Pol des
offener Regelkreis Systems bei 322 Hz liegt, aber kleiner ist als der vorhergesagte Wert für das
offener Regelkreis System. Dies kann durch die Verwendung einer kleineren slew-rate während
der offener Regelkreis Charakterisierung erklärt werden, während bei der strahlbasierten
Messung höhere slew-rates zu erwarten sind. Damit ergibt sich eine Verschiebung der Pole
und Nullstellen gegenüber der bei der Charakterisierung des Gesamtsystems gefundenen
Positionen.
Zur Demonstration des Einflusses der räumlichen Modellfehlanpassung auf das gesamte
COFB-Systems und um die Frequenz der Polstellen zu finden, wurde der Strahl angeregt
während das Rückkoppelsystem eingeschaltet war. Das geschlossener Regelkreis System zeigt
als Antwort eine gedämpft oszillierendes Verhalten aus dem die Anstiegs- bzw. Abfallszeit
und die Frequenz gemessenen wurde um damit die Position des dominierenden Pols in der
komplexen Ebene bestimmen zu können. Die störende Oszillationsfrequenz lag bei dieser
Messung bei 335 Hz und, für abnehmendes ρ(M), änderte sich das Vorzeichen der Dämp-
fungskonstante (d.h. der Pol wanderte von rechten auf die linke Seite der komplexen Ebene).
Da die Regelparameter kleiner gewählt wurden als die ursprünglichen theoretischen Werte,
wurde das geschlossener Regelkreis System erst nahe bei ρ(M) = 1 instabil. Damit konnte
die Funktionalität des COFB-Systems demonstriert und die in dieser Arbeit abgeleiteten
Vorhersagen bestätigt werden.
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Chapter One

Introduction

This thesis is dedicated to the topic of closed orbit correction in synchrotrons, in general, and
the on-ramp orbit correction in hadron synchrotron SIS18 of the FAIR project, in particular.
The main goal was to realize a closed orbit feedback (COFB) system for SIS18, efficient
enough to achieve the RMS residual below 1 mm (below 10% of the typical RMS beam size)
throughout the ramp and fast enough to reject disturbances up to the frequencies limited by
the accelerator components e.g. corrector magnets and power converters.
COFB system has been an integral part of the synchrotrons and storage rings of light sources
as well as of hadron machines for stable beam operations [1–8]. Orbit correction relies on
the measurement of transverse beam position at discrete locations in the synchrotron and
applying the appropriate kicks to the beam with dedicated dipole magnets located at other
discrete locations to counteract the existing field errors in the synchrotron. The linear relation
between dipolar kicks and the transverse beam position is described with the help of the
orbit response matrix (ORM). A unique feature of SIS18 is the ORM variation over the
ramp due to the lattice-settings variation from injection to extraction for every acceleration
cycle. The state-of-the-art COFB systems implemented in most other facilities operate for
the constant machine settings, e.g. in electron storage rings. The Large Hadron Collider
(LHC) is an example of a hadron machine with on-ramp ORM variation but the ramp time of
approximately 20 minutes is long enough to update the pre-calculated ORMs for 20 different
optics, and the bandwidth of interest lies in the range of several Hz [9]. For light sources, the
disturbance rejection is relevant only in the range of DC to 150 Hz [10].
For SIS18, high-frequency ripples (150 Hz and its higher harmonics) coupled to the beam
motion and ramps of very short lengths (200 ms to 1 s, for typical energy gain from 11
MeV/u to 1 GeV/u) require a larger bandwidth of the feedback system as well as robustness
against ORM mismatch. These new challenges not encountered before in any other facility
for the COFB system require a thorough study of the existing methods of orbit correction
and uncertainty modelling in the ORM in order to answer questions like

• Which orbit correction method is more suitable for the ramping synchrotrons for the
computationally efficient update of the ORM and the calculation of the corrector
strengths? Existing methods include MICADO[11], harmonic analysis[12], sliding bump
method[13] and singular value decomposition of the ORM[14].

• In order to achieve a persistent orbit correction during the ramp of changing lattice
settings, what parameter can help decide the rate of the ORM update in the controller?
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• If the COFB system has to run in the fixed-ORM mode during the ramp, is it possible
to use fixed controller parameters? If not, how should they scale with the machine
ORM variation over the ramp to avoid controller instability?

• Variation of which lattice parameters/functions is crucial, e.g. machine tune or beta
function at the location of BPMs and correctors, and how can their influence be
characterized?

• What magnitudes of intensity-dependent tune shifts can be tolerated by a COFB system
for the required performance and for avoiding instability?

The research conducted to answer the above questions for the realization of a fast and robust
SIS18 COFB system has resulted in several new contributions in the field of orbit correction
and are presented in this thesis which is arranged as follows:
Chapter 2 comprises basic information required for the understanding of the upcoming
chapters and can be divided into two sections. One section is dedicated to the fundamentals
of beam dynamics in synchrotrons, including closed orbit distortion, its sources and typical
orbit correction methods. The second section describes the basic tools of the control theory
required for the design and characterization of a feedback loop.
Chapter 3 is dedicated to the problem statement of the thesis. It sums up the motivation for
orbit correction in SIS18 and the challenges associated with its peculiar behavior, sources of
the orbit perturbations and comparison of COFB system requirements between SIS18 and
other facilities.
In chapter 4, a new discrete Fourier transform (DFT)-based method for the closed orbit
correction relying on the symmetry exploitation of the ORM has been introduced. The
circulant and block-circulant symmetries in the ORM are discussed, and the supremacy
of the DFT-based method over the already existing methods in literature is discussed in
terms of information compression, computational benefits, uncertainty modelling and the
physical interpretation of the mode space of ORM. A nearest-symmetric approximation is
also introduced for the synchrotrons having slight deviation from pure symmetry in the
ORM. The advantages of the ORM symmetry exploitation are demonstrated with the help of
simulations and experiments for orbit correction in SIS18.
Chapter 5 is the main contribution of the thesis regarding the stability and performance
analysis of a COFB system in the presence of ORM mismatch between the controller and
the system. A mathematical framework is established in order to model the uncertainty in
the ORM and to define a spectral radius condition for the stability of the COFB system.
The circulant ORMs’ favourable properties are used for a transparent comparison between
the already existing condition by small gain theorem and the newly introduced spectral
radius condition. Extensive simulations are performed for SIS18 for different sources of ORM
mismatch, and the results are verified experimentally at the COFB system of COSY Jülich.
The outcome of this chapter has been very helpful for the realization of the SIS18 COFB
system.
Chapter 6 introduces the Libera Hadron hardware used for the implementation of the SIS18
COFB system. Different modules of Libera Hadron and their functions are described. The
pure delay measurement and the fixed-point arithmetic tests for Libera Hadrons are also
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performed. special features of the hardware, implemented according to the on-ramp orbit
correction needs, are also discussed.
Chapter 7 consists of the major experimental part of the thesis and is dedicated to the
commissioning and testing of the SIS18 COFB system. It reports about the sub-system and
full-system identification, ORM measurement over the ramps and the successful achievement
of orbit correction in SIS18 throughout the ramp. The closed-loop characterizations in the
light of the conclusions drawn in chapter 5 are also presented.
The summary of the thesis and the outlook for future work are summed up in Chapter 8.
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Chapter Two

Closed orbit feedback system in
synchrotrons

In this chapter, the concepts of accelerator physics as well as the control theory are described
which form the basis of the work presented in the rest of the chapters. The accelerator related
topics include the particle trajectories in the synchrotrons, the closed orbit perturbations,
their sources and state-of-the art correction methods. The control theory part describes the
representation of the dynamic behavior of the physical systems in the frequency domain and
their application to the feedback systems.

2.1 Synchrotrons
Synchrotrons are the circular type of charged particle accelerators used for the acceleration as
well as storage of high energy particle beams. Synchrotrons can be classified into two broad
categories as,

• Synchrotrons where the high energy electron beams act as the source point of the photon
beams that are used in the experimental activities. They are knows as synchrotron
light sources [15].

• Synchrotrons where the high energy charged beams are themselves used for the exper-
iments. The charged particles cover a wide range from electrons, positrons, protons,
antiprotons and heavy ions. They include particle colliders and hadron synchrotrons [16].

The beams are injected into synchrotrons in most cases from the linear accelerators at low
energies limited by their physical length and the single-pass trajectory of charged particles
through the accelerating structure. In the synchrotrons, the particles are bent around a fixed
closed trajectory to have a multiple-pass through the same accelerating structure. The basic
acceleration principle is same for any kind of accelerator i.e. the electric field part of the
Lorentz force causes the change in the kinetic energy of the charged particles as [17, 18]

∆Ekin = q

∫ (
E + (v ×B)

)
ds

= q

∫
Eds + q

∫
(v ×B))vdt︸ ︷︷ ︸

0

(2.1)
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Figure 2.1 One section of SIS18 hadron synchrotron showing the RF cavity, two

dipole magnets and three quadrupole magnets.

while the magnetic field is used to bend the particles and is synchronized with the momentum
of the particles in order to achieve a fixed radius orbit in a synchrotron. The design condition
for a synchrotron is [17, 19]

Bρ =
p

q
(2.2)

where ρ is the gyro-radius of the circular motion in the magnetic field of magnitude B
perpendicular to the plane of rotation and p is the momentum of a particle of charge q. The
term (Bρ) is well knows as the magnetic rigidity and is a measure of the maximum achievable
momentum of a charged particle for a given design of the synchrotron which is characterized
by the gyro-radius as well as maximum dipole magnetic field. In a synchrotron, the bending
magnetic field B is provided by the dipole magnets of finite length distributed uniformly all
over the ring while the quadrupole magnets act as the focusing lens for the charged particles
with a magnetic field which is a linear function of the particle’s transverse position relative
to the magnetic center of the quadrupole and is given as [17],

Bx =
∂Bx

∂y
y

By =
∂By

∂x
x

(2.3)

Both dipole and quadrupole magnets along with the straight section form a unit cell which
repeats itself to form the full lattice of the synchrotron. Other parts of the synchrotron
that lie in the straight sections include the sextupoles, drift spaces and radio frequency (rf)
accelerating cavities along with diagnostic and experimental equipment that varies with the
type and application of the synchrotron. For example, modern light sources are equipped
with Undulators and Wigglers for the emission of high intensity synchrotron radiation [20].
Among diagnostic equipment, one important device is the beam position monitor (BPMs)
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placed in each section in order to measure the transverse position of the beam while small
dipole magnets are used to steer the beam at specific locations as well as at the locations
of injection and extraction of the beam. Figure 2.1 shows a section of the SIS18 hadron
synchrotron of GSI Darmstadt. SIS18 is a strictly periodic lattice with 12 identical cells with
a total circumference of 216 m. Each of the 12 periods contains two bending magnets and
a quadrupole triplet consisting of two longer singlets and one short singlet at the end, the
polarity in x-plane is FDF (focus-defocus-focus) [16].

2.2 Closed orbit in a synchrotron
The closed path defined by the magnetic centers of the dipole and the quadrupole magnets is
referred to as the “golden orbit”. A charged particle traveling on this trajectory experiences
the “right” centripetal force due to the dipole magnetic field B adjusted with its momentum
p according to Eq. 2.2. Such an “ideal” particle faces zero force inside the quadrupoles which
provides the focusing field to all off-trajectory “real” particles. The transverse motion w
(where w is either x or y) of such off-trajectory particles inside the linear magnetic structure
comprising of dipoles and quadrupole magnets only, as a function of longitudinal coordinate
--z can be described with the help of a differential equation of the Hill’s type given as [17],

w′′(--z) +Kw(--z)w(--z) = 0

w′(--z) =
dw

d--z

Kx(--z) =
1

ρ2
+

1

Bρ

∂Bx

∂y
y

Ky(--z) = − 1

Bρ

∂By

∂x
x

(2.4)

The trajectory of the particles can be written as the solution of Eq. 2.4 as,

wβ(--z) =
√
εw
√
βw(--z) cos(φw(--z)− φ0) (2.5)

where ε and φ0 are the constants of integration. Equation 2.5 shows that the motion of
particles in the synchrotron are non-harmonic or -periodic but is a kind of distorted sine-like
motion (due to K being a function of --z) with the varying amplitude

√
εβ(--z) where β(--z) is

the positive valued function of --z and is called beta function having the same periodicity of
the circumference C of the ideal orbit as K(--z) i.e.

∂
√
β

∂ --z
= K(--z)

√
β +

1√
β3

(2.6)

β(--z) = β(--z + C)

The phase advance φ(--z) is related to the beta function as

φw(--z) =

∫ --z

0

d--z
βw(--z)

(2.7)
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Figure 2.2 Schematic example of ideal closed orbit (dashed black) and particle

trajectories around the closed orbit.

The constant of motion ε in Eq. 2.5 is called Emittance and is defined in each transverse
plane for the particle motion in the linear field gradient K(--z) as,

εw = γ(--z)w2(--z) + 2α(--z)w(--z)w′(--z) + β(--z)w′2(--z) (2.8)

where α, β and γ are better called the Courant-Synder functions and defined as,

α(--z) = −1

2
β′(--z)

γ(--z) =
1 + α2(--z)

β(--z)

(2.9)

An example of particle trajectories are plotted in Fig. 2.2 around the ideal orbit for various
initial conditions in Eq. 2.5. It is important to mention that the trajectory of individual
particles is never closed in one turn and particles make betatron oscillations (defined by
Eq. 2.5) around the closed orbit with the total number of oscillations in one turn defined as
the tune (Q) given as

Qw =
1

2π

∫ --z+C

--z

d--z
βw(--z)

(2.10)

The transverse position of the particles is measured at discrete locations with the help of
BPMs and the closed orbit can be extracted as the average of the particle position over many
turns for a single particle or as the average of the transverse positions of many particles
(forming a beam) over a single turn.

2.3 Closed orbit distortion
The ideal closed orbit is valid to exist only in the design magnetic field of a synchrotron given
by Eqns. 2.2 and 2.3 and in the absence of any field error. In real synchrotrons, field errors
can cause a particle to deviate from the ideal closed orbit even if it originally starts on that
orbit. A localized field error of dipolar nature deflects the particle by an angle θ (mrad) and

7



the trajectory for such a distorted closed orbit can be described as the particular solution of
the inhomogeneous Hill’s equation [17],

w′′(--z) +Kw(--z)w(--z) = δ(--z − --z0)w′0 (2.11)

where,

w′0 = sin θ =
∆B

Bρ
lmag for the dipole field error ∆B (2.12a)

w′0 = sin θ = Klmag∆x for the quadrupole misalignment ∆x (2.12b)

with the following boundary conditions required to have the orbit closed at the point of field
error --z0:

wc.o.(--z0) = wc.o.(--z0 + C)

w′c.o.(--z0) = w′c.o.(--z0 + C) + w′0
(2.13)

The particular solution of Eq. 2.11 can be written for small angles (sin θ ≈ θ),

wc.o.(--z) = θ

√
βw(--z0)βw(--z)

2 sin(πQw)
cos(πQw − |φw(--z)− φw(--z0)|) (2.14)

So far we have considered the trajectories for the charged particles with nominal momentum
p of Eq. 2.2 both for ideal and distorted closed orbits and the betatron oscillations around
them. For a momentum mismatch ∆p

p
, the ideal closed orbit is also deviated transversely in

the bending magnets and hence primarily in x-plane from the ideal orbit as,

xD(--z) = D(--z)
∆p

p
(2.15)

where the periodic function D(--z) is called the momentum dispersion function and is the
solution of Hill’s equation in case of ∆p

p
= 1 given as [21],

D′′(--z) +Kw(--z)D(--z) =
1

ρ(--z)
(2.16)

The final trajectories of charged particles in a synchrotron can be described as the superpo-
sition of the perturbed closed orbit and the betatron oscillations around that as,

x(--z) = xβ(--z) + xc.o. +D(--z)
∆p

p

y(--z) = yβ(--z) + yc.o.

(2.17)

In the presence of rf system, the revolution time is forced to stay constant in order to maintain
synchronism of beam motion with the rf phase. For the perturbed orbit, the beam adopts
to the constant revolution time by the slight variation of its energy, which in turn creates
a mismatch of beam energy with the dipole fields. As a result, the closed orbit gets an
extra contribution proportional to the dispersion in the ring and the field error θ. For the
synchrotrons that operate near the transition energy (γt) or cross it during the ramp, Eq. 2.14
is modified for the horizontal plane in order to keep the orbit length constant as follows [22],

xc.o.(--z − --z0) = θ

√
βx(--z0)βx(--z)

2 sin(πQx)
cos(πQx − |φx(--z)− φx(--z0)|)− θD(--z)D(--z0)

( 1
γ2 − 1

γ2
t
)C

(2.18)
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Figure 2.3 Schematic example of ideal (dashed black) and perturbed closed orbit

in horizontal (blue) and vertical (red) planes.

2.4 Disadvantages of closed orbit distortion in synchrotrons
Closed orbit distortion is an unwanted feature in any kind of synchrotron both in electron
and hadron machines as can be (even naively) deduced from the reason of such a distortion
i.e. field “errors” (Eq. 2.11). This means that an ideal synchrotron without field errors has
no closed orbit distortion and in real synchrotrons the distortion should be as minimal as
possible. The justification for the requirement of minimum orbit distortion is very meaningful
in terms of accelerator operation and the achievable beam quality in a synchrotron. For
example, in real synchrotrons, the larger transverse offset of closed orbit reduces the available
aperture for betatron oscillations resulting into the possibility of loss of particles and causes
the individual particle trajectories to lie near the poles of the quadrupole magnets. The
non-linear field gradient near the poles of the quadrupole magnets and the sextupole magnets
can deteriorate the emittance of the particle beams which is a constant of motion only for
the linear field gradient. Specific examples of the adverse effects of closed orbit distortion on
the accelerator operation for different kinds of synchrotrons are described in the following
subsections.

2.4.1 Synchrotron light sources

Light sources are the dedicated synchrotrons for the storage of electron beams of fixed energy
where the bending electron beam (either in dipole magnets or insertion devices) act as
the source of synchrotron radiation which is channeled through optical beamlines to the
experimental halls for research purposes. The number of light source synchrotron accelerators
has increased in last thirty years remarkably. There are currently more than 50 light sources
all around the world fulfilling the experimental needs of the researchers from diverse fields
of science and engineering. The general information about these synchrotrons has been
gathered on a single web-page www.lightsources.org. These light sources have gone through
technological evolution from 0th generation to 4rd generation [23] having nominal beam
emittance 5-20 nm-rad and x-ray brightness of the order of 1020 photons/s/mm2/mrad2. The
largest of these synchrotrons include ESRF France, APS USA and SPRING-8 Japan, while
recently the synchrotrons based upon the idea of 4th generation light sources to touch the
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Table 2.1 Transverse closed orbit stability requirements for some synchrotron light

sources worldwide.

Facility σx (µm) σy (µm) Vertical stability Reference
requirement

NSLS II 32 3.2 0.3µm [4]
PETRA III 40 5 0.5µm [6, 24]
DLS (SR) 123 6.4 0.6µm [3]
ALBA 53 23 0.2µm [25]
SPEAR3 350 21 < 1µm [26]
ESRF 380 14 1.4 µm [5]
BESSY II 250 25 2.5 µm [27]
MAX IV 22 11.5 < 1µm [28]

fundamental limits of x-ray brightness are being realized at ESRF France, MAX IV Swedan,
Diamond II UK and SIRIUS Brazil. The concept of beam stability in light sources is primarily
defined by the photon beam parameters which are function of electron beam parameters and
beam line optical components, measurement devices and experimental samples. For example,
the photon beam position error ∆yph at a distance L from the source point (without a slit)
depends upon the electron beam position error ∆ye and in case of no focusing is given as [29],

∆yph(L) = ∆ye + L∆y′e (2.19)

where ∆y′e is the electron beam divergence at the source point of photon beam. While in case
of slit as the secondary source point of the photon beam, electron beam movement will result
into the direct decrease in the intensity of the photon beam. Similarly, the brightness of
photon beam directly depends upon the size and divergence of electron beam. The relationship
between the beam emittance and brightness is given as [30],

Bph ∝ Be =
Ie

8π2εxεy
(2.20)

where Bph and Be are the x-ray and electron beam brightnesses respectively and Ie is the
electron beam current and εx, εy are the emittance in both transverse directions mentioned in
Eq. 2.5.
The horizontal beam sizes in the existing synchrotron light sources remains one or two orders
of magnitude larger than vertical beam sizes and the general accepted stability criteria for
the RMS variation of beam position in synchrotrons is up to 10% of the RMS beam size,
requires sub-µm stabilization of the closed orbit in vertical plane. The required stability
criteria for some of the light sources is collected in Table 2.1.
As mentioned before, in synchrotron light sources, the major area of focus is the electron
beam stability at the source point of the synchrotron light i.e. in the storage ring. Any
emittance growth/distortion due to the non-linear magnetic field gradients in the booster
ring can be compensated in the storage ring due to the radiation damping of the vertical
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emittance given as [31],

dεy = −εy
dp

p
(2.21)

2.4.2 Hadron synchrotrons and particle colliders

Synchrotrons where the high energy beams are directly used for the experimental activities
include the hadron synchrotrons and particle colliders. In particle colliders, two beams of
same or different kind of particles are head-on collided for the production of elementary
particles. Relativistic Heavy Ion collider (RHIC) [32] of BNL US, Hadron-Electron Ring
Accelerator (HERA) [33] of DESY Germany and Large Hadron Collider (LHC) [34] of CERN
Switzerland are among the most famous synchrotron-based hadron colliders in the world.
The transverse beam position stability at the interaction point is an important requirement
for the collision of two beams while the beam quality deterioration (e.g. brightness as in
Eq. 2.20) due to the closed orbit distortion in the non-linear magnetic fields of quadrupole
and sextupole magnets decreases the interaction cross-section at the interaction point.
Hadron synchrotrons are the major attraction for nuclear physics community to get relativistic
heavy ions. Famous facilities worldwide include Rapid Cycling Synchrotron(RCS) and Main
Ring Synchrotron (MR) of J-PARC Japan [35] and the Heavy Ion synchrotron (SIS18) of
GSI [16], Germany. A major motivation to keep the closed orbit distortions minimum in
hadron synchrotrons come from the fact that heavy ions do not have synchrotron damping
even at relativistic energies and hence any beam quality deterioration caused during the
injection process and early acceleration remains preserved. Moreover, the ion sources are not
as efficient as the electron sources in terms of beam current and intensity. Significant closed
orbit distortions can cause beam losses by limiting the aperture for the betatron oscillations.
The particle loss can also ruin the vacuum pressure especially in case of heavy ions. Therefore,
the closed orbit care is getting more important with the increasing demand of high intensity
beams in hadron synchrotrons .

2.5 Sources of closed orbit distortions
Perturbations that effect the position of beam center-of-mass in a synchrotron can be divided
into three categories in terms of their time period or vibration frequencies; long term, medium
term and short term perturbations. The time scale of perturbations depends upon the nature
of source producing them. It is worth mentioning here that for each accelerator, the type of
perturbations important to be removed depends upon the type and parameters of accelerator
itself. The time scale classification is a general classification but the terms long, medium
and short are more relative and depend upon the time scale of some specific measurement or
phenomenon under consideration, for example, the bunch revolution period considered as
a reference. A list of general sources of perturbations, their time periods and length scales
have been shown in Table. 2.2.
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Table 2.2 Sources of perturbations and their typical time and length scales [26].

Source Time scale Length Scale
Ground settlement weeks to months 10 to 100µm/year
Earth Tides hours ∼ 30 µm / km
Air/Water Temperatures minute to days ∼ 10 µm/ oC
Beam-induced heating minutes to hours 10 µm
Insertion device parameter changes 10 ms to 10s 10 Gauss-cm
Stray Fields 0.1 seconds to hours variable
Magnet power supply noise 10µs to 10 ms design dependent
Ground Vibrations 10 ms to 1 second ∼ 10 nm
Magnet vibration (from resonance) 10 ms to 1 second ∼ 100 nm
RF system µs to minutes ∼ 10µm
Impedances/Wakefiels ns to µs ∼ 10µm

2.5.1 Long term perturbations (∼ hours, days and years, << 1 Hz)

These perturbations have time periods of one week or above up to years and correspond to
very small frequencies that’s why usually described only in terms of time period. Ground
settlements and seasonal and environmental changes e.g. temperature changes, rain fall, tides
etc. come in this category. These perturbations result in alignment changes of accelerator
components e.g. girders and magnets. Orbit drifts caused by such perturbations can reach
(for example, for LHC) between 200-300 µm within 10 hours [36]. Such perturbations become
significant for storage rings where the beam is stored for long times (for hours). For example,
even for smaller machines such as the Swiss Light Source (SLS, 288 m) the RF frequency
needs to be adjusted to compensate for variations in the ring circumference.

2.5.2 Medium term perturbations (∼ few seconds, 1-50 Hz)

These perturbations mainly include ground vibrations induced by human activities in ex-
perimental hall e.g. vibration of mechanical devices and external activities e.g. road traffic
noise and range from a fraction of a Hz to 50 or 100 Hz maximum. Sources of this category
also include movement of the vacuum chambers or quadrupole magnets due to water cooling
system etc.

2.5.3 Short term perturbations (fractions of seconds, several 100
Hz)

Short term perturbations usually have sources from the 50 or 60 Hz mains frequencies and
their harmonics (higher frequencies). The major sources include power supply noise, electrical
stray fields, booster operation etc. In fast booster rings, the thickness of the vacuum chambers
is kept thin enough to avoid eddy currents during the ramping which also allows the power
supply high frequency noise to couple to the beam motion.
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2.6 Closed orbit correction
Closed orbit correction has become an integral part of almost every synchrotron operation [1–
6] and is the process of steering the closed orbit down to the golden orbit against the existing
magnetic field errors of dipolar nature, by introducing the artificial field errors (corrections).
The perturbed closed orbit is measured with the help of BPMs while dedicated dipole magnets
(correctors) are deployed for the application of corrections. BPMs are the transverse beam
position readout devices. Corrector magnets can be used to apply local bumps to the orbit
in certain positions around the synchrotron or for the orbit correction throughout the ring
called local and global orbit correction, respectively. In this thesis, we shall focus on the
global orbit correction. The global effect of a single dipolar kick (for small perturbations)
θc located at a longitudinal location --z1 is described by the linear solution of Hill’s equation
given in Eq. 2.14. In case of M BPMs and N correctors, the response of closed orbit at each
BPM to each corrector is given by the elements of M ×N linear matrix called orbit response
matrix (ORM) represented by R such that,

w = RΘw (2.22)

where Θ is the corrector settings vector and w is the beam position vector at the BPM
locations in either transverse plane and the ORM elements are given as,

Rmn =

√
βmβn

2 sin(πQ)
cos
(
Qπ − |µm − µn|

)
(2.23)

where m and n represent the BPM and corrector index, respectively. The dispersion term on
the right hand side of Eq. 2.18 is ignored in the definition of the ORM in Eq. 2.23 which
is only relevant at the transition-crossing during acceleration process. The main concept of
global orbit correction is to calculate the corrector-strengths that can counteract the existing
dipolar field errors such that the orbit distortion measured with the BPMs is minimized.

2.7 Methods of correction calculation for correctors
Historically, four distinct methods have served the global orbit correction which include sliding
bump method [13], MICADO [11], harmonic correction [12] and singular value decomposition
(SVD) [14]. A variant of the SVD type correction referred to as eigenvalue decomposition has
also been reported [37, 38]. These methods are revised here briefly, before a new method is
introduced in the upcoming chapters.

2.7.1 Sliding bump method

The sliding bump method is based upon creating a local bump in the closed orbit using any
three correctors such that the beam position at a specific BPM location can be made equal to
the golden orbit. Once such a bump is created, the set of correctors “slides” to the next three
correctors to create a local bump at the next BPM location. The condition on the bump
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angles for three correctors (θ1, θ2 and θ3) is that the resultant closed orbit bump leaves the
orbit outside of the corrector region 1-3 unchanged. The bump angle condition is given as,

θ2 = −θ1

√
β1

β2

sinφ31

sinφ32

θ3 = −θ1

√
β1

β3

sinφ21

sinφ32

(2.24)

where θ1 is an arbitrary angle. A local bump does not change the closed boundary condition
and no betatron oscillations propagate outside the bump.
The three-corrector-local-bump method is used as following: the uncorrected closed orbit
shift w0 at one BPM located between correctors 1 and 3 is measured. By varying θ1, the rate
of change of closed orbit with the corrector angle ∂w

∂θ1
is also measured. Within linear region

of magnetic lattice,

w = w0 +
∂w

∂θ1

θ1 (2.25)

where w is the resultant closed orbit position at the location of BPM. By requiring w = 0,
θ1 is calculated to be equal to (w0/

∂w
∂θ1

) and then θ2 and θ3 are calculated using Eq. 2.24
in order to close the bump at the location of corrector1 and corrector3. By repeating this
procedure to all correctors in groups of three, the closed orbit is consequently corrected at
all BPM positions, in each plane. Anyhow, this method has a fundamental limitation since
three correctors are used for the orbit correction at one BPM, the degree of freedom for the
correctors is always less than the total number of correctors by 2 i.e. effective number of
correctors is N − 2.
Sliding bump scheme of orbit correction was historically used at SIS18 synchrotron of GSI [39].

2.7.2 MICADO

MICADO, also referred to as orthogonal matching pursuit in the signal processing literature
[15,16], was devised to find the most effective correctors to minimize the orbit distortion.
The name MICADO comes from an algorithm named in French as “MInimisation des CArres
des Distortions d’Orbite" meaning Minimization of Orbit Distortions Squares. This method
is discussed for the completion of the topic and currently almost no synchrotron facility has
reported to use it for the orbit correction, to the best knowledge of the author. The major
utility of this method was at the time when orbit distortions were also removed by changing
the physical alignment of the quadrupoles and it was very fruitful to locate the regions of
maximum magnet defects.
Following strategy is followed in MICADO: At the first stage, each magnet is tested singly
and only the corrector correction which minimizes the residual orbit is retained. In the next
iteration, the second most effective corrector is identified and the process is repeated unless
the peak-to-peak amplitude of the residual orbit vector is smaller than a fixed value given in
advance.
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2.7.3 Harmonic correction

Harmonic correction was the first method to discuss the notion of mode-based correction
by means of a decomposition of the perturbed orbit into Fourier harmonics which can be
corrected individually. The technique is primarily based upon the work of L.H.YU and
co-authers at BNL US [12], where they introduced the Courant-Snyder variables in Eq. 2.11
as,

ψ =
φ

Q

η =
w√
β

∂2η

∂φ2
+Q2η = Q

√
β0θδ(ψ − ψ0) (2.26)

The periodic solution of Eq. 2.26 is given as,

η = t cos
(
Q(π − |ψ − ψ0|)

)
(2.27)

where t =
√
β0θ

2 sin(πQ)
. Fourier analyzing Eq. 2.27 has been worked out as,

η = t
∞∑
n=0

cn cos(n(ψ − ψ0)) (2.28)

where,

c0 =
1

2π

∫ π

−π
cos(Qψ)dψ =

1

Q

sin(πQ)

π

cn =
−1n

π

∫ π

−π
cos(nψ) cos(Qψ)dψ =

2Q

Q2 − n2

sin(πQ)

π
(2.29)

where n is the harmonic number of Fourier components. Harmonic analysis helps to predict
the dominant modes in the perturbed orbit of a synchrotron e.g. the mode closest to the
tune value Q always has the ultimate dominance as predicted by Eq. 2.29. The calculation
of corrector-strengths ti,n (in terms of Courant-Snyder variables, where i is the corrector
index) for the cancellation of selected modes cn in a given perturbed orbit η is carried out by
the solution of Eq. 2.28 which depends upon the phase relation of BPMs and correctors in
the synchrotron. The corrector-strengths are also proportional to the inverse of the Fourier
coefficient [12, 40].

2.7.4 Singular value decomposition of ORM

Singular value decomposition (SVD) [41, 42] is the most commonly used method for the
correction calculation for the correctors and was the first method to rely on the orbit response
matrix (ORM) of Eq. 2.23. SVD was first co-introduced by the Volker Ziemann [43] and Y.
Chung [14] in 1993 in the closed orbit correction community and since then has become the
de-facto method for the orbit correction at synchrotrons.
Before describing the SVD-based correction calculation for the correctors, let us first define
the necessary matrix properties.
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Orthogonality of a matrix

A square matrix Q ∈ IRm×m is said to be orthogonal if QTQ = I i.e. its inverse is equal to
its transpose. And if Q = [q1|...|qm] is orthogonal then the columns qi form the orthonormal
basis of IRm where symbol | seperates the columns.

Orthonormality

For IRm being an inner-product space. A set of vectors {qi} is called orthonormal if and only
if, for all qi and qj,

< qi, qj >= δij (2.30)

where δij is the Kronecker delta and <,> is the inner-product over IRm.

Singular value decomposition

For any real-valued m× n matrix R, there exist orthogonal matrices,

U = [u1|...|um] ∈ IRm×m,

V = [v1|...|vn] ∈ IRn×n

such that
S = UTRV = diag(σ1, ..., σp) ∈ IRm×n , p = min{m,n}

and
R = USVT (2.31)

where σ1 ≥ σ2 ≥ ... ≥ σp ≥ 0.
σi are called the singular values of matrix R and the columns ui and vi are called left and
right singular vectors of R and are the eigen-vectors of matrices RRT and RTR, respectively
as,

RRTui = σ2
i ui

RTRvi = σ2
i vi

(2.32)

Singular values are the positive square roots of the eigenvalues of both RRT and RTR, by
definition. A relation between left and right singular vectors of R can be defined as a direct
consequence of Eq. 2.31 as,

RTui = σivi

Rvi = σiui
(2.33)

The orthonormal vectors ui and vi are also referred to as the SVD modes which are arranged
in the matrices U and V as the descending order of their corresponding singular values. In
this way, singular values are the measure of the coupling between right and left SVD modes
for the system represented by the matrix R.
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Condition number of a matrix

The condition number κ(R) is defined as the ratio of largest to smallest singular value of the
matrix R i.e.

κ(R) =
σmax
σmin

(2.34)

Pseudo-inversion of a matrix

The inverse of a matrix is one of the fundamental benefits of SVD and can be defined as,

R−1 = (USVT)−1 = (VT)−1S−1U−1 = VS−1UT (2.35)

where e.g. U−1 = UT is by definition of the orthogonality of the matrix. For the diagonal
matrix S, the inverse is defined as

S−1 = diag{ 1

σ1

...,
1

σp
} , p = min{m,n} (2.36)

If any of the singular value σi = 0, the inverse S−1 does not exist and the matrix is called a
singular matrix for which the condition number is ∞. A matrix is called ill-conditioned if its
condition number is too large than one.
SVD provides the liberty to calculate an approximate inverse even for the singular matrices
by replacing 1

σi
for σi = 0 with the zero and the inverse is called Pseudo-inverse R+ given as

R+ = VS+UT (2.37)

It is important to mention that RR+ needs not to be the general identity matrix, which
means that R+ is the inverse of a modified or conditioned R in which the singular values
smaller than a threshold are effectively removed.

Corrector-strength calculation using SVD

In case of ORM, where M and N are the number of BPMs and correctores, for a given
perturbed orbit vector w, the required corrector-strengths vector Θ (combining Eq. 2.22 and
Eq. 2.37) can be written as,

Θw = VS+UTw (2.38)
The corrector-strengths required to compensate the exiting orbit distortion w is given by
−Θw.
The real space orbit distortion vector w and the corrector-strength vector Θw can be
transformed into SVD mode space (represented by the superscript --m) as,

w --m = UTw

Θ --m
w = VTΘw

(2.39)

and Eq. 2.38 can be written in mode space as,

Θ --m
w = S+w --m (2.40)

Following implications can be made from the representation of orbit and corrector-strength
vectors in the mode space of the ORM in Eq. 2.39 and 2.40,
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• Singular value decomposition provides the information of the mode structure of the
perturbed closed orbit for a given ORM as the columns of U. Any mode structure that
does not couple to the U matrix i.e. for which the product uiw = 0 (where i is the
column index) cannot be corrected using the given ORM.

• The SVD singular values are the measure of the coupling sensitivity between BPM
and corrector mode space, defined by the Eq. 2.39. The higher the singular values, the
smaller is the required corrector-strengths in order to create/diminish the corresponding
mode in BPM space.

• A unique singular value between each pair of BPM and corrector space modes, provides
possibility to control/manipulate each BPM mode independent of the rest of modes.

• The modes coupled through smaller singular values require higher corrector-strengths
and can cause the corrector current saturation.

• Since, the rank of the ORM and hence non-zero singular values are equal to min{m,n},
and the dimension of the corrector space is closely related to the number of correctors,
the number of correctable modes cannot be more than the number of correctors even if
BPM space has larger dimension due to m > n.

2.8 Closed orbit feedback system
So far we have discussed the methods for the calculation of corrector-strengths for a given
perturbed closed orbit sampled at the BPM locations. In modern synchrotrons, the orbit
correction is performed in an automatic way, where the beam position is continuously measured
at specific time steps and fed to a computer or FPGA hardware which is programmed for
the calculation of corrector-strengths to apply at the beam. Such an orbit correction system
can remove the effect of dynamic magnetic field errors from the closed orbit. The continuous
readout of the beam position with the help of BPMs makes possible to “feedback” the effect
of previously applied corrections, to the hardware which “controls” the corrector-strengths,
hence forming the closed orbit feedback control loop.
Feedback control has very ancient history from the time of Egyptians who used it in the water
clock more than 2000 years ago [44]. A relatively recent example is the feedback control that
allowed James Watt [45] to invent the governor which regulated the speed of steam engines
in the 19th century. But it was only in the 1930’s that a theory of feedback control was first
developed by Black and Nyquist at Bell Labs. They were studying feedback as a means
to linearize repeater amplifiers for telephone lines, but they had problems with what they
called “singing”. This was simply the onset of closed-loop instability when the feedback gain
was set too high, transforming the amplifier into an oscillator. Nowadays, it is as hard as
impossible to find any technologically advanced engineering process without feedback control
e.g. aerospace, process control, electronics and manufacturing automation etc. [46].
The main job of any kind of the feedback system can be classified into two broad categories
in terms of final requirement,
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• Set-point tracking (servo problem): Example being the Cruise control on road vehicle
in order to achieve the desired set speed by the driver, without delay or overshoot, by
adjusting the power output of the vehicle’s engine.

• Disturbance rejection (regulator problem): In this kind of feedback control, the focus is
to reject the effect of external disturbances on the time behavior of a physical system.

At this point, it is beneficial to introduce some fundamental concepts of the control theory
which will be later used to characterize the closed orbit feedback system. The following
reference books are used to write the upcoming subsection [46, 47].

2.8.1 Fundamentals of control theory

Any feedback control loop has two basic subsections i.e. the system and the controller. The
system is the physical device whose dynamical behavior needs to be modified with reference
to a set value or against external perturbations. The controller is an electronics device
(computer or FPGA) whose output is the input to the system.
Control theory provides a mathematical recipe to model the dynamical behavior of system
and hence the possibility to better design the controller for the desired behavior of the system.
It also provides the tools to analyze the system response to a large variety of input signals.

Linear time-invariant (LTI) dynamical system

A system whose behavior changes over time, often in response to external stimulation or
force, is called dynamical system. The linearity means that the input u(t) and output x(t)
time response of such systems scale linearly with each other i.e. if the input is changed by a
factor a, the output also changes with the same factor as ax(t). The time invariance is the
trait of a system to have the same output response if an input is applied now or T seconds
later except for a time delay of T seconds i.e. for input u(t− T ), the output is x(t− T ). The
input-output relationships for such systems is governed by the linear ordinary differential
equations and most of the physical systems can be approximated as LTI systems.
One example of such systems is the simple RC series circuit with a DC source of emf ξ as
shown in Fig. 2.4. When the switch S is connected to point “a”, the capacitor C is charged
by electromotive force (emf ξ) through the resistor R and the rate of change of charge q in
the capacitor is given by the following differential equation as,

R
dq

dt
+
q

C
= ξ (2.41)

Another example is the driven harmonic mass-spring oscillator with damping, whose equation
of motion is given as,

d2x

dt2
+ 2ζω0

dx

dt
+ ω2

0x = u(t) (2.42)

where x(t) is the displacement, ω0 =
√

k
m

is the undamped angular frequency of the oscillator
and ζ = c

2mk
is called the damping ratio. c and k are the damping coefficient and the spring

constant, respectively. u(t) is the input to the system. The schematic of such a system is
shown in Fig. 2.5.
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Figure 2.4 A simple RC circuit. When the switch S is connected to a, the capacitor

is charged by the emf ξ through the resistor R.

Figure 2.5 Mass-spring system with damping proportional to the velocity v = dx
dt

and arbitrary external input u(t).

State of a dynamic system

The state of a dynamical system is a collection of variables that completely characterize
the behavior of a system at a given time as well as for the purpose of predicting the future.
The set of all possible states is called state space. In the example of mass-spring system of
Eq. 2.42, x and v = dx

dt
are the state variables.

Response of an LTI system to an arbitrary input

The time response of a dynamical system to an input u(t) can be calculated as the solution of
the linear differential equations describing the process. Let us start with the impulse response
h(t) of a linear system at time t to an impulse at time τ . This can be written as,

h(t) = H(δτ ) (2.43)

where the impulse δτ is a function of time such that it has non-zero value only at t = τ and H
is the response operator. In order to find the output of the linear system y(t) to an arbitrary
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input signal u(t), let us write the input signal as sample of itself i.e.

u(t) =

∫ ∞
−∞

u(τ)δτdτ (2.44)

This means that u(t) can be written as a weighted integral of δ functions. The response of
the linear system H

(
u(t)

)
to the input can be written as,

y(t) = H
(
u(t)

)
= H

(∫ ∞
−∞

u(τ)δτdτ

)
(2.45)

Due to the linearity of the system, the order of the operator H and integration can be
interchanged as,

y(t) =

∫ ∞
−∞

u(τ)H
(
(δτ )

)
dτ (2.46)

Substituting the definition of impulse response from Eq. 2.43 in the above equation,

y(t) =

∫ ∞
−∞

u(τ)h(t)dτ (2.47)

Equation 2.47 is the convolution integral and the output y(t) of the system to input x(t) can
be defined using the convolution operator * as,

y(t) = u(t) ∗ h(t) (2.48)

In order to demonstrate the above definition of the output response, the system of series RC
circuit shown in Fig. 2.4 is considered. The homogeneous solution of the Eq. 2.41 for zero
initial conditions can be written as,

q(t) = A0e
− t

RC (2.49)

which can be verified by the direct substitution. In order to solve for the total response, let
the undetermined coefficient be a function of time as,

q(t) = A(t)e−
t

RC (2.50)

Substituting Eq. 2.50 into Eq. 2.41 one can solve for the input u(t) = ξ(t)C as,

RC

(
A′(t)e

−t
RC − 1

RC
A(t)e

−t
RC

)
+ A(t)e

−t
RC = u(t) (2.51)

Simplifying,

A′(t) = u(t)

(
1

RC
e

t
RC

)
(2.52)

which can be integrated from t = 0 to get

A(t) =

∫ t

0

u(τ)

(
1

RC
e

t
RC

)
+ A(0) (2.53)

21



Then

q(t) = A(t)e−
t

RC

= e
−t
RC

∫ t

0

u(τ)
(
t/RCe

t
RC

)
+ A(0)e

−t
RC

=

∫ t

0

u(τ)

(
1

RC
e(t−τ)/RC

)
+ A(0)e

−t
RC (2.54)

where the first term on the right hand side is the response of the RC circuit to the input u(t)
which can also be calculated using the impulse response h(t) of the system as follows,

h(t) =
1

RC
e−t/RC (2.55)

The response of the system to an input u(t) is then

q(t) =

∫ ∞
−∞

u(τ)hτ (t)dτ

=

∫ ∞
−∞

u(τ)

(
1

RC
e(t−τ)/RC

)
dτ (2.56)

Hence demonstrated that Eq. 2.48 can be used to transform any input to the system to the
output, once the impulse response h(t) of the system is known and it is the most fundamental
basis of the control theory.

Transfer function

Although the final goal of the mathematical treatment of the system models is to predict
the time behavior of the systems for various input signals, dealing with linear differential
equations in time domain gets cumbersome with the increasing order of the system as well as
the number of state variables. For example, when the output of one LTI system is the input
of another LTI system and so on. On the other hand, dealing in the frequency domain is
more useful e.g. solving the differential equations in the Laplace domain defined as

L (y(t)) = Y (s) =

∫ ∞
0

y(t)e−stdt (2.57)

where the complex parameter s = σ + jω defines the L -space with the following very useful
properties of Laplace transform,

L
(
ay(t)

)
= aL

(
y(t)

)
= aY (s)

L
(
ay1(t) + by2(t)

)
= aL

(
y1(t)

)
+ bL

(
y2(t)

)
= aY1(s) + bY2(s)

L
(
y(t− τ)

)
= e−τsY (s)

L

(
dy(t)

dt

)
= −y(0) + sY (s)

L

(∫
y(t)dt

)
=

1

s
Y (s)

L
(
y1(t) ∗ y2(t))

)
= Y1(s)Y2(s)

(2.58)
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Let us consider a linear input-output system described by the generalized differential equation
including derivatives for both input u(t) and output y(t) as,

dny(t)

dtn
+ a1

dn−1y(t)

dtn−1
+ ...+ any(t) =

dmu(t)

dtm
+ b1

dm−1u(t)

dtm−1
+ ...+ amu(t) (2.59)

The Laplace transform on both sides of Eq. 2.59 with zero initial conditions yields,

(sn + a1s
n−1 + ...+ an)Y (s) = (sn + b1s

n−1 + ...+ bn)U(s) (2.60)

where U(s) and Y (s) are the Laplace transforms of the input and output signals, respectively.
Rearranging Eq. 2.60 results in,

Y (s) =
(sn + b1s

n−1 + ...+ bn)

(sn + a1sn−1 + ...+ an)
U(s)

Y (s) = H(s)U(s) (2.61)

Eq. 2.61 is the frequency domain version of Eq. 2.48 where the transfer function H(s) is the
impulse response in the frequency domain. For the first and second order system of Eqs. 2.41
and 2.42, the transfer functions can be defined as,

H1(s) =
K0ω

s+ ω0

H2(s) =
K0ω0

s2 + 2ζω0s+ ω2
0

(2.62)

where K0 is introduced to normalize and generalize the definition.
The transfer function representation of an LTI system provides very fruitful insight into the
physical behavior of the system. Important points are summarized below.

• Transfer function is the ratio of Laplace transform of output to Laplace transform of
input assuming all initial conditions to be zero.

• The transfer function of a system is the Laplace transform of its impulse response under
assumption of zero initial conditions.

• Replacing ‘s’ variable with linear operation D = d
dt

in transfer function of a system,
the differential equation of the system can be obtained.

• The transfer function of a system does not depend on the inputs to the system.

• The roots of the numerator and denominator of the transfer function called system
zeros and poles, respectively, provide direct information of the stability of the system
(explained below).

The zero frequency gain of a system is given by the magnitude of the transfer function at
s = 0. It represents the ratio of the steady state value of the output with respect to a impulse
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input. Generally, any transfer function of an LTI system can be represented in the form of
polynomial fraction as,

H(s) =

n∏
i=0

(s+ zi)

n∏
i=1

(s+ pi)

(2.63)

where zi are called the zeros and pi are called the poles of the transfer function. Since, the
transfer function completely represents the differential equations of the system, its poles and
zeros effectively define the system response. For example, applying the Laplace transform
method for the transient solution of Eq. 2.42 for u(t) = 0 and for x(0) = 0 and x′(0) = v0

one can obtain,
X(s) =

v0

s2 + 2ξω0 + ω2
0

=
v0

(s+ p1)(s+ p2)
(2.64)

where p1,2 = −ξω0 ± ω0

√
ξ2 − 1 which can be real or complex depending upon the value of ξ.

The solution x(t) can be calculated by the inverse Laplace transform of Eq. 2.64 to be

x(t) =
∑

Cie
pit (2.65)

where Ci are the constants. One can see that the transient (homogeneous) response of
the system is completely defined by the poles for the LTI systems. For example, for the
under-damped case of spring-mass system, 0 < ξ < 1 and p1,2 = σ ± jω where σ = −ξω0 and
ω =

√
1− ξ2. The real part represents the amplitude growth or damping and the imaginary

part defines the oscillation frequency, respectively as,

x(t) =
∑

Cie
σt
(
cos(wt)± j sin(wt)

)
(2.66)

If a system has several poles, the poles closest to the imaginary axis define the main behavior
of the system and are referred to as the dominant poles.

System stability

The poles of the transfer function give direct insight about the stability of the system
regardless of the input type. By definition, an nth order linear system is asymptotically stable
only if all of the components in the homogeneous response from a finite set of initial conditions
decay to zero as time increases. If any pole has a positive real part, there is a component in
the output e.g. given in Eq. 2.65 that increases without bound, causing the system to be
unstable. In order for a system to be stable, all of its poles must have negative real parts, i.e.
they must all lie within the left-half of the complex s-plane shown in Fig. 2.6. All other cases
are also depicted with the help of time responses for each pole position. A system having one
or more poles lying on the imaginary axis of the complex s-plane has non-decaying oscillatory
component in its homogeneous response, and is defined to be marginally stable.
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Figure 2.6 Transient response of linear systems associated with certain pole location

marked as ‘x’. Stable systems are required to have poles located in the left-half

plane (LHP), whereas unstable systems have poles in right-half plane of the complex

s-plane [48].

Frequency response (Bode plot)

Another important description is the system’s response with respect to the sinusoidal excitation
of constant amplitude and phase but varying frequency. The output response represented in
two separate quantities i.e. the magnitude (gain) and the phase of the output with respect
to the input signals plotted as a function of the frequency of excitation is called Bode plot.
Such an output response can be measured by exciting the system over a frequency range
and recording the output response. Bode plots are used with the Fourier Transform of a
given system instead of Laplace Transform in order to work in the pure frequency domain.
Frequency response can be evaluated with the help of transfer function by the change of
variable from Laplace variable “s” to Fourier variable “jω” i.e.

H(jω) =
Y (jω)

U(jω)
(2.67)

which is effectively the transfer function evaluated on the imaginary axis of the complex
s-plane. The magnitude and the phase of the response to the sinusoidal inputs at each fixed
frequency for Eq. 2.67 can be calculated as,

M
(
YB(jω)

)
= 20log10

(
|H(jω)|

)
φ
(
YB(jω)

)
= arg

(
H(jω)

) (2.68)
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Figure 2.7 Example of a typical Bode plot for a second order system [36].

The magnitude M(YB) and phase φ(YB) are usually plotted as a function of frequency f = ω
2π

and measured in units of decibels (dB) and degree, respectively. Figure 2.7 shows the typical
Bode plots for a second order system. The x-axis is logarithmic in frequency with the base
10. Often the unit “decade" is used to describe the distance between the two frequencies f1

and 10f1. The maximum phase lag depends on the order n of the system and is given by,

δφmax = n
π

2
(2.69)

Another indication for the order of the system is the slope indicated in the Bode plot which
is proportional to 20n dB

decade
. Following important information can be extracted from a Bode

plot (see Fig. 2.7):

• The Bandwidth fBW which is defined by the frequency where the gain drops below
−3 dB.

• The resonant peak Mr which is the highest value of the frequency response and an
indication for the system’s damping coefficient: the lower the damping, the higher the
resonant peak.

• The phase margin ∆φ is given as the difference between the systems phase lag and π
(180o) at the frequency when the gain crosses 0 dB.
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system
d(s)

G(s)

Figure 2.8 Schematic diagram of a basic feedback loop.

• Similarly one defines the gain margin ∆M as the difference of the magnitude with
respect to zero in the logarithmic representation at a frequency where the phase margin
is ∆φ = 0.

2.8.2 Feedback loop

A typical feedback loop is shown in Fig. 2.8 where the transfer functions of LTI systems
are represented as blocks and interconnected in the order of signal flow. Here we directly
talk about Multiple-Input-Multiple-Output (MIMO) control problem where the input to the
system is a vector u(s) of size M × 1 and the output is also a vector of size N × 1 while the
transfer function is an M ×N matrix whose each element is a Single-Input-Single-Output
(SISO) transfer function. For both requirements from a feedback system (servo and regulator
problems), a controller is used to manipulate the input to the system G(s) such that the
error e(s) between the set value wr and the system output r(s) remains small in spite of
disturbances d(s). The error signal, closed-loop output and controller output are defined by
the following matrix properties as,

r(s) = G(s)K(s)e(s) + d(s)

e(s) = wr(s)− r(s)
u(s) = K(s)e(s)

(2.70)

Following three important transfer function are defined for the closed-loop as,

L(s) = G(s)K(s)

S(s) =
(
I + G(s)K(s)

)−1

T(s) =
(
I + G(s)K(s)

)−1 G(s)K(s)

=
(
I + L(s)

)−1 L(s)

(2.71)

where L(s) is called the loop transfer function, S(s) is the sensitivity function from disturbance
d(s) to the output r(s) and T(s) is the complementary transfer function from set value wr(s)
to the output r(s). All the fundamental tools of the control theory discussed in the previous
subsection can be applied on the closed-loop transfer functions e.g. Bode plot representation
of sensitivity function S(s) provides the information about the frequency range of effective
disturbance rejection and is very useful tool during the controller design process.
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Effect of feedback on poles and zeros

The comparison between open- and closed-loop transfer functions is made between G(s) and
T(s) of Eq. 2.71. The location of poles and zeros of the closed-loop transfer function relative
to the open-loop poles and zeros depends upon the controller gains. Following conclusions
are given without proof [47],

• The zero locations are unchanged by the feedback between G(s) and T(s).

• The pole locations are changed by the feedback as a function of controller gain. If
the controller gain approaches zero, the poles of T(s) approach to the poles of G(s).
On the other hand, if the controller gain gets larger (approaching to infinity), the
closed-loop poles move from open-loop poles to the open-loop zeros. The open-loop
zeros on the right-hand side of the complex plane therefore imply high gain instability
of the closed-loop.

2.8.3 System model for closed orbit feedback (COFB) system

Closed orbit correction using a feedback system is a MIMO control problem due to M
correctors and N BPMs. The system model can be described in two separate parts i.e. the
spatial part and the temporal parts. The spatial part is the real valued orbit response matrix
(ORM) defined by Eq. 2.23. In case of SIS18, the maximum size of the ORM is 12× 12. The
temporal part represents the frequency response of BPM electronics, corrector magnet coils,
their power supplies, vacuum chamber and cables etc. The temporal response of all hardware
components can be represented as one separate transfer function in the continuous frequency
domain as g(s)e−τds (where s represents the Laplace domain variable and τd is the pure delay
in seconds) resulting in the total process model as,

G(s) = g(s)e−τdsR (2.72)

Here, it is assumed that all corrector magnets and BPMs have same temporal responses,
respectively, which is a realistic assumption in most of the cases. On the other hand,
g(s) =

∏
gi(s) where gi represents the transfer function of individual subsystems of the

closed-loop, briefly discussed below.

Corrector magnets

The corrector magnets are small dipole magnets used to steer the beam at discrete locations
of choice and act as the actuators in the closed-loop of the COFB system. The corrector
magnets are artificial sources of dipolar field errors which are used to compensate the effect
of the non-removable sources of the similar field errors in the ring. They are also used for the
alignment of the beam at the injection and extraction to and from the ring as well in the
transfer lines. In SIS18, the vertical correctors have dedicated positions in the ring while the
horizontal correctors are the extra winding on the main dipoles.
Since, the inductive and resistive parts of the electromagnets as well as the hysteresis losses
and eddy currents in the magnet core can be modelled as low pass RL series filter which
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can have a limiting effect on the achievable bandwidth of the feedback system. The transfer
function model for such a circuit is

1

aLs+ aR
(2.73)

where aL is the magnet inductance and aR is the magnet resistance.

Power converters

Power converters are complicated circuits and are the potential source of higher order transfer
functions in the closed orbit feedback loop due to the presence of many solid state hardware.

Vacuum chamber

Vacuum chamber contributes in the overall frequency response as a low pass filter due to the
eddy current losses in the stainless steel walls. SIS18 vacuum chambers are of elliptical type
with the ratio of minor to major diameter ( 2b

2a
)2 = 0.1 and the transfer function for such a

geometry is worked out to be [49]
1

avacs+ 1
(2.74)

where avac = 1.46
2
vpervconaradawall and for vacuum permeability vvac = 4π × 10−7 H.m−1 [50],

316LN stainless steel conductivity vcon = 1.35146(Ωm)−1 [3], the major radius arad of 0.1907m
and wall thickness of 400µm [51], avac = 94.51µs and consequently the cut-off frequency for
such a low pass filter is much higher of the order of 10 kHz as compared to the range of
interest for closed orbit correction (several hundred Hz).
It is important to mention that the measurement of the collective transfer function g(s) is
always recommended and the process is called full-system identification.

Beam position monitors (BPMs)

Beam position monitors serve the job of sensors in the closed orbit feedback system and their
types and shapes vary for electron and hadron synchrotrons. BPMs work on the principle
of comparison of induced voltage on two parallel plates around the beam in each plane [52].
The analog signal from each plate for each bunch is fed to the digitizer and converted into
the transverse bunch position at the bunch revolution frequency in the ring. Beam position
sensitivity is the measure of proportionality between the beam’s transverse displacement and
the difference of voltage induced on both plates.
SIS18 BPMs are of so-called linear cut-type which is a unique box-like device with longitudinal
length of 0.155 m. Each plate is terminated with a high impedance amplifier (details are
given in [53]). Such a BPM geometry gives the beam position readout independent of the
beam size and helps to achieve a linear relation between the beam position and the induced
image voltages (U) on the left and right plates as,

w =
1

Sw

Uright − Uleft
Uright + Uleft

(2.75)
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Figure 2.9 Left: Scheme of the position measurement using the so-called linear cut

BPM and an example of an electrode arrangement for the horizontal plane. Right:

Schematic drawing for a linear cut BPM for both planes [54].

where Sw is the position sensitivity in either plane. The sensitivity for the SIS18 BPM
geometry shown in Fig. 2.11 has been calculated in [54] as,

Sw =
1

aw
(2.76)

where aw is the half-length of the gap between the plates in the plane of measurement. For
the horizontal plane of SIS18, Sx = 1

100
%/mm.

Similarly, the resolution defined as the ability for measuring small displacement variations
has been shown to be less than 100 µm in [55, 56] for SIS18 BPMs. Therefore, the SIS18
BPMs are well suited for their use as sensors in the SIS18 COFB system.

Hardware for controller implementation

The controller hardware is considered here as a digital device either a computer, digital signal
processors (DSP) or field programmable gate arrays (FPGA) and can contribute in the pure
delay depending upon the time required for the corrector-strength calculation, in terms of
the digital clock frequency of the digital controller. The calculation time depends strongly on
the size of the orbit response matrix and the choice of the hardware is made accordingly.

2.8.4 Controller

As discussed in previous section, the system model for a closed orbit feedback can be separated
into the spatial and temporal parts with the approximation that each corrector channel has
the same frequency response g(s). Consequently, the controller can also be modeled as having
two separate parts. The spatial part is the pseudo-inverse R+

Θ ((Eq. 2.37)) of the ORM R,
for the corrector-strength calculation. The subscript Θ is used to distinguish the controller
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model ORM from the actual system ORM R. The temporal part k(s) depends upon the
system model g(s) and the the total controller model can be written as,

K(s) = k(s)R+
Θ (2.77)

Proportional Integral (PI) controller

PI controller is the mostly used type of controller in COFB systems and has a first order
transfer function between error signal e(s) and the controller output u(s) and is given in
Laplace domain as,

k(s)PI =
u(s)

e(s)
= Kp +

Ki

s
(2.78)

where Kp and Ki are called the proportional and integral gains, respectively, which need to
be tuned. Eq. 2.78 can be written in time domain using the relation given in Eq. 2.58 as,

u(t) = Kp e(t) +Ki

∫
e(t′)dt′ (2.79)

The integral part unlike the proportional term increases the controller output signal u(t)
until the error signal e(t) is zero and thus minimizes any steady state error. For practical
implementations, the correctors can have finite strengths and increase in the controller output
u(t) can result in the saturation of the correctors. In order to avoid this saturation, an
anti-windup scheme is used such that whenever the PI controller output reaches a certain
limit defined by the user, the Integrator accumulator is held constant at the last stored values.

Internal model controller (IMC)

IMC belongs to the class of controllers which are based upon the best known model of
the system as shown schematically for a SISO system in Fig. 2.10. The idea behind the
IMC-structure is that the parameter q(s) can be designed in an open-loop fashion since the
feedback signal only contains information about the difference between the actual output of
the system g(s) and the output predicted from the model g̃(s).
The effective controller k(s)IMC can thus be calculated as,

k(s)IMC = q(s)
(
1− g̃(s)q(s)

)−1 (2.80)

which ensures the stability of the feedback loop if both q(s) and g̃(s) are stable. IMC
helps to design stable feedback loop as for a stable g̃(s), any choice of stable q(s) can be
made (chapter4 of [47]).
An ideal choice for q(s) is the inverse of the best known model augmented by a low pass filter
Z(s) as,

q(s) = [g̃(s)]−1Z(s) = [g̃(s)]−1 p

s+ p
e−sτd (2.81)

which results into following IMC-controller

k(s)IMC = [g̃(s)]−1 Z(s)

1− Z(s)
(2.82)
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Figure 2.10 Schematic of an internal model controller (IMC) in s-domain for a

SISO system.

IMC-based PI tuning for first-order system

For a first-order system g(s) whose best known model g̃(s) is given as,

g̃(s) =
a

s+ a
e−sτd (2.83)

and the low pass filter given as,

Z(s) =
p

s+ p
e−sτd (2.84)

The IMC controller can be computed as,

k(s)IMC = [g̃(s)]−1 Z(s)

1− Z(s)
=

p(s+ a)

a
(
s+ p(1− e−sτd)

) (2.85)

Using, 1− e−sτd ≈ sτd for small s,

k(s)IMC =
p(s+ a)

as(1 + pτd)
=
Kps+Ki

s
(2.86)

which results into,

Kp =
p

a(1 + pτd)

Ki =
p

1 + pτd
(2.87)

and suggests that Kp = Ki

a
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delay τd
u(t) ud(t) ud(kT )Ts

Figure 2.11 Sampling of a delayed signal.

2.8.5 The z-transform

In modern applications, no controller is implemented in the analog domain and digital
controllers always act on discrete time steps set by the clock frequency. For example, the
COFB control system is implemented in “sample and hold” mode where the beam position is
measured at discrete time steps {t = kTs, k ∈ Z+} with Ts being the sampling time interval
and corrector-strengths are held constant over the time interval t ∈ {kTs, (k + 1)Ts}. On the
other hand, even if almost all processes of physical systems and actuators are analog, the
signal processing is done in discrete time domain with the help of analog-to-digital converters
(ADC) and digital-to-analog converters (DAC). In this case, a “change of language” is advised
from Laplace domain to discrete domain called the z-domain for digital interpretation of
system models and the implementation of the controllers. Anyhow, if the clock frequency
is an order of magnitude higher than the frequency of interest for the feedback system, a
continuous domain analysis still provides valid conclusions. The z-transform can be derived
from the Laplace transform with the following relation [57]

z = esTs (2.88)

where Ts is the sampling period of a continuous signal u(t) −→ u(kTs). With the definition
given in Eq. 2.88, z-transform holds almost all properties of the Laplace transform given
in Eq. 2.58 where the differential equations are written as difference equations for discrete
domain. The only ambiguity arises for dealing with the pure delay in the z-transform when
it lies somewhere between the sampling points in time. The z-transform associated with
the delayed signal is known as the modified z-transform (Zm) as explained below. Let us
consider a casual continuous-time domain signal u(t) only for t ≥ 0, sampled every Ts seconds.
Introducing a delay τd < Ts before the sampler as shown in Fig. 2.11, the output of the
delayed element before the sampler is,

ud(t) =

{
u(t− τd), if t ≥ 0

0, if t < 0
(2.89)

Delaying a causal system always results in an initial zero value. To avoid inappropriate
initial values, the delay can be written for 0 ≤ m < 1 as,

τd = Ts −mTs
m = 1− τd

Ts
(2.90)

If u−1(t) is defined as u(t) delayed by one complete sampling period i.e. u−1(t) = u(t− Ts)
then,

ud(t) = ud(t− τd) = u(t− Ts +mTs) = u−1(t+mTs) (2.91)
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For the sampling of delayed signal ud(t) with sampling period Ts, replace t with kTs in
Eq. 2.91 as,

ud(kTs) = u−1(kTs +mTs), k = 0, 1, 2, ... (2.92)

For a delay of one complete sampling period the z-transform of u−1(t) is given as,

U−1(z) = z−1U(z) (2.93)

The modified z-transform for a signal delayed by τd can be defined by the Eqs. 2.92 and 2.93
as,

U(z,m) = Z(ud(kTs)) = z−1Z{u(kT +mTs)} = Zm(u(kTs)) (2.94)
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Chapter Three

Problem description: on-ramp fast
closed orbit correction in SIS18

In this chapter, the requirements for the SIS18 closed orbit feedback system are discussed in
the light of the peculiar behaviors of SIS18 synchrotron.

3.1 Motivation of orbit correction at SIS18
SIS18 synchrotron has served as the main synchrotron of GSI facility at Darmstadt Germany,
since 1988 and has been the contributor of several scientific discoveries by delivering high
energy beams of heavy ions to various experimental facilities. The notables include FRagment
Separator (FRS) and Experimental Storage Ring (ESR) [16]. The new role of SIS18 is
to deliver the high intensity beams to the upcoming SIS100 synchrotron (currently under
construction in 2021) of the Facility for Antiproton and Ion Research (FAIR), as the booster
ring [58]. The planned intensities for FAIR project (e.g. 4× 1011 Uranium ions per pulse) are
two orders of magnitude higher than previously achieved at SIS18, posing extra challenges
to the beam quality in SIS18 which in turn required upgrade of the current facility. The
upgrade plan [59] included vacuum improvements to avoid beam losses due to residual gas
pressures, decrease of the charge of the reference particle (U73+ to intermediate charge state
U28+) in order to avoid space charge effects at high intensities, new injection system for a
safe inflection of the intermediate charge states at 11.4 MeV/u, installation of the new RF
cavity for the harmonic number h = 2, upgrade of the main power supplies in order to reach
higher cycling frequencies and longitudinal and transverse feedback systems. A schematic of
the proposed FAIR facility is shown in Fig. 3.1 while the comparison between the parameters
of SIS18 and SIS100 synchrotrons is given in Table 3.1. Closed orbit correction in SIS18
has also been planned as part of the upgradation of SIS18 in order to achieve higher beam
intensities. The closed orbit correction in hadron synchrotrons is usually needed due to the
two main reasons:

• In order to avoid particle losses because of the decrease in the transverse aperture due
to the large closed orbit distortions. For SIS18, the beam size is of the order of 10
mm as shown in Fig. 3.2 for the horizontal plane which in this case is σx = 8 mm at
injection.
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Figure 3.1 Layout of the upcoming FAIR facility [60]. SIS18 is the booster ring of

SIS100 synchrotron.

Table 3.1 Parameters of FAIR synchrotrons [58, 61, 62].

Parameter SIS18 SIS100
Circumference 218 m 1083.6 m
Magnetic rigidity 18 Tm 100 Tm
Injection energy 11 MeV/u for U28+ 200 MeV/u for U28+

70 MeV/u for protons 4.5 GeV/u for protons
Extraction energy 200 MeV/u for U28+ 2.7 GeV/u for U28+

4.5 GeV for protons 29 GeV for protons
Beam intensity 1.5× 1011 ions 6× 1011 ions
(per pulse) 5× 1012 protons 4× 213 protons
Magnets Normal conducting Super conducting
Ramp rate 10 T/s (maximum) 4 T/s (maximum)
Repetition frequency 2.7 Hz 0.7 Hz
Beam size horizontal (RMS) 10 mm at injection 2-10 mm at injection
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Figure 3.2 Measured transverse beam profile in horizontal plane for SIS18 over

various times from injection to extraction.

Table 3.2 Parameters for the upgraded SIS18 as the booster ring of SIS100 [16, 62].

Parameter SIS18 (old) SIS18 (upgraded)
Reference ion U73+ U28+

Maximum energy 1 GeV/u 0.2 GeV/u
Maximum intensity 4× 109 ions 1.5× 1011 ions
(ions per pulse)
Repetition frequency 0.3− 1 Hz 2.7 Hz

• In order to keep the closed orbit within the linear field regions of the quadrupole
and sextupole magnets as the nonlinear fields can deteriorate the beam quality (e.g.
emittance and consequently the brightness) which cannot be retained for hadron beams
even at higher energies due to the lack of the synchrotron damping.

3.2 Peculiar behaviors of SIS18 synchrotron in the con-
text of COFB system

The dynamic orbit correction over the entire ramp in SIS18 imposes new challenges for the
realization of the closed orbit feedback system in comparison to the state-of-the-art systems
becuase of some unique features of the SIS18 synchrotron, as explained below.
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Figure 3.3 Top: Triplet to doublet quadrupole transition over the ramp of 10 T/s in

SIS18 (an example of optics change during acceleration cycle). K1f1, K1d2 and K1f3

are the normalized strengths of first, second and third singlets quadrupole families

of SIS18, respectively. Bottom: The variation of the highest singular values of the

ORM in both transverse planes, over the ramp of 10 T/s.

Triplet to doublet transition

SIS18 is a very versatile synchrotron that can be used for a vast variety of ions from protons to
uranium accelerated to various energies (maximum 1 GeV/u depending upon charge-to-mass
ratio) in acceleration cycles of various lengths in times (100 ms to 1 s). Each of the 12 machine
periods contains two bending magnets and a triplet group of two long doublet quadrupoles and
one additional triplet lens (Fig. 2.1). One of the peculiar behavior of SIS18 is the transition
from triplet to doublet focusing from injection to extraction, meaning that triplet is reduced
to doublet by switching off the third quadrupole singlet up to the extraction as shown in
Fig. 3.3 (top) for a ramp of maximum dipole field gradient of 10 T/s, where the third singlet
strength is marked as K1f3. The triplet focusing at injection leads to a fairly large transverse
machine acceptance primarily in horizontal plane required for the multi-turn injection due to
the low injection energy of 11.4 MeV/u and the relatively large beam emittance for heavy
ions. On the other hand, at higher energies, the focusing is switched to doublet configuration
which requires less quadrupole magnet currents and make beam extraction and chromatic
control easier. The effect of quadrupole strengths is directly visible in the beta function
pattern throughout the synchrotron. A comparison of the beta functions calculated with the
help of MAD-X [63] corresponding to the quadrupole strengths for injection and extraction
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Figure 3.4 Beta function corresponding to the quadrupole strengths at injection and

extraction related to the focusing strengths depicted in Fig. 3.3 for SIS18. Horizontal
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is shown in Fig. 3.4. One can see that the maximum beta functions at injection energy is
smaller than that corresponding to the extraction energy where the machine acceptance is
defined as [64],

Aw = πmin{a
2
w(--z)

βw(--z)
} (3.1)

where Aw is the acceptance (mm mrad) in either transverse direction and aw is the minimum
aperture radius. The transverse acceptance for SIS18 is larger at injection energy in the
horizontal plane as multi-turn injection is done primarily in this plane.
The triplet to doublet transition causes a systematic change in the orbit response matrix of
SIS18 over the ramp by varying the beta functions and phase advances at the locations of
BPMs and correctors (according to Eq. 2.23), which is otherwise regarded as fixed model
for the state-of-the-art COFB systems at other facilities. The highest singular values for
the ORMs calculated in MAD-X using the quadrupole strength patters of Fig. 3.3 (top) are
plotted in Fig. 3.3 (bottom) for both transverse planes. One can see a major change in the
horizontal ORM over the ramp.
It is important to mention that the quadrupole strength variation over the ramp is intended
to keep the horizontal and vertical tune values nearly constant but a tune shift over the ramp
has also been measured experimentally adding another source of ORM variation. Figure 3.5
shows the on-ramp measured tune variation in both planes. As a typical value, tune shift of
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Figure 3.5 Measured tune variation over a typical ramp in SIS18 [53].

0.02 has been observed in horizontal plane.

High frequency ripples

The ripple in the output current of the power supply of a dipole magnet appear in its magnetic
field and can be seen as fast changing dipole error by the closed orbit. The frequency of
ripple coupled to the orbit motion depends upon the thickness of the vacuum chamber. In
SIS18, the thickness of the vacuum chambers inside the dipole and quadrupole magnets is
kept very small in order to avoid the eddy current effects in the walls of the chambers, during
the fast ramps. Table 3.3 lists the dimensions for the SIS18 elliptical vacuum chambers. The
vacuum chamber can be modelled as a low pass filter as discussed in sec. 2.8.3 where the
cut-off frequency for the dipole chamber has been calculated to be 10 kHz. Such a high
cut-off frequency is beneficial, on one hand to apply the fast changing dipole and quadrupole
magnetic ramps to the beam, but on the other hand, let the high frequency power supply
ripple to couple to the closed orbit motion. Figure 3.6 shows the frequency content of the
beam motion during the full acceleration cycle at one BPM of SIS18. The 150 Hz mains
frequency and its higher harmonics are clearly visible. Therefore, the COFB system capable
of disturbance rejection as high as possible up to 1 kHz is envisaged.

Table 3.3 Dimensions of the vacuum chambers for dipole and quadrupole magnets

in SIS18 [51].

Parameter Dipole chamber Quadrupole chamber
Major axis radius 190.7 mm 200.36 mm
Minor axis radius 70.7mm 116.36 mm
Wall thickness 400µm 300µm

40



250 500 750 1000 1250 1500 1750 2000
Frequency (Hz)

0.00

0.05

0.10

0.15

0.20

0.25

0.30

M
ag

ni
tu

de
 (a

rb
. u

ni
t)

Figure 3.6 Mains frequency and its higher harmonics coupled to the closed orbit in

SIS18.

Figure 3.7Measured beam position over 30 consecutive cycles at two BPM locations

in SIS18, for injection and extraction settings. Measurement was made in July 2018.
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Cycle-to-cycle influences

Several users (up to 16) can be supported in “parallel” operation presently at SIS18 where
the users can request dynamic changes in beam energy and intensity. This often leads to
non-reproducible orbits due to magnet hysteresis which in turn depends strongly upon the
mode of accelerator operation. In this case, pre-calculated correction strengths for the DC
orbit shifts can also cause further orbit distortion due to sudden change in the perturbed
orbit pattern and a feedback system is required even for slow/DC orbit shifts. Figure 3.7
show a measurement of sudden change in the DC beam position over many cycles.

3.3 Demands for the SIS18 COFB system
The unique features and versatile applications of SIS18 synchrotron require following parame-
ters for the on-ramp COFB system.

• The COFB system should exhibit robustness against the ORM variation during the
acceleration cycles of various time lengths and dipole field gradients.

• The possibility of delivering different ion beams to several users in alternate acceleration
cycles in the same operation mode of SIS18 requires a COFB system robust against
cycle-to-cycle hysteresis effects.

• High frequency ripples observed in Fig. 3.6 require a fast feedback system with distur-
bance rejection upto several hundred Hz. A reasonably anticipated bandwidth is upto
600 Hz.

• A stabilization of the closed orbit for a maximum RMS deviation below 1 mm is
anticipated for a typical beam size σx = 10 mm. This is in accordance with stability
criteria of 10% of the beam size generally accepted in the light source community.

This kind of COFB system has not been realized before at any facility within the combination
of these specifications. The goal of this Ph.D. thesis is to investigate the feasibility of a fast
and robust COFB system in terms of the performance and stability for the on-ramp orbit
correction in SIS18 and demonstrate its realization with beam-based measurements.
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Chapter Four

Symmetry exploitation in the orbit
response matrix

In this chapter, a one dimensional discrete Fourier transform (DFT)-based diagonalization
and inversion of the orbit response matrix (ORM) for symmetric lattices is presented, for the
first time in the COFB system community. The technique is based upon the exploitation of
circulant symmetry in the lattice and provides information compression into a diagonal matrix
since the left and right orthogonal matrices are standard Fourier matrices. This method
serves as the transition between previously discussed harmonic analysis and SVD with an
exact equivalence for symmetric lattices. Further, a nearest-circulant extension is discussed
for broken symmetries making most of the ideas discussed for symmetric matrices applicable
to those of near-symmetric lattices.

4.1 Orbit correction methods: a brief comparison
The global orbit correction in synchrotrons is based upon using a finite number of correctors
to modify the closed orbit at the locations of BPMs where the linear response of closed orbit at
each BPM to each corrector is given by Eq. 2.23. The historical development and applications
of the global orbit correction methods have been discussed in sec. 2.7 where it is mentioned
that singular valued decomposition (SVD) of the ORM has become a de facto method for
the orbit correction in synchrotrons. It is important to clarify that SVD method of closed
orbit correction is in fact an ORM-based correction method and SVD is just a mathematical
recipe to invert (pseudo-invert) the ORM. All the nice properties of SVD e.g. representation
of the closed orbit in a mode space (Eq. 2.39) can be exploited only because of using the
ORM for the calculation of correction values of the corrector magnets. Before discussing the
merits and demerits of SVD, let us compare the two methods of global orbit correction, the
sliding bump method and the ORM-based calculation of corrector-strengths for the vertical
plane of SIS18 with the help of simulation using the MAD-X model of the synchrotron. A
non-dynamical fixed perturbed orbit is generated with the help of random misalignment of
all quadrupoles (in MAD-X) in a Gaussian distribution within the range of ±0.5 mm and is
plotted in Fig. 4.1 at the location of BPMs, in red. A straight line interpolation is made for
the closed orbit between BPM locations for the purpose of visualization. In order to use the
sliding bump method, the local bump condition using three correctors is given in Eq. 2.24
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static orbit correction in SIS18 (simulation in MAD-X).

and can be re-written for vertical plane of SIS18 as [39],

θ2 = −2θ1 cos(∆φ)

θ3 = θ1 (4.1)

where θ1 is an arbitrary angle, ∆φ = 2πQy

N
is the phase advance between any two consecutive

correctors which are placed periodically throughout the synchrotron and N = 12 is the total
number of correctors. For each BPM location, three consecutive correctors are chosen, one
from the same cell of the BPM and two from the two neighboring cells and θi are calculated
for each corrector as the main contributor of one local bump as a direct consequence of
Eq. 2.25 as,

θi = − yi+1

(∂yi+1

∂θi
)

(4.2)

where ∂yi+1

∂θi
is estimated by varying θ1 and applying (θ1, θ2, θ3) obtained from Eq. 4.1. For the

BPM position marked as y2, the set of correctors consists of θ1, θ2 and θ3. It is important to
understand that on one hand, three correctors are used to “act” on one BPM and on the other
hand, each corrector is also shared by three bumps and hence by three BPMs. Each corrector
acts as the “main” contributor for each bump and as the “constrained” contributor for closing
other two bumps created by the two preceding correctors. This can be mathematically
illustrated by writing the total corrector-strength θ′ for a steerer used in three consecutive
bumps using Eq. 4.1 and 4.2 as,

θ
′

i = − yi+1

(∂yi+1

∂θi
)
− 2θi−1 cos(∆φ) + θi−2 (4.3)
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where the first term is to make the closed orbit minimum at the BPM location marked as yi+1

and second and third terms are to contribute in the local bumps created by the correctors
marked as θi−1 and θi−2. Equation 4.3 infers that sliding bump method has (N − 2) degrees
of freedom in terms of linearly independent correctors, regardless of number of BPMs. An
orbit correction simulated in this case is shown in Fig. 4.1 in green where a residual is left
over due to the effectively 10 out of 12 correctors being used.
In case of using the full ORM (and consequently using SVD for matrix inversion) for the
corrector-strength calculation, the blue curve is obtained as a result of orbit correction. In
this case, the closed orbit at each BPM location is effected by all correctors as,

yi =
N−1∑
j=0

(ri,j)(θj) (4.4)

where ri,j are the elements of the ith row of the ORM R (Eq. 2.23) and θj are the calculated
corrector-strength using SVD-based inversion of the ORM. The above example shows that
ORM-based orbit correction has rightly taken over all other methods for the global orbit
correction.

4.2 Limitations of SVD-based orbit correction
SVD is a powerful technique for the decomposition and pseudo-inversion of any matrix of
arbitrary size and dimension and its merits for the ORM inversion are listed already in
sec. 2.7.4. Here we talk about the weaknesses of SVD technique that arose primarily in
the context of SIS18 COFB requirements. SVD decomposes the ORM into left and right
orthogonal matrices whose columns ui and vi act as the modes for the perturbed orbit and
the corrector-strength vectors, respectively. There is no physical interpretation of SVD modes
available except that they form an orthonormal space i.e. SVD modes can be collection of
any numbers who obey the restriction given as,

< ui,uj >= δij (4.5)

By physical interpretation, it is meant that there is no information available between the
discrete points of the columns of U and V matrices, for the interpolation. Fig.4.2 shows
the columns ui and vi plotted for the SIS18 ORMs calculated in MAD-X corresponding to
typical injection settings, in both planes. The data points are connected via straight lines
only for the purpose of visualization. Moreover, all the three matrices are interconnected
through a phase relation between columns of U and V matrices. SVD-based diagonlization
has following limitations in the context of SIS18 COFB system:

• SVD resolves the closed orbit into a mode space that has no physical meaning in order
to relate different beam phenomena and their variation over the ramp with the resolved
components of the closed orbit.
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Figure 4.2 SVD modes (columns of U (blue) and V (orange) matrices). Left:

vertical plane. Right: horizontal plane.
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• As discussed in sec. 3.2, the ORM changes from injection to extraction in both planes
of SIS18 synchrotron because of the triplet to doublet transition. The lack of physical
interpretation hinders to predict the evolution of SVD modes over the ramp. The inter-
dependence between U, S and V matrices requires the calculation and updating of all
three matrices at each time step of the ORM update, during the ramp. Pre-calculation
and storage of the pseudo-inverses of the ORMs requires larger memory while online
inversion needs a faster calculation in order to avoid delays.

• SVD also has some limitations particularly when dealing with uncertainty in the spatial
process model as there is no apparent analytic way of associating uncertainties in the
lattice parameters to the singular values [65]. Uncertainties appear into ORMs through
various sources e.g. BPM and corrector calibration errors, tune variation due to magnet
gradient errors or during the acceleration ramp. In case of SVD, the uncertainty ∆
appear in all the three matrices of decomposition which e.g. in additive representation
can be written as [3],

(I + ∆R)R = (I + ∆U)U(I + ∆S)SVT(I + ∆V )T (4.6)

• In case of a missing data point for example for the columns of U matrix, which
corresponds to the scenario of ignoring a faulty beam position wi, from heron called a
“missing” BPM, a straight line interpolation will lose the information of that data point
and one cannot predict the closed orbit position at the missing BPM location using
SVD modes.

• Harmonic analysis was proposed as an alternative to SVD for the uncertainty modeling
where the Fourier coefficients are found to be analytically related to the tune value Qw

(Eq. 2.29) [3]. This formalism cannot be used for the matrix inversion and moreover, a
quantitative relation between SVD singular values and Fourier coefficients was never
found in literature, but is discussed in this thesis for the first time for the case of
periodic arrangement of BPMs and correctors.

4.3 Symmetry exploitation in the ORM
Equation 2.23 represents the orbit response matrix and shows that it contains one global
parameter, i.e. the betatron tune, while two local parameters, the beta function and phase
advance, depend solely on the BPM and corrector locations. The global parameter determines
the general criterion for the number of BPMs and correctors for an effective orbit correction.
In order to ensure that modes up to twice the coherent betatron frequencies can be corrected,
at least 4 BPMs and correctors are required per betatron oscillation, ideally. The placement of
BPMs and correctors is chosen at locations of higher beta function values in order to enhance
the sensitivity of the closed orbit correction. However during the design of the synchrotrons,
the symmetric arrangement of BPMs and correctors is usually neither given the importance it
deserves nor exploited even if it exists. The only notable discussion of a symmetric layout for
BPMs and correctors was found in [38] but was limited to finding eigenvalues for eigenvector-
based orbit correction. Any discussions towards the matrix inversion, relations to SVD and
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application to broken symmetry were not made in this publication. These symmetry issues
and their consequences will be addressed in this chapter for the first time in a stringent way.
In the following section, we will discuss two kinds of ORM symmetries (so called circulant
and block-circulant symmetries). Such an arrangement of BPMs and correctors is realized in
two different synchrotrons of the FAIR project, the SIS18 and SIS100. They are used here as
practical examples and to extend the findings to broken symmetries.

4.3.1 Circulant symmetry of SIS18 vertical ORM

The SIS18 synchrotron has a 12-fold symmetric lattice as shown schematically in Fig. 4.3.
It comprises in the vertical plane of one BPM and one corrector each per section placed at
the same location in each cell. In the horizontal plane, two correctors violate this symmetry
which will be discussed later in the context of broken symmetry. The symmetric arrangement
of BPMs and correctors in SIS18 vertical plane results in an equal phase advance ∆φ between
adjacent BPMs with same beta function for all BPMs. The correctors also have a similar
arrangement such that,

φm+1 modM = φmmodM + ∆φ

φn+1 modN = φnmodN + ∆φ

βm+1,modM = βmmodM

βn+1 modN = βnmodN (4.7)
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for m = 0, ...,M − 1 and for n = 0, ..., N − 1 where the modulo operator ensures the circular
permutation of the synchrotron such that βM = β0 and φM = φ0. Such an arrangement and
same number of BPMs and correctors results into a special structure of the ORM called
circulant matrix which is necessarily a square matrix and whose each row and column is a
cyclic permutation of the previous row and column, respectively. The circulant symmetry
in the elements of the ORM can be explained in terms of beta function and phase advance
relations of Eq. 4.7 as,

Rm+1 modM,n+1 modN =

√
βm+1 modMβn+1 modN

2 sin(πQ)
cos
(
Qπ − |φm+1 modM − φn+1 modN |

)
=

√
βmmodMβnmodN

2 sin(πQ)
cos
(
Qπ − |φmmodM + ∆φ− φnmodN −∆φ|

)
=

√
βmmodMβnmodN

2 sin(πQ)
cos
(
Qπ − |φmmodM − φnmodN |

)
= RmmodM ,nmodN (4.8)

for m = 0, ...,M − 1 and for n = 0, ..., N − 1. A circulant matrix RC of dimension n, can
also be written as a sum of fundamental cyclic permutation matrices πin, each of which is
convoluted by the corresponding element ri of the first row or column of RC as

RC = r0π
0
n + r1π

1
n + .......rn−1π

n−1
n =

n−1∑
i=0

(πinri) (4.9)

where i is the order of the permutation matrix. A general permutation matrix πin is a square
matrix of size n which can be generated as a result of the cyclic permutations of the identity
matrix. The number of permutations i (0 ≤ i ≤ n− 1) is called the order of the permutation
matrix. The identity matrix is a permutation matrix of order 0. The set of fundamental
permutation matrices for a dimension of 3 (as an example) are shown below:

π0
3 =

1 0 0
0 1 0
0 0 1

 , π1
3 =

0 1 0
0 0 1
1 0 0

 , π2
3 =

0 0 1
1 0 0
0 1 0

 . (4.10)

The theory of circulant matrices is well established in literature [66] and they have very
unique properties e.g. the whole circulant matrix can actually be represented by only one row
or column. As an example, Eq. 4.11 shows the SIS18 vertical ORM calculated by MAD-X for
triplet optics in the units of mm/mrad:

Ry = circ
[

8.10 8.90 −8.20 −6.40 10.2 3.30 −11.2 0.10 11.2 −3.50 −10.1 6.60
]

(4.11)

Here, the operator circ [66] is used to form a matrix by means of cyclic permutations of the
row vector it contains as argument, whose elements are the ri of Eq. 4.9.
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parts of the columns of Fourier matrix F).

4.3.2 Decomposition and inversion of the ORM

A very useful property of circulant matrices, in the context of ORMs, is their diagonalization
and decomposition by the discrete Fourier transform (DFT) of only one row or column, as
explained below.

The DFT-based decomposition of a circulant matrix can be written as

RC = F∗ΛF (4.12)

where F is a standard Fourier matrix which is identical for all circulants of same size with
elements given as [67]

(F)f,i =
1√
n
ej2πfi/n =

1√
n

(
cos

(
2πfi

n

)
+ j sin

(
2πfi

n

))
(4.13)

for i, f ∈ [0, .., n− 1] where i represents the sampling points, f is the discrete frequency of
each Fourier mode (column of F), j is the imaginary unit and n is the size of the square
circulant matrix. Λ is a diagonal matrix containing the discrete Fourier coefficients υf of the
first row or column of RC on its diagonal positions, which are given as,

υf = Re{υf}+ jIm{υf} =
n−1∑
i=0

rie
−j2πfi/n (4.14)
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The rows/columns of Fourier matrix and their corresponding Fourier coefficients (indexed as
k) are either real or in complex conjugate pairs according to the relation [68]

(F)n+2−k = ¯(F)k

υn+2−k = ῡk (4.15)

for k = {2, ..., n}. If n is even, then k1 and k(n/2)+1 are real and if n is odd, then only k1 is
real. Here k1 corresponds to frequency f = 0.
In the case of an ORM, n is the total number of BPMs or correctors while the columns of
matrix F represent the mode space of BPM and correctors comprised of pure sine and cosine
functions. In this way, a DFT-based decomposition gives a physical interpretation to the
mode-space of an ORM and would be equivalent to the harmonic analysis. Fig. 4.4 shows the
real and imaginary parts of the first four dominant Fourier modes where the discrete data
points can be interpolated with analytic sine and cosine functions, contrary to SVD.
The inverse of RC can be written as

R−1
C = F∗Λ−1F (4.16)

where Λ−1 is the diagonal matrix having inverses of Fourier coefficients at its diagonal
positions.

4.3.3 Equivalence of SVD and DFT for circulant symmetry

For the general matrices, there is no analytic information available to interpolate the SVD
modes between discrete elements of U and V matrices, as SVD chooses specific mode basis
vectors in order to satisfy the orthogonality of the U and V matrices. In case of circulant
matrices, there exists an equivalence between SVD- and DFT-based diagonalization of the
matrices and hence, SVD modes can also be represented as sine or cosine functions. The
above mentioned equivalence is worked out by introducing the discrete Hartley transform [69]
matrix H. Following equation 4.12 and using the theorem 4.1 of [70] which states that the
SVD of a circulant matrix can be written as

RC =
(
H(F)Re{Σ} −H(F̄)Im{Σ}

)
|Λ|H(F) (4.17)

where Hartley transformation is defined as,

H(F) = Re{F}+ Im{F}
H(F̄) = Re{F} − Im{F} (4.18)

The diagonal matrix Λ of the DFT-based decomposition can be written as,

Λ = Σ|Λ| (4.19)

with Σ and |Λ| are the diagonal matrices containing the phases φdi and magnitudes of each
Fourier coefficient, respectively. The matrices U, S and V are calculated below by solving

51



the right hand side of Eq. 4.17 element-wise. The last term can be solved as

(H(F))f,i =
1√
n

(
cos

(
2πfi

n

)
+ sin

(
2πfi

n

))

=

√
2

n

(
cos

(
2πfi

n
+ φ

))
= (VT)f,i (4.20)

where φ = −π
4
. The singular values of the SVD matrix S are the moduli of the Fourier

coefficients of DFT diagonal matrix Λ:

S = |Λ| (4.21)

Similarly, the U matrix is equal to the following first part of the right hand side of Eq. 4.17
as,(
H(F)Re{Σ} −H(F̄)Im{Σ

)
f,i

=

√
1

n

(
cos

(
2πfi

n

)
+ sin

(
2πfi

n

))
cos (φdi)−

1√
n

(
cos

(
2πfi

n

)
− sin

(
2πfi

n

))
sin (φdi)

=

√
1

n

(
cos

(
2πfi

n
− φdi

)
+ sin

(
2πfi

n
− φdi

))

=

√
2

n

(
cos

(
2πfi

n
− φdi −

π

4

))
= (U)f,i

(4.22)

Combining Eqs. 4.20 - 4.22, Eq. 4.12 can be written as

RC = USVT (4.23)

where U spans the space of w i.e. (x or y) and V spans the space of Θ. Eqs. 4.20 and 4.22
also explain the phase relationship between the columns of U and V matrices which can
be seen in Fig. 4.2 (left) for the SVD modes of the SIS18 ORM in vertical plane, where a
pure circulant symmetry exists. The phase difference comes from the phase angle of the
corresponding Fourier matrices. This conversion shows a significant difference between the
two techniques in terms of information spread. SVD distributes the information (magnitude
and phase of the Fourier coefficients) in all three matrices while DFT-based decomposition
compresses all the information into one diagonal matrix. SVD-like mode truncation is also
possible here by removing the Fourier coefficients of absolute values below a certain threshold
along with corresponding columns of F thus preserving the main benefit of SVD while adding
the benefits of harmonic analysis for square circulant matrices. The method has direct
application for the ORM in the vertical plane of SIS18.
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4.3.4 Broken symmetry and nearest-circulant approximation

In many practical scenarios, the circulant symmetry of the ORM can be broken due to the
non-symmetric placement of BPMs and correctors, presence of insertion devices, beta beating
etc. For example, two horizontal correctors in SIS18 are placed in the second dipoles of the 4th

and 6th sections while all others are in the first dipoles, hence breaking the circulant symmetry
in the corresponding columns highlighted with red color in the ORM below calculated by
MAD-X for triplet optics in the units of mm/mrad:

Rx =



−2.78 −4.86 −1.24 2.89 −6.89 3.82 4.02 −7.36 5.27 0.70 −6.16 7.07
7.07 −2.77 −4.87 1.66 6.45 −5.32 2.27 4.04 −7.36 5.26 0.71 −6.16
−6.15 7.06 −2.77 −4.98 −1.25 2.9 −6.88 2.26 4.03 −7.35 5.26 0.71

0.70 −6.15 7.08 −4.08 −4.87 1.65 6.44 −6.89 2.27 4.02 −7.36 5.27
5.26 0.71 −6.16 5.26 −2.77 −4.99 −1.25 6.45 −6.89 2.26 4.04 −7.36
−7.35 5.26 0.71 −2.56 7.07 −4.08 −4.86 −1.25 6.44 −6.88 2.26 4.03

4.02 −7.36 5.27 −2.03 −6.16 5.26 −2.78 −4.87 −1.24 6.44 −6.89 2.27
2.26 4.03 −7.36 5.12 0.71 −2.57 7.07 −2.77 −4.87 −1.25 6.45 −6.90
−6.89 2.26 4.03 −4.44 5.26 −2.02 −6.15 7.07 −2.78 −4.86 −1.25 6.44

6.44 −6.89 2.27 0.49 −7.36 5.12 0.70 −6.16 7.08 −2.78 −4.87 −1.24
−1.24 6.44 −6.9 3.82 4.04 −4.45 5.26 0.71 −6.16 7.07 −2.77 −4.87
−4.86 −1.25 6.44 −5.31 2.26 0.50 −7.35 5.26 0.71 −6.15 7.06 −2.77



(4.24)

Once the symmetry is broken, an ORM cannot be represented anymore with its single
row/column and the DFT cannot be used directly for the decomposition and inversion of the
ORM. In order to make the DFT-based method applicable to practical scenarios, a slight
modification of the ORM in order to find a nearest-circulant approximation is proposed
as an alternate for broken symmetries. This is based upon the fact an iterative correction
implemented for most orbit correction systems can still converge with a modified process model
at the cost of more iterations or correction speed. Another example of ORM approximation
found in literature is the Tikhonov regularization [71] of the ORM which is used to “weaken”
the control action for higher order SVD modes corresponding to smaller singular values by a
replacement represented by the symbol “−→” below:

1

σi
−→ σi

σ2
i + µ

(4.25)

Here the σi are the singular values and an appropriate value of µ > 0 serves to filter out the
effect of singular values for which σ2

i � µ, hence effectively decreasing the condition number
of the ORM [72]. Such an ORM approximation has been implemented in the COFB system
of Diamond Light Source, UK [3].
The theory of nearest-circulant approximation is discussed in detail in [73] but has never been
explored for the ORM inversion before. For a given square matrix R, its nearest-circulant
approximation RNC = circ[c0, c1, ...cn−1] can be found by the Frobenius inner product [74] of
R with permutation matrices πin as,

ci =
1

n
< R, πin > (4.26)

where n is the size of both R and π matrices and the order of the permutation matrix is
i = 0, ..., n−1. Frobenius inner product is a binary operation that takes two matrices of equal
size as input and returns a number as a result of adding the element-wise inner products.
For two real m× n matrices A and B it is defined as

< A,B >=
m∑
i=1

n∑
k=1

aik bik. (4.27)

53



1 2 3 4 5 6 7 8 9 10 11 12

10

20

30

Mode index

S
in
gu

la
r
va
lu
es

(a
rb
.
u
n
it
s)

Original ORM in x-plane of SIS18
Nearest-circulant approximation
Pure circulant approximation

1 2 3 4 5 6 7 8 9 10 11 12

−10

0

10

BPM index

X
(m

m
)

Figure 4.5 Top: Comparison of singular values of SIS18 ORM with its nearest-

circulant approximation and its pure-circulant approximation in the x−plane. Bot-
tom: Measured closed orbits in the x-plane of SIS18. Red(‘*’): Perturbed orbit

(RMS=7.12 mm). Blue(‘x’): Corrected orbit using original ORM (RMS=2.15 mm).

Black(‘�’): Corrected orbit using nearest-circulant approximation (RMS=2.82 mm).

Eq. 4.26 is equivalent to the averaging of those diagonal elements of R for which the
corresponding entries in permutation matrix are non-zero. For the resultant approximation,
the theory discussed in sections 4.3.1- 4.3.3. holds.

Experimental demonstration of using nearest-circulant approximation

As mentioned before, the non-symmetric placement of two correctors breaks the pure circulant
symmetry in the horizontal ORM of SIS18 and the nearest-circulant approximation is exploited
in this case. Figure 4.5 (top) shows the calculated singular values of the SIS18 horizontal
ORM and its nearest-circulant approximation for a qualitative comparison at typical settings
corresponding to injection energy. Another scenario of replacing the bold columns in Eq. 2.24
with those that one would expect for a circulant matrix, called pure circulant approximation,
is also considered for comparison. The mathematical treatment of using approximated ORM
in the controller of COFB system is presented in the next chapter but the experimental
demonstration of using such an approximation for the orbit correction is shown in Fig. 4.5
(bottom) where the red curve shows the measured perturbed closed orbit in the horizontal
plane of SIS18. The perturbed orbit is measured in one acceleration cycle at injection by
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averaging over a time window of 40 ms (typical length of constant energy before start of
ramp), while the orbit correction is performed in the next cycle with same machine settings.
The corrector-strengths are calculated using the original ORM and its nearest-circulant
approximation and applied one by one in two different cycles. The corrected orbits are shown
in blue and black curves for the two cases, respectively. The difference in the RMS of the
residual orbit is only ' 9% of the initial distortion for both ORMs showing the usability of
nearest-circulant approximation for orbit correction in SIS18.

4.3.5 Block-circulant symmetry in the ORM

SIS18 is a relatively small synchrotron in terms of number of BPMs and correctors i.e. 1
per section each, resulting into a possibility of pure circulant symmetry in the vertical plane
and nearest-circulant approximation in the horizontal plane. In bigger synchrotrons, where
more than one BPMs and correctors are placed in each cell, the phase advance between
all adjacent BPMs and correctors is no more constant, resulting into the violation of the
circulant symmetry. However, the repetition of the cell structure throughout the synchrotron
and identical placement of BPMs and correctors in each cell may result in another kind of
symmetry called block-circulant symmetry [66]. If p and q are the number of BPMs and
correctors in each cell placed identically in all cells and k is the number of cells, the ORM
attains a structure such that identical blocks of elements appear at the diagonal locations
and the ORM can be expressed as,

RBC = circ[A1,A2,A3.......Ak] (4.28)

Here Ai are the arbitrary matrices (not necessarily square) of dimension p× q and RBC is a
matrix of dimensions kp× kq. The block-circulant symmetry in the elements of the ORM can
also be expressed in terms of beta function and phase advance in analogy to Eq. 4.7 and 4.8
as,

φm+pmodM = φmmodM + ∆φ

φn+qmodN = φnmodN + ∆φ

βm+pmodM = βmmodM

βn+qmodN = βnmodN

(4.29)

where M and N are the total number of BPMs and correctors. The elements of ORM repeat
according to the following relation,

Rm+pmodM,n+qmodN = RmmodM ,nmodN (4.30)

It is worth mentioning that despite of the presence of the insertion devices, the super-
periodicity of the storage rings of many light sources can also be used to exploit the block-
circulant symmetry in the ORM. Few examples include ALBA of Spain [75], Sirius of Brazilian
Light Source [76] and NSLS2 of Brookhaven National Laboratory [77].
A block-circulant matrix can also be written with the help of fundamental permutation
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matrices (Eq. 4.10) by replacing the numbers with matrices Ai in Eq. 4.9 [66] (Theorem 56.4)
as,

RBC =
k−1∑
i=0

(πik ⊗Ai+1) (4.31)

where the symbol ⊗ denotes the Kronecker product [66] of the matrices. Given a k×k matrix
A and p× q matrix B, the Kronecker product C = A⊗B is a matrix of size kp× kq given
as

A⊗B =


a11B . . . a1nB
. . . . .
. . . . .
. . . . .

am1B . . . amnB

 (4.32)

For arbitrary Ai in Eq. 4.31,

πik ⊗Ai+1 = (F∗kΩ
iFk)⊗ F∗p(FpAi+1F∗q)Fq (4.33)

where Ω is the diagonal matrix containing the Fourier coefficients of the permutation matrix.
Let Bi+1 = FpAi+1F∗q, the Eq. 4.31 becomes

RBC = (Fk ⊗ Fp)∗(
k−1∑
i=0

Ωi ⊗Bi+1)(Fk ⊗ Fq) (4.34)

The middle term in Eq. 4.34 has a form of a diagonal matrix as

k−1∑
i=0

Ωi ⊗Bi+1 = diag(M1,M2, ....,Mk) = D (4.35)

where Mi can be calculated by the relation
M1

M2

.

.
Mk

 = (m
1
2F∗k ⊗ Ipq)


B1

B2

.

.
Bk

 (4.36)

and Eq. 4.33 yields the following diagonalization of the block-circulant matrix,

RBC = (Fk ⊗ Fp)∗(D)(Fk ⊗ Fq) (4.37)

where

D =


M1 0 0 . . 0
0 M2 0 . . 0
. . . . . 0
. . . . . 0
0 0 0 . . Mk

 (4.38)
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Fm and Fn are the standard Fourier matrices defined in Eq. 4.13. Mi are the matrices of
dimension p× q which contain all the information of the block-circulant matrix and can be
calculated using only the first row of blocks. Equation 4.37 can be solved to calculate the
inverse or pseudo-inverse (R+

BC) of the ORM as

R+
BC = (Fk ⊗ Fp)∗(D+)(Fk ⊗ Fq) (4.39)

where
D+ = diag(M+

1 ,M
+
2 , ....,M

+
k ) (4.40)

The nearest-block-circulant symmetry can also be exploited in matrices which deviate slightly
from the pure block-circulant symmetry by averaging over the diagonal blocks instead of
elements, in analogy to Eq. 4.26.

4.3.6 SIS100 ORMs and symmetry exploitation

The SIS100 which is the largest synchrotron of the FAIR project has a super-periodicity
in its lattice with a six-fold symmetry of the cells where each section has 14 BPMs and
14 correctors. Anyhow, the pure block-circulant symmetry of its ORM is slightly broken
due to the replacement of cryogenic quadrupole with the normal warm quadrupole in one
section [58]. The warm quadrupole results in a beta beating (peak-peak ≈ 10%) and hence a
loss of symmetry in the ORM as calculated by MAD-X. The beta function at BPM locations
in the vertical plane has been plotted in Fig. 4.6 for three consecutive sections with and
without beta beating (by replacing the warm quadrupole by a cold quadrupole in MAD-X).
One can see that the beta function repeats after every 14 data points i.e. number of BPMs
in each section. The block symmetry of the SIS100 ORMs can be explored in two ways;
either by ignoring beta beating or by finding the nearest-block-circulant approximation by
averaging the diagonal blocks. For the SIS100 ORM, k is the number of sections while p is
the number of BPMs or correctors in each section, hence the ORM can be approximated with
a square block-circulant matrix, resulting from the equal number of BPMs and correctors
in each section. The block diagonal matrices (D) of SIS100 ORMs for both the planes in
case of ignoring the beta beating are visualized in Fig. 4.7 and 4.8 as Lego plots of their
absolute values, respectively. It can be seen that very few elements have larger magnitude
providing the liberty to remove weak modes before inversion just like singular values in
SVD. Also, half of the block diagonal matrices have unique values in analogy to Eq. 4.15 as
the diagonal blocks also appear in the complex conjugate pairs [68]. The rows of the block
diagonal matrices containing the largest absolute values correspond to the tune modes of
the Fourier matrices (Fk ⊗ Fp) which are plotted in Fig. 4.9 along with tune modes of SVD
for horizontal plane. The equal integer part of the tune in both planes explains the same
location of largest absolute values in both Lego plots. Moreover, a comparison of the singular
values with the moduli of the row vectors of the block diagonal matrices in Fig. 4.10 provides
a clear hint on the correspondence between the two methods.
Although the main focus of the thesis is the SIS18 COFB system, the symmetry exploitation
in SIS100 ORMs is discussed for the completion of the topic and presenting the DFT-based
diagonalization as an alternate to SVD for the majority of synchrotrons.
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4.4 Advantages of symmetry exploitation
Symmetry exploitation in the ORM for the DFT-based decomposition has some practical
advantages over SVD-based decomposition. In this section, the benefits concerning robustness
against “missing” BPMs (e.g. ignoring a possibly faulty position reading), computational
complexity and removal of dispersion induced effect from the closed orbit are demonstrated
with the help of simulations and experiments for the SIS18 synchrotron of GSI. The application
of circulant symmetry in the uncertainty modeling for SIS18 COFB system is presented in
next chapter, in detail.

4.4.1 Orbit correction in the case of malfunctioning BPMs

The physical interpretation of BPM and corrector mode space provided by DFT-based
decomposition of the ORM can be used to interpolate the closed orbit at the location of some
malfunctioning or “missing” BPM. This is demonstrated for the SIS18 in vertical plane using
MAD-X for a scenario of two consecutive BPMs being excluded. The operational scenario
of BPM electronics failure due to radiation shower can happen in hadron synchrotrons and
leads to local bumps if there is not enough redundancy in the number of BPMs.
Figure 4.11 (top) shows a simulated closed orbit (red curve) perturbed as a result of
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Figure 4.11 Top: Prediction of the closed orbit position at the “missing” BPM

locations. Red(‘*’): Simulated perturbed orbit in MAD-X in the y-plane of SIS18.

Black(‘o’): Sampling of perturbed orbit at BPM locations. Green(‘*’): Random

initial guess for the orbit position at the two “missing” BPM locations. Blue(‘x’):

Estimated orbit position at “missing” BPM locations using DFT mode structure of

the ORM. Bottom: Simulation of orbit correction for various cases of “missing” BPMs.

Red(‘*’): Simulated perturbed orbit in MAD-X in y-plane of SIS18. Magenta(‘�’):
Corrected orbit using all BPMs. Green(‘�’): Corrected orbit using the predicted

orbit position for the “missing” BPMs. Black(‘x’): Corrected orbit excluding the

rows corresponding to the “missing” BPMs from ORM. Blue(‘o’): Corrected orbit by

taking zero orbit position at the “missing” BPM locations.

random vertical misalignment (in a range of -0.85 to 0.85 mm) in all 24 quadrupoles of
the SIS18. A misaligned quadrupole has the effect of a magnetic dipole on the beam and
as a result the closed orbit is perturbed from its “ideal path”. The black dots in 4.11 (top)
represent the sampling of the perturbed orbit at the locations of BPMs while the green dots
show the mean values of random orbit positions (in a range of -1 to 1 mm marked as error bars
around the green dots) assumed at the location of “missing” or faulty BPMs. A combination
of cosine functions with discrete frequencies f = 3, 4, 2, 5 (corresponding to dominant Fourier
modes) was used to estimate the orbit position at the “missing” BPM locations keeping their
relative amplitudes and phases as free parameters to be optimized. The fitting algorithm was
constrained to keep the fitted curve closest to the orbit positions within an accuracy of 0.01
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mm at the working BPM locations while free to choose any value at the location of “missing”
BPMs. As a result, the optimized orbit positions are found to be closer to the actual orbit
positions within maximum errors of 3 ± 0.048 mm and 0.5 ± 0.048 mm, respectively. Figure
4.11 (bottom) shows the simulated orbit correction using the estimated orbit positions (green
curve). The red curve shows the perturbed orbit without corrections while the magenta curve
shows the corrected orbit when all BPMs are working. The orbit correction using SVD of the
non circulant matrix (excluding the rows in the ORM corresponding to the faulty BPMs) is
plotted in black. The orbit correction taking the orbit position “zero” at the “missing” BPM
locations and using a circulant matrix is also plotted as a blue curve for comparison. The
robustness against “missing” BPMs is shown by the overall improved correction obtained
using an estimated beam position instead of using the non circulant matrix. Besides the
better global correction one can also get the benefits of circulant symmetry and DFT-based
decomposition (e.g. online decomposition during ramp) even when the symmetry has been
broken due to the “missing” BPMs.

4.4.2 Computational complexity

DFT-based diagonalization and inversion of the ORM has significant computational benefit
over SVD. For a square matrix of dimension n, the numerical complexities for the SVD of the
whole matrix and the DFT of its first row are O(4n3) [78] and O(n2) [41], respectively. Such a
reduction in numerical complexity becomes meaningful for larger ORMs and for synchrotrons
having a continuously changing ORM within a cycle and also from one cycle to another.
SIS18 is an example (sec. 3.2) of the latter, where lattice settings as well as ORM changes
systematically during the ramp. In such cases, the possibility of online DFT-based ORM
inversion becomes attractive from the perspective of computational speed as well as storage
and transfer of the inverted ORMs.

4.4.3 Momentum mismatch and orbit correction

A mismatch between RF frequency and the dipole field results in a relative mismatch in
the average momentum of the beam ∆p

p
and a closed orbit deviation from the equilibrium

position primarily in the x-plane (Eq. 2.15), in the absence of coupling is given as,

∆xD(s) = Dx(s)
∆p

p
(4.41)

Here Dx(s) is the dispersion function and ∆xD(s) is the resultant shift in the closed orbit.
Fig. 4.12 shows a set of measured horizontal dispersion orbits for a relative momentum
mismatch in the range of -2% to 2% with a step size of 0.5% in SIS18 at extraction energy.
One can see a shift of the mean value of the closed orbit as a function of ∆p

p
. An attempt to

correct such an orbit shift can saturate the corrector magnets. Therefore, the contribution
from dispersion needs to be subtracted from the closed orbit before correction. Generally, the
dispersion-induced orbit distortion will couple into many modes of BPM space, depending on
the sampling of the dispersion function.
For the SIS18, the dispersion function has the same value D(s) = D0 at all the BPM locations

62



1 2 3 4 5 6 7 8 9 10 11 12

−20

−10

0

10

20

2.0%

1.5%

1.0%

0.5%

0.0%

−0.5%

−1.0%

−1.5%

−2.0%

BPM index

X
(m

m
)

Figure 4.12 Measured horizontal closed orbits in SIS18 for the various average

momentum offsets represented as % with each orbit.

−20

−10

0

10

20

u
1
2
∆
x

∆
p

p

Original ORM in x-plane of SIS18
Nearest-Circulant approximation
Line of slope = 0.9 m

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2

−1

−0.5

0

0.5

∆p

p
(%)

u
1
1
∆
x

∆
p

p

Original ORM in x-plane of SIS18
Nearest-Circulant approximation
Line of slope = 0 m

Figure 4.13 Coupling of experimentally measured DC shift ∆x (mm) in the hori-

zontal closed orbit to the last two columns of the U matrices (u12 and u11) of the

original ORM and its nearest-circulant approximation.

63



and the resultant dispersion-induced DC part of the closed orbit will couple to the pure DC
mode of the BPM space corresponding to f = 0 in case of a circulant ORM and can be
ignored by removing the singular value corresponding to that mode (the last column of U).
Fig. 4.13 shows the coupling of the DC part of the measured closed orbit to the last two
modes of the original non circulant ORM and its nearest-circulant approximation for SIS18,
in x-plane. It is evident that the DC shift of the closed orbit couples to the last mode of the
matrix U as u12∆x∆p

p
increases linearly with ∆p

p
with a slope of 0.9 m (equal to the value of

dispersion function D0 at the BPM locations). The slight deviation from this behavior in
case of the original ORM is due to a slight distortion of last mode from pure DC structure
due to the broken symmetry (Fig. 4.2). This results in the coupling of the DC part of the
closed orbit to higher modes as well, as evident in Fig. 4.13. Here in case of nearest-circulant
approximation there is almost zero coupling to the 2nd last mode. This shows the benefit of
circulant symmetry in the ORMs in order to reject energy dispersion in the closed orbit by
simply discarding the last DC mode of the matrix U, instead of measuring and subtracting it
from the closed orbit before correction. The projection of dispersion into the last mode of U
can also be utilized to synchronize the rf frequency and the dipole field.

4.5 Summary and contributions
The contributions of the work presented in this chapter can be summarized below, while
some of them are also published in [79].

• Singular value decomposition has some limitations in terms of the physical interpretation
of mode space of the orbit response matrix, besides being an efficient technique for the
matrix diagonalization and inversion.

• For synchrotrons where the placement of BPMs and correctors is periodic in terms
of the lattice parameters, an efficient method relying on exploitation of the circulant
symmetry for the diagonalization and inversion of the orbit response matrix (ORM) is
introduced.

• The block-circulant symmetry arising from the block-wise periodicity of a lattice is
shown to have SVD-like robustness benefits in line with the pure circulant symmetry
case under DFT decomposition.

• A circulant ORM can be decomposed into BPM and corrector vector spaces with the
help of a one dimensional DFT; this method is significantly faster than the singular
value decomposition (SVD) technique and provides physical interpretation of the mode
space. A relation between DFT coefficients and SVD singular values as well as modes
is discussed which shows that DFT-based decomposition contains the benefits of both
harmonic analysis and SVD.

• DFT-based decomposition provides information compression into the diagonal matrix
only, which can significantly simplify uncertainty modeling in the ORM, overcoming a
deficiency of SVD decomposition where the information is distributed among all three
matrices.
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• For synchrotrons where the orbit response matrix drifts away from the pure symmet-
ric structure, a nearest-circulant or nearest-block-circulant approximation has been
introduced hence making the method applicable to a wider range of synchrotrons.

• The usefulness of the transparent interpretation of BPM and corrector spaces as Fourier
modes is demonstrated for the SIS18 synchrotron at FAIR by interpolating the closed
orbit to the location of “missing” BPMs to achieve a better global orbit correction.

• The reduced computational complexity of DFT can have benefits concerning the overall
performance of closed orbit feedback systems in case of large ORMs and during the
energy-ramp orbit correction.

• The rejection of the dispersion-induced orbit shift during orbit correction is demonstrated
with measurements at SIS18, as a benefit of circulant symmetry exploitation.

• The DFT-based method of closed orbit correction is presented in the context of the
FAIR synchrotrons, but would apply to any synchrotron or storage rings with the
aforementioned symmetry or a slightly broken symmetry. Thus the importance of
symmetry exploitation in the ORM is emphasized for the consideration at the design
stage of the closed orbit feedback system.
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Chapter Five

Characterization of spatial model
mismatach for a COFB system

This chapter is dedicated to the characterization of closed orbit feedback (COFB) systems
in the light of control theory, for the spatial model mismatch between the system and the
controller. COFB systems are classified into slow and fast regimes based upon the update
rate of correction-strengths. A stability criterion is worked out for both regimes which gives
a practical margin of spatial model mismatch consistent with measurements, in comparison
to already used small gain theorem. Simulations are performed for various sources of model
mismatch in SIS18 for the stability and performance of COFB system and the theoretical
results are verified experimentally at COFB system of COSY Jülich.

5.1 Closed orbit feedback system in generic form
In chapter 2, the subsystems of the closed orbit feedback system along with their transfer
functions are described in detail. Here, we extend the discussion to the closed-loop repre-
sentation of the closed orbit feedback (COFB) system which in general is more regulator
problem than the servo problem (sec. 2.8) as the set value is mostly fixed in the form of
golden orbit and COFB system has to reject external disturbances acting on the closed orbit.
The important terms and symbols from chapter 2 which are later used in this chapter are
revised here as,

• g(s)e−τds is the temporal part of system model in Laplace domain where τd is the pure
time delay. R represents the ORM of the synchrotron and the full system model G(s)
is defined as g(s)e−τdsR. (sec. 2.8.3)

• R+
Θ is the pseudo-inverse of the ORM used for the calculation of corrector-strength

vector Θ for a perturbed orbit vector w. The full controller transfer function K(s) is
defined as k(s)R+

Θ. (sec. 2.7.4 and 2.8.4).

• SISO (single-input-single-output) system has only one sensor and one actuator while
COFB system is an example of MIMO (multiple-input-multiple-output) systems where
M number of BPMs are used for the closed orbit measurement and N number of
correctors are used for the orbit correction. (sec. 2.8.2)
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Figure 5.1 Schematic of closed orbit feedback loop in z-domain.

• Sensitivity function characterizes the effect of closed-loop on the disturbance rejection
and is defined in Laplace domain s for a MIMO system as S(s)

∆
= [I + G(s)K(s)]−1.

(sec. 2.8.2). The lowest frequency where |S(s)| has magnitude 1 is called sensitivity
crossover frequency fsc

• The digital feedback controllers are implemented in discrete time z-domain whose
transformation with Laplace domain is given as z = esTs where Ts is the sampling
period. (sec. 2.8.5).

The schematic description of an arbitrary feedback system shown in Fig. 2.8 can be indi-
vidualized for COFB system as shown in Fig. 5.1 where the control system k(z) (where
z represents the z-domain variable) is implemented in “sample and hold” mode such that
the beam position is measured at discrete time steps {t = kTs, k ∈ Z+} with Ts being the
sampling time interval and the actuator (corrector magnets) inputs are held constant over
the time interval t ∈ {kTs, (k + 1)Ts}. The dynamic part of the system model g(s)e−τds can
also be represented in the zero-order hold and sampled discrete-time form with the help of
modified z-transform (Zm) (defined in sec. 2.8.5) as,

g(z) = z−l(z − 1)Zm
[
g(s)

s

]
(5.1)

where l is the smallest positive integer satisfying lTs ≥ τd. Consequently, the required
corrector settings Θ(z) for a given perturbed orbit vector ∆w(z) are calculated as,

Θ(z) = k(z)R+
Θ∆w(z) (5.2)

For the servo problem, the sensitivity function from disturbance d(z) to the output r(z) is a
good parameter of characterization for the performance of the closed-loop and can be written
for the Fig. 5.1 as,

S(z)
∆
= [I + g(z)Rk(z)R+

Θ]−1 (5.3)

The order of the total system model g(s) for the COFB system depends upon the dynamics
of the individual subsystems and the system identification (measurement of the transfer
function of the full system) is a necessary step before designing the controller. But in general,
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a first order approximation for g(s) of bandwidth a (rad/s) is a workable choice for most of
the synchrotrons (e.g. [3]) such that

g(s) =
a

s+ a
e−τds (5.4)

where the corrector frequency response is usually the most dominant contributor in the
system model. The corresponding discrete domain transfer function for the system model of
Eq. 5.4 (with the help of Eq. 5.1) is given as,

g(z) = z−l
b0z + b1

z − a1

(5.5)

where l is the delay in the units of sampling time Ts, a1 = e−aTs , b0 = 1 − ea(τd−lTs) and
b1 = ea(τd−lTs) − e−aTs .
Similarly, the type and order of the controller k(z) depends upon the identified system model
and two kinds of controllers have been reported in the literature of COFB systems so far:
Proportional-Integral (PI) controller [36] and the internal model controller (IMC) [3], as
introduced already in chapter 2 and the system identification for SIS18 will come later in
subsequent chapters.

5.2 Spatial model mismatch
A mismatch between the actual ORM R of the synchrotron and its model RΘ used in the
controller is always probable and can have a detrimental effect on the performance and the
stability of the COFB system. The possible reasons for such a model mismatch fall into three
broad categories:

• Uncertainty in the measurement of the orbit response matrix due to BPM and corrector
calibration errors [65, 80].

• Change in the machine ORM relative to the controller ORM due to systematic drift of
the machine settings during operation. SIS18 is an examples in which the triplet to
doublet transition of the quadrupole configuration over the ramp results in the ORM
variation. This is already shown in Fig. 3.3 (bottom) where the highest singular values
of the calculated ORMs using MAD-X in both planes for the quadrupole settings of a
typical ramp of 10 T/s, are plotted.

• Changes of beam parameters where coherent tune shift being the most popular one and
relevant for both hadron machines [53] as well as for synchrotron light sources [3, 65].
Typical sources of tune shift include magnet current drifts during long storage of the
beams, magnet gradient errors during the fast ramps [81, 82] and intensity-dependent
tune shifts at higher beam intensities [55] (Fig. 3.5).

In order to implement the fast COFB system for SIS18 in the presence of various kinds of
systematic as well as beam parameter assisted changes in the ORM, following questions
needed to be answered:
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1. In order to achieve a persistent orbit correction during the ramp, when the machine
ORM changes over time, how frequently the ORM in the controller needs to be updated?

2. If the COFB system has to run in the fixed-ORM mode during the ramp, is it possible
to use the fixed controller parameters? If not, how should they scale with the machine
ORM variation over the ramp in order to avoid controller instability?

3. Variation of which lattice parameters is crucial e.g. tune (global lattice parameter) or
beta function at the location of BPMs and correctors (local lattice parameter) (see
Eq. 2.14) and how can their influence be characterized?

4. How much intensity dependent tune shifts can be tolerated by COFB system?

Surprisingly, these questions could not be answered based upon previous work related to
the uncertainty modeling in the ORM, found in literature. The primary focus has been
defining the stability margins from the small gain theorem [80, 83] which yields a conservative
stability criterion while the ORM variation in SIS18 is found much larger that the limits
defined by small gain theorem. Another recent work is based on enhancement of the stability
margins (at the cost of bandwidth) for higher-order modes of the ORM using the Tikhonov
regularization [3] (Eq. 4.25). Therefore, a thorough study of the COFB robustness against the
large spatial model mismatch is required before the realization of SIS18 COFB system. A clear
motivation is to establish the theoretical stability margins consistent with the simulation and
experimental results against the various sources of model mismatch. It is however important
to note that, if the time scale of the ORM variation due to aforementioned effects is longer
(an order of magnitude) than the delays and time constants of the temporal response of
BPMs and corrector magnets, the ORM can still be considered as a separate part R in the
total system model G(s). Therefore the ORM variations are treated exclusively as the spatial
model mismatch in this thesis.
The orbit correction systems are divided into two temporal regimes, based upon the relative
time scale of the correction rate (reciprocal of time step for update of controller output) and
the dynamics of the system.

• Slow regime: For the slow feedback systems, the time step of orbit correction is at
least an order of magnitude longer than than system delays and open-loop time constant
(the time required to achieve 63.2% of the steady-state). The performance of a COFB
system against the spatial model mismatch is primarily evaluated by the correction
ratio in the slow regime defined as the ratio of residual orbit to original orbit (RMS)
after one correction.

• Fast regime: Systems, where the correction rate is comparable to temporal dynamics
are referred to here as the fast feedback systems. In this regime, the performance of
the COFB system is evaluated in terms of sensitivity crossover frequency defined in
sec. 5.1.

The motivation for this classification is to first ignore the temporal parts of the system and
the controller in the slow regime in order to define stability criteria only in terms of the
ORMs and then modify the results for the scenario of including temporal parts, in the fast
regime.
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Figure 5.2 Schematic of the digital closed orbit feedback system in the slow regime.

−r(z) is the error signal, Θ(z) is the corrector settings, r(z) is the residual orbit and

d(z) is the disturbance defined in Eqs. 2.3 to 2.5.

5.3 Spatial model mismatch in slow temporal regime
The slow temporal regime of orbit correction is a scenario where the temporal dynamics of
the system (corrector magnets and their power supplies etc.) is fast enough to be ignored as
compared to the rate of update of the controller output. An example is the correction of a
static orbit distortion caused by a fixed non-oscillating magnet field error in a synchrotron. In
this case, the sampling time Ts can be selected in such a way that the effect of each controller
output is fully settled and the system is in the steady-state before the next corrector input.
The orbit correction for low frequency perturbations with fast corrector magnets (having
bandwidth an order of magnitude higher than frequency of interest) can also be categorized
in slow regime of orbit correction. The closed orbit feedback system in the slow regime is
implemented in a way that the effect of corrector settings Θk calculated at a given time step
{t = kTs, k ∈ Z+} corresponding to the perturbed orbit of previous time step rk−1 is added
to rk−1 i.e.,

rk = rk−1 + RΘk (5.6)

where Θk = −R+
Θrk−1. Consequently rk can be written as

rk = rk−1 −RR+
Θrk−1 =

(
I−RR+

Θ

)
rk−1 (5.7)

Here, I is the identity matrix of the size of RR+
Θ which is a square matrix even if R and

R+
Θ are rectangular matrices, since rk and rk−1 are vectors of same dimension equal to the

number of BPMs. Converting the difference Eq. 5.7 into z-domain, one obtains

r(z) = z−1r(z)− z−1RR+
Θr(z) (5.8)

Since g(s) = 1 and τd � Ts (for slow regime), following Eq. 5.1 g(z) = z−1 and k(z) = 1 and
for a constant initial perturbation, the residual from previous time step acts as the disturbance
to be removed at the current time step such that d(z) = z−1r(z). The corresponding block-
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diagram is shown in Fig. 5.2 for which Eq. 5.8 can be re-written as

r(z) = d(z)− z−1RR+
Θr(z)

= [I + z−1RR+
Θ]−1d(z)

= [I + L]−1d(z)

= S(z)d(z) (5.9)

The term S(z) is by definition the sensitivity function matrix from disturbance to the output
for the closed-loop of a MIMO system where L is the loop transfer function equal to the
product of system and controller models (for definition see Eq. 2.70).
From Eq. 5.7, the residual orbit after k time steps with respect to initial perturbed orbit
r−1 = w0 can be written as,

rk =
(
I−RR+

Θ

)k
w0 (5.10)

It is evident from Eq. 5.10 that for the slow regime, the spatial model mismatch can be fully
described by the following combined matrix structure referred to as “correction matrix”,

M = I−RR+
Θ (5.11)

which will be a null matrix for a perfect model match i.e. for RΘ = R.

5.3.1 Stability criteria for the slow regime of COFB system

Equations 5.10 and 5.11 show that the matrix M has to be a convergent matrix for the
residual orbit to approach zero after subsequent time steps. The condition of convergence is
thus given as,

ρ(M) < 1 (5.12)

where ρ(M) is known as the spectral radius of matrix M and is defined as the largest absolute
eigenvalue of M (A.5.3 of [47]) as,

ρ(M) = max
i
{|λi|}

Inequality 5.12 can be regarded as the general stability criteria for a COFB system in the
slow regime against any source of spatial model mismatch as it depends only on the relative
discord between R and RΘ and can be helpful to find the limits of optical parameter (e.g.
tune) variations beyond which the correction will lead to the orbit divergence and the beam
loss.
It is important to mention that pseudo-inverse R+

Θ in Eq. 5.11 is often truncated for numerical
stability and for robust closed orbit correction, which leads to a reduction in the rank of R+

Θ.
In this case, the matrix R also needs to be equally truncated before the calculation of ρ(M)
which otherwise will be misleadingly equal to 1 because of the truncated modes of R+

Θ.
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5.3.2 Small gain theorem

Typically, the use of small gain theorem is found in literature for the stability margins of
the COFB system [65, 80] which is a sufficient condition for the closed-loop stability but
yields very stringent margins. According to the theorem, consider a system with a stable
loop transfer function matrix L(s), then the closed-loop system is stable if

||L(jω)|| < 1 ∀ω (5.13)

where ω is the imaginary part of Laplace frequency s and the symbol ||L(jω)|| denotes any
matrix norm satisfying ||AB|| ≤ ||A|| · ||B||. The H∞ norm || · ||∞ defined as the highest
singular value of the matrix (Sec. 4.10.2 of [47]) can be used and has a good relevance for the
ORM. An implication of the above statement is that if two subsystems A and B are connected
in a feedback loop, then the closed-loop system is input-output stable if ||A|| · ||B|| < 1.
Application of small gain theorem for the COFB system relies on modeling the uncertainty
of the system model as a separate matrix ∆ and modeling rest of MIMO system as e.g. T
for which the condition of stability given by small gain theorem for the interconnection of
Fig. 5.3 is given as

||∆||∞ · ||T||∞ < 1 (5.14)

5.3.3 Comparison between spectral radius condition and small gain
theorem

Here we make a theoretical comparison between small gain theorem and the spectral radius
condition discussed in inequality 5.12 based upon following assumptions: 1) we consider
circulant or block-circulant ORMs (a scenario which exists for FAIR synchrotrons and also
some synchrotron light sources as discussed in previous chapter) for which the spectral radius
is equal to the H∞ norm i.e. the highest singular value σ̄. 2) we consider only the well
conditioned ORMs for which the general inverse exists such that RΘR+

Θ = I. 3) we assume
only the additive uncertainty in the ORM in order to deal with ORM errors arising from
optical parameter variations e.g. tune and beta function. It is important to mention that
these assumptions are required only for a clear comparison between two methods. The
spectral radius condition itself holds also for non-quadratic and non-circulant ORMs as the
matrix M is always a square matrix. For errors of additive nature in ORM, the small gain
theorem-based stability criterion has been worked out in [80] and ignoring temporal part (i.e.
taking T = R+

Θ), it can be written as

σ̄(∆R) <
1

σ̄(R+
Θ)

(5.15)

σ̄(∆R) < σ(RΘ)

where ∆R = R − RΘ and σ is the smallest singular value. The spectral radius stability
condition shown in inequality 5.12 can also be solved in a similar manner for circulant
symmetric ORMs as,

ρ(I−RR+
Θ) = ρ(−∆RR+

Θ) = ρ(∆RR+
Θ) = σ̄(∆RR+

Θ) < 1
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Figure 5.3 System interconnection for the application of small gain theorem.

Using the singular value inequality σ̄(A)σ(B) ≤ σ̄(AB) (A.3.4 of [47]),

σ̄(∆R)σ(R+
Θ) < σ̄(∆RR+

Θ) < 1 (5.16)

σ̄(∆R) <
1

σ(R+
Θ)

σ̄(∆R) < σ̄(RΘ)

According to Eq. 5.15, the highest allowed uncertainty is limited by the smallest singular
value of the nominal ORM in case of small gain theorem while the spectral radius condition of
Eq. 5.16 yields a much higher margin i.e. of the highest singular value. The ratio between the
two margins is exactly the condition number of the nominal ORM for the circulant symmetry
case.

5.3.4 Measurement of the spectral radius

Let us define the correction ratio δi as the ratio between the RMS of the residual orbit vector
after ith iteration and the orbit vector after (i−1)th iteration such that δ1 (after first iteration)
is given as,

δ1 =
r1,RMS

w0,RMS
(5.17)

The H∞ norm (highest singular value) of matrix M of Eq. 5.11 can be defined and related to
the correction ratio as (Sec. 3.3.2 of [47])

||M||∞ = max
||r1||2
||w0||2

≥ r1,RMS

w0,RMS
(5.18)

where || · ||2 is the Euclidean norm1 and the symbol max means that the ratio is between those
modes of r1 and w0 which have maximum coupling, i.e. which couple through the highest
singular values. For the circulant symmetry, ρ(M) = ||M||∞ and the measured correction
ratio can be related with ρ(M) as

ρ(M) ≥ δ1 (5.19)

1defined as ||x||2 =
√
x2
1 + x2

2 + ....x2
n
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For non-circulant ORMs, ρ(M) ≤ ||M||∞ (A.5.3 of [47]) and the correction ratio is asymptot-
ically related to ρ(M) by Gelfand’s formula [84]

ρ(M) = lim
k→∞
||Mk||

1
k∞

as
ρ(M) ≥ lim

k→∞

rk,RMS

rk-1,RMS
= lim

k→∞
δk (5.20)

In general, an approximation ρ(M) =
r1,RMS
w0,RMS

can be made if the largest effect of model
mismatch is on the dominant mode in correction space. As discussed in the next sections,
this is a reasonable approximation in practical situations.

5.4 Spectral radius for circulant approximations
In chapter 4 a method for approximating an ORM with broken symmetry to its nearest-
circulant or nearest block-circulant matrix was introduced. It is important to mention that
even if the method provides the “most” nearest symmetric approximation, the resultant
matrix RNC to be used in the controller has a certain magnitude of mismatch with respect
to the the original ORM R of the synchrotron. The spectral radius condition given in
inequality. 5.12 can be applied in order to quantify the mismatch caused by nearest (block-)
circulant approximation which can be calculated for the correction matrix M in this case as,

ρ(MNC) = ρ
(
I−RR+

NC

)
(5.21)

For example, for the horizontal plane of SIS18 the spectral radius for the nearest-circulant
approximation is 0.13 for which the experimental orbit correction in Fig. 4.5 shows a difference
of 9% as compared to the original ORM.
Similarly, the spectral radius of various kinds of symmetric approximations for SIS100 ORMs
calculated using Eq. 5.21 in both planes are given in table 5.1. Relatively smaller value of
ρ(M) in case of nearest-block circulant approximation as compared to the nearest-circulant
approximation is because of the fact that SIS100 ORMs are more closer to block circulant
symmetry due to the existence of super periods in the lattice. On the other hand, one can
conclude that any symmetric approximation for FAIR synchrotrons can be used in the slow
regime, as the ρ(M) satisfies inequality 5.12 for all cases.

Table 5.1 Calculated spectral radius in case of symmetric approximations for SIS100

ORMs.

SIS100 ORM x-plane y-plane
Original ORM 0 0
Nearest-circulant approximation 0.34 0.31
Nearest-block circulant approximation 0.13 0.17
Ignoring beta-beating 0.16 0.20

74



5.5 Spectral radius calculation for spatial model mismatch
in SIS18: simulations

As discussed in previous chapters, the SIS18 COFB system has to operate from injection till
extraction including the acceleration ramp for the beam quality preservation before injection
into SIS100. The triplet to double transition for quadrupole configuration and tune shifts
due to quadrupole field errors as well as due to higher beam currents are the major sources of
spatial model mismatch for SIS18 COFB system and need to be investigated for the stability
margins.
In this section, we calculate the spectral radius and simulate the correction ratio in MAD-X
as a function of model mismatch of various sources to estimate instability thresholds of the
SIS18 COFB system, in the slow feedback regime. The ideas are later extended to the fast
feedback regime in section 5.7. Following types of model mismatch are investigate:

• On-ramp ORM variation due to triplet to double transition.

• Tune variation over the ramp due to quadrupole field gradient error.

• Intensity dependent tune shift.

• Beta beating due to quadrupole field errors.

5.5.1 On-ramp ORM variation for SIS18

The calculated on-ramp ORM variation characterized by its largest singular value (σ̄) is
already shown for a typical dipole ramp of 10 T/s in Fig. 3.3 (bottom) while the corresponding
normalized quadrupole strengths (K1 = 1

Bρ
∂B
∂z

in m−2) of focusing, defocusing and triplet
focusing quadrupole families are plotted in Fig. 3.3 (top). These quadrupole settings are those
which correspond to the “set values” of currents for the control system of the quadruple power
supplies of SIS18 thereby meaning they are the ideal settings. In reality, the quadrupole
strengths can be different from these values e.g. due to the quadrupole gradient errors. One
experimental evidence of such errors is that the quadrupole settings of all three families are
desired to vary in a way that the coherent tune remains constant throughout the ramp for
both planes, but a tune shift is measured experimentally as shown in Fig. 3.5. On the other
hand, the net magnitude of spatial model mismatch between injection and extraction remains
almost same for all cycles as evident from Fig. 5.4 where the calculated highest singular
values of the ORMs using MAD-X for the two different dipole ramps of 5 T/s and 10 T/s are
plotted for comparison, for the ideal case. Moreover, one can see that the ORM variation in
horizontal plane is more prominent (≈ 45% of initial value) than that in vertical plane (≈
6%) for SIS18.
In order to check the possibility of using a fixed-ORM based COFB system over the ramp,
the fast dipole ramp of 10 T/s (for ideal quadrupole settings) was selected and the spectral
radius ρ(M) between the ORMs R(t) at each time step of the ramp and the nominal ORM
RΘ corresponding to the injection settings is defined as,

ρ
(
M(t)

)
= ρ

(
I−R(t)R+

Θ

)
(5.22)
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Figure 5.4 The variation of the highest singular values of the ORMs in both

transverse planes, over the ramps of dipole graidents of 5 T/s and 10 T/s.

The result of Eq. 5.22 is plotted in Fig. 5.5 for both planes (red for x-plane and black for
y-plane). Furthermore, the correction ratio δ1 =

r1,RMS
w0,RMS

is also simulated for 1000 random
perturbed orbits at each time step of the ramp by the following way: MAD-X is used for the
generation of 1000 perturbed closed orbits at each time step of the ramp using the random
combinations of transverse misalignment of quadruples with Gaussian probability distribution
(σ = 0.3mm cut at 3σ ≈1mm). As a result the RMS values of the perturbed orbits also
have a Gaussian distribution with mean = 12.5mm and σ = 7.5mm. Corrector settings
are calculated using all the singular values of RΘ for each perturbed orbit. The resultant
correction ratios also have a Gaussian distribution but with a significantly smaller standard
deviation and are also plotted in Fig. 5.5 as a function of time (blue for x-plane and green
for y-plane). The dots in the plots comprises of the mean RMS of the Gaussian distribution
of correction ratios while the error bar represent the standard deviation.
In the comparison of correction ratio to the ρ(M(t)), one can see that the mean value of
the first iteration residual increases in a direct proportionality to the ρ(M) (according to
inequality 5.19) with the increase of model mismatch in both planes, confirming that ρ(M)
is a practical figure of merit for quantifying the spatial model mismatch. Anyhow, a few
orbits in x-plane have correction ratio larger than ρ(M) (at the edge of standard deviation)
which is a consequence of slight deviation from circulant symmetry in this plane while a pure
circulant symmetry exists in the y-plane. The correction ratio is further simulated in x-plane
over successive iterations of orbit correction as δk for a fixed model mismatch at 80 ms of the
ramp where ρ(M) = 0.544. The resultant δk is plotted in Fig. 5.6 for the first 7 iterations
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Figure 5.5 The simulated correction ratio δ1 =
r1,RMS
w0,RMS

and ρ(M(t)) over a ramp of

10 T/s for both planes.

after which the residual reaches to the noise level. One can see that the correction ratio
of all simulated orbits is less than ρ(M) asymptotically as predicted by inequality 5.20 for
non-circulant ORMs. Moreover, the simulations suggest that the SIS18 COFB should never
be unstable due to on-ramp model mismatch in the slow regime for the ideal quadrupole
settings, as the maximum ρ(M) is much less than 1 in any case. The only difference is that
more ORMs will be needed to be updated in the x-plane in comparison to the y-plane, to
achieve a comparable orbit correction in both planes.

As mentioned before, the tune shifts (∆Qy ≈ 0.01 and ∆Qx ≈ 0.02) are also observed
experimentally which can be regarded as a non-systematic model mismatch. Tune shifts of
comparable magnitudes have also been reported for electron beams during fast ramps e.g. at
ELSA [82]. The exact reasons for such a tune shift is not trivial to determine because there
may be many factors inter-playing together during the ramp e.g. output current of the power
supplies not following the control curve, errors in the calibration of current to magnetic field
of the magnets and eddy currents in the vacuum chambers or magnets. All these effects
can result into the quadrupole field gradient errors during the ramp and consequently can
affect the tune. The eddy currents in magnet cores are thought to be the primary cause of
quadrupole gradient errors. Therefore the on-ramp tune-shift is simulated by application
of low pass filtering to the ideal quadrupole strengths. Two low pass 1st order butterworth
type filters of cut-off frequencies 50 Hz and 35 Hz were applied to the quadrupole strengths
in order to produce the vertical tune shift of ∆Qy,max = 0.010 and ∆Qy,max = 0.020 and
the horizontal tune shift of ∆Qx,max = 0.018 and ∆Qx,max = 0.032, as shown in Fig. 5.7.
The tune corresponding to ideal quadrupole strengths is also plotted as a reference (green).
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Figure 5.7 Simulated tune shifts over the ramp of dipole gradient of 10 T/s.

The contribution of such tunes shifts in the ρ(M) is depicted in Fig. 5.8. Non-systematic
tune shifts act as an additional model mismatch on top of that produced by the systematic
model mismatch. However, the effect of tune shift is more dominant in vertical plane than in
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horizontal plane.

5.5.2 Intensity dependent tune shift

The intensity-dependent tune shift can be modelled as the image charge effect of the vacuum
chambers around the beam. Image charges of opposite sign pull the beam outward like a
defocusing force causing a decrease in coherent tune. The image charge force is a non-linear
function of the beam’s transverse position [85] depending upon the boundary but can be
linearized for small oscillations and for simple geometries (circular or elliptical) as performed
in [86] and given as,

F image
y ∝ y (5.23)

where F image
y is the defocusing force in the y-direction.

In order to simulate the image charge effect in MAD-X, all the drift regions of SIS18 were
replaced with weak defocusing quadrupoles in y-plane and the same quadrupole strength was
added to the strengths of already present quadrupole families resulting in a weak defocusing
force throughout the synchrotron. As a result, we calculate the ρ(M) for tune shift defined
as,

ρ
(
M(∆Q)

)
= ρ

(
I−R(∆Q)R+

Θ

)
(5.24)

where R(∆Q) corresponding to ORM with image charge tune shifts for the vertical plane of
SIS18. The corresponding σ(∆R) (discussed in Eq. 5.16) quantifies the relative deviation of
the singular values corresponding to the dominant (tune) modes of RΘ and R. This implies
that the allowed uncertainty in the ORM for a stable COFB will depend upon the initial
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Figure 5.9 ρ(M(∆Qy)) for image charge based tune shift for three different initial

vertical tunes. SGT means small gain theorem.

value of the tune and the direction of the tune shift towards or away from the integer value.
This is due to the fact that the singular values have different growth rate when the tune moves
towards (fast increase of spectral radius) or away (slow increase of spectral radius) from the
integer value. In order to confirm this, three working points Qy0 = 3.287, 3.150 and 3.770
are selected to calculate the ORMs corresponding to the zero tune shifts. The tune of the
machine is then changed in both directions for all three cases and ρ(M) is plotted in Fig. 5.9.
The stability margins defined by the small gain theorem is also highlighted along with that
of spectral radius condition, for comparison. One can see that for an initial working point
of 3.15 (red), the instability threshold is reached with a negative tune shift of only -0.0782
while for the Qy0 = 3.77 even a negative tune shift of -0.180 makes ρ(M) = 0.43 (far from
instability threshold of 1). On the other hand, ρ(M) crosses the instability threshold for a
small positive tune shift of +0.116 for Qy0 = 3.77.
For a further comparison, a fixed tune shift of −0.079 (for which red curve crosses 1 for the
value of ρ(M) in Fig. 5.9 ) is selected for all three above mentioned initial tunes and the
orbit correction over many time steps is simulated using MAD-X for the slow regime of SIS18.
The corrector settings for each time step k are calculated as Θk = Θk−1 −R+

Θyk where R+
Θ

is the pseudo-inverse of ORM corresponding to initial tune while the actual machine tune in
MAD-X is Qy0− 0.079, for each case. The RMS values of the resultant closed orbits over each
time step are plotted in Fig. 5.10 where k = 0 corresponds to the initial perturbed orbits.

One can see that the orbit correction is unstable for the case of initial tune Qy0 = 3.15 in
agreement with ρ(M) > 1 for ∆Q = −0.079 and ρ(M) = 1.037 as evident in Fig. 5.9. For
the other two cases, where the ρ(M) is less than 1, the closed orbit necessarily converges
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to zero even if the stability margin defined by the small gain theorem (i.e. ρ(M) = 0.15) is
already crossed. The required number of time steps can be seen to be proportional to the
magnitude of ρ(M). These calculations confirm that it is not only the magnitude of the tune
shift that defines the instability threshold of the COFB system but also the direction towards
or away from the integer value. Tune shifts away from the integer value ensure the COFB
system stability. It is important to mention that COFB system instabilities due to spatial
model mismatch are discussed for scenerios when the machine is itself stable against tune
resonances.

5.5.3 Beta beating

Beta beating is another source of model error that can vary the ORM of the machine. It is
the deviation of the beta function from its periodic values caused by the localized quadrupole
field errors in a synchrotron and is defined for random field errors ∆Ki as [15],

∆β(l0) =
β0

2 sin(2πQ)

∑
i

∫ L

0

∆Kiβi(l) (5.25)

· cos
(

2
(
µ(l)− µ0

)
− 2πQ

)
dl
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Versus tune shift.

while the corresponding tune variation is

∆Q =
1

4π

∑
i

∫ L

0

∆Kiβ(l)dl (5.26)

Here L is the length of the quadrupole and l is the longitudinal coordinate of the synchrotron.
The other parameters are already defined in chapter. 2. Figure 5.11 (top) shows the simulations
for y-plane of ρ(M(∆β

β
)) using RΘ corresponding to zero beta beating and Qy0 = 3.287 for

a range of beta beating up to 125% generated by random distribution of quadrupole field
errors in MAD-X. One can see that the orbit correction with an improper model, can lead
to instability (ρ(M) > 1) even for 67% of peak-peak beta beating (black stars in Fig. 5.11)
and on the other hand, can converge (ρ(M) < 1) even for more than 100% of peak-peak
beta beating. This observation is explained in Fig. 5.11 (bottom) where ρ(M) is plotted as a
function of tune shift. The ρ(M) is larger than 1 only for negative tune shifts. The reason is
that the negative tune shift takes the working point of the machine (in MAD-X) closer to
the integer value in this case, as also discussed in the previous subsection. This assertion
is confirmed by adjusting the unperturbed vertical tune at Qy0 = 3.77 so that for positive
tune shifts, the working point moves towards the integer value (contrary to previous case).
Figure 5.12 shows the corresponding ρ(M) as function of both beta beating and tune shift.
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The behavior is similar to the previous case but mirrored with respect to tune shift. Thus we
conclude, that the magnitude of beta beating itself does not play a large role in context of
orbit correction (also observed at other facilities e.g. BNL [87]) but only when accompanied
by the tune shift towards the integer value, beta beating can lead to orbit instability.

5.6 Experimental verification at COSY FZJ
Some of the conclusions drawn in sec. 5.5 were experimentally verified at the COFB system
of proton Cooler Synchrotron at Forschungzentrum Jülich (FZJ). The correction time for the
operational COFB system is Ts = 2s and therefore, it can be regarded as a slow feedback
system with temporal characteristics of the power supplies and BPMs ignored. The on-ramp
ORM variation and artificially introduced tune shift were used as the sources of model
mismatch. By default, the singular values of the ORM in the controller having magnitude
below the 10% of the highest singular value were truncated.
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5.6.1 Vertical tune variation

As concluded in sec. 5.5.2, it is not only the magnitude of the tune shift but its direction
towards or away from integer tune that defines the instability threshold of the COFB system.
In order to verify this experimentally, the machine settings of COSY corresponding to
the vertical tune of Qy0 = 3.62 were fixed while the ORMs were updated in the feedback
system for a range of tune values from 3.53 to 4.16. The resultant measured correction
ratio (δ1 =

r1,RMS
y0,RMS

, replacing w with y for vertical plane in Eq. 5.18) is plotted in Fig. 5.13
(top). One can see that the correction ratio increases as the tune moves towards the integer
value. Figure 5.13 (bottom) shows the corresponding calculated ρ(M) in blue which is largely
different from measured correction ratio primarily around ∆Qy = 0 showing an inherent
model mismatch between the actual (unknown) model (let us call it RX) and the best known
(measured) model R of the machine. Since R is the known model in this case, we can
condition it before pseudo-inversion by SVD so that RR+ = I. Such a model mismatch can
be associated to the corrector calibration errors resulting in a multiplicative uncertainty such
that RX = (I + ∆R)R. The effect of such an inherent model mismatch can be excluded from
simulations using the measured correction ratio for ∆Qy = 0. Let us call it r′1

r′1 =
(
I−RXR+

)
y0 (5.27)

r′1 = −∆Ry0

The effect of intentionally varied model RΘ (controller model) on the residual r1 with respect
to the actual ORM RX can be written as

r1 =
(
I−RXR+

Θ

)
y0

r1 =
(
M−∆R (1−M)

)
y0 (5.28)

where M = (I−RR+
Θ). Using inequality 5.19 and the triangular inequalities of matrix norm

(||A + B|| ≤ ||A||+ ||B|| and ||AB|| ≤ ||A|| · ||B||) the correction ratio can be deduced from
Eq. 5.28 as

r1,RMS

y0,RMS
≤ ρ(M) +

r′1,RMS

y0,RMS

(
1− ρ(M)

)
(5.29)

The right-hand side of non-strict inequality 5.29 is plotted in red in Fig. 5.13 (bottom) in
order to match the experimentally measured correction ratio. Figure 5.14 shows the measured
closed orbit RMS over a number of time steps for specific tune values. Even up to a very large
tune shift (Qy = 3.97), the COFB system is stable since ρ(M) is still less than 1 (Fig. 5.13
bottom). For the tune shifts Qy > 4, the ρ(M) > 1 and the COFB system gets unstable as
seen by the increasing residual over successive time steps in Fig. 5.14 resulting in the beam
loss.

5.6.2 On-ramp ORM variation

At COSY, proton beam was accelerated from 45 MeV to 283 MeV and the orbit corrections
were performed in both planes at injection, mid-ramp (122 MeV) and extraction energies using
only the ORM corresponding to the extraction settings. The measured temporal evolution of
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the closed orbit RMS is plotted as the function of time steps in Fig. 5.15 (top) for x-plane
and (bottom) for y-plane for all three machine settings. One can see that the residual after
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the first time step as well as the number of correction steps required for the orbit convergence
increase with the increased model mismatch. In all three cases, closed orbit converges to
a minimum, confirming that the COFB system stability is ensured if the correction ratio
is less than 1, in agreement with the spectral radius stability condition of inequality 5.12.
Two observations can be made concerning the residual orbit. 1) A non-zero residual orbit
remains after the first correction step even at extraction due to the inherent model mismatch,
as discussed in the previous subsection. 2) The residual orbit over successive correction steps
converges to different values for the injection, mid ramp and extraction. This is most likely
due to the change in orbit pattern and a different coupling to the truncated SVD modes in
RΘ in each of those cases.

5.7 Spatial model mismatch in the fast temporal regime
In deriving the stability condition for the slow feedback regime i.e. inequality 5.12, the
temporal parts of the system and the controller were ignored. Here, the treatment is extended
to the fast regime where the system dynamics plays a role in the performance of the COFB
system, in the generic form. The analysis is made in the discrete z-domain but can also
be equally valid for the Laplace domain if the sampling frequency is at least an order of
magnitude higher than the required bandwidth of the feedback system.
First of all, the transition of parameters of interest from slow regime to the fast regime can
be made intuitively as: the notion of the required number of discrete time steps for orbit
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convergence in slow regime can be exchanged with the closed-loop bandwidth for the fast
regime. As larger the value of ρ(M) is, as higher is the residual r1 after first orbit correction.
This results in more time steps or a longer time constant required for the convergence of
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the closed orbit. The longer time constant is equivalent to the reduction of the achievable
bandwidth of the COFB system for the attenuation of the dynamic orbit errors.
For a quantitative analysis, following important transfer function matrices for the closed-loop
shown in Fig. 5.1 can be written as,

L(z) = G(z)K(z)

S(z) =
(
I + G(z)K(z)

)−1

T(z) =
(
I + G(z)K(z)

)−1 G(z)K(z)

=
(
I + L(z)

)−1 L(z)

(5.30)

where L(z) is called the loop transfer function, S(z) is the sensitivity function from disturbance
d(z) to the output r(z) and T(z) is the complementary transfer function from set value wr

to the output r(z).
In order to estimate the bandwidth of disturbance rejection, the sensitivity function S(z) is
the right choice to be used such that the lowest frequency where |S(z)| has magnitude 1 is
called sensitivity crossover frequency fsc. Similarly, the positions of the poles of the loop
transfer function L(z) and complementary sensitivity function T(z) on the complex plane
predict the instability of the feedback system (for details see chapter 2).
For the COFB system of Fig. 5.1, the sensitivity function S(z) can also be written as,

S(z) = [I + g(z)Rk(z)R+
Θ]−1

= [I + Ig(z)k(z)− (I−RR+
Θ)g(z)k(z)]−1 (5.31)

One can see that the matrix M = (I − RR+
Θ) appears above in the temporal sensitivity

function in order to affect the achievable bandwidth. Eq. 5.31 is a general equation of
sensitivity function which can be solved for each mode of the ORM and for any controller
k(z). In order to find out the effect of spatial model mismatch on the disturbance rejection,
the sensitivity function Sρ(z) corresponding to the highest eigenvalue of matrix M i.e. the
spectral radius ρ(M) can be defined by the replacement of M with ρ(M) in Eq. 5.31 and by
rearrangement as,

Sρ(z) =

1
1+g(z)k(z)

1− ρ(M) g(z)k(z)
1+g(z)k(z)

(5.32)

where g(z) and k(z) are scalar functions. The above equation is actually an approximation
of the MIMO system with a SISO system for ρ(M), which carries the largest effect of model
mismatch on the bandwidth, since all other eigenvalues will be smaller than ρ(M).
For further analysis, the first order system model of Eq. 5.5 is considered as g(z) = z−l b0z+b1

z−a1

and a control law k(z) can be calculated in a generic form using Internal Model Controller
(IMC) methodology discussed in sec. 2.8.4 and is given as,

k(z) = [g(z)]−1 Z(z)

1− Z(z)
(5.33)

where Z(z) = z−l b0z+b1
z−a1

is a low pass filter. Using Eqs. 5.5 and 5.33, the ρ(M)-dependent
sensitivity function of Eq. 5.32 can be written as,

Sρ(z) =
1− Z(z)

1− ρ(M)Z(z)
(5.34)
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The corresponding loop transfer function Lρ(z) can be calculated from its corresponding
relation to the sensitivity function from Eq. 5.30 as,

Lρ(z) =
1− Sρ(z)

Sρ(z)
(5.35)

Putting Eq. 5.34 in Eq. 5.35 yields

Lρ(z) =
Z(z)

(
1− ρ(M)

)
1− Z(z)

= L(ρ=0)(z)
(
1− ρ(M

)
= g(z)k(z)

(
1− ρ(M

)
= g(z)kρ(z) (5.36)

where L(ρ=0)(z) is the loop transfer function when the spatial models of system and controller
cancel each other and can be calculated using g(z) and k(z) given in Eqs. 5.5 and 5.33,
respectively as,

L(ρ=0)(z) = g(z)k(z) =
Z(z)

1− Z(z)
(5.37)

Eqs. 5.36 gives a direct scaling of the controller with spatial model mismatch as a function of
ρ(M) as,

kρ(z) = k(z)
(
1− ρ(M)

)
(5.38)

with reference to k(z), the controller corresponding to ρ(M) = 0.
The dependence of the complementary transfer function Tρ(z) on ρ(M) can also be written
in this case, using its relation with the loop transfer function given in Eq. 5.30 as,

Tρ(z) =
Lρ(z)

1 + Lρ(z)
=
Z(z)

(
1− ρ(M)

)
1− ρ(M)Z(z)

(5.39)

5.7.1 Temporal bandwidth

In order to demonstrate the effect of spatial model mismatch on the disturbance rejection
bandwidth of the feedback loop, the magnitude of the sensitivity function Sρ(z) defined in
Eq. 5.34 is plotted in Fig. 5.16 for a range of 0 < ρ(M) < 1 and for the following low pass
filter,

Z(z) = z−1 0.413

z − 0.586
(5.40)

calculated for the bandwidth of 850 Hz, τd = 100 µs and Ts = 100 µs. One can see that there
is no disturbance rejection for ρ(M) = 1 as |Sρ(z)| = 1 for all frequencies. For ρ(M) < 1, the
sensitivity crossover frequency fsc decreases with the increase of ρ(M) from 0 to 1 which is
plotted in Fig. 5.17 (red) as a function of ρ(M). It is evident that the spatial model mismatch
has detrimental effect on the achievable bandwidth of the COFB system for the disturbance
rejection.
The reduction of sensitivity crossover frequency also happens in the presence of pure delay in
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for various values of ρ(M) between 0 and 1.

the feedback loop (chapter 5 of [47]). For a comparison between the pure delay and spatial
model mismatch, the sensitivity functions were also calculated (not shown) using the IMC
methodology for ρ(M) = 0 and for a range of pure delay τd from 100 µs to 700 µs. fsc vs. τd
curve is shown in blue in Fig. 5.17. Both pure delay and the spatial model mismatch limit the
bandwidth for disturbance rejection but in a slightly different way. There is a weak reduction
in bandwidth when ρ(M) moves from 0 to 0.2, and the drop is much sharper when ρ(M)
approaches unity, meaning closed-loop is more sensitive to spatial model mismatch near the
instability region of ρ(M) = 1. These results are very helpful to decide the required ORM
update rate in the COFB controller for a variable optics machine e.g. for the on-ramp orbit
correction in booster rings. For a given dynamical system and for the required bandwidth,
one can calculate the allowed range of ρ(M) using Eq. 5.34 which can be kept below a certain
threshold by updating the R+

Θ in the controller after appropriate time steps.

5.7.2 Closed-loop stability

Equation 5.36 suggests that for the fast regime of the orbit correction, ρ(M) > 1 will change
the sign of the controller gains making the positive feedback, resulting in the closed-loop
instability. This is regardless of the dynamics of the system and the parameters of the
controller and is consistent to the instability condition of slow regime given in inequality 5.12.
Eq. 5.38 provides precise information about the required controller parameter variation for
a COFB system where the machine optics changes over time but the ORM is not updated
accordingly i.e. ρ(M) increases over time from 0 to 1. In this case, the controller parameters
are needed to be scaled with (1− ρ(M)) relative to the controller parameters corresponding
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to ρ(M) = 0.
In order to demonstrate the need of such a scaling, three first-order systems are considered with
bandwidth of 850 Hz and delays τd = 200, 400 and 600 µs. The PI controller corresponding
to ρ(M) = 0 for each system is optimized using IMC-tuning (discussed in sec. 2.8.4), let us
call it k0(z). According to Eq. 5.38, the optimal controller gains kρ(z) should be less than
k0(z) by a factor (1− ρ(M)). This directly implies that keeping the controller gains fixed
at k0(z) for ρ(M) > 0, the effective gains keff (z) are more than the the required gains by a
factor as,

keff (z) =
k0(z)(

1− ρ(M)
) (5.41)

For the above mentioned three first-order systems, the controller gains were optimized and
then scaled according to Eq. 5.41 in order to incorporate the effect of spatial model mismatch.
ρ(M) was varied between 0 and 1 and the effective controller keff (z) was used to calculate
the complementary sensitivity function T (z) = L(z)

1+L(z)
(Eq. 5.39).

Fig. 5.18 shows the dominant pole positions of T (z) on the complex plane of Laplace domain
(in order to plot the frequency in Hz using transformation of z = esTs) for all three systems.
The pole-position on the right hand side of the complex plane (positive decay constant) shows
the instability of the system as discussed in sec. 2.8.1. The poles move from left (stable region)
to the right (unstable region) of the complex plane with an increase of ρ(M) for all three
cases whereas the cross-over value of ρ(M) depends upon the dynamics (delays in this case)
of the system. Higher is the delay, smaller is the value of ρ(M) that can make the closed-loop
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unstable. These simulations confirm that spatial model mismatch beyond a certain threshold
of ρ(M) defined by the dynamics of the system, can result in the COFB system instability
if the the controller parameters are not scaled according to Eq. 5.38. This conclusion has
most relevance for SIS18 COFB system to run it in a fixed-ORM mode throughout the ramp,
when the machine optics varies over time.
It is important to mention that the instability predicted for ρ(M) < 1 in Fig. 5.18 is not in
contradiction to the condition of inequality 5.12 which is defined for the slow regime where
the dynamics of the system can be ignored and there is no need of scaling of the controller
parameters. One can see that the threshold of ρ(M) in Fig. 5.18 moves towards 1 as the delay
of the system decreases relative to the sampling time Ts = 100 µs. On the other hand, if the
controller parameters are scaled according to Eq. 5.38 as a function of model mismatch in the
fast regime, the COFB instability due to the model mismatch will occur only for ρ(M) > 1
(referred to Eq. 5.36), resulting in the identical condition for instability for both slow and
fast regimes.

5.8 Summary and contributions
The contributions of the work presented in this chapter are listed as below, out of which
many are also published in [88].

• The effect of spatial model mismatch on the stability and the performance of the COFB
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systems is investigated for the slow and the fast regimes of orbit correction, separately,
for the first time in a systematic manner.

• In the slow regime, the temporal dynamics of the system can be ignored in comparison
to the slow rate of orbit correction and the closed-loop response depends only on the
orbit response matrices of the controller and the system. For this regime, the spectral
radius condition of stability is defined for the correction matrix M which yields a higher
and practical stability margin in comparison to the previously used small gain theorem,
against the spatial model mismatch.

• It is shown that the stability margins yielded by the two conditions can be related
through the condition number of the nominal (controller) ORM, with exact equality
for the circulant symmetry.

• A relation of the spectral radius ρ(M) with the correction ratio is also established.

• The spectral radius is calculated for various sources of model mismatch in SIS18 in
order to obtain hints for the optimal design of a COFB system. For on-ramp ORM
variation at SIS18 due to triplet to doublet quadrupole transition, it is shown with the
help of simulations in MAD-X that the defined spectral radius is a practical figure of
merit for quantifying the spatial model mismatch.

• The simulations predicted that SIS18 COFB system will not be unstable even for the
maximum on-ramp model mismatch for the slow regime of operation in both planes.

• The calculations of spectral radius are also performed for intensity-dependent tune shift
and the beta-beating in SIS18. It is shown that the spectral radius is related to the
magnitude of the tune shift and more sensitive in the direction towards the integer
value of tune, and hence the instability threshold to spatial model mismatch depends
on the working point.

• It is found that beta beating itself is not a crucial source of model mismatch unless
accompanied by a tune shift towards an integer value.

• The conclusions drawn from the calculations and simulations for SIS18 were experimen-
tally verified at COSY FZJ where the closed orbit is made unstable with artificially
induced tune shift-based model mismatch. The observed instability threshold is in
agreement with the instability threshold predicted by the spectral radius condition.

• These results from the slow regime are extended to the fast feedback regime also
accounting for closed-loop dynamics. It is found that the spectral radius condition
defines the stability condition of the fast COFB system for a given temporal system
model.

• The controller settings must be scaled with ρ(M) for a fixed-ORM mode of the COFB
system for a variable optics machine, in order to ensure the closed-loop stability.
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• The achievable system bandwidth can be calculated from ρ(M) and in order to achieve
a required bandwidth, ρ(M) can be controlled by the appropriate updating of the ORM
in the controller of the COFB system.

• In nutshell, a single measurable parameter, i.e. spectral radius of the correction
matrix M quantifying the model mismatch is enough for predicting the residual orbit,
bandwidth reduction and the stability criteria in terms of controller parameters for the
feedback system in consistency with the practical limits.
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Chapter Six

Hardware for SIS18 COFB system

This chapter introduces the hardware used for the implementation of closed orbit feedback
controller for SIS18. Primary modules and functionalities implemented in the hardware are
described. The tests performed on the hardware during commissioning are also mentioned.

6.1 Basic hardware requirements
In chapter 3, the general performance requirements of SIS18 COFB system are described
and the developments made regarding orbit correction methods, uncertainty modeling in
the ORM and the consequent stability and performance parameter i.e. ρ(M) for the COFB
systems were worked out in subsequent chapters, in line with general requirements. The
conclusions drawn based upon theoretical investigations and simulations provide a basic
understanding of the requirements for the hardware capable of implementing such a COFB
system. The major demands can be described in a broad way as follows:

• Calculation rate: Based upon the frequency spectrum of closed orbit disturbances
(see Fig. 3.6), initially a COFB system-bandwidth as high as possible up to 1 kHz
was foreseen. For this purpose, a controller hardware capable of corrector-strength
calculation at a rate higher than 2 kHz is needed so that the hardware does not put
any limitation for the achievement of foreseen bandwidth.

• ORM update: The possibility of ORM update during an acceleration cycle, in the
controller hardware is also a fundamental requirement for the SIS18 COFB system,
particularly in the horizontal plane. Although the simulations have predicted that the
ORM update is not required at every instant (milliseconds) of ramp and the maximum
model mismatch characterized by the ρ(M) is less than 1. But in order to avoid
bandwidth reduction due to the spatial model mismatch and the instability in the fast
regime even for ρ(M) < 1, an ORM update is recommended, during the ramp.

• Interface with power converters: The digital values of the corrector-strengths also
need to be sent to the power converters of the corrector magnets with an appropriate
interface to have the pure delay as minimum as possible.

One trivial requirement from COFB system hardware to be integrated with FAIR accelerators
is as follows:
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• Synchronization with machine cycles: All accelerators of FAIR project are con-
nected to a centrally dedicated timing system called General Machine Timing System
(GMT), the details are given in Appendix A.1. GMT is responsible for the timely
execution of the pre-planned actions of each component and provides the possibility of
cascading the beam processes in time e.g. acceleration of beam in UNILAC (Universal
Linear Accelerator), injection to and extraction from SIS18 etc. COFB system hardware
also needs to have synchronization with GMT for BPM data acquisition and calculation
of corrector strengths.

6.2 Hardware for SIS18 COFB system
Libera Hadron PlatfomB (called Libera Hadron onward) is the device used for the SIS18 COFB
system and is developed for orbit correction at hadron synchrotrons by the Instrumentation
Technologies (I-Tech) [89] Slovenia. It is delivered as an in-kind contribution to the FAIR
project and was never tested and commissioned in a COFB system, before. In this way,
one natural scope of the thesis is also to verify the appropriateness of Libera Hadron for
COFB systems of SIS18 and SIS100 and to suggest further improvements. Libera Hadron is
the advanced version of already existing Libera PlatformA which is used for the analog to
digital data processing of the BPM plate signals. Libera Hadron is also capable of BPM data
processing along with additional features of corrector-strength calculation and making them
available to the power converters of the corrector magnets at a rate of 10 kHz. Dedicated
modules are installed for each of the above mentioned actions, the details are given in
Appendix A.2.

6.2.1 Prime modules of Libera Hadron

Libera Hadron has an FPGA board for the controller implementation in its GDX module,
in order to achieve low latency in corrector-strength calculation and is FPGA-programmed
also by the I-tech, Slovenia. Three important modules relevant for the corrector-strength
calculation along with their functionalities are listed below:

• Four Hadron Beam Position Monitor (HBPM) modules each for the BPM data process-
ing. HBPM modules replace the previously used Libera platformA for receiving the
signal from upto four BPM plates (also called pick-ups), doing analog-to-digital signal
processing and providing a 10 kHz data stream for the closed orbit correction.

• Gigabit Data eXchange (GDX) module is the main module of Libera Hadron for the
exchange of beam position data with other Libera Hadrons and for the implementation of
the controller algorithm and storing the inverse ORM for corrector-strength calculation.

• Serial (SER) interface module for supplying current values to the corrector power
converters. SER module of each Libera Hadron has maximum 8 serial ports so that
maximum 8 power converters can be connected to one Libera Hadron.
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6.2.2 Functionalities implemented in GDX module

Here we discuss the salient features of the algorithm implemented in the GDX module of
Libera Hadron for the corrector-strength calculation, in the context of SIS18 COFB system.
The update rate of 10 kHz is already higher than that required for a bandwidth of 1 kHz.
The data flow withing the Libera Hadron from BPM readouts to the corrector-strengths is
shown schematically in Fig. 6.1 while various data symbols are explained in Table. 6.1. Each
of the relevant design feature of the GDX module is discussed below. The details can be
found in the user manual of the Libera Hadron [90] as well as in [91].

Global orbit data

Although each Libera Hadron can receive data from a maximum of 4 BPMs (due to 4 HBPM
modules per Libera), the implementation of “Libera Grouping Protocol” implemented in the
GDX module provides the possibility of creating a global orbit vector from all BPMs. As
a result, a combination of several Libera Hadrons can form a global COFB system. In the
grouping network, global orbit data packets are passed from GDX module of one Libera
Hadron to the next where each GDX inserts the sum, position and status data of its connected
HBPM modules. The latency of the Libera Grouping is in the range of 0.1 µs per BPM
and thus distribution of global orbit data can take place within 10 % for SIS100 and 2 %
for SIS18, of the 100 µs time slice for orbit correction. Synchronism between all the HBPM
modules is required and achieved by starting the data chains at a specific time on all Libera
Hadrons using trigger from the timing system. The timing modules of Libera Hadron are
discussed in Appendix A.2. Consequently, each Libera Hadron calculates the strengths for
all correctors in parallel. It is important to mention that the calculation is performed only
for one plane per Libera Hadron i.e. either horizontal or vertical.

Double buffering

An important feature of the Libera Hadron is the possibility to store two ORMs, reference
orbits and beam rigidity vectors in two data buffers in the FPGA of the GDX module
(Fig. 6.1). During the orbit correction, one buffer is active and the other is available for
parameter loading. In this way, ORMs can be updated occasionally in a pipe-lined manner
in accordance with the optics change during the ramp in SIS18 (for details see sec. 3.2). For
initial tests, there were two limitations regarding ORM update:

• The buffers in the FPGA of the GDX module are programmed only for the real valued
SVD matrices of the ORM i.e. S+UT and V and there is no possibility of uploading
the complex matrices of the DFT-based decomposition discussed in chapter 4. This
means that ORM update only in terms of the complex Fourier coefficients instead of
all three SVD matrices could not be tested experimentally.

• There was no user interface for the upload of the ORMs and switching the active buffer
during the fast ramps (200 ms - 1 s), at the time of measurements presented in this
thesis. That’s why initial tests are planned for using a single ORM during the ramp.
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Corrector-strength calculation

The corrector-strength calculation is performed in the GDX module of Libera Hadron where
the SVD-decomposed matrices can be stored by the user in the form of S+UT and V. The
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Table 6.1 The symbols of the signals and matrices used in the COFB algorithm.

Symbol Description
x or y Measured orbit array
r reference orbit array
S+ Pseudo-inverse of SVD singular matrix
U SVD left orthogonal matrix
kp Proportional gains column of PI controller
ki Integral gains column of PI controller
V SVD right orthogonal matrix
c Scaling for radian to current
M Number of BPMs
N Number of corrector magnets
j Index of SVD mode

dimension of each matrix is 128× 128 which is larger than required even for SIS100 where the
number of BPMs and correctors are 84 each, while for SIS18 the ORM dimension is 12× 12.
Instead of any alteration in the FPGA programming for the dimension of the ORM, it is
decided to store the SIS18 ORM in the full dimension by setting the remaining elements
equal to zero, the calculations are verified in Python, beforehand. Similarly, the dimension
of global orbit vector is also kept equal to 128 while only first 12 elements contained beam
position from 12 BPMs of SIS18.
The sequence of calculation of corrector-strengths is shown in Fig. 6.1 where the output
of S+UT matrix is fed to a Proportional-Integral (PI) controller featuring the anti-windup
algorithm, the schematic is shown in Fig. 6.2. Whenever the PI controller output saturates
(the limit defined by the user), the Integrator accumulator (IAC) is held constant at the last
stored values. The integrator is reset at each restart of the COFB system. The controller
parameters are stored in one-dimensional arrays kP and ki of the size equal to the total
number of possible SVD modes of the ORM i.e. 128. Such an implementation provides the
liberty of using different controller gains for each of the SVD mode, a unique feature of this
implementation.
The output of PI controller is multiplied with V matrix and the calculated corrector-strengths
(radian) are scaled with the beam rigidity given as c scaling. The corrector-strengths are
calculated for all correctors on each Libera Hadron but only those are sent to the SER module
for which its 8 output ports are configured, beforehand.

6.3 Testing of Libera Hadron during commissioning
As mentioned before, Libera Hadron being a new development, was not used at any other
facility in the functional COFB system, at the time of commissioning of SIS18 COFB system.
Therefore, a number of tests were needed to be performed before its deployment in the COFB
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Figure 6.3 Frequency response of Libera Hadron and DAC card. The points show

the measurement while the lines show the linear fit.

system. The tests included the measurement of the pure delay from BPM signal input to
the corrector-strength output and correctness of the corrector-strength calculation. Some
additional features were also demanded and got implemented during the tests.

6.3.1 Delay measurement

In order to measure the time delay contribution of Libera Hadron in the feedback loop of
SIS18 COFB system, a signal generator is used to mimic the BPM data, artificially, in the
absence of beam. Amplitude modulation of a range of frequencies from 200 to 1500 Hz is done
over a base frequency of 300 kHz (typical bunch revolution frequency in SIS18 at injection).
Consequently, artificial closed orbit oscillation of the modulating frequencies is fed to the
calculation algorithm in the Libera Hadron. The range of modulating frequencies is chosen to
cover the expected bandwidth of the COFB system. The digital output from one of the SER
modules are displayed on oscilloscope with the help of digital-to-analog converter (DAC) card
whose time delay is separately measured to be 50± 10 µs. The output of DAC is compared
with the modulating input signal on an oscilloscope, for the pure delay measurement. The
transfer function representation of the pure delay τ can be written in frequency domain for
s = jω as,

e−τs = e−τjω = cos(ωτ)− sin(ωτ) (6.1)
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The phase difference between input and output sinusoidal signals for the transfer function of
Eq. 6.1 is,

∠e−τjω = ∆φ(ω) = −ωτ (6.2)

which shows that τ is equal to the slope of the straight line between phase difference (radian)
and the input angular frequency (radians per seconds). The measured amplitude ratio of
input and output signals as well as the phase difference is plotted in Fig. 6.3. One can see
that there is no amplitude attenuation of the signal in the Libera Hadron but a pure delay is
obvious that is calculated from the measured phase difference to be equal to 110 ± 10 µs,
excluding the delay caused by DAC. It is important to mention that the measured delay of
Libera Hadron is mainly due to the averaging done for 100µs for the closed orbit calculation
to provide data at 10 kHz and the delay of corrector-strengths calculation is much smaller
than that.

6.3.2 Fixed-point arithmetic test

An important parameter of performance for Libera Hadron is the digital signal processing
(DSP) during the corrector-strength calculation in the FPGA of GDX module. The algorithm
is implemented using fixed-point arithmetic, which provides a finite number of bits (register
width) to perform arithmetic operations at each step of the correction-settings calculation. It
is contrary to the floating-point arithmetic where the numerical representations of numbers
in binary format can ideally have infinite bits (e.g. working with pencil and paper or in
higher-level floating-points environments such as MatLab etc.). In the fixed-point N -bit
binary representation, a signed integer i can have a value only in the range −2N−1 ≤ i ≤ 2N−1.
Some relevant attributes of fixed-point arithmetic are given as [92],

• Precision is the maximum number of non-zero bits that can be represented for a given
register width.

• Resolution is the smallest non-zero magnitude that can be represented in a given
register width.

• Range is the difference between the most negative and most positive numbers repre-
sented in a given register width.

• Accuracy is the maximum difference between the real value of a number and its binary
representation.

• Dynamic range is the ratio of the maximum and minimum absolute values that can
be represented in a given size of bits. For a N -bit binary representation, the dynamic
range is 0 to 2N−1.

• Sum or Difference of two N -bit signed numbers requires N + 1 bits.

• Multiplication of two N -bit and M -bit signed number requires N +M bits.
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Table 6.2 Available register width and bit cutting at each node of the corrector-

settings calculation. The center value in the third column is retained while left and

right number of bits are cut [90]. For meaning of the symbols see Table. 6.1.

Calculation node Register Bit cutting
width

Global orbit, p 32 6− 21− 5
dP = r− p 22 0− 22− 0
S+UT matrix 18 0− 18− 0
[S+UT]dp 48 10− 22− 16
kp and ki arrays 18 0− 18− 0
[S+UTdp]kp 40 0− 40− 0
[S+UTdp]ki 40 0− 40− 0
Integration 41 1− 40− 0
Sum after PI 41 3− 22− 16
V matrix 18 0− 18− 0
[V]PI output 48 8− 20− 20
c array 18 0− 18− 0
[[V]PI output]c 38 8− 20− 10

Since, the multiplication has to be performed at different stages of the algorithm for the
corrector-settings calculations, a finite register width at each calculation node will require
a bit cutting of the resulting signal, if the available register width is less than the sum of
number of bits of two multiplying signals. This requires a careful allocation of register width
at each calculation node in order to avoid the loss of significant information and a wrong
corrector-strength calculation. Moreover, in order to use the whole dynamic range available
at each calculation node, the elements of the SVD matrices and the arrays of controller
parameters need to be normalized with the available dynamic range, before uploading.
In order to verify the correctness of calculation and the appropriateness of register width
at each node of the calculation, the algorithm implemented in the FPGA of GDX module
was simulated and the corrector-settings were calculated for a static closed orbit distortion
(upto 30 mm, shown in Fig. 6.4 top) produced artificially with the help of signal generator,
in the absence of beam. First of all, the comparison of the simulated output with the
corrector-settings calculated in the Libera Hadron helped to bench mark the simulation
against the real implementation.
As a second step, the comparison of the simulated output at each node with the values
calculated directly, without normalizing and bit cutting of the closed orbit and the ORM,
helped to testify the appropriateness of bit width at each calculation node. Changes in the
register width at some of the nodes was recommended, as a result of above comparison,
and was re-implemented by I-tech, accordingly. For example, originally the S+UT matrix
was normalized to the dynamic range of 12-bit while a 18-bit was demanded for better
resolution. Similarly, register width is increased from 22 to 40 for the multiplication of
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signal with controller parameter ki since the saturation was observed at this node, later
during beam-based tests. The finally implemented register width at each calculation node is
shown in Table. 6.2. The comparison between corrector-strengths calculated by all above
mentioned three methods is shown in Fig. 6.4 for the artificially generator closed orbit pattern,
demonstrating the faultlessness of corrector-strength calculation in Libera Hadron, before
commissioning of the COFB system.

6.3.3 Synthetic data generator for system identification

In order to measure the orbit response matrix and the temporal response of the corrector
magnets as well as for the full system identification, a synthetic signal generator in the SER
module was recommended and was installed by the I-tech during the tests of the Libera
Hadron. The synthetic generator replaces the real magnet correction data coming from the
COFB algorithm with the user defined synthetic data.

6.4 Summary
The main hardware used for the SIS18 COFB system is Libera Hadron developed by I-tech
Slovenia and is an in-kind contribution to the FAIR project. It is a single device containing
the dedicated modules for obtaining real time machine events, acquisition and processing
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of beam position data and calculating the corrector-strengths at 10 kHz with the help of
a Proportional-Integral (PI) controller and supplying to the power converters of corrector
magnets. The appropriateness of Libera Hadron for SIS18 COFB system was verified in
line with general performance requirements and theoretical investigations and simulations
presented in previous chapters.

104



Chapter Seven

SIS18 COFB system in horizontal plane:
orbit correction and characterization

This chapter presents the commissioning of the SIS18 COFB system and the on-ramp orbit
correction only in the horizontal plane due to the lack of adaptive control units for the power
converters of vertical corrector magnets at the time of thesis. Measurement of the frequency
response of component hardware as well as full-loop system identification is described. Orbit
response matrices are measured over the ramps of two different machine settings for Argon
and Uranium beams respectively, and the spatial model (i.e. ORM) mismatch is calculated
with respect to the injection ORM. The orbit correction is demonstrated with a fixed injection
ORM and for the fixed controller gains for each ramp. The effect of spatial model mismatch on
the stability and performance of the feedback system is investigated in the light of conclusions
drawn in Chapter 5.

7.1 Components of the COFB system
The hardware components of the COFB system realized in the horizontal plane of SIS18
include:

• 12 Shoe-box type beam position monitors (BPMs) (for details see sec. 2.8.3) one in each
section of the SIS18 synchrotron. BPMs had transformers installed for the impedance
coupling between the BPM plate and the 50 Ω side of the electronics, at the time of
measurements presented in this thesis. They were installed on SIS18 BPMs to test
them for their future use in SIS100.

• Three Libera Hadrons, one for 4 BPMs in which data is digitized at 250 MSa/s and then
processed at 10 kHz for the COFB system. The corrector-strengths are also calculated
at the same rate of 10 kHz. The detail of the hardware is already described in Chapter 6
and Appendix A.2.

• 30 m long Cat6 (Ethernet) cables, one for each corrector-strength output to be trans-
mitted from Libera Hadron to the adaptive control unit of the corrector magnet.

• 12 adaptive control units (ACUs) for converting digital values of the corrector-strengths
from Libera Hadron into analogue values of the corrector magnet current (ampere).

105



Table 7.1 Comparison of SIS18 and SIS12 modes of main dipole configuration [93].

Parameter SIS18 mode SIS12 mode
Peak magnetic field 1.8 T 1.2 T
Magnet ramping rate 4.2 T/s 10 T/s
power converter 4 sets each of 6 2 sets each of 12
configuration power converters power converters

connected in series connected in parallel

• 12 power converters for the horizontal corrector magnets.

• 12 corrector magnets which are extra winding on the main dipoles of SIS18 for the
horizontal plane.

7.2 Open-loop system identification
System identification is the process of mathematical modeling of system’s dynamic response
using measurements of the system’s input and output signal. The input signal can be
sinusoidal, step or pulse function of time while the outcome of system identification is the
frequency response of the system (sec. 2.8.1). The design, optimization and performance of
the controller strongly depend upon the frequency response of the system to be controlled.
The mathematical model of the system’s response helps to predict the controller parameters
in advance (mostly through simulations) in order to ensure the closed loop stability within
the limits of achievable performance. For the COFB system, the corrector magnets and their
power converters are the major contributors in defining the overall frequency response of
the system and the pure delay of the loop. As the first step, the frequency responses of
all 12 horizontal corrector magnets along with their power converters are measured one by
one. Since, the horizontal corrector magnets are extra winding on the main dipoles, the
measurements are performed for the two modes of the main dipole power converters i.e. slow
and fast modes called SIS18 and SIS12 modes (comparison given in table 7.1), respectively.
The purpose of the measurement is to investigate the effect of mutual induction between
winding of corrector magnets and main dipole magnets. The measurements are carried out
using the sinusoidal excitation of discrete frequencies as well as pulse inputs of various heights.
As a second step, the beam-based measurement of the combined frequency response of all
hardware in the loop are also made using the sinusoidal excitation of discrete frequencies for
each corrector channel. The details of the measurement are given in subsections below.

7.2.1 Sub-system identification: Corrector magnets, power convert-
ers and adaptive control units

As a first step, the frequency response of the corrector magnets and associated devices including
power converters and adaptive control units are measured. The electronic architecture of the
hardware components of these devices are out of the scope of the thesis and details can be
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found in [94]. Here, the features of these devices relevant to COFB system are listed while a
few more details are mentioned in Appendix B.1.

• The ACU is a modular digital control system for corrector magnet power converters.
It has a Multifunction Module that provides the user interface for manual operation,
service and diagnosis by computer or oscilloscope. It also contains the communication
ports to the external accelerator control system via the basic I/O-unit (Interface Card).
Two independent PI control loops and the control topology of the power converter are
also implemented in the Multifunction module.

• Universal Serial Interface (USI) supports communication between Multifunction module
with SER module of the Libera Hadron at a baud rate upto 20 MBit/s with the help of
Ethernet cable and RJ45 connector.

• Power converters have two special features: the rate limiter against the high slew-rate
and the anti-oscillation (causing interlock) as the protection measures for the power
converter hardware (diodes etc.).

Frequency response measurement

In order to measure the transfer functions of all 12 corrector magnets, their power converters
and ACUs, the sinusoidal output of the synthetic generator implemented in the SER module
of the Libera Hadron is used one by one for each corrector channel. The frequency of the
sinusoidal signal of fixed amplitude 0.13 V (0.78 A) is swept over a frequency range of 10−5000
Hz with appropriate steps and the current in the magnet coil was monitored with the help of
the DC current transformer (DCCT). The input signal and the output of the DCCT were
also available on two Lemo jacks of the Multifunciton Module (reserved for diagnostic in
Fig. B.1 of Appendix B) of the ACUs that could be recorded on an oscilloscope. An external
trigger was used for the measurement of the delay between input and output on oscilloscope.
Figure. 7.1 shows the measured Bode plots (amplitude ratio and phase difference of output
and input signals) for all 12 corrector magnets along with their individual power converters
and ACUs, for the sinusoidal excitation of amplitude 0.78 A. The dots in fig 7.1 represent
the frequencies of measurement while the line interpolation is only for visual purpose. One
can see that two out of 12 corrector channels have significantly different frequency response
which is related to the fact that these two channels did not have ACUs rather had analog
control loops along with DAC cards building a bridge between digital values sent from Libera
and the analog set value fed to the analog control loop. The exact circuit design for these
units is out of the scope of this thesis but the difference of their measured frequency response
is of significance for the performance of the COFB. The measurement further shows that the
magnitude response of majority of the correctors amplifies in the vicinity of 1.2 kHz while
attenuates below -3 dB even after 2 kHz.
In order to extract the mathematical models of the transfer functions, the Bode plots of
Fig 7.1 were fitted with the help of MATLAB function “tfest” used for the estimation of the
transfer function from the measured data with following arguments,

sys = tfest(data, np, nz) (7.1)
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Figure 7.1 Measured Bode plots for all 12 horizontal corrector magnets along with

their power converters and ACUs, in SIS18 mode.

where sys is the estimated transfer function and np and nz are the expected number of poles
and zeros, respectively. The data has to be supplied in complex form using the MATLab
command “frd” as,

data = frd(Are
jφ, ω) (7.2)

where Ar is the amplitude ratio, φ is the phase difference and ω is the frequency in radians,
from Bode plot.
The fitted Bode plots are shown in Fig. 7.2 for correctors marked as 4 and 11 in SIS18, as the
representatives of two groups of Fig. 7.1, one comprising of correctors 1 to 9 and 12 and the
other group containing correctors 10 and 11, respectively. The following transfer functions
were estimated in continuous Laplace domain ‘s’ (in units of radians) and are written in
zero-pole-gain form as,

subsys4 = e−0.0001s 2149.2(s+ 4.585× 104)(s+ 697.2)

(s+ 737.7)(s2 + 7245s+ 9.723× 107)
(7.3)

subsys11 = e−0.00013s 633(s+ 3.472105)(s+ 1069)

(s+ 642.9)(s2 + 7408s+ 5.15× 107)
(7.4)

where subsys means the transfer function of the subsystem (corrector magnet, its power
converter and ACU). It is important to mention that the symbol ‘s’ in the transfer function
is always Laplace variable and should not be confused with the symbol for second (time).
The extracted parameters (poles and zeros) from Eqs. 7.3 and 7.4 are given in table 7.2.
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Figure 7.2 Measured and fitted (in MATLAB) Bode plots for corrector magnets 4

and 11 with their power converters.

For both groups of corrector channels, the real parts of all the poles lie on the left-hand side
of the pole-zero complex plane (negative real parts) meaning that the system is open-loop
stable (sec. 2.8.1). But the gain and phase margins for corrector 4 and hence for other nine
similar correctors is quite small in comparison to the corrector 11, meaning less robustness
against transfer function uncertainty. Corrector 11 has the exact bandwidth (defined by
the 3 dB attenuation to input signal) of 207 Hz meaning that correctors 10 and 11 will
behave “different” above this frequency in the orbit correction process and also destroy the
assumption made for Eq. 2.72 that all corrector magnets have same temporal responses.
The Bode plots of Fig. 7.1 are measured for a very small amplitude (0.78 A) of sinusoidal
excitation because at higher amplitudes and high frequencies, the power converters get
switched OFF due to the anti-oscillation interlocks. Due to this reason, the measurement
of Fig. 7.1 is not the representative of system’s behavior against higher slew-rate for the
corrector-strengths variation. In order to quantify slew-rate limited response, pulse inputs of
variable amplitudes (0.7A, 6A, 12A, 18A and 36 A reached within 10µs) are applied and the
measured system response for corrector 4 is plotted in Fig. 7.3 for both SIS18 (green) and
SIS12 (blue) modes of the main dipole configuration. A similar measurement for corrector
11 is plotted in Fig. 7.4. The red curves show the input pulses in both figures. A ripple of
fixed amplitude (0.75 A) and frequencies of 600 Hz and its higher harmonics are recorded in
case of SIS12 mode (green in Figs. 7.3 and 7.4) of the main dipole configuration, for both
corrector channels. Except this, there is no major difference for the rise time of the output
response, for the two main-dipole configurations. On the other hand, the comparison of pulse
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Table 7.2 Parameters extracted from the system identification for the corrector

magnets 4 and 11 along with their power converters. p and z represent the poles

and zeros, respectively.

Parameter Unit subsys4 subsys11
p1 Hz −111 + 0j −170 + 0j
p2 Hz −576.5− 1460j −589.5− 978.3j
p3 Hz −576.5 + 1460j −589.5 + 978.3j
z1 Hz −7297 + 0j −55250 + 0j
z2 Hz −111 + 0j −70 + 0j
delay µs 100 130
bandwidth Hz 2295 207
gain margin dB 0.578 at 2kHz 7.12 at 1.4kHz
phase margin degrees 5.24 at 1.9kHz 169 at 37 Hz

response for step heights of different amplitudes shows a strong influence of the slew-rate of
the input signal on the response of the system as can be seen by the different rise time of
the output signal for different step heights. Such an influence is visible on both rising and
falling edges of the pulse. The maximum allowed slew-rate measured is 20 kA/s = 2 A/100
µs. In this case, it would not be appropriate to represent the system’s response with a single
transfer function for any rate of change of corrector-strengths while on the other hand, it is
not possible to take into account the rate of change of input signal for the transfer function
which is by definition independent of input signal.
In order to further understand the dependence of the system’s response on the slew-rate of
the input signal, the Bode plots are extracted from the pulse responses plotted in Fig. 7.3
and 7.4 denoted by u(t) from now onward, by calculating the impulse responses h(t) by
definition ([47]) as,

h(t) =
du(t)

dt
(7.5)

As defined in sec. 2.8.1, that the transfer function of a system is the Laplace transform
of its impulse response under assumption of zero initial conditions. Thereby, the frequency
responses are calculated by the DFT of the impulse responses h(t) calculated using Eq. 7.5 for
the rising edge response of each input height (i.e. step response) and are plotted in Fig. 7.5.
The frequency response measured by sinusoidal excitation for the amplitude of 0.78 A is also
plotted for comparison which completely overlaps with the Bode plot calculated from the step
response of same amplitude. The Bode plots extracted from step responses confirm a strong
dependence of the system’s frequency response on the rate of change of corrector-strengths
(i.e. slew-rate). This means that with the existing power converters, system’s effective transfer
function can be variable over the ramp depending upon the slew-rate of controller output.
This is in addition to the effect of spatial model mismatch discussed in chapter 5.
The Bode plots of Fig. 7.5 are also fitted in MATLAB for the transfer function estimation
(fitting not shown) and the dominant poles and zeros (for their meaning, see sec. 2.8.1) are
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Figure 7.3 Pulse response of corrector magnet 4 along with its power converter and

ACU for SIS18 (green) and SIS12 modes (blue) of main dipole configuration. The

input signal (red) have amplitudes of 0.7A, 6A, 12A, 18A and 36 A reached within

10µs.

extracted and plotted in Fig. 7.6 for all amplitudes of the step input. It can be seen that for
a very small slew-rate (0.78 A/10µs), the pole (at 1460 Hz) has its corresponding zero at
positive infinity meaning that increase in the controller gain in the feedback loop may cause
this pole to move to the right-hand side of the complex plane resulting in the instability of
the system around this pole’s frequency (for explanation see sec. 2.8.2). The same is true
for all other cases e.g. for the step of slew-rate of 6A/10µs, the zero at 2.5 kHz does not
pair with the pole at 1.6 kHz and this pole will also move to the right-half plane for higher
controller gains which is a direct consequence of spatial model mismatch (conclusion drawn
in Chapter 5), in the closed-loop response. On the other hand, the frequency of the dominant
pole whose zero lies on the right hand side decreases for higher slew rate, meaning that higher
the slew-rate, lower will be system’s oscillation frequency. These measurements infer that
in case of spatial model mismatch, the system can oscillate and can even be unstable at a
particular frequency that depends upon the rate of change of corrector outputs.

7.2.2 Full-system identification in open-loop

The temporal-response measurement discussed in previous subsection for the corrector
magnets and their associated components showed that the effective transfer functions for all
horizontal corrector channels in SIS18 have slew-rate dependence. Moreover, it is found that
two out of twelve corrector channels have different temporal responses. For the estimation
of the controller parameters and to predict the stability of the closed-loop in the presence
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Figure 7.4 Pulse response of corrector magnet 11 along with its power converter

and ACU for SIS18 (green) and SIS12 modes (blue) of main dipole configuration.

The input signal (red) have amplitudes of 0.7A, 6A, 12A, 18A and 36 A reached

within 10µs.

of spatial model mismatch, system identification is further extended to the beam-based
measurement for the full-loop, including all hardware components of the COFB system. The
hardware included in the measurement are corrector magnets, their power converters and
ACUs, vacuum chamber, beam, BPM hardware and Libera Hadron. In order to avoid integral
action of the controller, Kp and Ki were set equal to 1 and 0, respectively.
The feedback loop is interrupted at the point of controller output to achieve the open-loop
configuration, in Libera Hadrons. For this purpose, a special arrangement is made using all
three Libera Hadrons as shown in Fig. 7.7. In the presence of beam in SIS18, the COFB
is made OFF in one of the Libera Hadrons and the sinusoidal excitation in the frequency
range 100− 1500 Hz from its synthetic waveform generator is split into two outputs (each of
amplitude 0.7 A) to connect to the oscilloscope as well for use as input to the system, for
one corrector channel at a time. The response of the full-system in the form of the closed
orbit oscillations is measured by all 12 BPMs and made available to all Libera Hadrons at
the same time, in the form of global closed orbit. COFB is made ON at the second Libera
whose corrector output is physically disconnected from the power converters and is recorded
on the oscilloscope, as the system’s output response. The oscilloscope is triggered at the
Beam_ON event from the FTRN module of the third Libera. In this way, on one hand, the
input and output are recorded in the same “corrector space” and on the other hand, almost
all hardware are covered in the measurement.
In the full-system identification the corrector channels are found to have three different groups
in terms of their temporal responses (Bode plots), having 9, 2 and 1 members, respectively.
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Figure 7.5 Bode plots for horizontal corrector 4 and its power converter in SIS18

mode extracted from its responses to the pulse inputs of variable heights per 10µs.
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Fig. 7.8 shows the Bode plots of 6 out of 9 similar corrector channels, while Fig. 7.9 shows three
different behaviors, one representing each group. In comparison to subsystem identification,

113



power supply magnet
vacuum
chamber closed orbit BPMs

synthetic
signal

Libera 1

Libera 2

Libera 3

scope

steerer
strengths

FTRN
module

input signal
output signal

trigger

beam ON event

4×BPM
module

4×BPM
module

4×BPM
module

COFB
OFF

COFB
ON

COFB
OFF

12×1
orbit

12×1
orbit

12×1
orbit

Figure 7.7 Schematic of the hardware arrangement for the open-loop system identi-

fication.

a new pole-zero pair appeared in the vicinity of 300 to 400 Hz for majority of the corrector
channels in the full-system identification as predicted by the fitting in MATLAB, plotted in
Fig. 7.10 only for corrector channel 4. For corrector channel 8, such a pole-zero pair is not
detectable in the above mentioned frequency range (MATLAB fitting in Fig. 7.11). The group
comprising of correctors marked as 10 and 11, which also showed a significantly different
behavior in subsystem identification (Fig. 7.2), have a very small amplitude response (not
shown) even for low frequencies (e.g. 100 Hz) in comparison to all other corrector channels.
The Bode Plot for corrector channel 11 in Fig. 7.9 is thus only a relative amplitude and phase
advance compared to the their values at 100 Hz. The positive phase advance at 300 Hz and
consequently higher phase advance in comparison to other correctors, might be related to
the fact that actual phase advance is more than 2π radians and could not be measured in
the comparison of peaks of input and output sinusoidal signals. In this way, the reliability
of the measurement is only limited to 10 out of 12 corrector channels in the full-system
identification. Moreover, these measurement are limited only to small input amplitude of
0.7 A as higher amplitude signals could not be applied for higher frequencies, due to the
anti-oscillation interlocks of the power converters which resulted in the shutdown of the beam
in SIS18. Also, pulse input excitation could also not be performed for the full-loop, in these
measurements.
The transfer functions extracted from the fitting of Bode plots for correctors 4 and 8 are
given in the zero-pole-gain form as,

fullsys4 = e−0.00033s 7702.7(s+ 1.071× 104)(s2 + 649.6s+ 4.78× 106)

(s2 + 562.6s+ 4.176× 106)(s2 + 9033s+ 1.021× 108)
(7.6)

fullsys8 = e−0.00025s 1165(s+ 6.345× 104)(s2 + 1018s+ 4.851× 107)

(s2 + 1289s+ 4.657× 107)(s2 + 9388s+ 7.672× 107)
(7.7)

where fullsys represents the full-system transfer function whose important parameters are
listed in table 7.3. There is a negative gain margin at frequency 1.3 kHz for corrector 4 which
is the representative of the majority of the corrector channels, meaning the system can be
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Figure 7.8 Measured Bode plots for the full-system for 6 of 9 similar horizontal

corrector channels for sinusoidal excitation of 0.7A amplitude.
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Figure 7.9 Measured Bode plots for the full-system for 4th, 8th and 11th (similar to

10th) horizontal corrector channels for sinusoidal excitation of 0.7A amplitude.
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Figure 7.10 Measured and fitted Bode plot for the full-system for 4th horizontal

corrector channel for sinusoidal excitation of 0.7A amplitude.
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Figure 7.11 Measured and fitted Bode plot for the full-system for 8th horizontal

corrector channel for sinusoidal excitation of 0.7A amplitude.
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Table 7.3 Parameters extracted from the full-system identification for the corrector

channels 4 and 8. p and z represent the poles and zeros, respectively.

Parameter Unit fullsys4 fullsys8
p1 Hz −718.8 + 1438j -747.1 + 1177j
p2 Hz −718.8− 1438j -747.1 - 1177j
p3 Hz −44.8 + 322.1j -102.5+1081j
p4 Hz −44.8− 322.1j -102.5-1081j
z1 Hz −1704.5 + 0j -81.02+1106j
z2 Hz −51.7.5 + 344.1j -81.02-1106j
z3 Hz −51.7.5− 344.1j -10100 + 0j
delay µs 330 250
bandwidth Hz 2661 1608
gain margin dB −1.95 at 1.3 kHz 1.56 at 1.2 kHz
phase margin degrees 14.1 at 1.044 kHz 13.9 at 1.04k Hz

unstable in case of higher controller gain which is the direct consequence of the spatial model
mismatch. Looking at the imaginary parts of the poles and zeros, p3 and p4 form pairs with
zeros z2 and z3 and these pairs lie on the left-half of the complex plane (i.e. real parts are
negative). On the other hand, zeros corresponding to the poles having imaginary parts at
1.438 kHz (p1 and p2) lie on the positive infinity, meaning that with higher controller gains,
these poles can move to the right-hand side of the complex plane, resulting into the system
instability at 1.438 kHz.
As, mentioned before, the current pole-zero arrangement is only for an excitation of very
small amplitude of 0.78A/10µs. In case of higher rate of change of corrector output, if the
position of zero moves from left to the right of the complex plane for a pole of lower frequency,
the system will oscillate at that pole frequency instead of 1.438 kHz because of the finite
location of its corresponding zero as compared to the infinity, in the presence of spatial model
mismatch.

7.3 Controller parameter estimation
As mentioned in sec. 6.2.2, the controller implemented in the Libera Hadron for SIS18 COFB
system is the Proportional-Integral (PI) type. The transfer function for a PI controller in ’s’
domain is given as,

k(s)PI = Kp +
Ki

s
(7.8)

where Kp is unitless quantity and Ki has the units of reciprocal of time (1/s). The PI
controller parameters are estimated for the measured transfer functions for correctors 4 and
8, in case of full-system identification using MATLAB class “pidtune” as,

C = pidtune(sys,type) (7.9)
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where ‘sys’ is the measured transfer function for the open-loop and type can be any combination
of P, I and D. The type PI is used to estimate the Kp and Ki for corrector 4 and 8 and the
values are given in Table. 7.4. It is important to mention that these controller parameters
were regarded as an initial guess only, since the transfer functions measured as a result of
full-system identification do not include the effect of slew-rate limited response.

Table 7.4 PI controller parameter estimation for measured transfer functions of

corrector channels 4 and 8.

Transfer function Kp Ki

fullsys4 0.152 1340/s
fullsys8 0.219 1940/s

7.4 Orbit response matrix measurement
Orbit response matrix (ORM) measurement is also a kind of system identification but in the
spatial domain and is carried out throughout the ramps of different lengths (in time) using
a fixed frequency excitation signal for each corrector channel, one by one. The response of
the closed orbit on all BPMs to the excitation on one corrector magnet gives the elements
of corresponding column of the ORM (Eq. 2.23). The excitation signals are sent to each
corrector magnet using the synthetic wave generator of SER module of the Libera Hadron.
The resultant closed orbit excitation are recorded with the help of already developed software
named “TOPOS” [95] for all BPMs. The amplitude of the input excitation signal is chosen
equivalent to a corrector kick of 1 mrad at injection energy and the measured closed orbit
excitation is normalized to the magnetic rigidity over each ramp. In this way, the amplitude
of the closed orbit excitation is a direct measure of the elements of the ORM. Moreover, the
intrinsic BPM offsets could also be eliminated from the measurement by subtracting the
mean of the sinusoidal excitation of the closed orbit.
A typical response of the closed orbit over a ramp of maximum dipole field gradient of 1.4 T/s
to the excitation of 100 Hz on a single corrector, normalized to the beam rigidity is shown in
Fig. 7.12 for 3 BPMs, as an example. The ORM elements are calculated from this data at
the time intervals of 4 ms using a data length of 14 ms (more than one wave length) and the
singular values of the corresponding ORMs are plotted as their direct signature in Fig. 7.13.
A clear variation of the singular values over the ramp can be seen from injection to extraction.
Figure 7.14 shows the measured ρ(M) over the ramp (defined in sec. 5.3) with respect to the
ORM corresponding to the injection energy i.e. ρ(M) = ρ

(
I−R(t)R+

injection

)
for MAD-X

Rinjection (blue) and measured Rinjection (red). One can clearly see that MAD-X ORM has
an intrinsic large model mismatch with respect to the measured ORM even at injection
settings. The exact reason for such a large error in the MAD-X model of SIS18 is not known
and further measurement-based studies are carried out in order to match the model with the
measurement. On the other hand, the change in ρ(M) with respect to injection settings for
both cases is much larger up to 200 ms and ρ(M) even crosses 1 between 77 ms and 92 ms
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Figure 7.12 Example of closed orbit measured at 3 BPMs over the ramp as result of

sinusoidal excitation of 100 Hz at corrector 1 for the ORM measurement (normalized

with beam rigidity over the ramp).

50 100 150 200 250 300 350 400 450

0

5

10

15

20

25

30

35

Time (ms)

S
in
gu

la
r
va
lu
es

(a
rb
.
u
n
it
s)

s1
s2
s3
s4
s5
s6
s7
s8
s9
s10
s11
s12

Figure 7.13 Measured singular values over a ramp of dipole field gradient of 1.4

T/s at a step of 4 ms over a time window of 14 ms for each data point.

for the case of MAD-X Rinjection. The reason for such a hump in ρ(M) in the beginning
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Figure 7.15 Measured spatial model mismatch over a ramp of dipole field gradient

of 1.0 T/s at a step of 4 ms over a time windows of 14 ms.

of the ramp, can be associated with the quadrupole field errors caused by the quadrupole
magnet power converters not being able to follow the fast gradient. A similar effect was
already measured in the past on the coherent tune variation in the beginning of the ramp
(Fig. 3.5). Fig. 7.15 shows the measured ρ(M) over a relatively slower dipole field gradient i.e.
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1.0 T/s and one can see that the height of the hump in ρ(M) in the beginning of the ramp
is lower, as compared to the fast ramp. For both ramps, the maximum ρ(M) at extraction
with respect to measured injection ORM, is comparable to the theoretical values simulated in
Fig. 5.8 for the horizontal plane and marked in both Figs. 7.14 and 7.15. The measurement
of the ρ(M) over the ramp is helpful for the prediction of the stability of the COFB system
for the scenario of using a fixed ORM in the controller throughout the ramp (sec. 5.7).

7.5 Closed-loop measurements
SIS18 COFB hardware was first subjected to the basic beam-based capability tests in the
closed-loop configuration during the beam time of February 2019. The tests comprised of
communication between Libera hardware and the corrector power converters during the
COFB being ON, the accuracy of the corrector strength calculation and the ability of the
COFB system for the fast orbit correction over the ramp. Some of these tests performed
without beam are already reported in Chapter 6. The beam-based tests have been helpful to
make the FPGA programming of the hardware bug-free (via private communication with
I-Tech Slovenia). A second more dedicated demonstration of the closed orbit correction
and characterization of the COFB system in the closed-loop configuration was performed in
November 2019 and the results are presented in the following subsections.

7.5.1 On-ramp orbit correction

First-ever test

Figure 7.16 (top) shows a perturbed closed orbit recorded on all BPMs over a ramp of C6+

beam with number of particles of 1 × 108 from 11.38 MeV/u (Bρ = 0.974) to 300 MeV/u
(Bρ = 5.372). Besides the on-ramp beam position variation, the coupling transformers
mentioned in subsection 7.1 also mixed some external noise to the BPM signal that appears as
slow variation of beam position, particularly between 100 and 200 ms of the ramp. Figure 7.16
(bottom) shows the first ever effect of the fast COFB system recorded on the closed orbit of
SIS18 in the horizontal plane throughout the ramp of beam settings mentioned above. COFB
system was made ON upto 260 ms using a fixed MAD-X model of the ORM corresponding
to the injection energy in the controller and for Kp = 0.12 and Ki = 234/s (the measurement
refers to the time before performing the system identification). It can be seen that the COFB
system tried to bring the beam position on all BPMs closer to the golden orbit i.e. 0 mm
but a non-zero residual was left over throughout the ramp (Fig. 7.16 bottom). Later on, it
was found that 3 out of 12 correctors were disconnected from Libera hadron during that
operation. The extent of orbit correction seen in Fig. 7.16 is achieved only by the remaining 9
correctors. These results anyhow demonstrated the capability of this COFB system for a fast
orbit correction over the ramp as a first ever on-ramp implementation and is also reported
in [91].
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Figure 7.16 Orbit correction over the ramp in BPM space for the case of using

MAD-X based model ORM corresponding to the injection energy in the controller.

Measured beam position on all BPMs in SIS18 for uncorrected orbit (above) and for

corrected orbit up to 260 ms (below).

Orbit correction with MAD-X ORM

A second more dedicated demonstration of the orbit correction in SIS18 is made in November
2019 where all the correctors were connected to the Libera hadron and the system was
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Figure 7.17 Orbit correction over the ramp in BPM space for the case of using

MAD-X based model ORM corresponding to the injection energy in the controller.

Measured beam position on all BPMs in SIS18 for uncorrected orbit (above) and for

corrected orbit from 40 ms to 350 ms (below) using Kp = 0.046 and Ki = 234/s.

equipped with an improved bug-free version of FPGA programming of the Libera Hadron.
A beam of Ar18+ is accelerated from 11.38 MeV/u to 300 MeV/u within an acceleration cycle
of 450 ms and the COFB is made ON at 40 ms and is made OFF at 350 ms, with respect to
the ramp start. Also in this case, the COFB is run in a fixed-ORM mode with the MAD-X
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where Kp = 0.046 and Ki = 234/s for the orbit correction.
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Figure 7.19 Golden orbit manipulation during the orbit correction over the ramp.

Measured beam position on all BPMs in SIS18 for corrected orbit from 40 ms

to 350 ms using Kp = 0.046 and Ki = 234/s. The MAD-X based model ORM

corresponding to the injection settings is used in the controller.

124



200 400 600 800 1000
Frequency (Hz)

0.0

0.2

0.4

0.6

0.8

1.0

M
ag

ni
tu

de
 (a

rb
.u

ni
t)

Uncorrected
Kp=0.12, Ki=390/s
Kp=0.18, Ki=156/s
Kp=0.28, Ki=234/s
Kp=0.37, Ki=156/s

Figure 7.20 Orbit correction for SIS18 in frequency domain (average of the DFT

of position data from all BPMs) for various controller gains for the case of using

MAD-X based model ORM corresponding to the injection settings in the controller.

ORM corresponding to the injection settings in the controller. Figure 7.17 shows the beam
position on all 12 BPMs before and after orbit correction for with Kp = 0.046 and Ki = 234/s.
The effect of transformer coupling is more prominent for BPM2 in these measurements.
Initially, the controller gains are kept very small as compared to the estimated gains in order
to demonstrate the orbit correction only for the DC component (zero frequency) of the closed
orbit motion while high frequency correction is ignored so far. The achieved orbit correction
is very promising in terms of the RMS of the DC component below 1 mm throughout the
ramp during the COFB being ON, as shown in Fig. 7.18. The comparison of top and bottom
subplots of Fig. 7.17 shows that the closed orbit returns to its uncorrected position at 350
ms as the COFB system is switched OFF. These results show a very good tracking ability
of the COFB system to the set point which is further demonstrated in Fig. 7.19 with an
artificially varied reference orbit over the ramp and the COFB system followed it. In order to
perform high frequency orbit correction, the controller gains are increased gradually towards
the estimated values given in Table. 7.4 as the estimated Ki value resulted in the closed orbit
oscillations and consequently beam loss. The reason for such an instability is discussed in
detail in next section. The frequency spectra of the uncorrected as well as corrected closed
orbit for a set of controller gains are shown in Figure 7.20. Each curve is the average of
the DFT of all 12 BPMs data for each set of controller gains. The possible source of peaks
at 150 Hz and its higher harmonics is already discussed in sec. 3.2. One can see that orbit
correction up to 300 Hz has been achieved for all controller gains (the best for Kp = 0.37 and
Ki = 156/s). Moreover, the DC value of DFT of corrected data is much smaller as compared
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to the uncorrected data in proportion to the XRMS but not shown in Fig. 7.20 due to very
large amplitude for uncorrected orbit, as compared to other high frequency peaks.

Orbit correction with measured ORM

Orbit correction is further performed for another acceleration cycle of different machine
settings i.e. dipole field gradient of 1.0 T/s, ramp length of 600 ms, particle beam of U28+

and beam rigidity changing from 3.6 Tm to 18.2 Tm, over the ramp. The extraction energy
was 300 MeV/u and number of particles were 1× 108, as before. COFB system is run in the
same fixed-ORM mode but using the measured ORM corresponding to injection settings
instead of MAD-X model, hence the model mismatch over the ramp is given by the red curve
of Fig. 7.15. For this measurement, BPM2 had to be excluded from the input array of closed
orbit to the feedback controller since it had strong influence of the coupling transformer
mentioned in sec. 7.1. Such an external noise signal, when fed to the COFB system, can be
another source of closed orbit instability as the integral part of feedback system would keep
on building up the corrector current to compensate a BPM signal which is not changing as
the result of feedback action.
For the case of using measured ORM in the controller, the PI gains are increased gradually
and closed orbit instability is not observed even for the values larger than estimated in
Table. 7.4. Figure 7.21 shows the BPM data of 9 BPMs before (above) and after (below)
making the COFB system ON for Kp = 0.37 and Ki = 2343/s. The corresponding frequency
spectrum of uncorrected and corrected closed orbit is shown in Fig. 7.22 where it is obvious
that the disturbance rejection could be achieved up to 600 Hz. An enhancement in the lower
frequency side of spectrum is most probably the consequence of the external noise signal
being fed to the feedback loop in the presence of very high integral gain, by the other BPMs.
A comparison of Fig. 7.20 and 7.22 clearly proves the conclusion drawn in Chapter 5 that the
achievable bandwidth of disturbance rejection is reduced with the spatial model mismatch.

7.5.2 Spatial model mismatch and COFB system stability

In the previous subsection, following observations have been made during the on-ramp orbit
correction,

• In case of using fixed MAD-X ORM in the controller throughout the ramp, which
corresponds to the large spatial model mismatch (blue curves in Figs. 7.16 and 7.17)
the controller gains (particularly Ki) could only be applied to certain fraction of the
estimated values and orbit correction could only be achieved up to 300 Hz.

• In case of using measured ORM, the controller gains could even be applied higher than
the estimated values, and orbit correction could be achieved up to 600 Hz.

Both of the above experimental observations confirm a strong influence of the spatial model
mismatch on the performance of the COFB system. In this subsection, the effect of such a
model mismatch is further investigated experimentally for the SIS18 COFB system, in the
light of and as a confirmation of theoretical and simulation results worked out in chapter 5. In
sec. 5.7, it is shown that larger ρ(M) can make the COFB system unstable at the frequency
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Figure 7.21 Orbit correction over the ramp in BPM space. Measured beam position

on all BPMs in SIS18 for uncorrected orbit (above) and for corrected orbit from 40

ms to 540 ms (below) for the case of using measured ORM corresponding to the

injection settings and controller gains of Kp = 0.37 and Ki = 2343/s.

of the dominant pole of the open-loop system whose corresponding open-loop zero is on
the right-hand side of the complex plane. The pole movement as a function of ρ(M) for a
first-order system is shown as an example, by the simulations in Fig. 5.18. Furthermore, the
scaling (for decrease) of the controller gains with ρ(M) required to avoid instability of the
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controller. For explanation of low frequency enhancement, please see text.

COFB system is also described in Eq. 5.38.
In order to achieve the ρ(M)-dependent instability of the SIS18 COFB system, the ramp of
Ar18+ from 11.38 MeV/u to 300 MeV/u is used for orbit correction with the MAD-X ORM of
injection settings for which ρ(M) follow the blue curve of Fig. 7.14 and the best disturbance
rejection is achieved for controller gains of Kp = 0.37 and Ki = 156/s, previously (Fig. 7.20).
COFB is made ON at 40 ms and the proportional gain is fixed to this value while integral
gain is increased and resultant beam position on BPM12 is shown in Fig. 7.23 for a number
of integral gains (Kp and Ki are both constant over one ramp). The frequency spectrum of
the BPM data is shown in Fig. 7.24. One can see that with the increase of controller gain Ki,
the closed orbit starts oscillations with following two interesting facts,

• The closed orbit oscillation occurs only over a specific time window of the ramp.

• The frequency of oscillations i.e. ≈ 335 Hz, does not exist in the uncorrected closed
orbit as can be seen in the red curve in Fig. 7.22. Anyhow, this frequency of oscillations
is closer to the one of the open-loop pole frequency of 322 Hz named as p3 in Table 7.3.

The existence of oscillations only for a specific time window for higher controller gain can be
explained with the help of ρ(M) curve plotted over the BPM data in Fig. 7.23. The amplitude
of closed orbit oscillations first increases and then decreases (as does ρ(M)) which gives a
strong hint on the movement of the dominant pole over the ramp, from left- to right-half
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Figure 7.23 Closed orbit excitation for higher controller gains for the case of using

MAD-X based model ORM corresponding to the injection settings in the controller.

The induced oscillations are in the region of maximum ρ(M).

of the complex plane and then back to the left-half, following the pattern of ρ(M). On the
other hand, no oscillations for smaller controller gains is also consistent with the theoretical
conclusions made in sec. 5.7 that for larger ρ(M), the controller gain needs to be reduced to
avoid oscillations and consequently instability. In case of small ρ(M), even much higher
controller gains (Kp = 0.37 and Ki = 2343/s) do not cause any closed orbit oscillations at
this frequency, as evident from Fig. 7.22 where the ρ(M) follows the red curve of Fig. 7.15
over the ramp.
The measured frequency of closed orbit oscillation is an apparent contradiction with the
prediction of the open-loop system identification. As mentioned before, there exists a
conjugate pair of open-loop poles p3 and p4 in Table 7.3 at frequency of 322 Hz and the
frequency of closed-loop oscillation being 335 Hz shows that the open-loop pole sensitive
to the spatial model mismatch must be p3 or p4. But the zeros corresponding to these
poles lie on the left-hand side of the complex plane (negative real parts) which means that
movement of these poles towards their zeros for larger ρ(M) will not let these poles to appear
on the right-hand side of the complex plane and hence, the closed-loop system should not
oscillate and diverge at these pole frequencies. Anyhow, it is important to recall that the
open-loop poles and zeros given in Table 7.3 are measured as a result of system identification
performed with a sinusoidal signal much below the slew-rate limitation. It is observed in the
subsystem identification in sec. 7.2.1 that the open-loop zeros corresponding to the poles of
lower frequency can be shifted to the right-hand side of complex plane for higher slew rates
of input signal as shown in Figs. 7.5 and 7.6. Based upon above information, it is concluded
that,

• The instability observed in the form of closed orbit oscillations for higher controller
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gains is caused by the spatial model mismatch.

• The frequency of oscillation belongs to an open-loop pole whose corresponding open-loop
zero lies on the right-hand side of the complex plane but is not measured on that side of
the complex plane during the open-loop full-system identification and required further
measurements performed in the closed-loop configuration.

7.5.3 Closed-loop system identification

SIS18 COFB system was further characterized in the closed-loop configuration with the help
of disturbance applied as a step change in the controller output at various times over the
ramp. Figure. 7.25 shows the location of the disturbance on the schematic diagram of the
feedback loop (in Laplace domain) where the transfer function from this disturbance location
to output is called the load-disturbance sensitivity function [46] and can be written as,

G(s)

1 + K(s)G(s)
(7.10)

Instead of applying external signal as the step input additively, which would have changed
the input to the system G(s), the beam rigidity vector inside the Libera Hadron called as c
scaling in sec. 6.2.2, is changed during the ramp in order to apply a step disturbance to the
feedback system. This arrangement also has effectively the same action of changing the input
to the system, as a step.

130



− +×K(s)

controller

wr = 0 ∆w(s) Θ(s) w(s) r(s)

system
d(s)

G(s)

Figure 7.25 Schematic diagram of closed-loop system identification. The step input

is applied at the output of the controller as a multiplication factor.

First of all, the step disturbance is applied during the ramp of dipole field gradient of 1.4 T/s,
(beam parameters are already given in previous subsection). MAD-X injection ORM is used
for the orbit correction so that ρ(M) followed the blue curve (corresponding to higher values)
in Fig. 7.14. The controller output is changed at times and by the factors given in table 7.5
while no beam loss occurred during the closed orbit manipulation, in this measurement. In
order to compare the closed-loop response at different times of the ramp, it is necessary to
chose a beam motion which has least variation during the ramp. For this purpose, the BPM
position is transformed into the SVD-mode space (for details see sec. 2.7.4) as,

X --m =
1

12
UTX (7.11)

where U is the SVD matrix, X and X --m are the closed orbit vectors in real and in mode
spaces, respectively. Figure 7.26 shows the beam position coupled to the 4th SVD mode
as a result of step disturbances applied at different times over the ramp during the orbit
correction (given in Table 7.5). The closed-loop response to a step disturbance of factor 4.2
at 210 ms of another slower ramp of dipole field gradient of 1.0 T/s is also plotted in black,

Table 7.5 Information of the step disturbance applied to the SIS18 COFB system

in the closed-loop configuration. The last value corresponds to the ramp of orbit

correction with measured injection ORM while others are for MAD-X ORM.

Time step change ρ(M)
on ramp (factor)
90 ms 1.9 1.02
100 ms 2.1 0.83
110 ms 2.3 0.82
130 ms 2.6 0.58
150 ms 2.9 0.60
180 ms 3.3 0.51
200 ms 3.7 0.58

210 ms 4.2 0.19
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Figure 7.26 The closed-loop response of the SIS18 COFB system coupled to the

one of the least varying SVD modes (4th) of MAD-X ORM over the ramp, to the

step inputs at various positions on the ramp (i.e. at different magnitudes of spatial

model mismatch).

for comparison where ρ(M) = 0.19. Qualitatively, one can see that the closed orbit oscillates
as a response to the step disturbance analogous to an higher (at least 2nd) order system. For
the step changes at 90 ms, 100 ms and 110 ms, closed orbit oscillations can be seen growing in
the beginning and later decaying meaning that the COFB system passed through instability
region over the ramp at these times in response to the step disturbance. On the other hand,
the oscillations only decay for the rest of the times even for larger amplitudes of step. It is
important to mention that the controller parameters are identical for all ramps of Fig. 7.26
(Kp = 0.12 and Ki = 469/s) except for step response at 210 ms for which Kp = 0.19 and
Ki = 2343/s. These values are chosen to have a stable closed-loop response in the absence of
step disturbance. The closed orbit oscillations die very fast for the case of 210 ms because of
smaller ρ(M) = 0.19 even for a higher amplitude of step disturbance.
For the quantitative analysis, beam oscillations (in mode space) are curve fitted one by one,
with the following sinusoidal function,

X --m(t) = Aeλt sin (ωt+ φ) (7.12)

where A is the amplitude, λ is the decay constant, ω is the frequency of oscillations and φ is
the phase, respectively. The fitting is done over a time window of 14 ms moved by 100 µs so
that the change in the parameters of Eq. 7.12 could be measured as a function of time on the
ramp and consequently as a function of ρ(M).
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plotted in Fig. 7.28.

Eq. 7.12 is the well-known solution of the second order system (e.g. harmonic oscillator)
where the characteristic frequency ω is the imaginary part of the dominant pole of the transfer
function given as,

H(s) =
Aω2

s2 + λs+ ω2
(7.13)

where the pole is defined as p = λ± jω
√

1− ( λ
ω

)2 and the sign of λ infers the location of
the pole on the right- (positive λ) or the left- (negative λ) hand side of the complex plane
(for details see sec. 2.8.1).
The decay constants λs extracted from curve fitting, for each step response of Fig. 7.26 are
plotted as function of time of the ramp in Fig. 7.27. An instability of the COFB system
is clearly evident from the positive sign of λ up to 130 − 140 ms for the response to step
disturbance at 90 ms, 100 ms and 110 ms. While, a continuous decrease in the decay constant
over the ramp resulting into the sign change from positive to negative shows a transition
from instability to stability of the COFB system, for the above mentioned times of step
disturbances. For the rest of the times, the decay constants remain negative even for higher
step change in the controller output at 130 ms to 200 ms. The comparison of ρ(M) (blue
curve of Fig. 7.14) and the decay constants of Fig. 7.27 confirm the direct relation between
the instability of the COFB system and the larger ρ(M).
Figure 7.28 shows the movement of the poles (extracted by the fitting of step responses of
Fig. 7.27) on the complex plane, for all step changes over the ramp, where the frequency

133



−60 −50 −40 −30 −20 −10 0 10 20 30 40
330

332

334

336

338

340

342

344

Decay Constant (1/s)

F
re
q
u
en

cy
(H

z)

90 ms, ρ(M)=1.02 100 ms, ρ(M)=0.83

110 ms, ρ(M)=0.82 130 ms, ρ(M)=0.58

150 ms, ρ(M)=0.60 180 ms, ρ(M)=0.51

200 ms, ρ(M)=0.58

Figure 7.28 Pole movement as a function of model mismatch over the ramp measured

by the fitting of step responses of beam motion coupled to the one of the least varying

SVD modes (4th) of MAD-X ORM over the ramp, plotted in Fig. 7.26.

of the oscillations is plotted versus the decay constant. One can see that the frequencies of
oscillations vary only within a small window of 330 and 340 Hz and is centered around 335
Hz. It is the same frequency as reported in the previous subsection for the instability caused
by the higher controller gains in the region of higher ρ(M).
As mentioned before, the measured closed-loop response to the step disturbance can be
modelled with the help of transfer function given in Eq. 7.10 and is also simulated for the
effective controller gains corresponding to ρ(M) = 0.58 i.e. K(s)/(1− 0.58) (for details see
sec. 5.7) and is compared with the measured response to the step disturbance at 200 ms.
The open-loop transfer function is optimized as a result of simulation in order to overlap
the measured and simulated responses as shown in Fig. 7.29. The fitted open-loop transfer
function is given in the zero-pole-gain form as,

sys = e−0.00033s 7702.7(s+ 1.071× 104)(s2 − 494s+ 4.735× 106)

(s2 + 185.6s+ 5.044× 106)(s2 + 9033s+ 1.021× 108)
(7.14)

which has a conjugate pole pair at −14.8± 357j and conjugate zero-pair at 39.3± 344j. The
frequencies are slightly different from those measured during open-loop system identification
which is performed for each of the corrector channel, separately while the transfer function
of Eq. 7.14 is extracted from the response of the closed orbit including all 12 correctors
along with their slew-rate limitation. The closed-loop system identification has confirmed
that the zero corresponding to the pole of frequency of closed orbit oscillations lies on the
right-hand side of the complex plane, although is not measured during the open-loop system
identification on that side of the complex plane.
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Figure 7.29 Closed-loop response to the step disturbance at 200 ms of the ramp

for which ρ(M) = 0.58. Further details in text below.

7.6 Summary
In this chapter, the commissioning and the operation of a fast closed orbit feedback system for
the on-ramp orbit correction in the horizontal plane of SIS18 synchrotron has been described.
The important steps and the results can be summarized as follows:

• The commissioning of the fast COFB system is realized using Libera Hadron (hardware
details in chapter 6) for BPM data processing and controller output calculation. 12
corrector magnets and 12 BPMs of SIS18 are engaged by the COFB system.

• The sub-system identification including corrector magnets, their power converters and
adaptive control units is performed as a first step, using sinusoidal (amplitude 0.7 A)
and pulse signals (amplitude 0.7, 6, 12, 18 and 36 A/10 µs) as excitation in order to
measure the transfer functions. It is found that the slew-rate limitation implemented in
the power converters of the corrector magnets changes the effective transfer function
for higher input slew-rates. The salient effects of slew-rate limitation are the movement
of zeros corresponding to the poles of lower frequencies to the right-hand side of the
complex plane along with the reduction of effective bandwidth of the system. Moreover,
it is found that 2 out of 12 corrector channels have different transfer functions, during
these measurements.

• The full-loop system identification is also performed using sinusoidal excitation (ampli-
tude 0.78 A) and new pole-zero pairs in the vicinity of 300− 400 Hz are measured for 9
out of 10 similar corrector channels of subsystem identification.
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• The transfer function measured as result of full-loop system identification is used for the
estimation of the controller gains. The estimation is only an initial guess as the effective
transfer function is expected to change during the ramp due to variable slew-rate of
power converters.

• The orbit response matrix (ORM) is measured over the entire ramps for two different
machine settings using a sinusoidal excitation of amplitude corresponding to 1 mrad
corrector strength, one by one for each corrector magnet. The spatial model mismatch
is calculated (in terms of ρ(M)) over the ramp with respect to MAD-X model as
well measured ORM of injection settings. The maximum ρ(M) at extraction energy
relative to measured injection ORM is comparable to the theoretical value simulated in
Chapter 5. It is also found that the MAD-X model has an intrinsic large mismatch
(ρ(M) = 0.4− 0.6) with respect to the measured ORM even for injection settings. The
exact reason for such a mismatch is not known and further investigation is carried out
to correct the MAD-X model.

• The closed orbit correction is demonstrated with the help of MAD-X and the measured
ORM corresponding to injection settings for fixed controller gains for each ramp. The
maximum achieved bandwidth of orbit correction is 600 Hz, which reduced to 300 Hz
in case of larger spatial model mismatch i.e. for using MAD-X ORM in the controller.

• The effect of spatial model mismatch on the stability of the COFB system is demon-
strated experimentally and it is shown that the spectral radius ρ(M) can alone define
the performance and stability of a COFB system, even in fast regime, in agreement
with the theoretical conclusions made in Chapter 5 as a result of simulations.

• The frequency of oscillations measured in case of COFB system instability due to the
larger ρ(M) is around 335 Hz. Although a conjugate-pair of poles frequency 322 Hz
has been measured during the open-loop full-system identification, their corresponding
zeros are measured on the left-hand side of the complex plane, predicting that closed
loop system should not get unstable on this frequency. Either, the zeros lie on the
right-hand side of the complex plane in reality and are not measured or they appear on
that side due to the high slew-rates of the corrector-strength variation during the ramp.

• In order to further confirm the dominant poles of system, a closed loop system identifica-
tion is performed with the help of step change in the controller output, and the system
response is made to oscillate (measured as closed orbit oscillations). The measurement
also confirm the dominant pole movement from left- to the right-hand side of the
complex plane as a result of larger ρ(M) is centered around 335 Hz.

• The closed orbit instability due to spatial model mismatch presented in this chapter for
the fast regime is the first demonstration of its kind in the field of orbit correction. But
a quantitative analysis can be further extended for the explanation of the conclusions
emerged during experiments having an improved open-loop system identification and
simulations.
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Chapter Eight

Summary and outlook

This chapter summarizes the thesis for its contributions made in the field of closed orbit
correction in pursuit of the realization of fast and robust closed orbit feedback system for
SIS18 synchrotron of FAIR project.

8.1 Summary
Closed orbit feedback (COFB) system is implemented in most synchrotrons for the correction
of transverse distortions in the closed orbit, caused by the time-dependent and fixed dipolar
field errors. The transverse beam position is measured with the help of beam position monitors
(BPMs), and orbit correction is performed by correctors, which are dedicated dipole magnets.
The required bandwidth of disturbance rejection and the allowed residual depends upon the
type of synchrotron. For example, in the storage rings of light sources the bandwidth of
interest lies from DC to 150 Hz while the position deviation is required to be less than several
µm. This is in agreement with the allowed position deviation of less than 10% of the beam
size which is a generally accepted criterion in the light source community. SIS18 of the FAIR
project is a ramping hadron synchrotron and will serve as the booster ring for the upcoming
SIS100 synchrotron. Previously, the orbit correction in SIS18 has been performed only at
injection and extraction where the optics is fixed and only against DC offsets. While high
frequency perturbations up to 1 kHz exist throughout the ramp, requiring a fast on-ramp
COFB system, which has been realized as the final goal of this thesis. It is also worthwhile
to mention that a cycle-to-cycle feedback system for SIS18 is also under development for the
past few years.
SIS18 has some peculiar behaviours as compared to the storage rings of the light sources as
well as other ramping hadron synchrotrons (e.g. Large Hadron Collider), the most important
of them being the on-ramp optics variation, very short lengths of the ramps (200 ms to 1 s)
and the cycle-to-cycle variation of beam parameters. To the best knowledge of the author,
this is the first realization of a fast on-ramp COFB system which is also robust against above
mentioned features of SIS18.
In Chapter 4, first of all, the existing methods for global orbit correction are reviewed in order
to deal with fast on-ramp optics variation. The most commonly used method relies on the
singular value decomposition (SVD) of the orbit response matrix (ORM) due to its robustness
regarding the (pseudo-)inversion of the ORM for the corrector-strengths calculation.
Certain limitations of the SVD-based method are pointed out, in the context of on-ramp
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orbit correction. SVD is a technique for decomposing any matrix (ORM, in case of orbit
correction) into two left and right orthogonal matrices and one middle diagonal matrix, whose
diagonal entries are called singular values. The columns of orthogonal matrices are regarded
as SVD modes that are uniquely coupled through singular values. In this way, the closed
orbit is effectively resolved into the SVD mode space, analogous to the vector resolution into
its Cartesian components. But the SVD modes have no clear analytical interpretation, and
consequently, the closed orbit is resolved into a mode space that has no physical meaning in
order to relate different beam phenomena and their variation over the ramp with the resolved
components of the closed orbit. Similarly, there is no apparent analytic way of associating
uncertainties in the lattice parameters, e.g. tune to the singular values. The later limitation
was also reported previously in the literature. The most critical limitation is regarding the
update of the ORM during the ramp. There is an interconnection between all three SVD
matrices, and the update of the (pseudo-)inverse of ORM in the feedback controller requires
the calculation and updating of all three matrices for each time step of the ramp.
A new method for the decomposition and the (pseudo-)inversion of the ORM is presented in
this thesis, relying on the symmetry exploitation in the ORM. A special kind of symmetry
called circulant or block-circulant (depending upon the number of BPMs and correctors
per cell) arises in the ORM if the synchrotron has a symmetry in its cells, which is the
case for most of the synchrotrons. For the broken symmetry e.g. due to the placement of
insertion devices in light sources, a nearest-circulant approximation has also been worked
out, making the method applicable to a vast majority of synchrotrons. The method has the
following powerful implications: Firstly, it simplifies the ORM decomposition by the discrete
Fourier transform (DFT) of its only single row or a single block of rows that repeat cyclically
throughout the ORM to make it circulant or block-circulant, respectively. This means a
significant reduction in the computational complexity and the required memory resources
in comparison to SVD. The complex Fourier coefficients form the middle diagonal matrix
while left and right orthogonal matrices are standard Fourier matrices, which are constant
for any circulant ORM of the same size. Secondly, in this case, the mode space comprises
of analytical sine or cosine functions that give solutions to most of the limitations of the
SVD-based method discussed above. Since the Fourier matrices are fixed even if the ORM
changes (retaining the symmetry), one needs to update only the Fourier coefficients over the
ramp for a changing machine optics, instead of updating all three matrices at each time step
of the ramp. An equivalence of the SVD- and DFT-based decomposition is presented for the
circulant ORMs, which provides a physical interpretation also to the SVD modes, in this
case.
The circulant symmetry is explored in the vertical ORM of SIS18 synchrotron, while appli-
cation of nearest-circulant and nearest-block circulant approximation is demonstrated for
the horizontal ORM of SIS18 and both ORMs of SIS100 synchrotrons. The advantages of
symmetry exploitation are also discussed, including computational complexity, and demon-
strated with the help of simulations for the orbit correction in case of “missing” BPMs (e.g.
ignoring a possibly faulty BPM position reading). Moreover, the better manipulation of a
beam phenomenon i.e. the dispersion-induced orbit shift is demonstrated with the help of
Fourier-mode space over SVD-mode space, experimentally in the horizontal plane of SIS18
using the nearest-circulant approximation.
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Another significant contribution of this thesis discussed in Chapter 5 is the performance and
stability analysis of COFB systems against the ORM mismatch between the synchrotron and
the feedback controller. This corresponds to the on-ramp orbit correction scenario using a
fixed (pseudo-)inverse of the ORM or updating it after larger time intervals (due to technical
limitations), while the ORM in the synchrotron changes continuously during the ramp.
Interestingly, no study was found in the literature to predict a COFB system’s behaviour for
the comparable magnitudes of ORM mismatch observed for SIS18. The uncertainty modeling
in the ORM for small tune variations was found in literature based upon the small gain
theorem of the control theory, which yields very stringent stability margins and hence proved
to be impractical for the analysis of the SIS18 COFB system.
COFB system is analyzed by splitting the system’s model into two separate parts, i.e. tem-
poral part containing the time response of all hardware in the feedback loop and the spatial
part representing the ORM, in this thesis. Feedback systems are divided into two regimes,
i.e. slow and fast regimes. In the slow regime, the time step of orbit correction is at least an
order of magnitude longer than system delays and open-loop time constants. The motivation
for this classification is first to ignore the temporal parts of the system and the controller
in the slow regime to define stability criteria only in terms of the ORMs and then modify
the results for the case of including temporal parts for the fast regime. The stability criteria
defined for the slow regime called spectral radius condition (Chapter 5) is found to give a
margin higher than the small gain theorem by a factor equal to the condition number of the
controller ORM. It is emphasized that the spectral radius condition can be applied to any
kind of ORM variation as it only depends upon the relative discord between the two ORMs
hence presenting it as a practical figure of merit for day-to-day COFB system operation for
every facility. A relation of the spectral radius to a measurable quantity, i.e. the correction
ratio defined as the ratio of residual orbit (RMS value) to the perturbed orbit, after a single
correction is also derived.
Various sources of spatial model mismatch in SIS18, including on-ramp ORM variation,
intensity-dependent tune shift and beta beating, are considered in simulations and the spec-
tral radius is calculated for ORM variation with respect to injection settings, zero tune shift
and zero beta beating, respectively. More ORM variation is found in the horizontal plane
than in the vertical plane, which is consistent with the fact that lattice settings variation
occurs primarily in the horizontal plane. These simulations predicted that SIS18 COFB
system should not be unstable even for the maximum on-ramp model mismatch for the
slow regime of operation in both planes, for the calculated magnitudes of ORM mismatch.
For the intensity-dependent tune shift, it is found that the instability of the COFB system
depends not only upon the magnitude of the tune shift but also on the direction of tune
shift towards or away from integer value. Tune shift away from integer value ensures the
COFB system stability even for a larger magnitude of tune shifts. The validity of the spectral
radius condition is verified with simulations for SIS18 and experimentally at COSY Jülich by
observing the correction ratio over many iterations for various sources and magnitudes of
the ORM mismatch. It is further found that the beta beating itself is not a crucial source of
feedback instability unless accompanied by a tune shift towards an integer value.
The stability criteria framework is extended to the fast feedback regime taking system and
controller dynamics into account, and the transfer functions are derived in terms of the
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spectral radius. It is found quantitatively and demonstrated with the help of simulations
that the achievable bandwidth of disturbance rejection decreases with the increase of ORM
mismatch. As a result, to reach a certain bandwidth throughout the ramp, the ORM update
rate has to be changed. Moreover, the required scaling of the controller parameters with
ORM mismatch is also derived in order to avoid closed-loop instability.
Along with the investigations mentioned above, SIS18 COFB system has also been commis-
sioned for the horizontal plane. Chapter 6 presents the details of the main hardware resource
which is a Slovenian in-kind contribution to FAIR. It is a dedicated device named Libera
Hadron used for the BPM data processing, controller implementation and the corrector-
strength calculation. The pure delay measurement and fixed-point arithmetic tests are
performed for Libera Hadrons, and three of them are integrated with 12 BPMs and 12
corrector magnets to realize the global COFB system.
Chapter 7 contains the further details of commissioning of the SIS18 COFB system along with
the final results of on-ramp orbit correction. The sub-system identification is performed for
each corrector magnet along with its power converter and the adaptive control unit with the
help of sinusoidal input as well as pulse inputs of various amplitudes, to estimate the transfer
functions. The power converters have a slew-rate limitation which is also recorded during
the sub-system identification. A beam-based full-loop system identification is also performed
for each corrector magnet using the sinusoidal excitation. The controller parameters for the
Proportional Integral (PI) controller implemented in Libera Hadron are estimated based upon
full-system identification. The estimation is taken as an initial guess since the effective transfer
function is expected to change during the ramp for higher slew-rate of corrector strengths,
as predicted by sub-system identification. ORM measurements are also performed over the
entire ramps for two different machine settings. Hence, the spectral radius is measured with
respect to the MADX model and the measured injection ORMs. Unexpectedly, the MADX
model has shown an intrinsic mismatch with respect to the measured ORM, even at injection
settings.
On-ramp orbit correction is demonstrated for the fixed controller parameters and for the
fixed injection ORM for corrector-strength calculation. The maximum achieved bandwidth of
orbit correction is 600 Hz if the measured injection ORM is used, while for using the MADX
model, the orbit correction up to 300 Hz has been be achieved.
The experiments are further extended including closed-loop system identification, to verify
the theoretical conclusions regarding the stability and performance of the COFB system
against ORM mismatch in the fast regime.

8.2 Outlook
• One reason for the deviation from circulant or block-circulant symmetry in the ORMs of

the majority of storage rings is the placement of insertion devices in 3rd generation light
sources. Modern facilities are regaining the symmetries in their ORMs, e.g. Diamond-II
of the UK, ALBA of Spain, Sirius of Brazilian Light Source and NSLS-II of Brookhaven
National Laboratory. Symmetry exploitation and the DFT-based decomposition of the
ORM can be applied as an alternate to the SVD for modern synchrotrons and light
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sources. Even a recent effort has already been reported to utilize the computational
benefits of symmetry exploitation for the Diamond-II COFB system [96].

• The spectral radius condition that has been shown to yield practical margins of ORM
mismatch between the controller and the synchrotron, for the stability of the COFB
system can be utilized by any synchrotron facility regardless of the nature of the
ORM mismatch. It can be used as a figure of merit for the performance and stability
of a COFB system for day-to-day operation in case of ORM variations. Typically,
efforts are made on the hardware side of the COFB system in order to increase the
bandwidth for disturbance rejection. Based upon the conclusions drawn in this thesis,
it is strongly recommended that the spatial model mismatch should also be investigated
thoroughly even for the fixed-lattice storage rings as it can have a detrimental effect on
the achievable bandwidth.

• SIS18 COFB system has been tested using the SVD-decomposed fixed ORM throughout
the ramp in the measurements presented in this thesis. In order to benefit from the
symmetry exploitation in terms of using only DFT-coefficients for updating the ORMs,
the FPGA design of the Libera Hadron needs to be upgraded for storing the complex
Fourier coefficients and matrices for the corrector-strength calculation.

• Experimental results presented in this thesis are the first-ever demonstrations of the effect
of spatial model mismatch on the stability and performance of the COFB systems in slow
and fast regimes. However, an improvement in the open-loop full-system identification,
including the effect of slew-rate, is required for the quantitative understanding of the
closed-loop behaviour in the presence of spatial model mismatch and for reproducing it
in simulations.

• For the vertical plane of SIS18, the installation of adaptive control units of power
supplies and the addition of one more Libera Hadron is required for the commissioning
of the COFB system in this plane. The system identification and the ORM measurement
over the ramp will also be required in the vertical plane.
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Appendix A

A.1 GMT of FAIR
Every component hardware used for control or measurement of the beam parameters in
FAIR/GSI is attached to a Front End Controller (FEC) computer. A synchronization between
the triggers and the actions of FECs is the key requirement for the successful operation of any
accelerator facility. This requires a timing system that can handle machine cycles (injection
to extraction) from milliseconds up to the order of several seconds for ramping synchrotrons
and up to several hours for storage rings. The task for such a timing system is the real time
decisions for the execution of predefined sequence of actions.
The General Machine Timing System (GMT) [97] of FAIR responsible for timely execution of
the actions of FECs by sending timing messages through the timing network, is a component
of the accelerator control system, shown schematically in Fig. A.1. The GMT is contained in
the lowest of the three layers of the accelerator control system, the so-called Equipment Layer
where two sub-systems of the GMT in the overall context of the accelerator control system
are present i.e. a Timing Master and a Timing Network. Timing master is a logical device
and receives a schedule for the operation of the FAIR accelerator complex from the Settings
Management (situated in the middle layer). The timing master schedules actions of the
Equipment connected to the Front-end Controllers (FECs) for timely execution by sending
so-called timing messages through the timing network (shown as green lines in Fig. A.1).
GMT is synchronized primarily by the GPS Disciplined Oscillator (GPSDO) and is com-
plemented by the Bunch phase Timing System (BuTiS), which is a high-precision clock
distribution system mainly targeted at the radio-frequency systems of the accelerator. GMT
is implemented using White Rabbit (WR) [98] which is a protocol developed by CERN,
GSI and other partners for synchronizing nodes in a packet-based network. It combines
Gigabit-Ethernet, IEEE1588-2008 (PTP), precise knowledge of the link delay and Synchronous
Ethernet. Time synchronization is achieved by adjusting the clock phase (125 MHz carrier)
and offset (Coordinated Universal Time – UTC, or International Atomic Time – TAI) of all
network nodes to that of a common grand master clock. It has been demonstrated in 2012,
that sub-nanosecond synchronization with a jitter in the hundreds of picoseconds range is
achieved over distances of a few kilometers and across dedicated WR network switches.

A.2 Modules of Libera Hadron
Figure A.2 shows the picture of Libera Hadron (top) and the block diagram for its modules
(bottom) in the order of signal flow from BPMs to the corrector magnets. Since each Libera
Hadron is equipped with four HBPM modules, a total of 3 Libera Hadrons are used for a
total of 12 BPMs forming the global COFB system of SIS18. Out of 12 corrector magnets, 8
are connected to one and 4 are connected to another Libera Hadron. Each Libera contains
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Figure A.1 Architecture Overview of the Accelerator Control System. Picture

copied as it is from [97].

a board computer called Inter Connection Board (ICB) with a Measurement and Control
Interface (MCI) for user’s communication with all the modules. The modules are connected
over a backplane which provides several control and communication channels. Further details
of each module is discussed below.

A.2.1 FRTN module

The main components of the timing system are the master, the network and the receiver
nodes [97]. Here we shall focus on the third component which is the interface of an FEC
towards the timing system and is called FAIR Timing Receiver Node (FTRN). FTRN module
is embedded in the Libera Hadron and is responsible for the synchronization between the
external triggers and the actions of Libera Hadron. Each FTRN is configured by third party
software, typically Front-end System Architecture (FESA) [99], to execute a set of actions
known in advance. These actions are scheduled for execution by the data master, which
broadcasts commands containing absolute timestamps (such as Temps Atomique International
– TAI) denoting the time of action execution and references to an action. When a broadcast
command is received, FTRNs enqueue the designated action to be executed locally at the
specified time. FTRNs have the following features:

• Clock and time synchronization with a clock master according to the WR specifications.

• Ability to record arrival time of a digital pulse (e.g. LVTTL).
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Figure A.2 Libera Hadron hardware layout. For abbreviations please see the text

below.

• Ability to generate a digital pulse or a pulse sequence at a given time.

• Ability to generate clock signals with a given frequency and phase.

• Ability to generate specified interrupts at given times.

The FTRNs are connected via optical Small Form-factor Pluggable (SFP) transceiver modules
to the White Rabbit (WR) timing network. WR synchronizes the internal clocks of all FTRNs
in sub-ns precision and distributes timing information. In the GMT, an accelerator cycle is
divided into several beam processes where the point of time when a beam process will start
is exactly known. This information is used to program the FTRNs with upcoming events in
advance - like setting an alarm clock - so that trigger actions can be performed on all FECs
synchronously.

A.2.2 EVRx module

For the COFB system, FTRN uses two trigger outputs which are connected with Libera’s
EVRx module. The EvRx module (see Fig. A.3) receives the optical signal through the
Small Form-factor Pluggable (SFP) transceiver and identifies and extracts the 16-bit event
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Figure A.3 EVRx module [90] .

code. Once the code has been extracted, the module decodes the event identification code
and triggers specific functions at low latency. One trigger is used to start the specific digital
signal processing (DSP) functions in HBPM modules (described in next subsection) such as
position measurement and the other one is used to start the feedback system, independently.
In addition, FTRN generates a continuous 10 MHz clock signal which is connected via front
panel output to the EVRx’s front panel Machine Clock (MC) input. The EVRx has a Phase
Locked Loop (PLL) which uses the MC input to generate the 250 MHz clock signal for the
HBPM modules so that sampling of all BPM pick-up signals of an accelerator is performed
synchronously.

A.2.3 HBPM module

Each HBPM module has four input channels for the signals from four plates of each BPM
and digitizes the signals at 250 MSa/s (based upon EVRx clock frequency) representing
into 16-bit values referred to as the raw ADC data. The raw data is processed into the
bunch-by-bunch data (at the bunch revolution frequency), Fast Acquisition (FA) (at 10 kHz)
and Slow Acquisition (SA) (at 100 Hz) streams in the FPGA. The raw ADC and position
data, along with accompanying timing and status data is stored into dedicated buffers in
HBPM module, according to the received start/stop trigger events. Dedicated 2 GB buffer
for raw ADC data enables data acquisition with maximum acquisition length of 268 M
samples available as data on demand. Similarly, the bunch-by-bunch data is stored in another
dedicated 2 GB DDR RAM buffer. Presently three position calculation algorithms options are
available, “bbb” [53] or Narrow-Band Analysis “nba” algorithm and a new fit based position
calculation algorithm [55, 56]. The FA data stream from all 4 HBPM modules is transferred
synchronously to the GDX module of each Libera hadron.

A.2.4 GDX module

Gigabit Data eXchange (GDX) module offers fast (6.5 Gbit/s) links (SFP connectors) with
GDX modules of the other Libera modules through which the orbit data is transferred at 10
kHz rate in hard real-time. The local FA data from the BPM modules is obtained through
low-voltage differential signaling (LVDS) data channels on the Libera back-plane (Fig.A.4).
The heart of the GDX is an FPGA where the feedback algorithm is implemented.
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Figure A.4 Local data concentration from HBPM modules to GDX module [90].

A.2.5 SER module

The SER module builds the interface between GDX module of Libera Hadron and the
adaptive control unit (ACU) which is the modular control system of the corrector magnet
power converters developed at GSI. SER provides eight RJ-45 ports where each one can be
used for a point-to-point connection with an ACU. Data transmission is done over these
ports by the Universal Serial Interface (USI) [100]. USI was developed along with the ACU
to interconnect different components of a power converter and includes a RS-485 based
protocol for communication. The GDX module sends 8 out of 12 user-selectable 20 Bit wide
magnet correction-values to the SER module of one Libera Hadron and 4 to another Libera
Hadron with 10 kHz data rate synchronous to the COFB execution rate. The SER module
caches these corrections in a buffer. For communication via USI, the ACU always has to
act as master and polls the data from the SER module asynchronously. In our setup Cat 6
(Ethernet) cables have been used on the physical layer and a maximum baud rate (waveform
changes per second) of 16 MBit/s has been reached for a cable length of 30 m. At our chosen
baud rate and with total protocol overhead, the maximum polling rate is then 133 kHz.

A.2.6 COFB validity state machine

The Validity State Machine (VSM) is responsible for controlling (stopping & resuming) the
COFB feedback in the following way: The VSM stops the COFB system,

• Whenever no bunch-by-bunch data is available within one period of orbit correction.

• Whenever an overload or underload occurs.

• Whenever the result of Libera Grouping is not valid (missing data in vector x or y).

• Whenever there is a fault on the ACU side of the magnet power converters.

The user can select on software level which of these conditions shall be taken into account by
the VSM. Each of these causes can be made hidden using "masks". When the VSM stops
the COFB system,

• The error signal fed to the PI controller is set to zero.
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• The magnet output is either set to the integral part of the last calculated valid magnet
correction value or to constant values, predefined by the user

VSM resumes the COFB system,

• Immediately after the conditions which led to stop COFB system become valid (e.g.
bunches get detected), if the "Auto Resume" signal is true.

• After a manual user resume.
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Appendix B

B.1 ACU of corrector power converters
• ACU has Eight 1-pole Lemo jacks out of which 4 are digital to analogue (DAC) outputs
that act as diagnostic outputs and input/output signal of both control loops. The
DACs have a resolution of 14 bit and a sampling rate of up to 250 kSPS.

• Analogue to digital (ADC) modules of ACU make it possible to acquire analogue signals
from the power converter and corrector magnets such as load current, for measuring
and controlling purposes. The ADC module has a resolution of 18 bit and a sampling
rate of up to 600kSPS.

• The “Power Config Advanced" software is used for configuring an ACU from a personal
computer. The computer is connected via USB cable to the Multifunction Module of
ACU. A screenshot of the software is shown in Fig. B.2.

Figure B.1 Front board of Multifunction Module of ACU unit.
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Figure B.2 A screen shot of “Power Config Advanced" software to set the controller

parameters in the adaptive control units connected to the horizontal corrector power

converters of SIS18.
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