
Scalable Generation of Random Graphs

Dissertation

zur Erlangung des Doktorgrades

der Naturwissenschaften

vorgelegt beim Fachbereich 12

der Johann Wolfgang Goethe Universität

in Frankfurt am Main

von

Manuel Penschuck

aus Frankfurt

Frankfurt (2020)

(D 30)

vom Fachbereich 12. der

Johann Wolfgang Goethe — Universität als Dissertation angenommen.

Dekan: Prof. Dr. L. Hedrich

Gutachter: Prof. Dr. U. Meyer, Prof. Dr. P. Sanders, Prof. Dr. G. Schnitger

Datum der Disputation: 16. April 2021

Acknowledgements

My name may stand alone on the cover of this thesis, yet there were many

people —too many to acknowledge them here individually— who supported

me along the way.

First and foremost, Ulrich Meyer, thank you for all your help and

guidance as my advisor. You were the one who suggested the field of

random graphs in the first place, and continuously provided knowledge,

exposure, means and freedom, enabling me to learn (of) new topics and to

tackle the problems that fascinate me.

I want to thank all my coauthors, especially Hung, for the countless

discussions and opportunities to learn and discover. I enjoyed our shared

struggle through the many small set-backs and the —then even more

satisfying— moments of humble victories.

The experience would not have be the same without everyone of the

“third floor”; especially Bert, David, Hannes, Mario, as well as Alex and

Volker — thank you for the great and exciting years.

I am grateful to my extended family and friends — their open ears,

encouragements and distractions helped me keep on track (more or less);

though, I must say, I could have done with less frequent inquiries about my

progress. Special gratitude is due to my parents for their immense support

on my not-so-direct path leading to computer science.

Last but, most certainly, not least, Mercedes, thank you for always

being at my side. I cannot begin to overstate the impact you made on me

(and also this thesis).

Manuel Penschuck

4. December 2020

Deutsche Zusammenfassung

Netzwerkmodelle Übersichtsartikel zu

Netzwerkmodellen:

R Kapitel 2

spielen in verschiedenen Wissenschaftsdisziplinen eine wichtige Rolle

und dienen unter anderem der Beschreibung realistischer Graphen [34, 261, 14]. Sie

werden häu�g als Zufallsgraphen formuliert [59] und stellen somit Wahrscheinlich-

keitsverteilungen über Graphen dar. (Zufalls-)Graphen:

R Abschni� 1.2.2 �.

Meist ist die Verteilung dabei parametrisiert und

ergibt sich implizit, etwa über eine randomisierten Konstruktionsvorschrift. Ein früher

Vertreter ist das G(n, p) Modell [148], welches über allen ungerichteten Graphen mit n

Knoten de�niert ist und jede Kante unabhängig mit Wahrscheinlichkeit p erzeugt.

Ein Diskussion G(n, p):

R Abschni� 1.2.4.1 �.

aus G(n, p) gezogener Graph hat jedoch kaum strukturelle Ähnlichkeiten zu

Graphen, die zumeist in Anwendungen beobachtet werden. Daher werden populäre

Modelle so gestaltet, dass sie mit hinreichend hoher Wahrscheinlichkeit gewünschte

topologische Eigenschaften erzeugen. Beispielsweise ist es ein gängiges Ziel die nur

unscharf de�nierte Klasse der sogenannten komplexen Netzwerke nachzubilden, der

etwa viele soziale Netze zugeordnet werden. Unter anderem verfügen diese Graphen Komplexe Netzwerke:

R Abschni�e 1.2 und 2.2
in der Regel über eine Gradverteilung mit schweren Rändern (heavy-tailed), einen

kleinen Durchmesser, eine dominierende Zusammenhangskomponente, sowie über

überdurchschnittlich dichte Teilbereiche, sogenannte Communities [34].

Die Einsatzmöglichkeiten von Netzwerkmodellen gehen dabei weit über das ur-

sprüngliche Ziel, beobachtete E�ekte zu erklären, hinaus. Ein gängiger Anwendungsfall

besteht darin, Daten systematisch zu produzieren. Solche Daten ermöglichen oder unter-

stützen experimentelle Untersuchungen, etwa zur empirischen Veri�kation theoretischer

Vorhersagen oder zur allgemeinen Bewertung von Algorithmen und Datenstrukturen.

Hierbei ergeben sich insbesondere für große Probleminstanzen Vorteile gegenüber

beobachteten Netzen. So sind massive Eingaben, die auf echten Daten beruhen, oft nicht

in ausreichender Menge verfügbar, nur aufwendig zu bescha�en und zu verwalten,

unterliegen rechtlichen Beschränkungen, oder sind von unklarer Qualität.

In der vorliegende Arbeit betrachten wir daher algorithmische Aspekte der Generie-

rung massiver Zufallsgraphen anhand von etablierten Netzwerkmodellen. Zu diesem

Zweck entwickeln wir praktisch sowie analytisch e�ziente Generatoren. Unsere Maschinenmodelle:

R Abschni� 1.3

Algo-

rithmen sind dabei jeweils auf ein geeignetes Maschinenmodell hin optimiert. Hierzu

entwerfen wir etwa klassische sequentielle Generatoren für Registermaschinen, Algo-

rithmen für das External Memory Model1 (Emm, siehe unten), und parallele Ansätze für

verteilte oder Shared-Memory Maschinen.

Struktur

Im Folgenden führen wir zunächst das Emm ein und geben dann eine Übersicht über

die in dieser Arbeit präsentierten Ergebnisse. Komplexitätsschranken beziehen sich

dabei häu�g auf die Knoten- und Kantenanzahl des generierten Graphen, die wir mit n

beziehungsweise m bezeichnen. Die Diskussion folgt der Gliederung der Arbeit, deren

Hauptteil (Kapitel 3 bis 8) sich mit drei Arten von Netzwerkmodellen befasst.

1

Aus Konsistenzgründen bezeichnen wir Modelle mit den englischen Namen des Hauptteils.

Zusammenfassung

External Memory Model

Das External MemoryModel (Emm) nach Aggarwal und Vitter [7] ist ein theoretisches Ma-

schinenmodell. Es abstrahiert Speicherhierachinen moderner Computer und begünstigt

Algorithmen mit hoher Datenlokalität.

Das Emm de�niert zwei Speichertypen: einen schnellen internen Hauptspeicher,

der M Datenworte umfasst, sowie einen langsamen externen Speicher unbeschränkter

Größe. Die Ein- und Ausgabe be�nden sich im externen Speicher, wobei Daten nur

im internen Speicher bearbeitet werden können. Informationen werden in Blöcken

von B Worten zwischen den Speichertypen bewegt; wir bezeichnen einen solchen

Blocktransfer als einen I/O. Das Entwurfsziel eines I/O-e�zienten Algorithmus ist es,

ein Problem mit möglichst wenig I/Os zu lösen. Dafür werden häu�g die folgenden

algorithmischen Primitive verwendet:

• Dasscan(n) = Θ(nB) I/Os Lesen und Schreiben von nWerten eines zusammenhängenden Bereichs wird

als scannen bezeichnet und benötigt scan(n) = Θ(n/B) I/Os.

• Dassort(n) =

Θ(nB logM/B(nB)) I/Os

vergleichsbasierte Sortieren eines zusammenhängenden Speicherbereichs

mit N Werten benötigt sort(n) = Θ(n/B logM/B n/B) I/Os.

• PrioritätswarteschlangenTime Forward Processing:

R Abschni� 5.2.2

können n Operationen in sort(n) I/Os ausführen und

bilden die Basis des sogenannten Time Forward Processing, einer Entwurfsmethode

mit der sich unstrukturierte Zugri�e oft vermeiden lassen.

Für praktische Werte von n, B und M gilt scan(n) / sort(n) ≪ n. Für viele

intuitiv nicht-triviale Probleme stellt sort eine untere Komplexitätschranke dar.

Preferential A�achment (Kapitel 3)

Preferential AttachmentÜbersicht Pref. A�ach.:

R Abschni� 2.4.2

beschreibt eine von Pólya-Urnen [117] bekannte positive Rück-

kopplung, die umgangssprachlich auch als „der Teufel [erleichtert sich] immer auf den

größten Haufen“ bekannt ist. Es handelt sich somit um einen Prozess, bei dem das

Ziehen einer zufälligen Stichprobe zu einem Zeitpunkt die Wahrscheinlichkeit erhöht,

diesselbe Stichprobe später erneut zu ziehen.

Preferential Attachment liegt einer Reihe von Netzwerkmodellen zugrunde, allen

voran dem weitverbreiteten BA Modell von Barabási und Albert [32]. Es formuliert

einen einfachen stochastischen Prozess, der die Entstehung sogenannter skalenfreier

Netzwerke [14] erklärt. HierbeiSkalenfreie Netze:

R Abschni� 1.2.4.2

handelt es sich nach gebräuchlicher Lesart um komplexe

Netzwerke, deren Gradverteilung einem Potenzgesetz (Powerlaw-Verteilung) folgt. Die

Autoren legen jedoch in ihrem Modell den Fokus auf die Entstehung von Powerlaw-

Gradverteilungen in wachsenden Netzwerken und klammern darüber hinausreichende

Eigenschaften komplexer Netzwerke (z.B. Communitystrukturen) aus.

Das BA Modell erzeugt Graphen mittels des folgenden iterativen Prozesses. Wir

beginnen mit einem beliebigen Graphen auf n0 Knoten (häu�g dem Kreis Cn0 oder der

CliqueKn0). Dann fügen wir schrittweise t neue Knoten hinzu, wobei jeder direkt mittels

d < n0 zufällig gewählter Nachbarn mit dem vorhandenen Graphen verbunden wird.

VI

Preferential Attachment schreibt nun vor, dass die Nachbarn mit einer Wahrscheinlichkeit

proportional zu ihrem gegenwärtigen Grad gezogen werden.

Algorithmisch ist das dynamische und gewichtete Ziehen der Nachbarn von beson-

derem Interesse. Batagelj und Brandes [35] beschreiben den einfachen Generator, im

Folgenden BB-BA genannt, der Graphen in Linearzeit konstruiert. Der Algorithmus

erzeugt ein Array von Kanten und nutzt aus, dass jeder Knoten umit Grad deg(u) genau

deg(u) mal in diesem Array vorkommt. Somit lässt sich das gewichtete Ziehen auf das

Lesen einer uniform gezogenen Position reduzieren.

Während BB-BA auf Registermaschinen mit Einheitskosten optimal agiert, sagt

das Emm aufgrund der unstrukturierten Zugri�e des Algorithmus stark suboptimales

Verhalten voraus. Experimentelle Ergebnisse:

R Abschni� 3.5

Dies lässt sich experimentell untermauern. So beobachten wir, dass der

Durchsatz des Generators um mehrere Größenordnungen einbricht, sobald die Graph-

größe den verfügbaren Arbeitsspeicher um nur 2 % überschreitet. Wir präsentieren

daher die zwei ersten I/O-e�zienten BA Generatoren TFP-BA und MP-BA.

• TFP-BA TFP-BA:

R Abschni� 3.2

ist ein einfacher und leicht erweiterbarer sequentieller Generator, der als

Übersetzung von BB-BA in das Emm verstanden werden kann. TFP-BA vermeidet

die für BB-BA nötigen zufälligen Zugri�e, indem zunächst alle Leseoperationen

ausgewürfelt und sortiert, jedoch nicht ausgeführt werden. In der Hauptphase

wird nun die Kantenliste, ähnlich wie in BB-BA, von Anfang bis zum Ende sequen-

tiell geschrieben. Hierbei werden etwaige Leseanfragen von späteren Positionen

nachgeschlagen und mittels I/O-e�zienter Prioritätswarteschlange Time Forward Processing:

R Abschni� 5.2.2

(Time Forward
Processing) beantwortet.

Wir zeigen, dass TFP-BA O(scan(m0) + sort(m)) I/Os benötigt, wobei m0 der

Kantenanzahl der Eingabe und m der Anzahl erzeugter Kanten entspricht. In der

Praxis ist TFP-BA für Ausgaben, deren Größe den Hauptspeicher überschreitet,

um Größenordnungen schneller als eine optimierte BB-BA Implementierung.

• MP-BA MP-BA:

R Abschni� 3.3

ist ein hoch-optimierter Generator, der sich aus einem parallel-externen

Teil und einer GPU-beschleunigten Komponente zusammensetzt. Konzeptionell

implementiert MP-BA das für Preferential Attachment benötigte dynamische und

gewichtete Ziehen mittels eines Entscheidungsbaum:

R Abschni� 3.3.1

Binärbaums T , der partiell im externen Speicher

gehalten wird. Jedes Blatt in T ist eineindeutig einem Knoten u des erzeugten

Graphen zugeordnet und mit dessen Grad deg(u) beschriftet. Innere Knoten

speichern die Summe der Blattgewichte ihres linken Teilbaums. Der Baum ist

dynamisch, da neue Blätter eingefügt und Knotengewichte erhöht werden.

Preferential Attachment benötigt zwei logische Schritte: Zunächst muss, erstens,

ein geeignet gewichteter Nachbar v zufällig aus T gezogen werden um mit die-

sem eine Kante zu bilden. Danach müssen, zweitens, die Gewichte aller inneren

Knoten erhöht werden, in deren linken Teilbaum sich v be�ndet. MP-BA fasst

beide Schritte zu einer Operation zusammen und bearbeitet sie in einer einzigen

Traversierung des Baums von der Wurzel zu dem entsprechenden Blatt hin.

Konkret ist jede Operation mit einer natürlichen Zufallszahl x annotiert, wo-

VII

Zusammenfassung

bei x kleiner als das Gesamtgewicht des Baums T ist. Wir betrachten nun den

Arbeitsschritt an einem inneren Knoten mit Beschriftung y wobei y als Entschei-

dungsgrenze fungiert: Wenn x kleiner als y ist, wird die Operationen rekursiv an

den linken Teilbaum TL weitergegeben. In Antizipation der Bildung einer Kanten

mit einem Knoten in TL wird außerdem das Gewicht y des linken Teilbaums

direkt inkrementiert. Andernfalls wird y von x abgezogen und die so angepasste

Operation an den rechten Teilbaum weitergegeben.

Diese Operationen werden asynchron ausgeführt, können unterbrochen und

gepu�ert werden. Es muss hierbei lediglich sichergestellt werden, dass alle Ope-

rationen, die einen Knoten erreichen, in ihrer relativen Ankunftsreihenfolge

bearbeitet werden.I/O-E�izienz:

R Abschni� 3.3.2

Paralleler Baum:

R Abschni� 3.3.4.1

Durch die Möglichkeit des Pu�erns können die Operationen

I/O-e�zient gestaltet werden. Ferner sind disjunkte Teilbäume unabhängig von

einander. Wir entkoppeln daher den Baum in geeigneter Tiefe und bearbeiten alle

dort gewurzelten Teilbäume parallel.

Durch die hohe Verarbeitungsbandbreite der parallelen Teilbäume kann sich nahe

der Wurzel ein Flaschenhals ergeben.PRam:

R Abschni� 1.3.3

Diesen lösen wir mittels eines zweiten

Ansatzes zur parallelen Verarbeitung von Anfragen an wurzelnahen Knoten

auf. Der zugrunde liegende Algorithmus ist für eine parallele Registermaschine

(Crew PRam) entworfen und wird von uns auf einem Gra�k-Rechenbeschleuniger

ausgeführt. Hierfür teilen wir die Sequenz von Lese-Update-Operationen in Stapel

(Batch) auf und verarbeiten die Operationen innerhalb eines Batch parallel.

DiePRam Algorithmus:

R Abschni� 3.3.4.2

Parallelverarbeitung muss dabei Abhängigkeiten innerhalb des Batchs erken-

nen. So können etwa die ersten Operationen die zuvor genannte Entscheidungs-

grenze y soweit verschieben, dass eine spätere Anfrage in den linken Teilbaum

weitergeleitet werden muss, obwohl dies initial anders wirkte. Bei geeigneter

Wahl der Batchgröße tritt dieser E�ekt jedoch nur selten auf. Unser PRam Al-

gorithmus berechnet daher für jede Anfrage einen Sicherheitsabstand zur Ent-

scheidungsgrenze y; liegt die Anfrage außerhalb dieser Zone, kann die Operation

direkt einem Teilbaum zugewiesen werden. Hierdurch kann die Sicherheitszone

der verbliebenen Anfragen reduziert werden, sodass der Algorithmus mit hoher

Wahrscheinlichkeit innerhalb von konstant vielen Runden terminiert.

WirImplementierung:

R Abschni� 3.4 �.

demonstrieren, dass unsere Implementierung von MP-BA für Graphen, die in

den Arbeitsspeicher passen, fast 18 mal schneller als BB-BA ist. Zudem skaliert sie

weit darüber hinaus. Verglichen mit einem verteilt parallelen Generator, der auf

48 Zweisockelmaschinen evaluiert wurde, liefert MP-BA kompetitive Ergebnisse.

Simple Graphen mit gegebener Gradsequenz (Kapitel 4 und 5)

Nach der Diskussion eines Preferential Attachment Modells ohne Communitystruktur

wenden wir unsLFR:

R Abschni� 4.3

dem LFR Netzwerkmodell [210, 208] zu. Dieses verfügt über explizit

erzeugte Gemeinschaften, die ebenfalls ausgegeben werden können. Diese Zusatzinfor-

mation macht LFR zu einem etablierten Testverfahren, mit dem etwa Algorithmen zur

Suche von Communitystrukturen bewertet werden.

VIII

Leider skaliert die Geschwindigkeit der LFR Referenzimplementierung auf großen

Instanzen nur suboptimal. Daher präsentieren wir EM-LFR:

R Kapitel 4

mit EM-LFR eine schnelle und I/O-

e�ziente Pipeline, die aus vier neu-entwickelten Algorithmen besteht. EM-LFR folgt

dabei der LFR Spezi�kation [208]. Experimentell demonstrieren wir unter anderem,

dass EM-LFR einen Graphen mit 1010
Kanten in rund 17 h erzeugen kann, während

die Referenzimplementierung in derselben Zeit weniger als 108
Kanten erreicht. So-

mit eignet sich EM-LFR sogar dafür, Eingabeinstanzen für verteilte Algorithmen zu

generieren [170].

Im Folgenden legen wir den Fokus auf den komplexesten Bereich der Pipeline.

Übersicht zu

Problem und Ansätzen:

R Abschni� 2.6

Gegeben sei eine Gradsequenz, d.h. eine Liste von Knotengraden. Gesucht ist eine

uniforme Stichprobe aus der Menge aller ungerichteten simplen Graphen (d.h. ohne

Mehrfachkanten oder Eigenschleifen), die dieser Gradsequenz folgen. Hierbei handelt

es sich um eine gängige Aufgabe in der Beispiel Nullmodell:

R Abschni� 1.2.7.1

Netzwerkanalyse, die auch genutzt wird, um

existierende Netzwerke zu perturbieren, oder um realistische Nullmodelle zu erzeugen.

Die in Kapitel 4 und 5 diskutierten Ansätze sind auf Markow-Ketten basierende

Monte-Carlo Verfahren (MCMC). Obwohl einige in der Praxis vielfach Verwendung

�nden, sind uns keine allgemeinen und praktisch relevanten analytischen Ergebnisse

bekannt, welche die Zeit bis zur Erzeugung einer (nahezu) uniformen Stichprobe be-

schränken. Wir analysieren daher die Komplexität unserer Ansätze in Abhängigkeit von

der Anzahl ausgeführter Markow-Kette Schritte. Es werden folgende Ansätze betrachtet:

1. EM-HH mit EM-ES: Hierbei handelt es sich um eine I/O-e�ziente Variante des

gängigen Fixed-Degree-Sequence-Model. FDSM überführt zunächst eine gegebene

Gradsequenz deterministisch in einen Graph. Um eine uniforme Stichprobe zu er-

halten, wird der Graph im Anschluss mittels Edge Switching (ES) perturbiert [246].

Den EM-HH:

R Abschni� 4.4

deterministischen Schritt implementieren wird mittels unserer I/O-e�zienten

Variante EM-HH des Havel-Hakimi-Generators [173, 165]. Hierzu entwickeln wir

eine Datenstruktur, die eine sortierte Gradsequenz durch Gruppierung identi-

scher Grade komprimiert. Die Verschmelzung von Graden reduziert sowohl den

Speicherverbrauch als auch die Anzahl der Zugri�e auf die Datenstruktur.

Da EM-HH als Teil einer Pipeline konzipiert ist, die Ein- und Ausgabe ohne

Zwischenschritt über den externen Speicher verarbeitet, analysieren wir nur

die I/Os, die EM-HH intern ausführt.
2

Wir zeigen, dass EM-HH I/O-optimal

arbeitet, und dass der Algorithmus Graphen mit O
(
M2γ

)
Kanten mit hoher

Wahrscheinlichkeit ohne I/Os erzeugen kann, falls es sich bei der Eingabe um

eine monotone Sequenz aus einer Powerlaw-Verteilung mit Exponent γ handelt.

Dann übernimmt Edge Switching die Randomisierung des erzeugten Graphen. In

jedem Schritt werden zwei unterschiedliche Kanten uniform zufällig gewählt und

ihre Endpunkte vertauscht. Wenn ein Tausch eine Mehrfachkante oder Eigen-

schleife erzeugen würde, ist es notwendig diesen ersatzlos zu streichen [83].

2

Wenn die Ausgabe für eine andere Anwendung in den externen Speicher geschrieben werden müsste,

würde der hierfür notwendige Scan die I/O Komplexität des Algorithmus dominieren.

IX

Zusammenfassung

Unsere I/O-e�ziente VarianteEM-ES:

R Abschni� 4.5

EM-ES nutzt Stapelverarbeitung, wobei jedes Batch

Θ(m) Tausche ausführt. Durch geeignetes An- und Umordnen der Tausche und

Kanten kann eine I/O-Komplexität von O(sort(n+m)) erreicht werden (im

Vergleich zu Θ(m) I/Os der ursprünglichen Formulierung). Während der Stapel-

verarbeitung müssen Abhängigkeiten innerhalb des Batch beachtet werden. So

können etwa frühe Operationen Kanten erzeugen oder löschen, die von einem

späteren Tausch bearbeitet werden. Dies lässt sich durch mehrere Scan- und

Sortierphasen sowie dem Einsatz von Time Forward Processing lösen.

2. EM-CM/ES:EM-CM/ES:

R Abschni� 4.6

Das zuvor geschilderte Verfahren nutzt EM-HH, um einen determini-

stischen simplen Graphen zu erzeugen und diesen dann aufwendig zu randomisie-

ren. EM-CM/ES startet stattdessen mit einem zufälligen nicht-simplen Graphen

und überführt diesen in einen simplen Graph.

DieConfiguration Model:

R Abschni� 4.6.1

EM-ES Modifikation:

R Abschni� 4.6.2

Startinstanz generieren wir mittels einer I/O-e�zienten Implementierung des

Con�guration Models [38, 260]. Zudem modi�zieren wir EM-ES um nicht-simple

Eingaben zu unterstützen. In dieser Variante erlauben wir jeden Kantentausch,

der die Anzahl von Mehrfachkanten oder Eigenschleifen nicht erhöht. Um das Ent-

fernen dieser unerwünschten Kanten zu beschleunigen, werden diese bevorzugt

als Tauschpartner gewählt.

Nachdem EM-CM/ES einen simplen Graphen erreicht hat, sind im Allgemeinen

noch weitere reguläre ES Schritte notwendig. Dies ist darin begründet, dass

das reine Wegtauschen von nicht-simplen Kanten der Startinstanz mittels der

vorgestellten Variante von ES nicht zu einer uniformen Stichprobe führt (vgl.

[18, 24]). UnsereEmpirischer Vergleich:

R Abschni� 4.10.7

empirische Untersuchung lässt jedoch den Schluss zu, dass EM-

CM/ES dennoch schneller zu einer uniformen Stichprobe konvergiert als die

Kombination von EM-HH und EM-ES.

3. EM-CB:EM-CB:

R Abschni� 5.4.1

Bei Curveball (CB) [321] handelt es sich um einen relativ neuen MCMC

Prozess, der strukturelle Ähnlichkeiten zu ES hat. Jedoch wählt CB in jedem

Schritt jeweils zwei unterschiedliche Knoten u 6= v zufällig aus und mischt

dann deren Nachbarschaften. Hierfür werden zunächst alle Kanten isoliert, die zu

gemeinsamen Nachbarn von u und v führen oder zwischen den beiden Knoten

verlaufen. Die verbleibenden Nachbarn werden zufällig neu verteilt, ohne die

Grade von u und v zu ändern.

Ein CB Tausch kann somit potenziell mehr Veränderungen herbeiführen als ein

ES Schritt. Empirische Analysen unterstützen diese Beobachtung und lassen den

Schluss zu, dass die CB Markow-Kette zum Mischen weniger Schritte als ES
benötigt [81]. Hierbei bleibt jedoch zunächst unbeachtet, dass im Allgemeinen

CB Schritte mehr Arbeit als ES Schritte implizieren. WirEmpirischer Vergleich:

R Abschni� 5.5

entwickeln daher nachfol-

gend e�ziente Algorithmen für CB und ergänzen die empirische Untersuchung.

Neben dem potentiell schnelleren Mischen hat CB auch algorithmische Vorteile.

So weist CB mehr Datenlokalität auf, da alle benötigten Informationen in den

Nachbarschaften der beteiligten Knoten zu �nden sind. Dies steht im Gegensatz

X

zu ES, das pro Tausch zusätzliche unstrukturierte Existenzanfragen stellen muss

um Mehrfachkanten zu verhindern.

Für ungerichtete Graphen muss jedoch beachtet werden, dass die meisten kompa-

tiblen Datenstrukturen jede ungerichtete Kante zweimal speichern — einmal pro

Endpunkte beziehungsweise Richtung. Dies negiert die zuvor genannten Lokali-

tätsvorteile, da getauschte Kanten an diversen Stellen innerhalb der Datenstruktur

geändert werden müssen.

Unsere I/O-e�ziente Lösung nutzt daher eine dynamische Datenstruktur, die jede

ungerichtete Kante nur bei dem als nächstes getauschten Endpunkt speichert.

Stapelverarbeitung und Time Forward Processing dienen als Grundlagen dieses

Ansatzes. Am Beginn jedes Batchs werden zunächst alle Knotenpaare, die später

getauscht werden, gezogen und in einer Hilfsstruktur indiziert. Die Indizierung

erlaubt es, TFP Nachrichten zu adressieren und festzustellen, wann genau eine

Kante zukünftig wieder benötigt wird.

Wir zeigen, dass EM-CB pro Globaltausch (siehe unten) O(sort(n) + sort(m))

I/Os benötigt. Da IM-CB:

R Abschni� 5.4.2

die Hilfsstrukturen in der Praxis einen Overhead verursachen,

beschreiben wir zudem die Variante IM-CB; unsere Experimente zeigen, dass sich

IM-CBs einfachere Datenstruktur trotz mehr unstrukturierter Zugri�e auf den

Hauptspeicher bei kleinen und mittelgroßen Eingaben auszahlt.

4. EM-GCB and EM-PGCB: G-CB:

R Abschni� 5.3.3

Wir erweitern gerichtetes Global Curveball (G-CB) [81]

auf ungerichtete Graphen. Ein ungerichteter Globaltausch ist als zufällige Sequenz

von bn/2c einfachen CB Schritten de�niert, die jeden Knoten höchstens einmal

wählen. Wir zeigen, dass dieser neue Markow-Prozess zu einer gleichverteilten

stationären Verteilung konvergiert. Unsere empirischen Vergleiche weisen darauf

hin, dass G-CB schneller als eine entsprechende Anzahl von CB Schritten mischt.

G-CB EM-GCB:

R Abschni� 5.4.3

erlaubt es uns, die zuvor beschriebene Hilfsdatenstruktur von EM-CB kom-

plett zu entfernen. Wenn jeder Knoten exakt einmal
3

getauscht wird, können wir

einen Globaltausch als eine zufällige Permutation der Knoten interpretieren. In der

Permutation paarweise-benachbarte Knoten entsprechen dann jeweils einem CB
Tausch. Unser I/O-e�zienter EM-GCB Algorithmus verwaltet diese Permutation

nun implizit über eine zufällige, kollisionsfreie und invertierbare Hash-Funktion.

Mit EM-PGCB EM-PGCB:

R Abschni� 5.4.4

parallelisieren wir EM-GCB. Hierzu unterteilen wir einen Global-

tausch in kleine Blöcke und bearbeiten die Tausche innerhalb eines Blocks parallel.

Die Blockgröße ist dabei so gewählt, dass Abhängigkeiten in einem Block un-

wahrscheinlich sind. Seltene Problemfälle werden erkannt und mittels eines Work

Stealing Ansatzes bearbeitet. In einer empirischen Analyse erreicht EM-PGCB

dieselbe Qualität wie EM-ES und ist bis zu einer Größenordnung schneller.

3

Wir nehmen hier vereinfachend eine gerade Knotenanzahl an (allgemeinR Abschnitt 5.4.3).

XI

Zusammenfassung

Graphen mit geometrischer Einbe�ung (Kapitel 6 bis 8)

Random Hyperbolic Graphs (RHG) [200] sind ein populäres Netzwerkmodell, das viele

Eigenschaften komplexer Netzwerke auf natürliche Weise abbildet. Es ordnet jedem

Knoten eine zufällige Position auf einer hyperbolischen Scheibe mit Radius R zu. Zu-

meist werden hierfür Polarkoordinaten genutzt. Dabei werden Positionen durch ihren

Abstand r vom Ursprung (Radius) und einer Winkelkomponente θ (Azimut) beschrieben.

Beim zufälligen Verteilen der Punkte wächst die radiale Dichtefunktion exponentiell mit

dem Radius. Die Mehrheit der Punkte be�ndet sich hierdurch nahe am Scheibenrand.

In der sogenanntenThreshold RHG Threshold RHG [159] Variante werden alle Punktpaare mit

Koordinaten pi=(ri, θi) und pj=(rj , θj) verbunden, deren nachfolgend de�nierte hy-

perbolische Distanz d(pi, pj) kleiner als R ist:

cosh(d(pi, pj)) = cosh(ri) cosh(rj)− sinh(ri) sinh(rj) cos(θi − θj) (1)

Die Distanz zweier Punkte hängt somit sowohl von ihrer relativen als auch absoluten

Position ab. Die wenigen Punkte nahe des Ursprungs implizieren kleinere Distanzen und

haben somit mehr Nachbarn als Punkte am Scheibenrand. Eine genauere Analyse zeigt

eine Powerlaw-Gradverteilung, deren Exponent sich über die zuvor genannte radiale

Dichtefunktion kontrollieren lässt.

Binomial RHGBinomial RHG generalisieren Threshold RHG, indem sie eine positive „Temperatur“ T

als zusätzlichen Parameter einführen. Die TemperaturLokale Kohäsion:

R Abschni� 1.2.5

beein�usst die lokale Kohäsion

von Knoten (Grüppchenbildung). Jedes Knotenpaar pi 6= pj wird dann unabhängig mit

Wahrscheinlichkeit pT (d(pi, pj)) durch eine Kante verbunden:

pT (d) =

[
exp

(
d−R

2T

)
+ 1

]−1

(2)

Für T → 0 degeneriert pT (d) zu einer gespiegelten Einheitssprungfunktion an Stelle R,

wodurch Threshold RHGs in Binomial RHGs enthalten sind.

Im Folgenden stellen wir drei Ansätze zur Generierung von RHG vor.

• HyperGenR Kapitel 6 ist ein Threshold RHG Generator, der für Rechenbeschleuniger mit

kleinem Hauptspeicher konzipiert ist. Um Speicher zu sparen, bricht der Algorith-

mus mit dem zuvor üblichen Paradigma, zunächst die Koordinaten aller Knoten

zu ziehen und diese dann in einer geeigneten geometrischen Datenstruktur zu

verwalten. Stattdessen überstreicht HyperGen die hyperbolische Scheibe mittels

einer azithmutalen voranschreitenden Sweep-Line
4

und erzeugt dabei Punktkoor-

dinaten on-the-�y. Hierzu ziehen wir die Punktmenge mit monoton aufsteigender

Winkelkomponente
5
, ohne die endgültige Koordinatenverteilung zu verändern.

DerHyperGen:

R Abschni� 6.3

Algorithmus hält nur Knoten im Sweep-Status, die in der Nähe der Sweep-

Line Nachbarn �nden können, und löscht obsolete Kandidaten zeitnah. Aufgrund

4

Tatsächlich muss die Sweep-Line in radialer Richtung gesplittet werden, sodass eigentlich mehrere

synchronisierte Instanzen des beschriebenen Algorithmus ausgeführt werden.

5

Hierbei handelt es sich um eine stark vereinfachte Darstellung (vgl. Abschnitt 6.2).

XII

der azithmutalen 2π-Periodizität der hyperbolischen Kreisscheibe be�nden sich

am Ende der Ausführung noch spät gezogene Punkte (mit einem Winkel nahe

2π) im Status und müssen potentiell mit Knoten verbunden werden, welche früh

gelöscht wurden (mit positivem Winkel nahe 0). Wir starten daher die Sweep-Line

und das Ziehen der Punkte neu und verarbeiten die verbliebenen Kandidaten.

Pseudozufallsgeneratoren mit identischer Startkon�guration produzieren dabei

im ersten und zweiten Scan konsistente Koordinaten.

Wir zeigen, dass der Speicherverbrauch von HyperGen mit hoher Wahrschein-

lichkeit durch O
(
[n1−αd̄α + log n] log n

)
Worte beschränkt ist, wobei α > 1/2

ein Modellparameter und d̄ der Durchschnittsgrad der Ausgabe ist. Für realisti-

sche Werte von d̄ = o(n/ log1/α(n)) stellt dies eine erhebliche Verbesserung

gegenüber früheren Ansätzen mit einem Speicherbedarf von Ω(n) Worten dar.

HyperGen Parallelisierung:

R Abschni� 6.3.2

arbeitet parallel und teilt hierzu die hyperbolische Scheibe in Segmente.

Auf jedem Segment wird der oben skizzierte Algorithmus unabhängig ausgeführt.

Hierbei müssen einige Vorarbeiten unternommen werden, um überbordende

Abhängigkeiten an den Segmentgrenzen zu verhindern.

Eine Vorberechnung:

R Abschni� 6.4.1

weitere wichtige Optimierung entfernt alle transzendenten Funktionen (hier

sinh, cosh und cos) der häu�g zu evaluierenden Gleichung (1) und ersetzt diese

durch Werte, die pro Punkt vorberechnet werden. Weiterentwicklungen dieses

Ansatzes �nden auch in sRhg und HyperGirgs (siehe unten) Anwendung.

Unsere Datenparallelismus:

R Abschni� 1.3.4

Implementierung von HyperGen nutzt explizit datenparallele Vektor-

einheiten moderner Prozessoren mittels geeigneter Single-Instruction-Multiple-
Data [129] Befehlssatzerweiterungen [184]. Unter anderem können somit bis zu

acht hyperbolische Distanzen gleichzeitig berechnet werden; dies wird erst durch

die zuvor beschriebenen Vermeidung transzendenter Funktionen möglich.

Wir vergleichen HyperGen experimentell zu vier anderen state-of-the-art Gene-

ratoren und �nden, dass HyperGen teils 30 mal schneller als die Mitbewerber

ist. Auf einem günstigen Standardcomputer produziert HyperGen Graphen mit

106 ≤ m ≤ 1012
Kanten mit einem Durchsatz von knapp 370 Million Kanten

pro Sekunde und einem Speicherverbrauch von weniger als 600 MB. Zudem

evaluieren wir HyperGen auf einem hochgradig parallelen Rechenbeschleuniger.

• sRhg R Kapitel 7kombiniert HyperGen mit Rhg [139], einem kommunikationsfreien Thres-
hold RHG Generator für verteilte Maschinen. HyperGen und Rhg wurden nahezu

zeitgleich, jedoch unabhängig, entwickelt und für unterschiedliche Maschinen-

modelle entworfen. Beide basieren auf Pseudorandomisierung in unterschiedlich

starker Ausprägung. sRhg:

R Abschni� 7.7.3

In einer experimentellen Auswertung demonstrieren wir die

Skalierbarkeit von sRhg auf 32 768 Prozesskernen und generieren einen Graphen

mit n = 239
Knoten in deutlich weniger als einer Minute.

• HyperGirgs und Girgs Best Paper Award · ESA’19

R Kapitel 8

gehen auf einen zuvor bekannten Algorithmus von Bring-

mann et al. [70] mit erwarteter linearer Laufzeit zurück. Obwohl einige der im

XIII

Zusammenfassung

Folgenden skizzierten Aspekte bereits in [70] beschrieben wurden, bedurfte es er-

heblicher Anpassungen um den (nach besten Wissen) ersten praktisch e�zienten

Generator für Geometric Inhomogenous Random Graphs (GIRG) zu implementieren.

MitVergleich RHG & GIRG:

R Abschni� 8.2.3

dem state-of-the-art Generator HyperGirgs stellen wir eine Modi�kation

von Girgs vor, die Binomial RHG exakt erzeugen kann.
6

In einer ersten Phase,

zieht der Algorithmus die Koordinaten aller Knoten und speichert die Punkte

in einer Datenstruktur, die als polarer Quad-Tree verstanden werden kann und

nachfolgend so bezeichnet wird.

UmDatenstruktur:

R Abschni� 8.3

nun die Nachbarschaften zu berechnen, werden geeignete Paare von Quad-

Tree-Knoten identi�ziert. Für jedes dieser Paare werden konzeptionell alle Punkte,

die im ersten Quad-Tree-Knoten enthalten sind, mit allen Punkten des zweiten

Quad-Tree-Knotens verglichen. DerBeschleunigungstechnik:

R Abschni� 2.3.3.4 �.

Prozess wird bei Kanten mit geringer Kanten-

wahrscheinlichkeit durch eine Kombination von geometrischen Sprüngen und der

Verwerfungsmethode beschleunigt. Zudem entwickeln wir eine exakte Heuristik,

die in den meisten Fällen eine teure Evaluation von pT (d(pi, pj)) vermeidet.

Der Quad-Tree muss den wahlfreien Zugri� auf alle Punkte, die von einem belie-

bigen Quad-Tree-Knoten (in beliebiger Tiefe) repräsentiert werden, in konstanter

Zeit unterstützen. HyperGirgs erzielt dies, indem der Quad-Tree mittels einer

raumfüllenden Lebesgue-Kurve [268] im Speicher linearisiert wird. Durch die

Verwendung sogenannter Morton-Codes [251] lässt sich die Datenstruktur dann

e�zient konstruieren und adressieren.

Girgs ist strukturell ähnlich zu HyperGirgs. Unsere Implementierung unter-

stützt bis zu fünf-dimensionale GIRGs, wodurch eine Anpassung der bit-parallelen

Morton-Code Implementierung nötig wird. SowohlRestrukturierung:

R Abschni� 8.3.3

Girgs als auch HyperGirgs

können nach einer Restrukturierung des Algorithmus von Bringmann et al. paralle-

lisiert werden. Als Besonderheit liefern unsere Implementierungen reproduzierba-

re Ergebnisse in dem Sinne, dass zwei Ausführungen mit identischen Parametern

und Startkon�gurationen der Pseudozufallsgeneratoren dieselbe Kantenmenge

berechnen (auch wenn die Kantenreihenfolge abweichen kann).

6

Bringmann et al. stellen bereits den Bezug zwischen GIRGs und RHG her indem sie eine asymptotische

Inklusion zeigen. Wie wir in Abschnitt 8.5.3 jedoch empirisch nachweisen, sind für einen exakten RHG
Generator weitere Modi�kationen notwendig.

XIV

Table of contents

Contents

1 Introduction 1
1.1 Motivation . 2

1.2 Random Graphs in the Context of Network Analysis 3

1.3 Practical Engineering Challenges . 14

1.4 Articles Included in the Present Thesis 21

2 Recent Advances in Scalable Network Generation 27
2.1 Introduction . 28

2.2 Graph Properties and Uses of Generators 28

2.3 General Algorithmic Models and Techniques 32

2.4 Basic Models . 36

2.5 Random Spatial Graphs . 39

2.6 Random Graphs with Prescribed Degree Sequences 45

2.7 Block Models . 50

2.8 Graph Replication . 53

2.9 Additional Graph Types . 58

2.10 Software Packages . 63

2.11 Future Challenges . 63

3 Preferential Attachment 67
3.1 Introduction . 68

3.2 The Sequential TFP-BA Algorithm for EM 70

3.3 The Parallel MP-BA Algorithm for EM 73

3.4 Implementation of MP-BA . 79

3.5 Experimental Results . 81

3.6 Preferential Attachment beyond BA . 84

4 Massive Graphs Following the LFR Benchmark 89
4.1 Introduction . 90

4.2 Preliminaries and Notation . 92

4.3 The LFR Benchmark . 94

4.4 EM-HH: Deterministic Edges from a Degree Sequence 95

4.5 EM-ES: I/O-e�cient Edge Switching . 100

4.6 EM-CM/ES: Sampling of Graphs from Degree Sequence 105

4.7 EM-CA: Community Assignment . 107

4.8 EM-GER/EM-CER: Merging Intra- and Inter-Community Graphs 110

4.9 Implementation . 111

4.10 Experimental Results . 112

4.11 Outlook and Conclusion . 120

Appendix . 122

XVI

5 Global Curveball 129
5.1 Introduction . 130

5.2 Preliminaries and Notation . 131

5.3 Randomization Schemes . 133

5.4 Novel Curveball Algorithms for Undirected Graphs 135

5.5 Experimental Evaluation . 141

5.6 Conclusion and Outlook . 144

Appendix . 145

6 Streaming Random Hyperbolic Graphs 159
6.1 Introduction . 160

6.2 MemGen: a Fast Algorithm with Linear Memory Usage 164

6.3 HyperGen: Reducing MemGen’s Memory Footprint 169

6.4 Implementation . 172

6.5 Experimental Evaluation . 173

Appendix . 177

7 Communication-free Graph Generation 183
7.1 Introduction . 184

7.2 Preliminaries . 185

7.3 Related Work . 188

7.4 ER Generator . 190

7.5 RGG Generator . 193

7.6 RDT Generator . 196

7.7 RHG Generators . 197

7.8 Experimental Evaluation . 208

7.9 Conclusion . 215

Appendix . 217

8 Geometric Inhomogeneous and Hyperbolic Random Graphs 221
8.1 Introduction . 222

8.2 Models . 225

8.3 Sampling Algorithm . 226

8.4 Implementation Details . 229

8.5 Experimental Evaluation . 231

Appendix . 234

9 Summary 243
9.1 Preferential Attachment . 244

9.2 Simple Graphs from Prescribed Degree Sequence 245

9.3 Geometrically Embedded Random Graphs 247

9.4 Future Research Opportunities . 251

XVII

1Introduction

Subgraph of Dblp coauthor induced

by the author’s closed neighborhood

illustrating features of complex networks

Network models play a crucial role in various fields of science and their

applications far surpass the original scope of explaining features observed

in the real world. A common use case of such random graphs is to provide

a versatile and controllable source for synthetic data to be used in experi-

mental campaigns. As such, they can provide valuable insights during the

design and evaluation of algorithms and data structures — in particular, in

the context of large problem instances. Generating such graphs at scale,

however, is a non-trivial task in itself.

The present thesis considers algorithmic aspects of generating massive

random graphs. To this end, we develop practically e�icient sampling

algorithms for a number of established random graph models including

preferential a�achment networks, graphs with prescribed degree sequences,

and models based on geometric embeddings. All models are applicable, but

not limited, to social networks.

Our generators target various machine models ranging from sequential

schemes over I/O-e�icient algorithms to parallel solutions, including dis-

tributed computing and di�erent types of shared-memory parallelism.

Introduction

1.1 Motivation

Networksnetworks and graphs:

R Section 1.2.1

are the very fabric that makes societies [34, 261]. As such, humanity is seeking

to understands their structures, rules and implications for centuries. The practical

importance of networks, however, only sky-rocketed with the advent of the information

age. Nowadays, modern computers o�er su�cient storage and processing capacity to

map out most aspects of human life and the world we inhabit. They are fed by billions

of interconnected sensors and computerized personal devices that produce enormous

volumes of network data to be exploited.

Computer science provides the means to face this big data challenge. However, a

formal language capturing the inner structure of the data expected to be processed is

required to provide tailor-made solutions. Network models are just that: a mathematical

tool to describe and analyze realistic graphs. Research into and applications of these

models are deeply intertwined with various �elds of science.

Networksrandom graphs:

R Section 1.2.3

are commonly modeled by so-called random graphs and, therefore, repre-

sent probability distributions over the set of graphs [59]. These distributions are almost

always parametrized (e.g., for the graph size or density) and typically follow implicitly

from some randomized construction algorithm. Popular models are designed such that

we can expect certain topological properties from a randomly drawn instance.complex networks:

R Section 1.2.4 �.

A par-

ticularly interesting goal is to reproduce the loosely de�ned class of complex networks
which, among others, encompasses most social networks.

By expressing network models as random graphs, we inherit a rich set of tools

from combinatorics, stochastics and graph theory.survey of network models:

R Chapter 2

In algorithmics we may, for instance,

assume that meaningful inputs are random instances of a suitable network model. Then

we can derive realistic formal performance predictions using average-case analysis,

smoothed complexity, et cetera. In practice, such results tend to be more relevant than

worst-case analysis based on pathologic structures that are implausible in applications.

Network models also enable or supplement experimental campaigns as a versatile

source of synthetic data with controllable independent variables. Synthetic benchmarks

are especially useful in the context of large instances where real data is typically un-

available in su�cient size, quantity, or variety. Even if the data exists, procuring and

archiving it may be di�cult for legal or technical reasons; this threatens the independent

reproducibility of results and thus infringes on one of science’s cornerstones [273].

1.1.1 Goals

Weengineering challenges:

R Section 1.3

study algorithmic aspects of the generation of random graphs at scale. While

we acknowledge the merits of developing or adapting network models dedicated to

fast generation (e.g., [95, 311]), each new model used further fragments the body of

empirical studies into domains of incomparable results. Hence, we mostly focus on

established graph families for which we develop faithful sampling algorithms that are

analytically e�cient and practically fast. The considered models include preferential

attachment networks, graphs with prescribed degree sequences, and geometrically

embedded networks; they capture social networks and are applicable beyond.

2

Random Graphs in the Context of Network Analysis

Our summary of results:

R Chapter 9

generators target various machine models ranging from classical sequential

schemes over I/O-e�cient algorithms to parallel solutions, including distributed com-

puting and di�erent types of shared-memory parallelism.

1.1.2 Outline

The present thesis is organized as follows:

• Section 1.2 discusses features commonly associated with complex networks.

• Section 1.3 introduces algorithm engineering as our design methodology. It also

summarizes challenges encountered during the development of generators that

are e�cient in both theory and practice. Most of the discussion pertains to features

of modern computers which we capture with advanced models of computation.

• Chapters 2 to 8 present the main part of the present thesis and contain its original

work. A short overview is given in Section 1.4.

Each chapter is based on at least one peer-reviewed publication (with the exception

of Chapter 2, which is based on a submitted manuscript). The articles’ content

is reproduced as published and subject to only moderate copy editing ensuring

that all chapters adhere to similar formatting, typography, notation, and naming

conventions. Remarks and annotations are limited to the pages’ outer columns.

Each chapter is pre�xed with a title page stating the abstract and co-authors. It

also declares the contributions of the present thesis’ author.

• Chapter 9 summarizes the results obtained in the main part of the thesis.

1.2 Random Graphs in the Context of Network Analysis

In the following section, we introduce important features of complex networks. The

discussion is presented as an explorative and non-exhaustive tutorial focusing on aspects

relevant to the generators developed in the main section of the thesis. This hands-on

approach is contrasted by Chapter 2 which o�ers a broader and classical survey.

1.2.1 From Networks to Graphs

We use the term network to refer to some process involving connected entities, and use

a graph as a formal concept to capture “relevant” aspects observed in such a network.

A graph has a simple basic structure: it consists of nodes, vertices, edgesnodes (also known as vertices or

points), and edges (also known as arcs or links). Each edge connects at least two —not

necessarily di�erent— nodes, and can have a direction, weight, and label.

The a single network can imply

multiple application-

specific graph models

application or problem at hand determines the set of relevant aspects that need

to be modeled. It, thereby, guides the process of translating a network into a graph. By

design, this translation tends to be lossy since one often chooses to disregard features

considered to be unimportant.

3

Introduction

Assume, for instance, that we want to capture the essence of a scienti�c collaboration

network. We can obtain a graph by identifying authors with nodes and adding an edge

for each pair of authors that collaborated on at least one article. Such graphs are referred

to as coauthorship networks [204]. While this simple model su�ces to identify clusters

of co-authors and similar structural aspects, it omits the collaborations’ contexts.

Thus, we might want to modify the linkage criterion: for each article, we add a single

edge between all authors’ nodes. Such an edge connects an arbitrary number of nodes

and is referred to as ahyper-graph

hyper-edge

hyper-edge and is part of a hyper-graph. Since hyper-graphs are

non-trivial to process, they are commonly translated into bipartite graphs by identifying

each hyper-edge with a newly added vertex. In this concrete example, we extend the set

of nodes by adding a vertex for each article and only connect authors and articles. The

termbipartite bipartite describes the property that the set of nodes can be split into two classes

(here, authors and articles) such that no edge connects two nodes of the same class.

Case Study 1.1. Throughout the introduction, we regularly present a case study

based on a coauthorship network. It relies on empirical data extracted from the Dblp

database [298] containing more than 5 million publications in computer science. Dblp

was selected for technical reasons as it provides freely accessible and curated real-world

data; for the purpose of this introduction it is, however, just one of many networks with

similar structural properties. We extracted the coauthorship graphDblp coauthor

Dblp bipartite

Dblp coauthor, and

the aforementioned bipartite modeling Dblp bipartite. For simplicity, we only consider

their largest connected components encompassing more than 89 % of authors. J

1.2.2 Graph Theory

In the following, we formalize the previously rather prose discussion of graphs. Graph

theory o�ers versatile tools to model, analyze and process objects and their relationships.

Its �rst usage in a mathematical proof is commonly attributed to Leonhard Euler [125]

who gave a negative resolution to the Seven Brigdes of Königsberg problem in the year

1741. Despite this potentially devastating set-back for the city’s tourism industry, graphs

have become a virtually ubiquitous concept in modern science.

Formally, a graphG, V , E, n, m G = (V,E) is a tuple where V = [vi]ni=1 represents the set of

nodes and E = [ei]mi=1 the set of edges. If not stated di�erently, we denote the number

of nodes and edges with n and m, respectively. In the interest of brevity, we restrict

ourselves to the most common case where any edge e connects exactly two nodes u

and v. Then, we say that the two nodes areadjacent, incident adjacent to each other and incident to edge e.

An asymmetric relationship (e.g., person u sends a letter to person v) is modeled by a

directed edge and denoted as a tuple ei = (u, v).directed graph (digraph) This implies E ⊆ V × V and we say G

is a directed graph, or short, digraph. On the other hand, an edge in anundirected graph undirected graph
expresses a symmetric relationship, and we have E ⊆ {{u, v} | u, v ∈ V ∧ u 6= v}.
Digraphs are strictly more expressive than their undirected counterparts: any undirected

edge {u, v} can be translated into its two directed pendants (u, v) and (v, u), while the

opposite is not always possible without loss of speci�city.

4

Random Graphs in the Context of Network Analysis

Nodes and edges can be augmented with additional information. special graph classes:

R Section 2.9.2

Such labels are

application-speci�c and may encode distances, costs, capacities, or categorical data (e.g.,

road types in a street network). The treatment of labels is therefore often tailor-made

for speci�c problems and orthogonal to the graph’s topology. Thus, we focus on general

structural aspects of graphs and seldom consider labels.

1.2.3 Random Graphs

A random graph (model)random graph is a probability distribution P : G → [0, 1] where G is the set of all

graphs. Virtually all random graph models1
are parameterized and thus form families of

probability distributions. The underlying distributions are typically speci�ed implicitly,

and often have a �nite support de�ned by some combinatorial constraints.

As an example, consider the G(n, p)famous G(n, p) model introduced by E. Gilbert [148] in

1959. In its original formulation, the model’s support consists of all 2n(n+1)/2
undirected

graphs with exactly n nodes. The probability distribution is given indirectly via the

following sampling algorithm:

“Pick e�icient G(n, p) sampling:

R Section 2.4.1

one of these graphs by the following random process. For all pairs of

points [nodes] make random choices, independent of each other, whether or

not to join the points of the pair by a line [edge]. Let the common probability

of joining be p.” [148]

In other words, in a random instance of G(n, p) any edge e exists independently

with probability p. Observe that G(n, 1/2) hence implies the uniform distribution of all

graphs with n nodes. It is therefore a so-called maximum entropy model and sometimes

even referred to as the random graph [34].

Intuitively, the G(n, p) model should have little structural resemblance to complex

networks. Since all edges are chosen independently with identical probabilities, we

do not expect the formation of any complex features. broader survey:

R Section 2.1

In the following, we strive to

formalize this intuition by introducing a number of features that are observable in real

data and directly related to the original work in Chapters 3 to 8.

1.2.4 Density

Besides details on density:

R Section 2.2.1

the previously considered number n of nodes, the number m of edges is an

obvious key �gure. The relationship of n and m is of particular interest and leads to the

notion of density. In algorithmics, one typically focuses on the scaling behavior of m as

a function of n. We call a family of graphs sparse

dense

sparse if m = O(n poly log n), and dense if

m = Θ(n2). Many observed networks are sparse since the creation or maintenance of

an edge requires some form of work or cost.

1

In the literature the terms random graph and random graph model are commonly used interchangeably,

and may even refer to a random instance sampled from a model. We adopt the former simpli�cation for

the sake of readability.

5

Introduction

100 101 102 103

Degree (i.e. number of coauthors)

100

101

102

103

104

105

Ab
so

lu
te

 fr
eq

ue
nc

y

DBLP: Coauthorship
Measurement
Fit (Log-Normal)
Fit (Power-Law)
Fit (Binomial)

100 101 102

Degree (i.e. number of authors)

100

101

102

103

104

105

106

DBLP: Degrees of Articles
Measurement
Fit (Log-Normal)
Fit (Power-Law)
Fit (Binomial)

Figure 1.1: Degree frequency of Dblp coauthor (le�) and Dblp bipartite (right) compared to common distributions.

In contrast to the global parameter m, we now consider a more �ne-grained and

local measure. Thedeg(·) : degree degree deg(u) of node u is de�ned as the number of neighbors

adjacent to u. In case of digraphs, we distinguish between the out-degree degout(u)

de�ned as the number of edges starting in u, and the in-degree degin(u) counting the

number edges ending in u.

Observeavg deg(G) : average

degree

that we can interpret the aforementioned relationship of n and m as the

average degree avg deg(G). It is another common way to measure the density of G:

avg deg(G) :=
1

n

{∑n
i=1 deg(vi) if G is undirected∑n
i=1

(
degin(vi) + degout(vi)

)
otherwise

= 2m/n

The degreeDG : degree sequence sequenceDG of an undirected graphG is de�ned asDG := [deg(vi)]ni=1,

and analogous extensions are available for digraphs. In the context of random graphs, it

is often more appropriate to consider adegree distribution degree distribution f : {0, 1, . . . n−1} → [0, 1]

rather than a concrete degree sequence. To this end, the distribution f(k) gives the

probability that a randomly selected node u in a randomly chosen graph G has degree k.

1.2.4.1 Gilbert’s Graph does not Explain Complex Networks

These simple density measures su�ce to demonstrate that G(n, p) does not accurately

model observed networks. To do so, we �rst study the behavior of G(n, p) analytically

and then compare it to the empirical �ndings in Dblp graphs.

An undirected instance uniformly sampled from G(n, p) contains each of its

(
n
2

)
edges independently with probability p. Thus, the total number of edges m follows the

binomial distribution BinD

[(
n
2

)
, p
]
:

m ∼ BinD

[(
n

2

)
, p

]
= BinD [n(n− 1)/2, p] (1.1)

⇒ E[m] =

(
n

2

)
p = n(n− 1)p/2 (1.2)

6

Random Graphs in the Context of Network Analysis

The analysis of the degree distribution is similar and uses the observation that an

arbitrary node u is potentially incident to n−1 edges that each exist independently with

probability p. Thus we have:

deg(u) ∼ BinD [n− 1, p] (1.3)

E[deg(u)] = (n− 1)p (1.4)

Var[deg(u)] = (1− p)np (1.5)

Based on Eq. (1.2), we can replicate the density of any supplied graph with n nodes and

m edges by choosing

p =
2m

n(n− 1)
. (1.6)

Observe that the predicted degrees of a sparse G(n, p) graph are highly concentrated

around their mean: for sparse graphs, Eq. (1.6) implies that p = O(poly log(n)/n) is

small. Then, Eq. (1.5) bounds the variance in node degrees to Var[deg(u)] = O(poly log n).

We refer to concentrated degree distributions as homogenous degreeshomogenous.

Case Study 1.2. The comparison in Figure 1.1 suggests that homogenous degrees are

unrealistic for complex networks — certainly for our case study which exhibits highly

complex networks have

heterogeneous degrees

heterogeneous degrees. Considering the size and density of Dblp coauthor, the G(n, p)

model predicts that most authors have 12 coauthors and suggests that no individual

accumulates more than approximately 30 coauthors. Instead, we �nd a mode of three

coauthors and a few researchers who published with more than 3000 colleagues. Both

observations are virtually impossible in the G(n, p) model; the probability to obtain a

graph with at least one node with degree above 3000 is less than 10−5 900
.

Some of the high-degree nodes are arguably explainable outliers, e.g., the four

articles with the most authors in Dblp bipartite are extraordinary interdisciplinary

publications in biology and physics [98, 327, 1, 2]. Still, the overall picture is consistent

with most complex networks whose degrees typically show a sub-exponential decay

and are referred to as heavy-tailed distributionheavy-tailed. J

There are various well known probability distributions featuring heavy-tails. In the

context of degree distributions, two prominent contenders are scale-free and log-normal

distributed networks. Historically, scale-free networks received most attention at least

partially due to the seminal work by Albert and Barabási [32, 14].

While there are competing or informal de�nitions of the scale-free property (e.g.,

[14, 218, 352], cf. [74, 96]), most agree on a powerlaw:

R Section 1.2.4.2

powerlaw degree distribution with various

constraints (e.g., on the powerlaw exponent) or relaxations. Relaxations typically focus

on the distributions’ tails as the performance of algorithms and dynamics on scale-free

networks is largely dominated by the tail’s highly connected vertices.

However, by doing so one potentially disregards the majority of nodes. This e�ect

can be observed in Figure 1.1 presenting a powerlaw estimation for Dblp coauthor

based on a powerlaw �tting method by Alstott et al. [19]. The �t does not accurately

describe the frequencies of nodes with a degree of at most 10, which, however, make

up 75.5 % of the authors. More recently, alternative explanations such as the log-normal
distribution gained momentum (see e.g., [74] for a discussion).

7

Introduction

In this introduction, we focus on powerlaw distributions since they motivate the

random graph models considered in the following chapters.

1.2.4.2 Scale-Free Networks and Powerlaw Degree Sequences

In this section, we formalize the notion of scale-free networks. To this end, we de�ne

powerlaw distributions, discuss their connections to scale-free networks, and introduce

scale-free random graphs models.

Powerlaw Distributions

An integer random variable X follows apowerlaw distribution powerlaw distribution if the probability

P[X = k] to draw the value k scales proportionally to k−γ where γ > 1 is the so-called

powerlaw exponent powerlaw exponent. The powerlaw exponent controls the decay of the distribution’s tail

and higher values of γ produce smaller tails. Newman [263] derives the expectation

value of the maximal degree E[maxdeg] and the k-th moment 〈Xk〉 as follows:
2

E[maxdeg] ∝ n1/(γ−1)
(1.7)

〈Xk〉 =
γ − 1

γ − 1− k for k > γ − 1 (1.8)

Powerlaw Distributions are Scale-Free

These basic de�nitions allow us to motivate the termscale-free scale-free. A distribution is called

scale-free if there exists a k ≥ 1 such that the k-th moment of the distribution diverges,

i.e., it grows beyond any scale (see [34, Sec. 4.4] for details). In case of powerlaw

distributions, this occurs [263] for all moments with k > γ − 1.

As a corollary, we �nd that the average degree (i.e., the �rst moment) in the limit

of n→∞ is only �nite if γ > 2. Conversely, the common scenario of γ ≤ 3 implies a

divergent variance (second moment). Equation (1.7) gives an intuition for this: in the

domain of γ < 3, the maximal degree grows as ω(
√
n), translating into a super-constant

contribution to the distribution’s variance. This skewness in the degree distribution can

have signi�cant e�ects on the performance of algorithms (e.g., due to load balancing

issues), and is hence worth exploring using random graphs.

Preferential A�achment Yields Powerlaw Degrees

Barabási and Albert [32] propose a simple stochastic process to explain the emergence

of scale-free networks and show that two ingredients, namely growth and selection

bias, su�ce to yield networks with powerlaw degree distributions.
3

2

The derivation uses a continuous variant of the distribution and matches in the limit of n→∞. This

formulation is commonly encountered in the analysis of powerlaw models, e.g., in the early mean-�eld

derivations of the soon to be discussed BA model [33].

3

Earlier, Price [275] proposed a similar process inspired by Pólya urns [117]. The author applies it

to citation networks with a known powerlaw in-degree distribution [276]. The BA model is sometimes

interpreted as a special case of Price’s model, and was selected here due to its wide spread and simplicity.

8

Random Graphs in the Context of Network Analysis

At its core, their BA model relies on preferential a�achmentpreferential attachment, a positive feedback

loop in dynamic systems where selecting an item at one point in time increases the

probability of selecting it again in the future. It is often proverbially summarized as “the

rich get richer”. Based on this idea, the authors describe the following random graph:

e�icient BA generators:

R Chapter 3

and Section 2.4.2

“[...] starting with a small number (m0) of vertices, at every time step

we add a new vertex with d < m0 edges that link the new vertex to d

di�erent vertices already present in the system. To incorporate preferential

attachment, we assume that the probability Π that a new vertex will be

connected to vertex i depends on the connectivity [degree] ki of that vertex,

so that Π(ki) = ki/
∑

j kj . After t time steps, the model leads to a random

network with t+m0 vertices and d·t edges.” [32] [Initial degree renamed to d]

The BA model is simplistic and rigid since it is speci�cally designed to explain the

emergence of powerlaw degree distributions. Besides the unspeci�ed seed graph of

size m0, its only parameters are the number t of added nodes as well as their initial

degrees d. The parameters control little more than the graph size and its density.

In the following, we highlight some features of observed networks that are not

adequately reproduced when using the BA model as a graph generator. The �rst one

pertains to the powerlaw distribution since its exponent cannot be controlled and has

a �xed expectation value E[γ] = 3. Additionally, most BA graphs are connected. A

connected seed graph implies that any graph emitted by the model is connected as

well. Even if the seed graph is disconnected, the output will be connected with high

probability for d > 1 and su�ciently large t. The clustering:

R Section 1.2.5

BA model also lacks any notion of

clustering, a prominent feature of complex networks. There exist however extensions

to increase clustering (e.g., [177, 110]).

Observe that many features of the seed graph will carry over to the output if the

number of new vertices t is comparably small. Since the model includes growth, it can

be used to benchmark dynamic algorithms and data structures by providing a reasonable

sequence of node and edge insertions. In Chapter 3, we therefore propose and analyze

two generators for the BA model that support massive seed graphs exceeding the size

of main memory.

1.2.5 Clustering

Complex networks exhibit �uctuations of their density at di�erent scales ranging from

small local e�ects to global structures. These e�ects are mostly decoupled from the

degree distributions discussed in the previous section.

1.2.5.1 Local Clustering

At the smallest level, these �uctuations can be observed via certain induced substructures.

These so-called motifmotifs [245, 304] often appear with a signi�cantly elevated frequency (see

below). While we will quantify such e�ects using clustering coe�cients in Section 2.2.1,

it su�ces for the moment to consider induced closed triangles K3.

9

Introduction

Case Study 1.3. Consider a researcher va with at least two neighbors in the Dblp

coauthor network and select two of her coauthors vb 6= vc. The three nodes form a

so-called2-path 2-path. Then we may intuit from our everyday knowledge about collaborations

that it is quite likely that the three authors not only induce a 2-path but actually form a

triangle. In fact, 17.4 % of all 2-paths in Dblp coauthor are within a closed triangle.
4

The probability of an edge existing between vb and vc conditioned on the existence

of a common neighbor va is therefore 3.4 · 105
times higher than expected from in-

dependent edges as in the G(n, p) model. Notedegrees of G(n, p):

R Section 1.2.4.1

that G(n, p) is used here for ease of

exposition even if it is certainly the wrong reference point due to its vastly di�erent

degree distribution which a�ects the occurrence rate of motifs.

In Section 1.2.7, we construct a better suited null model that reproduces the degree

sequence of Dblp coauthor. Then we also investigate the statistical signi�cance of our

�ndings (and hence omit it here). While the improved null model yields quantitatively

di�erent results, we arrive at a qualitatively similar conclusion. J

In the case study, we observe an elevated frequency of closed triangles, an e�ect

known astriadic closure triadic closure [309]. There are several natural explanations for triadic closure;

for instance all three authors may have collaborated on the same article. Alternatively,

their small distance within the network may hint at similar research �elds, or it may

indicate a small social distance (i.e., they all know each other). All these reasons suggest

some form ofhomophily homophily, the tendency of individuals to preferentially interact with

persons with similar interests, professions, values, et cetera.

In short, there are processes in the real world that lead to local clustering, which

should be re�ected by realistic random graph models. We discuss one approach in

Section 1.2.6 — namely, models that presume a geometric embedding of the network

and that use the geometric distance as a proxy for topological distance.

1.2.5.2 Community Structure

Similarly, clustering can also be observed at larger scales. Consider for instance members

of a working group or research project. Then it is likely that this community will be

structurally observable in our collaboration network as a cluster, i.e., their vertex-induced

subgraph will be denser than their outside connections.

Thecommunity detection detection of such communities is an active research �eld and warrants sys-

tematic benchmarks to empirically compare the performance of di�erent detection

algorithms. While real data is valuable, it is limited (especially in case of large instances),

unstructured, and noisy. Additionally, it is not always clear where exactly communities

lie, and whether they are detectable in the network structure at all. Thus, systematic

studies exclusively based on observed inputs may be hard to interpret. A mixture of

real data and synthetic benchmarks helps to mitigate this issue.

4

We scale the number of triangles by the numberN2 of 2-paths to ease interpretation. However, observe

that N2 is identical in all simple graphs sharing the same degree sequence. Let N [v] be the neighborhood

of v and derive N2 = 1/2
∑
v∈V

∑
u∈N [v](deg(v) − 1) =

∑
v∈V

(
deg(v)

2

)
. In case of Dblp coauthor

we �nd N2 ≈ 1.15 · 1010
.

10

Random Graphs in the Context of Network Analysis

A de-facto standard benchmark further block models:

R Section 2.7

for this task is the LFR model [210, 208]. It arti�cially

plants a community structure and outputs it as ground truth to quantify the performance

of community detection algorithms. In the following, we brie�y introduce the sampling

scheme for undirected and unweighted networks with non-overlapping communities.

Note, however, that more general variants introduced in [208] are structurally similar.

The I/O-e�icient LFR:

R Chapter 4

LFR model samples a powerlaw degree sequence and a community size distri-

bution from independent powerlaw distributions. It also assigns each node to a random

community. The sampling steps are subject to a number of constraints ensuring that it

is feasible to construct a matching graph.

LFR reserves for each node u a constant fraction of u’s neighbors for the so-called

inter-community graph containing only edges between nodes of di�erent communities.

The remaining neighbors are selected from within u’s community.

Based FDSM:

R Section 1.2.7.1

on this network blueprint, the model randomly samples all communities

independently from the Fixed-Degree-Sequence-Model (FDSM). It does the same for the

large inter-community graph. Since the FDSM is unaware of the community structure, it

may produce an inter-community graph in which two nodes within the same community

are connected; these defects are repaired using a Markov-chain process very similar to

the one employed by FDSM itself.

1.2.6 Hidden Distances

In the previous section, we suggested the existence of social distancesocial distance as an abstract

measure for the separation of two individuals in a presumed social spacesocial space. These notions

are rooted in sociology and have been used for random graphs models (e.g., [343, 57]).

Notably, Watts et al. [343] propose the Watts model of social networks in which the

linking probability between two individuals decreases exponentially with their social

distance. To this end, each individual is assigned a “hidden” multi-dimensional identity
vector. Each dimension can be interpreted as a certain facet of the person, such as

geographical position or occupation, and is hierarchically organized as a tree. Then,

the social distance between two individuals is de�ned via the smallest shortest-path

distance between both persons in any dimension, i.e., similarity in a single identity trait

already yields social vicinity.

The Watts model is designed to explain the small-world propertysmall-world property of social net-

works [243]. In an empirical study Milgram and Travers [243, 326] give evidence that

the average length of a chain of acquaintances between a randomly selected pair of US

citizens is small. Crucially, the experiment also suggests that humans can e�ciently

navigate the network even if they know little about the other person. Many applications

may bene�t from understanding and replicating this ability.

Watts et al. approach the issue by experimentally showing that greedy routing

based on identity vectors (also known as geographic routinggeographic routing) works well in their model

and “captures the essence of the real small-world problem” [343]. Unfortunately, the

model seems unsuitable for general complex networks as it is highly speci�c due to its

non-generic social space, and also exhibits a homogenous degree distribution.

11

Introduction

1.2.6.1 Geometric Embedding

Watts et al. suggest that their observations apply to a broader class of decentralized

search problems. For the general case, the social space is typically modeled as a generic

geometric space (i.e., the resulting spatial networks associate each vertex with a point

placed in some geometric space). Depending on the model, the probability of connect-

ing two nodes is governed by (i) their relative orientation (e.g., Sections 2.5.1, 2.5.2

and 2.5.4.1), (ii) their absolute position (e.g., Section 2.5.2), or (iii) additional geometric

constraints (e.g., Sections 2.5.3 and 2.5.4).

Random Geometric Graphs (RGG)RGG: Euclidean Random

Geometric Graphs

are in a sense the most natural variant as they

embed networks into a d-dimensional Euclidean space [149, 270]. These types of net-

works have been extensively studied in the context of physical communication networks

(e.g., wireless networks [183, 160]) and the spreading of diseases [149]. However, in

general, RGGs are inadequate to model complex networks since most relevant parameter

domains yield large average path lengths and nearly homogeneous degree distributions.

Random Hyperbolic Graphs (RHG)RHG: Random Hyperbolic

Graphs

overcome this issue by replacing Euclidean geom-

etry with Hyperbolic geometry. Despite their simplicity, these models naturally capture

and explain many topological features of complex networks (among others, all those

discussed earlier; see [136] for a recent survey). RHGs have a powerlaw degree distribu-

tion [159] with controllable exponent γ > 2, realistic component sizes [54], local clus-

tering [159], and a small diameter [134]. It is also known that many observed networks

imply a hyperbolic geometry and can be embedded with little distortion [56, 15, 50, 303];

then geographical routing works almost optimally [56, 194].

Theresampling Threshold RHG:

R Chapters 6 and 8

and Section 7.7.3

sampling Binomial RHG:

R Chapter 8

are two major RHG variants, namely the threshold and the binomial types.

Threshold RHGs link two nodes i� their hyperbolic distance falls below a global threshold.

While this variant is easier to analyze and to sample from, Binomial RHGs are arguably

more realistic as they allow longer edges and shorter non-edges with a small probability.

This is achieved with an additional parameter T ≥ 0 called temperature. Threshold RHG
and Binomial RHG coincide for T → 0 while larger values of T reduce local cohesion.

1.2.7 Prescribed Degree Sequences as Null Models

A common problem in network analysis is to judge the statistical relevance of an

observation. We have already encountered such questions, for instance, weoriginal investigation:

R Section 1.2.5

found that

17.4 % of all 2-paths in the Dblp coauthor are within a closed triangle which is a

high value compared to the G(n, p) model. The G(n, p) model, however, is �tted using

only the number of nodes n and edges m respectively, thereby neglecting potentially

important structural information.

To highlight the importance of selecting an appropriate reference point, consider a

graph model consisting of an almost fully connected central component, say G(n′, P)

with P → 1, surrounded by singleton nodes and node pairs only. We can �t this model

to match any n and m by choosing appropriate sizes for the three subgraph types. One

obtains a graph in which only the central component contains 2-paths. Thus, each

2-path has a vertex-induced triangle with probability P 3 ≈ 1. Based on this model, the

12

Random Graphs in the Context of Network Analysis

aforementioned 17.4 % is improbably low. While this graph admittedly seems contrived,

there are models speci�cally designed to have high local cohesion (e.g., [177, 110]) which

lead to a similar conclusion.

Thus, degree sequence implies

null model

we need a way to construct an unbiased null model which still produces

similar graphs. A commonly accepted method is to consider all graphs with a similar or

identical degree sequence as the network under investigation.

The Chung-Lu matches degrees

only in expectation

computational cost of this approach heavily depends on its exact formulation.

Two models with linear work sampling algorithms are the Chung-Lu (CL) model and the

Con�guration Model (CM). Configuration Model

permits self-loops and

multi-edges

The CL model produces the prescribed degree sequence only

in expectation (see Section 2.6.1 for details). The CM , on the other hand, exactly matches

the prescribed degree sequence but permits self-loops and multi-edges. These parallel

edges a�ect the uniformity of the model [260, p.436] and I/O-e�icient CM:

R Chapter 4

are inappropriate for certain

applications; however, erasing them may lead to signi�cant changes in topology [297].

1.2.7.1 Simple Graphs with a Prescribed Degree Sequence

In the following, we focus on simple graphs (i.e., without self-loops or multi-edges)

matching a prescribed degree sequence exactly.

The Fixed-Degree-Sequence-

Model: R Chapter 4

Fixed-Degree-Sequence-Model is a common solution to obtain simple graphs from

a prescribed degree sequence. It �rst manifests a biased deterministic graph using the

Havel-Hakimi algorithm and then uses an Edge Switching (ES) Markov chain process

to perturb the graph. In each step, the process selects two edges uniformly at random

and exchanges their incident nodes — by doing so the degrees remain constant. If a step

were to result in a self-loop or multi-edge, it is rejected without replacement.

Despite mixing time:

R Section 2.6.3

intensive research, it remains an open problem to �nd practical upper

bounds on the Markov chain’s mixing time; i.e., the number of steps required to obtain

a uniform sample. In practice, a small multiple of the number of edges typically su�ces.

Curveball (CB) Curveball (CB)

e�icient CB generators:

R Chapter 5

is a more recent process but structurally similar to ES; instead of

exchanging the endpoints of edges, CB shu�es the neighborhoods of two nodes. As-

suming a su�ciently large average degree, each step of this process (a so-called trade)
can in�ict larger changes to a graph as compared to ES, possibly yielding faster mixing

times [80, 321, 331]. Global Curveball (G-CB) is a variant of CB that coalesces n/2 trades

into a single Markov chain step targeting each node exactly once. This variant has

bene�ts in the implementation and analysis, and additionally seems to converge faster.

Still practical and rigorous upper bounds on CB’s mixing time are elusive.

Case Study 1.4. In the following, we experimentally support our homophily:

R Section 1.2.5

previous claim that the

number of triangles n∆ in Dblp coauthor is signi�cantly elevated. We thus construct

a null model without local cohesion and show that it cannot explain our observation.

The model is de�ned as the uniform distribution over all simple graphs with the

same degree sequence as Dblp coauthor. In other words, our null-hypothesis is that

the observed number of triangles is plausible for graphs with such a degree sequence.

Unfortunately, enumerating all graphs in the support of our null model is infeasible

due to computational cost. Hence, we resort to sub-sampling and do so by perturbing

13

Introduction

0 25 50 75 100 125 150 175 200
Perturbation time [s]

103

104

105

106

107

N
u
m

b
e
r

o
f

tr
ia

n
g
le

s

Initial value

Null model

G(n, p)
Edge Switching

Global Curveball

71000 71500 72000 72500 73000 73500 74000 74500
Triangles

0.0000

0.0002

0.0004

0.0006

0.0008

D
e
n
si

ty

Fit = 72928, = 441

Mean

99% Confidence

Measured (28987 runs)

Figure 1.2: Number of closed triangles (n∆) in Dblp coauthor. Le�: Progress of Curveball and Edge Switching as

functions of time. For both null models, the line indicating the respective average completely covers the value range of

the 99 %-confidence interval shown in the right plot. Right: Distribution of triangle count a�er 500 global trades.

Algorithm design

Theoretical

analysis

Implementation

Experimental

analysis

Figure 1.3: Algorithm en-

gineering design circle

Dblp coauthor multiple times. For each run, we compute the number of triangles n∆

after 100m Edge Switching steps, where m is the number of edges in the graph. For

completeness, we also repeat the experiment with Global Curveball.
Figure 1.2 presents the measurements. We observe that G-CB mixes slower than ES

which we attribute to the skewed degree distribution with lower average degree. We

also �nd that the null model’s average n∆ is (a) 377 times larger than expected from

G(n, p) with matching density and (b) 625 times smaller than in Dblp coauthor.

To judge the statistical signi�cance of our �ndings, we assume that the values of n∆

measured from our null model follow a normal distribution. Roughly speaking, this can

be explained using the central limit theorem since each measurement of n∆ is based on a

randomly sampled graph and can be interpreted as a sum of almost independent indicator

variables. As indicated in Figure 1.2, our measurements have a mean of µ = 72,928

and a standard deviation of σ = 441. Dblp coauthor, in contrast, contains more than

45 million closed triangles. Thus, we can strongly reject the null-hypothesis. J

1.3 Practical Engineering Challenges

In the previous section, we introduced a number of random graph models and presented

the underlying probability distributions in terms of intuitive sampling algorithms. These

algorithms are designed to be easy to follow and thereby to communicate the models’

central ideas to the reader. Unfortunately, direct implementations of such descriptions

seldom yield e�cient and scalable generators required to sample massive graphs.

The present thesis bridges this gap for a number of models by engineering generators

that are e�cient in theory and practice. To this end, we adopt the algorithm engineer-
ing methodology. As illustrated in Figure 1.3, it proposes an iterative design process

alternating between theoretical analysis and empirical studies to identify, understand,

and overcome the limitations of a given solution. This process may start with classical

algorithm design assuming aunit-cost Ram unit-cost Random-Access Machine (unit-cost Ram) model.

14

Practical Engineering Challenges

Example 1.5. Consider for instance the Random Hyperbolic Graph model that

randomly scatters geometric points and connects any two with a su�ciently small

distance. A naïve implementation may compute the distance of all pairs which

requires at least quadratic work and is therefore prohibitively expensive even for

medium-sized graphs. Improved algorithms exploit the geometric structure of the

problem and sample instances in time nearly linear in the output size.

Such e�cient approaches mark the starting points of the engineering e�orts

documented in Chapters 6 to 8. Each project optimizes according to di�erent

objectives, which results in quite di�erent implementations of the same random

graph model. J

The unit-cost Ram’s greatest strength is also its greatest weakness: depending on

the point of view, the model either abstracts away, or fails to capture the complexity

of practical machines. Taking the unit-cost Ram as the baseline, real machines imply

non-trivial penalties and opportunities for acceleration:

• The Constants do ma�er!model does not appropriately re�ect real costs per unit of execution. For

instance, the latency of basic arithmetic instructions such as integer addition

and division can vary more than two orders of magnitude [130]. For a given

machine, these discrepancies typically only contribute constant factors to the

total runtime of an algorithm, and are therefore irrelevant for an asymptotic

analysis. In practice, however, constants do matter. cost of data access:

R Section 1.3.1

The disagreement is even

more severe when factoring in the inhomogeneous cost of data access.

• The hardware acceleration:

R Section 1.3.2 �.

model does not include advanced features of modern computers such as

parallelism or special hardware-accelerated instructions.

In the remainder of this section, we highlight a number of relevant aspects of modern

computer hardware and discuss related formal models of computation. We augment

this discussion with a selection of solutions developed for the present thesis.

1.3.1 The Cost of Data Transfer

Modern computers are composed of a multitude of memory types. Physical, techno-

logical and economic constraints motivate a so-called memory hierarchy ranging from

the highest level with fast, memory hierarchy: the

higher the level, the faster

but smaller the memory

but small memory areas (registers, caches, et cetera) over

main memory down to mass storage (e.g., solid-state drives, rotating disks, or network-

attached storage).
5

When comparing the memory at the upper and lower ends of the

hierarchy, we �nd that their capacities, bandwidths and latencies typically di�er in

excess of �ve orders of magnitude. The vast majority of computers used today processes

data only in the highest hierarchy levels, and hence needs to move data to and fro.

5

We omit additional types such as o�ine mass storage since these are of little concern in the context of

the algorithms considered here.

15

Introduction

Figure 1.4: Memory hier-

archy a�ecting BA genera-

tors (cf. Section 3.5). BB-

BA accesses unstructured

memory locations. It be-

comes orders of magni-

tudes slower as soon as the

data does not fit into main

memory and gets swapped

out to disk.

100

101

102

103

104

107 108 109 1010 1011

Speedup reference

m = 10n

T
o

t
a
l

r
u

n
t
i
m

e
[
s
]

Number of edges added

TFP-BA

BB-BA

MP-BA

The complexity of the memory subsystem is typically abstracted away by an intricate

cooperation between the hardware and the operating system; techniques includevirtual addresses a

uniform virtual address space which may even encompass mass storage. Substantial

engineering e�orts attempt to mitigate the thereby “hidden” costs of accessing data in

lower levels. Unfortunately, most of these heuristics rely on some structure or locality

of reference in the access patterns. Section 1.3.1 illustrates this behavior, as the BB-BA

algorithm relies on unstructured accesses, which become prohibitively expensive if too

low memory levels need to be involved. Two commonly considered types are spatial

and temporal locality.

Spatial locality (also known as data locality)spacial/data locality refers to the phenomenon that one access

to a memory location is likely followed by additional accesses to addresses in the direct

vicinity; e.g., when sequentially reading an array from beginning to end. Algorithms

exhibiting data locality can be accelerated using explicit or speculativeprefetching

block transfers

prefetching (to

hide the latency of accessing data), and can bene�t from reduced overheads by moving

and caching blocks of data rather than accessing single data items.

Temporal localitytemporal locality suggests that an accessed address is likely to be accessed again in

the near future. Examples include read-modify-write primitives, small and frequently

queried lookup tables, or repeated scans through a small vector, e.g., for vector-matrix-

multiplication. Temporal locality allows the usage ofcaches caches that transparently replicate

small parts of lower memory levels to keep them close to the processing units.

While the basic principles of the memory subsystem evolve slowly over time, the

exact costs involved depend on the machine at hand and are subject to more frequent

changes (e.g., due micro-architecture revisions). The three models of computation

introduced in the following are therefore heavily abstracted. They include just su�cient

complexity to still allow useful performance predictions that in turn can guide the

algorithmic development process.

1.3.1.1 The External Memory Model

TheExternal Memory Model External Memory Model (Emm) by Aggarwal and Vitter [7] is a commonly accepted

theoretical framework to reason about the e�ects of memory hierarchies while process-

ing big data problems.

16

Practical Engineering Challenges

While the model suggests a scenario with main memory (IM: internal memory) and

secondary storage (EM: external memory), it has much broader applications since it

promotes design patterns relying on temporal and spatial locality. It thereby often leads

to cache-friendly algorithms with a good overall performance — an observation that

motivates the strongly related Cache-Oblivious-Model [137].

The Emm features a two-level memory hierarchy with fast internal memory holding

up to M : main memory sizeM data items, and a slow disk of unbounded size which stores the algorithm’s

input and output. Since the processor can only operate on data in main memory, it

needs to access data in external memory using so-called I/Os. Each I/O transfers a

block of B: block sizeB consecutive items between memory levels. Consequentially, the number of

I/Os executed by an algorithm is used to measure its performance. Many I/O-e�cient

algorithms use a number of common primitives:

• Reading or writing n contiguous items on disk requires scan(n) = Θ(nB) I/Osscan(n) = Θ(n/B) I/Os.

• We require sort(n) =

Θ(nB logM/B(nB)) I/Os

sort(n) = Θ((n/B) · logM/B(n/B)) I/Os for comparison-based

sorting of n items. Roughly speaking, the sorting complexity sort(n) constitutes

a lower bound for most intuitively non-trivial EM tasks [7, 242].

• Pushing and removing n elements from a priority queue is possible with sort(n)

I/Os [23, 22], and may be even cheaper for special cases such as integers of bounded

magnitude. This allows Time Forward Processing:

R Section 5.2.2

Time Forward Processing [230], a general technique which

translates unstructured I/Os into messages exchanged via a priority queue.

For all realistic values of n, B, and M sorting involves only very few scanning

rounds and is in practice several orders of magnitude cheaper than unstructured I/O.

While a plethora of software libraries dedicated to the e�cient access of memory exists,

I/O-e�cient implementations in the experimental algorithmics community often employ

Stxxl [102] or Tpie [330].

1.3.1.2 Streaming Models

Streaming models streaming modelsform another family of models of computation for big data. They

approach inputs exceeding internal memory by imposing a view even more restricted

than Emm. While there are a number of formulations, they have in common that the

input may only be observed in a scanning fashion (i.e., reading from the beginning to

end). Some variants of the model consider up to Θ(log n) passes acceptable where n is

the number of tokens in the input stream. Another crucial constraint pertains to the

algorithm’s memory consumption that has to be highly sublinear in n.

1.3.1.3 Distributed Multicomputers and Communication Avoidance

Even before the advent of multiprocessors in o�-the-shelf hardware, distributed mul-

ticomputers were available and remain the foundation of virtually all modern super-

computers. They consist of a (large) number of independent machines that are intercon-

nected to collectively solve a common problem.

17

Introduction

Roughly speaking, there are multiple processing units with local memory that is

small compared to the problem size.cf. I/Os in the Emm Accessing non-local information is costly as it

involves communication, which may be modeled in various ways (e.g., [329, 207, 99, 17,

101]). Hence, a common design goal is to minimize the number of messages exchanged.

Incommunication-free =

communication-agnostic

suitable generators:

R Chapter 7

the present thesis, we only consider the extreme case of so-called communication-
agnostic (also referred to as communication-free) algorithms. Then, each each processing

unit is only aware of its rank, the total number of units, and some input con�guration.

However, it cannot exchange any further information during the execution of the

algorithm. Many random graph models can be processed in a communication-agnostic

way by recursive decomposition of the problem in combination with pseudorandomness.

Example 1.6. Recall Random Hyperbolic Graphs (RHG) where n points are ran-

domly scattered onto a hyperbolic disk S. Assume that the number of nodes is too

large to sample, let alone store, all nodes on every distributed machine.

Fortunately, a key property of relevant RHG graphs is that most nodes only

have a very local neighborhood, i.e., a hyperbolic circle around each node suf-

�ces to compute all its links. Observe that many of these subsets overlap due to

common edges. In general, there is no balanced mapping of nodes to processors

without overlaps. Thus, any two processors with overlapping subsets have to have

a consistent view of the underlying region of hyperbolic space.

WesRhg:

R Section 7.7.3

HyperGen:

R Chapter 6

achieve this by partitioning the hyperbolic space into k cells (in Chapter 6,

we instead use concentrical bands). For each cell i, we seed a pseudorandom gener-

ator with a value deterministically derived from the cell’s index i and, subsequently,

use the generator to sample the ni points contained within the cell. By construc-

tion, this process yields consistent results even if executed by multiple independent

processing units.

The only information missing is the number ni of points in cell i. If the cell was

considered on its own as in most proofs pertaining to RHG, a Poisson process applies.

Here, however, the vector N = (n1, . . . , nk) follows a multinomial hypergeometric

distribution due to the side condition that exactly n points need to be scattered

in total (

∑
i ni = n).further improvements:

R Chapter 7

Again, all processors obtain consistent values for N using

common seeds for their pseudorandom generators. J

1.3.2 Advanced Features of Modern Computers

In the (not so) early days of modern computers, the performance of processors grew

exponentially and doubled every one to two years. This development was characterized

by Moore’s “Law” [248] and Dennard Scaling [104].

MooreMoore’s Law observed that the number of components (often simpli�ed as transistors) in an

integrated circuit doubles approximately every two years. Dennard et al.Dennard Scaling noted that the

shrinking transistor allowed to reduce the operating voltage and increase the processor’s

frequency at the same time. Thus, the power density (i.e., consumption per chip area)

would approximately stay constant despite rising frequencies and computational power.

18

Practical Engineering Challenges

Dennard Scaling eventually stopped at the beginning of the 21
st

century as the small

structure sizes (/ 22 nm) of integrated circuits reached the Moore’s Law and break

down of Dennard Scaling

leads to parallel processors

point where leak currents and

quantum e�ects signi�cantly contributed to a device’s power consumption [58]. While

the eventual end of Moore’s Law also seems inevitable, integrated circuit fabrication

processes still continue to improve at the time of writing the present thesis.

As a consequence of Moore’s Law, processor manufacturers can �t an increasing

number of functions into processors. Besides functions pertaining to the system design

itself (e.g., tasks previously handled by the chipset), many features directly a�ect the

way algorithms are implemented. The nature of such features and extensions available

in commodity hardware is strongly related to the decline of Dennard Scaling.

As the performance of sequential execution stagnates, chip designers embrace

parallelism in several dimensions (cf. [129]). In the present thesis, we are explicitly

concerned with three types of parallelism: distributed multicomputers, shared-memory

parallelism, and data parallelism. In the following, we only consider the latter two types

since we already identi�ed distributed computing:

R Section 1.3.1.3

the cost of data transfer as the main challenge of algorithm

design for distributed computing.

1.3.3 Shared-Memory Parallelism

Shared-memory parallelism refers to systems in which multiple processors, often on the

same chip, operate with a common main memory. Such machines typically su�er from

limited scaling capabilities due to physical and technological constraints. A notable

exception are massively parallel general purpose graphics processors (GP-GPUs, or GPUs

in short), which often include thousands of small processing units able to e�ciently

sustain even more logical tasks (also known as threads).

An advantage of shared memory is the signi�cantly lower cost of data exchange

compared to distributed computers. shared memory allows

fine-grained data exchange

This gives rise to new algorithmic techniques relying

on �ne-grained communication using atomic primitives such as compare-and-swap,

test-and-set, or fetch-and-add.

Two congestion

synchronization

major potential bottlenecks in shared-memory parallel programs are congestion
caused by concurrent memory access, and costs due to synchronization with barriers

or locks. Thus, algorithms and data structures for modern computers generally avoid

global synchronization of parallel processes as best as possible (cf. obstruction-, lock-,

and wait-freedom [174]).

The majority of pleasingly parallelgenerators proposed in the following chapters take an orthogonal

route and formulate the sampling process in a way that exposes independent subprob-

lems. Such subtasks can be carried out by di�erent processors and be computed in

parallel without further interaction. This favorable type of orchestration is referred to

as pleasingly parallel or embarrassingly parallel.

Unfortunately, not all problems lend themselves to pleasingly parallel computation,

and therefore require more advanced algorithmic treatment. To this end, shared-memory

parallelism is frequently captured by the PRam model of computation [187, 295].

19

Introduction

APRam PRam consists of P processing units (PUs) with small local registers that operate

on a common memory. There exist several subtypes to resolve con�icts arising from

concurrent reads and writes to the same memory address. Each PU is aware of its unique

rank forsymmetry breaking symmetry breaking (i.e., to �nd its unique role in an otherwise fully symmetric

system). Synchronization issues are typically avoided by assuming that all PUs operate

in lock-step.
6

An established measure of algorithmic performance in the PRam model is workwork

work-optimality

. It is

de�ned as the product of the number P of PUs and an algorithm’s runtime. Then, an

algorithm is said to be work-optimal if it requires work linear in the runtime of the best

sequential algorithm.

Example 1.7. OurMP-BA:

R Chapter 3

parallel generator MP-BA uses a binary tree partially stored in

external memory to implement dynamic weighted sampling. Starting at the root,

the algorithm pushes a large number of requests down the evolving decision tree.

At any point in time, the criterion of each inner node v depends on all requests

previously processed at v. We use two types of parallelism to accelerate this process.

First, we observe that, in the relevant range, the expected number of requests

at an inner node decreases exponentially with the node’s depth. Hence, we cut the

computation at a certain level and consider each subtree rooted there as its own

independent sub-problem. Thus, the subtrees can be processed pleasingly parallel.
To avoid congestion in the upper levels of the tree, nodes near the root are

processed using several hundreds of GPU processors each. To this end, we devise a

PRam algorithm that collects multiple requests and works on them in parallel. The

key insight is that, given an appropriate batch size, we can process most queries

without considering their predecessor which are currently processed in parallel.

They can therefore be concurrently pushed into the appropriate subtrees. Then,

the algorithm recurses on the yet undecided requests and terminates with high

probability after a constant number of steps.

Per iteration, we use a constant number of work-optimal parallelprefix sum pre�x sums [52]

to identify and propagate safe requests. Thus, with high probability our algorithm

requires only linear work and is therefore work-optimal. J

1.3.4 Data Parallelism

DataSIMD parallelism refers to a mode of operation where a single function is applied to

multiple independent values. It is also known as Single-Instruction-Multiple-Data [129]

(SIMD). Data parallelism implies a single control path which is in stark contrast to the

parallelism types discussed before where each execution unit is more or less independent

and can execute their own section of the program.

6

While lock-step operation is arguably an unrealistic assumption for most practical multi-processors,

it is a good �rst-order approximation of the single-instruction-multiple-thread paradigm (SIMT) used in

modern GPUs (e.g., warps [219] or wavefronts [5]).

20

Articles Included in the Present Thesis

Modern x86 processors feature a number of instruction-set extensions devoted to

SIMD including MMX as well as the SSE and AVX families [184]. AVX-512Most notably, AVX-512

features 512 bit-wide registers and enables simultaneous operations on as little as eight

double-precision �oats to up to 64 small 8 bit-integers.
7

Implementation details of the vector units (e.g., reduced base clocks) as well as

algorithmic overheads typically cause a speedup slightly below the number of operands;

still, vector instructions are quite power-e�cient, thereby allowing the processor to

sustain more operations within its speci�ed thermal design power [86]. data localityThe e�ciency

of vector instructions also heavily depends on the algorithms they are used in. Suitable

algorithms expose su�cient data parallelism and a high degree of data locality to

facilitate block transfers to-and-fro the large registers. Another path divergencecrucial aspect is a

uniform control �ow among all data words processed in parallel; path divergence (i.e.,

the necessity to apply di�erent instructions to di�erent parts of a register) is possible

using so-called masking, but often detrimental to performance.

Example 1.8. Our RHG generator HyperGen HyperGen:

R Chapter 6

is designed with SIMD in mind, and

its implementation uses explicit vector instructions. Among others, they enable

us to compute eight hyperbolic distances in double-precision simultaneously. The

vectorized section ends when the computed distances have been compared to the

threshold distance, i.e., when all node pairs implying an edge have been found. This

is a natural point since the di�erent treatment of pairs with and without an edge

leads to path divergence. J

1.4 Articles Included in the Present Thesis

While preparing the present thesis, I authored and co-authored eight peer-reviewed

conference articles (two of which received best paper awards from the European Sympo-

sium on Algorithms), three published or accepted journal articles, two submitted book

chapters, and three technical reports. comprehensive summary:

R Chapter 9

The remainder of this section contains a brief

overview of the eight publications in Chapters 3 to 8 selected for the present thesis.

Chapter 2 surveys the current state of the art of scalable random network generation.

It complements the “hands-on” introduction of this thesis with a broader, though less

detailed, overview. It is the only included article that is still under submission.

The remaining chapters discuss algorithmic and engineering contributions of prac-

tical scalable generators for three random graph families.

Preferential A�achment

Chapter 3, based on [239], introduces two I/O-e�cient generators for models based on

preferential attachment, and demonstrates the techniques on Barabási-Albert graphs.

One generator supports massively parallel heterogeneous hardware consisting of CPU

processors and general purpose graphics processors. The software stack consists of

several interacting algorithms tailor-made for the quite di�erent hardware types.

7

The not yet available Scalable Vector Extension [318] by ARM supports four times larger registers.

21

Introduction

[239]R Chapter 3 U. Meyer and M. Penschuck. Generating massive scale-free networks under

resource constraints. In M. T. Goodrich and M. Mitzenmacher, editors, Workshop
on Algorithm Engineering and Experiments ALENEX, pages 39–52. Society for

Industrial and App. Math. SIAM, 2016. doi:10.1137/1.9781611974317.4 .

Graphs from Prescribed Degree Sequence

Chapters 4 and 5, based on [82, 167, 168], are concerned with I/O-e�cient Markov chain

processes for the perturbation of simple graphs. In Chapter 4, we develop EM-LFR,

an I/O-e�cient sampling pipeline for the LFR community detection benchmark, and

engineer a parallel implementation able to produce graph instances orders of magnitude

larger than the available main memory. EM-LFR consists of several algorithms, out of

which the Edge Switching (ES) Markov chain is the most challenging building block.

In Chapter 5, we consider the novel Curveball and Global Curveball processes as an

alternative of ES, and show that their implementations can expose more data locality.

[167]R Chapter 4 M. Hamann, U. Meyer, M. Penschuck, H. Tran, and D. Wagner. I/O-e�cient gen-

eration of massive graphs following the LFR benchmark. ACM J. of Experimental
Algorithmics, 23, 2018. doi:10.1145/3230743 .

[168]R Chapter 4 M. Hamann, U. Meyer, M. Penschuck, and D. Wagner. I/O-e�cient generation of

massive graphs following the LFR benchmark. In S. P. Fekete and V. Ramachandran,

editors,Workshop onAlgorithm Engineering and Experiments ALENEX, pages 58–72.

Society for Industrial and App. Math. SIAM, 2017. doi:10.1137/1.9781611974768.5 .

[82]R Chapter 5 C. J. Carstens, M. Hamann, U. Meyer, M. Penschuck, H. Tran, and D. Wagner. Par-

allel and I/O-e�cient randomisation of massive networks using Global Curveball

trades. In Y. Azar, H. Bast, and G. Herman, editors, European Symp. on Algorithms
ESA, volume 112 of LIPIcs, pages 11:1–11:15. Schloss Dagstuhl – Leibniz-Zentrum

für Informatik, 2018. doi:10.4230/LIPIcs.ESA.2018.11 .

Geometrically Embedded Random Graphs

Chapters 6 to 8 present (among others) generators for Random Hyperbolic Graphs
(RHG) and Geometric Inhomogenous Random Graphs (GIRG). In Chapter 6, we develop a

streaming generator for Threshold RHGs targeting accelerator hardware with a small

dedicated memory. The resulting generator is a sweep-line algorithm which “uncovers”

random points in a structured fashion inspired by order statistics [100]. We show that,

at any point in time and with high probability, only a small fraction of the geometry

needs to be stored. The parallel implementation introduces a number of acceleration

techniques and remains among the fastest RHG generators available for shared-memory

parallelism at the time of writing the present thesis.

Re�ned versions of these techniques carry over to Chapters 7 and 8. For Chapter 7,

I contributed the communication-agnostic distributed streaming generator sRhg for

Threshold RHGs. It combines techniques of [271] and [139].

22

https://doi.org/10.1137/1.9781611974317.4
https://doi.org/10.1145/3230743
https://doi.org/10.1137/1.9781611974768.5
https://doi.org/10.4230/LIPIcs.ESA.2018.11

Articles Included in the Present Thesis

Chapter 8 engineers a previously known sampling algorithm by Bringmann et al.

[69] for GIRG graphs and adapts it to Binomial RHGs. While the original algorithm

has an already optimal expected runtime, the chapter discusses signi�cant engineering

e�orts to obtain a generator that is also fast in practice.

[271] R Chapter 6M. Penschuck. Generating practical random hyperbolic graphs in near-linear

time and with sub-linear memory. In C. S. Iliopoulos, S. P. Pissis, S. J. Puglisi,

and R. Raman, editors, Int. Symp. on Experimental Algorithms SEA, volume 75 of

LIPIcs, pages 26:1–26:21. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2017.

doi:10.4230/LIPIcs.SEA.2017.26 .

[138] R Chapter 7D. Funke, S. Lamm, U. Meyer, M. Penschuck, P. Sanders, C. Schulz, D. Strash,

and M. v. Looz. Communication-free massively distributed graph generation. J.
Parallel Distributed Comput., 131:200–217, 2019. doi:10.1016/j.jpdc.2019.03.011 .

[48] Best Paper · ESA’19 B

R Chapter 8

T. Bläsius, T. Friedrich, M. Katzmann, U. Meyer, M. Penschuck, and C. Weyand. Ef-

�ciently generating geometric inhomogeneous and hyperbolic random graphs. In

M. A. Bender, O. Svensson, and G. Herman, editors, European Symp. on Algorithms
ESA, volume 144 of LIPIcs, pages 21:1–21:14. Schloss Dagstuhl – Leibniz-Zentrum

für Informatik, 2019. doi:10.4230/LIPIcs.ESA.2019.21 .

Publications Not Included

While preparing the present thesis, I additionally contributed to the following articles.

[240] U. Meyer and M. Penschuck. Large-scale graph generation and big data: An

overview on recent results. Bulletin of the EATCS, 122, 2017. URL: h�p://eatcs.

org/beatcs/index.php/beatcs/article/view/494 .

[241] U. Meyer and M. Penschuck. Large-scale graph generation: Recent results of the

SPP 1736 – Part II. it - Information Technology, 2020 .

[4] D. Achlioptas, A. Coja-Oghlan, M. Hahn-Klimroth, J. Lee, N. Müller, M. Penschuck,

and G. Zhou. The random 2-SAT partition function. CoRR, abs/2002.03690, 2020.

Accepted for Random Structures And Algorithms. arXiv:2002.03690 .

[147] O. Gebhard, M. Hahn-Klimroth, O. Parczyk, M. Penschuck, M. Rolvien, J. Scarlett,

and N. Tan. Near optimal sparsity-constrained group testing: improved bounds

and algorithms. CoRR, abs/2004.11860, 2020. URL: h�ps://arxiv.org/abs/2004.11860,

arXiv:2004.11860 .

[6] Best Paper · ESA’19 AP. Afshani, R. Fagerberg, D. Hammer, R. Jacob, I. Kostitsyna, U. Meyer, M. Pen-

schuck, and N. Sitchinava. Fragile complexity of comparison-based algorithms. In

M. A. Bender, O. Svensson, and G. Herman, editors, European Symp. on Algorithms
ESA, volume 144 of LIPIcs, pages 2:1–2:19. Schloss Dagstuhl – Leibniz-Zentrum

für Informatik, 2019. doi:10.4230/LIPIcs.ESA.2019.2 .

23

https://doi.org/10.4230/LIPIcs.SEA.2017.26
https://doi.org/10.1016/j.jpdc.2019.03.011
https://doi.org/10.4230/LIPIcs.ESA.2019.21
http://eatcs.org/beatcs/index.php/beatcs/article/view/494
http://eatcs.org/beatcs/index.php/beatcs/article/view/494
http://arxiv.org/abs/2002.03690
https://arxiv.org/abs/2004.11860
http://arxiv.org/abs/2004.11860
https://doi.org/10.4230/LIPIcs.ESA.2019.2

Introduction

[108] P. Dinklage, J. Ellert, J. Fischer, D. Köppl, and M. Penschuck. Bidirectional text

compression in external memory. In M. A. Bender, O. Svensson, and G. Herman,

editors, European Symp. on Algorithms ESA, LIPIcs. Schloss Dagstuhl – Leibniz-

Zentrum für Informatik, 2019. doi:10.4230/LIPIcs.ESA.2019.41 .

[40] P. Berenbrink, D. Hammer, D. Kaaser, U. Meyer, M. Penschuck, and H. Tran.

Simulating population protocols in sub-constant time per interaction. In European
Symp. on Algorithms ESA, volume 173 of LIPIcs, pages 16:1–16:22. Schloss Dagstuhl

- Leibniz-Zentrum für Informatik, 2020. doi:10.4230/LIPIcs.ESA.2020.16 .

24

https://doi.org/10.4230/LIPIcs.ESA.2019.41
https://doi.org/10.4230/LIPIcs.ESA.2020.16

2Recent Advances in

Scalable Network Generation

joint work with

U. Brandes, M. Hamann, S. Lamm, U. Meyer, I. Safro, P. Sanders, and C. Schulz

G(n, p) with n = 39 and p ≈ 0.2 to

match the density of the Dblp subgraph

as illustrated on the title page of Chapter 1

Random graph models are frequently used as a controllable and versatile data source

for experimental campaigns in various research fields. Generating such datasets at

scale is a non-trivial task as it requires design decisions typically spanning multiple

areas of expertise. Challenges begin with the identification of relevant features

in domain specific networks, continue with the question of how to compile such

features into a tractable model, and culminate in algorithmic details arising while

implementing the model.

In the present survey, we explore crucial aspects of random graph models with known

scalable generators. We begin by briefly introducing network features considered

by such models, and then discuss various random graphs alongside with generation

algorithms. Our focus lies on modeling techniques and algorithmic primitives

that have proven successful in obtaining massive graphs. We consider concepts

and graph models for multiple domains (such as social network, infrastructure,

ecology, and numerical simulations), and discuss generators for di�erent models of

computation (including shared-memory parallelism, massive-parallel GPUs, and

distributed systems).

This chapter is based on a yet unpublished manuscript [272].

[272] M. Penschuck, U. Brandes, M. Hamann, S. Lamm, U. Meyer, I. Safro, P. Sanders, and

C. Schulz. Recent advances in scalable network generation. CoRR, abs/2003.00736,

2020. arXiv:2003.00736 .

My contribution

I coordinated this project and contributed a more than proportional amount of material.

http://arxiv.org/abs/2003.00736

Recent Advances in Scalable Network Generation

2.1 Introduction

Generating synthetic networks is one of the most active research areas in network

science and general graph algorithms. Theoreticians, domain experts, and algorithm

developers need high-quality network data for various purposes such as algorithm

engineering, decision-making, and simulations. However, obtaining real-world network

data is often accompanied with various obstacles. Some of the reasons for the resulting

shortage include classi�ed or proprietary information, legal hindrances, and economic

considerations to obtain high-quality data as well as simple lack of future data in evolving

networks. For very large graphs processed on supercomputers, transferring the graphs

to data centers, storing them inde�nitely on disks, and loading or distributing them for

experiments can also be quite expensive. In these cases, synthetic networks generated

by models are used to substitute the real-world networks.

quality vs complexity There are two major considerations in the process of designing a synthetic network

generator. Firstly, generating data from a high-quality synthetic model requires repro-

ducing important structural properties observed in reference data. Alternatively, one

may consider to generate networks with prede�ned properties but with no original

reference (or only much smaller examples). Each case requires an unbiased coverage

of the entire set of relevant networks. Depending on the complexity of the structural

properties, a generator may need to solve optimization problems of varying complexity.

Secondly, for many applications, the generation process must be su�ciently scalable to

produce large-scale instances in a reasonable time with respect to the available com-

putational resources. For example, there is little practical value in generating a small

network of several tens of nodes for social information network analysis.

These considerations suggest a traditional quality/runtime trade-o� that must be

taken into account when designing or using generators for large-scale networks.importance of large-scale

synthetic networks

In

particular, this is important when many large-scale synthetic networks are required for

computational experiments; e.g., in order to demonstrate the robustness of an algorithm,

to gather su�cient statistical information, or to observe the long-term evolution of a

network. While there exist several comprehensive surveys [112, 152, 62] that focus on

the quality component of this trade-o�, we �nd that not many pay close attention on

the combination. In this survey, we discuss various classes of generation methods. We

focus on their scalability, algorithmic, and implementation aspects, as well as on the

relevance of di�erent parallel programming models to maintain acceptable performance

in the generation of large-scale networks.

2.2 Graph Properties and Uses of Generators

G(n) and G(n) The set G(n) of all simple undirected graphs with n vertices contains 2(n2) graphs. We

de�ne the model G(n) as the uniform distribution over G(n). The G(n) model has

proven useful for the probabilistic method in existential combinatorics [59], but it is

not at all a plausible assumption for statistics of empirical graphs. Just consider that

a graph sampled uniformly at random from G(n) contains half of the

(
n
2

)
edges in

28

Graph Properties and Uses of Generators

[xi]bi=a Sequence or set [xa, xa+1, . . . , xb]

[a..b], [k] Sequence or set [a..b] := [i]bi=a, [k] := [1..k]

〈X〉 Average, 〈X〉 := 1
n

∑
v∈V X(v)

cc(v), cc(G) Clustering coe�cient cc(v) := dens(G[N(v)]), cc(G) := 〈cc〉
dens(G) Density, dens(G) := m/

(
n
2

)
if n > 1 else dens(G) = 0

dist(u, v) Length (number of edges) of shortest path between u and v

G = (V,E) Graph with nodes V = [n] and edges E ⊆
(
V
2

)
G[V ′] Induced subgraph (V ′, E′) if G=(V,E), s.t. V ′ ⊆ V ,

E′ = {e | e={u,v}∈E ∧ u,v∈V ′}
G(n), G(n,m) Set of graphs with |V | = n and |E| = m, respectively

G(n), G(n,m) Uniform distributions over G(n) and G(n,m), respectively

n, m Number n of nodes, number m of edges

N(v), deg(v) Neighbors N(v) := {u : {u, v} ∈ E}, degree deg(v) := |N(v)|
whp. With high probability:

true with probability of at least 1− 1/nc for c ≥ 1

Table 2.1: Notation used

in this survey

expectation — which is more than typically found in empirical networks (see below).

To better match empirical distributions of graphs encountered in di�erent domains of

application, models are devised in which certain graph invariants can be controlled for.

In this section, we provide background on some of such properties and a number of

important model classes. The section concludes with an outline of a few ways in which

generators parameterized on graph properties are commonly applied.

2.2.1 Graph Properties

We next recall de�nitions of a number of graph properties that are commonly used

to constrain or skew the distribution of graphs generated from a model. All models

referred to below are discussed in more detail in later sections.

Density

We have parameterized the class G(n) of all graphs by their order n, i.e., the number of

vertices. The other obvious parameter to control for is m, the number of edges. The

overwhelming majority of graphs in G(n) is dense, i.e., m = Θ(n2), but graphs arising

in application domains are often sparse, say m = O(n log n), as, for instance, edges are

associated with costs or vertices have limited capacity to be adjacent with others.

G(n,m)For any given combination of n and 0 ≤ m ≤
(
n
2

)
, we obtain a subclass G(n,m) ⊆

G(n) of graphs G = (V,E) with V = [n] and |E| = m. They all have the same

density dens(G) := m/
(
n
2

)
, where we de�ne dens(G) := 0 for n ∈ {0, 1}. Since the

sum of degrees equals twice the number of edges, all graphs in G(n,m) also have the

same average degree avg deg := 1
n

∑
v∈V deg(v) = 2m/n.

G(n,m) and G(n, p)Analogously to G(n), we denote the uniform distribution on G(n,m) by G(n,m).

While G(n,m) was the original model of Erdős and Rényi [121], Gilbert [148] intro-

29

Recent Advances in Scalable Network Generation

duced the related G(n, p) model de�ned on all of G(n) where each edge is present

independently with probability p (see Section 2.4.1). Thus, the number of edges, and

as a consequence density and average degree, are �xed only in expectation. Note that

G(n, p) = G(n) for p = 1/2.

Random graphs in each of the three models are balanced, in the sense that the

expected density of any vertex-induced subgraph is constant.clustering coe�icient To assess di�erences

in local density of a graph G = (V,E), the clustering coe�cient of a vertex v ∈ V

is de�ned as cc(v) := dens(G[N(v)]), i.e., the density of the subgraph induced by

v’s neighborhood. The average over all vertices is called the clustering coe�cient

cc(G) := 1
n

∑
v∈V cc(v) of the graph.

Models that favor local cohesion (i.e., produce substructures with an above-average

internal density) include random geometric graphs (see Section 2.5). Here, vertices

are randomly assigned to positions, e.g., in a Euclidean or hyperbolic space, and edge

probabilities are made dependent on the distance in that space.

Heterogeneity in local density is introduced in planted partition or Stochastic Block
Model (see Section 2.7), where vertices are partitioned into subsets, and di�erent edge

probabilities are assigned depending on which subsets the endpoints are in.

Degrees

Similar to density, there may be a tendency for degrees to be distributed unevenly in a

graph. The subset G(n,m) can be restricted further by �xing not only the number of

edges but the entire degree sequence,D and deg(v) i.e., using a sequenceD := [di]ni=1 to prescribe the

degree deg(v) = dv of each node v ∈ [n].FDSM:

R Section 2.6

This is done in Fixed-Degree-Sequence-Model.
As was done for density in the case of G(n, p), we may also want to sample from all of

G(n) with degrees �xed only in expectation. One such model is introduced in Chung

and Lu [93] and uses vertex weights to construct a rank-1 matrix of edge probabilities

(see Section 2.6.1). In an even more relaxed setting, the degree distribution (i.e., the

relative frequencies of degrees) is prescribed by a closed-form function, the shape of

which can be controlled via a small number of parameters.scale-free (powerlaw)

degree distribution

The most notable example

of this kind are scale-free degree distributions, where the share of vertices of degree k is

approximately proportional to k−γ for some constant γ > 1.Preferential A�achment:

R Section 2.4.2

These are obtained, for

instance, from Preferential Attachment.

Distances

As densities and degrees are properties that involve counts and frequencies of edges,

they can be easily integrated as parameters of random graph models. Prime examples of

properties that give rise to more complicated structural dependencies relate to distances.

dist(u, v) The (shortest-path or graph-theoretic) distance, dist(s, t), between vertices s, t ∈ V
is the length of a shortest (s, t)-path, i.e., the minimum number of edges in any path

connecting them. The distance is de�ned to be in�nite, if the two vertices are in

di�erent connected components.remarks on connectivity:

R Section 2.9.3

In the remainder of this section we assume graphs to

be connected to avoid the treatment of special cases.

30

Graph Properties and Uses of Generators

Analogously to the average degree, the average distance (or characteristic path
length) avg dist =

∑
s,t∈V dist(s, t)/

(
n
2

)
is used as a criterion to discriminate certain

graph structures. When representing, for example, social relations, the resulting graphs

typically have bounded average degree, avg deg = O(1) and small average distance,

avg dist = O(log n). small-world phenomenonThese features, together with a high clustering coe�cient, are

characteristic of small-world models.
In contrast, the random spatial graphs discussed in Section 2.5.1 have large average

distance (typically O
(
n1/d

)
for d-dimensional Euclidean spaces). It is however possible

to control the average distance by considering di�erent aspect ratios of the boxes used

for allocating points, or by varying the underlying geometry. More strict than average

distance is the diameter of a graph, de�ned as the maximum distance between any two

of its vertices. There are multiple ways to de�ne distance sequences [76] but, unlike

degree sequences, none is commonly used in the de�nition of random graph models.

Graph Classes

Other graph properties are not expressed via aggregates of lower-level indices at all.

For instance, a graph is called planar, if it can be drawn in the plane without edge

crossings. While, as a consequence of this criterion, they are sparse (m ≤ 3n− 6), there

is no known parametrization in terms of the number of elements, density, degrees, or

distances, that could be used for random planar graph models (see Section 2.5.4).

On the other hand, a split graph is a graph that has a partition into an induced

clique (a complete subgraph) and an induced independent set (an empty subgraph). Split

graphs are an idealized version of what is called a core-periphery structure [64]. Despite

this de�nition in global terms, split graphs can indeed be characterized using degree

sequences only [171].

For each class of graphs, a corresponding random graph model can be de�ned by

the uniform distribution on its elements. Since generators for such models generally

depend on speci�c class characteristics, we consider only random planar graphs as a

particularly interesting and important example of a class that does not lend itself easily

to modeling.

2.2.2 Use Cases

experimental algorithmicsThe most direct and, at least in computer science, most common use of graph gener-

ators is in the creation of input instances for computational experiments [234]. Such

experiments typically serve to establish response curves recording levels of an outcome

(dependent) variable as function of independent variables. Especially in the context

of scaling experiments, independent variables are often related to the graph size (e.g.,

number of nodes, number of edges, average degree), or speci�c model parameters.

Common outcome variables include implementation performance (e.g., running time

or solution quality), process characteristics (e.g., spreading of information, resilience

against attack), or other graph invariants (e.g., connectivity, graph spectra).

31

Recent Advances in Scalable Network Generation

Covering a desired experimental region with benchmark data is often impractical

or even unrealistic. To control experimental factors, it is necessary that instances in a

computational experiment satisfy certain constraints or show tendencies with respect

to certain properties. Empirical data of su�cient coverage and variability may not be

available, samples may not be su�ciently representative, or the experimental region

may be too vast to store the instances explicitly. In such cases, generative models are a

convenient means to �ll the void [299].

In the same way that the parameters of G(n, p) allow to control the order and density

of graphs, other models are used to generate instances that vary along a number of

dimensions while ensuring a certain distribution, or the presence or absence of certain

other properties. In addition to systematic variation of parameters when sampling

from a distribution or construction process, there are a number of techniques for graph

generation that can be used to augment a given set of benchmark data. These include

sampling from models with some parameters learned from the benchmark data [65],

perturbation or systematic variation of given instances [63], and scaling these instances

by creating larger or smaller graphs with similar structure (see Section 2.8).

computational art
We note that the randomized generation of instances from an explicit or implicit

distribution is also a technique in computer graphics and the arts [106]. In algorithmic

art it has been suggested that a generated instance should be viewed as representing both

itself and the ensemble from which it was sampled [257]. This artistic view is indeed

related to computational model-based inference where a focal instance is compared to

an ensemble of generated instances with the goal to establish whether the given instance

exhibits speci�c features to a degree that is common or unusual for the sample [312].

A common ensemble is generated from the conditionally uniform model that assigns

equal probability to all graphs with the same degree sequence (see Section 2.6). A very

recent application is the randomized design of neural network architectures [346].

2.3 General Algorithmic Models and Techniques

2.3.1 Models of Computation

The scalability of a network generation algorithm is connected to the assumed model

of computation. In particular, we want algorithms that run in parallel on P identical

processors, and require work close to the that of a good sequential generator — at least

when the generated datasets are large. In this survey, we discuss the algorithms at

an abstract level, and consider whether and how they are implementable on di�erent

parallel architectures such as GPUs, shared and distributed memory.

For distributed memory models, an important aspect are communication costs which

easily dominate the overall costs when large datasets are processed.communication

-e�icient and -free

An algorithm is

communication-e�cient if the communication volume per processor is sublinear in

the required local work [293]. For graph generators, we can even achieve (essentially)

communication-free algorithms [139]. See the discussion in Section 2.5.1 for an example

how to make a parallel graph generator communication-free.

32

General Algorithmic Models and Techniques

sampled sampled

skip distance S

P[S = k]

= (1− p)kp

Figure 2.1: Output-sensitive Bernoulli sampling with probability p by skipping S items where

S+1 follows the geometric distribution Geom(p).

Another aspect of scalability is that large graphs may not �t into the main memory

of the machine. external memoryHence, it makes sense to consider external memory algorithms [7]

where fast random access is limited to a bounded internal memory of size M , and the

external memory is accessed in blocks of sizeB. An important special case are streaming
algorithms for graph generation that output edges one at a time without requiring access

to the entire graph.

2.3.2 Random Permutations

The Fisher-Yates shuffle (or Knuth shuffle) [195] obtains a random permutation of

an array A[1..n] in time O(n). Conceptually, it places all items into an urn, draws them

sequentially without replacement, and returns the order in which they were drawn. The

algorithm works in-place, and �xes the value of A[i] in iteration i by swapping A[i]

with A[j] where j is chosen uniformly at random from the not yet �xed positions [i..n].

Even if Fisher-Yates shuffle seems inherently sequential, the algorithms exposes a

su�ciently high degree of independence to be processed in parallel [307].

A random permutation can be computed in parallel by P processors by assigning

each element to one of P buckets uniformly at random and then applying the sequential

algorithm to each bucket [290]. A similar technique yields an I/O-e�cient random

permutation algorithm [290].

Going the opposite direction also yields a practically fast and e�cient algorithm.

Bacher et al. �rst assign each processor a contiguous section of the input array, shu�e

the sub-problems pleasingly parallel and �nally merge them randomly [27].

2.3.3 Basic Sampling Techniques

In this section we discuss sampling primitives, e.g., how to generate random numbers

with an underlying distribution or how to uniformly take n elements from a universe.

Many of the standard distributions can be sampled in constant (expected) time with

well known techniques (e.g., [105, 274]). In this survey we need geometric, binomial, and

hypergeometric random deviates [314]. Respective generators are often arithmetically

expensive since they require the evaluation of transcendental functions. When many

deviates with known parameters have to be computed, this can be greatly accelerated

by vectorization taking advantage of SIMD instructions or GPUs [292]. Often, software

libraries doing this are already available.

33

Recent Advances in Scalable Network Generation

Sample k items from [N]

X items from [1..N ′] k−X items from (N ′..N]

1 N

1 N ′ N ′+1 N

Figure 2.2: Sampling k elements from [N]. A�er spli�ing [N] and randomly drawingX from the

appropriate distribution (see Section 2.3.3.2), we can sample X and k −X items, respectively,

from the now independent subranges in parallel.

2.3.3.1 Bernoulli Sampling

Sampling each element from [N] with probability p can be done directly in time O(N)

by throwing N coins that show head with probability p.Bernoulli sampling by

geometric jumps

As illustrated in Figure 2.1, it

can be made to work in time proportional to the output size by generating distances be-

tween sampled elements which have a geometric distribution [127] with parameter 1/p.

Bernoulli sampling is easy to parallelize and vectorize since all samples are independent.

2.3.3.2 Sampling k elements from [N]

Sampling k elements from [N] without replacement is possible in expected time O(k)

using a hash table or by sampling skip distances. In contrast to Bernoulli sampling, it is

however necessary to modify the parameters of each new skip distance [333].sampling without

replacement

Sampling

without replacement can be parallelized in expected time O(k/P + logP) using a

divide-and-conquer algorithm [292]. This algorithm is based on the observation that

when splitting a range of size N into subranges of sizes N ′ and N −N ′ respectively

(see Figure 2.2), the number of samples to be taken from the left subrange is distributed

hypergeometrically with parameters k, N ′, and N . This technique can be used to

generate G(n,m) graphs (Section 2.4.1).

sampling with replacement By using the binomial distribution instead, one can sample with replacement and

this also extends to generating sets of geometric objects in Section 2.5.1. Compared to

trivial sampling with replacement, the divide-and-conquer approach has the advantage

to allow one processor to generate the objects in some well-de�ned subspace of the

overall sampling space.

2.3.3.3 Rejection Sampling

Rejection sampling is a fundamental technique (also known as acceptance-rejection
method) to draw from a distribution A which lacks an (e�cient) direct sampling algo-

rithm. It requires a second process B that is easy to sample from and that “overesti-

mates” A. We �rst sample an element x from B, and only accept x with an appropriate

probability. Otherwise, we reject x and repeat the process.constant time

rejection sampling

If the acceptance probability

is at least a constant, the expected sampling time is of the same order as the sampling

time from B.

34

General Algorithmic Models and Techniques

input

a pa = 0.1

b pb = 0.2

c pc = 0.3

d pd = 0.4

alias table

1/n

0

d b

c

a

d
c

(1) uniformly draw bucket

(2) unif. draw

from [0, 1/n)

Figure 2.3: Alias table for n=4 elements a, b, c, and d with weights p = (1, 2, 3, 4)/10. The table

consists of n buckets each covering a probability mass of 1/n. Each bucket contains the partial

probability mass of at most two elements. Weighted sampling becomes a two-step process: first

uniformly select a bucket, then select the element based on the contained partial weights.

For example, suppose we want to randomly draw from [n] where i should be sampled

with probability pi and where 2 minj pj ≥ maxj pj . Then, we can sample uniformly

from [n] and accept the sample with probability pi/maxj pj ≥ 1/2. This is expected to

succeed with O(1) attempts and succeeds whp. with O(log n) trials.

2.3.3.4 Weighted Sampling

Consider the case where we want to sample from [n] where each element i appears

wi times. For small integer weights with W =
∑n

i=1wi, an array A[1..W] in which

element i has a multiplicity of wi can be used. Sampling an entry from A uniformly at

random yields the required distribution (cf. Section 2.4.2).

In the general case, we want to sample from [n] where i should be sampled with

probability pi. There is a linear time algorithm which computes the data structure

depicted in Figure 2.3. Alias tableThis so-called alias table allows sampling from a discrete distri-

bution in constant time [339, 338]. The construction can also be parallelized [182]. The

table consists of n buckets, each representing a probability of 1/n. The probability of

the elements is assigned to the buckets in such a way that each bucket is assigned the

probability mass of at most two elements. conversely, the mass of some elements may

be distributed over multiple buckets. Sampling then amounts to uniformly sampling

a bucket i and throwing a weighted coin to decide which of the elements assigned to

bucket i is to be returned.

2.3.4 Sampling from Huge Sets

Sometimes we want to sample from a set that is much larger than the output size or the

memory of the machine. For example, we will see several examples where a random

graph with n nodes is de�ned by probabilities for each entry of an adjacency matrix

which has size quadratic in n. sampling with a few

di�erent weights

In Section 2.3.3.1 on Bernoulli sampling we already saw

how this works when all the probabilities are the same — we generate skip distances

between sampled elements. Similarly, Section 2.3.3.2 explains how to do it for uniform

sampling with or without replacement. Moreno et al. [250, 249] extend this approach to

35

Recent Advances in Scalable Network Generation

the case when there is only a moderate number of di�erent probabilities – use one of the

above uniform sampling algorithms for each subset of elements with equal probability.

sampling with many

di�erent weights

We can further generalize this using rejection sampling (Section 2.3.3.3). We partition

the dataset into subsets of elements whose probabilities di�er only by a constant factor.

In each subset, we perform uniform sampling and use the rejection method to achieve

the right sampling probability. The only prerequisite is that we can compute the exact

probability for an element produced by uniform sampling. For example, consider

the case where we want to perform weighted subset sampling, i.e., a generalization

of Bernoulli sampling where element i has an individual probability pi. In a subset

whose probabilities are between p/2 and p, we can perform Bernoulli sampling with

parameter p and accept element i with probability pi/p.

Parallelizing these approaches introduces two levels of parallelism – coarse-grained

parallelization over the subsets with similar probability and �ne-grained parallelization

within each set using the methods mentioned in Sections 2.3.3.1 and 2.3.3.2. For the

coarse level, some load balancing is needed since the output sizes for each set heavily

depend on the heterogeneous sizes and element sizes in each subset.

2.4 Basic Models

2.4.1 Erdős-Renyi’s G(n,m) and Gilbert’s G(n, p) models

The closely related G(n,m) and G(n, p) models were the �rst random graph models

considered [121, 148]. They come in di�erent variants that can all be understood as

uniform sampling from an n× n adjacency matrix; see also Sections 2.3.3.1 and 2.3.3.2.

• If we sample from the whole matrix, we get directed graphs with self-loops

(cf. Section 2.9.1).

• If we exclude the diagonal, we get simple directed graphs.

• If we restrict to the upper triangular part of the matrix, we get undirected graphs.

• If we exclude suitable blocks, we get bipartite graphs etc.

We obtain Gilbert’s G(n, p) model [148] using Bernoulli sampling with probability p

for each edge independently. If we sample m edges without replacement, we get the

G(n,m) model proposed by Erdős and Rényi [121].

optimal sequential

algorithms

Batagelj and Brandes [35] present sequential algorithms for these models, and point

out several generalizations including a bipartite variant of G(n, p). For G(n, p) they

propose the Bernoulli sampling approach described in Section 2.3.3.1 applied to the

upper triangle of the adjacency matrix. This results in a runtime of O(n+m). For

G(n,m) they compare two algorithm variants based on hash tables to avoid multi-edges.

communication-free By now, faster algorithms are available [292, 138] that are more cache-e�cient, and also

work communication-free in parallel (see also Section 2.3.3.2).

Nobari et al. [264] proposed a data parallel generator for the directed and undirected

G(n, p) model.for GPUs Their generators are designed for graphics processing units (GPUs). Like

36

Basic Models

v1 v2 v3

v4

1
4

2
4

1
4

}
seed graph}
edge probs.}
new vertex

1 2 2 3 4 M [x] 5

seed graph deterministic ids

uniform sample

Figure 2.4: Barabási-Albert generator (d = 1) by Batagelj and Brandes. The seed graph contains

nodes {v1, v2, v3} and two edges, and we introduce the new node v4. Since v2 has two neighbors

it is twice as likely to be chosen as the neighbor for v4.

the generators of Batagelj and Brandes [35], their algorithm is based on sampling skip

distances but uses precomputations and pre�x sums to increase data parallelism.

2.4.2 Preferential A�achment

The preferential attachment model family generates random scale-free networks. Roughly

speaking, when a new vertex is added during the network generation process, it is con-

nected to existing vertices that are chosen w. r. t. some of their properties (most often

their degrees). There are multiple ways to generate graphs that follow this framework;

in the following, we describe the Barabási-Albert (BA) model and the Node Copy model.

2.4.2.1 Barabási-Albert Model

BA: a minimalistic graph

model with preferential

a�achment

Barabási and Albert [32] de�ne the BA model. It is perhaps most widely used because

of its simplicity and intuitive de�nition: we start with an arbitrary seed network with

nodes [vi]n0
i=1. The remaining nodes [vi]ni=n0+1 are added one at a time. They randomly

connect to d di�erent neighbors using preferential attachment, i.e., the probability to

connect vi to node vj is proportional to the degree of vj at that time. The seed graph,

n0, d, and n are parameters de�ning the graph family.

Batagelj and Brandes [35] propose BB-BA, a fast and simple BA generator illustrated

in Figure 2.4. For simplicity of exposition, we use an empty seed graph (n0 = 0). A

generalization only requires a number of straightforward index transformations. Preferential a�achment

using uniform samples

from the edge list

The

algorithm generates one edge at a time and writes it into an edge array E[1..2dn] where

positions 2i− 1 and 2i store the node indices of the endpoints of edge ei (with i ≥ 1).

Since each new node has 1 ≤ d < n0 neighbors, we let E[2i− 1] = di/de.
The central observation is that one gets the correct probability distribution for the

other endpoint by uniformly sampling from E, i.e., E[2dj + k] is set to E[x] where x is

chosen uniformly at random from [1..2dj + k). Observe that this formulation allows

self-loops and multi-edges. The former can be prevented by sampling x from [1..2dj].

To avoid multi-edges one can repeatedly sample until d di�erent neighbors have been

obtained. Using a hash set of size O(d) and a su�ciently large seed graph, this results

only in an expected constant slowdown.

MP-BA in external

memory & on GPUs:

R Chapter 3

Meyer and Penschuck [239] propose two I/O-e�cient BA generators for the ex-

ternal memory model and discuss generalization to various preferential models. One

implements Batagelj’s and Brandes’ generator using Time Forward Processing [230] in

37

Recent Advances in Scalable Network Generation

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

v1 v2 v3 v4 v5 v6 v7 v8v3 v3 v3

h(16)=12h(12)=8h(8)=5
determinisitc ids of new nodes

⇒ recursion stops

copied from pseudorandom entry

⇒ recursion continues

Figure 2.5: Barabási-Albert generator by Sanders and Schulz. Computation of the edge list’s

16th
value: we compute h(16) = 12. Since the 12th

value was computed by following h(12) = 8,

we retrace these steps until we hit an odd position.

O(sort(m)). The other one is based on weighted sampling using a tailor-made variant

of a Bu�er Tree [23, 22] and yields the same I/O complexity. The second generator is

parallelized by processing subtrees individually. Potential bottlenecks near the root are

avoided by processing multiple queries to the same tree node in parallel on a GPU.

Sanders and Schulz [294] propose a communication-free BA generator (see Fig-

ure 2.5) based on Batagelj’s and Brandes’ algorithm. Recall that the original algo-

rithm computes the position M [2i] by drawing a random index x and subsequently

copying M [2i]←M [x].communication-free by

pseudorandom hash

functions

The new algorithm, in contrast, obtains a pseudorandom in-

dex x = h(2i) using a random hash function h satisfying h(i) < i for i > 1. As a result,

any processor can at any time of the execution reproduce the value of x, and thereby

the value of M [x]. If x is odd the value of M [x] = dx/2de; otherwise, we know that

M [x] was obtained by copying from M [h(x)] which we can retrace recursively — again

without reading from M . This process terminates in expected constant time. As the

algorithm never reads from M , all positions can be computed pleasingly parallel.

model generalizations

Networks generated with the Barabási-Albert process have a powerlaw degree

distribution [32], however, no signi�cant clustering. Several modi�cations have been

proposed to solve this issue. Holme and Kim [177], for instance, add another parameter

0 < Pt < 1. When adding a new vertex u with d links, the �rst neighbor is added as in

BA. For each of the remaining d−1 neighbors a weighted independent coin is thrown:

with probability 1−Pt preferential attachment is used, otherwise, with probability Pt a

triad formation step is carried out. If edge {u, v} was added in the previous preferential

attachment step, a neighbor w of v is selected randomly, and the edge {u,w} is added.

Dorogovtsev and Mendes [110] propose an extreme case which is compatible with

most techniques presented before. Their model starts with a triangle as seed graph.

Then, rather than drawing nodes, they repeatedly introduce a new node and connect it

to the two endpoints of a randomly drawn edge. The resulting graph is always planar.

The parallel generators discussed so far may emit multi-edges.
1
The distributed

memory generator by Alam et al. [12] (see Section 2.4.2.2) produces simple BA networks

as a special case of the Node Copy model.

1

In practice, the number of multi-edges is typically small if a su�ciently large seed graph is used. Thus,

deleting them does not signi�cantly change the degree distribution.

38

Random Spatial Graphs

2.4.2.2 Node Copy Model

In the Node Copy model [193] links to a node are added by picking a random (other) node

in the graph, and copying some links from it. Similar to the BA model, we start with an

arbitrary seed network consisting of n0 nodes and add the remaining n− n0 vertices

one at a time. They randomly connect to d neighbors using the following process: pick

an existing vertex vj uniformly at random. Then with probability p, the new node vi is

connected to vj (direct edge), and with probability 1− p, vi is connected to a random

neighbor of vj (copy edge).

algorithmic similarities

between BA and Node

Copy

Alam et al. [12] note that the BA model is a special case of the Node Copy model with

p = 1/2. While the opposite is not true, all generators discussed in Section 2.4.2.1 can

be adapted to the Node Copy model by treating its weighted and unweighted sampling

branches individually (see [239] for an in-depth discussion and more generalizations).

A shared-memory parallel algorithm has been proposed by Azadbakht et al. [26].

The authors propose an asynchronous parallel method which avoids the use of low-level

synchronization mechanisms. all remaining schemes

retrieve non-local data

and require explicit

dependency resolution

Roughly speaking, the process of generating edges can

create unresolved dependencies, i.e., the corresponding data that needs to be provided

by the communicating thread to generate the edge locally has not yet been computed.

The authors resolve this problem by having a thread executing two programs. The �rst

part checks if open dependencies are resolved and if so generates the �nal edge. The

second routine tries to generate edges and if there is a dependency the thread stores it

to work on it later and continues with the next edge.

A GPU-based parallel algorithm for the Node Copy model has been presented by [10].

In the algorithm, each thread is responsible for a subset of the vertices. In a two phase

approach, direct edges and some of the copy edges are created directly. Due to depen-

dencies, many of the copy edges are put into a waiting queue and created in a second

phase, where incomplete edges are resolved and �nalized. The algorithm can generate

networks from the model with two billion edges in less than 3 seconds. Alam et al. [12]

transfer the algorithm into the distributed memory model and show how dependency

chains, which are short in practice, are resolved e�ciently in parallel. Alternatively if

multi-edges are acceptable, [294] can be adapted to multi-GPU scenarios [11] yielding

an even more scalable approach.

2.5 Random Spatial Graphs

Entities in real-world networks often have a position in the system that in�uences their

global role in the network as well as their local neighborhood. The spatial network

models presented here account for this phenomenon by associating each vertex with

a point placed in some geometric space. Depending on the model, the probability of

connecting two nodes is governed by (i) their relative orientation (e.g., Sections 2.5.1, 2.5.2

and 2.5.4.1) (ii) their absolute position (e.g., Section 2.5.2), or (iii) additional geometric

constraints (e.g., Sections 2.5.3 and 2.5.4).

39

Recent Advances in Scalable Network Generation

2.5.1 Random Geometric Graphs

Random Geometric Graphs (RGGs) [149, 270] are a family of random spatial graphs that

project networks onto a d-dimensional Euclidean space. These types of networks have

been extensively studied as models for communication networks (e.g., ad-hoc wireless

networks) and the spreading of diseases [149].

model definition RGGs are typically constructed by placing n points uniformly at random in a d-

dimensional unit cube [0, 1)d. Subsequently any two points x and y with x 6= y are

connected by an edge i� their Euclidean distance d(x, y) is within a given threshold

radius r > 0. The neighborhood of a node x thus consists of all points within the

d-dimensional sphere Sx with radius r around x. For nodes near the frontier of the

underlying geometry, a signi�cant fraction of Sx can be outside the unit cube, resulting

in lower degrees. Hence, some variants of RGGs use tori rather than cubes to implement

periodic boundary conditions (e.g., Section 2.5.3).connected regime From percolation theory it is known

that for constant α(d) the neighborhood radius rc ∝ [lnn/(nα(d))]1/d is a sharp

threshold on the connectivity of a Random Geometric Graph with n points [270]. For

practical purposes one assumes that n is su�ciently large and r small.

probabilistic variant
Waxman [344] introduces a generalization of RGGs that uses a probabilistic con-

nection function. In particular, two points x, and y are connected with probability

β exp [−d(x, y)/(Lα)] where L is the maximum distance between two points and

α, β ∈ (0, 1] are parameters controlling the edge density. To be more speci�c, a higher

value of β results in a higher edge density and small values of α increase the density of

short edges relative to longer ones.

generators for geometric

models o�en partition the

space to e�iciently find

edge candidates

The trivial bound of O
(
n2
)

work for generating a RGG can be improved under

the assumption that the points are distributed uniformly at random. To this end, Holt-

grewe et al. [178] partition the unit cube into subcubes with side length r. To �nd

the neighbors of the vertices within a subcube, one only needs to perform distance

comparisons between vertices within this cube and the surrounding ones.RGGs are partitioned into

sub-cubes

This al-

lows the generation of RGG in expected time O(n + m). Holtgrewe et al. [178, 179]

propose a distributed memory algorithm for the two-dimensional case based on this

partitioning. Using distributed sorting and vertex exchanges between processes, they

reassign vertices such that edges can be generated locally. The expected time for the

local computation of their generator is O([n/P] log(n/P)), due to sorting. Perhaps

more important for massive-scale systems is that they need to exchange all vertices

which yields a communication volume of O(n/P) per process.

A communication-free distributed memory generator for general d was proposed

by Funke et al. [139]. Their generator recursively partitions the unit cube into smaller

subcubes by computing a set of binomial random deviates. These deviates are sampled

consistently across processors similarly to the approach in Section 2.3.3.2. In the end,

each processor obtains a local subcube and its associated set of vertices. To generate all

adjacent edges for these vertices, each processor redundantly computes the required

neighboring subcubes without the need of communication. The expected number of

distance comparisons on each processor then is O((m+ n)/P).

40

Random Spatial Graphs

Parsonage and Roughan [269] proposed a fast generator for generalized Random
Geometric Graphs that uses a partitioning approach similar to the one mentioned for plain

RGGs. Subcubes of the partitioning are used to derive upper bounds on the connection

probability for vertices residing in them. Then the methods from Section 2.3.4 are

applied to each subcube, i.e., candidate edges are identi�ed using Bernoulli sampling

which are then �ltered using rejection sampling.

One can generate more structured and perhaps more realistic geometric graphs by

using real-world data to restrict the locations of the points. For example, one can place

points randomly along roads to model wireless car-to-car communication. To model

other ad-hoc wireless networks one could de�ne a probability distribution of points

based on known data on population density. One can also change the de�nition of edge

probabilities in an application-speci�c way. For example, the radiation model [308] has

been used to sample trips between locations based on population density. This can be

implemented in a scalable way [75], and the result can be viewed as an application-

speci�c graph.

2.5.2 Random Hyperbolic Graphs

Random Hyperbolic Graphs (RHG) [200, 159] are a special case of spatial graphs in which

each node has a corresponding point on a two-dimensional
2

disk D in hyperbolic space.

RHG can embed observed

graphs well due to their

exponential expansion

Hyperbolic space allows to embed real-world graphs with low distortions [200]; this can

be explained intuitively by the fact that the radius of a hyperbolic disk grows logarith-

mically with its area — just like the diameters of networks often grows logarithmically

with their size. Related to this quirk, the hyperbolic distance dH(x, y) of points x and y

does not only depend on their relative position, but also decreases as the pair moves

closer to D’s center. Thus, central nodes tend to have above-average many nodes in

their vicinity which often renders them network hubs.

In RHGs, the point set is scattered randomly onto D where the radial probability

density function increases exponentially towards D’s border. The dispersion parameter

α > 1/2 controls the density of points near the center which becomes maximal as

α→ 1/2. In this case the inner Θ(
√
n) points are expected to form a clique. For α = 1,

we obtain a uniform distribution onto hyperbolic space, while for α > 1 the density

near the center decreases. As a result, the central clique shrinks to expected constant

size and the giant component dissolves [54].

2.5.2.1 Threshold Model

The simplest RHG variant [159] is the threshold model. Here, two points u and v are

connected i� their hyperbolic distance dH(u, v) is below the global threshold value R.

With high probability, the resulting graphs have a powerlaw degree distribution with

exponent γ = 1 + 2α, a controllable average degree, a non-vanishing clustering coe�-

cient [159], poly-logarithmic diameter [134], and a giant component [54] for α < 1.

2

While empirical studies have been conducted in higher dimensions (e.g., [253]), we are not aware of

widespread generative models.

41

Recent Advances in Scalable Network Generation

R

0
0 angle ϑ 2π

bands q

overstimated search area

containing the candidates

upper half of hyperbolic

circle around q containg

the true neighbors

largest angle at which

neighbors may be

positioned in this band

r
a
d

i
u

s
r

Figure 2.6: NkBand partitions the Hyperbolic disk (here in polar coordinates) into radial bands.

For each point q, it searches neighbors in the q’s own band and all above. To this end, we

overestimate the upper half of the hyperbolic circle around q by computing the le� and rightmost

angles intersections between the hyperbolic circle and the bands.

RHGs are partitioned

quad-tree-like or into

concentric bands

Currently, the most e�cient generators for the threshold model share a similar setup

originally proposed by v. Looz et al. [224]. The algorithm �rst partitions the hyperbolic

disk D along the radial axis into Θ(log n) concentric bands. Then, it searches the

neighbors Nu of each point u based on a set Cu of candidate points. As a crucial

optimization, Cu contains only points with a higher radius than u itself which are

computed as follows: the algorithm overestimates the upper half of the hyperbolic

circleQu around u containing all of u’s neighbors. For each band bwhich include a radius

identical or large than u’s, one computes the smallest and largest angle intersecting Qu
and band b, and accepts all points in between as candidates. Finally, false-positives in Cu
are �ltered out by rejecting all points c ∈ Cu with dH(u, c) > R. Di�erent generators

vary in the exact number of bands they use, in the bands’ limits as well as how the exact

computation of Cu is implemented.

NkBand by v. Looz et al. [224] initially draws the complete point set. As illustrated

in Figure 2.6, each band is e�ectively an array storing all points contained sorted by their

angles. To computeCu, a binary search for the left- and rightmost points is carried out in

each relevant band. The authors demonstrate an empirical runtime of O(n log n+m).

The parallel implementation is available as part of NetworKit.
Penschuck [271] proposes the streaming generator HyperGen using a small memory

footprint with a cache-aware implementation in mind.HyperGen: sweep-line

streaming generator:

R Chapter 6

The generator overlaps the

sampling of points with the neighborhood search in a sweep-line algorithm resulting

in a memory footprint of O
(
[n1−αd̄α + log n] log n

)
whp. or a time complexity of

O(n log logn+m) whp..

Funke et al. [139] introduce the communication-free generator Rhg as part of KaGen.

It further sub-divides bands into cells which can be independently recomputed by all

processors without communication (see Section 2.3.3). Then, for each point u the set of

candidatesCu consists of all points in cells intersecting the hyperbolic circleQu around u.

The generator requires expected time O((n + m)/P + P log n + n(P d̄/n)α + n
1
2α),

where P is the number of processors.sRhg: communica-

tion-free sweep-line:

R Chapter 7

Combining the streaming technique of [271] with

the communication-free sampling of [139], Funke et al. [138] propose sRhg capable of

generating a graph with 239
nodes and 242

edges on p = 215
cores in less than 1 min.

42

Random Spatial Graphs

2.5.2.2 Binomial Model

Similarly to RGG, there exists a generalization of RHG that replaces the sharp distance

threshold of connected nodes by a distance dependent connection probability. The so-

called binomial RHG features an additional
3

temperature parameter T ≥ 0 controlling

the sharpness of the decision threshold. This gives rise to various parameter regimes [16].

For T = 0, we obtain the threshold model. For T > 0 edges between two points u

and v are created with a probability that decreases exponentially with dH(u, v). In the

extreme of T →∞, the model degenerates into G(n, p).

The �rst generator with sub-quadratic work is Nk�ad by v. Looz et al. [223].

It stores the points, which are projected on to a Poincaré disk, in a polar quad-tree.

Then, the query of point u samples leaves of the quad-tree by bounding the connection

probability to connect to a point in such a leaf from above. All points within a leaf are

treated as candidates and randomly selected. The generator has a worst-case runtime of

O
(
(n3/2 +m) log n

)
. The parallel implementation is available as part of NetworKit.

Later, v. Looz et al. [336] improve these results using a band-based partition as in

NkBand. For long-ranged edges the algorithm exploits that the probability of an edge

decreases monotonously as the distance between its endpoints increases. Hence, it uses

a combination of geometric jumps and rejection sampling as discussed in Section 2.3.4.

The resulting generator has an expected runtime of O
(
n log2 n+m

)
.

Bläsius et al. [48] propose HyperGirgs, a generator with expected linear work for

T < 1 based on the GIRG model. While Nk�ad and HyperGirgs are conceptually

very similar, HyperGirgs operates in the native geometry and navigates the quad-tree

more e�ciently (see Section 2.5.3).

2.5.3 Geometric Inhomogenous Random Graphs

Bringmann et al. [70] propose the Geometric Inhomogenous Random Graphs (GIRG)

model. It identi�es each node with a point on a d-dimensional torus and —similarly to

the Chung-Lu (see Section 2.6.1) model— assigns each node a non-negative weight. The

probability of an edge to be added between two nodes is then a function of the points’

distance and their weights. The authors show that general RHGs are asymptotically

contained in the (d=1)-dimensional GIRG model if hyperbolic radii are projected to

GIRG weights, and angles are mapped onto the 1-dimensional torus.

There exists a sampling algorithm [70] with expected linear work. It decomposes

the geometry similarly to a d-dimensional quad-tree and associates intervals of the node

weight with the tree layers. To this end, nodes with many potential neighbors (i.e., a

high weight) are placed near the tree’s root which makes them candidates to a large

subset of the underlying torus. The generator arranges the tree’s leaves in memory

using a space-�lling curve which allows to e�ciently iterate over all points contained

in arbitrary subtrees.

3

The original proposal [200] by Krioukov et al. already included this parameter, as well as an additional

parameter ζ which does not add a degree-of-freedom and is omitted here without loss of generality.

43

Recent Advances in Scalable Network Generation

Bläsius et al. [48]HyperGirgs & Girgs:

R Chapter 8

engineer the two generators HyperGirgs and Girgs. While the

latter samples multi-dimensional GIRG graphs, HyperGirgs is slightly modi�ed to

sample from the exact RHG probability distribution and can e�ciently generate RHG
instances with T < 1. At time of writing, the parallel implementation of HyperGirgs is

the fastest sequential generator for the threshold and binomial model.

2.5.4 Random Planar Graphs

Planar graphs can be drawn in the plane such that no edges cross. As they are an

intensively studied family of graphs, generators for random planar graphs are very in-

teresting. Some models yield planar graphs by construction (e.g., [110], see Section 2.4.2)

or can be tweaked to be planar (cf. Section 2.8.3). Further, a natural question is to ask for

a uniform sample from all planar graphs with a given number of nodes n. Such graphs

can be sampled in expected quadratic time. If the network size must be realized only

up to a constant factor, expected linear time sampling is possible [141]. Although this

algorithm has been implemented to generate graphs with 105
nodes, it is not very well

suited for scaling to much larger graphs since heavy precomputations are needed.

Several models of planar graphs that are easier to generate have been consid-

ered [237]. The most scalable of these models consider Delaunay triangulations of

random point sets (Section 2.5.4.1).

2.5.4.1 Random Delaunay Triangulations

The Delaunay triangulation (DT) of a point set P partitions P ’s convex hull into triangles

such that no circumcircle of a triangle contains a forth point in P . This so-called

Delaunay condition maximizes the minimal angle in each triangle and typically avoids

near-degenerate triangles with very sharp angles. There are several generators that

generate such a triangulation of a random point set in the unit square (or cube). This is

an appealing family of instances since two-dimensional DTs can be generated e�ciently.

Additionally, the resulting graphs resemble meshes used in numerical computations.

Indeed, DT is an important ingredient in generating meshes for numerical simulation

(e.g., [305]). For example, for graph partitioning, these graphs are interesting instances

since �uctuations in point densities mean that non-trivial partitions are sought that

steer through thin areas of the graph.

The widely used sequential two-dimensional generator by Holtgrewe [178, 179]

chooses each point independently and uniformly at random. Since the node numbering

implies no locality at all, such instances are unexpectedly di�cult for parallel algorithms.

To expose more locality, the parallel generator by Funke et al. [139] uses the same local

point generation strategy discussed in Random Geometric Graph (see Section 2.5.1).

Moreover, to enable a simple, communication-free, and highly scalable parallelization,

this generator uses periodic boundary conditions, i.e., distances are computed as the

smallest Euclidean distance to any copy of the point set in x-, y-, (or z-)direction.

A periodic boundary condition allows them to avoid long Delaunay edges, thereby

reducing the number of recomputations.

44

Random Graphs with Prescribed Degree Sequences

Note that this model adaptation is also practically relevant since periodic boundary

conditions appear in many scienti�c simulations. The generator is freely available as

part of KaGen, and supports a three-dimensional variant of the Delaunay generator.

2.5.4.2 Planar Graphs for Infrastructures

Planar graph generation has always attracted attention of engineers because graphs

underlying many types of civil infrastructure are either completely or almost planar.

Examples include road networks, power grids, water distribution systems, and natural

gas pipelines. Attempts to use random planar graph generators such as Plantri [72],

Fullgen [71], and Markov chain based [103] have not ended up with a desired realism

even if the generated graphs have been re�ned to better �t desired properties. Because

there is a shortage of high-resolution real data for these networks (except the road

networks such as the OpenStreetMap) due to various reasons, such as cost of information

collection and con�dentiality, generation of domain speci�c planar graphs is of particular

interest.

Because most of these generators are developed for practical purposes, they rely

on domain speci�c properties. For example, road network generators may consider a

realistic population density modeled using clustering e�ects fused with geometric graph

edge generation rules and subsequent edge rewiring [162] or a hierarchical city-town-

village structure of nodes with domain speci�c proximity based rules for edges [142].

Power grids are typically spatially-de�ned and nearly-planar graphs. Despite the fact

that many models are claimed to capture the structure of power grids without speci�c

planarity requirement, they either require a planarization postprocessing or model

adjustments to generate realistic graphs that can represent a power grid. For example,

in [341], the nodes and edges are generated using various random distribution functions

within small �xed areas, and proximity constraints, respectively. In [9], the Chung-Lu
model is initializing the backbone of the graph, and random star-like structures are

added to it. Both combinations seem to generate nearly planar graphs. In another

domain, a water distribution system is generated by randomly concatenating small grid

graphs taking into account domain speci�c constraints [310].

2.6 Random Graphs with Prescribed Degree Sequences

Sampling graphs with a prescribed degree sequence is a classical problem in theoretical

computer science with many practical applications (e.g., as a building block in LFR LFR:

R Section 2.7.3

).

The task is, given a sequence of degrees D = [di]ni=1, to return a uniform sample from

the ensemble of all graphs where each node vi has degree di. The problem is intimately

related with the challenge of uniformly perturbing the edges of an existing graph which

is frequently used in network analysis for hypothesis testing (e.g., [245, 154]).

The Con�guration Model Configuration Model:

R Section 2.6.2

yields a linear time algorithm that may produce graphs

with self-loops or multi-edges. Applications, however, often require simple graphs

without those structures. CM emits self-loops and

multi-edges

Sampling from such an ensemble is more involved and not all

degree sequences can yield a simple graph; we call the ones that do graphical.

45

Recent Advances in Scalable Network Generation

ACL approximates degrees:

R Section 2.6.1

fast approximate solution can be obtained using the model by Chung-Lu which

realizes D only in expectation. Alternatively, one can generate (potentially) non-simple

graphs using the Con�guration Model and subsequently deal with forbidden edges (see

Section 2.6.2).FDSM using CB, ES, and

Havel-Hakimi

In contrast, the frequently used Fixed-Degree-Sequence-Model (FDSM)

directly yields simple graphs in a two-step approach. It �rst generates a highly biased

graph in linear time (e.g., using the Havel-Hakimi [173, 165] and engineered by [167]),

and then perturbs the instance using a su�ciently long sequence of small local updates

(e.g., Edge Switching (see Section 2.6.3) and Curveball (see Section 2.6.4)).

2.6.1 Chung-Lu

Chung and Lu (CL) [93] describe random graphs designed to match a prescribed degree

sequence D in expectation. CL graphs are parameterized by an n-dimensional non-

negative vector w = [wi]ni=1. In order to be realizable, w’s largest value has to be

restricted to maxiw
2
i ≤ W where W :=

∑
iwi. Then, each node vi is assigned the

weight wi and two nodes vi and vj are connected with probability pij := wiwj/W .

While one typically chooses w = D, the vector may also contain real-valued entries.

Miller and Hagberg [244] give the �rst e�cient generator capable of producing

simple CL instances. Their sequential algorithm requires a non-increasing weight

sequence.
4

As a result, the probability pij of an edge between a �xed node vi and a

partner vj only decreases as j increases, i.e. we have pij ≥ pik for all j < k. Thus, after

considering the edge (vi, vj) we can obtain the next candidate (vi, vk) by sampling a

geometric skip distance with pij and correct the potentially overestimated probability

by accepting the candidate only with probability pik/pij (cf. Section 2.3.4). The resulting

generator has an expected runtime of O(n+m). The approach can be parallelized

using the approach used in KaGen [139] — the adjacency matrix is partitioned into slices

which can be generated independently. Appropriate load balancing has to take into

account that di�erent parts of the matrix incur a highly di�erent amount of work.

Alam et al. [13] also require a sorted weight sequence which they collapse into Nw

groups each containing nodes with identical weight. For each group only O(1) words

are stored. Then, they conceptually decompose the adjacency matrix into Θ(N2
w) blocks

where each block is sampled as a bipartite G(n, p) graph. The authors show a runtime

of O
(
N2
w +m

)
and demonstrate a speedup over [244] for practical weight sequences.

They also give a parallel variant requiring time O
(
(m+N2

w)/P + P +Nw

)
where P

is the number of processors.

Moreno et al. [249] unify both approaches and generalize them into an algorithmic

framework suited for static graph models where each edge {u, v} independently exists

with an (implicitly de�ned) probability puv and the number |{puv |u, v ∈ V }| of unique

probabilities is small. Then, each group of edges with identical probabilities is treated

separately. The authors describe two sampling strategies both yielding an expected

sequential time of O
(
n+m+N2

w

)
where Nw is the number of unique node weights.

5

4

This restriction can be lifted by appropriately sorting and relabeling nodes.

5

Observe that in the common case where w contains integers, the N2
w terms in the previous results are

46

Random Graphs with Prescribed Degree Sequences

The dependence on N2
w can be removed by applying the techniques from Sec-

tion 2.3.4. Concretely, we can subdivide the set of adjacency matrix entries into a

logarithmic number of groups such that the entries within a group have probabilities

that di�er by at most a constant factor. Sampling within a group can then be done using

a combination of Bernoulli sampling and rejection sampling.

Although this may require a small constant factor more calculations then the other

approaches, it can be implemented very e�ciently because the involved computations

(generating skip distances and making acceptance decisions) are very simple and have

high data parallelism. Thus, they can use parallelism, vector instructions, GPUs, and

existing highly tuned library codes for these tasks.

2.6.2 Configuration Model

The Con�guration Model (CM) was initially conceived for the theoretical analysis of

random graphs [38, 260, 59]. Due to its simplicity, it is now also used to sample from

prescribed degree sequences [247], and among others motivated the notion ofmodularity.

In the following, we consider the Con�guration Model for undirected graphs, and

introduce a directed variant in Section 2.9.1. Given a degree sequence D = [di]ni=1

with

∑
i di = 2m, CM generates a graph G(V,E) with |V | = n and |E| = m. We

�rst create an urn U which contains exactly di balls labeled vi for each node vi ∈ V .

Then, we draw and remove two balls from U uniformly at random, and add the edge

{u, v} to E where u and v denote the labels of the two balls respectively. The process

terminates when U is empty.

Clearly, CM allows for self-loops and multi-edges
6
. While their expected number

is small for any graph G with maxdeg(G) � n, multiple strategies to obtain simple

graphs have been considered:

• The Erased Con�guration Model deletes all self-loops and multi-edges without

replacement, and thereby changes the degree sequence non-uniformly. This can

result in signi�cant structural changes [296, 332].

• Rejection sampling repeatedly samples using the CM , and accepts the �rst sim-

ple instance obtained. This method, however, only yields expected polynomial

runtimes if the maximum degree maxdeg(G) = o(
√

log n) is small.

• Recent theoretical results by Arman et al. [24] (building on [143, 236]) improve

upon rejection sampling by transforming a multi-graph sampled with CM into

simple graphs — one defect at a time. The technique is very similar to the one

sketched for Inc-Reg (see Section 2.9.4), but uses more switches and treats high

asymptotically dominated by the expected number of edges. Let G be a graph containing Nw di�erent

degrees and let V ′ ⊂ V be an arbitrary set of nodes, s.t. all nodes in V ′ have a di�erent degree. The

nodes in V ′ are incident to at least

∑
v∈V ′ deg(v)/2 ≤

∑Nw−1
i=0 i/2 = Θ(N2

w) edges. Hence, we expect

N2
w = O(m) which also holds whp. for Nw = Ω(logn) by bounding the realized degrees from below

using Cherno�’s inequality.

6

Due to self-loops and multi-edges, not all graphs have the same probability to be generated [260, p.436].

Hence, CM is not guaranteed to produce uniform samples.

47

Recent Advances in Scalable Network Generation

a b

cd

a b

cd

a b

cd

{
or

}
switch

to

Figure 2.7: Edge Switching in an undirected graph. Two edges (here {a, b} and {c, d}) and one

of two possible new topologies are drawn uniformly at random. The swap is rejected, if the new

induced subgraph is not simple (right example).

degree nodes separately. Preliminary results suggest that the algorithm can be

made practical despite their complexity [18].

•jump-start FDSM with CM:

R Chapter 4

Random rewiring steps are a common technique to remove forbidden structures

(e.g., [208]) in a Markov-style Las Vegas algorithm. Hamann et al. [167] use such

pseudorandom edge swaps (cf. Section 2.6.3) at scale to heuristically remove the

unwanted edges while preserving the original degrees.

E�cient implementations of CM typically exploit that by removing random balls

from the urn until it is empty, the model e�ectively establishes a random permutation of

all balls initially contained. In fact, our description of CM is very similar to the Fisher-

Yates shuffle (see Section 2.3.2). Hence, the following reformulation is equivalent, and

leads to scalable generators: store the contents of urn U as a sequence S, shu�e S to

obtain a permutation uniformly at random, and then interpret S as a sequence of m

node pairs encoding the edge set E.

2.6.3 Edge Switching

The Edge Switching (also known as re-wiring, swap, or trade) model [279, 151]in each step, ES rewires

two random edges

applies

a succession of k small perturbations, so-called edge switches, to a network. While

numerous di�erent switching types have been proposed (e.g., [323, 143]), in the interest

of brevity we focus on most common variant. In case of an undirected input (see

Figure 2.7), two random edges {u, v} and {x, y} are replaced either by {u, y} and {x, v},
or equiprobably by {u, x} and {v, y}. Clearly, these changes preserve the degrees of all

nodes involved. If a swap violates application-speci�c constraints (e.g., by introducing a

self-loop into a simple graph), it is rejected without replacement.

This random process is often modeled as a Markov-chain: the state space corresponds

to the ensemble of all legal graphs with the same degree sequence. We connect two states

i� their graphs can be transformed into each other using a single swap. For directed

graphs and simple undirected graphs, the Markov chains have symmetric transition

probabilities, are irreducible and aperiodic; hence, a su�ciently long sampling process

converges to a uniform sample [80].
7

While rigorous upper bounds on mixing times are

only known for special graph classes and are impractically high (e.g., [123]), in practice a

constant number of swaps per edge often yields su�ciently uniform results [151, 167, 80].

7

Carstens [80, section 2.2] discusses adaptations for additional graph classes; see also [41].

48

Random Graphs with Prescribed Degree Sequences

Nu :

Nv :

v

u shu�e

Nu ∩Nv
common

[Nu∪Nv] \ [Nu∩Nv] \ {u,v}
disjoint neighbors

Figure 2.8: A curveball trade. The neighbors of two randomly selected nodes u, v are shu�led.

Common neighbors and the edge {u, v} must not be traded for the graph to remain simple.

In the following, we only report on the randomization of simple undirected graphs

since the directed variant implies fewer constraints and is signi�cantly easier. Swapping

of simple undirected graphs requires a data structure that supports the following steps

e�ciently: (i) gather two random edges uniformly at random, (ii) test whether their

replacements already exists (to prevent multi-edges), (iii) update the selected edges.

Step (ii) implies that the neighborhoods of up to four nodes have to be considered.

Viger and Latapy [332] implement a graph data structure similar to an adjacency list

where each neighborhood N(u) is stored as a hash set; small N(u) are kept in arrays

as an optimization. Executing k swaps then requires expected O(k) work, but causes

unstructured memory access resulting in a signi�cant slowdown for large graphs.

EM-ES: ES in EM:

R Chapter 4

Hamann et al. [167] mitigate these unstructured memory accesses with an I/O-

e�cient implementation executing steps (i) to (iii) in batches. By chosing a batch size of

O(m) swaps, the previouslyO(m) unstructured I/Os can be transformed into a constant

number of scans over the edge list; the resulting pipeline triggersO(sort(m)) I/Os whp..

Its implementation is faster than [332] even for instances still �tting into main memory,

and scales well for graphs exceeding this threshold.

Bhuiyan et al. [43] propose a distributed approach for P processors. Each proces-

sor Pi is assigned approximately m/P edges Ei, and generates swaps by selecting two

random edges: one local edge e1 ∈ Ei and second (not necessarily local) edge e2 ∈ E. If

edge e2 is stored on a di�erent computer (i.e., e2 ∈ Ej with i 6= j), processor Pi sends a

message to the remote host Pj which then executes the swap. In general, the algorithm

uses additional messages to avoid multi-edges. The implementation performs 1.15 · 1011

edge swaps on a network with 1 · 1010
edges in 3 h using P = 1024 processors; [167]

carry out the same experiment on a single machine (P = 8) with a slowdown of 8.3.

2.6.4 Curveball and Global Curveball

In each step, CB trades the

neighbors of two random

nodes

Curveball (CB) [321, 80] is structurally similar to Edge Switching as it randomizes a

graph by executing a sequence of local modi�cations, so-called trades. It is available for

directed
8

and simple undirected graphs. Each trade selects two nodes u 6= v uniformly at

random, and shu�es their neighborhoods (see Figure 2.8). To this end, the set of disjoint

neighbors (N(u)∪N(v))\(N(u)∩N(v))\{u, v} is identi�ed, and randomly redistributed

between the nodes u and v while keeping their degrees unchanged. Compared to the

8

If self-loops are disallowed, directed triangles cannot be reorientated by Curveball. Several preprocess-

ing steps have been considered to lift this restriction (e.g., the linear time algorithm [41]).

49

Recent Advances in Scalable Network Generation

Edge Switching Markov chain, the basic steps are more complex but at the same time

in�ict more changes; hence empirically fewer steps are required [81]. Additionally, CB
trades increase data locality [82].

Carstens et al. [81]CB and G-CB in EM:

R Chapter 5

(extended by [82]) propose Global Curveball (G-CB) which

further reduces data dependencies. A global trade is a super step in the Markov chain,

and consists of bn/2c single trades targeting all nodes of the graph (if n is odd, a

random node remains unselected). The underlying Markov chain still converges towards

a uniform sample, and in practice shows fast mixing times even for skewed degree

sequences. Carstens et al. [82] introduce an I/O-e�cient parallel algorithm that exploits

the increased regularity of G-CB’s trading patterns.

2.7 Block Models

The goal of community detection (also known as graph clustering) is to identify regions

of a graph that are internally densely connected, but only sparsely connected to their

outsides. Such communities may be disjoint or overlapping. Disjoint communities
partition the set of nodes of a graph into disjoint subsets. For overlapping communities,
each node may belong to more than one community. Numerous measures and algorithms

have been proposed to formalize the fuzzy concept of a community and how to detect

them (see [133] for a survey).

Many observed graphs (e.g., derived from biological systems or social networks)

have a signi�cant community structure [150]. Therefore, it is natural to also consider

generators that explicitly generate such structure. For the evaluation of community

detection algorithms, synthetic benchmark graphs with planted communities are useful;

their outputs’ consist not only of the graphs produced but also includes an assignment

of nodes to communities.

In the following, we introduce the traditional Stochastic Block Model that is also used

to theoretically analyze community detection algorithms. Subsequently, we consider

the commonly used LFR generator, and the more recently proposed CKB generator.

2.7.1 Stochastic Block Model

The Stochastic Block Model (SBM) [176, 3] (also Planted Partition Model or Inhomogenous
Random Graph) is a versatile framework to model a �ne-grained community structure.

There exists numerous extensions and generalizations (see [212] for a recent survey). Its

base variant has the following model parameter: the number n of nodes, the number k of

communities, a community probability distribution p = (p1, . . . , pk), and a symmetric

matrix P ∈ [0, 1]k×k.

The SBM yields an undirected simple graph G and a ground truth community

assignment χ : V → C . To this end, each node independently selects its community

cj ∈ C weighted with probability pj (see Section 2.3.3.4). Subsequently, we introduce

an edge between each node pair {u, v} independently with probability Pχ(u),χ(v).

Observe that after assigning nodes to communities, algorithms for SBM and Chung-
Lu models are similar. While in CL “community blocks” form endogenously if nodes

50

Block Models

share the same weights, these blocks are expressed explicitly in SBM . Nevertheless, from

an algorithmic point of view they can be dealt with similarly. Thus, Alam et al. [13] and

Moreno et al. [249] directly generalize their respective CL generators to SBM .

2.7.2 R-MAT / Kronecker Graphs

Kronecker Graphs [213] are a family of self-similar graphs that are based on the recursive

application of Kronecker products (as de�ned in Figure 2.9) to the adjacency matrix

of an initial seed graph. These graphs obey static graph patterns, such as a powerlaw

degree distribution and a small diameter [213]. Additionally, as these networks grow,

their density increases. To be more speci�c, the number of nodes and edges obey a

densi�cation powerlaw, i.e., m is proportional to nα for some α > 1. The simplicity

of Kronecker Graphs allows for the tractable analysis of various of these properties

including the graph diameter, clustering coe�cient and degree distribution [214, 229].

However, due to the discrete nature of the generation method staircase e�ects can be

observed in some of these quantities.

⊗ : Rn×m × Rn′×m′

→ R(n·n′)×(m·m′),

(U,V) 7→
u1,1V · · · u1,mV

u2,1V · · · u2,mV
.
.
.

.
.
.

.

.

.

un,1V · · · un,mV


Figure 2.9: Definition of

the Kronecker product used

to generalize R-MAT.

To alleviate this issue, Leskovec et al. [213, 214] introduce Stochastic Kronecker
Graphs. Instead of using an adjacency matrix, these graphs start with a probability

matrix U as their seed. The seed matrix U can be obtained from a deterministic seed

graph by replacing 0-entries with α and 1-entries with β where 0 ≤ α ≤ β ≤ 1 are

model parameters. Then, an entry uij ∈ U corresponds to the probability that an edge

between the vertices i and j is present. The model then computes Uk (kth
power of

Kronecker products), and samples edges using probabilities prescribed in Uk.

In order to generate Stochastic Kronecker Graphs that appear similar to a given

graph G, Leskovec et al. [214] introduce a fast and scalable �tting algorithm called

KronFit. The algorithm avoids committing to speci�c metrics (e.g., shape of degree

distribution) by directly matching the adjacency matrix of G and the generated graph.

KronFit achieves a linear running time by exploiting the structure of Kronecker prod-

ucts and using statistical simulation techniques.

A special case of Stochastic Kronecker Graphs is the Recursive Matrix Model (R-
MAT) by Chakrabarti et al. [87]. This model is well known for its usage in the popular

Graph 500 benchmark.
9

A graph with n vertices and m edges is built by sampling each

of them edges independently. To generate a single edge, R-MAT partitions the adjacency

matrix recursively into four equal-sized quadrants (see Figure 2.10). The quadrants are

weighted with probabilities of a, b, c, and d respectively where a+ b+ c+ d = 1. The

model then randomly selects one of the partitions to recurse on. It continues until it

reaches the base case of a 1× 1 partition corresponding to the sampled edge.

a b
c d

b

dc
a

c d

Figure 2.10: R-MAT recur-

sively subdivides the ad-

jacency matrix into quad-

rants, and each time selects

one of them with probabil-

ities a, b, c, and d respec-

tively. The recursion termi-

nates when a sub-matrix of

size 1× 1 is reached.

Some further noise can be added at each step of the recursion to smooth out the de-

gree distribution of the output graph. This can be done by computing a level-dependent

uniform random number during the recursion, and slightly modifying the initial proba-

bilities for each quadrant [302].

9

The benchmark additionally requires the generator to relabel all nodes based on a random permutation

of node indices to avoid information leaking that could be exploited by algorithms tailor-made for the

benchmark. As relabelling is straight-forward, we omit its discussion here.

51

Recent Advances in Scalable Network Generation

Note that this process produces a directed graph that may have multi-edges (which

are typically converted into single edges). Furthermore, directed graphs can be made

undirected by setting b = c, and removing all matrix entries above the main diagonal

and copying the lower half (cf. Section 2.9.1).

The time complexity of the initially proposed R-MAT generator [87] is O(m log n)

since recursion has to be repeated for each edge. Furthermore, this process is embar-

rassingly parallel, i.e., edges can be generated independently of one another. This leads

to a distributed memory algorithm with a runtime of O([m/P] log n). Finally, once can

easily generalize the resulting algorithm to generate Stochastic Kronecker Graphs.

The time for generating an edge can be reduced from logarithmic to constant using

bit parallelism [181]. The algorithm precomputes sequences of a logarithmic number of

decisions together with their probability. These sequences can be sampled in constant

time using thealias table:

R Section 2.3.3.4

alias table data structure. Thus, generating an edge just amounts to

concatenating a constant number of sampled sequences of decisions.

2.7.3 LFR

LFR plants a known

community structure

The LFR benchmark has been �rst introduced for unweighted, undirected graphs [210]

and later extended to directed and weighted graphs [208]. The node degrees are drawn

from a powerlaw distribution with user-supplied parameters; the community sizes are

drawn from an independent powerlaw distribution. The mixing parameter µ determines

the fraction of neighbors of every node u that are not part of u’s communities. The re-

mainder of a node’s degree, its internal degree, is divided evenly among all communities

it belongs to.

Nodes are assigned to communities at random such that each node’s internal degree

is smaller than the size of the community as otherwise not enough neighbors can be

found. This is done using a bipartite version of Edge SwitchingEdge Switching:

R Section 2.6.3

with additional rewiring

steps to satisfy these degree constraints. For each community, LFR generates a graph

with the given degree sequence using the Fixed-Degree-Sequence-Model. It analogously

samples the global inter-community graph with the remaining degrees.FDSM:

R Section 2.6

Additional

ES steps are used to rewire edges such that no edges of the global graph are within a

community and to rewire edges that are part of multiple communities.

The authors provide sequential implementations of the di�erent variants of the

LFR benchmark [210, 208].EM-LFR: LFR in EM:

R Chapter 4

Hamann et al. [166, 167] propose an external memory

algorithm that uses I/O-e�cient ES and a streaming implementation of Havel-Hakimi

to generate graphs. Rewiring steps are also implemented based on ES. If the number

of communities is smaller than M , the assignment can be solved in a semi-external

algorithm in time O(scan(n)) I/Os, otherwise I/O-e�cient sampling is used that needs

O(sort(n)) I/Os. The implementation of this external memory algorithm processes

independent communities in parallel and outperforms the original implementation even

for graphs still �tting into the internal memory. Additional parallelism can be exposed

by replacing ES with Global Curveball.

52

Graph Replication

2.7.4 CKB

The CKB model [95] is based on the Community-A�liation Graph Model (AGM) [348].

AGM encodes the assignment of nodes to communities using a bipartite graph. Every

community is similar to a G(n, p) graph with an individual edge probability p. As a

result, nodes sharing multiple communities have a higher probability of being connected.

An additional ε-community with a small edge probability ε consisting of all nodes is

added [347] to allow edges between any pair of nodes. Yang and Leskovec show that

this model captures many properties of real-world networks [348].

The main goal of AGM is not graph generation but rather �tting this model to a

real graph in order to detect communities. Consequently, AGM provides no synthetic

bipartite node-community graph, but instead uses structures taken from the observed

graphs. The CKB model mitigates this issue, and gives the means to randomly sample

the necessary parametrization for AGM . The number of communities a node is part of,

as well as community sizes follow powerlaw distributions. The edge probability of a

community ck is given by pck := α/xγck , where xck is the number of nodes in ck and

0 < γ < 1, α > 0 are parameters.

The original implementation of CKB uses Apache Spark [350]. It �rst generates the

two degree sequences for nodes and communities on a master node, and then sends

them to the other worker nodes. The number of edges for each community is sampled

from a binomial distribution. In order to compensate for multi-edges and self-loops,

CKB calculates their expected number and samples more edges. The generator then

uses the Erased Con�guration Model to sample the assignment of nodes to communities,

and to generate the individual community graphs. For both steps, each worker emits

edge subset of similar sizes, which are then distributed and merged using the Hadoop

Distributed File System (HDFS). On Amazon EC2 with 100 m1.large instances (two virtual

cores, 7.5 GB RAM each, which might be a 2010 Intel Nehalem server processor [191]),

the authors are able to generate a graph with one billion nodes in less than 2 hours [95].

2.8 Graph Replication

The practical goal of graph replication methods is to generate graphs that are similar

to one or more reference graphs. We already discussed a simple variant in Section 2.6,

where the goal is to sample graphs with matching degree sequences. However, de-

pending on the application, other or additional properties are of importance. Graph

replication is typically used for tasks, such as algorithm testing, performance evaluation,

benchmarking, and assisting decision makers in various domains including (but not

limited to) engineering, software design, epidemiology, and viral marketing.

In such domain dependent tasks, a similarity between the synthetic and original

graphs is often not well-de�ned. Thus the designers of graph generators have to be

careful when quantifying the realism of a synthetic graph. In some cases, such realism

is measured in speci�c structural properties of paths, loops, special forms of network

backbones at various resolutions, and connectivity between node clusters.

53

Recent Advances in Scalable Network Generation

Hence traditional general properties (cf. Section 2.2) seem insu�cient to gener-

ate a useful synthetic network. For example and as discussed in Section 2.8.3, the

preserved properties may include the second shortest path length [161], or the graph

Laplacian [306].

2.8.1 BTER

The Block Two-Level Erdős-Rényi (BTER) model generates graphs approximately follow-

ing a prescribed degree sequence and clustering coe�cient per degree [196].
10

Its input

parameters are [di]dmax

i=1 and [ci]dmax

i=1 where di speci�es the number di of nodes with

degree i and ci requests that all nodes of degree i to have a clustering coe�cient of ci.

Both quantities are only realized in expectation.

BTER generates graphs in two steps. In the �rst phase, it constructs homogeneous
a�nity blocks by grouping together d+1 nodes of degree d in a greedy fashion. The

remaining unassigned nodes form so-called heterogeneous a�nity blocks of mixed degrees

(treatment omitted here, refer to [196]). Each homogeneous a�nity block is materialized

as aG(d+1, p) graph where p is chosen to match the requested clustering coe�cient cd
in expectation. Unless an a�nity block forms a clique, the prescribed degrees are not met

and additional edges need to be added in a second phase. To this end, BTER computes

for each node v ∈ V its excess degree ev as the di�erence between its requested degree

and the degree expected from phase 1. It then supplements the missing edges with a CL
graph on the degree sequence D = [ev]v . Ultimately the resulting graph is constructed

by merging the subgraphs from both phases.

Kolda et al. propose a parallel sampling algorithm [196]: each worker independently

adds edges by �rst randomly selecting for which phase the edge is introduced. Then

the node pair is drawn from the appropriate distribution. This process almost surely

generates duplicate edges. To avoid this bias, more edges are generated to account for

the expected losses during de-duplication. Similarly, the number of nodes with degree 1

is scaled by a correction factor β > 1 to compensate that approximately 36 % of them

remain singletons while 28 % receive at least two neighbors [113].

Based on their e�cient sequential and parallel implementations ofCL, Alam et al. [13]

also present e�cient sequential and parallel implementations of BTER. They are able to

generate a graph with 131 million nodes and 4.6 billion edges in 210 seconds sequentially

and just 0.37 seconds using 1024 processors, i.e., they achieve a speedup of about 572.

GBTER [66] (Generalized BTER) generalizes BTER by allowing the user to supply the

groups of the nodes instead of automatically grouping nodes by degree. This enables

the generation of a graph with a prescribed community structure. The user can also

supply a density per group, replacing the automatically assigned density to match a

certain clustering coe�cient.

EGBTER [119] (Extended GBTER) adds support for clustering coe�cients in addition

to the user-supplied groups. EGBTER takes a community assignment χ : V → C ,

the groups, the expected within-community degree of each node [di]ni=1, the expected

10

The original formulation [301] did not explicitly consider the clustering coe�cient.

54

Graph Replication

global degree of each node [Di]ni=1, with di ≤ Di, and the within-community clustering

coe�cient distribution [ci]dmi=1. For the generation process, the authors essentially run

BTER for every community separately and then generate an CL graph for the remaining

degrees. Thus, scalable implementations of BTER can be easily adapted for EGBTER.

A-BTER [311] (Adapted BTER) uses a specially con�gured version of BTER to generate

benchmark graphs for community detection similar to the LFR benchmark. At the same

time, A-BTER replicates the degree and clustering coe�cient distribution of a given

graph similarly to BTER. Using a heuristic scaling mechanism, A-BTER slightly adapts

these distributions to match a prescribed average and maximum degree and clustering

coe�cient on a possibly larger graph. A-BTER takes a mixing parameter that, like in

the LFR model, denotes the fraction of inter-cluster edges. Using a linear program,

A-BTER further adjusts the degree and clustering coe�cient distributions such that the

resulting graph matches the mixing parameter while keeping the adjustments minimal.

The assignment to a�nity blocks, and the edge generation closely follows the BTER
model. Using the parallel edge-skipping technique [13], the actual intra- and inter-

community edges are generated e�ciently in a parallel, distributed implementation.

The implementation is based on MPI and OpenMP. On 512 compute nodes where each

node has 128 GB RAM and two marvel ThunderX2 ARM processors with 28 cores per

processor, A-BTER generates a graph with 925 billion edges and 4.6 billion nodes in

76 seconds. While the resulting graphs do not perfectly match the original LFR model,

they show that community detection algorithms show similar behavior. Further, they

show that both the degree and clustering coe�cient distributions as well as the mixing

parameter are as desired.

2.8.2 Darwini

The Darwini [116] generator takes both a degree distribution, and a distribution of

clustering coe�cients per degree as input. Usually, such distributions would be obtained

from an observed network. Using this input, Darwini can generate a graph of a di�erent

scale that is similar to a real-world network from which the distributions have been

used. The authors show that it outperforms other approaches like BTER in terms of the

reproduced metrics on the Facebook social graph.

Darwini �rst samples for every node a degree, and then a clustering coe�cient

from the distribution of that degree. The basic idea of Darwini is then to group nodes

into buckets, where all nodes in a bucket have the same (or a similar) desired number

of triangles in order to achieve their clustering coe�cient. For each bucket, a G(n, p)

graph is generated. Bucket sizes and probabilities p are chosen such that the expected

number of triangles in each bucket matches the desired number while ensuring that no

node in the bucket can exceed its target degree. After this �rst step, each node has a

residual degree left. Darwini iteratively adds edges between buckets until it achieves

the target degrees. Roughly speaking, it is unlikely that these inter-bucket edges create

new triangles. Thus, this step allows to both reach target degrees while keeping the

target clustering coe�cients. In each iteration, the algorithm attempts two strategies for

55

Recent Advances in Scalable Network Generation

creating edges. Firstly, from each node, it attempts to create an edge to a random node,

which succeeds if the other node has a non-zero residual degree. Secondly, it shu�es

the nodes into small groups and attempts adding edges between nodes within a group.

For edges within a group, the algorithm favors edges between nodes of similar degree.

The authors provide an open source implementation of Darwini11
in Apache Gi-

raph
12

. While the implementation carries out the assignment to buckets on a central

compute node, it distributes the creation of edges within buckets while processing

each bucket sequentially. Globally uniformly distributed edges are generated in parallel

while the random groups are again aggregated to generate the edges within the group.

Darwini introduces an additional layer of super-communities to generate graphs larger

than the main memory of the compute cluster. It is executed individually for each super-

community, and then later edges between nodes in super-communities are generated by

sampling potential neighbors and testing if they still want new neighbors. The authors

generated a scaled up version of the entire Facebook social graph with 3 trillion edges

in 7 hours on a compute cluster of 200 machines each with 256 GB RAM and 48 cores.

2.8.3 Multilevel generators

Multilevel algorithms for computational optimization on graphs are well known to be suc-

cessful on such problems as partitioning [288], linear arrangement [286], force-directed

drawing [340], and vertex separator [164]. The main idea behind these algorithms is to

create a hierarchy of increasingly coarse representations in which each next-coarser

graph is structurally similar but smaller than the current level coarse representation.

While constructing a hierarchy, an optimization problem is solved for each coarse repre-

sentation (from the coarsest level to �nest) in a such way that a coarse level solution

serves as an approximation for the next-�ner level. Here we describe how the multilevel

algorithm design pattern can be used for graph generation.

The multilevel
13

graph generator MUSKETEER [161] deems the following two obser-

vations important to generate realistic replica: Firstly, various graph properties —while

being di�erent in absolute terms— are as important on the coarse levels as on the original

�nest level. For example, both clustering coe�cient and diameter, can be illuminating

at the coarse levels, when the �nest scale information is aggregated after coarsening.

Secondly, applying a single node or edge editing operation (such as adding/removing

a node or adding/removing/rewiring an edge) at a coarse level would be equivalent

to applying many operations on the whole regions in a graph at the �nest level. On

the one hand, this will contribute to the realism of a generated graph because the local

structure will be preserved if changes are applied at the coarse levels.

Conversely, if the changes are applied only at the �ne levels, the global structure of

a graph will remain unchanged. The user can therefore control the levels where editing

11

h�ps://issues.apache.org/jira/browse/GIRAPH-1043

12

h�ps://giraph.apache.org

13

In the original paper, the authors used the term multiscale to emphasize that the generator acts at

multiple scales of a complex system coarseness. Here we replace it with the term multilevel to avoid

possible associations with scalable performance.

56

https://issues.apache.org/jira/browse/GIRAPH-1043
https://giraph.apache.org

Graph Replication

operations should be applied thereby controlling the desired deviation from the original

graph at both local and global resolutions.

MUSKETEER follows the same coarsening scheme as in multilevel approaches for

combinatorial optimization problems, such as partitioning and linear ordering [286, 288].

However, it edits synthetic graph preserving the required properties at each level during

the uncoarsening phase instead of optimizing some objective. Throughout all levels, all

editing operations are local. For example, in [161], a distribution of the second shortest

path length measured at each level during the coarsening is preserved when a new node

is added and connected to other nodes. The nearly linear complexity of this approach

is comparable to that of other multilevel optimization algorithms. Reported preserved

metrics include degrees, assortativity, eccentricity, clustering, betweenness centrality

and harmonic mean distance centrality.

The multilevel approach can also generate planar graphs [89] by applying linear

time planarity test (for Kuratowski subgraphs [325]) followed by rejecting added edges

that violate planarity at each level of coarseness. The graph editing at each level is

required to only produce planar graphs.

Indirectly, the multilevel approach attempts to preserve the spectral properties of an

original graph either at the user speci�ed, or all levels of coarseness. Conversely, Shine

and Kempe propose SpectralGen [306] to intentionally produce graphs with a similar

(or matched) spectrum of the graph Laplacian. The spectrum of the Laplacian encodes

high-level connectivity information about the original graph, and can be controllably

preserved within the multilevel frameworks using advanced coarsening schemes [90].

SpectralGen acts as follows: Firstly, it generates a template matrix with a spectrum

close to the original graph Laplacian using a randomly sampled orthonormal basis

followed by a linear programming based �tting. Since the result is not necessarily a

correct graph Laplacian, SpectralGen subsequently rounds the matrix to a valid graph

Laplacian using linear programming. The approach is currently prohibitive expensive

for large-scale graphs. There is no theoretical guarantee that the generator samples

uniformly from the set of graphs with approximately correct spectra. The authors, how-

ever, experimentally demonstrate a signi�cant variation in the generated graphs while

preserving useful metrics including betweenness centrality and path length distribution.

One of the interesting future challenges is combining other generative approaches

with the multilevel framework by applying them at di�erent levels of coarseness. For

example, one may want to generate a graph with speci�c global geometry at the coarse

levels while addressing local properties, such as clustering coe�cient or degree distri-

bution, at the �ne levels only.

57

Recent Advances in Scalable Network Generation

2.8.4 dK-Graphs

Mahadevan et al. [228] propose dK-graphs, a family of models parametrized by d. The

parameter controls the level of details captured from the input graph:

• For d = 0, only the average degree is kept.

• For d = 1, the degree distribution is reproduced analogously to FDSM .FDSM:

R Section 2.6

• For d = 2, for every pair of degrees the number of connections between nodes of

these degrees is preserved.

• For d > 2, for every possible induced subgraph with d nodes, the occurrences of

a certain d-tuple of degrees is preserved.

• For d = n, the input graph is replicated exactly.

The authors report that they obtain graphs very similar to an internet topology graph

supplied as input already for d = 3. Given an input graph, they use a restricted version

of Edge Switching that only allows switches that preserve the considered distributions.

Given just the desired properties and no input graph, the authors consider edge switches

that bring them closer to the desired property. They report no running times, but report

that the algorithmic complexity increases sharply with increasing values of d. However,

for d = 2, it should be possible to adapt e�cient implementations for Edge Switching.

For d > 2, it seems unlikely that such graphs could be generated e�ciently as an

increasing number of edge switches would need to be rejected and there are no obvious

ways to select them directly.

2.9 Additional Graph Types

Applications often mandate special types of networks: street networks, for instance, are

directed to account for lanes or one-way-streets, and may express the distance between

two points as edge weights. In the following, we outline modi�cations of previously

discussed models and generators to cater to such use cases. For the sake of brevity, we

focus on general techniques and selected examples we no intention of completeness.

2.9.1 Directed Graphs

Algebraically, a digraph is a binary n× n adjacency matrix A. For an undirected graph,

the matrix A is symmetric with an empty diagonal and, thus, fully determined by either

its upper or lower triangle matrix.
14

Therefore, the set of all digraphs with n nodes is

exponentially larger than its undirected counterpart. As a direct consequence, random

graphs models need to be extended to properly deal with digraphs.

In the simplest case the two edges (u, v) and (v, u) are treated independently (e.g.,

as in the directed variants of Erdős-Rényi and Gilbert). Bollobàs et al. propose a directed

14

Many generators, e.g., ER (Section 2.4.1), R-MAT (Section 2.7.2), or RHG (Section 2.5.2), exploit this

fact by only sampling from one triangle matrix. The other triangle matrix then follows due to symmetry.

58

Additional Graph Types

Preferential Attachment. TFP-BA and MP-BA

support such graphs:

R Chapter 3

In each iteration, their model randomly selects one of three

actions: add an edge with a new node as tail, add an edge with a new node as head, or

connect two existing nodes. When selecting a random edge source, node v is chosen

with probability linear in deg
out

(v). Analogously, edge heads are selected based on

the nodes’ in-degrees. Most of the PA Preferential A�achment:

R Section 2.4.2

algorithms for the undirected case carry over

by treating edge heads and tails separately. The main observation is that node u with

in-degree din

u appears exactly din

u times as an edge head, i.e., at odd position in the edge

array E (and analogously for out-degrees). Hence, random edge tails are copied from

uniformly selected even indices, and edge heads from uniformly selected odd positions.

Boguñá et al. [55] propose a directed random graph model in�uenced by RHG. It

captures causality relations on cosmological scales, i.e., where the speed-of-light limits

what is observable. Nodes have a random position in space and time, and a directed

edge (u, v) is added if u can be observed by v.

The notion of a degree sequence D = [di]ni=1 can also be extended to digraphs by

replacing each degree by a 2-tuple Ddirected = [(din

i , d
out

i)]ni=1. Then, the Con�guration
Model uses two independent urns — one for edge heads, one for edge tails. Similarly,

the FDSM model is available for digraphs. It is the building block for a directed variant

of the LFR benchmark which otherwise draws and processes the in- and out-degree se-

quences independently. The necessary modi�cations to the deterministic Havel-Hakimi

generator, Edge Switching, and even Curveball are mostly obvious. Here, one notable

exception is that the Markov chains of ES and CB are not irreducible on the ensemble

of simple digraphs because the direction of a directed 3-cycle cannot be reversed [80].

One solution is a linear-time preprocessing step by Berger and Carstens [41].

2.9.2 Weighted Graphs

We modelweighted networks by augmenting a graphG = (V,E) with weightsw : E→R,

and de�ne the strength s(u) of node u as the sum of weights of all edges incident to u.

The semantics of edge weights w are domain speci�c; examples range from energy �ows

in food webs, over capacities in transportation networks, to costs or distances in street

maps. For positive integer weights, w(e) can also be interpreted as the multiplicity of

edge e — this is especially sensible when modeling capacities along edges [259]. Here, a

multiplicity w(e) = 0 encodes the absence of edge e.

The arguably simplest way to obtain a weighted graph is to assign random edge

weights drawn independently and identically distributed to a random graph. This is a

common theme in both theoretical (e.g., shortest path, minimum spanning trees, or �rst

passage percolation) and empirical studies (e.g., LFR variant [208]).

The Weighted Random Graph model (WRG) [145] is a maximum entropy model

proposed as the weighted variant of G(n, p). The distribution WRG(n, p′) is de�ned

over G(n) and assigns each potential edge e the multiplicity w(e) drawn from the

geometric distribution Geom(p′). Since any edge e exists with P[w(e) > 0] = 1− p′,
the WRG model is topologically equivalent to G(n, p) with p = 1−p′. The generators

discussed in Section 2.4.1 thus carry over with little modi�cations.

59

Recent Advances in Scalable Network Generation

In real networks, however, the assumption of an independence between topology

and edge weights does not hold. Serrano and Boguñá, for instance, observe non-trivial

correlations between a node’s degree and strength [300]. The authors then analyze the

Con�guration ModelConfiguration Model:

R Section 2.6.2

where the number of balls for each node follows a powerlaw degree

sequence with small exponent |γ| � 3. They derive the distribution of degrees and

strength in the limit of n→∞, show that both follow di�erent powerlaw distributions,

and demonstrate non-trivial correlations.Stochastic Block Model:

R Section 2.7.1

Instances of this model can be sampled by

counting
15

the multiplicities emitted by a standard CM generator. The Stochastic Block
Model can be extended in the same spirit (e.g., [205]).

Britton et al. [73] propose another weighted CM variant. It features a second family

of distributions assigning each ball a weight in addition to the number of balls for each

node. It then only pairs balls of equal weights; if the number of balls with a given weight

is odd, a random ball is dropped. This model can be e�ciently implemented, by treating

each weight class as an independent urn.

In spatial graphs, a distance function induced by the underlying geometry is a

natural choice for edge weights. For example, one could augment RGGs with edge

weights that give the Euclidean distance of the connected points.

Other, application-speci�c solutions have been studied. Hyun-Joo et al. [192], for

instance, consider a �nance network where each node corresponds to a market player.

The agents are augmented with latent variables indicating their performance. Then

weights are computed based on latent variables of their endpoints.

2.9.3 Connected Graphs

Few of the previously discussed models guarantee that the generated graphs are con-

nected. Preferential attachment models are a note-worthy exception as they stay con-

nected if the provided seed graph is. Additional well known models with e�cient

generatorsrandom regular graphs:

R Section 2.9.4

include Random Delaunay Triangulation and the Watts-Strogatz model [342].

Another source of very sparse and connected graphs are random regular graphs.

There are three general techniques to obtain a connected graph from an existing

model. In the following we consider G(n, p) graphs. They undergo phase transitions

as p is increased [122]. In the extreme of np > (1 + ε) lnn, the graphs are connected

with high probability. In such cases rejection sampling leads to e�cient generators. Here,

one generates graphs G1, G2, . . . and returns the �rst Gi that is connected.

Yet, G(n, p) almost surely yields isolated nodes for np < (1− ε) lnn. This renders

rejection sampling an unsuitable choice in this parameter region. Another approach is

to identify the largest connected component C of a randomly drawn network and to

remove all nodes and edges not contained (or incident with) C . This selection process

can introduce biases and must not preserve properties of the original model. Additionally,

the number n′ of nodes of the resulting graph is a random variable.

In order to be e�cient, n′ should be su�ciently close to the number n of nodes

emitted by the original random graph model. This is the case for models featuring a large

15

Also known as word counting. It can be e�ciently computed in most practical machine models.

60

Additional Graph Types

v1 v1

v2 v2

v3 v3v4 v4

v5 v5

forward

backward

(a) l-switch.

u1 v1 u1 v1

u2 v2 u2 v2

u3 v3 u3 v3

forward

backward

(b) d-switch.

Figure 2.11: The l-switch removes a single loop; d-switch remove a double edge. The remaining

nodes are selected such that no new loop or double edge is created.

giant component.
16

While there exist general characterizations for the presence of a giant

component (e.g., based on a graph’s degree distribution [122]), many random models

have more precise predictions. Threshold RHG, for instance, has a giant component of

size Ω(n1−2α) whp. rendering �ltering for small values of α e�cient. The same is true

for G(n, p) if np is su�ciently close to lnn.

Inversely to �ltering, adding edges can lead to connectivity. A simple oblivious

method is to add a random spanning tree (e.g., [285]). Alternatively, one can selectively

introduce bridges to iteratively merge disjoint connected components.

The edges of a prescribed connected graph can be shu�ed using Edge Switching.

Here, the Markov chain is the normalized, induced subgraph of the original Markov

chain discussed in Section 2.6.3, where the state space is reduced to connected graphs.

Mihail et al. [151] show that this modi�ed version still eventually leads to a uniform

stationary distribution and discuss characterizations of compatible degree sequences.

Viger and Latapy [332] further engineer the ES for connected graphs.

2.9.4 Regular Graphs

A graphG is said to be r-regular for r ∈ N>0 if all nodes have degree exactly r [59, 345].

This implies r < n and that n · r is even. In the following, we denote the set of all

r-regular graphs with n nodes as G(r)(n) and the uniform distribution over it as G(r)(n).

Observe that G(r)(n) ⊂ G(n,m) since all graphs in G(r)(n) contain m = n ·
r/2 edges. However, regular graphs appear relatively infrequently [38] with a ratio

|G(r)(n)|/|G(n,m)| = Θ[exp(1−r2
4)] in the limit of n→∞. As a result, G(r)(n) ex-

hibits substantially di�erent properties compared to G(n,m); for instance, a random

G ∈ G(r)(n) for r ≥ 3 is almost surely r-connected17
[59]. In contrast, a uniform

sample G ∈ G(n,m) is 1-connected whp. only for an average degree of Ω(lnn) (cf.

Section 2.9.3). This renders G(r)(n) of particular interest to obtain random connected

graphs of small constant degree r. Additionally, almost all G(r)(n) with r ≥ 3 are

Hamiltonian [284].

To sample from G(r)(n) all techniques discussed for the Fixed-Degree-Sequence-
Model (see Section 2.6) carry over since G(r)(n) can be fully characterized by the degree

sequence D = [r]ni=1. Most prominently, rejection sampling over the Con�guration

16

For constant c > 0, a connect component C ⊆ V in G = (V,E) is a giant component if c|C| > |V |.
17

A graph is r-connected if it remains connected after the removal of any r−1 nodes.

61

Recent Advances in Scalable Network Generation

Model (see Section 2.6.2) is e�cient for small constant values of r.

McKay and Wormald [236] propose Deg, a more versatile scheme for r = O
(
n1/3

)
.

Rather than rejecting all non-simple graphs emitted by CM , the generator also accepts

some multi-graphs. The authors show that this selection yields a constant acceptance

probability. Then, Deg iteratively removes loops and double edges using the two

switching types illustrated in Figure 2.11 – in each iteration one switch is selected

uniformly at random to remove exactly one defect. Since these switches cause a bias,

the emitted graphs are not uniformly distributed on G(r)(n) anymore. To counteract

this bias, each switch may be rejected with small probability.
18

The generator Deg was improved twice culminating in Inc-Reg. In a �rst step,

Gao et al. [143] introduce additional switches which do not decrease the number of

defects but allow for tighter bounds on the rejection probability. Inc-Reg [24] addi-

tionally allows triple edges in the multi-graph and adds new switches to remove them.

The authors further accelerate the switching process by simplifying the way nodes

participating in a switch are sampled. As a result, an illegal switch (e.g., one introduc-

ing multi-edges) can be selected. In this case the computation is restarted, e�ectively

splitting the rejection step of the Deg into two simpler steps. Inc-Reg has an expected

runtime of O
(
rn+ r4

)
for r = o(

√
n) which is optimal for r = O

(
n1/3

)
.

2.9.5 Threshold Graphs

Threshold graphs were introduced by Chvátal and Hammer [94]. Mahadev and Peled [227]

discuss numerous characterizations and applications of threshold graphs. Just like their

superclass of split graphs, they can be de�ned in terms of their degree sequence. Al-

ternatively, they can be obtained by iteratively adding nodes that are either connected

to all previously added nodes (dominating nodes) or none of them (isolated nodes). By

randomizing the decision what kind of node to add, we immediately obtain a random

graph generation algorithm that is linear in the size of the generated graph. Generat-

ing n nodes such that dominating and isolated nodes are chosen with equal probability

yields a uniform distribution on the set of unlabeled threshold graphs of n nodes [107].

Due to the simplicity of this algorithm, it can be transferred to a distributed setting

without communication. For every node, we consistently �ip a coin to determine if it is

a dominating or isolated node. If it is dominating, we emit edges for all node ids that are

smaller than u. To also generate edges to nodes with larger node ids, we need to repeat

the decision for all nodes v with larger node id and emit an edge if v is a dominating

node. As the probability of dominating nodes is 0.5, this does not increase the running

time in expectation.

18

The bias is because, in general, the number of multi-graphs with ` loops (k double edges) does not

match the number of multi-graphs with `−1 loops (k−1 double edges). Thus, there are fewer switches

that decrease the number of loops (or double edges) than the inverse operation [236]. As a countermeasure,

the rejection probability is derived from the ratio of forward- and backward-switches. In fact, it is over-

estimated as the exact computation is too expensive. Since each switch is selected uniformly at random and

independently of the rejection step, the process eventually yield uniform samples from G(r)(n) — even if

restarts occur more frequently than required.

62

So�ware Packages

Table 2.2: List of publicly available implementations sorted by name of the toolkit. Abbrv.: BA: Barabási-Albert , ER: Erdős-

Rényi, ES: Edge Switching, FDSM: Fixed-Degree-Sequence-Model, RDT : Random Delaunay Triangulation, RGG: Random

Geometric Graph, RHG: Random Hyperbolic Graph, SBM: Stochastic Block Model, WS: Wa�s-Strogatz , MMod: Machine

Model, SEQ: Sequential, SHM: Shared-Memory, DM: Distributed Memory, Py: Python

Toolkit Url & Models Language MMod

Implementations of Multiple Models

GraphTool h�ps://graph-tool.skewed.de · ES, RDT , SBM C++ SHM

GTGraph h�p://www.cse.psu.edu/~kxm85/so�ware/GTgraph · ER, R-MAT C SEQ

IGraph h�ps://igraph.org/ · BA, ER, ES, SBM , WS C++, Py, R SEQ

KaGen h�ps://github.com/sebalamm/KaGen · BA, ER, RDT , RGG, RHG C++ SHM, DM

NetworkX h�ps://networkx.github.io/ · BA, Caveman, ER, Holme-Kim, LFR, RGG, SBM , WS Python SEQ

NetworKit

h�ps://networkit.github.io/ · BA, CL, Clustered Random Graphs, ER, FDSM , Pub-

Web, RHG, R-MAT
C++, Py SHM

Snap

h�ps://snap.stanford.edu/snap · BA, CM , Forest Fire, Multiplicative Attribute

Graphs, Node Copy, R-MAT
C++ SHM

Implementations of a Single Model

Darwini h�ps://issues.apache.org/jira/browse/GIRAPH-1043 · Darwini Java DM

FEASTPACK h�ps://www.sandia.gov/~tgkolda/feastpack/ · BTER MATLAB SEQ

GIRGs h�ps://github.com/chistopher/girgs · GIRGs, RHG C++ SHM

Graph500 h�ps://graph500.org/ · R-MAT C DM

HyperGen h�ps://github.com/manpen/hypergen · RHG C++ SM

LFR h�ps://sites.google.com/site/andrealancichine�i/files · C++ SEQ

MUSKETEER

h�ps://github.com/sashagutfraind/musketeer · planar version: h�ps://github.com/

isafro/Planar-MUSKETEER

Python SEQ

R-MAT h�ps://github.com/lorenzhs/rmat · R-MAT C++ SHM

2.10 So�ware Packages

In this section, we aim to give a short overview over publicly available software packages

as well as implementations of single models. In principle, we try to avoid historic

generators that are not widely used anymore. We focus on tools that either can generate

a wide-range of models and for those we report all the models that we covered within

this survey, or software that is specialized on a single model. An overview can be found

in Table 2.2.

2.11 Future Challenges

Generating graphs remains a widely open �eld for future research. It is an interesting

question to what extent the multitude of algorithms that we sketched in this survey can

be improved further or how techniques outlined can be used to derive algorithms for new

or other models not discussed here. We believe that there are plenty of open problems.

63

https://graph-tool.skewed.de
http://www.cse.psu.edu/~kxm85/software/GTgraph
https://igraph.org/
https://github.com/sebalamm/KaGen
https://networkx.github.io/
https://networkit.github.io/
https://snap.stanford.edu/snap
https://issues.apache.org/jira/browse/GIRAPH-1043
https://www.sandia.gov/~tgkolda/feastpack/
https://github.com/chistopher/girgs
https://graph500.org/
https://github.com/manpen/hypergen
https://sites.google.com/site/andrealancichinetti/files
https://github.com/sashagutfraind/musketeer
https://github.com/isafro/Planar-MUSKETEER
https://github.com/isafro/Planar-MUSKETEER
https://github.com/lorenzhs/rmat

Recent Advances in Scalable Network Generation

Parallelism and Hardware Issues

As current parallel machines are able to run billions of threads, scalable graph generation

remains an open problem for many models. This becomes even more pronounced for

supercomputer systems with millions of processors that often are hierarchically orga-

nized (e.g., in islands, racks, nodes, CPU sockets, cores, and threads). These hierarchies

and heterogeneity make the implementations highly complicated. One way to tackle

this problem may be to design more algorithms that are either communication-free or

communication-e�cient. Still even sequential algorithms are often hard to get scalable.

A quite obvious challenge is to make not-yet-scalable graph generators scalable, either

by clever engineering or simplifying the model. For example dK-graphs are an interest-

ing model, but there is little known how di�cult it is to generate them. While scalable

implementations for d = 2 seem possible, d = 3 might be an interesting challenge.

Numerical Stability

Many generators (e.g., based on hash functions) use fewer random bits or a smaller

pseudorandom state than required to allow the creation of every possible instance. While

implications of this issue are well understood for a number of random combinatorial

objects (e.g., in case of random permutations [289, 195]), it is an open question if graph

properties of interest are unbiased in such cases. We expect that using fewer random

bits yields a trade-o� between coverage and e�ciency — however, this needs thorough

investigation from both the theory and practical side. This is particularly consequential

for hypothesis testing, where a generator is to create an unbiased ensemble.

Another possible source of bias are numerical instabilities which typically occur

during �oating point operations. While moderately sized instances can be sampled

with default standard library arithmetic/special functions, it gets challenging for huge

distributed instances. A simple approach to overcome this issue would be to use arbi-

trary precision libraries which is often practically infeasible. Alternatives include to

explicitly manage the errors (e.g., [46]), or to use e�cient and exact sampling methods

as demonstrated by [67] for ER and CL.

Models vs. Applications

There is a gap between research on scalable graph generation algorithms and the

applications in which they are used. Often, the domain speci�c properties a model should

re�ect are highly confounded, poorly formalized, or not even fully understood. In these

cases, the models described here correspond to rather idealized situations in which many

details have been stripped away. While they may be su�ciently close for benchmarking

of algorithms, they are unlikely to be suitable for statistical modeling [152, 312].

An example of more expressive models are ERGMs (Exponential-Family Random
Graph Models) [226] common in social network research. Given, say, graph statistics

s1, . . . , sk and an associated vector θ = (θi)i=1,...,k of parameters, a graph G ∈ G(n) is

assigned probability Pθ(G) de�ned as follows:

64

Future Challenges

Pθ(G) =
1

Z(θ)
exp

(
k∑
i=1

θi · si(G)

)
with Z(θ) =

∑
H∈G(n)

exp

(
k∑
i=1

θi · si(H)

)

Statistics are chosen based on theories regarding micro-level mechanisms that may

explain the formation of a network. They typically range from the number of edges,

to counts of various other kinds of small subgraphs. The Exponential-Family Random
Graph Models with the edge count statistic s1(G) = m and parameter θ1 = ln p

1−p , for

instance, is equivalent to G(n, p).

Because of the potential generality and complexity of distributions, sampling from

models such as Exponential-Family Random Graph Models is usually done using Markov-

Chain-Monte-Carlo algorithms. These are of limited scalability, and can bene�t from

algorithmic contributions towards more e�cient updates of statistics after each step

of the Markov chain. Limited scalability is also an issue for parameter estimation, a

common task in network modeling. Here, new approaches seem to be necessary to

make such models scale to larger graphs (see, e.g., [88, 319]).

Moreover, many application domains suppose inter-dependencies between graph

structures and other attributes of nodes and edges, as well as multiple types of edges

and the evolution of graphs over time. The identi�cation of recurring principles and

algorithmic building blocks may be one of the most important challenges in this area.

Libraries and Portability

It would be highly helpful to have well maintained libraries that are able to work

on di�erent models of computation including GPU, HPC, and Big-Data-Tools such as

MapReduce [101], Spark [350], or Thrill [44]. In principle, given the same random

seeds and parameters of the model, the libraries should be able to guarantee that the

graph generated is the same independent on the underlying platform that is used.

Then, di�erent researchers will be able to perform experiments on the same graphs on

very large machines without the need to transfer and manage huge amounts of data.

Moreover, such libraries could include plug and play algorithms like dropping random

edges, union, dynamization, et cetera. The obvious way to deal with portability would

be (de)serialization of data and writing to disk (which is often a bottleneck). It remains

to be answered what data structures are a good �t in this case, or how to partition the

data in distributed generators.

Acknowledgements

We would like to thank the organizers and the sta� of the Dagstuhl seminar 18241 on

“High-Performance Graph Algorithms” during which the initial idea for this survey was

formed. We are also grateful to Matthieu Latapy for his valuable comments and pointers.

As usual in algorithmics the order of authors is alphabetical with the exception that we

moved Manuel Penschuck to the front since he coordinated this project, and contributed

a more than proportional amount of material.

65

3Generating Massive Scale-Free Networks

under Resource Constraints

joint work with U. Meyer

Barabási-Albert graph

n = 100, |V0| = 20, d = 1
New nodes are added on top.

Random graphs as mathematical models of massive scale-free networks have re-

cently become very popular. While a number of interesting properties of them

have been proven, huge instances of such networks actually need to be generated

for experimental evaluation and to provide artificial datasets. In this paper, we

consider generation methods for random graph models based on linear preferential

a�achment under limited computational resources and investigate our techniques

using the well known Barabási-Albert (BA) graph model. We present the first two

I/O-e�icient BA generators, MP-BA and TFP-BA, for the External Memory Model

and then extend MP-BA to massive parallelism based on but not limited to GPGPU.

Our simple and easily generalizable sequential TFP-BA outperforms a highly tuned

implementation of the sequential linear-time BB-BA algorithm by Batagelj and

Brandes by several orders of magnitude once the graph size exceeds the available

RAM by only 2 %.

An implementation of MP-BA targeting heterogeneous systems with CPUs and

GPUs is 17.6 times faster than BB-BA for instances fi�ing in main memory and

scales well in the EM se�ing. Both schemes support a number of features in more

general preferential a�achment models, e.g., seed graphs exceeding main memory,

vertices with random initial degrees, the uniform sampling of vertices, directed

graphs and edges between two randomly chosen vertices. Compared with previous

studies on computer clusters, MP-BA yields competitive results and already poses a

viable alternative using only a single machine.

This chapter is based on the peer-reviewed conference article [239]:

[239] U. Meyer and M. Penschuck. Generating massive scale-free networks under

resource constraints. In M. T. Goodrich and M. Mitzenmacher, editors, Workshop
on Algorithm Engineering and Experiments ALENEX, pages 39–52. Society for

Industrial and App. Math. SIAM, 2016. doi:10.1137/1.9781611974317.4 .

My contribution

I am the main author of this paper and its implementation.

https://doi.org/10.1137/1.9781611974317.4

Preferential A�achment

3.1 Introduction

Search engines, social networking sites, e-commerce platforms and other businesses

regularly keep their real-world data in the form of graphs. Similarly, the internet or

biological networks can be viewed as graphs. Many of these networks can be mathe-

matically modeled as random graphs to prove certain structural properties.

As a consequence, a multitude of di�erent random graph models have been invented [36].

In order to support the appropriateness of a concrete model experimentally or to supply

realistic test data to study algorithms, one needs to be able to generate large random in-

stances according to the model’s rules. We introduce two non-approximating primitives

to support linear preferential attachment in a parallel setting for graphs that do not �t

into main memory. Due to its simplicity and the availability of previous results, we focus

on the popular Barabási-Albert (BA) graph model which yields scale-free networks, i.e.,

graphs with a powerlaw degree distribution [32]. Batagelj and Brandes gave a simple

linear time BA generator referred to as BB-BA [35].

With data volumes growing much faster than a typical user’s computing infrastruc-

ture, however, the sequential algorithm by Bategelj and Brandes becomes challenging to

apply. While it might be tempting to use some commercial cloud service with huge main

memory, logistic issues will often force users or companies to rather keep their data

locally and either stick to their existing hardware or seek for a moderate cost-e�ective

upgrade. As a consequence, signi�cant parallelism is often restricted to the usage of

GPGPU and/or the input data will typically not completely �t in the main memory

(RAM) of the computer system at hand but has to reside on external storage as hard disks.

External-memory (EM) algorithms [242, 335] are especially tuned for this setting. At

�rst glance, BB-BA seems far from being extendible to either GPGPU or the EM setting

since it appears to be inherently sequential and su�ering from highly unstructured

random memory accesses. Nevertheless, we manage to transfer the main idea of BB-BA

to the EM setting by applying a dynamically developing hierarchy of structured data

access patterns. Together with lazy processing, this data hierarchy facilitates the EM

generation of BA graphs in sorting complexity and also reveals su�cient parallelism to

yield interesting speedups with GPGPU.

3.1.1 External Memory Model

We consider the commonly accepted External Memory Model of computation by Aggar-

wal and Vitter [7]. It assumes a two-level memory hierarchy with fast internal memory

with a capacity to storeM : main memory size M data items (e.g. vertices or edges of a graph) and a slow disk

of in�nite size. In an I/O operation, one block of data, which can storeB : block size B consecutive

items, is transferred between disk and internal memory. The measure of performance of

an algorithm is the number of I/Os it performs. The number of I/Os needed to read/write

N contiguous items from/to disk isscan scan(N) = Θ(N/B). The number of I/Os required

to sort N items issort sort(N) = Θ((N/B) · logM/B(N/B)). For all realistic values of N ,

B and M , scan(N) < sort(N)� N . Sorting complexity constitutes a lower bound for

most non-trivial EM tasks.

68

Introduction

3.1.2 Barabási-Albert Preferential A�achment Model

The BA method builds random graphs sequentially: G0(V0, E0) seed graphgiven an (often small) seed graph

G0(V0, E0), new vertices are subsequently connected d : insertion degreeto d ≤ |V0| existing vertices. Since

every vertex initially has a known vertex degree, we call this form of growth structured
vertex insertion as opposed to random initial degrees which we refer to (un)structured insertionas unstructured.

The neighbors are randomly chosen with probabilities proportional to their current

degrees. linear preferential

a�achment

This vertex selection is referred to as linear preferential attachment.
For d > 1, the neighbors of a new vertex can either be chosen independently, i.e.,

each with the same probability distribution, or sequentially such that earlier selections

in�uence the probability distributions of later neighbors. Since in the former case, all

edges are selected at a point in time when the new vertex still has degree zero, self-loops

are only possible in the latter variant. σ : sequential selection

flag

We use the parameter σ = 1 to indicate sequential

selections with possible self-loops, and σ = 0 for independent sampling.

Note that both processes can connect a new vertex to an old one via two or more

parallel edges [61]. Depending on the size of the seed graph, this a�ects only a small

fraction of edges but may still be undesired for certain applications. removal strategies for

parallel edges

In this case, common

strategies are to either directly reject the edge and to keep on trying to sample a new

neighbor until it is unique or to remove all generated parallel edges in a post-processing

phase without any replacement. we allow parallel edges

(σ = 1)

In this paper, we allow the generation of parallel edges.

3.1.3 Review of the BB-BA Algorithm

The linear time sequential algorithm of Batagelj and Brandes iteratively �lls m edges

into an array Q : edge listQ[1 . . . 2m] where an edge occupies the entries of two consecutive array

positions. After the generation of m′ edges for the �rst n′ vertices these are stored in

the �rst 2m′ array positions. If by then a vertex with index 1 ≤ v ≤ n′ has accumulated

degree dv , label v appears dv times in Q[1 . . . 2m′]. Therefore, when generating the i-th

edge for the next vertex with index n′ + 1, the respective neighbor can be determined

as Q[r] where r is a random number uniformly drawn from {1, . . . , 2(m′ + i− 1)}, i.e.,

Q[2(m′+ i)−1] := n′ andQ[2(m′+ i)] := Q[r]. The beauty of this approach lies in its

simplicity and the fact that a standard random number generator for increasing number

ranges su�ces. Its application in an external memory setting with m ≥ 2M , however,

would produce Ω(m) I/Os with high probability due to the unstructured dependent

accesses to Q[·]. As shown in Figure 3.8, this reduces the algorithm’s performance by

orders of magnitude and renders it inadequate for graphs exceeding main memory.

3.1.4 Related Work

Sequential RAM implementations of the BB-BA algorithm (or variants of it) appear in a

number of network analysis frameworks such as NetworkX [163] or NetworKit [316].

In this context, Atwood et al. present a generator for generalized non-linear prefer-

ential attachment based on augmented heaps and treaps [25]. For advanced models

of computation there are various generation algorithms that do not strictly follow

the Barabási-Albert generation rules and hence only yield some approximation. For

69

Preferential A�achment

example, a distributed memory parallel generator of this type was given by Yoo and

Henderson [349] and an approximate generator based on MapReduce/Hadoop has been

proposed in [221]. An e�cient exact distributed memory parallel algorithm has been

given by Alam et al [12]. It applies the more general random graph copy model [203]

and relies on the e�cient parallel resolution of dependency chains which are shown to

be short on average. The authors run experiments on a cluster with up to 768 cores. A

similar way to identify hidden parallelism in sequential algorithms has recently been

used for other graph problems in [307]. Very recently, Sanders et al. proposed an yet

unpublished pleasingly parallel algorithm which requires no communication during its

main loop. [294] It eliminates random accesses to Q[·] by repeatedly applying a suited

hash function until an odd index or a seed edge was found. Due to the structured vertex

insertions in BA such values can be trivially computed (or looked up when the seed area

is hit). For unstructured vertex insertions and seed graphs exceeding main memory,

the algorithm in its current form requires sorting complexity in the EM model and a

replication of the vertices’ degrees in a distributed scenario. We are not aware of any

BA generator results on external memory or GPGPU.

3.1.5 Our Contributions

We present the �rst two I/O-e�cient BA generators, MP-BA and TFP-BA, for the

External Memory Model of computation. In Section 3.2 we introduce our �exible, easily

implementable, sequential TFP-BA algorithm. We then propose the hierarchical MP-

BA design which decomposes the task into independent subproblems, which can be

processed pleasingly parallel. TFP-BA outperforms a highly tuned implementation

of BB-BA by several orders of magnitude once the graph size exceeds the available

RAM by only 2 %. An implementation of MP-BA targeting heterogeneous systems with

CPUs and GPUs is 17.6 times faster than BB-BA for instances �tting in main memory

and scales well in the EM setting; it poses a viable alternative compared to the results

reported by a previous BA generator using a cluster of computers. In Section 3.6 we

generalize both algorithms to a number of di�erent preferential attachment models.

3.2 The Sequential TFP-BA Algorithm for EM

In a �rst step, we aim to transfer the main idea of BB-BA, namely the simple random

number generation for increasing ranges, to the external memory setting.Time Forward Processing:

R Section 4.2.3

Our sequential

TFP-BA algorithm is based on the observation that the generation of queries to random

indices can be completely decoupled from the materialization of the actual edges. This

allows us to track the dependencies between edges and to move all queries to Q[x] to

the unique point in time at whichQ[x] is written.BA’s dependency graph Observe that in BA an edge iwill only

request information from some earlier edge j < i. The dependency graph is therefore

acyclic and we are free answer queries long before the result is required.

link token In order to perform this lazy evaluation, TFP-BA captures all information (implicitly)

used by BB-BA when accessing Q[·] by using two types of tokens, link (create edge)

andquery token qery. Since we consider tokens to be edge-based, we in fact use two di�erent

70

The Sequential TFP-BA Algorithm for EM

Algorithm 1: TFP-BA: base version without optimizations of Theorem 3.1.

Input : G0(V0, E0) seed graph, n ≥ |V0| vertices in �nal graph, d ≤ |V0| edges per

new vertex, σ ∈ {0, 1}, σ = 1 for self-loops

Output :Edge list E of BA-PA random graph

1 initialize (EM) prio. queue PQ ordering tokens lexicographically with link < qery-x

2 m← 1

3 foreach {u, v} ∈ E0 do // Phase 1

4 PQ.Enqeue(〈m, link, u, v〉) // Copy seed graph

5 m← m + 1

6 for u← |V0|+ 1 . . . n do // Phase 2

7 m’← m // Generate query tokens

8 for i← 1 . . .d do
9 r← rand_uniform({1, . . . ,m’ + σ(i− 1)})

10 x← rand_uniform({1, 2})
11 PQ.Enqeue(〈r, query-x,m, u〉)
12 m← m + 1

13 while not PQ.Empty do // Phase 3

14 t← PQ.RemoveTop()

15 if t == 〈m, link, u, v〉 then
16 last_edge← (u, v) // Output edge

17 E← E ∪
{
{u, v}

}
18 else if t == 〈i, query-x, j, u〉 then
19 PQ.Enqeue(〈j, link, u, last_edge[x]〉) // Lookup last edge and reinsert

query-x tokenqery-x token with x ∈ {1, 2} where x = 1 requests the �rst vertex incident to an

edge and x = 2 the second one respectively. Most importantly, each token stores an

edge index i which encodes the moment when the data related to the token becomes

available in Q[·], i.e., the creation of an edge has the same index i as all queries to it.

Following the Time Forward Processing technique [91, 230], we employ an o�-the-

shelf EM priority queue PQ which enforces a lexicographic order over the tokens’

indices and types with link < qery-x. PQ places all queries to an edge directly after

its creation and the algorithm only needs to retain a copy of the last edge created in

order to answer such requests. A query token additionally contains all information

required to produce the edge it is intended for. Thus, once the query is processed, a link

token with an appropriate edge index is used to transport this data “forward in time” to

the point where the edge is supposed to be materialized. This delay is necessary in case

queries to the new edge exist – which is not revealed until TFP-BA reached this point.

As shown in Algorithm 1, TFP-BA consists of three phases:

1. LetG0(V0, E0) be the seed graph with arbitrarily ordered edgesE0 = {e1, . . . , em0}.
For every edge ei = {u, v} ∈ E0 enqueue the token 〈i, link, u, v〉 into PQ.

2. For each new vertex u and each of its d edges enqueue 〈i,qery-x, j, u〉 into PQ

71

Preferential A�achment

Figure 3.1: Application of

TFP-BA. Similar steps are

illustrated as one.

seed graph preferential a�achment

a bc d e

12 3

4

Sorted token sequence after second phase

〈1, link, a, b〉︸ ︷︷ ︸
seed graph

≤ 〈1, qry2, 3, d〉︸ ︷︷ ︸
random query

≤ 〈2, link, a, c〉︸ ︷︷ ︸
seed graph

≤ 〈3, qry1, 4, e〉︸ ︷︷ ︸
random query

1. Create {a, b} as edge 1 | Last edge: (a, b)

〈1, link, a, b〉 〈1, qry2, 3, d〉 ≤ 〈2, link, a, c〉 ≤ 〈3, qry1, 4, e〉
2. Insert token with last edge’s 2nd vertex | Last edge: (a, b)

〈1, qry2, 3, d〉 〈2, link, a, c〉 ≤ 〈3, link,b, d〉 ≤ 〈3, qry1, 4, e〉
3. Create {a, c}, {b, d} as edges 2 and 3 | Last edge: (b, d)

〈2, link, a, c〉 〈3, link, b, d〉 ≤ 〈3, qry1, 4, e〉
4. Insert token with last edge’s 1st vertex | Last edge: (b, d)

〈3, qry1, 4, e〉 〈4, link,b, e〉
5. Create {b, e} as edge 4 | Last edge: (b, e)

〈4, link, b, e〉 Empty PQ: Done

where the running edge index equals j = |PQ|+ 1, x ∈ {1, 2} is a random �ag,

and i a random integer drawn uniformly at random from an increasing range as

described for BB-BA.

3. While PQ is not empty repeat: remove PQ’s smallest token and execute one of

the following actions based on its type:

• 〈i, link, u, v〉: output {u, v} as the i-th edge and retain a copy

last_edge← (u, v) for later queries.

• 〈i,qery-x, j, v〉: query the x-th vertex incident to the i-th edge, i.e., let

u← last_edge[x]. Enqueue the new token 〈j, link, u, v〉 into PQ.

Theorem 3.1. Let m0 be the number of edges in the seed graph and m the number of

generated random edges. Then TFP-BA requiresO(scan(m0) + sort(m)) I/Os, and has

a time complexity of O(m0 +m logm). J

Proof. The algorithm is dominated by priority queue operations; all other instructions

are asymptotically negligible. Every edge is the result of a constant number of token

operations: for seed graph edges one token is inserted/removed. For random edges

two tokens are used. Thus, using a suited EM priority queue [291], TFP-BA requires

O(sort(m̃)) I/Os and time O(m̃ log(m̃)) where m̃ = m0 +m.

Since there are no dependencies between seed edges, they can be permuted arbi-

trarily. Hence, the tokens from the �rst phase do not have to be sorted using PQ. We

rather skip the �rst phase and generate the link tokens on the �y in the third phase by

scanning through the input and merging it with PQ. �

72

The Parallel MP-BA Algorithm for EM

4

3

a b
1 2 3 4 5 · · ·
a a a b · · ·

5

3

a b
1 2 3 4 5 · · ·
a a a b b · · ·

Figure 3.2: �ery token 〈4,d〉 traverses the decision tree on the le� and eventually yields edge

{b, d}. The “sorted edge list” is illustrated below the trees. The figure on the right shows the

updated weights taking the new edge into account.

3.3 The Parallel MP-BA Algorithm for EM

While TFP-BA works well in the EM setting, it seems that its main loop can hardly be

parallelized due to the unstructured reinsertions and token dependencies. Additionally,

it relies on a generic sorting algorithm which does not exploit problem-speci�c features.

Thus, we need to reorganize the algorithm. MP-BA interprets edge list

Q as urn with two labeled

balls per edge

As illustrated in Figure 3.2, our MP-

BA algorithm maintains a “sorted edge list” in which all occurrences of a vertex are

grouped together into a single segment. While the original adjacency information is

lost in this setting, the permutation does not in�uence the probability to choose a given

vertex when uniformly sampling an index. Each group of identical vertices can be

collapsed into a single vertex annotated with its degrees, i.e., its random mass that

needs to be accounted for. This alone reduces the memory consumption from Θ(m) to

Θ(n) but inhibits constant time sampling. To e�ciently query and update the structure,

MP-BA recursively splits the sequence into independent subranges. At the lowest level

of this hierarchy, a subrange consists of a single vertex index augmented by its weight.

3.3.1 The Decision Tree

T : search tree storing the

urn. The i-th leaf keeps

degree of vi.

In the following, we �rst describe a sequential internal memory solution in order to

present the high-level ideas and then re�ne it to yield the desired I/O-performance and

parallelism. Let n = 2D for some natural number D ≥ 1. We maintain a full binary tree

T where each inner tree node t keeps a counter Wt for the weight of its left subtree. Wt : weight of le� subtree

rooted in t
The

k-th leaf of T (ordered from left to right) corresponds to the vertex
1

with index k and

has a weight representing the degree degG(k) of vertex k in G. This value does not

have to be stored since it is already encoded in the decision tree T .

Now consider the situation where vertices 1, . . . , n′ with their m′ incident edges

have been created and we turn to the new vertex with index n′+1. For generating its i-th

incident edge let r be a random number uniformly drawn from {1, . . . , 2(m′+σ(i−1))}
where σ = 1 if self-loops are to be produced and σ = 0 otherwise. As illustrated in

Figure 3.2 and shown in Algorithm 2, we can identify the corresponding target vertex

by traversing T starting from the root in a binary search like fashion: compare r with

1

We use the term node only for the decision tree while vertex always refers to the generated graph.

73

Preferential A�achment

≈
22

l
a
y

e
r
s

≈
2
2

l
a
y

e
r
s

n
.

1
01

3

.

· · · Bu�ers · · ·

. . .

. . .

Figure 3.3: Tree structure with bu�ers. For realistic values of n, M and B, a single bu�er layer

su�ices for graphs with n . 1013
nodes.

Wt for the current inner tree node t.anticipate the resulting

edge and update the tree’s

weights accordingly

already during search

If r ≤Wt then proceed to the left tree child and

increase Wt by one. If r >Wt reduce r to r−Wt and descend into the right subtree.

Eventually, the search will end in some leaf of T with index k and the edge {n′ + 1, k}
is appended to the generator’s output. Subsequently, the weight of the (n′ + 1)-th leaf

has to be incremented by increasing Wt of all its parents where (n′ + 1) is in the left

subtree. For σ = 0, we directly initialize T such that the weights of all leaves are d.

3.3.2 I/O-E�iciency

Theorem 3.2. Let n0 be the number of vertices in the seed graph, n′ the number of

random vertices, and m′ the number of random edges generated. Then MP-BA requires

O(sort(n0 +m′)) I/Os. J

Proof. Assuming that we are provided the degrees of all vertices in the seed graph

O(n0) updates of the tree structure su�ce before the beginning of the random phase

which will then cause O(m′) operations. Let n = n0 + n′ be the maximal number of

items stored in the tree and m = n0 +m′ the asymptotic number of operations issued.

So far, our new approach does not improve upon the I/O-performance of BB-BA, it

might even take up to Ω(m log(n)) I/Os.

However, as illustrated in Figure 3.3, two standard modi�cations will improve it to

O(sort(m)) I/Os. In order to be able to delay the tree traversal, we again represent a

query using a bu�erable token 〈query, r, u〉. The �rst modi�cation introduces a FIFO

bu�er of size B before each inner tree node and only starts processing queries to that

node once its bu�er is full. In this case, O(1) I/Os su�ce to �ush its whole content to

the bu�ers of its two children, which might trigger recursive �ushing operations there.

This modi�cation alone reduces the I/O complexity to O(m/B · log n).

The second standard trick is to increase the outdegree of the inner tree-nodes from

two to c ·M/B and the bu�er sizes from B to c ·M for some appropriately chosen

constant 0 < c < 1. Each inner node now keeps a little tree of depth O(log(M/B))

with Θ(M/B) counters and with a bu�er for Θ(B) tokens at each of its leaves. In that

way, the height of T is greatly reduced without harming the e�ciency of the block

transfers, yielding the desired Θ((m/B) logM/B(n/B)) = O(sort(m)) I/O-bound. �

74

The Parallel MP-BA Algorithm for EM

Using Bu�er Trees, the same asymptotic bounds can be achieved [23, 22] – however

with higher constants. Since only nodes with positive degree can be sampled, singleton

vertices in the seed graph can be removed. The number of edges therefore constitutes

an upper bound of the number of vertices. We will drop the distinction between

initialization and generation phase for the remainder of the chapter and carry out

further analyses only in terms of n and m.

3.3.3 Balancing

For our �rst parallel approach (see Section 3.3.4.1), we require that the probability mass

in any two subtrees rooted in the same layer is similar. So far, this cannot be satis�ed

since the random numbers’ domain is increased with each new edge.

Hence initially only the �rst n0 leaves, stored in the left-most subtrees, are reachable

at all. The e�ect is further ampli�ed due to the skewed degree distribution of the

resulting graph in which vertices with lower indices are expected to have higher degrees.

This issue is omnipresent in the parallel processing of graphs with powerlaw degree

distributions and is commonly approached using techniques such as round robin- or

randomized PU assignments [12, 349].

6

4

v0, 4 v1, 2

10

tree

weight

(a) Initial state

8

4

2v0, 4

v1, 2 v3, 2

(b) A�er inserting v3 twice

Figure 3.4: Balancing both

subtrees by inserting into

lighter one.

We present a dynamic scheme more natural to our hierarchical design. It intro-

duces an additional token class, namely vertex tokens, that carry the index and a suit-

able initial degree of a vertex. These tokens are used to grow a balanced decision

tree rather than starting with a full binary tree with n leaves: given the seed graph

G0 = (V0 = {v1, . . . , vn0}, E0), initialize the decision tree as a single leaf corre-

sponding to vertex v1 with weight degG0
(v1). Then for i = 2, . . . , n0 generate tokens

〈Vertex, i,degG0
(vi)〉. During the preferential attachment phase, use d tokens of form

〈qery, j, {Random Number}〉 followed by the vertex token 〈Vertex, j, d〉 for the inser-

tion and connection of vertex j. In case σ = 1, self-loops {i, i} can be immediately

output by the generator without a dedicated request and only have to be accounted for

by increasing the vertex token’s weight. In this mode of operation, a new edge may

depend on an earlier edge of the same vertex. This rare event can be directly resolved

in the token generator by retaining the O(d) random values of all previously generated

edges incident to the new vertex.

As illustrated in Figure 3.4, a vertex token traverses the decision tree starting from

the root, always selecting a subtree that is not heavier than its direct sibling. If in tree

node t the left subtree is chosen, Wt is increased by the token’s weight. When leaf u is

eventually reached, u is pushed down one layer such that u and a newly generated leaf

corresponding to the vertex token become children of a new common inner node.

The balancing’s worst-case performance during the processing of the seed graph

depends on the nearly arbitrary degree distribution of the input. Our task reduces to the

greedy approximation of min-MakespanProcessScheduling for 2 identical machines

which is known to have an approximation factor of 7/6 if the tokens arrive sorted by

degree in a descending order [155]. Let Wl and Wr be the respective weights of the two

subtrees directly under T ’s root and δmax the maximal degree in the seed graph.

75

Preferential A�achment

Then, the worst-case bound is given by |Wl − Wr| ≤ 7/6 · δmax. Experiments

with powerlaw seed graphs suggest that observable deviations are much smaller with

|Wl −Wr| < cd̃ where d̃ is the seed graph’s average degree and typically c < 2.

During the random attachment phase, the more structured sequence of d edges

followed by a vertex of weight d further improves the situation, rapidly reaching the

condition |Wl −Wr| ≤ d which henceforth holds as an invariant. As the tree’s weight

grows, the constant di�erence becomes less signi�cant and the probability weights in

both subtrees can be considered identical. Therefore, the decision whether any token

enters the left subtree is su�ciently well modeled as an independent Bernoulli event

with p = 1/2. Consequently, the situation is similar at lower levels (see Section 3.5.1).

This also implies that the height of the tree remains O(log n); simulations further yield

that only an insigni�cant amount of leaves can be found in levels deeper than dlog ne+1.

3.3.4 Parallelism

We now extend MP-BA with two non-exclusive parallelization schemes.

3.3.4.1 Tree Decomposition

The algorithm’s hierarchical design suggests a tree decomposition as shown in Figure 3.5:

given a PRAM
2

with p ≤ D = Θ(log(n)) processing units (PUs), evenly distribute D/p

subsequent layers of T per PU and run the algorithm in a pipelined way. In this setup,

each PU executes Θ(m log(n)/p) operations, yielding a work-e�cient parallelization

of MP-BA with time complexity Θ(m log(n)/p+ p). This simple mapping is well suited

for root-near layers and used for this purpose in our GPU implementation.

Unfortunately it is not I/O-e�cient, as with high probability the last PU has to access

Ω(n) di�erent memory locations in an unstructured fashion. To resolve this issue, we

assign each PU a subtree (rather than a layer as before) enabling I/O-e�cient access

patterns as discussed in Section 3.3.2. Due to balancing, a node t in depth j receives

approximately 2−j of all tokens. In order to perform the same work as the root’s PU P1,

the PU assigned to the subtree rooted in t has to cover 2j times more layers than P1.

PU 1

PU 2

PU 3

PU 4

(a) Layer decomposition

PU 1

PU

2

PU

3

PUs 4 . . . 11

S
e
g
.

1
S
e
g
.

2
S
e
g
.

3

(b) I/O-e�icient decomp.

Figure 3.5: Tree layouts

We decompose T into Θ(log n) smaller subtrees by applying level-wise cuts to

obtain segments of heights 1 = d1 < d2 < . . . < D where di+1 = di2
di

. Hence,

segment i contains a forest with di subtrees of similar size which can be processed

pleasingly parallel and in the same I/O-e�cient setting as described in Section 3.3.2. The

expected workload of all PUs is identical with high probability, yielding the same work

and runtime bounds as before. However, any form of parallelism for MP-BA exclusively

based on tree decomposition is limited to a speedup of O(log n) since Ω(m) operations

need to be performed for the root node.

76

The Parallel MP-BA Algorithm for EM

0
20
40
60
80

100
120
140
160
180
200

0 10 20 30 40 50 60 70 80 90

Q
u

e
r
y

V
a
l
u

e

Query Index

Rand. Interval

Uncertainty Range

Undecided Queries

Threshold (�nal)

0
20
40
60
80

100
120
140
160
180
200

0 10 20 30 40 50 60 70 80 90

Q
u

e
r
y

V
a
l
u

e

Query Index

Rand. Interval

Uncertainty Range

Undecided Queries

Decided Queries

Threshold (�nal)

Figure 3.6: Token-wise parallel MP-BA on p = 100 queries before (le�) and a�er (right) the first iteration. A�er the second

iteration only points inside the small shaded uncertainty range will remain. This example is pathological since p = Wt,1.

3.3.4.2 Token-wise Parallelism

parallel processing of

layers near the root

To obtain sub-linear time complexity, we present a token-wise parallel approach in

which p processors are assigned to the same tree node t but work on p subsequent

queries. ri : values to label siLet r1, . . . , rp be the queries’ random values and Wt,i the threshold for the i-th

token. PU i then has to compute si ∈ {0, 1} where si = 1 i� request i is to be sent

to the left subtree, i.e., ri < Wt,i. Wt,i: weight of t’s le�

subtree at arrival of ri

Observe that initially only Wt,1 is known while the

remaining thresholdsWt,i = Wt,1+
∑i−1

j=1 sj depend on previous decisions. However, as

illustrated in Figure 3.6, their values are bound by the extreme cases in which either none

or all previous tokens are assigned to the left subtree, i.e., Wt,1 ≤Wt,i ≤Wt,1 + i− 1.

If ri lies outside of this uncertainty interval, si can be computed without knowledge

of s1, . . . , si−1. This observation yields the iterative Algorithm 4 in which we �x all

certain decisions in parallel and henceforth reduce the uncertainty interval for the next

round. This step is repeated until all decisions are �xed. I : iterations requiredWe denote the number of

such iterations as I . The notion of uncertainty is formalized using an additional �ag

ui ∈ {0, 1} per query where ui = 1 i� i-th request is

not decided yet

ui = 1 i� si is not yet computed. We de�ne that initially

ui = 1 for all i and that ui = 1 implies si = 0 as its interim value. Then, the previously

stated bounds can be tightened to

Wt,1 +
i−1∑
j=1

sj ≤Wt,i ≤Wt,1 +
i−1∑
j=1

sj +
i−1∑
j=1

uj .

These thresholds can be evaluated in parallel for all i in time O(log p) using work-

optimal pre�x sums over si and ui respectively [187]. Since the remaining computations

per iteration are negligible, the algorithm’s total time complexity is given by O(I log p)

where I is the number of iterations until all ui = 0. In Lemma 3.3 and Corollary 3.4

we now show that I = O(1) with high probability if p ≤
√
W where W = Wt,1

is the initial threshold. Observe that this constraint su�ces for all practical settings.

Nevertheless, more PUs are feasible but reduce the work-e�ciency.

2

PRAM is an extension of the unit-cost Random-Access Machine model to parallel computing: p RAM-like

processing units execute a program in lockstep and access an unbounded shared memory [187].

77

Preferential A�achment

ToWi : total tree weight

a�er deciding ri

process m tokens, the input is split into steadily growing segments of size

√
Wi

where Wi is the weight of the decision tree after processing the i-th segment with W0

given by the seed graph. Hence, O(
√
m) phases su�ce and the expected total runtime

of the work-e�cient algorithm is given by O(
√
m log

√
m).

Lemma 3.3. Let W = Wt,1 be the initial weight of the decision tree, p the number of

processing units and ui ∈ {0, 1} ∀i ∈ {1, . . . , p} the uncertainty �ags where ui = 1 i�

the destination of the i-th token is not yet computed. Then, the total uncertainty after

the �rst iteration of the token-wise parallel MP-BA is with high probability governed by

p∑
i=1

ui = p− W

2
ln

(
1 +

2p

W

)
+O(1) . J

Proof. Observe that with each edge the uncertainty range as well as the interval from

which random numbers are drawn is increased by 2. Thus, the probability that token i

initially falls into the uncertainty range is given by P[ui = 1] = 2(i− 1)/(W + 2i− 2).

It follows

E

[
p∑
i=1

ui

]
=

p∑
i=1

P[ui = 1] = p− W

2

[
HW

2
+p −HW

2

]
,

where Hk =
∑k

i=1 1/i is the k-th harmonic number. We substitute Hk = γ + ln(k) +

O(1/k) where γ is the Euler-Mascheroni constant which cancels out. Simpli�cation

then yields the claim. The result holds with high probability since the uncertainty of

each token is an independent Bernoulli event. Therefore, the Cherno� inequality applies

guaranteeing an exponentially decreasing bound on the tail distribution of

∑p
i=1 ui. �

Corollary 3.4. LetW = Wt,1 be the initial weight of the decision tree. In case p ≤
√
W

then I = O(1) with high probability where I is the number of iterations of the token-

wise MP-BA until all tokens are �xed. J

Proof. We use Lemma 3.3 and show that

lim
W→∞,p=

√
W

(
p− W

2
ln

(
1 +

2p

W

))
= O(1) .

We apply the Taylor series ln(1 + x) =
∑∞

i=1(−1)i+1 xi

i and subsequently use the

bound on the number of PUs:

p− W

2
ln

(
1 +

2p

W

)
= p− W

2

[
2p

W
− 2p2

W 2
+O

(
p3

W 3

)]
=
p2

W
+O

(
p3

W 2

)
p≤
√
W

= O(1)

Hence, the expected uncertainty after the �rst phase of the algorithm is of constant

size. Since in every iteration of the algorithm at least the �rst yet undecided token can

be �xed, the uncertainty is reduced in every round. Therefore, only a constant number

of iterations is expected. The result holds with high probability analogously to the proof

of Lemma 3.3. �

78

Implementation of MP-BA

3.4 Implementation of MP-BA

As proof of concept we implemented a parallelized version of MP-BA targeting a het-

erogeneous system that contains a host CPU and a GPU co-processor.

3.4.1 Token-wise Parallel MP-BA for GPGPU

In order to sketch the high-level design of our implementation we �rst introduce relevant

aspects of the CUDA programming model [265]: a program interacts with the GPU using

memory transfers and kernel invocations. In this context, a kernel is an ordinary C-like

function that is executed massively parallel on the GPU. Its instances are grouped into

isolated concurrent thread arrays (CTA) which cannot be synchronized with each other

during the kernel’s execution. A CTA contains a limited number of warps (32 threads

executed in lock-step) which can be synchronized and may e�ciently communicate

using a dedicated shared memory. The co-processor’s full potential is only available

if several CTAs are executed in parallel. To schedule kernel invocations and memory

transfers ahead of time, several command queues (streams) are available.

While tasks within a stream are ordered, multiple streams are executed indepen-

dently and potentially in parallel. Inter-stream synchronization is possible using dedi-

cated commands which trigger an event or wait for one.

Our implementation o�oads the random token generator as well as the DGPU = 9

root-most layers of the decision tree to the co-processor. Hence, only a small portion of

the decision tree has to be stored in the GPU’s main memory. The tasks are distributed

over four kernels, namely the token generator, the decision kernel and two auxiliary

kernels, distribution and partition, preparing the decision kernel’s output for the next

stage. The last three kernels build on top of each other and are executed sequentially.

Each invocation operates on all nodes of a given tree layer similar to the situation

illustrated in Figure 3.5a. Thus, DGPU phases are required to process a GPU-based tree.

The sequence of Θ(m) requests is split into manageable batches of about 2 million

tokens stored in a self-contained structure that also keeps meta information such as the

tree’s weight and decision thresholds. These bu�ers are passed between kernels that

recursively partition the token sequence until eventually 2DGPU+1
segments emerge —

one for each leaf under the GPU’s tree. During this process, the memory consumption

of the bu�er stays the same (except for a few insigni�cant boundary markers). Initially,

the token generator �lls the bu�er with a sequence of request- and vertex tokens as

described in Section 3.3.3. It uses the CURAND pseudorandom generator [266].

MP-BA is distributed as follows: the decision kernel contains the actual algorithm

executed in a single CTA with 640 threads per decision tree node. It reads 2560 tokens

from the input bu�er at a time and indicates their destination subtrees in a bit vector. The

restriction to a single CTA allows us to execute MP-BA with only one kernel invocation;

if multiple (by de�nition unsynchronized) CTAs were used, the pre�x sum alone would

need several kernels. Even worse, this setting is only sensible if the whole bu�er is

processed in one MP-BA-step. Consequently, the ratio between the number of tokens

and the tree’s weight increases which rises the expected number of iterations I and

79

Preferential A�achment

10−8

10−7

10−6

10−5

10−4

10−3

10−2

10−1

−20 −15 −10 −5 0 5 10 15 20

R
e
l
a
t
i
v
e

F
r
e
q

u
e
n

c
y

Weight imbalance Wr −Wl

Layer 1

Layer 4

Layer 7

Layer 10

10−1

100

101

102

103

104

105

106

107

108

√
W103 104 105 106 107

p
≤
√
W

T
o

k
e
n

s
u

n
c
e
r
t
a
i
n

a
f
t
e
r

1
st

I
t
e
r
.,

∑ i
u
i

Number of tokens processed in parallel, p

p− W
2 log

(
W+2p
W

)
p2

W

Measured

Figure 3.7: Le� (a): Weight imbalance in layers (root is in layer 1) n = 106
, m = 107

, S = 10. Right (b): Number of

uncertain tokens a�er 1
st
MP-BA iteration: W = 107

, S = 60.

degrades the algorithm’s e�ciency.

The decision kernel additionally produces auxiliary values allowing the two fol-

lowing kernels to rearrange the tokens according to their subtree in linear time and

using multiple CTAs for I/O intensive tasks. The token-wise parallel MP-BA operates

on inner nodes of the decision tree. While it can be generalized to leaves, this modi�-

cation would introduce corner cases which have to be solved sequentially. Thus, our

implementation �rst computes a complete binary tree, that has at least depth DGPU, on

CPU and translates it into GPU structures before engaging the co-processor.

The GPU’s occupancy is further increased based on the layer-wise pipelining de-

scribed in Section 3.3.4.1 using streams: each layer corresponds to two streams (one for

the decision kernel, one for the remaining kernels). The pipeline itself synchronizes

using event-based control points and tolerates back-pressure. Two additional streams

are used for the token generator and asynchronous data transfers to the host’s main

memory. All CPU interactions are executed in bunches and (if possible) ahead of time

to minimize management overhead and pipeline stalls.

3.4.2 Tree Decomposition on CPU

The CPU executes w worker threads each responsible for approximately 2DGPU+1/w

independent subtrees under the GPU’s decision tree. Any such subtree corresponds to

the I/O-e�cient sequential case described in Section 3.3.2: all requests �rst traverse an

in-memory decision tree with DCPU . 23 layers and (if necessary) are then bu�ered

in an EM-queue. In a second phase, the process is recursively applied for each queue.

In this way, we construct a tree with a virtual depth of DGPU + 2DCPU ≈ 52 which

su�ces for any conceivable practical setting. We simulate the large number of queues

using one EM sorter per CPU thread which receives tokens from all leaves. Before

transitioning to the aforementioned second phase, the tokens are sorted by their queue

number and running index. In order to improve data locality and to make proper use

of the CPU’s caches, each in-memory decision tree itself is split into three segments

of depths DCPU = DCPU1 +DCPU2 +DCPU3 which are connected by small in-memory

queues. While this design roughly doubles the performance compared to the queue-less

80

Experimental Results

100

101

102

103

104

107 108 109 1010 1011

Speedup reference

m = 10n

T
o

t
a
l

r
u

n
t
i
m

e
[
s
]

Number of edges added

TFP-BA

BB-BA

MP-BA
100

101

102

103

104

107 108 109 1010 1011

Speedup reference

m = 30n

T
o

t
a
l

r
u

n
t
i
m

e
[
s
]

Number of edges added

TFP-BA

BB-BA

MP-BA

Figure 3.8: Le� (a): Runtimes for m = 10n, S ≥ 4. Speedup is relative to BB-BA and based on the least-squares fits plo�ed.

At mref = 3.1 · 109
, the performance of our algorithms is underestimated yielding speedups tTFP/tBA = (4.1± 0.2)−1

and

tMP/tBA = 14.9± 0.1. Right (b): Results for m = 30n. tTFP/tBA = (3.5± 0.2)−1
and tMP/tBA = 17.6± 0.2.

variant, explicit cache controlling using prefetching and non-temporal stores proved

ine�ective. The implementation internally uses 64 bit integers to manage vertex indices

and tree weights. If possible, lower layers of the tree only store 32 bit threshold values

to further improve data locality.

3.5 Experimental Results

All runtime benchmarks were conducted on the following system: Intel Xeon CPU

E5-2630 v3 (8 cores, 16 threads, 2.40GHz), 64 GB 2133 MHz RAM (61.75 GiB available),

GeForce GTX 980 (4 GB), 8× Samsung 850 PRO SSD (1 TB), Linux 4.0.0, GCC 4.9.2,

CUDA 7.0.28, CUB 1.4.1, STXXL [102] master branch (04/15/2015).

The number of repetitions per data point (with di�erent random seeds) is denoted

withS. Errorbars always correspond to the unbiased estimation of the standard deviation.

All reported problem sizes correspond to the number of vertices/edges added during the

preferential attachment and do not include the seed graph, a small ring with n0 = m0 =

2048. If not stated di�erently, measurements are conducted with m/n = 30 outgoing

edges per added vertex which resembles the current web graph [238]. For completeness,

Figure 3.8 also presents a runtime sweep for m/n = 10 which can be found in many

real-world networks [14].

3.5.1 Balancing and Iterations in MP-BA

In Section 3.3.3 we introduced a scheme to balance the weight of two subtrees under a

common node and claimed that their absolute weight di�erence during the preferential

attachment phase is bounded by O(d) where d is the number of edges per new vertex.

The statement is tested by simulating the sequential MP-BA for a graph with m = 107
.

During the execution, snapshots of all weights in the 12 root-most layers are taken at

random points during the execution. Figure 3.7 presents a histogram of imbalances

captured for di�erent layers which supports our claim.

During the analysis of the token-wise parallel MP-BA we estimated the number

81

Preferential A�achment

Figure 3.9: Speedup rela-

tive to BB-BA as a func-

tion of m/n. For m/n ≤
6, the number of vertices

exceeds internal memory

and MP-BA uses EM. m =

mref, S = 3.
2

4

6

8

10

12

14

16

18

20

5 10 15 20 25 30 35 40

S
p

e
e
d

u
p

r
e
l
a
t
i
v
e

t
o

B
B

-
B

A
Degree of added vertices m/n

MP-BA

of uncertain tokens after the �rst iteration. Figure 3.7 plots E [
∑p

i=1 ui] as derived in

Lemma 3.3 and its simpli�cation used in Corollary 3.4 for a dedicated initial tree weight

of W = 107
. The approximation is almost exact for the relevant range of p ≤

√
W .

The simulation results included in the �gure match the prediction and indicate that

the constant terms in the estimations are negligible. Based on this estimation, we

argue in Corollary 3.4 that I , the number of iterations of MP-BA until all decisions are

�xed, is constant with high probability if at most p =
√
W tokens are processed. This

statement is tested by simulating the algorithm for di�erent W ∈ [104, 1014]. Here, the

average number of iterations was found to be 1.39(48) with no observable trend. Due to

hardware constraints, we �x p = 2560 in our implementation and estimate the expected

number of iterations in the decision kernel as E[I] � 1.1 during the generation of a

graph with m = 109
.

3.5.2 Runtime and Scalability

We implemented the three discussed algorithms and compare their runtimes for di�erent

problem sizes in Figure 3.8. To achieve comparability with other publications, the writing

of the result graph to storage is disabled [12]. The time to setup data structures (e.g.,

to read the seed graph from storage) and for I/Os during execution are included. The

implementations of BB-BA and TFP-BA rely on STXXL’s fast 64-bit random number

generator. We use an optimized version of BB-BA which we consider nearly optimal.

For large graphs that still �t into main memory (mref = 3.1 · 109
, 49 GB data),

TFP-BA is 3.5(2) times slower than BB-BA, but outperforms the latter by several orders

of magnitude as soon as BB-BA’s edge list exceeds the available main memory by 2 %.

MP-BA is faster than BB-BA for all graphs with m > 2.5 · 107
and shows a speedup of

17.6(1) at mref. It scales well for graphs far larger than main memory: the edge list of a

graph with m = 3 · 1011
has a size of 4.8 TB and is generated in 170 min.

MP-BA’s runtime for constant m depends on m/n since the decision tree’s depth is

a function of the number of vertices and since our balancing scheme requires operations

for every vertex. Section 3.5.2 illustrates this behavior at mref and indicates that the

dependency is only relevant form/n < 10 which, however, seems atypical for huge net-

works. The small m/n dependency in our implementation of TFP-BA is less systematic

and seems to be an artefact of the priority queue as already visible in Figure 3.8.

82

Experimental Results

0

1

2

3

4

5

6

7

8

9

2 4 6 8 10 12 14 16

S
p

e
e
d

u
p

r
e
l
a
t
i
v
e

t
o

s
i
n

g
l
e

t
h

r
e
a
d

Number of CPU threads

MP-BA

0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4

1 2 3 4 5 6 7 8

S
p

e
e
d

u
p

r
e
l
a
t
i
v
e

t
o

s
i
n

g
l
e

S
S
D

Number of active SSDs

MP-BA

TFP-BA

Figure 3.10: Le� (a): Strong scaling in CPU threads: n = 3.1 · 108
, m = 10n = mref, DGPU = 9, S = 5. Right (b): Strong

scaling in available SSDs. Speedup relative to case with a single SSD. m = 10n. MP-BA: n = 1.7 · 109
TFP-BA: n = 108

.

In its current form, our implementation’s bottleneck is given by the CPU workers

which collectively process (103 ± 0.9) × 106
tokens/s, while the GPU produces and

copies (214± 1)× 106
tokens in the same time.

3

The implementation’s CPU scalability is quanti�ed on a single machine using the

strong scalability measure: one increases the number of processing units while keeping

the problem size constant. On an eight-core processor with 16 hardware threads, a

speedup of 6.2 relative to a single thread is observed using eight compute threads, which

can be further increased to 8.7 when saturating all hardware threads. To quantify the

e�ect of the external memory bandwidth, Figure 3.10 shows the strong scaling of TFP-BA

and MP-BA as a function of the number of SSDs available. The measurement indicates

that the sequential TFP-BA is compute bound, while MP-BA produces enough data to

facilitate the bandwidth of multiple drives. The speedup does not change signi�cantly

for larger graphs.

3.5.3 Large Seed Graphs

In order to produce an arti�cial dataset based on real data, it is crucial that the graph

generator supports large seed graphs. We demonstrate this capability for MP-BA by

using the ClueWeb12 Web Graph, an directed hyperlink graph crawled in the year

2013 [324]. In a preprocessing step, we interpret directed edges as undirected, remove

duplicates and compute the degree distribution. The resulting graph contains n0 =

6,257,706,959 vertices and m0 = 66,539,548,496 edges with m/n ≈ 10.6. We then

used MP-BA to roughly double its size by adding n = 6 · 109
vertices andm = 6.6 · 1010

edges in 2675(3) s.

3.5.4 Previous Results

To the best of our knowledge, all published parallelizations of BA are targeting a

distributed scenario. Alam et al. use a cluster with 48 nodes each equipped with

3

Initial studies suggested that a multi-CTA decision “kernel” increases the throughput by at least one

order of magnitude. This may become relevant when MP-BA is adopted for distributed machines.

83

Preferential A�achment

two Intel Xeon E5-2670 2.60GHz 8-core processors sharing 64GB of 1600MHz DDR3

RAM [12]. Each of the 96 CPUs has a similar performance to our single machine, but

their memory bandwidth per node is 1.4 times lower. They produce a graph with

n = 109
and m = 5 · 1010

where each new vertex introduces 50 edges. They report a

runtime of 123 s using all CPUs.

For the same graph parameters, our implementation achieves a runtime of 489.1(2) s

on a single machine. This corresponds to a slowdown factor of only four by using a

1/96 the number of CPUs and hence MP-BA poses a viable and cost-e�cient alternative.

3.6 Preferential A�achment beyond BA

Upadditional generators:

R Section 2.4.2

to this point, we focused on the BA model, easing the description of our algorithms.

In this chapter, we highlight certain features of other preferential attachment models

and show how TFP-BA and MP-BA can be adopted accordingly. It is worth noting that a

few models explicitly forbid parallel edges which we currently do not support. However,

for su�ciently large seed graphs, which can be easily constructed using a generalized

BB-BA, the parallel edges become insigni�cant. None of the modi�cations presented

here changes the asymptotic I/O or time complexity of the algorithms.

3.6.1 Alternative Vertex Sampling

Many application-speci�c networks, such as the World Wide Web, exhibit a directed

structure which cannot be captured by BA graphs. A number of models have been

proposed to explain the evolution of directed random graphs. Typically, such schemes

do not select nodes based on their total degree but rely on distinct distributions for in-

and out-degrees respectively and use them in di�erent scenarios [275, 197, 60]. Further,

in real networks some connections seem not be governed by a cumulative advantage

process. This is often modeled either explicitly by selecting some neighbors uniformly

from all available vertices, or implicitly encoded in the sample probability in terms of a

constant o�set k0 > 0, i.e., P [u] ∝ deg(u) + k0.

In TFP-BA, these modi�cations are straight-forward: to sample uniformly, the index

of the neighbor vertex can be directly drawn during the token generation (the algorithm’s

second phase). An appropriate link token is then inserted into the priority queue, which

allows later preferential attachment processes to take the new edge into account. While

TFP-BA as in Algorithm 1 generates undirected graphs, all internal structures are in fact

directed. Thus, the �rst entry in the lookup bu�er (last_edge) always corresponds to the

most recently introduced vertex while the second entry keeps the neighbor it links to.

Therefore, qery-1 tokens yield results based on the out-degree while qery-2 tokens

capture the in-degree. TFP-BA randomly chooses the token type in phase 2, e�ectively

yielding a preferential attachment based on the total degrees.

For MP-BA, it su�ces to replace the value Wt at each inner node t of the decision

tree by a 3-tuple containing the number of vertices in the left child’s subtree as well as

their total in- and out-degrees. Balancing can then be performed in terms of a node’s

84

Preferential A�achment beyond BA

most unbalanced value. Additionally, the imbalance score may be weighted by the

expected frequency of the query types.

An extreme case of (partial) uniform sampling arises in the model of Dorogovtsev

et al., where new vertices are initially isolated and cannot be connected by a pure

preferential attachment process [111]. Even such disconnected graphs are directly

supported in the generalized MP-BA, since one can easily initialize the in/out-degrees

of a new vertex to zero. For TFP-BA no modi�cations are necessary, exploiting the fact

that no lookups to the edge list are performed for uniformly chosen vertex indices.

Bandyopadhyay et al. consider the growth of a directed network in the context of

food chains. At each time step a new vertex is added and connects to a constant number

of existing vertices. Given a parameter k0 ∈ N>0, the probability to connect to a vertex

u decreases with each new successor and is governed by P[u] ∝ (k0 − deg
out

(u)). As

this model only uses out-degrees, MP-BA can be used with a single value Wt at each

inner leaf: for each new vertex descending into the left subtree Wt is increased by k0

and decreased by one for each query.

3.6.2 Non-Uniform Node Degrees

The BA model assigns the same initial degree d to every vertex introduced during

preferential attachment. While this property simpli�es the analysis of the generated

graphs, it can be argued that insertion patterns of real-world processes are more complex.

In the context of directed graphs, the issue becomes even more pressing since currently

the out-degree of a vertex cannot be changed once all initial edges have been created.

Price suggested a model for directed citation networks in which the initial out-degree

of a new publication is randomly distributed with an average value d̃ [275]. Since neither

MP-BA nor TFP-BA relay on uniform initial edge degrees, the algorithms can be used

for this more general case without changes to the data structures.

Krapivsky et al. proposed a model where in every time step a new vertex with

out-degree 1 is added with probability 0 ≤ p ≤ 1 [197]. Otherwise, an edge (u, v) is

introduced where u is selected based on an preferential attachment process on the in-

degrees and v in terms the graph’s out-degrees respectively. Due to the lazy evaluation

used by TFP-BA and MP-BA, both queries are answered independently and in general

at di�erent times. In TFP-BA, one can add the token classes qeryFrom- x/qeryTo- x

which are processed as ordinary query tokens, however reinsert linkFrom and linkTo

respectively instead of ordinary link tokens. If a pair of linkFrom and linkTo carry the

same edge index, the priority queue places them next to each other and they can easily

be merged to produce a single edge. A similar approach is possible for MP-BA: here one

can add an edge index to a query and annotate the resulting edge with this identi�er.

In a post-processing step, the complete output is sorted based on these identi�ers and

partial results can be merged into a �nal edge list.

85

Massive Graphs Following the LFR Benchmark

Algorithm 2: Update the decision tree without bu�ers (Section 3.3.2)

Input : Query token token; decision tree (root, treeWeight) to be modi�ed in-place

Output :Edge-based on query token and leaf found

1 treeWeight← treeWeight + 1

2 node← root

3 while not node.isLeaf do
4 if token.value ≤ node.weightLeft then
5 node.weightLeft← node.weightLeft + 1

6 node← node.leftChild

7 else
8 token.value← token.value− node.weightLeft

9 node← node.rightChild

10 return { token.vertexId, node.vertexId }

Algorithm 3: Balancing used by MP-BA without I/O-e�cient bu�ering.

Input : vertex token token; decision tree (root, treeWeight) modi�ed in-place

1 treeWeight← treeWeight + token.weight

2 weight← treeWeight

3 node← root

4 while not node.isLeaf do
5 if node.weightLeft < weight/2 then
6 node.weightLeft← node.weightLeft + token.weight

7 weight← node.weightLeft

8 node← node.leftChild

9 else
10 weight← weight− node.weightLeft

11 node← node.rightChild

12 node←


weightLeft : weight

leftChild : Leaf, vertex = node.vertexId

rightChild : Leaf, vertex = token.vertexId

86

Preferential A�achment beyond BA

Algorithm4: Token-wise parallel MP-BA applied to a node whose left subtree

has weight T . For simplicity, we omit vertex-tokens.

Input : (r1, . . . , rp) token values, T decision threshold

Output : (s1, . . . sp) ∈ {0, 1}p with sj = 1 i� token j belongs to left subtree

1 Execute program on each PU i ∈ {1 . . . p} in lockstep.

2 ui ← 1, prefixsum_ui ← i− 1 // Initialize state as undecided

3 si ← 0, prefixsum_si ← 0

4 repeat
// Here invariants prefixsum_ui =

∑i−1
j=1 uj , and prefixsum_si =

∑i−1
j=1 sj hold

5 lowerB← T + prefixsum_si // Compute bounds using the last prefix sums

6 upperB← lowerB + prefixsum_ui

7 if ri < lowerB then
8 ui ← 0; si ← 1 // Fix tokens below the uncertainty range

9 else if ri ≥ upperB then
10 ui ← 0; si ← 0 // Fix tokens above the uncertainty range

11 prefixsum_si ← i-th results of excl. scan over s[·] // Prepare next iteration

12 prefixsum_ui ← i-th results of excl. scan over u[·]
13 until prefixsum_up == 0

87

4
I/O-E�icient Generation of Massive Graphs

Following the LFR Benchmark

joint work with M. Hamann, U. Meyer, H. Tran, D. Wagner

LFR graph with

n = 200, µ = 0.1,

di ∼ Pld ([10, 30),−2),

si ∼ Pld ([5, 50),−1)

LFR is a popular benchmark graph generator used to evaluate community detec-

tion algorithms. We present EM-LFR, the first external memory algorithm able

to generate massive complex networks following the LFR benchmark. Its most

expensive component is the generation of random graphs with prescribed degree

sequences which can be divided into two steps: the graphs are first materialized de-

terministically using the Havel-Hakimi algorithm, and then randomized. Our main

contributions are EM-HH and EM-ES, two I/O-e�icient external memory algorithms

for these two steps. We also propose EM-CM/ES, an alternative sampling scheme

using the Configuration Model and rewiring steps to obtain a random simple graph.

In an experimental evaluation we demonstrate their performance; our implementa-

tion is able to handle graphs with more than 37 billion edges on a single machine,

is competitive with a massively parallel distributed algorithm, and is faster than a

state-of-the-art internal memory implementation even on instances fi�ing in main

memory. EM-LFR’s implementation is capable of generating large graph instances

orders of magnitude faster than the original implementation. We give evidence that

both implementations yield graphs with matching properties by applying clustering

algorithms to generated instances. Similarly, we analyze the evolution of graph

properties as EM-ES is executed on networks obtained with EM-CM/ES and find

that the alternative approach can accelerate the sampling process.

This chapter is based on the peer-reviewed journal article [167] extending [168]:

[168] M. Hamann, U. Meyer, M. Penschuck, and D. Wagner. I/O-e�cient generation of

massive graphs following the LFR benchmark. In S. P. Fekete and V. Ramachandran,

editors,Workshop onAlgorithm Engineering and Experiments ALENEX, pages 58–72.

Society for Industrial and App. Math. SIAM, 2017. doi:10.1137/1.9781611974768.5 .

[167] M. Hamann, U. Meyer, M. Penschuck, H. Tran, and D. Wagner. I/O-e�cient gen-

eration of massive graphs following the LFR benchmark. ACM J. of Experimental
Algorithmics, 23, 2018. doi:10.1145/3230743 .

My contribution

Michael Hamann and I are the main authors contributing equal amounts to [168] and

its implementation. The journal version adds new algorithmic ideas related to the

Con�guration Model based on work of Hung Tran and myself.

https://doi.org/10.1137/1.9781611974768.5
https://doi.org/10.1145/3230743

Massive Graphs Following the LFR Benchmark

4.1 Introduction

Complex networks, such as web graphs or social networks, usually contain communities,

also called clusters, that are internally dense but externally sparsely connected. Finding

these clusters, which can be disjoint or overlapping, is a common task in network

analysis. A large number of algorithms trying to �nd meaningful clusters have been

proposed (see [131, 172, 133] for an overview). Commonly, synthetic benchmarks are

used to evaluate and compare these clustering algorithms, since for most real-world

networks it is unknown which communities they contain and which of them are actually

detectable through structure [29, 133]. The LFR benchmark [210, 208] has become a

standard benchmark for such experimental studies, both for disjoint and for overlapping

communities [120].

With the emergence of massive networks that cannot be handled in the main

memory of a single computer, new clustering schemes have been proposed for advanced

models of computation [77, 351]. Since such algorithms typically use hierarchical input

representations, quality results of small benchmarks may not be generalizable to larger

instances [120, 169]. Often though, the quality is only evaluated on small benchmark

graphs as currently available graph clustering benchmark generators are unable to

generate the necessary graphs [30, 77]. Instead, computationally inexpensive random

graph models such as R-MAT are used [278] to generate huge graphs. Using those models,

it is however not possible to evaluate whether the clustering algorithm is actually able

to detect communities on such a large graph as there is no ground truth community

structure to compare against. Filling this gap, we propose a generator in the external

memory (EM) model following the LFR benchmark in order to produce clustering

benchmark graph instances exceeding main memory. We implement the variants of

the LFR benchmark for unweighted, undirected graphs with either overlapping or non-

overlapping communities. Our proposed graph benchmark generator has already been

used to evaluate the clustering quality of distributed clustering algorithms on graphs

with up to 512 million nodes and 76.6 billion edges [169].

The distributed CKB benchmark [95] is a step into a similar direction, however,

it considers only overlapping clusters and uses a di�erent model of communities. In

contrast, our approach is a direct realization of the established LFR benchmark and

supports both disjoint and overlapping clusters.

4.1.1 Random Graphs from a Prescribed Degree Sequence

The LFR benchmark uses theFDSM Fixed-Degree-Sequence-Model (FDSM), also known as edge

switching Markov chain algorithm (e.g., [246]), to obtain a random graph following a

previously computed degree sequence. In preliminary studies, we identi�ed this task as

the main issue when transferring the LFR benchmark into an EM setting; both in terms

of algorithmic complexity and runtime.

FDSM consists of two steps, namely (i) generating a deterministic graph from a

prescribed degree sequence and (ii) randomizing this graph using random edge switches.

For each edge switch, two edges are chosen uniformly at random and two of the

90

Introduction

endpoints are swapped if the resulting graph is still simple (see Section 4.5). Each

edge switch can be seen as a transition in a Markov chain. This Markov chain is

irreducible [118], symmetric and aperiodic [151] and therefore converges to the uniform

distribution. It also has been shown to converge in polynomial time if the maximum

degree is not too large compared to the number of edges [158]. However, the current

analytical bounds of the mixing time are impractically high even for small graphs.

Experimental results on the occurrence of certain motifs in networks [246] suggest

that 100m steps should be more than enough where m is the number of edges. Further

results for random connected graphs [151] suggest that the average and maximum

path length and link load converge between 2m and 8m swaps. More recently, further

theoretical arguments and experiments showed that 10m to 30m steps are enough [280].

A faster way to realize a given degree sequence is the Con�guration Model which

allows multi-edges and self-loops. In the Erased Con�guration Model these illegal edges

are deleted. Doing so, however, alters the graph properties and does not properly realize

the skewed degree distributions required for LFR [296]. In this context the question

arises whether edge switches starting from the Con�guration Model can be used to

uniformly sample simple graphs at random.

4.1.2 Our Contribution

We introduce EM-LFR
1
, the �rst I/O-e�cient LFR variant, and study the FDSM in the

external memory model. After de�ning our notation, we summarize the original LFR
benchmark in Section 4.3. As illustrated in Figure 4.1, EM-LFR consists of several

algorithmic building blocks which we discuss in sections 4.7 to 4.8. Here, the focus lies

on FDSM consisting of (i) generating a deterministic graph from a prescribed degree

sequence (cf. EM-HH, Section 4.4) and (ii) randomizing this graph using random edge

switches (cf. EM-ES, Section 4.5). For EM-HH, we describe a streaming algorithm whose

internal data structure only has an I/O complexity linear in the number of di�erent

degrees if a monotonous degree sequence is provided. To execute a number of edge

switches proportional to the number m of edges, EM-ES triggers O(sort(m)) I/Os. For

EM-LFR, the I/O complexity is the same as it is dominated by the edge randomization step.

In Section 4.6, we additionally describe EM-CM/ES, an alternative to FDSM . It generates

uniform random non-simple graphs using the Con�guration Model in O(sort(m)) I/Os

and then obtains a simple graph by applying edge rewiring steps.

We conclude with an experimental evaluation of our algorithms and demonstrate

that our EM version of the FDSM is faster than an existing state-of-the-art implemen-

tation even for instances still �tting into RAM. It scales well to large networks, as we

demonstrate by handling a graph with 37 billion edges on a desktop computer, and

almost an order of magnitude more e�cient than an existing distributed parallel al-

gorithm. Further, we compare EM-LFR to the original LFR implementation and show

that EM-LFR is signi�cantly faster while producing equivalent networks in terms of

1

The implementation is freely available at h�ps://massive-graphs.org/extmem-lfr. Among others, it

contains encapsulated implementations of EM-ES and EM-CM/ES easily reusable for novel application.

91

https://massive-graphs.org/extmem-lfr

Massive Graphs Following the LFR Benchmark

community detection algorithm performance and graph properties.

A LFR benchmark graph with more than 1 · 1010
edges can be generated in 17 h on

a single server with 64 GB RAM and 3 SSDs. We also investigate the mixing time of

EM-ES and EM-CM/ES and give evidence that our alternative sampling scheme quickly

yields uniform samples and that the number of swaps suggested by the original LFR
implementation can be kept for EM-LFR.

4.2 Preliminaries and Notation

In this section, we highlight important de�nitions and notations used through the

document, and give an introduction to the external memory model as well as Time
Forward Processing, a crucial design-principle used in EM-ES.

4.2.1 Notation

We de�ne the short-hand [k] := {1, . . . , k} for k ∈ N>0, and write [xi]bi=a for an

ordered sequence [xa, xa+1, . . . , xb].

Graphs and degree sequences. A graph G = (V,E) has n = |V | sequentially

numbered nodes V = {v1, . . . , vn} and m = |E| edges. Let deg(vi) denote the degree

(i.e. number of neighbors) of node vi. D = [di]ni=1 is a degree sequence of graph G i�

∀vi ∈ V : deg(vi) = di. Unless stated di�erently, graphs are assumed to be undirected

and unweighted. A graph is called simple if it contains neither multi-edges nor self-loops.

To obtain a unique representation of an undirected edge {u, v} ∈ E, we use ordered
edges [u, v] ∈ E implying u ≤ v; in contrast to a directed edge, the ordering is used

algorithmically but does not carry any meaning. Unless stated di�erently, our EM

algorithms represent a graph G = (V,E) as a sequence containing for every ordered

edge [u, v] ∈ E only the entry (u, v).

Randomization and Distributions. Pld ([a, b), γ) denotes an integer Powerlaw

Distribution with exponent −γ ∈ R for γ ≥ 1 and values from the interval [a, b);

let X be an integer random variable drawn from Pld ([a, b), γ) then P[X=k] ∝ k−γ

(proportional to) if a ≤ k < b and P[X=k] = 0 otherwise. For X = [xi]ni=1, we

de�ne the mean 〈X〉 :=
∑n

i=1 xi/n and the second moment 〈X2〉 :=
∑n

i=1 x
2
i /n of the

sequence X . A statement depending on some x > 0 is said to hold with high probability
if it is satis�ed with probability at least 1− 1/xc for some constant c ≥ 1.

Also refer to Section 4.A (Appendix) for a summary of commonly used de�nitions.

4.2.2 External Memory Model

In contrast to classic models of computation, such as the unit-cost RAM, modern com-

puters contain deep memory hierarchies ranging from fast registers, caches and main

memory to solid-state drives (SSDs) and hard disks. Algorithms unaware of these

properties may face performance penalties of several orders of magnitude. We use

the commonly accepted external memoryEM: external memory (EM) model by Aggarwal and Vitter [7] to

92

The LFR Benchmark

Algorithm 5: Compute Fibonacci numbers using Time Forward Processing

1 PQ.push((key = 2, val = 0), (key = 2, val = 1)) // Send base cases x0 & x1 to v2

2 for i← 2, . . . , n do
3 sum← 0

4 while PQ.min.key == i do
5 sum← sum + PQ.removeMin().val // Receive all messages for xi

6 print(xi = sum)

7 PQ.push((key = i+1, val = sum), (key = i+2, val = sum))

v2

x0+x1

x2=1

v3

x1+x2

x3=2

v4

x2+x3

x4=3

v5

x3+x4

x5=5

v6

x4+x5

x6=8

v7

x5+x6

x7=13

reason about the in�uence of data locality in memory hierarchies. The model fea-

tures two memory types with fast internal memory IM: internal memory(IM) which may hold up to M

data items, and a slow disk of unbounded size. M : main memory sizeThe input and output of an algorithm

are stored in EM while computation is only possible on values in IM. The measure

of an algorithm’s performance is the number of I/Os required. Each I/O transfers a

block of B : block sizeB consecutive items between memory levels. Reading or writing n contigu-

ous items from or to disk requires scanscan(n) = Θ(n/B) I/Os. Sorting n contiguous

items uses sortsort(n) = Θ((n/B) · logM/B(n/B)) I/Os. For realistic values of n, B and

M , scan(n) < sort(n) � n. Sorting complexity often constitutes a lower bound for

intuitively non-trivial tasks [7, 242].

4.2.3 TFP: Time Forward Processing

Time Forward Processing (TFP) is a generic technique to manage data dependencies in

external memory algorithms [230]. Consider an algorithm computing values x1, . . . , xn
where the calculation of xi requires previously computed values. One typically models

these dependencies using a directed acyclic graph G=(V,E). Every node vi ∈ V

corresponds to the computation of xi, and an edge (vi, vj) ∈ E indicates that the

value xi is necessary to compute xj . As an example consider the Fibonacci sequence

x0 = 0, x1 = 1, xi = xi−1 + xi−2 ∀i ≥ 2. Here, each node vi with i ≥ 2 depends on

its two direct predecessors (see Algorithm 5).

In general, an algorithm needs to traverse G according to some topological order

≺T of nodes V and also has to ensure that each vj can access values from all vi with

(vi, vj) ∈ E. The TFP technique achieves this as follows: as soon as xi has been

calculated, messages of form 〈vj , xi〉 are sent to all successors (vi, vj) ∈ E. These

messages are kept in a minimum priority queue sorting the items by their recipients

according to ≺T . By de�nition, the algorithm only starts the computation vi once all

predecessors vj ≺T vi are completed. Since these predecessors already removed their

messages from the PQ, items addressed to vi (if any) are currently the smallest elements

in the data structure and can be dequeued. Using a suited EM PQ [23, 291], TFP incurs

O(sort(k)) I/Os, where k is the number of messages sent.

93

Massive Graphs Following the LFR Benchmark

Sample

node

degrees

[di]ni=1

Sample

community

sizes

EM-CA

Assign nodes

to comms

[d in

i] n
i=1

[sξ
]Cξ=

1

EM-HH:

Generate

biased global

graph

EM-ES or

EM-CM/ES

Randomize

global graph

EM-GER

Rewire

intra-

community

edges

[d
ext

i
]ni=1

E
glob

L
E

glob

L

EM-HH:

Generate

biased

community

EM-ES or

EM-CM/ES

Randomize

comm. graph

EC1

L

.

.

.

indepedently for
each community

in parallel

.

.

.

EM-HH:

Generate

biased

community

EM-ES or

EM-CM/ES

Randomize

comm. graph

ECC

L

[d
in

i
/νi] i

of

nodes vi
in

com
m

unity
C1

[d in

i /νi]i of
nodes vi in

com
m

unity C
C

EM-CER:

Rewire parallel

edges from

overlapping

communities

E C
1L

E
CC

L

Concatenate

edge lists

E g
lo

bL

E
in

tr
a

L

Figure 4.1: The EM-LFR pipeline: A�er randomly sampling the node degrees and community sizes, nodes are assigned

into suited communities by EM-CA (Section 4.7). The global (inter-community) graph and each community graph is then

generated independently by first materializing biased graphs using EM-HH (Section 4.4) followed by a randomization using

EM-ES or EM-CM/ES (Sections 4.5 and 4.6). The global graph may contain edges between nodes of the same community which

would decrease the mixing µ and are hence rewired using EM-GER (Section 4.8.1). Similarly, two overlapping communities

can have identical edges which are rewired by EM-CER (Section 4.8.2).

4.3 The LFR Benchmark

In this section we introduce the properties and features of the LFR benchmark, outline

important algorithmic challenges, and address each of them by proposing a suited EM

algorithm in the following chapters (refer to Figure 4.1 for an overview).

The LFR benchmark [210] describes a generator for random graphs featuring node

degrees and community sizes both following powerlaw distributions. The produced

networks also contain a planted community structure against which the performance

of detection algorithms is measured. A revised version [208] additionally introduces

weighted and directed graphs with overlapping communities and changes the sampling

algorithm even for the original settings.

we consider unweighted

and undirected LFR and

support overlapping

communities

We consider the modern generator, which

is also used in the author’s implementation, and focus on the most common variants

for unweighted, undirected graphs and optionally overlapping communities. All its

parameters are listed in Section 4.A (Appendix) and are fully supported by EM-LFR.

LFR starts by randomly sampling the degreesD, di : node degrees D = [di]ni=1 of all nodes, the numbers

[νi]ni=1
νi : memberships node i of clusters they are members in, and community sizes S = [sξ]Cξ=1 such that∑C

ξ=1 sξ =
∑n

i=1 νi according to the supplied parameters.S, sξ : community sizes During this process the

number of communities CC : num. of communities follows endogenously and is bounded by C=O(n) even if

nodes are members in ν=O(1) communities.
2

Depending on the mixing parameter 0 < µ < 1µ : mixing parameter , every node vi ∈ V is incident to

dext

i = µ · di inter-community edges and din

i = (1−µ) · di edges within its communities.

2

Under the realistic assumption that the maximal community size grows with smax = Ω(nε) for some

ε > 0, the bound improves to C=o(n) whp. due to the powerlaw distributed community sizes.

94

EM-HH: Deterministic Edges from a Degree Sequence

Sample intra- and inter-
community edges

Degrees, community sizes
and memberships

Remove (rewire)
illegal edges

Intra-community edge Inter-community edge Community

Figure 4.2: Le�: Sample node degrees and community sizes from two powerlaw distributions.

The mixing parameter µ determines the fraction of the inter-community edges. Then, assign

each node to su�iciently large communities. Center: Sample intra-community graphs and

inter-community edges independently. This may lead to illegal intra-community edges in

the global graph as shown here in bold. Right: Lastly, remove illegal inter-community edges

respective to the global graph.

In the case of overlapping communities, the internal degree is evenly split among all

communities of the node. Both the computation of din

i and the division din

i /νi into several

communities use non-deterministic rounding to avoid biases. LFR assigns every node vi
to either νi = 1 or νi = ν communities at random such that the requested community

sizes and number of communities per node are realized. It further ensures that the

desired internal degree din

i /νi is strictly smaller than the size sξ of its community ξ.

As illustrated in Figure 4.2, the LFR benchmark then generates the inter-community

graph using FDSM on the degree sequence [dext

i]ni=1. In order not to violate the mixing

parameter µ, rewiring steps are applied to the global inter-community graph to replace

edges between two nodes sharing a community. Analogously, an intra-community

graph is sampled for each community. In the overlapping case, rewiring steps may

be necessary to remove edges that exist in multiple communities and would result in

duplicate edges in the �nal graph.

4.4 EM-HH: Deterministic Edges from a Degree Sequence

In this section, we address the issue of generating a graph from prescribed degrees and

introduce an EM-variant of the well known Havel-Hakimi scheme. It takes a positive

non-decreasing degree sequence D = [di]ni=1 and, if possible, outputs a graph GD
realizing these degrees.

3
EM-LFR uses this algorithm (cf. Figure 4.1) to �rst obtain a

legal but biased graph following D and then randomizes GD in a subsequent step.

A sequence D is called graphical graphical degree sequenceif a matching simple graph GD exists. Havel

and Hakimi independently gave inductive characterizations of graphical sequences

which directly lead to a graph generator [173, 165]: given D, connect the �rst node

v1 with degree d1 (minimal among all nodes) to d1-many high-degree vertices by

emitting edges { {v1, vn−i} | 0 ≤ i < d1 }. Then obtain an updated sequence D′ by

3

EM-LFR directly generates a monotonic degree sequence by �rst sampling a monotonic uniform

sequence [39, 334] and then applying the inverse sampling technique (carrying over the monotonicity) for

a powerlaw distribution. Thus, no additional sorting steps are necessary for the inter-community graph.

95

Massive Graphs Following the LFR Benchmark

1

v1

2

v3

3

v5

· · · k

v2k−1

k

v2k

k−1

v2(k−1)

k−2

v2(k−2)

· · · 1

v2

· · ·

Figure 4.3: Graph with Dk = (1, 1, 2, 2, . . . , k, k) maximizes EM-HH’s memory consumption

asymptotically as D(Dk) = k = Θ(n). Node are labeled with their degrees.

removing d1 from D and decrementing the remaining degree of every new neighbor

{vn−i | 0 ≤ i < d1}.4 Subsequently, remove zero-entries and sort D′ while keeping

track of the original positions to be able to output the correct node indices. Finally,

recurse until no more positive entries remain. After every iteration, the size of D is

reduced by at least one resulting in O(n) rounds.

For an implementation, it is non-trivial to keep the sequence ordered after decre-

menting the neighbors’ degrees. Internal memory solutions typically employ priority

queues optimized for integer keys, such as bucket-lists [316, 332]. This approach incurs

Θ(sort(n+m)) I/Os using a naïve EM PQ since every edge triggers an update to the

pending degree of at least one endpoint.

We hence propose the Havel-Hakimi variant EM-HH which, for virtually all realistic

powerlaw degree distributions, avoids accesses to disk besides writing the result. The

algorithm emits a stream of edges in lexicographical order which can be fed to any

single-pass streaming algorithm without a round trip to disk. Thus, we consider only

internal I/Os and emphasize that storing the output —if necessary by the application—

requires O(m) time and O(scan(m)) I/Os where m is the number of edges produced.

Additionally, EM-HH may be used to test in time O(n) whether a degree sequence D is

graphical or to drop problematic edges yielding a graphical sequence (Section 4.6).

4.4.1 Data Structure

Instead of maintaining the degree of every node in D individually, EM-HH compacts

nodes with equal degrees into a group, yielding D(D) := |{di | 1 ≤ i ≤ n}|D(D) : number of unique

degrees

groups.

Since D is monotonic, such nodes have consecutive ids and the compaction can be

performed in a streaming fashion.
5

The sequence is then stored as a doubly linked list

L = [gj]1≤j≤D(D)L and gj where group gj = (bj , nj , δj) encodes that the nj nodes [vbj+i]
nj−1
i=0

have degree δj . At the beginning of every iteration of EM-HH, L satis�es the following

invariants which guarantee a compact representation:

(I1) The groups contain strictly increasing degrees, i.e. δj < δj+1 ∀1 ≤ j < |L|

(I2) There are no gaps in the node ids, i.e. bj + nj = bj+1 ∀1 ≤ j < |L|
4

This variant is due to [165]; in [173], the node of maximal degree is picked and connected.

5

While direct sampling of the group’s multinomial distribution is not bene�cial in LFR, it may be used

to omit the compaction phase for other applications.

96

EM-HH: Deterministic Edges from a Degree Sequence

These invariants allow us to bound the memory footprint in two steps: �rst observe

that a list L of size D(D) describes a graph with at least

∑D(D)
i=1 i/2 edges due to (I1).

Thus, materializing an arbitrary L of size |L| = Θ(M) emits Ω(M2) edges.

Remark 4.1. in practice EM-HH’s state

can be kept in IM

With as little as 2 GB RAM, this amounts to an edge list exceeding 1 PB

in size.
6

Therefore, even in the worst-case the whole data structure can be kept in IM for

all practical scenarios. On top of this, a probabilistic argument applies: while there exist

graphs with D(D) = Θ(n) as illustrated in Figure 4.3, Lemma 4.2 gives a sub-linear

bound on D(D) if D is sampled from a powerlaw distribution. J

Lemma 4.2. LetD be a degree sequence of n nodes sampled from Pld ([1, n), γ). Then,

there are O
(
n1/γ

)
unique degrees D(D) = |{di | 1 ≤ i ≤ n}| whp.. J

Proof. Consider random variables (X1, . . . , Xn) sampled i.i.d. from Pld ([1, n), γ) as

an unordered degree sequence. Fix an index 1≤j≤n. Due to the powerlaw distribution,

Xj is likely to have a small degree. Even if all degrees 1, . . . , n1/γ
were realized, their

occurrences would be covered by the claim. Thus, it su�ces to bound the number of

realized degrees larger than n1/γ
.

We �rst show that their total probability mass is small. Then we can argue that

D(D) is asymptotically una�ected by their rare occurrences:

P[Xj > n1/γ] =
n−1∑

i=n1/γ+1

P[Xj = i] =

∑n−1
i=n1/γ+1

i−γ∑n−1
i=1 i

−γ
(i)
=

∑n−1
i=n1/γ+1

i−γ

ζ(γ)−∑∞i=n i−γ
(ii)

≤
∫ n−1
n1/γ x−γ dx

ζ(γ)−
∫∞
n x−γ dx

=

1
1−γ

[
(n−1)1−γ − n1/γ/n

]
ζ(γ) + 1

1−γn
1−γ

=
n1/γ/n− (n− 1)1−γ

(γ − 1)ζ(γ)− n1−γ = O
(
n1/γ/n

)
,

where (i) ζ(γ) =
∑∞

i=1 i
−γ

is the Riemann zeta function which satis�es ζ(γ) ≥ 1 for

all γ ∈ R, γ ≥ 1. In step (ii), we exploit the series’ monotonicity to bound it in between

the two integrals

∫ b+1
a x−γ dx ≤∑b

i=a i
−γ ≤

∫ b
a−1 x

−γ dx.

In order to bound the number of occurrences, de�ne Boolean indicator variables

Yi with Yi = 1 i� Xi>n
1/γ

and observe that they model Bernoulli trials Yi ∈ B(p)

with p = O
(
n1/γ/n

)
. Thus, the expected number of high degrees is E[

∑n
i=1 Yi] =∑n

i=1 P[Xi>n
1/γ] = O

(
n1/γ

)
. Cherno�’s inequality gives an exponentially decreasing

bound on the tail distribution of the sum which thus holds with high probability. �

Remark 4.3. Experiments in Section 4.10.2 indicate that the hidden constants in

Lemma 4.2 are small for realistic γ. J

6

A single item of L can be naïvely represented by its three values and two pointers, i.e. a total of

5·8 = 40 bytes per item (assuming 64 bit integers and pointers). Just 2 GB of IM su�ce for storing 5 · 107

items, which result in at least 6.25 · 1014
edges, i.e. storing just two bytes per edge would require more

than one Petabyte. Observe that standard tricks, such as exploiting the redundancy due to (I2), allow to

reduce the memory footprint of L.

97

Massive Graphs Following the LFR Benchmark

Uncompressed Degree Sequence D

extract

extract

extract

extract

extract

edge-to

2

edge-to

2

edge-to

1

edge-to

1

edge-to

1

edge-to

0

split

split

merge

⇔

merge

⇔

merge

⇔

List [gi = (bi, ni, δi)]i

1.)

[
(1, 2, 1), (3, 2, 2), (5, 2, 3)

]
2.)

[
(2, 1, 1), (3, 3, 2), (6, 1, 3)

]
3.)

[
(3, 4, 2)

]
4.)

[
(4, 2, 1), (6, 1, 2)

]
5.)

[
(5, 2, 1)

]

1 1 2 2 3 3

1 2 2 2 3

2 2 2 2

1 1 2

1 1

d−1

group gi

d

group gj

d−1

group gi

d−1

group gj

Before gi can be split, the degrees of

groups gj with j > i are decreased

d−1

group gj

d−2 d−1

d−1

group gi

d−1 d

Initial situation

Splitting at gi (front) Splitting at gj (back)

Figure 4.4: Le�: EM-HH on D = (1, 1, 2, 2, 3, 3). L and D in row i indicate the state at the begin iteration i. The number

next to an edge-to symbol indicates the new degree. A�er these updates, spli�ing and merging takes place. For instance, in

the initial round the first node v1 is extracted from g1 and connected to the first node v5 of the last group. Hence group g3 of

nodes with degree 3 is split, into node v5 with now deg(v5) = 2 and v6 remaining at deg(v6) = 3. Since group g2 of nodes

{v3, v4} has also degree 2 it is merged with the new group of v5.

Right: Consider two adjacent groups gi, gj with degrees d−1 and d. A split of gi (le�) or gj (right) directly triggers a merge,

so the number of groups remains the same.

Corollary 4.4. Graphs with m = O
(
M2γ

)
edges and a powerlaw degree distribution

are processed without I/O whp.. J

Proof. Due to Lemma 4.2 the number of unique degrees D(D) is bounded by O
(
n1/γ

)
with high probability. Consequently, a list of size D(D) �lling the whole IM supports

n = O(Mγ) many nodes and thusm = O
(
M2γ

)
many edges with high probability. �

4.4.2 Algorithm

EM-HH works in n rounds, where every iteration corresponds to a recursion step of the

original formulation. Each time it extracts node vb1 with the smallest available id and

with minimal degree δ1. The extraction is achieved by incrementing the lowest node id

(b′1 ← b1+1) of group g1 and decreasing its size (n′1 ← n1−1). If the group becomes

empty (n′1 = 0), it is removed from L at the end of the iteration; Figure 4.4 illustrates

this situation in step 2. We now connect node vb1 to δ1 nodes from the end of L. Let gj
be the group of smallest index to which vb1 connects to. Then there are two cases:

(C1)(C1): connect to all nodes

in the group gj

If node vb1 connects to all nodes in gj , we directly emit all relevant edges

{[vb1 , x] | n−δ1 < x ≤ n} and decrement the degrees of all groups gj , . . . , g|L|
accordingly. Since degree δj−1 remains unchanged, it may now match the decre-

mented δj . This violation of (I1) is resolved by merging both groups. Due to

(I2), the union of gj−1 and gj contains consecutive ids and it su�ces to grow

nj−1 ← nj−1+nj and to delete group gj (see Figure 4.4 step 2 in which the degree

of g3 is reduced to d3 = 2 triggering a merge with g2).

(C2)(C2): connect to some
nodes in the group gj

If vb1 connects only to a number a < nj of nodes in group gj , we split gj into

two groups g′j and g′′j containing nodes [vbj+i]a−1
i=0 and [vbj+i]

nj
i=a respectively.

We then connect node u to all a nodes in the �rst fragment g′j and hence need to

98

EM-HH: Deterministic Edges from a Degree Sequence

decrease its degree. Thus, a merge analogous to (C1) may be required if degree

δj−1 matches the decreased degree of group g′j (see Figure 4.4 step 1 in which

group g3 is split into two fragments with degrees d3′ = 2 and d3 = 3 respectively,

triggering a merge between group g2 and fragment g3′). Afterwards, the degrees

of groups gj+1, . . . , g|L| are decreased wholly as in (C1).

If the requested degree δ1 cannot be met (i.e., δ1 >
∑|L|

k=1 nk), the input is not

graphical [165]. However, a su�ciently large random powerlaw degree sequence con-

tains at most very few nodes that cannot be materialized as requested since the vast

majority of nodes have low degrees. Thus, we do not explicitly ensure that the sampled

degree sequence is graphical and rather correct the negligible inconsistencies later on

by ignoring the unsatis�able requests.

4.4.3 Improving the I/O Complexity

In EM-HH’s current formulation, it requires O(m) time which is already optimal in

case edges have to be emitted. Testing whether D is graphical however is sub-optimal.

We thus introduce a simple optimization, which also yields optimality for these tests,

improves constant factors and gives I/O-optimal accesses.

Observe that only groups in the vicinity of gj can be split or merged; we call these

the active frontier. In contrast, the so-called stable groups gj+1, . . . , gD(D) keep their

relative degree di�erences as the pending degrees of all their nodes are decremented by

one in each iteration. Further, they will become neighbors to all subsequently extracted

nodes until group gj+1 eventually becomes an active merge candidate. Thus, we do

not have to update the degrees of stable groups in every round, but rather maintain

a single global iteration counter I and count how many iterations a group remained

stable: when a group gk becomes stable in iteration I0, we annotate it with I0 by adding

δk ← δk+I0. If gk has to be activated again in iteration I > I0, its updated degree is

δk ← δk−I . The degree δk remains positive since (I1) enforces a timely activation.

Lemma 4.5. The optimized EM-HH needs O(scan(D(D))) I/Os if L is an EM list. J

Proof. An external memory list requires O(scan(k)) I/Os to execute any sequence

of k sequential read, insertion, and deletion requests to adjacent positions (i.e. if no

seeking is necessary) [230]. We will argue that EM-HH scans L roughly twice, starting

simultaneously from the front and back.

Every iteration starts by extracting a node of minimal degree. Doing so corresponds

to accessing and eventually deleting the list’s �rst element gi. If the list’s head block is

cached, we only incur an I/O after deleting Θ(B) head groups, yieldingO(scan(D(D)))

I/Os during the whole execution. The same is true for accesses to the back of the

list: the minimal degree increases monotonically during the algorithm’s execution

until the extracted node has to be connected to all remaining vertices. In a graphical

sequence, this implies that only one group remains and we can ignore the simple base

99

Massive Graphs Following the LFR Benchmark

Figure 4.5: A swap is de-

fined by the two edge ids

(rank inEL), and a direc-

tion bit. Swap σ1 is ille-

gal as it adds the already

present edge {a, c}.

a b

c d

a b

c d

a b

c d

1

2

fst(σ1) snd(σ1)
fst(σ2)snd(σ2)

Input σ1 = σ(〈1, 2〉, false) σ2 = σ(〈1, 2〉, true)

illegal (creates multi-edge)

case asymptotically. Neglecting splitting and merging, the distance between the list’s

head and the active frontier decreases monotonically triggering O(scan(D(D))) I/Os.

Asmerging described before, it may be necessary to reactivate stable groups, i.e. to reload

the group behind the active frontier (towards L’s end). Thus, we not only keep the

block F containing the frontier cached, but also block G behind it. It does not incur

additional I/O, since we are scanning backwards through L and already read G before

F . The reactivation of stable groups hence only incurs an I/O when the whole block G

is consumed and deleted. Since this does not happen before Ω(B) merges take place,

reactivations may trigger O(scan(D(D))) I/Os in total.

Splittingspli�ing does not in�uence EM-HH’s asymptotic I/O complexity: Only an active

group of degree d can be split yielding two fragments of degrees d−1 and d respectively.

A second split of one of these fragments does not increase the number of groups since

two of the three involved fragments have to be merged (cf. Figure 4.4). As a result

splitting can at most double L’s size. �

4.5 EM-ES: I/O-e�icient Edge Switching

EM-ES implements an external memory edge switching algorithm to randomize net-

works. Following LFR’s original usage of FDSM , EM-ES is crucial in EM-LFR to randomize

the inter-community graph as well as all communities independently (cf. . Figure 4.1),

and additionally functions as a building block to rewire illegal edges (cf Sections 4.6

and 4.8). As discussed in Section 4.10.6, the algorithm also has applications as a stan-

dalone tool in network analysis.

EM-ES applies a sequence S = [σs]ks=1 of edge swaps σs to a simple graph G =

(V,E), where the parameter k is typically chosen as k ∈ [1m, 100m]. The graph is

represented by a lexicographically ordered edge list EL = [ei]mi=1 which contains for

every ordered edge [u, v] ∈ E (i.e. u < v) only the entry (u, v) and omits (v, u). We

encode a swap σ(〈a, b〉, d) as a three-tuple with a direction bit d and the two indices

a, b of the edges ea, eb ∈ EL that are supposed to be swapped.

As illustrated in Figure 4.5, a swap simply exchanges one of the two incident nodes

of each edge where d selects which one. More formally, we denote the two resulting

100

EM-ES: I/O-e�icient Edge Switching

edges as fst(σ(〈a, b〉, d)) and snd(σ(〈a, b〉, d)) with

fst(σ(〈a, b〉, d)) :=

{
{α1, β1} if d = false

{α1, β2} if d = true

, and

snd(σ(〈a, b〉, d)) :=

{
{α2, β2} if d = false

{α2, β1} if d = true

,

where [α1, α2] = ea and [β1, β2] = eb are the edges at ranks a and b in the edge list EL.

In unambiguous cases, we shorten the expressions to fst(σ) and snd(σ) respectively.

The swap’s constituents a and b are typically drawn independently and uniformly at

random. Thus, the sequence can contain illegal swaps that would introduce either

multi-edges or self-loops. Such illegal swaps are simply skipped. In order to do so, the

following tasks have to be addressed for each σ(〈a, b〉, d):

(T1) Gather the nodes incident to edges ea and eb.

(T2) Compute fst(σ) and snd(σ) and skip if a self-loop arises.

(T3) Verify that the graph remains simple, i.e. skip if edge fst(σ) or snd(σ) already

exist in EL.

(T4) Update the graph representation EL.

If the whole graph �ts in IM, a hash set per node storing all neighbors can be used

for adjacency queries and updates in expected constant time (e.g., VL-ES [332]). Then,

(T3) and (T4) can be executed for each swap in expected time O(1). However, in the

EM model this approach incurs Ω(1) I/Os per swap with high probability for a graph

with m ≥ cM and any constant c > 1.

We address this issue by processing the sequence of swaps S batchwise in chunks of

size r = Θ(m) which we call runs. As illustrated in Figure 4.6, EM-ES executes several

phases for each run. While they roughly correspond to the four tasks outlined above,

the algorithm is more involved as it has to explicitly track data dependencies between

swaps within a batch. There are two types: A source edge dependency occurs if (at least)

two swaps share the same edge id as source. In this case, successfully executing the �rst

swap will replace the edge by another one. This update has to be communicated to all

later swaps involving this edge id. Target edge dependencies exist because swaps must

not introduce multi-edges. Therefore each swap has to assert that none of its new edges

(target edges) are already present in the graph. For this reason, EM-ES has to inform a

swap about the creation or deletion of target edges that occurred earlier in the run.

4.5.1 EM-ES for Independent Swaps

For simplicity’s sake, we �rst assume that all swaps are independent, i.e. that there are

neither source edge nor target edge dependencies in a run. Section 4.5.6 contains the

algorithmic modi�cations necessary to account for dependencies.

101

Massive Graphs Following the LFR Benchmark

request

nodes

(swap_id)

load

nodes

(edge_id)

simulate

swaps

(swap_id)

load

existence

(edge)

perform

swaps

(swap_id)

update

graph

(edge)

basic edge

switching

dependency

handling

request nodes

incident to

edge id (EdgeReq)

edge state to

�rst swap

(EdgeMsg)

inform about

successor swap

(IdSucc)

edge existence

request

(ExistReq)

edge exist. info

to �rst swap

(ExistMsg)

inform about

successor swap

(ExistSucc)

edges after

processed swaps

(EdgeUpdates)

edge state

updates to

successor

edge state and

existence updates

to successor

markers for edges that receive updates (InvalidEdge)

EL EL EL EL

Sorter Stream Priority Queue

Figure 4.6: Data flow of EM-ES. Communication between phases is uses EM sorters, self-loops use a PQs (TFP). Brackets within

a phase indicate the elements iterated over. If multiple input streams are used, they are joined with this key. Independent

swaps as in Section 4.5.1 require only communication via sorters as shown on the upper half.

The design of EM-ES is driven by the intuition that there are three types of cross-

referenced data, namely (i) the sequence of swaps ranked in the order they were issued,

(ii) edges addressed by their indices (e.g., to load and store their incident nodes) and (iii)

edges referenced by their constituents (in order to query their existence). To resolve

these unstructured references, the algorithm is decomposed into several phases and

iterates in each phase over one of these data types in order. There is no pipelining, so a

new phase only starts processing when the previous is completed. Similarly to Time
Forward Processing, phases communicate by sending messages addressed to the key of

the receiving phase. The messages are pushed into a sorter
7

to later be processed in the

order dictated by the data source of the receiving end. EM-ES uses the following phases:

4.5.2 Phases Request nodes and load nodes

The goal of these two phases is to load the constituents of the edges referenced by the

run’s swaps. We iterate over the sequence S of swaps. For the s-th swap σ(〈a, b〉, d), we

push two messages edge_req(a, s, 0) and edge_req(b, s, 1) into the sorter EdgeReq.

A message’s third entry encodes whether the request is issued for the �rst or second

edge of a swap. This information only becomes relevant when we allow dependencies.

EM-ES then scans in parallel through the edge list EL and the requests EdgeReq,

which are now sorted by edge ids. If there is a request edge_req(i, s, p) for an edge

ei = [u, v], the edge’s node pair is sent to the requesting swap by pushing a message

edge_msg(s, p, (u, v)) into the sorter EdgeMsg.

Additionally, for every edge we push a bit into the sequence InvalidEdge indicating

whether an edge received a request. Such edges will be deleted when updating the graph

in Section 4.5.5. Since both phases produce only a constant amount of data per input

7

The term sorter refers to a data structure with two modes of operation: items are �rst pushed into the

write-only sorter in an arbitrary order by some algorithm. After an explicit switch, the �lled data structure

becomes read-only and the elements are provided as a lexicographically non-decreasing stream. It can

be rewound at any time. While a sorter is functionally equivalent to sorting an EM vector, the restricted

access model reduces constant factors in the implementation’s runtime and I/O complexity [37].

102

EM-ES: I/O-e�icient Edge Switching

element, we obtain an I/O complexity of O(sort(r) + scan(m)).

4.5.3 Phases Simulate swaps and load existence

The two phases gather all information required to decide whether a swap is legal. EM-ES

scans through the sequence S of swaps and EdgeMsg in parallel: For the s-th swap

σ(〈a, b〉, d), there are exactly two messages edge_msg(s, 0, ea) and edge_msg(s, 1, eb)

in EdgeMsg. This information su�ces to compute the switched edges fst(σ) and snd(σ),

but not to test for multi-edges.

It remains to check whether the switched edges already exist; we push the existence

requests exist_req(fst(σ), s) and exist_req(snd(σ), s) into the sorter ExistReq. Ob-

serve that for request nodes we use the node pairs rather than edge ids, which are not

well de�ned here. Afterwards, a parallel scan through the edge list EL and ExistReq is

performed to answer the requests. Only if an edge e requested by swap id s is found,

the message exist_msg(s, e) is pushed into the sorter ExistMsg. Both phases hence

incur a total of O(sort(r) + scan(m)) I/Os.

4.5.4 Phase Perform swaps

We rewind the EdgeMsg sorter and jointly scan through the sequence of swaps S and

the sorters EdgeMsg and ExistMsg. As described in the simulation phase, EM-ES

computes the switched edges fst(σ) and snd(σ) from the original state ea and eb. The

swap is considered illegal if a switched edge is a self-loop or if an existence info is

received via ExistMsg. If σ is legal we push the switched edges fst(σ) and snd(σ) into

the sorter EdgeUpdates, otherwise we propagate the unaltered source edges ea and eb.

This phase requires O(sort(r)) I/Os.

4.5.5 Phase Update edge list

The new edge listE′L is obtained by merging the original lexicographic increasing listEL
and the sorted updated edges EdgeUpdates, triggering O(scan(m)) I/Os. During this

process, we skip all edges in EL that are �agged invalid in the bit stream InvalidEdge.

The result is a sorted new E′L with |E′L| = m edges that can be fed into the next run.

4.5.6 Phase Inter-Swap Dependencies

In this section, we introduce the modi�cations necessary due to dependencies between

swaps within a run. In its �nal version, EM-ES produces the same result as a sequential

processing of S. Source edge dependencies are detected during the load nodes phase

since multiple requests for the same edge id arrive. We record these dependencies as

an explicit dependency chain along which intermediate updates can be propagated.

Target edge dependencies surface in the load existence phase since multiple existence

requests and noti�cations arrive for the same edge. Again, an explicit dependency chain

is computed. During the perform swaps phase, EM-ES uses both dependency chains to

forward the source edge states and existence updates to successor swaps.

103

Massive Graphs Following the LFR Benchmark

4.5.7 Target Edge Dependencies

Consider the case where a swap σs1(〈a, b〉, d) changes the state of edges ea and eb to

fst(σ1) and snd(σ1) respectively. Later, a second swap σ2 inquires about the existence

of either of the four edges which has obviously changed compared to the initial state. We

extend the simulation phase to track such edge modi�cations and not only push messages

exist_req(fst(σ1), s1) and exist_req(snd(σ1), s1) into sorter EdgeReq, but also report

that the original edges may change (during simulation phase it is unknown whether

the swap has to be skipped). To this end, we push the messages exist_req(ea, s1,

may_change) and exist_req(eb, s1, may_change) into the same sorter.

In case of dependencies, multiple messages are received for the same edge e during

the load existence phase. If so, only the request of the �rst swap involved is answered

as before. Also, every swap σs1 is informed about its direct successor σs2 (if any) by

pushing the message exist_succ(s1, e, s2) into the sorter ExistSucc, yielding the

aforementioned dependency chain. As an optimization, may_change requests at the

end of a chain are discarded since no recipient exists.

During the perform swaps phase, EM-ES executes the same steps as described earlier.

The swap may receive a successor from every edge it sent an existence request to, and

—in turn— send each successor swapped edge state.

4.5.8 Source Edge Dependencies

Consider two swaps σs1(〈a1, b1〉, d1) and σs2(〈a2, b2〉, d2) with s1<s2 which share a

source edge id, i.e. {a1, b1}∩{a2, b2} is non-empty. This dependency is detected during

the load nodes phase since requests edge_req(ei, s1, p1) and edge_req(ei, s2, p2) arrive

for edge id ei. In this case, we answer only the request of s1 and build a dependency

chain as before using messages id_succ(s1, p1, s2, p2) pushed into the sorter IdSucc.

During the simulation phase, EM-ES cannot yet decide whether a swap is legal.

Thus, s1 sends for every con�icting edge its original state as well as the updated state

to the p2-th slot of s2 using a PQ. If a swap receives multiple edge states per slot, it

simulates the swap for all possible combinations.

During the perform swaps phase, EM-ES operates as described in the independent

case: it computes the swapped edges and determines whether the swap has to be skipped.

If a successor exists, the new state is not pushed into the EdgeUpdates sorter but rather

forwarded to the successor in a TFP fashion. This way, every invalidated edge id receives

exactly one update in EdgeUpdates and the merging remains correct.

4.5.9 Complexity

Due to source edge dependencies, EM-ES’s complexity increases with the number of

swaps that share the same edge id. This number is low in case r = O(m): let Xi

be a random variable expressing the number of swaps that reference edge ei. Since

every swap constitutes two independent Bernoulli trials towards ei, the indicator Xi

is binomially distributed with p = 1/m, yielding an expected chain length of 2r/m.

Also, for r = m/2 swaps, max1≤i≤n(Xi) = O(ln(m)/ ln ln(m)) holds with high

104

EM-CM/ES: Sampling of Graphs from Degree Sequence

Degree sequence D = (1, 1, 2, 2, 2, 4)

[1, 2, 3, 3, 4, 4, 5, 5, 6, 6, 6, 6]

[6, 6, 4, 5, 4, 5, 6, 1, 3, 2, 3, 6]

[6, 6] [4, 5] [4, 5] [1, 6] [2, 3] [3, 6]

1

6 3 2

4 5

1. Input

2. Materialized multiset of stubs

3. Shu�led sequence Resulting graph

4. Paired stubs forming edges

Figure 4.7: Possible execution path of Configuration Model with the degree sequence D = (1, 1, 2, 2, 2, 4) as input.

probability based on a balls-into-bins argument [252]. Thus, we can bound the largest

number of edge states simulated with high probability by O(poly log(m)), assuming

non-overlapping dependency chains. Further observe that Xi converges towards an

independent Poisson distribution for large m. Then the expected state space per edge

is O(1). The experiments in Section 4.10.3 suggest that this bound also holds for

overlapping dependency chains.

In order to keep the dependency chains short, EM-ES splits the sequence of swaps S

into runs of equal size. Our experimental results show that a run size of r = m/8 is a

suitable choice. For every run, the algorithm executes the six phases as described before.

Each time the graph is updated, the mapping between an edge and its id may change.

The switching probabilities, however, remain unaltered due to the initial assumption of

uniformly distributed swaps. Thus EM-ES triggers O(r/m sort(m)) I/Os in total whp..

4.6 EM-CM/ES: Sampling graphs with Prescribed Degree Sequence

In this section, we propose an alternative approach to generate a graph from a prescribed

degree sequence. In contrast to EM-HH which generates a highly biased but simple

graph, we use the Con�guration Model to sample a random but in general non-simple

graph. Thus, the resulting graph may contain self-loops and multi-edges which we

then rewire to obtain a simple graph. As experimental data suggests (cf. Section 4.6.2),

this still results in a biased realization of the degree sequence requiring additional edge

switching randomization steps.

4.6.1 Configuration Model

Let D = [di]ni=1 be a degree sequence with n nodes. The Con�guration Model builds a

multiset of node ids which can be thought of as half-edges (or stubs). It produces a total

of di half-edges labeled vi for each node vi. The algorithm then chooses two half-edges

uniformly at random and creates an edge according to their labels. It repeats the last

step with the remaining half-edges until all are paired. A naïve implementation of this

algorithm requires with high probability Ω(m) I/Os if m ≥ cM and any constant c > 1.

It is therefore impractical in the fully external setting.

We rather materialize the multiset as a sequence in which each node appears di
times similar to the approach of [201]. Subsequently, the sequence is shu�ed to obtain

a random permutation with O(sort(m)) I/Os by sorting the sequence according to a

105

Massive Graphs Following the LFR Benchmark

uniform variate drawn for each half-edge
8
. Finally, we scan over the shu�ed sequence

and match pairs of adjacent half-edges into edges.

As illustrated in Figure 4.7, the Con�guration Model gives rise to self-loops and

multi-edges which then need to be rewired, cf. section 4.6.2. Consequently, the rewiring

process depends on the number of introduced illegal edges. In the following lemma, we

bound their number from above.

Lemma 4.6. Let D be drawn from Pld ([a, b), 2). The expected number of self-loops

and multi-edges are bound by:

E[#self-loops] ≤ 1

2

(
b− a+ 1

ln(b+ 1)− ln(a)

)
E[#multi-edges] ≤ 1

2

(
b− a+ 1

ln(b+ 1)− ln(a)

)2

J

Proof. For an arbitrary degree sequence D, [20] and [260] derive expectation values in

terms of D’s mean 〈D〉 and its second moment 〈D2〉. For n→∞, the authors show:

E[#self-loops(D)] =
〈D2〉 − 〈D〉
2(〈D〉 − 1

n)
−→ 〈D

2〉 − 〈D〉
2〈D〉 (4.1)

E[#multi-edges(D)] ≤ 1

2

(
(〈D2〉 − 〈D〉)2

(D − 1
n)(D − 3

n)

)
−→ 1

2

(〈D2〉 − 〈D〉
〈D〉

)2

(4.2)

We now bound 〈D〉 and 〈D2〉 in the case that D is drawn from the powerlaw distri-

bution Pld ([a, b), γ). Since each entry in D is independently drawn, it su�ces to

bound the expected value and the second moment of the underlying distribution. Let

CD =
∑b

i=a i
−γ

, then they follow as:

〈D〉 =

b∑
i=a

i−γ+1/CD and 〈D2〉 =

b∑
i=a

i−γ+2/CD

Both numerators are sandwiched between

∫ b+1
a xq dx ≤∑b

i=a i
q ≤

∫ b
a−1 x

q dx where

q = 1− γ or q = 2− γ, respectively. In the case of γ = 2, the second moment hence

simpli�ed to 〈D2〉 = (
∑b

i=a 1)/CD = (b−a+1)/CD. Applying this identity and the

lower bound (
∫ b+1
a x−1 dx)/CD ≤ 〈D〉 to Section 4.6.1, directly yields the claim. �

4.6.2 Edge Rewiring for Non-Simple Graphs

Graphs generated using the Con�guration Model may contain multi-edges and self-

loops. In order to obtain a simple graph we need to detect these illegal edges and rewire

them. After sorting the edge list lexicographically, illegal edges can be detected in a

single scan. For each self-loop we issue a swap with a randomly selected partner edge.

Similarly, for each group of parallel edges, we generate swaps with random partner

8

IfM >
√
mB(1+o(1))+O(B) this can be improved toO(scan(m)) I/Os [290] which does however

not a�ect the total complexity of our pipeline.

106

EM-CA: Community Assignment

edges for all but one multi-edge. Subsequently, we execute the provisioned swaps using

a variant of EM-ES (see below). The process is repeated until all illegal edges have

been removed. To accelerate the endgame, we double the number of swaps for each

remaining illegal edge in every iteration.

Since EM-ES is employed to remove parallel edges based on targeted swaps, it needs

to process non-simple graphs. Analogous to the initial formulation, we forbid swaps

that introduce multi-edges even if they would reduce the multiplicity of another edge

(cf. [353]). Nevertheless, EM-ES requires slight modi�cations for non-simple graphs.

Consider the case where the existence of a multi-edge is inquired several times.

Since EL is sorted, the initial edge multiplicities can be counted while scanning EL
during the load existence phase. In order to correctly process the dependency chain, we

have to forward the (possibly updated) multiplicity information to successor swaps. We

annotate the existence tokens exist_msg(s, e,#(e)) with these counters where #(e)

is the multiplicity of edge e.

More precisely, during the perform swaps phase, swap σ1 = σ(〈a, b〉, d) is informed

(among others) of multiplicities of edges ea, eb, fst(σ1) and snd(σ1) by incoming exis-

tence messages. If σ1 is legal, we send requested edges and multiplicities of the swapped

state to any successor σ2 of σ1 provided in ExistSucc. Otherwise, we forward the edges

and multiplicities of the unchanged initial state. As an optimization, edges which have

been removed (i.e. have multiplicity zero) are omitted.

4.7 EM-CA: Community Assignment

In the LFR benchmark, every node belongs to one (non-overlapping) or more (over-

lapping) communities. EM-CA �nds such a random assignment subject to the two

constraints that all communities get as many nodes as previously determined (see Fig-

ure 4.1) and that for a node vi all its assigned communities have enough other members

to satisfy the node’s intra-community degree din

i /νi.

For the sake of simplicity, we �rst restrict ourselves to the non-overlapping case, in

which every node belongs to exactly one community. Consider a sequence of community

sizes S = [sξ]Cξ=1 with n =
∑C

ξ=1 sξ and a sequence of intra-community degrees

D = [din

i]ni=1. Let S andD be non-decreasing and positive. The task is to �nd a random

surjective assignment χ : V→[C] with:

(R1) Every community ξ is assigned sξ nodes as requested, with

sξ :=
∣∣{v | v ∈ V ∧ χ(v)=ξ}

∣∣
.

(R2) Every node v ∈ V becomes member of a su�ciently large community χ(v) with

sχ(v) > din

v .

Observe that χ can be interpreted as a bipartite graph where the partition classes are

given by the communities [C] and nodes [vi]ni=1 respectively, and each edge corresponds

to an assignment.

107

Massive Graphs Following the LFR Benchmark

4.7.1 A Simple, Iterative, But not yet Complete Algorithm

To ease the description of the algorithm, let us also ignore (R2) for now, and discuss

the changes needed in Section 4.7.2. Then the assignment graph can be sampled in the

spirit of the Con�guration Model (cf. Section 4.6). To do so, we draw a permutation π

of nodes uniformly at random, and assign nodes [vπ(i)]
xξ+sξ
i=xξ+1 to community ξ where

xξ :=
∑ξ−1

i=1 si is the number of slots required for communities with indices below ξ.

To ease later modi�cations, we prefer an equivalent iterative formulation: while there

exists a yet unassigned node u, draw a community X with probability proportional

to the number of its remaining free slots (i.e. P[X=ξ] ∝ sξ). Assign node u to X ,

reduce the community’s probability mass by decreasing sX ← sX − 1 and repeat.

By construction, the �rst scheme is unbiased and the equivalence of both approaches

follows as a special case of Lemma 4.7 (see below).

We implement the random selection process e�ciently based on a binary tree where

each community corresponds to a leaf with a weight equal to the number of free slots

in the community. Inner nodes store the total weight of their left subtree. In order to

draw a community, we sample an integer Y ∈ [0,WC) uniformly at random where

WC :=
∑C

ξ=1 sξ is the tree’s total weight. Following the tree according to Y yields the

leaf corresponding to community X . An I/O-e�cient data structure [239] based on lazy

evaluation for such dynamic probability distributions enables a fully external algorithm

with O
(
n/B · logM/B(C/B)

)
= O(sort(n)) I/Os. However, if C < M , we can store

the tree in IM, allowing a semi-external algorithm which only needs to scan through D,

triggering O(scan(n)) I/Os.

4.7.2 Enforcing Constraint on Community Size (R2)

To enforce (R2), we additionally ensure that all nodes are assigned to a su�ciently large

community such that they �nd enough neighbors to connect to. We exploit that S and

D are non-decreasing and de�ne pv := max{ξ | sξ > din

v } as the index of the smallest

community node v may be assigned to. Since [pv]v is therefore monotonic itself, it can

be computed online with O(1) additional IM and O(scan(n)) I/Os in the fully external

setting by scanning through S and D in parallel. To restrict the random sampling to

the communities {1, . . . , pv}, we reduce the aforementioned random interval to [0,Wv)

where the partial sum Wv :=
∑pv−1

ξ=1 sξ is available while computing pv . We generalize

the notation of uniform assignments subject to (R2) as follows:

Lemma 4.7. Given S = [sξ]Cξ=1 and D, let u, v ∈ V be two nodes with the same

constraints pu = pv and let c be an arbitrary community. Further, let χ be an assignment

generated by EM-CA. Then, P[χ(u)=c] = P[χ(v)=c]. J

Proof. Without loss of generality, assume that pu = p1, i.e. u is one of the nodes with

the tightest constraints. If this is not the case, we just execute EM-CA until we reach

a node u′ which has the same constraints as u does (i.e. pu′ = pu), and apply the

Lemma inductively. This is legal since EM-CA streams through D in a single pass, and

108

EM-CA: Community Assignment

is oblivious to any future values. In case c > p1, neither u nor v can become a member

of c. Therefore, P[χ(u)=c] = P[χ(v)=c] = 0 and the claim follows trivially.

Now consider the case c ≤ p1. Let sc,i be the number of free slots in community c at

the beginning of round i ≥ 1 andWi =
∑C

j=1 sj,i their sum at that time. By de�nition,

EM-CA assigns node u to community cwith probability P[χ(u)=c] = sc,u/Wu. Further,

the algorithm has to update the number of free slots. Thus, initially we have s,1c = sc
and for iteration 1 < i ≤ n it holds that

s,ic =

{
s

(i−1)
c − 1 if vi−1 was assigned to c

s
(i−1)
c otherwise

.

The number of free slots is reduced by one in each stepWi =W1−i+1 =
(∑C

j=1 Sj

)
−

i+ 1. The claim follows by transitivity if we show P[χ(u)=c] = sc,u/Wu = sc,1/W1.

For u = 1 it holds by de�nition. Now, consider the induction step for u > 1:

P[χ(u)=c]

= sc,u/Wu = P[χ(u−1)=c]
sc,u−1 − 1

Wu
+ P[χ(u−1)6=c]sc,u−1

Wu

=
sc,u−1

Wu−1

sc,u−1 − 1

Wu
+

(
1− sc,u−1

Wu−1

)
sc,u−1

Wu

=
sc,u−1 · Wu−1 − sc,u−1

Wu−1 · Wu
=

sc,u−1(Wu−1 − 1)

Wu−1 · (Wu−1 − 1)

=
sc,u−1

Wu−1

Ind. Hyp.

=
sc,1
W1

�

4.7.3 Assignment with Overlapping Communities

In the overlapping case, the weight of S increases to account for nodes with multiple

memberships. There is further an additional input sequence [νi]ni=1 corresponding to the

number of memberships node vi shall have, each of which has din

i /νi intra-community

neighbors. We then sample not only one community per node vi, but νi di�erent ones.

Since the number of memberships νv � M is small, a duplication check during

the repeated sampling is easy in the semi-external case and does not change the I/O

complexity. However, it is possible that near the end of the execution there are less

free communities than memberships requested. We address this issue by switching to

an o�ine strategy for the last Θ(M) assignments and keep them in IM. As ν = O(1),

there are Ω(ν) communities with free slots for the last Θ(M) vertices and a legal

assignment exists with high probability. The o�ine strategy proceeds as before until

it is unable to �nd ν di�erent communities for a node. In that case, it randomly picks

earlier assignments until swapping the communities is possible.

In the fully external setting, the I/O complexity grows linearly in the number

of samples taken and is thus bounded by O(ν sort(n)). However, the community

memberships are obtained lazily and out-of-order which may assign a node several times

to the same community. This corresponds to a multi-edge in the bipartite assignment

graph. It can be removed using the rewiring technique detailed in Section 4.6.2.

109

Massive Graphs Following the LFR Benchmark

4.8 EM-GER/EM-CER: Merging Intra- and Inter-Community Graphs

As illustrated in Figure 4.1, LFR samples the inter-community graph and all intra-

community graphs independently. As a result, they may exhibit minor inconsistencies

which EM-LFR resolves in accordance with the original version by applying additional

rewiring steps which are discussed in this section.

4.8.1 EM-GER: Global Edge Rewiring

The global graph is materialized without taking the community structure into account.

As illustrated in Figure 4.2 (center), it therefore can contain edges between nodes that

share a community. Those edges have to be removed as they decrease the mixing

parameter µ. We rewire these edges by performing an edge swap for each forbidden

edge with a randomly selected partner. Since it is unlikely that such a random swap

introduces another illegal edge (if su�ciently many communities exist), this probabilistic

approach e�ectively removes forbidden edges. We apply this idea iteratively and perform

multiple rounds until no forbidden edges remain.

To detect illegal edges, EM-GER considers the community assignment’s output which

is a lexicographically ordered sequence χ of (v, ξ)-pairs containing the community ξ

for each node v. For nodes that join multiple communities several such pairs exist.

Based on this, we annotate every edge with the communities of both incident vertices

by scanning through the edge list twice: once sorted by source nodes and once by target

nodes. For each forbidden edge, a swap is generated by drawing a random partner edge

id and a swap direction. Subsequently, all swaps are executed using EM-ES which now

also emits the set of edges involved. It su�ces to restrict the scan for illegal edges to

this set since all edges not contained are legal by construction.

Complexity. Each round requiresO(sort(m)) I/Os for selecting the edges and exe-

cuting the swaps. The number of rounds is usually small but depends on the community

size distribution: the probability that a randomly placed edge lies within a community

increases with the size of the community.

4.8.2 EM-CER: Community Edge Rewiring

In the case of overlapping communities, the same edge can be generated as part of

multiple communities. We iteratively apply semi-random swaps to remove those parallel

edges similarly to Sections 4.6.2 and 4.8. The selection of random partners is however

more involved for EM-CER as it has to ensure that all swaps take place between two

edges of the same community. This way, the rewired edges keep the same memberships

as their sources and the community sizes do not change. The rewiring itself is easy to

achieve by considering all communities independently.

Unfortunately, EM-CER needs to process all communities conjointly to detect forbid-

den edges: we augment each edge [ui, vi] with its community id ci and concatenate these

lists into one annotated graph possibly containing multi-edges. During a scan through

the lexicographically sorted and annotated edge list [(ui, vi, ci)]i, parallel edges are

110

Implementation

easily found as they appear next to each other. We select all but one from each group

for rewiring. Each partner is selected by a uniform edge id eb addressing the eb-th edge

of the community at hand. In a fully external setting, it su�ces to sort the selected

candidates, their partners and the edge list by community to gather all information

required to invoke EM-ES.

EM-CER avoids the expensive step of sorting all edges if we can store O(1) items

per illegal edge in IM (which is almost certainly the case since there are typically few

illegal edges). It then sorts the edge ids of partners for every community independently

and keeps pointers to the smallest requested partner edge id of each community. While

scanning through the concatenated edge list, we count for each community the number

of edges seen so far. When the counter matches the smallest requested id of the current

edge’s community, we load the edge and advance the pointer to the next request.

Complexity. The fully external rewiring requires O(sort(m)) I/Os for the initial

step and each following round. The semi-external variant triggers only O(scan(m))

I/Os per round. The number of rounds is usually small and the overall runtime spent on

this step is insigni�cant. Nevertheless, the described scheme is a Las-Vegas algorithm

and there exist (unlikely) instances on which it will fail.
9

To mitigate this issue, we allow

a small fraction of edges (e.g., 10−3
) to be removed if we detect a slow convergence.

To speed up the endgame, we also draw additional swaps uniformly at random from

communities which contain a multi-edge.

4.9 Implementation

We implemented the proposed algorithms in C++ based on the STXXL library [102],

providing implementations of EM data structures, a parallel EM sorter, and an EM

priority queue. Among others, we applied the following optimizations for EM-ES:

• Most message types contain both a swap id and a �ag indicating which of the

swap’s edges is targeted. We encode both of them in a single integer by using all but

the least signi�cant bit for the swap id and store the �ag in there. This signi�cantly

reduces the memory volume and yields a simpler comparison operator since the

standard integer comparison already ensures the correct lexicographic order.

• Instead of storing and reading the sequence of swaps several times, we exploit

the implementation’s pipeline structure and directly issue edge id requests for

every arriving swap. Since this is the only time edge ids are read from a swap,

only the remaining direction �ag is stored in an e�cient EM vector, which uses

one bit per �ag and supports I/O-e�cient writing and reading. Both steps can be

overlapped with an ongoing EM-ES run.

• Instead of storing each edge in the sorted external edge list as a pair of nodes, we

only store each source node once and then list all targets of that node. This still

9

Consider a node which is a member of two communities in which it is connected to all other nodes. If

only one of its neighbors also appears in both communities, the multi-edge cannot be rewired.

111

Massive Graphs Following the LFR Benchmark

supports sequential scan and merge operations which are the only operations we

need. This almost halves the I/O volume of scanning or updating the edge list.

• During the execution of several runs we can delay the updating of the edge list

and combine it with the load nodes phase of the next run. This reduces the number

of scans per additional run from three to two.

• We use asynchronous stream adapters for tasks such as streaming from sorters

or the generation of random numbers. These adapters run in parallel in the

background to preprocess and bu�er portions of the stream in advance and hand

them over to the main thread.

Besides parallel sorting and asynchronous pipeline stages, the current EM-LFR

implementation facilitates parallelism during the generation and randomization of intra-

community graphs which can be computed without any synchronization. While the

algorithms themselves are sequential, this pipelining and parallelization of independent

tasks within EM-LFR leads to a consistent utilization of available threads in our test

system (cf. Section 4.10).

4.10 Experimental Results

4.10.1 Notation and Setup

The number of repetitions per data point (with di�erent random seeds) is denoted with S.

Error bars correspond to the unbiased estimation of the standard deviation. For LFR we

perform experiments based on two di�erent scenarios:

• lin — The maximal degrees and community sizes scale linearly as a function of

n. For a particular n and ν the parameters are chosen as: µ ∈ {0.2, 0.4, 0.6},
dmin=10ν, dmax=nν/20, γ=2, smin=20, smax=n/10, β=1, O=n.

• const — We keep the community sizes and the degrees constant and consider

only non-overlapping communities. The parameters are chosen as: dmin=50,

dmax=10,000, γ=2, smin=50, smax=12,000, β=1, O=n.

Real-world networks have been shown to have increasing average degrees as they

become larger [215]. Increasing the maximum degree as in our �rst setting lin increases

the average degree. Having a maximum community size of n/10 means, however, that

a signi�cant proportion of the nodes belongs to huge communities which are not very

tightly knit due to the large number of nodes of low degree. While a more limited

growth is probably more realistic, the exact parameters depend on the network model.

Our second parameter set const shows an example of much smaller maximum

degrees and community sizes. We chose the parameters such that they approximate the

degree distribution of the Facebook network in May 2011 when it consisted of 721 million

active users as reported in [328]. The same study however found that strict powerlaw

models are unable to accurately mimic Facebook’s degree distribution. Further, the

112

Experimental Results

101

102

103

104

105

106

103 104 105 106 107 108

N
u

m
b

e
r

o
f

u
n

i
q

u
e

e
l
e
m

e
n

t
s

Number n of samples

γ = 1: 0.379 · x1/1

γ = 2: 1.380 · x1/2

γ = 3: 1.270 · x1/3

10−6

10−5

10−4

10−3

10−2

10−1

100

10 100

R
e
l
a
t
i
v
e

f
r
e
q

u
e
n

c
y

Number of edge con�gurations received by swap

Run size 0.05n
Run size 0.125n

Run size 0.5n

Figure 4.8: Le�: Number of distinct elements in n samples (i.e. node degrees in a degree sequence) taken from Pld ([1, n), γ);

cf. Section 4.10.2. Right: Overhead induced by tracing inter-swap dependencies. Fraction of swaps as function of the number

of edge configurations they receive during the simulation phase (cf. Section 4.10.3).

authors show that the degree distribution of the U.S. users (removing connections to

non-U.S. users) is very similar to the one of the Facebook users of the whole world,

supporting our use of just one parameter set for di�erent graph sizes.

The minimum degree of the Facebook network is 1, but such small degrees are

signi�cantly less prevalent than a powerlaw degree sequence would suggest, which

is why we chose a value of 50. Our maximum degree of 10,000 is larger than the one

reported for Facebook (5000 which is an arbitrarily enforced limit by Facebook). The

expected average degree of this degree sequence is 264, which is slightly higher than

the reported 190 (world) or 214 (U.S. only). Our parameters are chosen such that the

median degree is approximately 99 matching the worldwide Facebook network. Similar

to the �rst parameter set, we chose the maximum community size slightly larger than

the largest degree.

4.10.2 EM-HH’s State Size

In Lemma 4.2, we bound EM-HH’s internal memory consumption by showing that a

sequence of n numbers randomly sampled from Pld ([1, n), γ) contains only O
(
n1/γ

)
distinct values with high probability.

In order to support Lemma 4.2 and to estimate the hidden constants, samples of

varying size between 103
and 108

are taken from distributions with exponents γ ∈
{1, 2, 3}. Each time, the number of unique elements is computed and averaged over

S = 9 runs with identical con�gurations but di�erent random seeds. The results

illustrated in Figure 4.8 support the predictions with small constants and negligible

deviations. For the commonly used exponent 2, we �nd 1.38
√
n distinct elements in a

sequence of length n.

4.10.3 Inter-Swap Dependencies

Whenever multiple swaps target the same edge, EM-ES simulates all possible states

to be able to retrieve con�icting edges. In Section 4.5.9, we argue that the number of

113

Massive Graphs Following the LFR Benchmark

101

102

103

104

105

106

107 108 109 1010

R
u

n
t
i
m

e
[
s
]

Number m of edges

VL-ES, d̄= 100
VL-ES, d̄= 1000
EM-ES, d̄= 100

EM-ES, d̄= 1000
100

101

102

103

104

105

104 105 106 107 108

R
u

n
t
i
m

e
[
s
]

Number n of node

Original LFR

EM-LFR

Figure 4.9: Le�: Runtime on SysB of VL-ES and EM-ES on graph with m edges and avg. deg. d̄ executing k=10m swaps (cf.

Section 4.10.6). Right: Runtime on SysA of the original LFR implementation and EM-LFR for µ=0.2 (cf. Section 4.10.9).

dependencies and the state size remains manageable if the sequence of swaps is split into

su�ciently short runs. We found that for m edges and k swaps, 8k/m runs minimize

the runtime for large instances of lin. As indicated in Figure 4.8, in this setting 78.7 %

of swaps receive the two requested edge con�gurations with no additional overhead

during the simulation phase. Less than 0.4 % consider more than four additional states

(i.e. more than six messages in total). Similarly, 78.6 % of existence requests remain

without dependencies.

4.10.4 Test Systems

Runtime measurements were conducted on the following systems:

SysAinexpensive server Intel E5-2630 v3 (8 core, 2.4GHz), 64 GB RAM, 3× Samsung 850 PRO SATA SSD

SysBcommodity hardware Intel Core i7 970 (6 core, 3.2GHz), 12 GB RAM, 1× Samsung 850 PRO SATA SSD

Since edge switching scales linearly in the number of swaps (in case of EM-ES in the

number of runs), some of the measurements beyond 3 h runtime are extrapolated from

the progress until then. We veri�ed that errors stay within the indicated margin using

reference measurements without extrapolation.

4.10.5 Performance of EM-HH

OurEM-HH:

R Section 4.4

implementation of EM-HH produces 180(5) million edges per second on SysA up to

at least 2 · 1010
edges. Here, we include the computation of the input degree sequence,

EM-HH’s compaction step, as well as the writing of the output to external memory.

4.10.6 Performance of EM-ES

Figure 4.9 presents the runtime required on SysB to process k = 10m swaps in an input

graph with m edges and for the average degrees d̄ ∈ {100, 1000}. For reference, we

include the performance of the existing internal memory edge swap algorithm VL-ES

114

Experimental Results

2.85

2.90

2.95

3.00

3.05

×109 Nodes: 105, Mixing: 1.0

Mean after 5m swaps

EM-ES, S = 1138

EM-CMES, S = 600

0 1 2 3 4 5

Number of swaps per edge k/m

5.5

6.0

6.5

7.0

7.5

×108

N
u

m
b

er
o
f

tr
ia

n
gl

es

0.90

0.92

0.94

0.96

0.98

1.00
Nodes: 107, Mixing: 0.2

Mean after 5m swaps

EM-ES, S = 40

EM-CMES, S = 40

0 1 2 3 4 5

Number of swaps per edge k/m

0.42

0.44

0.46

0.48

0.50

D
eg

re
e

a
ss

o
rt

a
ti

v
it

y

Figure 4.10: Le�: Number of triangles on const with n = 1 · 105
and µ = 1.0. Right: Degree assortativity on const with

n = 1 · 107
and µ = 0.2. In order to factor in the increased runtime of EM-CM/ES compared to EM-HH, plots of EM-CM/ES

are shi�ed by the runtime of this phase relative to the execution of EM-ES. As EM-CM/ES is a Las-Vegas algorithm, this

incurs an additional error along the x-axis.

based on the authors’ implementation [332].
10

VL-ES slows down by a factor of 25 if

the data structure exceeds the available internal memory by less than 10 %. We observe

an analogous behavior on machines with larger RAM. EM-ES:

R Section 4.5

EM-ES is faster than VL-ES for

all instances with m > 2.5 · 108
edges; those graphs still �t into main memory.

FDSM has applications beyond synthetic graphs, and is for instance used on real

data to assess the statistical signi�cance of observations [296]. In that spirit, we execute

EM-ES on an undirected version of the crawled ClueWeb12 graph’s core [324] which

we obtain by deleting all nodes corresponding to uncrawled URLs.
11

Performing k = m

swaps on this graph with n ≈ 9.8 · 108
nodes and m ≈ 3.7 · 1010

edges is feasible in

less than 19.1 h on SysB.

Bhuiyan et al. propose a distributed edge switching algorithm and evaluate it on a

compute cluster with 64 nodes each equipped with two Intel Xeon E5-2670 2.60GHz

8-core processors and 64GB RAM [43]. The authors report to perform k = 1.15 · 1011

swaps on a graph with m = 1010
generated in a preferential attachment process in less

than 3 h. We generate a preferential attachment graph using an MP-BA:

R Chapter 3

EM generator [239]

matching the aforementioned properties and carried out edge swaps using EM-ES on

SysA. We observe a slowdown of only 8.3 on a machine with 1/128 the number of

comparable cores and 1/64 of internal memory.

4.10.7 EM-CM/ES’s Performance and Mixing Comparison with EM-ES

In Section 4.6, we describe an alternative graph sampling method. Instead of seeding

EM-ES with a highly biased graph using EM-HH, we employ the Con�guration Model

to generate a non-simple random graph and then obtain a simple graph using several

10

Here we report only on the edge swapping process excluding any precomputation. To achieve

comparability, we removed connectivity tests, �xed memory management issues, and adopted the number

of swaps. Further, we extended counters for edge ids and accumulated degrees to 64 bit integers in order

to support experiments with more than 230
edges.

11

We consider such vertices atypically simple as they have degree 1 and account for ≈84 % of nodes.

115

Massive Graphs Following the LFR Benchmark

EM-ES runs in a Las-Vegas fashion.

Since EM-ES scans through the edge list in each iteration, runs with very few

swaps are ine�cient. For this reason, we start the subsequent Markov chain to further

randomize the graph early: First identify all multi-edges and self-loops and generate

swaps with random partners. In a second step, we then introduce additional random

swaps until the run contains at least m/10 operations.
12

ForEM-CM/ES:

R Section 4.6

an experimental comparison between EM-ES and EM-CM/ES, we consider the

runtime until both yield a su�ciently uniform random sample. Of course, the uniformity

is hard to quantify; similarly to related studies (cf. Section 4.1.1), we estimate the mixing

times of both approaches as follows.

Starting from a common seed graphG(0)
, we generate an ensemble {G(k)

1 , . . . , G
(k)
S }

of S � 1 instances by applying independent random sequences of k � m swaps each.

During this process, we regularly export snapshots G
(jm)
i of the intermediate instances

j ∈ [k/m] of graph Gi. For EM-CM/ES, we start from the same seed graph, apply the

algorithm and then carry out k swaps as described above.

For each snapshot, we compute several metrics, such as the average local clustering

coe�cient (ACC), the number of triangles, and degree assortativity.
13

We then investi-

gate how the distribution of these measures evolves within the ensemble as we carry out

an increasing number of swaps. We omit results for ACC since they are less sensitive

compared to the other measures (see Section 4.10.8).

As illustrated in Figure 4.10 and Section 4.C (Appendix), all proxy measures converge

within 5m swaps with a very small variance. No statistically signi�cant change can be

observed compared to a Markov chain with 30m operations (which was only computed

for a subset of each ensemble due to its computational cost). EM-HH generates biased

instances with special properties, such as a high number of triangles and correlated

node degrees, while the features of EM-CM/ES’s output nearly match the converged

ensemble. This suggests that the number of swaps to obtain a su�ciently uniform

sample can be reduced for EM-CM/ES.

Due to computational costs, the study was carried out on multiple machines execut-

ing several tasks in parallel. Hence, absolute running times are not meaningful, and we

rather measure the computational costs in units of time required to carry out 1m swaps

by the same process. This accounts for the o�set of EM-CM/ES’s �rst data point.

The number of rounds required to obtain a simple graph depends on the degree

distribution. For const with n = 1 · 105
and µ = 1, a fraction of 5.1 % of the edges

produced by the Con�guration Model are illegal. EM-ES requires 18(2) rewiring runs

in case a single swap is used per round to rewire an illegal edge. In the default mode of

operation, 5.0 rounds su�ce as the number of rewiring swaps per illegal edge is doubled

in each round. For larger graphs with n = 1 · 107
, only 0.07 % of edges are illegal and

need 2.25(40) rewiring runs.

12

Chosen to yield execution times similar to the m/8-setting of EM-ES on simple graphs.

13

In preliminary experiments, we also included spectral properties (such as extremal eigenvalues of the

adjacency/Laplacian matrix) and the closeness centrality of �xed nodes. As these are more expensive to

compute and yield qualitatively similar results, we decided not to include them in the larger trials.

116

Experimental Results

105 106 107

Number n of nodes

1

2

3

4

5

C
on

ve
rg

en
ce

af
te

r
k
/m

st
ep

s Local cluster coeff.

Degree assortativity

Triangle count

105 106

Number n of nodes

1

2

3

4

5

C
on

ve
rg

en
ce

af
te

r
k
/m

st
ep

s Local cluster coeff.

Degree assortativity

Triangle count

Figure 4.11: Number of swaps per edge a�er which ensembles of graphs with the following parameters converge: const,

1 · 105 ≤ n ≤ 1 · 107
and µ = 0.4 (le�) and µ = 0.6 (right). Due to computational costs, the ensemble size is reduced from

S > 100 to S > 10 for large graphs.

4.10.8 Convergence of EM-ES

In a similar spirit to the previous section, we indirectly investigate the Markov chain’s

mixing time as a function of the number of nodes n. To do so, we generate ensembles as

before with 1 · 105 ≤ n ≤ 1 · 107
and compute the same graph metrics. For each group

and measure, we then search for the �rst snapshot p in which the measure’s mean is

within an interval of half the standard deviation of the �nal values and subsequently

remains there for at least three phases. We then interpret p as a proxy for the mixing

time. As depicted in Figure 4.11, no measure shows a systematic increase over the two

orders of magnitude considered. It hence seems plausible not to increase the number of

swaps performed by EM-LFR compared to the original implementation.

4.10.9 Performance of EM-LFR

Figure 4.9 reports the runtime of the original LFR implementation and EM-LFR as

a function of the number of nodes n and ν = 1. EM-LFR is faster for graphs with

n ≥ 2.5 · 104
nodes which feature approximately 5 · 105

edges and are well in the

IM domain. Further, the implementation is capable of producing graphs with more

than 1 · 1010
edges in 17 h.

14
Using the same time budget, the original implementation

generates graphs more than two orders of magnitude smaller.

4.10.10 �alitative Comparison of EM-LFR

When designing EM-LFR, we closely followed the LFR benchmark such that we can ex-

pect it to produce graphs following the same distribution as the original LFR benchmark.

To con�rm this experimentally, we generated graphs with identical parameters using

the original LFR implementation and EM-LFR. For disjoint clusters we also compare it

with the implementation of NetworKit [316].

14

Roughly 1.5 h are spend in the end-game of the Global Rewiring (at that point less than one edge out

of 106
is invalid). In this situation, an algorithm using random I/Os may yield a speedup. Alternatively, we

could simply discard the insigni�cant fraction of remaining invalid edges.

117

Massive Graphs Following the LFR Benchmark

0

0.2

0.4

0.6

0.8

1

103 104 105

A
R

Number n of nodes

Mixing µ = 0.6, Cluster: Infomap

Orig

NetworKit

EM

0

0.2

0.4

0.6

0.8

1

103 104 105

A
R

Number n of nodes

Mixing µ = 0.6, Cluster: Louvain

Orig

NetworKit

EM

Figure 4.12: Adjusted rand of Infomap or Louvain and ground truth at µ=0.6 with disjoint clusters, smin=10, smax=n/20.

For disjoint clusters, we evaluate the results of theInfomap and Louvain Infomap [287] and the Lou-

vain [53] algorithm. The Louvain algorithm optimizes the famous modularity mea-

sure [261] while Infomap optimizes the map equation [287]. Both are formalizations

of the intuitive principle that clusters should be internally dense but externally sparse.

Modularity is directly based on this principle. Its value is based on the fraction of edges

inside clusters, the so-calledcoverage coverage. However, just optimizing coverage would mean

that a single cluster with all nodes is optimal. As a remedy, the expected coverage

of the clustering in a graph with the same nodes and degrees, but edges distributed

randomly according to the Con�guration Model, is subtracted from the actual coverage.

The map equation, on the other hand, optimizes the expected length of the description

of a random walk. In the non-hierarchical version we employ here, this expected length

is calculated for a two-level code with global code words for clusters and then local

code words for the nodes inside every cluster. The basic idea is that in a good clustering,

random walks tend to stay within a cluster and thus such a clustering leads to shorter

code words in expectation.

The Infomap and the Louvain algorithm are quite similar in their basic structure.

They start with a clustering where every node is in its own cluster. Then they apply

two principles alternately: local moving and contraction. The idea of local moving is to

move a node into a cluster of one of its adjacent nodes if this improves the clustering

quality. This is repeatedly applied to all nodes in a random order until no improvement

is possible anymore. In the contraction phase, the nodes of each cluster are contracted

into a single node while combining duplicate edges. The Infomap algorithm extends

this basic scheme by introducing additional local moving phases on parts of the graph

where clusters can be split again to improve the quality.

Higher modularity and lower map equation values indicate better clusterings. How-

ever, sometimes higher modularity values can also be achieved by merging small but

actually clearly distinct clusters. This e�ect is called resolution limit [132]. The map equa-

tion has a resolution limit, too, but in practice it is orders of magnitudes smaller [190].

The Louvain algorithm as well as Infomap were found to achieve high-quality results

on LFR benchmark graphs while being fast [209]. In particular the Louvain method is

also among the most frequently used community detection algorithms [133, 120].

118

Experimental Results

0

0.2

0.4

0.6

0.8

1

103 104 105

N
M

I

Number n of nodes

Mixing: µ = 0.4, Cluster: OSLOM, Overlap: ν = 2

Orig

EM

0

0.2

0.4

0.6

0.8

1

103 104 105

N
M

I

Number n of nodes

Mixing: µ = 0.4, Cluster: OSLOM, Overlap: ν = 4

Orig

EM

Figure 4.13: NMI of OSLOM and ground truth at µ = 0.4 with 2/4 overlapping clusters per node.

For overlapping clusters, we evaluate the results of OSLOMOSLOM [211]. OSLOM aims to

�nd clusters that are statistically signi�cant. Given a cluster C and a node u, it analyzes

whether u has statistically signi�cantly many connections to nodes in C relative to a

Con�guration Model graph. For a single cluster, OSLOM considers both adding and

removing nodes based on this criteria.

To cluster a whole graph, clusters are expanded starting from single nodes and

then evaluated by testing if repeatedly adding and removing nodes leads to an empty

cluster. Repeatedly encountered clusters are considered signi�cant. The algorithm

stops when it starts detecting similar clusters over and over again. OSLOM is one of

the best-performing algorithms for overlapping community detection [77, 133]. We

compare the clusterings of the algorithms to LFR’s ground truth using the Adjusted Rand Measure

and NMI

adjusted rand

measure [180] for disjoint clusters and NMI [124] for both disjoint and overlapping

clusters.

Further, we examine the average local clustering coe�cient. As it measures the

fraction of closed triangles, it shows the presence of locally denser areas as expected

in communities [189]. We report these measures for graphs ranging from 103
to 106

nodes and present a selection of results in �gures 4.12 to 4.14; all of them can be found

in Section 4.B (Appendix). There are only small di�erences within the range of random

noise between the graphs generated by EM-LFR and the other two implementations.

Note that due to the computational costs above 105
edges, there is only one sample for

the original implementation causing the outliers in Figure 4.12.

Similar to the results in [120], we also observe that the performance of clustering

algorithms drops signi�cantly as the graph’s size grows. For Louvain, this is partially

due to the resolution limit that prevents the detection of small communities in huge

graphs. Due to the di�erent powerlaw exponents, the average community size grows

much faster than the average degree as the size of the graphs is increased. Therefore,

in particular the larger clusters become sparser and thus more di�cult to detect with

increasing graph size. On the other hand, small clusters become easier to detect as the

graph size grows because outgoing edges are distributed among more nodes and are thus

easier to distinguish from intra-cluster edges. This might explain why the performance

of OSLOM �rst improves as the graph size grows. Apart from that, currently used

heuristics might also just be unsuited for large graphs with nodes of very di�erent

119

Massive Graphs Following the LFR Benchmark

0

0.2

0.4

0.6

0.8

1

103 104 105A
v
g
.

L
o

c
a
l

C
l
u

s
t
e
r
i
n

g
C

o
e
�

.

Number n of nodes

Mixing: µ = 0.6

Orig

NetworKit

EM

Figure 4.14: Average local clustering coe�icient with mixing of µ = 0.6 and disjoint clusters.

degrees. Results on LFR graphs with one million nodes in [169] show that both Louvain

and Infomap are unable to detect the ground truth on LFR graphs with higher values of

µ even though the ground truth has a better modularity or map equation score than the

found clustering. Such behavior clearly demonstrates the necessity of EM-LFR for being

able to study this phenomenon on even larger graphs and develop algorithms that are

able to handle such instances.

The quality of the community assignments used by LFR and EM-LFR is assessed in

terms of the modularity QG(C) scores [261] achieved by the generated graph G and

ground truth C . In general QG(C) takes values in [−1, 1], but for large n and bounded

community sizes, the modularity of a LFR graph approaches Q → 1−µ as the coverage

corresponds to 1−µ while the expected coverage approaches 0. For each con�guration

n ∈ {103, . . . , 106} and µ ∈ {0.2, 0.4, 0.6}, we generate S ≥ 10 networks for each

generator and compute their mean modularity score. In all cases, the relative di�erences

between the two generators is below 10−2
and for small µ typically another order of

magnitude smaller.

4.11 Outlook and Conclusion

We propose the �rst I/O-e�cient graph generator for the LFR benchmark and the FDSM ,

which is the most challenging step involved that dominates the running time: EM-HH

materializes a graph based on a prescribed degree distribution without I/O for virtually

all realistic parameters. Including the generation of a powerlaw degree sequence and the

writing of the output to disk, our implementation generates 1.8 · 108
edges per second

for graphs exceeding main memory. EM-ES randomizes graphs with m edges based on

k edge switches using O(k/m · sort(m)) I/Os for k = Ω(m).

We demonstrate that EM-ES is faster than the internal memory implementation [332]

even for large instances still �tting in main memory and scales well beyond the limited

main memory. Compared to the distributed approach by [43] on a cluster with 128 CPUs,

EM-ES exhibits a slowdown of only 8.3 on one CPU and hence poses a viable and cost-

e�cient alternative. Our EM-LFR implementation is orders of magnitude faster than the

120

Outlook and Conclusion

original LFR implementation for large instances and scales well to graphs exceeding main

memory while the generated graphs are equivalent. Graphs with more than 1 · 1010

edges can be generated in 17 h. We further give evidence that commonly accepted

parameters to derive the length of the edge switching Markov chain remain valid for

graph sizes approaching the external memory domain and that EM-CM/ES can be used

to accelerate the process.

This provides the basis for the development and evaluation of clustering algorithms

for graphs that exceed main memory. The necessity for such an evaluation has already

been demonstrated by �rst results in [169] that show that the behavior of algorithms on

large graphs is not necessarily the same as on small graphs even when cluster sizes do

not change. Comparison measures such as NMI or the adjusted rand index typically

do not consider the graph structure, therefore they can usually still be computed in

internal memory even for graphs that exceed main memory. However, for graphs where

even the number of nodes exceeds the size of the internal memory, there is the need to

develop memory-e�cient algorithms also for comparing clusterings.

Acknowledgment

We thank Hannes Seiwert and Mark Ortmann for valuable discussions on EM-HH.

121

Massive Graphs Following the LFR Benchmark

Appendix 4.A Summary of Definitions

Table 4.1: Definitions used

in this paper.

Symbol Description

[k] [k] := {1, . . . , k} for k ∈ N+ (Sec. 4.2)

[u, v] Undirected edge with implication u ≤ v (Sec. 4.2)

〈X〉 The mean 〈X〉 :=
∑n
i=1 xi/n

〈X2〉 The second moment 〈X2〉 :=
∑n
i=1 x

2
i /n

B Number of items in a block transferred between IM and EM (Sec. 4.2.2)

dmin, dmax Min/max degree of nodes in LFR benchmark (Sec. 4.3)

din

v din

v = (1−µ) · dv , intra-community degree of node v (Sec. 4.3)

D D = (d1, . . . , dn) with di ≤ di+1∀i. Degree sequence of a graph (Sec. 4.4)

D(D) D(D) =
∣∣{di : 1 ≤ i ≤ n}

∣∣
where D = (d1, . . . , dn) (Sec. 4.4)

n Number of vertices in a graph (Sec. 4.2)

m Number of edges in a graph (Sec. 4.2)

µ Mixing parameter in LFR benchmark, i.e. ratio of neighbors that shall be in

other communities (Sec. 4.3)

M Number of items �tting into internal memory (Sec. 4.2.2)

Pld ([a, b), γ) Powerlaw distribution with exponent −γ on the interval [a, b) (Sec. 4.2)

smin, smax Min/max size of communities in LFR benchmark (Sec. 4.3)

scan(n) scan(n) = Θ(n/B) I/Os, scan complexity (Sec. 4.2.2)

sort(n) sort(n) = Θ((n/B) · logM/B(n/B)) I/Os, sort complexity (Sec. 4.2.2)

Table 4.2: Parameters of

overlapping LFR. The typi-

cal values are based on the

suggestions by [208].

Parameter Meaning

n Number of nodes to be produced

Pld ([dmin, dmax), γ) Degree distribution of nodes, typically γ = 2

0 ≤ O ≤ n, ν ≥ 1 O random nodes belong to ν communities; remainder has one

membership

Pld ([smin, smax), β) Size distribution of communities, typically β=1

0 < µ < 1 Mixing parameter: fraction of neighbors of every node u that

shall not share a community with u

122

Comparing LFR Implementations

Appendix 4.B Comparing LFR Implementations

0

0.2

0.4

0.6

0.8

1

103 104 105

A
R

Number n of nodes

Mixing µ = 0.2, Cluster: Infomap

Orig

NetworKit

EM

0

0.2

0.4

0.6

0.8

1

103 104 105

A
R

Number n of nodes

Mixing µ = 0.4, Cluster: Infomap

Orig

NetworKit

EM

0

0.2

0.4

0.6

0.8

1

103 104 105

A
R

Number n of nodes

Mixing µ = 0.6, Cluster: Infomap

Orig

NetworKit

EM

0

0.2

0.4

0.6

0.8

1

103 104 105

N
M

I

Number n of nodes

Mixing µ = 0.2, Cluster: Infomap

Orig

NetworKit

EM

0

0.2

0.4

0.6

0.8

1

103 104 105

N
M

I

Number n of nodes

Mixing µ = 0.4, Cluster: Infomap

Orig

NetworKit

EM

0

0.2

0.4

0.6

0.8

1

103 104 105

N
M

I

Number n of nodes

Mixing µ = 0.6, Cluster: Infomap

Orig

NetworKit

EM

0

0.2

0.4

0.6

0.8

1

103 104 105

A
R

Number n of nodes

Mixing µ = 0.2, Cluster: Louvain

Orig

NetworKit

EM

0

0.2

0.4

0.6

0.8

1

103 104 105

A
R

Number n of nodes

Mixing µ = 0.4, Cluster: Louvain

Orig

NetworKit

EM

0

0.2

0.4

0.6

0.8

1

103 104 105

A
R

Number n of nodes

Mixing µ = 0.6, Cluster: Louvain

Orig

NetworKit

EM

0

0.2

0.4

0.6

0.8

1

103 104 105

N
M

I

Number n of nodes

Mixing µ = 0.2, Cluster: Louvain

Orig

NetworKit

EM

0

0.2

0.4

0.6

0.8

1

103 104 105

N
M

I

Number n of nodes

Mixing µ = 0.4, Cluster: Louvain

Orig

NetworKit

EM

0

0.2

0.4

0.6

0.8

1

103 104 105

N
M

I

Number n of nodes

Mixing µ = 0.6, Cluster: Louvain

Orig

NetworKit

EM

103

104

105

106

107

108

103 104 105

E
d

g
e
s

Number n of nodes

Mixing: µ = 0.2

Orig

NetworKit

EM

103

104

105

106

107

108

103 104 105

E
d

g
e
s

Number n of nodes

Mixing: µ = 0.4

Orig

NetworKit

EM

103

104

105

106

107

108

103 104 105

E
d

g
e
s

Number n of nodes

Mixing: µ = 0.6

Orig

NetworKit

EM

0

0.2

0.4

0.6

0.8

1

103 104 105A
v
g

.
L

o
c
a
l

C
l
u

s
t
e
r
i
n

g
C

o
e
�

.

Number n of nodes

Mixing: µ = 0.2

Orig

NetworKit

EM

0

0.2

0.4

0.6

0.8

1

103 104 105A
v
g

.
L

o
c
a
l

C
l
u

s
t
e
r
i
n

g
C

o
e
�

.

Number n of nodes

Mixing: µ = 0.4

Orig

NetworKit

EM

0

0.2

0.4

0.6

0.8

1

103 104 105A
v
g

.
L

o
c
a
l

C
l
u

s
t
e
r
i
n

g
C

o
e
�

.

Number n of nodes

Mixing: µ = 0.6

Orig

NetworKit

EM

Figure 4.15: Comparison of the original LFR implementation, the NetworKit implementation and our EM solution for values

of 103 ≤ n ≤ 106
, µ∈{0.2, 0.4, 0.6}, γ=2, β=1 dmin=10, dmax=n/20, smin=10, smax=n/20. Clustering is performed using

Infomap and Louvain and compared to the ground truth emi�ed by the generator using AdjustedRandMeasure (AR) and

Normalized Mutual Information (NMI); S ≥ 8. Due to the computational costs, graphs with n ≥ 105
have a reduced

multiplicity. In case of the original implementation it may be based on a single run which accounts for the few outliers.

123

Massive Graphs Following the LFR Benchmark

0

0.2

0.4

0.6

0.8

1

103 104 105

N
M

I

Number n of nodes

Mixing: µ = 0.2, Cluster: OSLOM, Overlap: ν = 2

Orig

EM

0

0.2

0.4

0.6

0.8

1

103 104 105

N
M

I

Number n of nodes

Mixing: µ = 0.4, Cluster: OSLOM, Overlap: ν = 2

Orig

EM

0

0.2

0.4

0.6

0.8

1

103 104 105

N
M

I

Number n of nodes

Mixing: µ = 0.6, Cluster: OSLOM, Overlap: ν = 2

Orig

EM

0

0.2

0.4

0.6

0.8

1

103 104 105A
v
g

.
L

o
c
a
l

C
l
u

s
t
e
r
i
n

g
C

o
e
�

.

Number n of nodes

Mixing: µ = 0.2

Orig

EM

0

0.2

0.4

0.6

0.8

1

103 104 105A
v
g

.
L

o
c
a
l

C
l
u

s
t
e
r
i
n

g
C

o
e
�

.

Number n of nodes

Mixing: µ = 0.4

Orig

EM

0

0.2

0.4

0.6

0.8

1

103 104 105A
v
g

.
L

o
c
a
l

C
l
u

s
t
e
r
i
n

g
C

o
e
�

.

Number n of nodes

Mixing: µ = 0.6

Orig

EM

0

0.2

0.4

0.6

0.8

1

103 104 105

D
e
g

r
e
e

A
s
s
o

r
t
a
t
i
v
i
t
y

Number n of nodes

Mixing: µ = 0.2, Degree Assortativity, Overlap: ν = 2

Orig

EM

0

0.2

0.4

0.6

0.8

1

103 104 105

D
e
g

r
e
e

A
s
s
o

r
t
a
t
i
v
i
t
y

Number n of nodes

Mixing: µ = 0.4, Degree Assortativity, Overlap: ν = 2

Orig

EM

0

0.2

0.4

0.6

0.8

1

103 104 105

D
e
g

r
e
e

A
s
s
o

r
t
a
t
i
v
i
t
y

Number n of nodes

Mixing: µ = 0.6, Degree Assortativity, Overlap: ν = 2

Orig

EM

0

0.2

0.4

0.6

0.8

1

103 104 105

N
M

I

Number n of nodes

Mixing: µ = 0.2, Cluster: OSLOM, Overlap: ν = 3

Orig

EM

0

0.2

0.4

0.6

0.8

1

103 104 105

N
M

I

Number n of nodes

Mixing: µ = 0.4, Cluster: OSLOM, Overlap: ν = 3

Orig

EM

0

0.2

0.4

0.6

0.8

1

103 104 105

N
M

I

Number n of nodes

Mixing: µ = 0.6, Cluster: OSLOM, Overlap: ν = 3

Orig

EM

0

0.2

0.4

0.6

0.8

1

103 104 105A
v
g

.
L

o
c
a
l

C
l
u

s
t
e
r
i
n

g
C

o
e
�

.

Number n of nodes

Mixing: µ = 0.2

Orig

EM

0

0.2

0.4

0.6

0.8

1

103 104 105A
v
g

.
L

o
c
a
l

C
l
u

s
t
e
r
i
n

g
C

o
e
�

.

Number n of nodes

Mixing: µ = 0.4

Orig

EM

0

0.2

0.4

0.6

0.8

1

103 104 105A
v
g

.
L

o
c
a
l

C
l
u

s
t
e
r
i
n

g
C

o
e
�

.

Number n of nodes

Mixing: µ = 0.6

Orig

EM

0

0.2

0.4

0.6

0.8

1

103 104 105

D
e
g

r
e
e

A
s
s
o

r
t
a
t
i
v
i
t
y

Number n of nodes

Mixing: µ = 0.2, Degree Assortativity, Overlap: ν = 3

Orig

EM

0

0.2

0.4

0.6

0.8

1

103 104 105

D
e
g

r
e
e

A
s
s
o

r
t
a
t
i
v
i
t
y

Number n of nodes

Mixing: µ = 0.4, Degree Assortativity, Overlap: ν = 3

Orig

EM

0

0.2

0.4

0.6

0.8

1

103 104 105

D
e
g

r
e
e

A
s
s
o

r
t
a
t
i
v
i
t
y

Number n of nodes

Mixing: µ = 0.6, Degree Assortativity, Overlap: ν = 3

Orig

EM

124

Comparing LFR Implementations

0

0.2

0.4

0.6

0.8

1

103 104 105

N
M

I

Number n of nodes

Mixing: µ = 0.2, Cluster: OSLOM, Overlap: ν = 4

Orig

EM

0

0.2

0.4

0.6

0.8

1

103 104 105

N
M

I

Number n of nodes

Mixing: µ = 0.4, Cluster: OSLOM, Overlap: ν = 4

Orig

EM

0

0.2

0.4

0.6

0.8

1

103 104 105

N
M

I

Number n of nodes

Mixing: µ = 0.6, Cluster: OSLOM, Overlap: ν = 4

Orig

EM

0

0.2

0.4

0.6

0.8

1

103 104 105A
v
g

.
L

o
c
a
l

C
l
u

s
t
e
r
i
n

g
C

o
e
�

.

Number n of nodes

Mixing: µ = 0.2

Orig

EM

0

0.2

0.4

0.6

0.8

1

103 104 105A
v
g

.
L

o
c
a
l

C
l
u

s
t
e
r
i
n

g
C

o
e
�

.

Number n of nodes

Mixing: µ = 0.4

Orig

EM

0

0.2

0.4

0.6

0.8

1

103 104 105A
v
g

.
L

o
c
a
l

C
l
u

s
t
e
r
i
n

g
C

o
e
�

.

Number n of nodes

Mixing: µ = 0.6

Orig

EM

0

0.2

0.4

0.6

0.8

1

103 104 105

D
e
g

r
e
e

A
s
s
o

r
t
a
t
i
v
i
t
y

Number n of nodes

Mixing: µ = 0.2, Degree Assortativity, Overlap: ν = 4

Orig

EM

0

0.2

0.4

0.6

0.8

1

103 104 105

D
e
g

r
e
e

A
s
s
o

r
t
a
t
i
v
i
t
y

Number n of nodes

Mixing: µ = 0.4, Degree Assortativity, Overlap: ν = 4

Orig

EM

0

0.2

0.4

0.6

0.8

1

103 104 105

D
e
g

r
e
e

A
s
s
o

r
t
a
t
i
v
i
t
y

Number n of nodes

Mixing: µ = 0.6, Degree Assortativity, Overlap: ν = 4

Orig

EM

Figure 4.16: Comparison of the original LFR implementation and our EM solution for values values of 103 ≤ n ≤ 106
,

µ ∈ {0.2, 0.4, 0.6}, ν ∈ {2, 3, 4}, O = n, γ = 2, β = 1 dmin = 10, dmax = n/20, smin = 10ν, smax = ν · n/20. Clustering

is performed using OSLOM and compared to the ground truth emi�ed by the generator using a generalized Normalized

Mutual Information (NMI); S ≥ 5.

125

Massive Graphs Following the LFR Benchmark

Appendix 4.C Comparing EM-ES and EM-CM/ES

1.20
1.21
1.22
1.23
1.24
1.25

×108 Nodes: 105, Mixing: 0.2

Mean after 5m swaps

EM-ES, S = 1170

EM-CMES, S = 600

0 1 2 3 4 5

Number of swaps per edge k/m

0.8
0.9
1.0
1.1
1.2
1.3
×107

N
u

m
b

er
o
f

tr
ia

n
g
le

s

2.85

2.90

2.95

3.00

3.05

×109 Nodes: 105, Mixing: 1.0

Mean after 5m swaps

EM-ES, S = 1138

EM-CMES, S = 600

0 1 2 3 4 5

Number of swaps per edge k/m

5.5

6.0

6.5

7.0

7.5

×108

N
u

m
b

er
o
f

tr
ia

n
g
le

s

0.80

0.82

0.84

0.86

0.88

0.90
Nodes: 105, Mixing: 0.2

Mean after 5m swaps

EM-ES, S = 1170

EM-CMES, S = 600

0 1 2 3 4 5

Number of swaps per edge k/m

0.40

0.42

0.44

0.46

0.48

0.50

D
eg

re
e

as
so

rt
at

iv
it

y

0.54
0.55
0.56
0.57
0.58
0.59
0.60
0.61

Nodes: 105, Mixing: 1.0

Mean after 5m swaps

EM-ES, S = 1138

EM-CMES, S = 720

0 1 2 3 4 5

Number of swaps per edge k/m

0.32
0.33
0.34
0.35
0.36
0.37
0.38
0.39

D
eg

re
e

as
so

rt
at

iv
it

y

5.02
5.04
5.06
5.08
5.10
5.12

×108 Nodes: 107, Mixing: 0.2

Mean after 5m swaps

EM-ES, S = 40

EM-CMES, S = 40

0 1 2 3 4 5

Number of swaps per edge k/m

1.0
1.2
1.4
1.6
1.8
2.0
×107

N
u

m
b

er
of

tr
ia

n
gl

es

6.26
6.28
6.30
6.32
6.34
6.36
6.38

×1010 Nodes: 107, Mixing: 1.0

Mean after 5m swaps

EM-ES, S = 20

EM-CMES, S = 20

0 1 2 3 4 5

Number of swaps per edge k/m

1.2
1.4
1.6
1.8
2.0
2.2
2.4
×109

N
u

m
b

er
of

tr
ia

n
gl

es

0.90

0.92

0.94

0.96

0.98

1.00
Nodes: 107, Mixing: 0.2

Mean after 5m swaps

EM-ES, S = 40

EM-CMES, S = 40

0 1 2 3 4 5

Number of swaps per edge k/m

0.42

0.44

0.46

0.48

0.50

D
eg

re
e

as
so

rt
at

iv
it

y

0.90

0.92

0.94

0.96

0.98

1.00
Nodes: 107, Mixing: 1.0

Mean after 5m swaps

EM-ES, S = 20

EM-CMES, S = 20

0 1 2 3 4 5

Number of swaps per edge k/m

0.42

0.44

0.46

0.48

0.50

D
eg

re
e

as
so

rt
at

iv
it

y

Figure 4.17: Triangle count and degree assortativity of a graph ensemble obtained by applying random swaps/the Configuration

Model to a common seed graph. Refer to section 4.10.7 for experimental details.

126

Comparing EM-ES and EM-CM/ES

127

5
Parallel and I/O-e�icient

Randomization of Massive Networks

using Global Curveball Trades

joint work with C.J. Carstens, M. Hamann, U. Meyer, H. Tran, and D. Wagner

Markov chain

of Curveball for

(1, 2, 4, 2, 2, 1)

Graph randomization is a crucial task in the analysis and synthesis of networks. It

is typically implemented as an edge switching process (ES) repeatedly swapping the

nodes of random edge pairs while maintaining the degrees involved [151].

Curveball is a novel approach that instead considers the whole neighborhoods of

randomly drawn node pairs. Its Markov chain converges to a uniform distribution,

and experiments suggest that it requires less steps than the established ES [81].

Since trades however are more expensive, we study Curveball’s practical runtime

by introducing the first e�icient Curveball algorithms: the I/O-e�icient EM-CB for

simple undirected graphs and its internal memory pendant IM-CB.

Further, we investigate global trades [81] processing every node in a graph during

a single super step, and show that undirected global trades converge to a uniform

distribution and perform superior in practice. We then discuss EM-GCB and EM-

PGCB for global trades and give experimental evidence that EM-PGCB achieves

the quality of the state-of-the-art ES algorithm EM-ES [168] nearly one order of

magnitude faster.

This chapter is based on the peer-reviewed conference article [82]:

[82] C. J. Carstens, M. Hamann, U. Meyer, M. Penschuck, H. Tran, and D. Wagner. Par-

allel and I/O-e�cient randomisation of massive networks using Global Curveball

trades. In Y. Azar, H. Bast, and G. Herman, editors, European Symp. on Algorithms
ESA, volume 112 of LIPIcs, pages 11:1–11:15. Schloss Dagstuhl – Leibniz-Zentrum

für Informatik, 2018. doi:10.4230/LIPIcs.ESA.2018.11 .

My contribution

Hung Tran and I are main authors of this paper. Together, we contributed most of the

algorithms and their implementations.

https://doi.org/10.4230/LIPIcs.ESA.2018.11

Global Curveball

5.1 Introduction

In the analysis of complex networks, such as social networks, the underlying graphs

are commonly compared to random graph models to understand their structure [186,

262, 320]. While simple models like Erdős-Rényi graphs [121] are easy to generate

and analyze, they are too di�erent from commonly observed powerlaw degree se-

quences [262, 258, 320]. Thus, random graphs with the same degree sequence as the

given graph are frequently used [97, 186, 297]. In practice, many of these graphs are

simple graphs, i.e. graphs without self-loops and multiple edges. In order to obtain

reliable results in these cases, the graphs sampled need to be simple since non-simple

models can lead to signi�cantly di�erent results [296, 297]. The randomization of a

given graph is commonly implemented as an Edge Switching [97, 246].

Nowadays, massive graphs that cannot be processed in the RAM of a single com-

puter, require new analysis algorithms to handle these huge datasets. In turn, large

benchmark graphs are required to evaluate the algorithms’ scalability — in terms of

speed and quality. LFR is a standard benchmark for evaluating clustering algorithms

which repeatedly generates highly biased graphs that are then randomized [208, 210].

[168] presents the external memory LFR generator EM-LFR and its I/O-e�cient edge

switching EM-ES. Although EM-ES is faster than previous results even for graphs �t-

ting into RAM, it dominates EM-LFR’s running time. Alternative sampling via the

Con�guration Model [247] was studied to reduce the initial bias and the number of ES
steps necessary [168]. Still, graph randomization remains a major bottleneck during the

generation of these huge graphs.

The Curveball algorithm has been originally proposed for randomizing binary

matrices while preserving row and column sums [321, 331] and has been adopted for

graphs [80, 81]: instead of switching a pair of edges as in ES, Curveball trades the

neighbors of two nodes in each step. Carstens et al. further propose the concept of a

global trade, a super step composed of single trades targeting every node
1

in a graph

once [81]. The authors show that global trades in bipartite or directed graphs converge

to a uniform distribution, and give experimental evidence that global trades require

fewer Markov-chain steps than single trades. However, while fewer steps are needed,

the trades themselves are computationally more expensive. Since we are not aware

of previous e�cient Curveball algorithms and implementations, we investigate this

trade-o� here.

5.1.1 Our Contributions

We present the �rst e�cient algorithms for Curveball: the (sequential) internal memory

and external memory algorithms IM-CB
2

and EM-CB for the Simple Undirected Curve-

ball algorithm (see Section 5.4). Experiments in Section 5.5, indicate that they are faster

than the established edge switching approaches in practice.

1

For an odd number n of nodes, a single node is left out

2

We pre�x internal memory algorithms with IM and I/O-e�cient algorithms with EM. The su�ces CB,

GCB, and PGCB denote Curveball, CB. with global trades, and parallel CB. with global trades respectively.

130

Preliminaries and Notation

In Section 5.3, we show that random global trades lead to uniform samples of

simple, undirected graphs and demonstrate experimentally in Section 5.5 that they

converge even faster than the corresponding number of uniform single trades. Exploiting

structural properties of global trades, we simplify EM-CB yielding EM-GCB and the

parallel I/O-e�cient EM-PGCB which achieves EM-ES’s quality nearly one order of

magnitude faster in practice (see Section 5.5).

5.2 Preliminaries and Notation

We de�ne the short-hand [k] := {1, . . . , k} for k ∈ N>0, and write [xi]bi=a for an

ordered sequence [xa, xa+1, . . . , xb].

Graphs and Degree Sequences

A graph G = (V,E) has n = |V | sequentially numbered nodes V = {v1, . . . , vn} and

m = |E| edges. Unless stated di�erently, graphs are assumed to be undirected and

unweighted. To obtain a unique representation of an undirected edge {u, v} ∈ E, we

use ordered edges [u, v] ∈ E implying u ≤ v; in contrast to a directed edge, the ordering

is used algorithmically but does not carry any meaning. A graph is called simple if

it contains neither multi-edges nor self-loops, i.e. E ⊆ {{u, v} |u, v ∈ V with u 6=
v }. For node u ∈ V de�ne the neighborhood Au := {v : {u, v} ∈ E} and degree
deg(u) := |Au|. Let dmax := maxv{deg(v)} be the maximal degree of a graph. A

vector D = [di]ni=1 is a degree sequence of graph G i� ∀vi ∈ V : deg(vi) = di.

Randomization and Distributions

Pld ([a, b), γ) refers to an integer Powerlaw Distribution with exponent −γ ∈ R for

γ ≥ 1 and values from the interval [a, b); let X be an integer random variable drawn

from Pld ([a, b), γ) thenP[X=k] ∝ k−γ (proportional to) if a ≤ k < b andP[X=k] = 0

otherwise. A statement depending on some number x > 0 is said to hold with high
probability if it is satis�ed with probability at least 1− 1/xc for some constant c ≥ 1.

Let S be a �nite set, x ∈ S and let σ be permutation on S, we de�ne rankσ(x) as the

number of elements positioned in front of x by σ.

5.2.1 External Memory Model

In contrast to classic models of computation, such as the unit-cost random-access ma-

chine, modern computers contain deep memory hierarchies ranging from fast registers,

over caches and main memory to solid-state drives (SSDs) and hard disks. Algorithms

unaware of these properties may face signi�cant performance penalties.

We use the commonly accepted External Memory Model by Aggarwal and Vitter [7]

to reason about the in�uence of data locality in memory hierarchies. It features two

memory types, namely fast internal memory (IM or RAM) holding up to M data items,

and a slow disk of unbounded size. The input and output of an algorithm are stored in

external memory (EM while computation is only possible on values in IM. An algorithm’s

131

Global Curveball

v2

x0+x1

x2=1

v3

x1+x2

x3=2

v4

x2+x3

x4=3

v5

x3+x4

x5=5

v6

x4+x5

x6=8

v7

x5+x6

x7=13

Algorithm 6: Compute Fibonacci numbers using Time Forward Processing

1 PQ.push((key = 2, val = 0), (key = 2, val = 1)) // Send base cases x0 & x1 to v2

2 for i← 2, . . . , n do
3 sum← 0

4 while PQ.min.key == i do
5 sum← sum + PQ.removeMin().val // Receive all messeges for xi

6 print(xi = sum)

7 PQ.push((key = i+1, val = sum), (key = i+2, val = sum))

performance is measured in the number of I/Os required. Each I/O transfers a block

of B = Ω(
√
M) consecutive items between memory levels. Reading or writing n

contiguous items is referred to as scanning and requires scan(n) := Θ(n/B) I/Os.

Sorting n consecutive items triggers sort(n) := Θ((n/B) · logM/B(n/B)) I/Os. For all

realistic values of n, B and M , scan(n) < sort(n)� n. Sorting complexity constitutes

a lower bound for most intuitively non-trivial EM tasks [242]. EM queues use amortized

O(1/B) I/Os per operation and requireO(B) main memory [230]. An external priority

queue (PQ) requires O(sort(n)) I/Os to push and pop n items [23, 22].

5.2.2 TFP: Time Forward Processing

Time Forward Processing (TFP) is a generic technique to manage data dependencies of

external memory algorithms [230]. Consider an algorithm computing values x1, . . . , xn
in which the calculation of xi requires previously computed values. One typically

models these dependencies using a directed acyclic graph G=(V,E). Every node

vi ∈ V corresponds to the computation of xi and an edge (vi, vj) ∈ E indicates that

the value xi is necessary to compute xj . For instance consider the Fibonacci sequence

x0 = 0, x1 = 1, xi = xi−1 + xi−2 ∀i ≥ 2 in which each node vi with i ≥ 2 depends

on exactly its two predecessors (see Algorithm 6). Here, a linear scan for increasing i

su�ces to solve the dependencies.

In general, an algorithm needs to traverse G according to some topological order

≺T of nodes V and also has to ensure that each vj can access values from all vi with

(vi, vj) ∈ E. The TFP technique achieves this as follows: as soon as xi has been

calculated, messages of the form 〈vj , xi〉 are sent to all successors (vi, vj) ∈ E. These

messages are kept in a minimum priority queue sorting the items by their recipients

according to ≺T . By construction, the algorithm only starts the computation vi once all

predecessors vj ≺T vi are completed. Since these predecessors already removed their

messages from the PQ, items addressed to vi (if any) are currently the smallest elements

in the data structure and can be dequeued. Using a suited EM PQ [23, 22], TFP incurs

O(sort(k)) I/Os, where k is the number of messages sent.

132

Randomization Schemes

5.3 Randomization Schemes

Here, we summarize the randomization schemes ES [246] and Curveball for simple undi-

rected graphs [80], and then discuss the notion of global trades. Since these algorithms

iteratively modify random parts of a graph, they can be analyzed as �nite Markov chains.

It is well known that any �nite, irreducible, aperiodic, and symmetric Markov chain

converges to the uniform distribution on its state space (e.g. [217]). Its mixing time
indicates the number of steps necessary to reach the stationary distribution.

5.3.1 Edge Switching

Edge Switching is a state-of-the-art randomization method with a wide range of ap-

plications, e.g. the generation of graphs [168, 210], or the randomization of biological

datasets [185]. In each step, ES chooses two edges e1 = [u1, v1], e2 = [u2, v2] and a di-

rection d ∈ {0, 1} uniformly at random and rewires them into {u1, u2}, {v1, v2} if d=0

and {u1, v2}, {v1, u2} otherwise. If a step yields a non-simple graph, it is skipped. ES’s

Markov chain is irreducible [118], aperiodic and symmetric [151] and hence converges

to the uniform distribution on the space of simple graphs with �xed degree sequence.

While analytic bounds on the mixing time [156, 157] are impractical, usually a number

of steps linear in the number of edges is used in practice [280].

5.3.2 Simple Undirected Curveball Algorithm

Curveball is a novel randomization method. In each step, two nodes trade their neigh-

borhoods, possibly yielding faster mixing times [80, 321, 331].

Definition 5.1 (Simple Undirected Trade). Let G = (V,E) be a simple graph, A be

its adjacency list representation, and Au be the set of neighbors of node u. A trade

t = (i, j, σ) fromA to adjacency listB is de�ned by two nodes i and j, and a permutation

σ : Dij → Dij where Ai−j := Ai \ (Aj ∪ {j}) and Dij := Ai−j ∪Aj−i. As shown in

Figure 5.1, performing t on G results in

Bi = (Ai \Ai−j) ∪ {x | x ∈ Dij , rankσ(x) ≤ |Ai−j} and

Bj = (Aj \Aj−i) ∪ {x | x ∈ Dij , rankσ(x) > |Ai−j |} .

Since edges are undirected, symmetry has to be preserved: for all u ∈ Ai\Bi the label j

in adjacency list Bu is changed to i and analogously for Aj \Bj . J

Simple Undirected Curveball randomizes a graph by repeatedly selecting a pair of

nodes {i, j} and a permutation σ on the disjoint neighbors uniformly at random. Its

Markov chain is irreducible, aperiodic and symmetric. Therefore, it converges to the

uniform distribution [81].

133

Global Curveball

i j

1
2 3

4

5

6

i j

1
2

2

3
4

5

6

Ai = {1, 2, 6, j}
Aj = {3, 4, 5, 6, i}

Bi = {3, 4, 6, j}
Bj = {1, 2, 5, 6, i}

Bi−j = {3, 4}
Bj−i = {1, 2, 5}

σ(1,2︸︷︷︸
Ai−j

, 3,4,5︸ ︷︷ ︸
Aj−i

) 7→ (4,3︸︷︷︸
Bi−j

, 5,1,2︸ ︷︷ ︸
Bj−i

)

Figure 5.1: The trade (i, j, σ) between nodes i and j only considers edges to the disjoint neighbors {1, . . . , 5}. For the

reassigned disjoint neighbors we use the short-hand Bi−j := {x | x ∈ Dij , rankσ(x) ≤ |Ai−j |} and Bj−i := {x | x ∈
Dij , rankσ(x) > |Ai−j |}. The triangle (i, j, 6) is omi�ed as trading any of its edges would either introduce parallel edges,

self-loops, or result in no change at all. Then, the given σ exchanges four edges.

5.3.3 Undirected Global Trades

Trade sequences typically consist of pairs in which each constituent is drawn uniformly

at random. While it is a well known fact
3

that Θ(n log n) trades are required in expec-

tation until each node is included at least once, there is no apparent reason why this

should be bene�cial; in fact, experiments in Section 5.5 suggest the contrary.

Carstens et al. propose the notion of global trades for directed or bipartite graphs

as a 2-partition of all nodes implicitly forming n/2 node pairs to be traded in a single

step [81]. This concept fails for undirected graphs where in general the two directions

(u, v) and (v, u) of an edge {u, v} cannot be processed independently in a single step.

We hence extend global trades to undirected graphs by interpreting them as a sequence

of n/2 simple trades which together target each node exactly once (we assume n to be

even; if this is not the case we add an isolated node
4
). Dependencies are then resolved

by the order of this sequence.

Definition 5.2 (Undirected Global Trade). LetG = (V,E) be a simple undirected graph

and π : V → V be a permutation on the set of nodes. A global trade T = (t1, . . . , t`)

for ` = bn/2c is a sequence of trades ti = {π(v2i−1), π(v2i), σi}. By applying T to G

we mean that the trades t1, . . . , t` are applied successively starting with G. J

Theorem 5.3 allows us to use global trades as a substitute for a sequence of single

trades, as global trades preserve the stationary distribution of Curveball’s Markov chain.

The proof extends [81], which shows convergence of global trades in bipartite or directed

graphs, to undirected graphs and uses similar techniques.

Theorem 5.3. Let G = (V,E) be an arbitrary simple undirected graph, and let ΩG

be the set of all simple undirected graphs that have the same degree sequence as G.

Curveball with global trades started at G converges to the uniform distribution on

ΩG. J

Proof. In order to prove the claim, we have to show irreducibility and aperiodicity of

the Markov chain as well as symmetry of the transition probabilities.

3

For instance studied as the coupon collector problem.

4

This is equivalent to randomly excluding a single node from a global trade

134

Novel Curveball Algorithms for Undirected Graphs

For the �rst two properties it su�ces to show that whenever there exists a single

trade from state A to B, there also exists a global trade from A to B (see [79] for a

similar argument).
5

Observe that there is a non-zero probability that a single trade does not change the

graph, e.g. by selecting σi as the identity. Hence there is a non-zero probability that . . .

• . . . a global trade does not alter the graph at all. This corresponds to a self-loop at

each state of the Markov chain and hence guarantees aperiodicity.

• . . . all but one single trade of a global trade do not alter the graph. In this case,

a global trade degenerates to a single trade and the irreducibility shown in [79]

carries over.

It remains to show that the transition probabilities are symmetric. Let T gAB be the

set of global trades that transform state A to state B. Then the transition probability

between A and B equals the sum of probabilities of selecting a trade sequence from

T gAB . That is PAB =
∑

T∈T gAB
PA(T) where PA(T) denotes the probability of selecting

global trade T in state A.

The probability PA(t) of selecting a single trade t = (i, j, σ) from stateA to stateB

equals the probability PB(t̃) of selecting the reverse trade t̃ = (i, j, σ−1) from state B

toA [81]. We now de�ne the reverse global trade of T = (t1, . . . , t`) as T̃ = (t̃`, . . . , t̃1).

It is straight-forward to check that this gives a bijection between the sets T gAB and T gBA.

It remains to show that the middle equality holds in

PAB =
∑

T∈T gAB
PA(T)

!
=
∑

T̃∈T gBA
PB(T̃) = PBA.

Let T = (t1, . . . , t`) be a global trade from state A to state B as implied by π and

A = A1, . . . , A`+1 = B be the intermediate states. We denote the reversal of T and π

as T̃ and π̃ respectively and obtain

PA(T) = P[π]PA1(t1) . . .PA`(t`) = P[π̃]PB(t̃`) . . .PA2(t̃1) = PB(T̃).

Clearly P[π] = P[π̃] as we are picking permutations uniformly at random. The second

equality follows from PA(t) = PB(t̃) for a single trade between A and B. �

5.4 Novel Curveball Algorithms for Undirected Graphs

In this section we present the related algorithms EM-CB, IM-CB, EM-GCB and EM-

PGCB. They receive a simple graph G and a trade sequence T = [{ui, vi}]`i=1 as input

and compute the result of carrying out the trade sequence T (see Section 5.3.2) in order.

EM-CB and IM-CB are sequential solutions suited to process arbitrary trade se-

quences T . For our analysis, we assume T ’s constituents to be drawn uniformly at

5

Since each global trade can be emulated by its n/2 decomposed single trades, the reverse is true for a

hop of n/2 single trade steps. Due to dependencies however the transition probabilities generally do not

match, see V = {1, 2, 3, 4} and E = {[1, 2], [3, 4]} for a simple counterexample.

135

Global Curveball

random (as expected in typical applications). Both algorithms share a common design,

but di�er in the data structures used. EM-CB is an I/O-e�cient algorithm while IM-CB is

optimized for small graphs by using unstructured accesses to RAM. In contrast, EM-GCB

and EM-PGCB process global trades only. This restricted input model allows to represent

the trade sequence T implicitly by hash functions which further accelerates trading.

At core, all algorithms perform trades in a similar fashion: In order to carry out

the i-th trade {ui, vi}, they retrieve the neighborhoods Aui and Avi , shu�e
6

them, and

then update the graph. Once the neighborhoods are known, trading itself is simple. We

compute the set of disjoint neighbors D = (Aui ∪ Avi) \ (Aui ∩ Avi) and then draw

|Aui∩D| nodes fromD for ui uniformly at random while the remaining nodes go to vi. If

Aui andAvi are sorted this requires onlyO(|Aui |+ |Avi |) work and scan(|Aui |+|Avi |)
I/Os (see also proof of Lemma 5.6 if the neighborhoods �t into RAM). Hence we focus

on the harder task of obtaining and updating the adjacency information.

5.4.1 EM-CB: A Sequential I/O-e�icient Curveball Algorithm

EM-CB (Algorithm 7) is an I/O-e�cient Curveball algorithm to randomize undirected

graphs. This basic algorithm already contains crucial design principles which we further

explore with IM-CB, EM-GCB and EM-PGCB in sections 5.4.2 and 5.4.4 respectively.

The algorithm encounters the following challenges. After an undirected trade

{u, v} is carried out, it does not su�ce to only update the neighborhoods Au and Av :

consider the case that edge {u, x} changes into {v, x}. Then the switch also a�ects the

neighborhood of Ax. Here, we call u and v active nodes while x is a passive neighbor.

In the EM setting another challenge arises for graphs exceeding main memory; it is

prohibitively expensive to directly access the edge list since this unstructured pattern

triggers Ω(1) I/Os for each edge processed with high probability.

EM-CB approaches these issues by abandoning a classical static graph data structure

containing two redundant copies of each edge. Following the TFP principle, we rather

interpret all trades as a sequence of points over time that are able to receive messages.

Initially, we send each edge to the earliest trade one of its endpoints is active in.
7

This way, the �rst trade receives one message from each neighbor of the active nodes

and hence can reconstruct Au1 and Av1 . After shu�ing and reassigning the disjoint

neighbors, EM-CB sends each resulting edge to the trade which requires it next. If no

such trade exists, the edge can be �nalized by committing it to the output.

The algorithm hence requires for each (actively or passively) traded node u, the

index of the next trade in which u is actively processed. We call this the successor of u

and de�ne it to be∞ if no such trade exists. The dependency information is obtained

in a preprocessing step; given T = [{ui, vi}]`i=1, we �rst compute for each node u the

monotonically increasing index list S (u) of trades in which u is actively processed, i.e.

S (u) :=
[
i |u ∈ ti for i ∈ [`]

]
◦ [∞].

6

In contrast to De�nition 5.2, we do not consider the permutation σ of disjoint neighbors as part of the

input, but let the algorithm choose one randomly for each trade.

7

If an edge connects two nodes that are both actively traded we implicitly perform an arbitrary tie-break.

136

Novel Curveball Algorithms for Undirected Graphs

Algorithm 7: EM-CB

Data: Trade sequence T , simple graph G = (V,E) by edge list E

// Preprocessing: Compute Dependencies

1 foreach trade ti = (u, v) ∈ T for increasing i do
2 Send messages 〈u, ti〉 and 〈v, ti〉 to Sorter SorterTtoV

3 Sort SorterTtoV lexicographically // All trades of a node are next to each other

4 foreach node u ∈ V do
5 Receive S (u) = [t1, . . . , tk] from k messages addressed to u in SorterTtoV

6 Set tk+1 ←∞ // t1 =∞ i� u is never active

7 Send 〈ti, u, ti+1〉 to SorterDepChain for i ∈ [k]

8 foreach directed edge (u, v) ∈ E do
9 if u < v then
10 Send message 〈v, u, t1〉 via PqVtoV

11 else
12 Receive tv1 from unique message received via PqVtoV

13
if t1 ≤ tv1 then Send message 〈t1, u, v, tv1〉 via PqTtoT

else Send message 〈tv1, v, u, t1〉 via PqTtoT

14 Sort SorterDepChain

// Main phase – Currently at least the first trade has all information it needs

15 foreach trade ti = (u, v) ∈ T for increasing i do
16 Receive successors τ(u) and τ(v) via SorterDepChain

17 Receive neighbors AG(u), AG(v) and their successors τ(·) from PqTtoT

18 Randomly reassign disjoint neighbors, yielding new neighbors A ′G(u) and A ′G(v).

19 foreach (a, b) ∈ ({u} ×A ′G(u)) ∪ ({v} ×A ′G(v)) do

20

if τa =∞ and τb =∞ then Output �nal edge {a, b}
else if τa ≤ τb then Send message 〈τa, a, b, τb〉 via PqTtoT

else Send message 〈τb, b, a, τa〉 via PqTtoT

Example 5.4. Let G = (V,E) be a simple graph with V = {v1, v2, v3, v4} and trade

sequenceT = [t1: {v1, v2}, t2: {v3, v4}, t3: {v1, v3}, t4: {v2, v4}, t5: {v1, v4}]. Then, the

successors S follow as S (v1) = [1, 3, 5,∞], S (v2) = [1, 4,∞], S (v3) = [2, 3,∞],

S (v4) = [2, 4, 5,∞]. J

This information is then spread via two channels:

• After preprocessing, EM-CB scans S and T conjointly and sends 〈ti, ui, tui 〉 and

〈ti, vi, tvi 〉 to each trade ti. The messages carry the successors tui and tvi of the

trade’s active nodes.

• When sending an edge as described before, we augment it with the successor

of the passive node. Initially, this information is obtained by scanning the edge

list E and S conjointly. Later, it can be inductively computed since each trade

receives the successors of all nodes involved.

137

Global Curveball

Lemma 5.5. For an arbitrary trade sequence T of length `, EM-CB has a worst-case

I/O complexity of O
[
sort(`) + sort(n) + scan(m) + `dmax/B logM/B(m/B)

]
. For r

global trades, the worst-case I/O complexity is O(r[sort(n) + sort(m)]). J

Proof. Refer to Section 5.A (Appendix) for the proof. �

5.4.2 IM-CB: An Internal Memory Version of EM-CB

While EM-CB is well suited if memory access is a bottleneck, we also consider the

modi�ed version IM-CB. As shown in Section 5.5, IM-CB is typically faster for small

graph instances. IM-CB uses the same algorithmic ideas as EM-CB but replaces its

priority queues and sorters
8

by unstructured I/O into main memory (see Algorithm 8

(Appendix) for details):

• Instead of sending neighborhood information in a TFP fashion, we now rely on

a classical adjacency vector data structure AG (an array of arrays). Similarly to

EM-CB, we only keep one directed representation of an undirected edge. As an

invariant, an edge is always placed in the neighborhood of the incident node

traded before the other. To speed up these insertions, IM-CB maintains unordered

neighborhood bu�ers.

• IM-CB does not forward successor information, but rather stores S in a con-

tiguous block of memory. The algorithm additionally maintains the vector

Sidx[1 . . . n] where the i-th entry points to the current successor of node vi.

Once this trade is reached, the pointer is incremented giving the next successor.

Lemma 5.6. For a random trade sequence T of length `, IM-CB has an expected running

time of O(n+ `+m+ `m/n). In the case of r many global trades (each consisting of

n/2 normal trades) the running time is given by O(n+ rm). J

Proof. Refer to Section 5.B (Appendix) for the proof. �

5.4.3 EM-GCB: An I/O-e�icient Global Curveball Algorithm

EM-GCB builds on EM-CB and exploits the regular structure of global trades to simplify

and accelerate the dependency tracking. As discussed in Section 5.3.3, a global trade can

be encoded as a permutation π : [n]→ [n] by interpreting adjacent ranks as trade pairs,

i.e. Tπ = [{vπ(2i−1), vπ(2i)}]
n/2
i=1. In this setting, a sequence of global trades is given by

r permutations [πj]rj=1. The model simpli�es dependencies as it is not necessary to

explicitly gather S and communicate successors.

8

The term sorter refers to a data structure with two modes of operation: items are �rst pushed into the

write-only sorter in an arbitrary order by some algorithm. After an explicit switch, the �lled data structure

becomes read-only and the elements are provided as a lexicographically non-decreasing stream. It can

be rewound at any time. While a sorter is functionally equivalent to sorting an EM vector, the restricted

access model reduces constant factors in the implementation’s runtime and I/O complexity [37].

138

Novel Curveball Algorithms for Undirected Graphs

v3

π1(1)

v1

π1(2)

v2

π1(3)

v5

π1(4)

v4

π1(5)

v6

π1(6)

v6

π2(1)

v3

π2(2)

v5

π2(3)

v1

π2(4)

v2

π2(5)

v4

π2(6)

current trade

,v1 v2most recently produced edge: { }

〈round: 2, slot: 4, neighbour: v2〉

Figure 5.2: During the trade j=1, i1=3, i2=4 the edge {v1, v2} is produced; the arrows indicate positions considered as

successors. Since v1 and v2 are already processed in round j=1, π2 is used to compute the successor. Then, the message is

sent to v1 in round 2 as v1 is processed before v2.

As illustrated in Figure 5.2, we also change the addressing scheme of messages.

While EM-CB sends messages to speci�c nodes in speci�c trades, EM-GCB exploits that

each node vi is actively traded only once in each round j and hence can be addressed

by its position πj(i). Successors can then be computed in an ad-hoc fashion; let a trade

of adjacent positions i1 < i2 of the j-th global trade produce (among others) the edge

{vx, vy}. The successor of vx (and analogously the one of vy) is Sj,i2 [vx] = (j, πj(x))

if vx is processed later in round j (i.e. πj(x)/2 > i2) and otherwise Sj,i2 [vx] =

(j+1, πj+1(x)). Here we imply an untraded additional function πr+1(x) = x which

avoids corner cases and generates an ordered edge list as a result of the r-th global trade.

To reduce the computational cost of the successor computation, EM-GCB supports

fast injective functions f : X → Y where [n] ⊆ X and [n] ⊆ Y . In contrast to the

original permutations, their relevant image { f(x) | x ∈ [n] } may contain gaps which

are simply skipped by EM-GCB. This requires minor changes in the addressing scheme

(see Section 5.C (Appendix)).

In practice, we use functions from the family of linear congruential maps Hp where

p is the smallest prime number p ≥ n:

Hp := {ha,b | 1 ≤ a < p and 0 ≤ b < p } (5.1)

ha,b(x) ≡ (ax+ b) mod p, (5.2)

As detailed in Section 5.D (Appendix) random choices from Hp are well suited for

EM-GCB since they are 2-universal
9

and contain only O(log(n)) gaps. They are also

bijections with an easily computable inverse h−1
a,b that allows EM-GCB to determine the

active node h−1
a,b(i) traded at position i; this operation is only performed once for each

traded position. EM-GCB can also support non-invertible functions using messages

〈h(i), i〉 that are generated for 1 ≤ i ≤ n and delivered using TFP .

5.4.4 EM-PGCB: An I/O-e�icient Parallel Global Curveball Algorithm

EM-PGCB adds parallelism to EM-GCB by concurrently executing multiple sequential

trades. As in Figure 5.3, we split a global trade into microchunks each containing a similar

9

i.e. given one node in a single trade, the other is uniformly chosen among the remaining nodes.

139

Global Curveball

1 k 1 k

In EM

In IM (front block)

current round next round

1 z

macrochunk

1 p

batch

the p microchunks in a batch are processed in parallel

Figure 5.3: EM-PGCB splits each global trade into k macrochunks and maintains an external memory queue for each. Before

processing a macrochunk, the bu�er is loaded into IM and sorted, and further subdivided into z batches each consisting of p

microchunks. A type (ii) message is visualized by the red intra-batch arrow.

number of node pairs and then execute a batch of p such subdivisions in parallel. The

batch’s size is a compromise between intra-batch dependencies (messages are awaited

from another processor) and overhead caused by synchronizing threads at the batch’s

end (see Section 5.E (Appendix)).

EM-PGCB processes each microchunk similarly as in EM-CB but di�erentiates

between messages that are sent (i) within a microchunk, (ii) between microchunks of

the same batch (iii) and microchunks processed later. Each class is transported using an

optimized data structure (see below).

Only type (ii) messages introduce dependencies between parallel path of execution.

They are resolved as follows: when a processor retrieves the messages of its next trade,

it checks whether all required data is available by comparing the number of messages

to the active nodes’ degrees. If data is missing the trade is skipped and later executed by

the processor that adds the last missing neighbor.

For graphs withm = O
(
M2/B

)
edges

10
, we optimize the communication structure

for type (iii) messages. Observe that EM-PGCB sends messages only to the current and

the subsequent round. We partition a round into k macrochunks each consisting of

Θ(n/k) contiguous trades. An external memory queue is used for each macrochunk

to bu�er messages sent to it; in total, this requires Θ(kB) internal memory. Before

processing a macrochunk, all its messages are loaded into IM, subsequently sorted and

arranged such that missing messages can be directly placed to the position they are

required in. This can also be overlapped with the processing of the previous macrochunk.

As thoroughly discussed in Section 5.E (Appendix), the number k of macrochunks should

be as small as possible to reduce overheads, but su�ciently large such that all messages

of a macrochunk �t into main memory (see Section 5.F).

Theorem 5.7. EM-PGCB requiresO(r[sort(n) + sort(m)]) I/Os for r global trades. J

Proof. Observe that we can analyze each of the r rounds individually. A constant

amount of auxiliary data is needed per node to provision gaps for missing data, to detect

whether a trade can be executed and (if required) to invert the permutation. These

Θ(n) messages require sort(n) I/Os to be delivered. Using a PQ, the analysis of EM-CB

(Lemma 5.5) carries over, requiring sort(m) I/Os for a global trade. �
10

Even with as little as 1 GiB of internal memory, several billion edges are supported.

140

Experimental Evaluation

20 21 22 23

Thinning

10−2

10−1

1
-

m
in

(i
n

d
ep

en
d

en
ce

ra
te

) [MaxDeg 25] Maximum dependent edges

ES

CBU

CBG

20 21 22 23

Thinning

10−2

10−1

[MaxDeg 750] Maximum dependent edges

ES

CBU

CBG

Figure 5.4: Fraction of edges still correlated as a function of the thinning parameter k for graphs with n = 2·103
nodes

and degree distribution Pld ([a, b), γ) with γ = 2, a = 5, and b ∈ {25, 750}. The (not thinned) long Markov chains of edge

switching (ES), Curveball with uniform trades (CBU) and Curveball with global trades (CBG) contain 6000 super steps each.

5.5 Experimental Evaluation

In this section we evaluate the quality of the proposed algorithms and analyze the

runtime of our C++ implementations.
11

EM-CB, IM-CB, EM-GCB are designed as

modules of NetworKit [316]; due to their superior performance, only the latter two were

added to the library and are available since release 4.6. EM-PGCB’s implementation is

developed separately and facilitates external memory data structures and algorithms of

STXXL [102].

Intuitively, graphs with skewed degree distributions are hard instances for Curveball

since it shu�es and reassigns the disjoint neighbors of two trading nodes. Hence,

limited progress is achieved if a high-degree node trades with a low-degree node. Since

our experiments support this hypothesis, we focus on graphs with powerlaw degree

distributions as di�cult but highly relevant graph instances. Our experiments use two

parameter sets:

• (lin) − The maximal possible degree scales linearly in the number n of nodes.

The degree distribution Pld ([a, b), γ) is chosen as a = 10, b = n/20 and γ = 2.

• (const) − The extremal degrees are kept constant. In this case the parameters are

chosen as a = 50, b = 10000 and γ = 2.

We select these con�gurations to be comparable with [168] where both parameter sets

are used to evaluate EM-ES. The �rst setting (lin) considers the increasing average degree

of real-world networks as they grow. The second setting (const) approximates the degree

distribution of the Facebook network in May 2011 [168]. Runtimes are measured on the

following o�-the-shelf machine: Intel Xeon E5-2630 v3 (8 cores at 2.40GHz), 64GB RAM,

2× Samsung 850 PRO SATA SSD (1 TB), Ubuntu Linux 16.04, GCC 7.2.

5.5.1 Mixing of Edge-Switching, Curveball and Global Curveball

We are not aware of any practical theoretical bounds on the mixing time of Markov

chains of Curveball, Global Curveball or Edge Switching. Hence, we quantitatively study

11

Code used for the presented benchmarks can be found at our fork h�ps://github.com/hthetran/

networkit (IM-CB and EM-CB) and h�ps://github.com/massive-graphs/extmem-lfr (EM-PGCB).

141

https://github.com/hthetran/networkit
https://github.com/hthetran/networkit
https://github.com/massive-graphs/extmem-lfr

Global Curveball

the progress made by Curveball trades compared to edge switching and approximate

the mixing time of the underlying Markov chains by a method developed in [281]. This

criterion is a more sensitive proxy to the mixing time than previously used alternatives,

such as the local clustering coe�cient, triangle count and degree assortativity [168].

Intuitively, one determines the number of Markov chain steps required until the

correlation to the initial state decays. Starting from an initial graph G0, the Markov

chain is executed for a large number of steps, yielding a sequence (Gt)t≥0 of graphs

evolving over time. For each occurring edge e, we compute a Boolean vector (Ze,t)t≥0

where a 1 at position t indicates that e exists in graph Gt. We then derive the k-thinned
series (Zke,t)t≥0 only containing every k-th entry of the original vector (Ze,t)t≥0 and

use k as a proxy for the mixing time.

To determine if k Markov chain steps su�ce for edge e to lose the correlation to

the initial graph, the empirical transition probabilities of the k-thinned series (Zke,t)t≥0

are �tted to both an independent and a Markov model respectively. If the independent

model is a better �t, we deem edge e to be independent. The results presented here

consider only small graphs due to the high computational cost involved. However,

additional experiments suggest that the results hold for graphs at least one order of

magnitude larger.

We compare a sequence of uniform (single) trades, global trades and edge switching

and visually align the results of these schemes by de�ning a super step. Depending on the

algorithm a super step corresponds to either a single global trade, n/2 uniform trades

or m edge swaps. Comparing n/2 uniform trades with a global trade seems sensible

since a global trade consists of exactly n/2 single trades, furthermore randomizing with

n/2 single trades considers the state of 2m edges which is also true for m edge swaps.

It accounts for the fact that a single Curveball Markov chain step may execute multiple

neighbor switches, thus easily outperforming ES in a step-by-step comparison.

Figure 5.4 contains a selection of results obtained for small powerlaw graph instances

using this method (see Section 5.G.1 (Appendix) for the complete dataset). Progress is

measured by the fraction of edges that are still classi�ed as correlated, i.e. the faster a

method approaches zero the better the randomization. We omit an in-depth discussion

of uniform trades and rather focus on global trades which consistently outperform the

former (cf. Section 5.3.2).

In all settings ES shows the fastest decay. The gap towards global trades growths

temporarily as the maximal degree is increased which is consistent with our initial claim

that skewed degree distributions are challenging for Curveball. The e�ect is however

limited and in all cases performing 4 global trades for each edge switching super step

gives better results. This is a pessimistic interpretation since typically 10m to 100m

edge switches are used to randomize graphs in practice; in this domain global trades

perform similarly well and 20 global trades consistently give at least the quality of 10m

edge switches.

142

Experimental Evaluation

106 107 108 109 1010

Number m of edges

102

103

T
im

e
/

ed
ge

/
su

p
er

st
ep

[n
s]

Parameter set: (const)

EM-CB

EMG-CB

IM-CB

VL-ES

EM-ES

EM-PGCB

105 106 107 108 109 1010

Number m of edges

102

103

Parameter set: (lin)

Figure 5.5: Runtime per edge and super step (global trade or m edge swaps) of the proposed algorithms IM-CB, EM-CB and

EM-PGCB compared to state-of-the-art IM edge switching VL-ES and EM edge switching EM-ES. Each data point is the

median of S ≥ 5 runs over 10 super steps each. The le� plot contains the (const)-parameter set, the right one (lin). Observe

that the super steps of di�erent algorithms advance the randomization process at di�erent speeds (see discussion).

5.5.2 Runtime Performance Benchmarks

We measure the runtime of the algorithms proposed in Section 5.4 and compare them to

two state-of-the-art edge switching schemes (using the authors’ C++ implementations):

• VL-ES is a sequential IM algorithm with a hashing-based data structure optimized

for e�cient neighborhood queries and updates [332]. To achieve comparability,

we removed connectivity tests, �xed memory management issues, and adopted

the number of swaps.

• EM-ES is an EM edge switching algorithm and part of EM-LFR’s toolchain [168].

We carry out experiments using the (const) and (lin) parameter sets, and limit the

problem sizes for internal memory algorithms to avoid exhaustion of the main memory.

For each data point we carry out 10 super steps (i.e. 10 global trades or 10m edge swaps)

on a graph generated with Havel-Hakimi from a random powerlaw degree distribution.

Figure 5.5 presents the wall-time per edge and super step including precomputation
12

required by the algorithms but excluding the initial graph generation process. The

plots include (mostly small) errorbars corresponding to the unbiased estimation of the

standard deviation of S repetitions per data point (with di�erent random seeds).

The number k of macrochunks does not signi�cantly a�ect EM-PGCB’s performance

for small graphs due to comparably high synchronization cost. In contrast, adjusting

k for larger graphs can noticeably increase the performance of EM-PGCB. We thus

experimentally determined the value k = 32 for both (const) and (lin) with n = 107

nodes and use that value for all other instances.

All Curveball algorithms outperform their direct competitors signi�cantly — even if

we pessimistically executed two global trades for each edge switching super step (see

Section 5.5.1). For large instances of (const) EM-PGCB carries out a super step 14.3 times

faster than EM-ES and 5.8 times faster for (lin). EM-PGCB also shows a superior scaling

12

For VL-ES we report only the swapping process and the generation of the internal data structures.

143

Global Curveball

behavior with an increasing speedup for larger graphs. Similarly, IM-CB processes super

steps up to 6.3 times faster than VL-ES on (const) and 5.1 times on (lin).
On our test machine, the implementation of IM-CB outperforms EM-CB in the

internal memory regime; EM-GCB is faster for large graphs. As indicated in Figure 5.9

(Section 5.G.2 (Appendix)), this changes qualitatively for machines with slower main

memory and smaller cache; on such systems the unstructured I/O of IM-CB and VL-ES

is more signi�cant rendering EM-CB and EM-GCB the better choice with a speedup

factor exceeding 8 compared to VL-ES.

5.6 Conclusion and Outlook

We applied global Curveball trades to undirected graphs simplifying the algorithmic

treatment of dependencies and showed that the underlying Markov chain converges to

a uniform distribution. Experimental results show that global trades yield an improved

quality compared to a sequence of uniform trades of the same size.

We presented IM-CB and EM-CB, the �rst e�cient algorithms for Simple Undirected

Curveball algorithms; they are optimized for internal and external memory respectively.

Our I/O-e�cient parallel algorithm EM-PGCB exploits the properties of global trades

and executes a super step 14.3 times faster than the state-of-the-art edge switching

algorithm EM-ES; for IM-CB we demonstrate speedups of up to 6.3 (in a conservative

comparison the speedups should be halved to account for the di�erences in mixing

times of the underlying Markov chains). The implementations of all three algorithms are

freely available and are in the process of being incorporated into EM-LFR and considered

for NetworKit.

Acknowledgments

We thank the anonymous reviewers for their many insightful comments and suggestions.

144

EM-CB

Appendix 5.A EM-CB

Lemma 5.5. For an arbitrary trade sequence T of length `, EM-CB has a worst-case

I/O complexity of O
[
sort(`) + sort(n) + scan(m) + `dmax/B logM/B(m/B)

]
. For r

global trades, the worst-case I/O complexity is O(r[sort(n) + sort(m)]). J

Proof. As in Algorithm 7, EM-CB scans over T and E during preprocessing, and

thereby triggers O(scan(`) + scan(m)) I/Os. It also involves sorters SorterTtoV

and SorterDepChain as well as priority queues PqVtoV and PqTtoT transport-

ing O(`), O(`), O(n) and O(n) messages respectively. Hence preprocessing incurs

O(sort(`) + sort(n) + scan(m)) I/Os.

During the i-th trade O(deg(ui) + deg(vi)) messages are retrieved shu�ed and

redistributed causing O[sort(deg(ui) + deg(vi))] I/Os. The bound can be improved to

O
(

(deg(ui) + deg(vi))/B logM/B(m/B)
)

by observing that O(m) items are stored

in the PQ at any time. For a worst-case analysis we set deg(ui) = deg(vi) = dmax

yielding the �rst claim.

Preprocessing of r global trades can be performed in r chunks of n/2 trades

each. By arguments similar to the previous analysis, this yields an I/O complex-

ity of O(r sort(n) + r scan(m)). For the main phase, the above analysis tightens to

O(r sort(m)) using the fact that a single global trade targets each edge at most twice. �

Appendix 5.B IM-CB

Lemma 5.6. For a random trade sequence T of length `, IM-CB has an expected running

time of O(n+ `+m+ `m/n). In the case of r many global trades (each consisting of

n/2 normal trades) the running time is given by O(n+ rm). J

Proof. As detailed in Algorithm 8, the computation of S [·] and its auxiliary structures

involves scanning over T and V resulting in O(n+ `) operations. Inserting all edges

into AG requires another O(n+m) steps.

The i-th trade takes O(deg(vi) + deg(ui)) time to retrieve the input edges and

distribute the new states. To compute the disjoint neighbors, we insert Aui into a

hash set and subsequently issue one existence query for each neighbor in Avi ; this

takes expected timeO(deg(vi) + deg(ui)). Since T ’s constituents are drawn uniformly

at random, we estimate the neighborhood sizes as E[deg(ui)] = E[deg(vi)] = m/n

yielding the �rst claim. In case of r global trades, T consists of r groups with n/2 trades

targeting all nodes each. Hence, trading requires time r
∑

i(deg(ui) + deg(vi)) =

r
∑

v∈V deg(v) = O(rm) . �

Appendix 5.C EM-GCB

Recall that a global trade can be encoded by a permutation π : V → V on the nodes or

node indices (see Section 5.3.2). Consequently, generating a uniform random permuta-

145

Global Curveball

Algorithm 8: IM-CB as detailed in Section 5.4.2.

Data: Trade sequence T , simple graph G

1 Sidx[1 . . . n+1]← 0 // Compute S : First count how o�en a node is active, . . .

2 foreach {u, v} ∈ T do
3 Sidx[u]← Sidx[u] + 1

4 Sidx[v]← Sidx[v] + 1

5 Sbegin[i]← 1 +
∑i−1
j=1 Sidx[j] ∀1 ≤ i ≤ n+1 // Exclusive prefix sum with stop marker

6 copy Sidx ← Sbegin

7 Allocate S [1 . . . 2`]

8 foreach ti = {ui, vi} ∈ T for increasing i do
9 S [Sidx[ui]]← i // Compute S : . . .when it is active

10 Sidx[ui]← Sidx[ui] + 1

11 S [Sidx[vi]]← i

12 Sidx[vi]← Sidx[vi] + 1

13 reset Sidx ← Sbegin

14 τvi := if (Sidx[i] == Sbegin[i+ 1]) then∞ else S [Sidx[i]] // Short for read successor

// Fill AG

15 Abegin[i]← 1 +
∑i−1
j=1 deg(vj) ∀1 ≤ i ≤ n+1 // Prefix sum with stop marker

16 copy Aidx ← Abegin

17 Allocate AG[1 . . . 2m]

18 foreach {a, b} ∈ E do

19
if τa ≤ τb then push b into AG(a): AG[Aidx[a]]← b; Aidx[a]← Aidx[a] + 1

else push a into AG(b): AG[Aidx[b]]← a; Aidx[b]← Aidx[b] + 1

// Trade

20 foreach trade ti = (u, v) ∈ T for increasing i do
21 Gather neighbors AG(u), AG(v) from AG using Abegin

22 Reset Aidx[u]← Abegin[u], Aidx[v]← Abegin[v]

23 Advance Sidx[u] and Sidx[v], s.t. τu and τv gets next trades

24 Randomly reassign disjoint neighbors, yielding new neighbors Au and Av .

25 foreach (a, b) ∈ ({u} ×A ′G(u)) ∪ ({v} ×A ′G(v)) do
// Push node edge into AG; same as line 18

26
if τa < τb then Push b in AG(a)

else Push a in AG(b)

146

Linear Congruential Maps

tion on [n] yields a uniform random global trade. Injective hash functions have several

computational advantages and can substitute the random permutation:

Definition 5.8 (Relaxed global trade). Let h : [n] → N be an injective hash function

and [ai]ni=1 be the image [h(i)]ni=1 in sorted order. Further let Th = [ti]
n/2
i=1 where

ti trades the nodes with indices h−1(a2i−1) and h−1(a2i). Hence h implies the global

trade Th analogously to a permutation. J

In this setting, similar to using permutations, a sequence T of global trades is given

by r hash functions T = [hi]ri=1. Again, EM-GCB uses the fact that each node vi is

actively traded only once in each round j and can then be addressed by hj(i) (instead

of previously πj(i)).

Appendix 5.D Linear Congruential Maps

We use linear congruential maps as fast injective hash functions to model global trades

for EM-PGCB. In this section, some of their useful properties are shown. We use the

notation Zp = {0, 1, . . . , p − 1} and Z∗p = {1, . . . , p − 1} for p prime and implicitly

use 0 ≡ p mod p. Additionally for a map h : X → Y we denote the image of h as

im(h) = {h(x) : x ∈ X}.
Definition 5.9 (2-universal hashing). Let H be an ensemble of maps from X to Y and

h be uniformly drawn from H . For �nite X and Y we call the ensemble H 2-universal
if for any two distinct x1, x2 ∈ X and any two y1, y2 ∈ Y and uniform random h ∈ H

P[h(x1) = y1 ∧ h(x2) = y2] = |Y |−2. J

Proposition 5.10. A linear congruential map ha,b : Zp → Zp, x 7→ ax+ b mod p for

a 6= 0 and p prime is a bijection. J

Proof. The translation τb(x) = x+ b mod p and multiplication χa(x) = ax mod p

is injective for all a ∈ Z∗p and b ∈ Zp. Then, the composition ha,b = (χa ◦ τb) is also

injective and the inverse is given by h−1
a,b(y) = a−1(y − b) mod p. �

Lemma 5.11. The ensemble H = {ha,b : a ∈ Z∗p, b ∈ Zp} is 2-universal. J

Proof. see Proposition 7 of [85]. �

The input size will most likely not be prime but linear congruential maps can still

be used as injective maps since by the prime number theorem the next larger prime to a

number n is on average O(ln(n)) larger. Additionally, since [n] is a subset of Zp the

2-universality also already applies to distinct keys x1, x2 ∈ [n]. The small di�erence

in n and p brings an additional feature we exploit while sending type (ii) messages

(see Proposition 5.16): given a lower and upper bound on a hashed value with their

respective ranks, one can estimate the rank of an element lying between those bounds.

Definition 5.12 (Sorted rank-map). Let n ∈ N. Further, let h : [n]→ N be an injective

map restricted to [n] and πh be the permutation that sorts [h(i)]ni=1 ascendingly. Denote

147

Global Curveball

h

πh
π−1

0 1 2 3 4 5

1 5 2 6 3 0

0 1 2 3 5 6

introduces gap at 4xdd

0 1 2 3 4 5

0 1 2 3 4 5 6

Figure 5.6: The sorted rank-map for n = 6 and h : [n]→ Z7, x 7→ 4x+ 1. For the set {0, 1, 2, 3} the sorted rank-map π is

just the identity. In contrast for x ∈ {4, 5} the value x is mapped to π(x) = x+ 1.

with π = (h ◦ πh) : [n]→ im(h) the sorted rank-map. It is clear that π is bijective, and

π−1
remaps a mapped value to its rank in im(h), see Figure 5.6. J

Remark 5.13. The sorted rank-map π can only shift the original values and is thus

monotonically increasing, see Figure 5.6. The shift in value is given by π(x)− x and is

monotonically increasing, too. By applying π we introduce gaps in the set Zp from [n],

refer to Figure 5.6. J

Proposition 5.14. Let n ∈ N and p ≥ n be a prime number. Further, let h : [n]→ Zp
be a linear congruential map and π be its sorted rank-map. If we want to compute the

rank of y ∈ im(h) and know x, x′ ∈ [n] where h(x) ≤ y ≤ h(x′) then we can bound

the rank π−1(y) of y by using the shifts of x and x′: y − (π(x′) − x′) ≤ π−1(y) ≤
y − (π(x)− x). J

Proof. The sorted rank-map π is by de�nition monotone increasing, see also Figure 5.6.

It follows that π(x) = x + k, π(x′) = x′ + k′ and k ≤ k′ for some k, k′ ∈ N. By

monotonicity π(π−1(y)) = π−1(y) + s for s ∈ {k, . . . , k′}, resulting in inequalities

π−1(y) + k ≤ y ≤ π−1(y) + k′.

By subtracting k and k′ on both sides, the claim follows. �

With Proposition 5.14 we can reduce the number of candidates to search in. This is

especially useful, when working on a smaller contiguous part of the data (EM-PGCB,

Section 5.4.4).

Example 5.15. Let n and h be given from Figure 5.6. It is clear that the hashed-values are

given by im(h) = {0, 1, 2, 3, 5, 6}. Suppose the rank of 2 in im(h) has to be computed

given the outer values e.g. that π(0) = 0 and π(5) = 6. Then by Proposition 5.14

2− (π(5)− 5) ≤ π−1(2) ≤ 2− (π(0)− 0),

1 ≤ π−1(2) ≤ 2.

Thus, the rank of 2 in im(h) is either 1 or 2. J

Appendix 5.E EM-PGCB

EM-PGCB achieves parallelism by performing multiple trades concurrently. In contrast

to EM-GCB, rather than only retrieving the �rst two necessary adjacency rows for the

148

EM-PGCB

single next trade, a whole chunk of data is loaded and maintained in IM-CB’s adjacency

list to store neighbors for a subset of nodes. The adjacency list is further used as a way

to transport messages within a loaded macrochunk. Observe that at most 2m messages

are sent in a global trade round since only neighborhood information is forwarded.

The idea is to split the messages into chunks of sizeM = cM where c ∈ (0, 1)

which can be processed in IM. For this, EM-PGCB loads and processes all messages

targeted to the next n/k nodes for a constant k and performs the corresponding trades

concurrently. This subdivides the messages and its processing into k macrochunks. If a

macrochunk is too large, it cannot be fully kept in IM resulting in unstructured I/O in

the trading process. The choice of k should therefore additionally consider the variance.

An analysis on the size of the macrochunks is given in Section 5.F.

5.E.1 Data Structure for Message Transportation

Recall in Section 5.4.4 that each macrochunk is subdivided into many microchunks
and processed in batches. During the trading process EM-PGCB has to di�erentiate

between messages that are sent (i) within a microchunk, (ii) between microchunks of the

same batch (iii) and microchunks processed later. To support both type (i) and type (ii)

messages we organize the messages of the current macrochunk in an adjacency vector

data structure similar to IM-CB. Instead of forwarding these messages in a TFP fashion,

EM-PGCB inserts them directly into the adjacency data structure. We rebuild the data

structure for each macrochunk requiring the degrees of the n/k loaded nodes to leave

gaps if messages are missing. In a preprocessing step we provide EM-PGCB with this

information by inserting messages 〈hr(v), deg(v), v〉 into a separate priority queue.

Initializing the adjacency vector can now be done by loading the degrees for the next

n/k targets and reserving for each target hr(v) the necessary deg(v) slots. Messages

〈r, hr(v), x〉 targeted to the node v can then be inserted in an unstructured fashion in IM.

This can be done in parallel for all targets in the macrochunk: �rst the retrieved messages

are sorted in parallel and then accessed concurrently after determining delimiters by a

parallel pre�x sum over the message counts.

For a trade t = {ui, vi} of targets hr(ui) and hr(vi) the assigned processor can

determine if the t is tradable by checking whether deg(ui) and deg(vi) match the

number of available messages. After performing the trade, we forward the updated

adjacency information. Assume that the edge {ui, x} has to be send to a later trade in

the same global trade.

1. If x is traded within the processed microchunk there is no synchronization re-

quired and ui can be inserted into the row corresponding to target hr(x).

2. If x is traded within the currently processed batch the processor has to insert ui
into the row corresponding to target hr(x) with synchronization. This yields a

data dependency in the parallel execution. We can infer if the trade for x belongs

to the current batch by comparing hr(x) to the maximum target of the batch.

3. If x is traded in a later microchunk, it either belongs to the same macrochunk or

149

Global Curveball

a later one (of the same global trade). For the former EM-PGCB proceeds similar

to type (ii) without processing foreign trades. In the latter case EM-PGCB inserts

a message 〈r, hr(x), ui〉 into the priority queue.

Addressing the adjacency row of a target hr(u) can be done by computing the rank of

hr(u) in the retrieved n/k targets. Since the separate priority queue provides all loaded

targets by messages 〈hr(u),deg(u), u〉, we can perform a binary search and obtain the

rank in time O(log(n/k)).

For linear congruential maps (Section 5.D) we can do better:

Proposition 5.16. Let h be a linear congruential map. Then, heuristically computing

the row (rank) corresponding to h(u) requires O(log log n) time. J

Proof. The next larger prime p to n is heuristically ln(n) larger than n. After loading all

messages 〈h(u), deg(u), u〉 for the current macrochunk the smallest and largest hashed

value of the current macrochunk are known. By subtracting both values by the already

processed number of targets and using Proposition 5.14 the search space can be reduced

to O(log n) elements. Application of a binary search on the remaining elements yields

the claim. �

As already mentioned, if a trade has not received all its required messages, the

assigned processor cannot perform the trade yet and therefore skips it. This can only

happen within a batch when type (ii) messages occur. In Section 5.F we argue that this

happens rarely. The processor that inserts the last message for that particular trade will

perform it instead.

5.E.2 Improvements for Type (iii) Messages

Messages inserted into the priority queue need to contain the round-id to process global

trades separately. Observe however that in a sequence of global trades, messages are

only send to the current and subsequent round. We therefore modify our data structure,

omitting the round from every message reducing the memory footprint signi�cantly.

Recall that, as an optimization for m = O
(
M2/B

)
edges, EM-PGCB uses external

memory queues for each of the k macrochunks of both global trade rounds.

A previously generated message 〈r, hr(u), x〉 is now inserted into the corresponding

queue containing messages for hr(u). Again, in a preprocessing step EM-PGCB deter-

mines for each queue its target range. For this, the separate priority queue containing

messages 〈hr(u),deg(u), u〉 is read while extracting every (n/k)-th target (retrieving

every element results in a sequence of sorted messages). This enables the computation of

the correct queue for hr(u) with a binary search in timeO(log(k)). Naturally since both

the current and subsequent round are relevant, EM-PGCB employs k external memory

queues for each. If a global trade is �nished, the k EM queues of the currently processed

and �nished round can be reused for the next global trade. EM-PGCB’s pseudo code

can be found in Algorithm 9.

150

Analysis of EM-PGCB

Algorithm 9: EM-PGCB as detailed in Section 5.4.4 and Section 5.E.

Data: Trade sequence T = [hi]ri=1, simple graph G = (V,E) as edge list E

Result: Randomized graph G′

// Initialization: provide auxiliary info and initialise with edges

1 foreach node u ∈ V do
2 Send 〈h1(u),deg(u), u〉 via AuxInfoToTarget // Send node and degree to target

3 Sort AuxInfoToTarget lexicographically

4 Scan AuxInfoToTarget and determine bounds for the k queues

5 foreach edge e = [u, v] in E do
6 Insert e according to h1 into one of the corresponding queues

// Execution: Process rounds and macrochunks

7 for round R = 1, . . . , r do
8 for macrochunkK = 1, . . . , k do
9 Retrieve auxiliary data 〈hR(u),deg(u), u〉 from AuxInfoToTarget

10 Load and sort messages of the K-th queue

11 Insert the messages into the adjacency list AG in parallel

12 for batch B = 1, . . . , z do
13 pardo the i-th processor works on the i-th microchunk of batch B
14 for a trade t = {u, v} do
15 Retrieve Au and Av from AG

16 With deg(u) and deg(v) determine whether tradable

17 if tradable then
18 Compute A′u and A′v
19 Forward each resulting edge

worksteal if inserted message �lls all necessary data

20 else Skip

21 if R < r then
22 Clear AuxInfoToTarget and re�ll for hR+1 (repeat steps 3 to 5)

Appendix 5.F Analysis of EM-PGCB

5.F.1 Macrochunk Size

As already mentioned, the number of incoming messages may exceed the size of the

internal memory M , since we partition the nodes into chunks which then may receive

a di�erent number of messages. Therefore some analysis on the size of the maximum

macrochunk is necessary. Denote withN (µ, σ2) the distribution of a Gaussian r.v. with

mean µ and variance σ2
. A macrochunk holds the sum of n/k many iid degrees and is

thus approximately Gaussian with mean 2m/k and variance n/k ·Var(D) where D is

distributed to the underlying degree distribution. This approximation gets better for

larger values of n/k and is thus a suitable approximation for large graphs. Denote with

S1, . . . , Sk the sizes of all k macrochunks.

151

Global Curveball

When determining a suitable choice of k, it is necessary to consider both the mean

and the variance of the maximum macrochunk max1≤i≤k Si. The largest macrochunk

may receive many high-degree nodes exceeding the size of the internal memory M . We

thus bound its number in Corollaries 5.18 and 5.20.

Lemma 5.17. Let Y = max1≤i≤kXi, where the Xi are iid r.v. distributed as N (0, σ2).

Then, E[Y] ≤ σ
√

2 log(k). J

Proof. The following chain of inequalities holds

etE[Y] ≤ E
[
etY
]

= E
[

max
1≤i≤k

etXi
]
≤

k∑
i=1

E
[
etXi

]
= ket

2σ2/2,

where in order Jensen’s inequality
13

monotonicity and non-negativity of the expo-

nential function as well as the de�nition of the moment generating function of a Gaussian

r.v. have been applied. Taking the natural logarithm and dividing by t on both sides

(ruling out t 6= 0) yields E[Y] ≤ log(k)
t + tσ2

2 , which is minimized by t =
√

2 log(k)/σ.

The above proof is a special case in a proof of [231]. �

Corollary 5.18. Let Y = max1≤i≤k Si. By approximating Si with a Gaussian r.v. Ni

with µ = E[Si] and σ2 = Var(Si), one gets an approximate upper bound on Y :

E[Y] ≈ E
[

max
1≤i≤k

Ni

]
≤ E[S1] +

√
2 log(k) Var(S1) = E[S1] +

√
n log(k)

2k
Var(D).

J

Proof. Since max1≤i≤kNi is centered around µ, it is identically distributed to µ +

max1≤i≤kN
′
i where N ′i has the same variance but is centered around 0. By apply-

ing Lemma 5.17 to max1≤i≤kN
′
i the claim follows, since E[max1≤i≤kNi] = µ +

E[max1≤i≤kN
′
i]. �

Lemma 5.19. LetX1, ..., Xk be iid and Y= max
1≤i≤k

Xi. Then, Var(Y) ≤ kVar(X1). J

Proof. For Z,Z ′ iid. E
[
(Z − Z ′)2

]
= 2 Var(Z) holds, since

E
[
Z2 − 2ZZ ′ + Z ′2

]
= 2E

[
Z2
]
− 2E[Z]2 .

Now, let Y ′ = max1≤i≤kX
′
i be an independent copy of Y and r > 0. First,

the inequality P
[
|Y − Y ′|2 > r

]
≤ ∑k

i=1 P
[
|Xi −X ′i|2 > r

]
is shown. We show the

implication that if |Y − Y ′|2 > r there exists an index i such that |Xi −X ′i|2 > r.

If |Y − Y ′|2 > r holds, then w.l.o.g. let Y = Xi and Y ′ = X ′j and Y > Y ′, such

that |Xi − X ′j |2 > r. By maximality the following inequality chain Xi > X ′j ≥ X ′i
implies |Xi > X ′i| > r and consequently P

[
|Y − Y ′|2 > r

]
≤ P[∃i : Xi −X ′i| > r].

A union bound yields P
[
|Y − Y ′|2 > r

]
≤∑k

i=1 P
[
|Xi −X ′i|2 > r

]
. Integrating

r from 0 to∞ yields 2 Var(Y) = E
[
(Y − Y ′)2

]
≤ kE

[
(X1 −X ′1)2

]
= 2kVar(X1),

which concludes the proof. �
13

Let f be convex. For a non-negative λi with

∑n
i=1 λi = 1 it follows f(

∑n
i=1 λixi) ≤

∑n
i=1 λif(xi).

152

Analysis of EM-PGCB

Corollary 5.20. Let Y = max1≤i≤k Si. Then, Var(Y) ≤ kVar(S1) = nVar(D). J

Proof. This is a special case of Lemma 5.19. �

The probability mass of a Gaussian r.v. is concentrated around its mean, e.g. the tails

vanish very quickly, see Proposition 5.21. This heuristically additionally holds true for

the maximum macrochunk size (Lemma 5.22).

Proposition 5.21. Let X be a standard Gaussian r.v. and f(x) = 1√
2π
e−x

2/2
be its

probability density function. Let t > 0 then it holds

P[X > t] ≤ exp(−t2/2)/
√

2π/t = O
(
e−t

2/2

t

)
. J

Proof. The value of P[X > t] equals

∫∞
t

1√
2π
e−x

2/2dx. Since the integrating variable

ranges from [t,∞) then
x
t ≥ 1 s.t. P[X > t] ≤

∫∞
t

x
t

1√
2π
e−x

2/2dx = 1
t
e−t

2/2
√

2π
. �

Lemma 5.22. Let Y = max1≤i≤kNi where Ni are iid standard Gaussian random

variables. Then P[Y > t] = O
(
k exp(−t2/2)/t

)
. J

Proof. The claim follows by the following calculation:

P[Y > t] = P
[

max
1≤i≤k

Ni > t

]
= P[∃ i s.t. Ni > t] ≤

k∑
i=1

P[Ni > t] = O
(
k · e

−t2/2

t

)
.

If for any random variable Ni > t, then already max1≤i≤kNi > t, inversely if

max1≤i≤kNi > t then there exists a Ni such that Ni > t, which shows the �rst

equality. After applying the union bound and Proposition 5.21 the claim follows. �

5.F.2 Heuristic on Intra-Batch Dependencies

In EM-PGCB, if information on an edge {u,w} has to be inserted into the same batch a

dependency arises. We will now argue that this happens not too often when the number

of batches z is chosen su�ciently large.

Lemma 5.23. Let B be the set of targets for a batch. Assuming uniform neighbors, the

number of dependencies from B to B heuristically is

(
p
2

)
2m

k2z2p2
. J

Proof. By construction |B| = n
kz since B is part of an equal subdivision of a macrochunk.

Each individual microchunk consists of
n
kzp many targets for the same reason. The i-th

microchunk therefore has (p− i) n
kzp many critical targets. On average each microchunk

generates avg deg n
kzp = 2m

kzp many messages that need to be forwarded. For an edge

produced by the i-th microchunk assume uniformity on the neighbors A, then Vi is the

number of critical messages where Vi =
∑n

i=1 1i∈A1i∈h−1(B). Its expectation is

E[Vi] =

n∑
i=1

P[i ∈ A]P
[
i ∈ h−1(B)

]
= n

degavg

n

n(p−i)
kzp

n
= degavg

p− i
kzp

.

153

Global Curveball

performs performs
performs

performs

PU 1 PU 2 PU 3 PU 4

Figure 5.7: Work stealing of PU 1. The arrows represent a long work stealing chain of trades.

The red marked area represents still untouched trades of the first microchunk that will get

processed a�er the long chain by the first PU.

Now let the total number of messages from the i-th microchunk to B be Hi. Since each

microchunk holds
n
kzp many nodes, Hi is given by

E[Hi] =
n

kzp
E[Vi] =

2m(p− i)
k2z2p2

.

By summing over all p microchunks, e.g.

∑p
i=1 E[Hi] the claim follows. �

Example 5.24. Consider Lemma 5.23 wherem = 12×109
, k = 32, z = 211

and p = 16.

The average number of messages in the batch is given by m/kz ≥ 1.8 × 105
. And

Lemma 5.23 predicts a count of less than 4 critical messages on average in a batch. J

Theoretically by Lemma 5.23 the number of critical messages is very small if z is set

to be su�ciently large. Therefore waiting and stalling for missing messages is ine�cient

and should be avoided. EM-PGCB thus skips a trade when it cannot be performed

and is later executed by the processor that adds the last missing neighbor. However,

since a work stealing processor spends time on a trade that is possibly assigned to

another microchunk, it is not working on its own. Therefore messages coming from that

particular microchunk are generated later down the line. This may be especially bad

when a PU performs a chain of trades that it was not originally assigned to as illustrated

in Figure 5.7. Since work stealing can only be done in a TFP fashion, the chain length

therefore is geometrically distributed (in fact, the probability declines in each step since

less targets are critical) and is thus whp. of order O(1) by Proposition 5.25.

Proposition 5.25. Let X be geometrically distributed with parameter (1− 1/z2) for

z > 1. Then, P[X > t] = 1
z2t

= e−2 ln(z)t. J

Proof. The claim follows by P[X > t] = 1/z2t
and setting t = O(1). �

154

Additional Experimental Results

Appendix 5.G Additional Experimental Results

5.G.1 Swaps Performed by Curveball and Global Curveball

In Figure 5.8 we counted the number of neighborhood swaps in n/2 uniform trades and

a single global trade and obtain the fraction of performed swaps to all possible swaps.

These experiments are performed on a series of 10-regular graphs and powerlaw graphs

with increasing maximum degree. Both algorithms perform a similar count of swaps

and suggest no systematic di�erence. As expected, for regular graphs the fraction of

performed swaps goes to 1/2 for an increasing number of nodes, since with increasing

n the number of common neighbors goes to zero. On the other hand the fraction of

performed swaps decreases for powerlaw graphs with a higher maximum degree.

0 2000 4000 6000 8000 10000

n

0.000

0.002

D
if
f.
 f
ra

c
ti
o
n

Diff

0 2000 4000 6000 8000 10000

Number n of nodes

0.48

0.49

0.50

F
ra

c
ti
o
n

CB_ g

CB_ u

2000 4000 6000 8000 10000

n

0.001

0.000

0.001

D
if
f.
 f
ra

c
ti
o
n

Diff

2000 4000 6000 8000 10000

Number n of nodes

0.30

0.35

0.40

F
ra

c
ti
o
n

CB_ g

CB_ u

Figure 5.8: The average fraction of performed neighborhood swaps of n/2 uniform trades and a single global trade.

Le�: 10-regular graphs for increasing n.

Right: powerlaw graphs realized from Pld ([10, n/20), 2) for increasing n by the Havel-Hakimi algorithm.

5.G.2 Autocorrelation Time of Curveball and Edge Switching

105 106 107 108

Number m of edges

102

103

104

T
im

e
/

ed
ge

/
su

p
er

st
ep

[n
s]

Parameter set: (const)

EM-CB

IM-CB

VL-ES

104 105 106 107

Number m of edges

102

103

104

Parameter set: (lin)

Figure 5.9: Runtime per edge and super step of IM-CB and EM-CB compared to state-of-the-art IM edge switching VL-ES.

Each data point is the median of S ≥ 5 runs over 10 super steps each. The le� plot contains the (const)-parameter set, the

right one (linear). Machine: Intel i7-6700HQ CPU (4 cores), 64 GB RAM, Ubuntu Linux 17.10.

155

Global Curveball

20 21 22 23

Thinning

10−2

10−1
1

-
m

in
(i

n
d

ep
en

d
en

ce
ra

te
) [MaxDeg 25] Maximum dependent edges

ES

CBU

CBG

20 21 22 23

Thinning

10−2

10−1

1
-

m
in

(i
n

d
ep

en
d

en
ce

ra
te

) [MaxDeg 50] Maximum dependent edges

ES

CBU

CBG

20 21 22 23

Thinning

10−2

10−1

1
-

m
in

(i
n

d
ep

en
d

en
ce

ra
te

) [MaxDeg 100] Maximum dependent edges

ES

CBU

CBG

20 21 22 23

Thinning

10−2

10−1

1
-

m
in

(i
n

d
ep

en
d

en
ce

ra
te

) [MaxDeg 150] Maximum dependent edges

ES

CBU

CBG

20 21 22 23

Thinning

10−2

10−1

1
-

m
in

(i
n

d
ep

en
d

en
ce

ra
te

) [MaxDeg 200] Maximum dependent edges

ES

CBU

CBG

20 21 22 23

Thinning

10−2

10−1

1
-

m
in

(i
n

d
ep

en
d

en
ce

ra
te

) [MaxDeg 250] Maximum dependent edges

ES

CBU

CBG

20 21 22 23

Thinning

10−2

10−1

1
-

m
in

(i
n

d
ep

en
d

en
ce

ra
te

) [MaxDeg 300] Maximum dependent edges

ES

CBU

CBG

20 21 22 23

Thinning

10−2

10−1

1
-

m
in

(i
n

d
ep

en
d

en
ce

ra
te

) [MaxDeg 350] Maximum dependent edges

ES

CBU

CBG

20 21 22 23

Thinning

10−2

10−1

1
-

m
in

(i
n

d
ep

en
d

en
ce

ra
te

) [MaxDeg 400] Maximum dependent edges

ES

CBU

CBG

20 21 22 23

Thinning

10−2

10−1

1
-

m
in

(i
n

d
ep

en
d

en
ce

ra
te

) [MaxDeg 450] Maximum dependent edges

ES

CBU

CBG

20 21 22 23

Thinning

10−2

10−1

1
-

m
in

(i
n

d
ep

en
d

en
ce

ra
te

) [MaxDeg 500] Maximum dependent edges

ES

CBU

CBG

20 21 22 23

Thinning

10−2

10−1

1
-

m
in

(i
n

d
ep

en
d

en
ce

ra
te

) [MaxDeg 750] Maximum dependent edges

ES

CBU

CBG

Figure 5.10: Fraction of edges still correlated as function of the thinning parameter k for graphs with n = 2·103
nodes and

degree distribution Pld ([a, b), γ) with γ = 2, a = 5, and several di�erent values for b. The (not thinned) long Markov chains

contain 6000 super steps each.

156

Additional Experimental Results

157

6
Generating practical random

hyperbolic graphs in near-linear time

and with sub-linear memory

Threshold Random Hyperbolic Graph

with n = 200, d̄ = 10, α = 1. Indicated

are the neighborhood distances of two nodes.

Random graph models, originally conceived to study the structure of networks

and the emergence of their properties [59], have become an indispensable tool

for experimental algorithmics. Amongst them, hyperbolic random graphs form a

well-accepted family, yielding realistic complex networks while being both math-

ematically and algorithmically tractable. We introduce two generators MemGen

and HyperGen for the Gα,C(n)-model, which distributes n random points within a

hyperbolic plane and produces m = nd̄/2 undirected edges for all point pairs close

by; the expected average degree d̄ and exponent 2α+ 1 of the powerlaw degree dis-

tribution are controlled by α > 1/2 and C . Both algorithms emit a stream of edges

which they do not have to store. MemGen keepsO(n) items in internal memory and

has a time complexity of O(n log log n+m), which is optimal for networks with

an average degree of d̄ = Ω(log log n). For realistic values of d̄ = o(n/ log1/α(n)),

HyperGen reduces the memory footprint to O
(
[n1−αd̄α + log n] log n

)
.

In an experimental evaluation, we compare HyperGen with four generators among

which it is consistently the fastest. For small d̄ = 10 we measure a speedup

of 4.0 compared to the fastest publicly available generator increasing to 29.6 for

d̄ = 1000. On commodity hardware, HyperGen produces 3.7 · 108
edges per second

for graphs with 106 ≤ m ≤ 1012
and α = 1, utilizing less than 600 MB of RAM. We

demonstrate nearly linear scalability on an Intel Xeon Phi.

This chapter is based on the peer-reviewed conference article [271]:

[271] M. Penschuck. Generating practical random hyperbolic graphs in near-linear

time and with sub-linear memory. In C. S. Iliopoulos, S. P. Pissis, S. J. Puglisi,

and R. Raman, editors, Int. Symp. on Experimental Algorithms SEA, volume 75 of

LIPIcs, pages 26:1–26:21. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2017.

doi:10.4230/LIPIcs.SEA.2017.26 .

https://doi.org/10.4230/LIPIcs.SEA.2017.26

Streaming Random Hyperbolic Graphs

6.1 Introduction

Even though most practical algorithms aim for a good performance on real-world data,

arti�cial benchmarks are crucial for their development. Suited real-world datasets

are typically scarce, do not scale, may exhibit noise or have uncontrollable properties.

Tunable synthetic instances based on random models alleviate these issues. They are in-

dispensable for systematic experiments allowing to quantify an algorithm’s performance

as a function of controllable parameters.

Selecting the right model depends on the use case: many real-world networks (e.g.,

communication or social networks) exhibit basic features, such as a small diameter,

a powerlaw degree distribution, and a non-vanishing local cluster coe�cient [14, 28,

238, 255]. Among suited models, geometric random networks seem most natural. They

Clustering:

R Section 1.2.5

explain the high local clustering of social networks
1

by embedding the nodes into a

geometric space. Then the distance between any two nodes determines the probability

of an edge between them. While Euclidean space is appropriate for spatial networks

(e.g., [160]), it distorts complex networks such as the internet graph for whichThreshold RHG:

R Section 6.1.3

hyperbolic

embedding performs well [56, 303].

The task of actually generating instances of hyperbolic random graphs has been

approached recently yielding generators that are either fast in practice [224] or optimal

in theory [68]. We target the generation of large instances whose set of nodes
2

does

not �t into memory. Space requirements are crucial especially in the context of co-

processors with small dedicated memory. Another application of such a generator is the

experimental evaluation of streaming [146, 235] or external memory algorithms [7, 242].

Since our algorithm is typically faster than the time it takes to write data to disk, one can

connect it to the algorithm under testing without a round trip to secondary storage. In

such a case, the generator should leave the majority of memory to the main application

in order to allow fast context switches.

6.1.1 Our Contribution

We introduce two related generators MemGen (Section 6.2) and HyperGen (Section 6.3)

for the Gα,C(n)-model (Section 6.1.3) for large instances with n nodes and m = d̄n/2

edges where d̄ is the expected average degree. Both generators target a streaming setting

and are compatible with the external memory model for practical instances. Mem-

Gen requires O(n) internal memory and has a time complexity of O(n log log n+m),

which is optimal for networks with an average degree of d̄ = Ω(log log n). For re-

alistic values of d̄ = o(n/ log1/α(n)), HyperGen reduces the memory footprint to

O
(
[n1−αd̄α + log n] log n

)
, where α > 1/2 controls the exponent 2α+1 of the result’s

powerlaw degree distribution. In an experimental evaluation (Section 6.5), HyperGen

consistently the previously fastest generators we are aware of.

1

i.e., a high triangle count; roughly speaking two friends of a person are likely to acquaint too.

2

Implementations typically use at least 80 byte/node (e.g., Section 6.5.2).

160

Introduction

R
R/2

Neighbours

Candidates

∆θ(r, r)

Figure 6.1: Le�: TheGα,C(n) model with n = 150, α = 1,C = −2. The area enclosed by each colored lobe corresponds

to all points in distance at most R around its highlighted center. Right: Band model introduced by NkBand (not to

scale). The partial blue lobe indicates the area in which candidates can be found. The step-wise overestimation for

candidate selection is shown in yellow.

In the quest for a smaller memory footprint, we increase the data locality leading to

an easily parallelisable algorithm. While we only explore shared memory parallelism,

HyperGen works in a distributed setting with constant communication.

6.1.2 Notation

De�ne [k] := {1, . . . , k} for k ∈ N>0. A graph G = (V,E) has n = |V | sequentially

numbered nodes V = {vi}i∈[n] and m = |E| edges. Unless stated di�erently, graphs

are undirected, unweighted, and have an average degree of d̄ = 2m/n. Let NG(v) ⊆ V
be the neighborhood of node v in graph G, i.e., the set of adjacent nodes.

We mainly consider points (r, θ) in polar coordinates where r is the radius (i.e.,

distance from the origin) and θ is the polar angle or azimuth. A point with radius r1 is

said to be above a point with radius r2 if r1 > r2 and below if r1 < r2. Let By(z) the

ball of radius y and center at radius z, i.e., the set of all points with distance at most y

from point
3 z [159]. We apply standard set operations to balls where \, ∪, and ∩ denote

set di�erences, union and intersection accordingly.

Let µ(X) denote the probability mass of X . We denote a Binomial distribution over

n items with probability p as B(n, p).

Also refer to Section 6.A (Appendix) for a summary of de�nitions.

6.1.3 The Hyperbolic Random Graph Model Gα,C(n)

We consider the well-accepted Gα,C(n) Gα,C(n) : Threshold

RHG

threshold model [159]. It follows the initial

zero-temperature model of Krioukov et al. [200], but removes a redundant curvature

parameter by �xing ζ = 1.

3

We omit the azimuth of z as it is irrelevant in our analysis due to polar symmetry.

161

Streaming Random Hyperbolic Graphs

Definition 6.1 (Gugelmann et al. [159]). Let α > 1/2, n ∈ N>0, and C > −2 log n.

The random graph Gα,C(n) = (V,E) has the following properties (Section 6.1.3):

• Each node vi ∈ V = {v1, . . . , vn} is modeled by a random point pi = (ri, θi) in

the hyperbolic disk.
4R := 2 log n+ C radius

of hyperbolic disk

Its angular coordinate θi is drawn uniformly from [0, 2π]

while its radius 0 ≤ ri < R with R := 2 log n+ C has density

ρ(r) =
α sinh(αr)

cosh(αR)− 1
. (6.1)

• The distance d(pi, pj) between the two points pi and pj is given by

cosh(d(pi, pj)) = cosh(ri) cosh(rj)− sinh(ri) sinh(rj) cos(θi − θj). (6.2)

Two nodes vi, vj ∈ V with i 6= j are adjacent i� they are close d(pi, pj) < R by. J

Roughly speaking, the smaller αα > 1/2: dispersion

parameter

the more likely are points with small radial compo-

nents, which are expected to have a high number of neighbors. The parameter hence

controls the skewness of the resulting powerlaw degree distribution with an exponent

of γ = 2α+ 1 > 2γ = 2α+ 1: powerlaw

exponent of degree

distribution

. [200] We assume α = O(1) since real networks typically exhibit

2 ≤ γ ≤ 4 (e.g., [109, 202]). Further, while with high probability there exists a giant

component of linear size for α < 1, networks with α > 1 have components of sub-linear

size [54]. The parameterC controls the average degree d̄ of the graph which is governed

as follows: [159]

E
[
d̄
]

=
2

π

(
α

α− 1/2

)2

e−C/2(1 + o(1)) (6.3)

6.1.4 Hyperbolic Graph Generators

A naïve generator for hyperbolic graphs checks all

(
n
2

)
pairwise distances and emits

an edge for each pair of points close enough. On the one hand, such an approach

can be implemented with constant memory overhead based on a pseudorandom hash

function mapping node ids to coordinates. On the other, it incurs a sequential runtime

of Θ(n2) and is hence prohibitively expensive for large n. Similarly, while it can be fully

parallelized yielding a O(1) time computation on a Erew-Pram [187] with p = Θ(n2)

processors, such a solution requires Θ(n2) work and is infeasibly ine�cient.

All sub-quadratic algorithms we are aware of rather rely on a two-step approach:

For each node v ∈ V , the generators �rstly identify a set of candidates C(v) ⊆ V by

some geometric means (see below). Edges are then generated by computing only the

distances between v and C(v). In order to avoid false negatives, all neighbors N(v)

have to be a subset of C(v). Techniques include:

• Looz et al. [223] project all points into the Poincaré disk model which allows neigh-

borhood queries based on Euclidean disks. Candidates are selected using a polar

quad-tree. The authors bound the generator’s runtime to O
(
(n3/2 +m) log n

)
with high probability.

4

We treat a node vi and its corresponding point pi as equivalent and use the terms interchangeably.

Similarly, the symbols ri and θi always refer to the radius and azimuth of point pi.

162

Introduction

• Later, Looz et al. improve the runtime signi�cantly by dropping the angular

separation of the quad-tree [224]. As sketched in Section 6.1.3, their generator

(which is the basis of our work and to which we refer as NkBand
5
) decomposes

the hyperbolic plane into k = Θ(log n) bands, each covering the radial range

[bj , bj+1) where bj = (1−βj−1)R/(1−βk) for j ∈ [k+1] and a tuning parameter

β ≈ 0.9. In a preprocessing step, the points are randomly scattered over the plane

by inserting each point (r, θ) into the appropriate band j, where bj ≤ r < bj+1.

The points are then sorted by angular coordinates independently for each band.

In order to query the neighbor candidates of a point p = (r, θ) stored in band i,

the algorithm iterates over all bands i ≤ j ≤ k. For each band j, it computes the

angular range Aj = [θ −∆θ(r, bj), θ + ∆θ(r, bj)] where the maximal angular

distance ∆θ(r, bj) between p and any hypothetical point in band j is given by

∆θ(r, b) :=

π if r + b < R

acos
[

cosh(r) cosh(b)−cosh(R)
sinh(r) sinh(b)

]
otherwise

. (6.4)

The points within Aj constitute all candidates from band j. As points are sorted

by their angles, the bounds of Aj can be identi�ed using two binary searches in

time O(log n). The authors experimentally �nd a runtime of O(n log n+m).

• Bringmann et al. [68] propose the Geometric Inhomogenous Random Graphs model

(GIRG) and show that Gα,C(n) is a special case of GIRG which can be gener-

ated with their sampling algorithm in expected time O(n+m). Their sampling

method for hyperbolic graphs is similar to the quad-tree approach in the sense that

it partitions the space uniformly along the angular axis and exponentially in the

radial direction. The resulting cells roughly correspond to leaves in a quad-tree.

However, the algorithm does not execute �ne-grained neighborhood queries for

each node; these constants were

reduced later in

HyperGirgs:

R Chapter 8

it rather tests all point pairs of two related cells in a pessimistic and

data-oblivious fashion. Despite its expected linear runtime, the algorithm seems to

su�er from high constants (Section 6.5). Bläsius et al. provide an implementation
6

to which we refer as Girgs [49].

• Development of HyperGen

and Rhg overlapped. The

later published Rhg

(R Chapter 7) uses

improvements proposed

here unavailable at time of

writing. We hence denote

the earlier variant of Rhg

as Rhg (prelim).

Very recently and independently from this work, S. Lamm proposed the distributed

and communication-agnostic generator Rhg (prelim) with a partitioning scheme

similar to [68], although with di�erent radial limits [206]. Each band is split into

disjoint buckets of equal angular size. Their number is chosen such that each cell

is expected to contain k points, where k ≈ 4 is a tuning parameter. Rhg (prelim)

allows all processing units to compute the points within any bucket independently,

eliminating the need of communication. The author shows an expected sequential

runtime ofO(n+m), bounds the generation time of the distributed grid structure

toO(P log n+ n/P), where P is the number of processors, and empirically �nds

a time complexity of O
(
n+m
P + P log n

)
for the parallel algorithm.

5

A reference implementation is included in NetworKit [316]. h�ps://networkit.github.io/

6

h�ps://bitbucket.org/HaiZhung/hyperbolic-embedder/overview

163

https://networkit.github.io/
https://bitbucket.org/HaiZhung/hyperbolic-embedder/overview

Streaming Random Hyperbolic Graphs

Algorithm 10: MemGen

1 ∆θ(a, b) := π if a+ b < R else acos
[cosh(a) cosh(b)−cosh(R)

sinh(a) sinh(b)

]
2 noBands← max(2, dβRe)
3 limits← [0, R/2, c+R/2, 2c+R/2, . . . , R− c,R] with c = R/2/(noBands− 1)

4 for i ∈ [1, . . . , n] do
5 r ← random radius from [0, R) with density ρ(r) = α sinh(αr)/(cosh(αR)− 1)

6 b← search band s.t. limits[b] ≤ r < limits[b+ 1]

7 θ ← next non-decreasing uniformly random polar angle

// In case θ + 2∆θ(r, r) > 2π special treatment is necessary – see text

8 bands [b].addPoint(Point(i, (r, (θ + ∆θ(r, r)) mod 2π)))

9 b← max(2, b)

10 req ←Reqest(i, [r, r + 2∆θ(r,max(r, limits[b+1]))], (r, θ + ∆θ(r, r)))

11 bands [b].addReqest(req)

// Main Phase: Generation of Edges

12 foreach u, v ∈ bands[1].points with u < v do
13 emit edge {u.id, v.id}
14 reqsToAbove← []

15 for b ∈ [2, . . . , noBands] do
16 sort bands [b].points by angle

17 reqsFromBelow← sorted(reqsToAbove)

18 initialise empty reqsToAbove, candidates

19 foreach pt ∈ bands[b].points do
20 remove all requests from candidates ending before pt.θ

21 foreach req ∈ (bands[b].reqs ∪ reqsFromBelow) with
req.rangeBegin ≥ pt.θ do

22 insert req into candidates if not existing

23 insert req into reqsToAbove with updated range

24 foreach req ∈ candidates do
25 if (req.r, req.id)≤lexico(pt.r, pt.id) ∧ dist(pt, req) ≤ R then
26 emit edge {pt.id, req.id}

6.2 MemGen: a Fast Algorithm with Linear Memory Usage

To simplify the description of HyperGen and present its main design, we start with a

sequential version MemGen (Algorithm 10) requiring O(n) memory. Most arguments

regarding the runtime of MemGen later translate into the space complexity of HyperGen.

Geometrically, MemGen employs a band partitioning similar to the one introduced

by NkBand and illustrated in Section 6.1.3. However, we alter their contents and access

patterns, and use di�erent radial band limits: all bands except the lowest one have a

constant height x = R/2k, where k + 1 is the number of bands and x = Θ(1) a tuning

parameter (typically x ∈ [1, 2]). Band 1 ≤ i ≤ k + 1 covers a radial range of [li, li+1)

with l1 = 0 and li = [1 + (i− 2)/k] · R/2 for some k = Θ(R). It is not necessary to

further divide the lowest band since all points with radius r ≤ R/2 are forming a clique

(see Section 6.1.3) and can be handled without vicinity tests.

164

MemGen: a Fast Algorithm with Linear Memory Usage

Band b stores all points contained. For each point p within b or below it, the

band additionally maintains a so-called request reqb(p), storing the coordinates of

p itself as well as the angular range in which neighbors of p can lie in band b. Such

requests e�ectively reduce random accesses during the candidate selection and carry

precomputed values repeatedly required for the distance calculations (see Section 6.4).

In fact, the algorithm chooses a request-centric view and randomly draws the

beginnings of each request range, computes its radius-dependent length, and then

places a point at its center.
7

We draw the polar components as sorted random numbers

using the online technique detailed in [39] requiring constant time per element. The

generation process may yield requests with a range [a, b] with b > 2π. To take the

azimuthal 2π-period of the hyperbolic disk into account, we split such queries into

two separate ranges [0, b− 2π] and [a, 2π] respectively and mark the latter as a copy.

Analogously, points with θ > 2π are remapped to θ − 2π. After the generation phase,

the points are sorted by their polar coordinate.

In the main phase, we iterate over the bands starting from the center for which we

simply emit the clique of all nodes contained. For all higher bands, we scan the points

and requests in lock-step and keep a separate list of candidates C(·). Since both streams

are sorted, we can e�ciently update C(v) when moving from one point to the next.

Each time we reach a new unmarked request reqj(p), we propagate it to the next

higher band j + 1 by adding reqj+1(p) to the appropriate insertion bu�er. Here, it

may be again necessary to split a request due to the 2π-periodicity. Further observe

that the range of a request may shrink during the propagation. As a consequence, the

insertion bu�er has to be sorted when switching to band j + 1 (cf. Section 6.2.2) before

it can be merged with the requests generated in the preprocessing phase. In a last step,

we compute the distance between a point and all candidates in order to emit the edges.

The linear time generators we are aware of use discrete buckets along the angular

axis to avoid sorting [68, 206]. However, preliminary experiments with MemGen sug-

gested that a more involved candidate selection process is faster in practice (especially

in the context of vectorization) and does incur only small theoretical penalties (see

Theorem 6.7). Thus, we maintain a data structure which keeps active candidates in a

continuous array to facilitate vectorization e�ciently (see Section 6.4 for details). The

array has an arbitrary order allowing to implement deletions as moves of the array’s

back. The data structure is further augmented with a search tree to �nd the position of

a candidate using its point id as key. We also keep a priority queue with range-ends to

quickly �nd and remove obsolete candidates.

6.2.1 Candidate Selection is at Worst a Constant Approximation

In this section, we establish all necessary facts to show that the candidate selection

incurs a non-substantial overhead. In Lemma 6.2, we will see that most points issue

only a constant number of requests.

7

While this is an arbitrary choice for MemGen, it will become a crucial ingredient for HyperGen.

165

Streaming Random Hyperbolic Graphs

Subsequently, we derive a high-probability bound on the number of candidates

processed for any node in two steps: Observe that a node has to process all requests

from nodes below. Lemma 6.3 bounds their number in terms of n and average degree

d̄. Further, Lemma 6.4 states that MemGen overestimates the probability mass during

candidate selection by at most a constant factor. Therefore, the bound on the number of

neighbors from below carries over to the number of candidates processed.

Lemma 6.2. The expected number of bands E[Bi] a random node vi sends requests to

is E[Bi] = 1 + [1− e−αR/2]/[eα/2k − 1] = O(1) where k + 1 = Θ(R) is the number

of bands used by MemGen. J

Proof. Each point with radius r sends requests to its own band j with bj ≤ r < bj+1 as

well as to all above. Consequently, the probability of a random point pi contributing

to band j is governed by the mass function µ(Bbj+1
(0)) as given by Eq. (6.14). Using

indicator variables for the reception of a request by band j, we obtain the claimed

expectation value:

E[Bi] =
k∑
j=0

µ(Bbj+1
(0)) =

k∑
j=0

eα[R
2

(1+j/k)−R] = e−αR/2
k∑
j=0

(
eα

R
2k

)j
= 1 +

1− e−αR/2
eα/2k − 1

�

Lemma 6.3. LetNj be the number of neighbors the point pj = (rj , θj) has from below,

i.e., neighbors with smaller radius. With high probability, there exist O
(
n/ log2 n

)
points with Nj = O

(
n1−αd̄α log(n)

)
while the remainder of points with rj > R/2 has

Nj = O
(
n1−2α log2α(n)d̄2α

)
neighbors. J

Proof. Let X1, . . . , Xn be indicator variables with Xi = 1 if p and pi are adjacent. Due

to radial symmetry we directly obtain the expectation value of Xi conditioned on the

radius pi:

E[Xi | ri= x] = P[Xi=1 | ri= x] =

{
1 if x < R− r
∆θ(x, r)/π otherwise

(6.5)

We remove the conditional using the Law of Total Expectation and Eqs. (6.13) and (6.14):

E[Xi] =

R−r∫
0

ρ(x)dx +
1

π

r∫
R−r

ρ(x)∆θ(x,R)dx (6.6)

=
[
e−αr − e−αR

]
(1 + o(1)) +

1

π

α

α− 1
2

e−αr
[
e(α− 1

2
)(2r−R) − 1

]
(1±O

(
e−r)

)
(6.7)

Fix the radius rT = R − 2
α log log n with R/2 < rT (without loss of generality) and

consider three radial regimes:

• We ignore all points of the central clique (i.e.,. r ≤ R/2)

166

MemGen: a Fast Algorithm with Linear Memory Usage

• Observe that with high probability there exist O
(
n/ log2(n)

)
points below rT .

Exploiting the monotonicity of Eq. (6.7) in r, we maximize it by setting r = R/2,

which cancels out the second term. Linearity of the expectation value, substitution

of R = 2 log(n) + C , and Eq. (6.3) yield E[
∑

iXi] = O
[
n
(
d̄/n

)α]
. Then,

Cherno�’s bound gives

∑
iXi = O

(
n1−αd̄α log(n)

)
with high probability.

• For all points above rT , set r = rT yielding

∑
iXi = O

(
n1−2α log2α(n)d̄2α

)
with high probability analogously. �

Lemma 6.4. Consider a query point with radius r and a band with boundaries [a, b).

MemGen’s candidate selection overestimates the probability mass of the actual query

range by a factor of OE(b− a, α) where OE(x, α) := α−1/2
α

1−eαx
1−e(α−1/2)x . J

Proof. If r < R − b, the requesting point covers the band completely which ren-

ders the candidate selection process optimal. We now consider r ≥ R − a and

omit the fringe case of R − b < r < R − a which follows analogously (and by

continuity between the two other cases). Then, the probability mass µQ of the in-

tersection of the actual query circle BR(r) with the band Bb(0) \ Ba(0) is given by

µQ := µ [(Bb(0)\Ba(0)) ∩BR(r)]

= µ
[(
BR(0) ∩BR(r)

)
\Ba(0)

]
− µ

[(
BR(0) ∩BR(r)

)
\Bb(0)

]
(6.15)

=
2αe−

r
2

π(α− 1
2)

[(
1 +

α− 1
2

α+ 1
2

e−2αb

)
e(α− 1

2
)(b−R) +

(
1 +

α− 1
2

α+ 1
2

e−2αa

)
e(α− 1

2
)(a−R)

]
(1 + ε)

=
2

π
e−

r
2
−(α− 1

2
)R

[
α

α− 1
2

(
e(α− 1

2
)b − e(α− 1

2
)a
)

+O
(
e−(α− 1

2
)a
)]

,

where ε substitutes the error term expanded in the last line (see Section 6.1.3, blue

cover of a band). MemGen overestimates the actual query range at the border and covers

the mass µH (see Section 6.1.3, yellow cover of a band):

µH :=
1

π
∆θ(r, a)

b∫
a

ρ(y)dy =
1

π
· 2eR−a−r2 (1 +O

(
eR−a−r)

)
· cosh(αb)− cosh(αa)

cosh(αR)− 1

=
2

π
e
R−a−r

2 (1 +O
(
eR−a−r)

)
·
[
eα(b−R) − eα(a−R)

]
(1± o(1))

=
2

π
e−

r
2
−(α− 1

2
)R
[
eαb−a/2 − e(α− 1

2
)a
]
·
(

1±O
(
e(1−α)(R−a)−r

))

The claim follows by the division of both mass functions µH/µQ. �

Corollary 6.5. Given a constant band height, i.e., b − a = O(1), Lemma 6.4 im-

plies a constant overestimation for any α > 1/2. In case of b − a = 1, we have

OE(1, α) ≤ √e ≈ 1.64 ∀α > 1/2. J

167

Streaming Random Hyperbolic Graphs

6.2.2 Nearly Sorted Points/Request Allow for Faster Sorting

MemGen’s scheme to update the candidate list requires the input streams of requests

and points to be increasing in their angular coordinate. Since we are not aware of a

technique that directly yields both in an ordered fashion, we have to sort them. Using

naïve methods this would amount toO(n log(n)) time (cf. Lemma 6.2). Since the number

m = nd̄/2 of edges generated constitutes a lower bound on the time complexity of any

generator, this approach is optimal for d̄ = Ω(log n).

Observe, however, that the points are calculated based on ordered requests and

are therefore already nearly sorted. Similarly, requests have to be sorted after being

propagated from ordered streams. In both cases, and with high probability, the change

of rank of each item is bounded to some ∆ = o(n).
8

Such a ∆-ordered sequence can be

sorted in time O(n log ∆), e.g., using a sliding window coupled with a priority queue

of size ∆.

The following Lemma gives a rough bound on the time complexity which su�ces

to show that MemGen is optimal for d̄ = Ω(log log(n)) with high probability:

Lemma 6.6. Sorting all points initially and requests after their propagation requires

O
(
nmin[log(d̄ log n), log n]

)
time. J

Proof. It su�ces to bound the claim for requests since every point contributes at least

one request and has a shorter lifetime. As stated in the introduction of the Lemma,

we can rely on classical sorting in time O(n log n) for the case of d̄ = Ω(log n). Thus

assume d̄ = o(log n).

The proof consists then of two steps: We pick a radius rT , s.t. with high probability

there are onlyO
(
n/ log2(n)

)
points below rT . Since each point issues at mostO(log n)

requests, we can classically sort their O(n/ log(n)) tokens in time O(n). For the

remaining points, we bound the number of overlapping requests from above and thereby

also the maximal change in rank that can occur during sorting.

The number nT of points below radius rT is governed by the Binomial distribution

B(n,BrT (0)) with BrT (0) = 1/ log2(n). Solving for rT yields rT = R − 2
α log log n

and hence nT = O[nBrT (0)] with high probability.

We now tend to the requests above rT and exploit the two following facts:

• The number of bands above rT is constant since rT /R→ 1 as n→∞.

• During sorting only those requests that overlap can change their relative position.

Therefore, we �x θ ∈ [0, 2π) and let nθ be the number of requests that include θ.

To maximize nθ, assume without loss of generality that all remaining requests lie at

radius rT . Then, nθ is binomially distributed around its mean nµ with
9

nµ = n
∆θ(rT , rT)

π
= 2ne−

R
2

+ 2
α

log logn = O
(
d̄ log

2
α (n)

)
. (6.8)

8

Split requests and remapped points are sorted separately and merged in linear time.

9

It can be improved to O
(
d̄ log log n

)
by replacing the assumption that all requests lay at rT with an

appropriate integral; we omit this non-substantial calculation in favor of simplicity.

168

HyperGen: Reducing MemGen’s Memory Footprint

1

2

3

4

5

6

7

8

9

10

11

0

3
π

1

3
π

2

3
π

3

3
π

4

3
π

5

3
π

Clique

Global

Stream

main phase of

of segment

endgame of

segment 1

Figure 6.2: Le�: HyperGen streams through each band consuming batches whose size is limited by two factors: either due to

a polar limit imposed by the underlying band (solid blue line) or due to the limited number of requests a batch is allowed to

have (do�ed blue line). We traverse the indicated tree in depth-first order. Right: The hyperbolic plane is partitioned along

the polar axis into p segments of equal size. Radially, there are two groups: the lower global bands which are preprocessed

and kept in memory, and the upper streaming bands. In the main phase, each execution thread streams through its segment

towards increasing polar angles (red arrow). Requests overlapping into the next segment are then completed in the endgame.

With high probability only O
(
d̄ log

2
α (n)

)
requests overlap due to Cherno�’s in-

equality. We thus can sort them in time O
(
n log(d̄ log n)

)
. �

Theorem 6.7. MemGen requiresO(n) memory and timeO(n log log n+m) whp.. J

Proof. The space complexity directly follows from Algorithm 10: each of the n points

is stored in exactly one band, yields at most two requests, and requires O(1) space in

the candidate list. During the main phase, there further exists only one insertions bu�er

at a time to which a point may contribute O(1) items. M
We bound MemGen’s time complexity by considering each component individually:

• The preprocessing (until line 11) requires O(1) time per point.

• Handling of cliques is trivially bounded byO(m) as every iteration emits an edge.

• The sorting steps (lines 16 and 17) require with high probability a total time of

O
(
n log(d̄ log n)

)
= O

(
n log d̄+ n log log n

)
according to Lemma 6.6.

10

• By Lemma 6.3 and Corollary 6.5, the candidate selection requiresO
(
n log d̄

)
time.

• All distance calculations require in total O(m) time since Corollary 6.5 bounds

the fraction of computations that do not yield an edge to O(1). �

6.3 HyperGen: Reducing MemGen’s Memory Footprint

In the analysis of MemGen, we repeatedly exploited the facts that requests are generated

in increasing angular order and the majority a�ects only a small fraction of the hyperbolic

10

We consider only the �rst min-term: in case the second term becomes smaller, the theorem’s claim is

dominated by the O(m) where m = nd̄/2.

169

Streaming Random Hyperbolic Graphs

plane. This is also the foundation of HyperGen, which strives to additionally reduce

the memory requirements of the generator. In order to do so, we do not draw all points

globally and insert them into their bands, but rather reverse the scheme.

HyperGen �rst computes how many points go into each band. It is then able to

draw points for each band independently. Due to the radial distribution function ρ(r),

band i with boundaries [li, li+1) carries a probability mass of µi = µ[Bli+1
(0) \Bli(0)].

Consequently, the numbers N = (n1, . . . , nk) of points per band with n =
∑

i ni
are governed by a multinomial distribution with µi as event probabilities. We sample

N and build for each band i a stream Si(ni, si) that outputs exactly ni requests with

monotonously increasing angles as detailed in Section 6.2. Storing the seed value si
used to initialize the underlying pseudorandom number generator enables HyperGen

to replay the stream from the beginning.

Analogous to MemGen, each band maintains such a request stream Si, the current

candidates, and a small list of recently produced points. The generator starts with the

innermost band i = 1 (cf. optimization in Section 6.3.1) and draws a batch of at most

c requests from its stream Si, computes the positions of their corresponding points,

and �nally sorts the latter by their angle. Let θL be the beginning of the last request

generated (θL = 2π if the batch is empty). We merge the newly generated points with

those remaining from the band’s last batch, update the set of candidates, and match

points against them as described for MemGen. Edges produced are pushed into the

output stream.

Before we continue in the current band i, we �rst process all higher bands, hence

limiting the amount of requests in memory. HyperGen propagates the recently gen-

erated requests to the band i+ 1. Observe that the request of a point (r, θ) is always

centered around θ but its range shrinks as it is moved to higher bands. As a direct

consequence, the higher range is completely enclosed by the lower one and no future

request produced for band i will ever start before θL. Therefore, we recurse to band

i+ 1 but limit processing there to points with θ < θL. In e�ect, HyperGen performs a

depth-�rst traversal of the recursion tree illustrated in Figure 6.2 in which every node

corresponds to a batch.

Due to the processing limit imposed on higher bands, we make sure they have

the same information they would receive in MemGen. One subtle di�erence, however,

concerns the fact that MemGen splits requests and remaps points overlapping the 2π

threshold to take their angular periodicity into account. This is not possible in HyperGen

since overlaps in outer bands are only detectable quite late in a run.

We resolve this issue by ignoring it at �rst, i.e., we perform the main computation

phase exactly as described above. If there are still pending candidates or points after

its completion, we restart the request streams to handle the so-called endgame. During

endgame, HyperGen executes the same algorithm as before but only emits edges for

pairs in which either the point or the request originate from the main phase. Therefore,

it can be stopped as soon as all such old points and candidates have been processed. A

single rewind su�ces and thus does not a�ect the asymptotic runtime since a request

has a length of at most 2π rad and a point can only be moved π rad in forward direction.

170

HyperGen: Reducing MemGen’s Memory Footprint

Theorem 6.8. For c = O(1) HyperGen requires O
(
[n1−αd̄α + log n] log n

)
memory

whp., where d̄ is the expected average degree and n the number of nodes. J

Proof. Each of the k = Θ(log n) bands requires auxiliary data structures of constant size.

Regarding the data contained, it again su�ces to show the result for requests (cf. proof of

Lemma 6.6). The number of pointsNC with radius belowR/2 is governed by a binomial

distribution B(n, µ(BR/2(0))). Thus, with high probability NC = O
(
n1−αd̄α + log n

)
where the second term ensures concentration for small (d̄/n)α. Each such point con-

tributes requests to k = O(log n) bands; multiplication yields the claim.

According to Lemma 6.3 and Corollary 6.5 and for any �xed θ, there are with high

probability O
(
n1−αd̄α log n

)
points with radius r ≥ R/2 that have at least one request

including θ. By Lemma 6.2, they contribute to O(1) bands on average and thus are

covered by the claim. �

Corollary 6.9. In the external memory model with M = Ω([1 + n1−αd̄α] log n), Hy-

perGen only triggers I/Os to write out the resulting m edges in O(scan(m)) I/Os. J

6.3.1 Accelerating the Endgame

A runtime/memory trade-o� can be implemented to improve the runtime (especially

in the context of the parallel variant). Rather than starting the streaming approach

introduced above, we compute all bands with radii at most rG and store them as in

MemGen in the so-called global phase. This allows us to propagate split requests to the

streaming bands which in turn allows us to stop the endgame earlier.

Observe that a request of a point (rG, θ) has a length of at most 2∆θ(rG, rG). To

restrict the endgame to a fraction 1/f of the hyperbolic plane, we solve 2∆θ(rG, rG) =

2π/f for rG. The number nG(f) of points generated in the global phase, which have to

be kept in internal memory, is thus binomially distributed around the mean of

E[nG(f)] = nµ(BrG(0)) = n

(
d̄f

2n

)α(α− 1
2

α

)2α

= O
(
n1−αd̄αfα

)
. (6.9)

6.3.2 Parallelism

Similarly to NkBand, HyperGen can easily be parallelized by decomposing the hyper-

bolic plane into p segments of equal size along the polar axis. As shown in Figure 6.2,

we use a global phase with f ≥ p to handle the nG requests spanning more than one

segment. We enqueue a copy of each such request into all segments it a�ects. For

realistic settings, it su�ces to execute this phase sequentially; however, parallelism can

be applied as in NkBand’s implementation. The number of points in each segment

(ν1, . . . , νp) with n− nG =
∑

i νi is then sampled from a multinomial distribution in

which each event is equally likely. Based on this distribution, each band continues inde-

pendently as described in the original formulation of HyperGen. In the endgame, each

segment retrieves the seed values of its successor’s pseudorandom number generators

and replays its streams.

171

Streaming Random Hyperbolic Graphs

In a distributed scenario the seed values can be computed using a pseudorandom

hash function mapping the segment id to a pseudorandom seed value. Further, the

initial distribution as well as the fast global phase can be computed repeatedly by each

compute node, yielding constant communication.

6.4 Implementation

The prototypical implementation is available at h�ps://github.com/manpen/hypergen/.

6.4.1 Adjacency Tests without Trigonometric Functions

In a preliminary study we found that NkBand’s runtime is dominated by trigonometric

computations during the calculation of distances between points and their neighbor

candidates. We approach this issue by introducing a new precomputing scheme inspired

by the usage of the Poincaré disk model in [223]. We project the random points into

the unit disk causing additional work per point but simplifying all further distance

computation. Thus, the speedup increases with the average degree.

Our implementation applies the transform only to the distance calculations and

does not change the candidate selection process. Let p = (rp, θp) and q = (rq, θq) be

two points in the hyperbolic space and p′ = (cdm(rp), θp) and q′ = (cdm(rq), θq) their

counterparts in the Poincaré disk model, where cdm(r) := [(1− r2)/(1 + r2)]1/2.

Then p and q are adjacent if

R > d(p′, q′) = acosh

(
1 + 2

||q − p||2
(1− ||p||2)(1− ||q||2)

)
(6.10)

⇔ cosh(R)− 1

2
>

||q − p||2
(1− ||p||2)(1− ||q||2)

=
(xp′ − xq′)2 + (yp′ − yq′)2

(1− r2
q′)(1− r2

q′)
(6.11)

=
(
(xp′ − xq′)2 + (yp′ − yq′)2

)
· γ(rp′) · γ(rq′), (6.12)

where xp′ = rp′ sin(θp) and yp′ = rp′ cos(θp) are the Cartesian coordinates of point

p′ (analogously for q′). We reduce a distance computation to three additions and four

multiplications by precomputing xp′ , yp′ and γ(rp′) := 1/(1− r2
p′) for each point. The

resulting expression can be vectorized e�ectively and even allows to partially fuse

operations (e.g., FMA instructions).

Our implementation uses explicit vectorization
11

to compute distances. For graphs

with small average degree, a speedup may be possible by vectorizing computations that

are necessary for each point, such as the random number generation and geometric

transformations.

6.4.2 Optimising NkGen for Streaming

In addition to the default implementation of NkBand, we study a variant NkBandOpt

to which we apply the following optimizations:
12

11

based on libVC — SIMD Vector Classes for C++ [198]. h�ps://github.com/VcDevel/Vc

12

NkBand originally generates an adjacency-list-like internal memory data structure using the Net-
worKit’s GraphBuilder module. This limits the graph sizes and explains NkBand optimization for smaller

172

https://github.com/manpen/hypergen/
https://github.com/VcDevel/Vc

Experimental Evaluation

108 109 1010 1011 1012

Number m of edges

100

101

102

103

104

W
a
l
l
t
i
m

e
[
n

s
]

p
e
r

e
d

g
e

Deg: 1000, Exp: 3.0

Girgs

Rhg (prelim)

NkBand

NkBandOpt

HyperGen

HyperGen (Phi)

101 102 103

Average degree d̄

100

101

102

103

104

W
a
l
l
t
i
m

e
[
n

s
]

p
e
r

e
d

g
e

Nodes: 224
, Exp: 3.0

Girgs

Rhg (prelim)

NkBand

NkBandOpt

HyperGen

Figure 6.3: Runtime per edge generated for α = 1 (powerlaw exponent γ = 3) as a function of n and d̄. Sample size

S = 5; with few exceptions, errors bars do not show due to highly concentrated measurements.

• It avoids recalculations similar to Section 6.4.1, but does not rely on the Poincaré

transform. In NkBand’s case all additional data has to be kept in memory amount-

ing to roughly 32 bytes per points. We expect that this increase is only signi�cant

for very sparse graphs as NetworKit keeps the whole adjacency list in RAM.

• The number of binary searches as well as their range
13

is reduced. Further,

the amount of data copied is signi�cantly reduced which, in turn, reduces the

number of (de-)allocation operations. This optimization roughly compensates the

increased footprint due to the precomputations.

• We removed several checks not required for the restricted case of GC,α(n).

HyperGen and NkBandOpt are compared to NkBand over a wide range of param-

eters. We observed only acceptable numerical discrepancies for large graphs a�ecting

less than one in 105
edges due to di�erent implementations of the distance computation.

6.5 Experimental Evaluation

In this section, we compare six con�gurations: HyperGen on CPU / Xeon Phi (Sec-

tion 6.3), NkBand [224], NkBandOpt (Section 6.4.2), Rhg (prelim) [206], and Girgs

[49]. They are implemented in C++ and built as release versions with the same compiler.

As an exception, HyperGen requires a hardware-speci�c compiler, links against Intel’s

TBB malloc_proxy, but otherwise shares the same code with the CPU version.

To fully exploit HyperGen’s on-the-�y edge generation, none of the implementations

writes the edge list into memory. We rather simulate a very simplistic streaming

algorithm which consumes the edge stream and computes a �ngerprint by summing

graphs. Further, the removal of the GraphBuilder in this work shifts the implementation’s balance and leads

to the large optimization potential demonstrated. Porting the optimizations back to NetworKit showed

insigni�cant changes for typical instances which could be likely solved with an optimized GraphBuilder.

13

By replacing ∆θ(r, bi) by ∆θ(r, r) when searching candidates for (r, θ) in band iwith bi ≤ r < bi+1.

173

Streaming Random Hyperbolic Graphs

all node indices contained.
14

This choice enforces that the generators have to compute

and forward every edge but does not impose memory restrictions. With the exception

of Girgs, all generators support parallelism and are con�gured to use all available

hardware threads. Rhg (prelim) employs a multi-process design using MPI allowing

several compute nodes, while HyperGen, NkBand and NkBandOpt use lightweight

threads based on OpenMP. The runtime benchmarks use the following systems:

• Indicated by (Phi): Intel Xeon Phi 5120D (60 cores, 240 threads, 1.05GHz), 8 GB

GDDR5 RAM Linux 2.6.38, ICC 17.0.0, Intel TBB malloc_proxy

• Otherwise: Intel Xeon CPU E5-2630 v3 (8 cores, 16 threads, 2.40GHz) with

AVX2/SSE4.2 support for 4-way double-precision vectorization, 64 GB 2133 MHz

RAM, Linux 4.8.1, GCC 6.2.1, VC (8. Dec. 2016), MPICH 3.2-7

The number of repetitions per data point (with di�erent random seeds) is denoted by

S. All plots show the median of repeated measurements and error bars corresponding

to the unbiased estimation of the standard deviation. Due to its large runtime Girgs

typically only includes one measurement per data point.

6.5.1 Runtime

We study the generators’ runtimes for a wide range of graph sizes. For each run, we �x

the number of nodes 105 ≤ n ≤ 109
as well as the average target degree d̄ ∈ {10, 1000},

which we consider as lower and upper limits of realistic inputs [28, 216, 238, 255]. In

order to achieve compatible results, all implementations use values of R derived with

NkBand’s getTargetRadius-method. In case of HyperGen, we use two segments per

thread to balance load for large average degrees. For Rhg (prelim) we chose an expected

bucket size of four which resulted in the best performance in preliminary tests.

As shown in Section 6.5 and Figure 6.6 (Appendix) and Table 6.1 (Appendix), Hyper-

Gen is consistently the fastest generator, followed by NkBandOpt which outperforms

NkBand. Girgs is always the slowest.We later obtained a

competitive GIRGs

generator:

R Chapter 8

If we assume perfect parallelizability and divide

Girgs’s wall-time by the number of cores, it is on par with NkBand for small degrees

but remains up to one order of magnitude slower for d̄ = 1000. For d̄ = 10 NkBand

outperforms Rhg (prelim), while for d̄ = 1000 and α = 1 the opposite is true.

All generators but HyperGen (Phi) exhibit an near constant computation time

per edge for large n. The improvements of HyperGen (Phi) towards larger n can be

attributed to the high number of threads (p = 240) which incur more overhead compared

to runs performed on a CPU. This overhead is amortized only for high values of n.

Based on Figure 6.6 (Appendix), we measure a speedup of 4.0 for d̄ = 10 and 29.6

for d̄ = 1000 when comparing HyperGen to NkBand for n ≥ 108
and α = 1. Similar

results for smaller n are included in Table 6.1 (Appendix). On (Phi), HyperGen is

2.3 times faster (d̄ = 10) compared to the execution on the more modern CPU-based

14

We removed the appropriate memory allocations and accesses from NkBand, Rhg (prelim), and Girgs,

and added the streaming simulation. The patches are included in our repository.

174

Experimental Evaluation

105 106 107 108 109

Number n of nodes

101

102

103

104

105

M
a
x
.

R
e
s
i
d

e
n

t
S
e
t

S
i
z
e

[
M

i
B

]

Deg: 1000, Exp: 3.0

Girgs

Rhg (prelim)

NkBand

NkBandOpt

HyperGen

105 106 107 108 109

Number n of nodes

10−1

100

101

102

103

M
a
x
.

R
e
s
.

S
e
t

S
i
z
e

[
B

]
p

e
r

n
o

d
e

Deg: 1000, Exp: 3.0

Girgs

Rhg (prelim)

NkBand

NkBandOpt

HyperGen

Figure 6.4: Maximal memory allocated during execution as measured by GNU/Linux time for α = 1.

reference system. The speedup reduces to 1.2 for d̄ = 1000 which seems to be caused

by a smaller cache per thread.

When using HyperGen to test a multi-pass streaming algorithm, it is virtually

always faster to repeatedly regenerate the graph than to bu�er it in external memory.

6.5.2 Memory Consumption

The memory consumption is measured for the same parameter settings as above. We

consider the maximal resident set size (i.e., the peak allocation of the generator) as

reported by the operating system. While all implementations seem to have potential for

further savings, �gures 6.4 and 6.7 (Appendix) show a clear trend: With the exception

of HyperGen, all generators seem to converge to a linear growth for large n requiring

≈ 80 byte per node. Rhg (prelim) exhibits higher constants which may be partially

caused by overheads due to its MPI architecture spawning independent processes rather

than lightweight threads and preventing cheap shared-memory utilization.

Consistent with our analysis, HyperGen exhibits a sub-linear footprint rendering

it orders of magnitude cheaper for large n. As the number n of nodes increases (and

hence R for �xed d̄), more points lie in the outer bands. Thus, a smaller fraction of

points has to be handled (and stored) during the global phase. For the same reason, the

memory footprint decreases with increasing α. To support Theorem 6.8 and the analysis

in Section 6.3.1, we carried out additional runs up to n = 1011
whose memory footprint

is well within the noise observed for n = 108
. We do not include measurements for

(Phi) since the memory allocation scheme adopted for the high number of threads does

not yield meaningful set sizes.

175

Streaming Random Hyperbolic Graphs

Figure 6.5: Strong scaling

of HyperGen on (Phi) for

a graph with n = 108
and

d̄ = 10. S = 8. Each ver-

tical division marks a new

level of HyperThreading.

0 50 100 150 200 250

Number p of threads

0

10

20

30

40

50

60

70

80

S
p

e
e
d

-
u

p
o
v
e
r

s
e
q

u
e
n

t
i
a
l

e
x
e
c
u

t
i
o

n

HyperGen (Phi)

6.5.3 Scalability

We measure HyperGen’s scalability using strong scaling experiments on (Phi). This

processor features 60 physical cores each o�ering four virtual threads (HyperThreading).

While �xing the graph instance to n = 108
and d̄ = 10, we record the runtime for

an increasing number p of threads. As illustrated in Section 6.5.3, the implementation

exhibits a nearly linear speedup of 43.0±1.5 when utilizing p = 58 threads. Surpassing

this point, the computational power provided by the hardware does not scale linearly.

Thus, the additional speedup is less pronounced peaking at 71.4± 6 for p = 240.

Acknowledgments

The author thanks Ulrich Meyer, Kamil René König, Moritz von Looz and Alexander

Schickedanz for valuable discussions and suggestions, Sebastian Lamm for providing

the code and support for Rhg (prelim), Ivan Kisel and Egor Ovcharenko for their help

with the Xeon Phi, as well as the anonymous reviewers for their insightful comments.

176

Definitions, Useful Identities and Approximations

Appendix 6.A Definitions, Useful Identities and Approximations

6.A.1 Hyperbolic Functions

sinh(x) :=
(
ex − e−x

)
/2 asinh(y) = x ⇒ sinh(x) = y

cosh(x) :=
(
ex + e−x

)
/2 acosh(y) = x ⇒ cosh(x) = y

6.A.2 Definitions Related To Geometry

ρ(r) := α sinh(αr)/ cosh(αR) radial density, cf. Eq 6.1

µ(Br(0)) :=

∫ r

0
ρ(x)dx =

cosh(αx)− 1

cosh(αR)
radial cdf

∆θ(r, b) :=

{
π if r + b < R

acos
[cosh(r) cosh(b)−cosh(R)

sinh(r) sinh(b)

]
otherwise

cf Eq. (6.4)

6.A.3 Approximations

Gugelmann et al. derived the following approximations
15

[159]:

∆θ(r, b) =

{
π if r + b < R

2e
R−r−y

2 (1 + Θ(eR−r−y)) if r + b ≥ R
(6.13)

µ(Br(0)) =

∫ r

0
ρ(x)dx =

cosh(αr)

cosh(αR)− 1
= eα(r−R)(1 + o(1)) (6.14)

µ [(BR(r) ∩BR(0)) \Bx(0)] =
2

π

αe−r/2

α− 1
2

·1±O
(
e−(α− 1

2
)r + e−r

)
if x < R− r[

1− (1 +
α− 1

2

α+ 1
2

e−2αx)e−(α− 1
2

)(R−x)
]

(1±O
(
e−r + e−r−(α− 3

2
)(R−x))

)
if x ≥ R− r

(6.15)

15

We drop the (1 + O(·)) error terms in our calculations without further notice if they are either

irrelevant or dominated by other simpli�cations made

177

Streaming Random Hyperbolic Graphs

Appendix 6.B Additional Experimental Results

n=226
, d̄=10, α=0.55, R=39.2 in total per edge relative to HyperGen

Algo S Degree Comp. [108
] RSS [GB] Time [s] Comp. Time [ns] Comp. RSS Time

HyperGen 6 10.3± 0.4 7.5± 0.2 0.0± 0.0 11.8± 0.1 2.1± 0.1 34.0± 1.4 1 1 1

NkBand 6 9.8± 0.7 5.6± 0.3 4.6± 0.3 57.1± 3.0 1.7± 0.2 173± 22 0.8± 0.1 290± 22 4.8± 0.3

NkBandOpt 6 9.6± 0.4 5.3± 0.2 4.1± 0.0 36.0± 0.3 1.7± 0.1 111.7± 6.1 0.7± 0.0 263.5± 3.2 3.1± 0.0

Rhg (prelim) 4 8.3± 0.1 7.9± 0.0 6.7± 0.6 110.0± 1.0 2.8± 0.0 395.8± 6.7 1.1± 0.0 428± 39 9.3± 0.1

Girgs 3 10.0± 0.0 18.1± 0.0 3.9± 0.0 884.3± 0.8 5.4± 0.0 2635.5± 2.8 2.4± 0.1 248.1± 2.2 75.0± 0.5

n=226
, d̄=10, α=1.00, R=33.3 in total per edge relative to HyperGen

Algo S Degree Comp. [108
] RSS [GB] Time [s] Comp. Time [ns] Comp. RSS Time

HyperGen 5 9.7± 0.0 7.0± 0.0 0.0± 0.0 12.9± 0.1 2.1± 0.0 39.6± 0.3 1 1 1

NkBand 5 10.0± 0.0 5.5± 0.0 4.1± 0.0 54.9± 0.5 1.6± 0.0 163.5± 1.6 0.8± 0.0 602± 13 4.3± 0.1

NkBandOpt 5 10.0± 0.0 5.2± 0.0 4.1± 0.0 34.4± 0.2 1.6± 0.0 102.3± 0.8 0.8± 0.0 596± 12 2.7± 0.0

Rhg (prelim) 5 10.0± 0.0 8.1± 0.0 7.5± 0.5 120.5± 0.4 2.4± 0.0 359.2± 1.2 1.2± 0.0 1100± 99 9.4± 0.1

Girgs 3 10.0± 0.0 16.6± 0.0 3.9± 0.0 819.8± 7.1 5.0± 0.0 2443± 21 2.4± 0.0 566± 11 63.6± 1.0

n=226
, d̄=1000, α=0.55, R=29.5 in total per edge relative to HyperGen

Algo S Degree Comp. [108
] RSS [GB] Time [s] Comp. Time [ns] Comp. RSS Time

HyperGen 5 1052.2± 1.6 622.8± 1.2 0.2± 0.0 86.9± 0.4 1.8± 0.0 2.5± 0.0 1 1 1

NkBand 5 994.4± 3.3 456.2± 1.3 6.4± 0.3 955.5± 4.9 1.4± 0.0 28.6± 0.2 0.7± 0.0 27.2± 1.3 11.0± 0.1

NkBandOpt 5 991± 19 441.6± 7.8 4.2± 0.0 299.5± 5.1 1.3± 0.0 9.0± 0.3 0.7± 0.0 17.6± 0.3 3.4± 0.1

Rhg (prelim) 5 889.1± 2.2 426.0± 1.1 23.9± 2.4 2205± 64 1.4± 0.0 73.9± 2.3 0.7± 0.0 101± 11 25.4± 0.9

Girgs 1 1000.0 1160.6 3.8 55756.0 3.5 1661.6 1.9± 0.0 16.2± 0.1 641.5± 2.8

n=226
, d̄=1000, α=1.00, R=24.1 in total per edge relative to HyperGen

Algo S Degree Comp. [108
] RSS [GB] Time [s] Comp. Time [ns] Comp. RSS Time

HyperGen 5 1015.8± 1.3 616.2± 0.7 0.1± 0.0 84.3± 0.5 1.8± 0.0 2.5± 0.0 1 1 1

NkBand 5 999.9± 0.6 443.3± 0.3 4.4± 0.1 1878± 468 1.3± 0.0 56± 14 0.7± 0.0 43.7± 2.4 22.3± 5.7

NkBandOpt 5 999.7± 0.4 428.5± 0.2 4.2± 0.0 261.1± 6.7 1.3± 0.0 7.8± 0.2 0.7± 0.0 41.6± 1.1 3.1± 0.1

Rhg (prelim) 5 999.1± 0.0 410.5± 0.0 8.1± 0.2 1234.8± 5.8 1.2± 0.0 36.8± 0.2 0.7± 0.0 79.8± 3.7 14.6± 0.2

Girgs
†

1 ≥ 105 ≥ 1150

Table 6.1: Comparison of generators for n = 226
, α ∈ {0.55, 1}, and d̄ ∈ {10, 1000}. Comp refers to the number of

distance computations between two points. It does not include node pairs that could be ruled out earlier (e.g., by

comparing indices or radii). For HyperGen the value is higher due to vectorization which o�en prevents such early

discarding. RSS is the maximal resident set size (i.e., peak memory allocation) as reported by the operating system. In

case of Rhg (prelim) it is the sum of RSS of all MPI processes yielding a higher overhead. Girgs is a purely sequential

implementation and includes fewer data points due to the high runtime. We report the standard deviation of the S

measurements as uncertainty and apply statistical error propagation. † Experiment was canceled a�er a runtime of

105
s.

178

Additional Experimental Results

106 107 108 109

Number m of edges

10−2

10−1

100

101

102

103

104

t(
n

)
W

a
l
l
t
i
m

e
[
s
]

Deg: 10, Exp: 2.1

Girgs

Rhg (prelim)

NkBand

NkBandOpt

HyperGen

106 107 108 109

Number m of edges

101

102

103

104

W
a
l
l
t
i
m

e
[
n

s
]

p
e
r

e
d

g
e

Deg: 10, Exp: 2.1

Girgs

Rhg (prelim)

NkBand

NkBandOpt

HyperGen

106 107 108 109

Number m of edges

10−2

10−1

100

101

102

103

t(
n

)
W

a
l
l
t
i
m

e
[
s
]

Deg: 10, Exp: 3.0

Girgs

Rhg (prelim)

NkBand

NkBandOpt

HyperGen

HyperGen (Phi)

106 107 108 109

Number m of edges

101

102

103

104
W

a
l
l
t
i
m

e
[
n

s
]

p
e
r

e
d

g
e

Deg: 10, Exp: 3.0

Girgs

Rhg (prelim)

NkBand

NkBandOpt

HyperGen

HyperGen (Phi)

108 109 1010 1011

Number m of edges

10−1

100

101

102

103

104

105

t(
n

)
W

a
l
l
t
i
m

e
[
s
]

Deg: 1000, Exp: 2.1

Girgs

Rhg (prelim)

NkBand

NkBandOpt

HyperGen

108 109 1010 1011

Number m of edges

100

101

102

103

104

W
a
l
l
t
i
m

e
[
n

s
]

p
e
r

e
d

g
e

Deg: 1000, Exp: 2.1

Girgs

Rhg (prelim)

NkBand

NkBandOpt

HyperGen

108 109 1010 1011 1012

Number m of edges

10−1

100

101

102

103

104

105

106

t(
n

)
W

a
l
l
t
i
m

e
[
s
]

Deg: 1000, Exp: 3.0

Girgs

Rhg (prelim)

NkBand

NkBandOpt

HyperGen

HyperGen (Phi)

108 109 1010 1011 1012

Number m of edges

100

101

102

103

104

W
a
l
l
t
i
m

e
[
n

s
]

p
e
r

e
d

g
e

Deg: 1000, Exp: 3.0

Girgs

Rhg (prelim)

NkBand

NkBandOpt

HyperGen

HyperGen (Phi)

Figure 6.6: Runtime of generators as function of the number n of nodes.

179

Streaming Random Hyperbolic Graphs

105 106 107 108 109

Number n of nodes

100

101

102

103

104

105

M
a
x
.

R
e
s
i
d

e
n

t
S
e
t

S
i
z
e

[
M

i
B

]

Deg: 10, Exp: 2.1

Girgs

Rhg (prelim)

NkBand

NkBandOpt

HyperGen

105 106 107 108 109

Number n of nodes

10−2

10−1

100

101

102

103

M
a
x
.

R
e
s
.

S
e
t

S
i
z
e

[
B

]
p

e
r

n
o

d
e

Deg: 10, Exp: 2.1

Girgs

Rhg (prelim)

NkBand

NkBandOpt

HyperGen

105 106 107 108 109

Number n of nodes

100

101

102

103

104

105

M
a
x
.

R
e
s
i
d

e
n

t
S
e
t

S
i
z
e

[
M

i
B

]

Deg: 10, Exp: 3.0

Girgs

Rhg (prelim)

NkBand

NkBandOpt

HyperGen

105 106 107 108 109

Number n of nodes

10−3

10−2

10−1

100

101

102

103

M
a
x
.

R
e
s
.

S
e
t

S
i
z
e

[
B

]
p

e
r

n
o

d
e

Deg: 10, Exp: 3.0

Girgs

Rhg (prelim)

NkBand

NkBandOpt

HyperGen

105 106 107 108 109

Number n of nodes

101

102

103

104

105

M
a
x
.

R
e
s
i
d

e
n

t
S
e
t

S
i
z
e

[
M

i
B

]

Deg: 1000, Exp: 2.1

Girgs

Rhg (prelim)

NkBand

NkBandOpt

HyperGen

105 106 107 108 109

Number n of nodes

100

101

102

103

104

M
a
x
.

R
e
s
.

S
e
t

S
i
z
e

[
B

]
p

e
r

n
o

d
e

Deg: 1000, Exp: 2.1

Girgs

Rhg (prelim)

NkBand

NkBandOpt

HyperGen

105 106 107 108 109

Number n of nodes

101

102

103

104

105

M
a
x
.

R
e
s
i
d

e
n

t
S
e
t

S
i
z
e

[
M

i
B

]

Deg: 1000, Exp: 3.0

Girgs

Rhg (prelim)

NkBand

NkBandOpt

HyperGen

105 106 107 108 109

Number n of nodes

10−1

100

101

102

103

M
a
x
.

R
e
s
.

S
e
t

S
i
z
e

[
B

]
p

e
r

n
o

d
e

Deg: 1000, Exp: 3.0

Girgs

Rhg (prelim)

NkBand

NkBandOpt

HyperGen

Figure 6.7: Max. memory allocation of generators as function of the number n of nodes.

180

Additional Experimental Results

181

7
Communication-free Massively Distributed

Graph Generation

joint work with

D. Funke, S. Lamm, U. Meyer, P. Sanders, C. Schulz, D. Strash, and M. v. Looz

Threshold Random

Hyperbolic Graph with

n = 200, d̄ = 8, α = 1

Analyzing massive complex networks yields promising insights about our everyday

lives. Building scalable algorithms to do so is a challenging task that requires a

careful analysis and an extensive evaluation. However, engineering such algorithms

is o�en hindered by the scarcity of publicly available datasets.

Network generators serve as a tool to alleviate this problem by providing synthetic

instances with controllable parameters. However, many network generators fail

to provide instances on a massive scale due to their sequential nature or resource

constraints. Additionally, truly scalable network generators are few and o�en limited

in their realism.

In this work, we present novel generators for a variety of network models that

are frequently used as benchmarks. By making use of pseudorandomization and

divide-and-conquer schemes, our generators follow a communication-free paradigm.

The resulting generators are thus pleasingly parallel and have a near optimal scaling

behavior. This allows us to generate instances of up to 243
vertices and 247

edges in

less than 22 minutes on 32 768 cores. Therefore, our generators allow new graph

families to be used on an unprecedented scale.

This chapter is based on the peer-reviewed journal article [138]:

[138] D. Funke, S. Lamm, U. Meyer, M. Penschuck, P. Sanders, C. Schulz, D. Strash,

and M. v. Looz. Communication-free massively distributed graph generation. J.
Parallel Distributed Comput., 131:200–217, 2019. doi:10.1016/j.jpdc.2019.03.011 .

My contribution

I contributed sRhg as the main author and developer, as well as to the analysis of Rhg.

I do not claim authorship for the remaining generators previously published as [139].

https://doi.org/10.1016/j.jpdc.2019.03.011

Communication-free Graph Generation

7.1 Introduction

Complex networks are prevalent in every aspect of our lives: from technological net-

works to biological systems like the human brain. These networks are composed of

billions of entities that give rise to emerging properties and structures. Analyzing these

structures aids us in gaining new insights about our surroundings. In order to �nd

these patterns, massive amounts of data have to be acquired and processed. Designing

and evaluating algorithms to handle these datasets is a crucial task on the road to

understanding the underlying systems. However, real-world datasets are often scarce

or are too small to re�ect future requirement.

Network generators solve this problem to some extent. They provide synthetic

instances based on random network models. These models are able to accurately describe

a wide variety of di�erent real-world scenarios: from ad-hoc wireless networks to

protein-protein interactions. [254, 96] A substantial amount of work has been contributed

to understanding the properties and behavior of these models. In theory, network

generators allow us to build instances of arbitrary size with controllable parameters.

This makes them an indispensable tool for the systematic evaluation of algorithms on a

massive scale. For example, the well known Graph 500 benchmark
1
, uses the R-MAT

graph generator [87] to build instances of up to 242
vertices and 246

edges.

Even though generators like R-MAT scale well, the generated instances are limited

to a speci�c family of graphs. [87] Many other important network models still fall short

when it comes to o�ering a scalable network generator and in turn to make them a viable

replacement for R-MAT . These shortcomings can often be attributed to the apparently

sequential nature of the underlying model or prohibitive hardware requirements.

Our Contribution

In this work we introduce a set of novel network generators that focus on scalability.

We achieve this by using a communication-free paradigm [294], i.e., our generators

require no communication between processing entities (PEs). An implementation is

available as the KaGen library at h�ps://github.com/sebalamm/KaGen.

Eacheach PE uniquely owns

nodes and compute their

incident edges

supported models:

G(n,m), G(n, p), RGG,

RHG, RDT, BA

PE is assigned a disjoint set of local vertices. It then is responsible for generat-

ing all incident edges for this set of vertices. This is a common setting in distributed

computation. [225] The models that we target are the classic G(n,m) and G(n, p)

models of Erdős-Rényi [121] and Gilbert [148], respectively, and di�erent spatial net-

work models including Random Geometric Graphs (RGG) [188], Random Hyperbolic
Graph (RHG) [200] and Random Delaunay Triangulation (RDTs). The KaGen library also

supports Barabási-Albert [32] using the algorithm by Sanders and Schulz. [294]

For each new generator, we provide bounds for their parallel (and sequential) running

times. A key-component of our algorithms is the combination of pseudorandomization

and divide-and-conquer strategies. These components enable us to perform e�cient

recomputations in a distributed setting without the need for communication.

1

h�ps://graph500.org

184

https://github.com/sebalamm/KaGen
https://graph500.org

Preliminaries

To highlight the practical impact of our generators, we also present an extensive

experimental evaluation. First, we show that our generators rival the current state-of-

the-art in terms of sequential and/or parallel running time. Second, we are able to show

that our generators have near optimal scaling behavior in terms of weak scaling (and

strong scaling). Finally, our experiments show that we are able to produce instances

of up to 243
vertices and 247

edges in less than 22 minutes. These instances are in the

same order of magnitude as those generated by R-MAT for the Graph 500 benchmark.

Hence, our generators enable the underlying network models to be used in massively

distributed settings.

7.2 Preliminaries

We de�ne a graph (network) as a pairG = (V,E). The set V = {0, . . . , n−1} (|V | = n)

denotes the vertices of G. For a directed graph E ⊆ V × V (|E| = m) is the set of

edges consisting of ordered pairs of vertices. Likewise, in an undirected graph E is a set

of unordered pairs of vertices. Two vertices that are endpoints of an edge e = {u, v}
are called adjacent. Edges in directed graphs are ordered tuples e = (u, v). An edge

(u, u) ∈ E is called a self-loop. If not mentioned otherwise, we only consider simple

graphs that contain no self-loops or parallel edges.

The set of neighbors for any vertex v ∈ V is de�ned as N(v) = {u ∈ V | {u, v} ∈
E}. For an undirected graph, we de�ne the degree of a vertex v ∈ V as d(v) = ∆(v) =

|N(v)|. In the directed case, we have to distinguish between the indegree and outdegree
of a vertex.

We denote that a random variable X is distributed according to a probability dis-

tribution P with parameters p1, . . . , pi as X ∼ P(p1, . . . , pi). The probability mass

function of a random variable X is denoted as µ(X).

7.2.1 Network Models

7.2.1.1 Erdős-Rényi Graphs

The Erdős-Rényi (ER) model was the �rst model for generating random graphs and

supports both directed and undirected graphs. For both cases, we are interested in

graph instances without parallel edges. We now brie�y introduce the two closely related

variants of the model.

The �rst version, proposed by Gilbert [148], is denoted as the G(n, p) model. Here,

each of the n(n − 1)/2 possible edges of an n-node graph is independently sampled

with probability 0 < p < 1 (Bernoulli sampling of the edges).

The second version, proposed by Erdős and Rényi [121], is denoted as the G(n,m)

model. In the G(n,m) model, we chose a graph uniformly at random from the set of all

possible graphs which have n vertices and m edges.

For sake of brevity, we only revisit the generation of graphs in the G(n,m) model.

However, all of our algorithms can easily be transferred to the G(n, p) model.

185

Communication-free Graph Generation

7.2.1.2 Random Geometric Graphs

Random geometric graphs (RGGs) are undirected spatial networks where we place n

vertices uniformly at random in a d-dimensional unit cube [0, 1)d. Two vertices p, q ∈ V
are connected by an edge i� their d-dimensional Euclidean distance

dist(p, q) =

(
d∑
i=1

(pi − qi)2

)1/2

is within a given threshold radius r. Thus, the RGG model can be fully described using

the two parameters n and r. Note that the expected degree of any vertex that does

not lie on the border, i.e., whose neighborhood sphere is completely contained within

the unit cube, is d̄(v) = π
d
2 rd/Γ(d2 + 1). [270] In our work we focus on two- and

three-dimensional random geometric graphs, as these are very common in real-world

scenarios. [277]

7.2.1.3 Random Hyperbolic Graphs

Random hyperbolic graphs (Rhgs) are undirected spatial networks generated in the

hyperbolic plane with negative curvature. To generate a Rhg, n points are randomly

placed on a disk with radius

R = 2 log n+ C, (7.1)

where C controls the average degree d̄ with

d̄ =
2

π

[
α

α− 1/2

]2

e−C/2(1 + o(1)) (7.2)

with high probability. [200, 159] Additionally, the model features a dispersion factor

α > 1/2 a�ecting concentration of points near the center of the disk.

Each vertex q corresponds to a point with a polar coordinate θq and a radial coordi-

nate rq . Its angle θq is sampled uniformly at random from the interval [0, 2π), while its

radius rq is chosen according to the probability density function

f(r) = α
sinh(αr)

cosh(αR)− 1
. (7.3)

Krioukov et al. [200] and Gugelmann et al. [159] show that for α > 1/2 the degree

distribution in the threshold model follows a powerlaw distribution with exponent

γ = 1 + 2α. In this Rhg variant, two vertices p, q are connected i� their hyperbolic

distance

distH(p, q) = acosh(cosh rp cosh rq − sinh rp sinh rq cos(θp − θq)) (7.4)

is below the threshold R. Therefore, the neighborhood of a vertex consists of all the

vertices that are within the hyperbolic circle of radius R around it.

186

Preliminaries

7.2.1.4 Random Delaunay Graphs (RDT)

A two-dimensional Delaunay graph is a planar graph whose vertices represent points

in the plane. Its edges form a triangulation of this point set, i.e., they partition the

convex hull of the point set into triangles. Furthermore, the circumcircle of each triangle

must not contain other vertices in its interior. This concept can be generalized for

d-dimensional Euclidean space. [115] In particular, for d = 3 we get a tetrahedralization,

i.e., a decomposition of the space into tetrahedra whose circumsphere may not contain

vertices in their interior.

In this paper, we are concerned with Delaunay graphs de�ned by points sampled

uniformly at random from the d-dimensional unit cube [0, 1)d for d ∈ {2, 3}. We view

this as a good model for meshes as they are frequently used in scienti�c computing.

Indeed, these simulations frequently use periodic boundary conditions, in order to make

small simulations representative for a large simulated system (e.g., [322]). This can

also be viewed as replacing the in�nite Euclidean space by a d-dimensional torus. We

adopt these periodic boundary conditions, i.e., we implicitly compute the Delaunay-

Triangulation of a point set where for every point x in the unit cube, also the points x+o

with o ∈ {−1, 0, 1}d are in the point set. Two points in the unit cube are connected

in the output, if any of their copies are connected. For a scalable distributed graph

generator, periodic boundary conditions have the advantage that we avoid the need to

compute some very long edges that appear at the convex hull of random point set.

7.2.2 Sampling Algorithms

Most of our generators require sampling (with/without replacement) of n elements

from a (�nite) universe N . Sequentially, both of these problems can be solved in

expected timeO(n). [334] These bounds still hold true, even if a sorted sample has to be

generated. [334, 39] However, most of these algorithms are hard to apply in a distributed

setting since they are inherently sequential.

Recently, Sanders et al. [292] proposed a set of simple divide-and-conquer algorithms

that allow sampling n elements on P PEs. Their algorithms follow the observation

that by splitting the current universe into equal-sized subsets, the number of samples

in each subset follows a hypergeometric distribution. Based on this observation, they

develop a divide-and-conquer algorithm to determine the number of samples for each

PE. In particular, each PE �rst determines its local interval of the input universe and

then recursively generates a set of hypergeometric random variates. At each level of the

recursion, it follows the remaining subset of the universe that contains its local interval.

Hypergeometric random variates are synchronized without the need for communication

by making use of pseudorandomization via high-quality hash functions.

To be more speci�c, for each subtree of the recursion, a unique seed value is com-

puted (independent of the rank of the PE). Afterwards, a hash value for this seed is

computed and used to initialize the pseudorandom number generator (PRNG) for the

random variates. Therefore, PEs that follow the same recursion subtrees generate the

same random variates, while variates in di�erent subtrees are independent of each

187

Communication-free Graph Generation

other. Once the remaining subset is smaller than a given threshold, a linear time se-

quential algorithm [334] is used to determine the local samples. They continue to show

that their algorithm runs in time O(n/P + logP) with high probability
2

(whp.) if the

maximum universe size per PE is O(N/P). [292] Additionally, they demonstrate that

their algorithm can be e�ciently implemented on Single Instruction Multiple Data

(SIMD) architectures, such as vector units of modern CPUs and general purpose graphic

processors (GPGPUs).

We also require the sampling of random numbers that follow a particular probability

distribution, e.g., binomial or hypergeometric distributions. For this purpose, we use

the acceptance-rejection method. [283, 337] Thus, we are able to generate binomial and

hypergeometric random variates in expected constant time O(1). [313, 315]

7.2.3 GPGPU Computation Model

The computation and programming model for GPGPUs varies from traditional CPU

programming in several aspects. Computations are organized in blocks of threads. All

threads of a block have access to a common memory and are able to use synchronization

between them. Blocks, on the other hand, are scheduled independent from each other

and have no means of synchronization or communication. The threads of a block are

processed in a SIMD-style manner. Branches in the code are possible, however threads

of a block taking di�erent branches are no longer processed in parallel but sequentially.

We consider an accelerator model where every PE has a GPGPU available to o�oad

computations to but the CPU is considered the main processing and steering facility.

7.3 Related Work

This paper is the journal version of [139] augmented with more proofs and experiments

as well as with material based on the results in [271]. We now cover important related

work for each of the network models used in our work. Additionally, we highlight recent

advances for other network models that are relevant for the design of our algorithms.

7.3.1 ER Model

Batagelj and Brandes [35] present optimal sequential algorithms for theG(n,m) as well

as the G(n, p) model. Their G(n, p) generator makes use of an adaptation of a linear

time sampling algorithm (Algorithm D) by Vitter. [334] In particular, the algorithm

samples skip distances between edges of the resulting graph. Thus, they are able to

generate a G(n, p) graph in optimal time O(n+m). Their G(n,m) generator is based

on a virtual Fisher-Yates shu�e [128] and also has an optimal running time ofO(n+m).

Nobari et al. [264] proposed a data parallel generator for both the directed and

undirected G(n, p) model. Their generators are designed for graphics processing units

(GPUs). Like the generators of Batagelj and Brandes [35], their algorithm is based on

2

i.e., with probability at least 1− P−c for any constant c

188

Related Work

sampling skip distances but uses precomputations and pre�x sums to adapt it for a data

parallel setting.

7.3.2 RGG Model

Generating random geometric graphs with n vertices and radius r can be done naïvely

in time Θ(n2). This bound can be improved if the vertices are known to be generated

uniformly at random. [178] To this end, a partitioning of the unit square into squares

with side length r is created. To �nd the neighbors of each vertex, we consider each cell

and its neighbors. The resulting generator has an expected running time of O(n+m).

Holtgrewe et al. [178, 179] proposed a distributed memory parallelization of this

algorithm for the two dimensional case. Using sorting and vertex exchanges between

PEs, they distribute vertices such that edges can be generated locally. The expected

time for the local computation of their generator is O(n/P log(n/P)), due to sorting.

Perhaps more important for large supercomputers is that they need to exchange all

vertices resulting in a communication volume of O(n/P) per PE.

We are not aware of e�cient distributed implementations of RGG generators for

dimensions greater than two.

7.3.3 RHG Model

Von Looz et al. [223, 224] propose two di�erent algorithms for generating random

hyperbolic graphs. Their �rst algorithm relates the hyperbolic space to Euclidean

geometry using the Poincaré disk model to perform neighborhood queries on a polar

quadtree. The resulting generator has a running time of O
(
(n3/2 +m) log n

)
.

In their second approach, von Looz et al. [224] propose a generator with an observed

running time of O(n log n+m). Their algorithm uses a partitioning of the hyperbolic

plane into concentric ring-shaped annuli where vertices are stored in sorted order.

Neighborhood queries are computed using angular boundaries for each annulus to

bound the number of vertex comparisons.

Bringmann et al. [69] GIRG:

R Chapter 8

introduce a generalization of random hyperbolic graphs called

Geometric Inhomogenous Random Graphs (GIRGs). Their model simpli�es theoretical

studies of random hyperbolic graphs by ignoring constant factors while maintaining

their qualitative behavior. Additionally, they propose an optimal sampling algorithm

for GIRGs with expected linear time.

Finally, HyperGen: sweep-line

streaming generator:

R Chapter 6

independent of this work, Penschuck [271] proposed a memory-e�cient

streaming generator that can be adapted to a distributed setting. They partition the

hyperbolic plane into concentric annuli similarly to von Looz et al. [224]. They use

a sweep-line based algorithm to generate nodes and edges on the �y in a request-

centric fashion. They propose two practical algorithms optimized for either a time

complexity ofO(n log logn+m) or a memory footprint ofO
(
[n1−αd̄α + log n] log n

)
whp.. Additionally, they present a shared memory parallelization of their algorithms

that can be adapted to a distributed setting with a constant communication overhead.

189

Communication-free Graph Generation

7.3.4 RDT Model

As the Delaunay triangulation (DT) of a point set is uniquely de�ned, generating random

Delaunay graphs can be separated into generating a random point set and computing

its DT. A plethora of algorithms for computing the DT of a given point set in two and

three dimensions exist. Funke and Sanders [140] review recent work on parallel DT

algorithms and propose a competitive DT algorithm suitable for large clusters. The

generation of a random point set is identical to the one in the RGG model.

7.3.5 Miscellaneous

7.3.5.1 Barabasi and Albert Model

Batagelj and Brandes [35] give an optimal sequential algorithm for the preferential

attachment model of Barabasi and Albert [32]. Sanders and Schulz [294] parallelize

this algorithm that appears to be inherently sequential. They observe that each edge

can be generated independently if the randomness used for generating other edges is

reproduced redundantly and consistently using a pseudorandom hash function. We

adapt this technique to other random graph models.

7.3.5.2 Recursive Matrix Model

The Recursive Matrix Model (R-MAT) by Chakrabarti et al. [87] is a special case of the

stochastic Kronecker graph model. [213] This model is well known for its usage in the

popular Graph 500 benchmark. Generating a graph with n vertices and m edges is

done by sampling each of the m edges independently. For this purpose, the adjacency

matrix is recursively subdivided into four partitions. Each partition is assigned an edge

probability a+ b+ c+d = 1. Recursion continues until a 1×1 partition is encountered,

in which case the corresponding edge is added to the graph. The time complexity of the

R-MAT generator thus is O(m log n) since recursion has to be repeated for each edge.

7.4 ER Generator

We now introduce our distributed graph generators, starting with the Erdős-Rényi gen-

erators for both the directed and undirected case.

7.4.1 Directed Graphs

Generating a directed graph in the G(n,m) model is the same as sampling a graph from

the set of all possible graphs with n vertices and m edges. To do so, we can sample m

edges uniformly at random from the set of all possible n(n− 1) edges. Since we are not

interested in graphs with parallel edges, sampling has to be done without replacement.

To this end, we adapt the distributed sampling algorithm by Sanders et al. [292].

Our generator starts by dividing the set of possible edges into P chunks, one for

each PE. Each chunk represents a set of rows of the adjacency matrix of our graph.

We then assign each chunk to its corresponding PE using its id i. Afterwards, PE i is

190

ER Generator

0

i

P−1

0

i

P−1
P−10

Figure 7.1: An adjacency

matrix subdivided into

chunks in the directed

(top) and undirected (bot-

tom) case. The chunk(s)

for PE i are highlighted

in blue.

responsible for generating the sample (set of edges) for its chunk. Note that we can

easily adapt this algorithm to an arbitrary number of consecutive chunks per PE.

To compute the correct sample size (number of edges) for each chunk, we use the

same divide-and-conquer technique used by the distributed sampling algorithm [292]

(see Section 7.2.2). The resulting samples are then converted to directed edges using

simple o�set computations.

Theorem 7.1. The directed G(n,m) generator runs in time O((n+m)/P + logP)

with high probability. J

Proof. Our algorithm is an adaptation of the distributed sampling algorithm that evenly

divides the set of vertices, and therefore the set of potential edges, between P PEs. Thus,

the universe per PE has sizeO(n(n− 1)/P) and the running time directly follows from

the proof given by Sanders et al. [292]. �

7.4.2 Undirected Graphs

In the undirected case, we have to ensure that an edge {i, j} is sampled by both PEs, the

one that is assigned i and the one that is assigned j. Since each PE is assigned a di�erent

chunk, they follow di�erent paths in the recursion tree. Hence, due to the independence

of the random variables generated in each recursion tree, it is highly unlikely that they

both sample the edge {i, j} independently. To solve this issue, we introduce a di�erent

partitioning of the graphs adjacency matrix into chunks.

Our generator begins by dividing each dimension of the adjacency matrix into P

sections of size roughly n/P . A chunk is then de�ned as a set of edges that correspond

to a (n/P) × (n/P) submatrix of the adjacency matrix. Due to the symmetry of the

adjacency matrix, we are able to restrict the sampling to the lower triangular adjacency

matrix. Thus, we have a total of P (P + 1)/2 chunks that can be arranged into a

triangular P × P chunk matrix. Afterwards, each PE is assigned a row and column of

this matrix based on its id i as seen in Figure 7.1. By generating rectangular chunks

instead of whole rows or columns, we can make sure that both PE i and PE j ≤ i

redundantly generate chunk (i, j) using the same set of random values. In turn, they

both sample the same set of edges independently without requiring communication.

Note that our partitioning scheme into chunks results in each chunk being computed

twice (once for each associated PE) except for the chunks on the diagonal of our chunk

matrix. Therefore, the recomputation overhead is bounded by 2m.

We now explain how to adapt the divide-and-conquer algorithm by Sanders et al. [292]

for our chunk matrix. To generate the required partitioning of the adjacency matrix, we

start by dividing theP×P chunk matrix into equal-sized quadrants. This is done by split-

ting the rows (and columns) into two equal-sized sections {1, . . . , l} and {l+ 1, . . . , P}.
We choose l = dP/2e as our splitting value.

We then compute the number of edges within each of the resulting quadrants.

Since we are only concerned with the lower triangular adjacency matrix, there are

two di�erent types of quadrants: triangular and rectangular. The second and fourth

quadrant are triangular matrices with l and P − l rows (and columns) respectively. We

191

Communication-free Graph Generation

then generate a set of three hypergeometric random variates to determine the number

of samples (edges) in each quadrant. As for the distributed sampling algorithm [292],

we make use of pseudorandomization via hash functions that are seeded based on the

current recursion subtree to synchronize variates between PEs.

Each PE then uses its id to decide which quadrants to handle recursively. Note that

at each level of the recursion, a PE only has to handle two of the four quadrants. We

use a sequential sampling algorithm once a single chunk remains. O�set computations

are performed to map samples to edges based on the type of the chunk (rectangular or

triangular). The resulting recursion trees has at most dlogP e levels and size (4P 2−1)/3.

Theorem 7.2. The undirected G(n,m) generator requires time O((n+m)/P + P)

with high probability. J

Proof. Each PE i has to generate a total of P chunks consisting of a single triangular

submatrix and P − 1 rectangular submatrices. Additionally, each edge {i, j} has to be

generated twice (except when P = 1), once by the PE that is assigned vertex i, and once

by the PE that is assigned vertex j. Thus, we have to sample a total of 2m edges. At

every level of our recursion, we need to split the quadrants and in turn compute three

hypergeometric random variates. Therefore, the time spent at every level only takes

expected constant time. Since there are at most dlogP e levels until each PE reaches its

P chunks, the total time spent on recursion is whp.

∑logP
i=0 2i = 2(P − 1) = O(P).

Following the proof by Sanders et al. [292], we can use Cherno� bounds to show that

the total number of samples (edges) that is assigned to any PE is whp. O(m/P). Thus,

the undirected G(n,m) generator has a running time of O((n+m)/P + P). �

7.4.3 Adaptations for the G(n, p) Model

We now discuss how to adapt our previous generators for the G(n, p) model. The key

observation for the G(n, p) generators is that we do not have to recursively compute

hypergeometric random variates in order to derive the correct number of edges for each

chunk. Since the distribution of vertices for each individual chunk is predetermined,

we can determine the sample size for each chunk by generating binomial random

variates. To make sure the sample size for an individual chunk is the same across PEs,

the binomial random generator is seeded using a hash value based on the id of the

chunk. Afterwards, we perform the same sampling procedure used to generate edges in

the G(n,m) generator.

7.4.3.1 Adaptation to GPGPUs

Since the ER generators are a direct application of sampling, the GPGPU implementation

from [292] can be used to generate graphs on PEs with GPGPUs available. As before,

each PE is assigned a chunk and computes the correct sample size and seeds for the

pseudorandom generator on the CPU and then invokes the GPGPU algorithm to sample

the edges of the graph.

192

RGG Generator

7.5 RGG Generator

Generating a d-dimensional random geometric graph can be done naïvely in Θ(n2)

time. We reduce this bound by introducing a spatial grid data structure similar to the

one used by Holtgrewe et al. [178]. We use a uniform grid of cells with side length

max(r, n−1/d). The vertices of the graph are �rst placed into the grid cells. Edges must

then run between vertices within one cell or between neighboring cells. Hence, for a

point A assigned to a cell C , it su�ces to perform distance calculations to the points in

cell C and its neighboring cells (3d cells overall).

Theorem 7.3. The expected work for generating a random geometric graph with n

nodes and m edges is O(n+m). J

Proof. The work for placing the points is Θ(n). The work for initializing the cell array

is proportional to its size

(
1

max(r, n−1/d)

)d
≤
(

1

n−1/d

)d
= n .

For estimating the remaining work, we estimate the expected number of edges m as

well as the number of comparisons Y between points.

Consider the indicator random variable Zij that is 1 if there is an edge between

points i and j and 0 otherwise. Then, m =
∑

i 6=j Zij . There is an edge between a �xed

point i and another point j if j is placed in a ball of radius r (and volume Θ
(
rd
)
) around

point i. Note that at least a constant fraction of this ball intersects with the unit cube.

The ratio between the volume of this ball and the volume of the unit cube is Θ
(
rd
)
.

Overall, P[Zij = 1] = Θ
(
rd
)
, and, exploiting the linearity of expectation,

E[m] =
∑
i 6=j

E[Z]ij = Θ
(
n2rd

)
. (7.5)

Similarly, consider the indicator random variable Yij that is 1 if points i and j are

compared and 0 otherwise. Then, Y =
∑

i 6=j Yij . Points i and j are compared if they are

placed into neighboring cells. Recall that each cell has Θ(1) neighboring cells (including

itself). We now make a case distinction depending on what determines the cell size.

If r ≥ n−1/d
we have r−d cells. Considering a �xed point i, a point j is thus placed

into one of the Θ(1) neighboring cells with probability Θ
(
rd
)
. Hence, exploiting the

linearity of expectation,

E[Y] =
∑
i 6=j

E[Yij] =
∑
i 6=j

P[Yij = 1] = Θ
(
n2rd

)
= Θ(E[m]) .

When r < n−1/d
, there are n cells. We can make a similar calculation as above, now

with P[Yij] = Θ(1/n) which yields E[Y] = n2/Θ(n) = Θ(n). �

193

Communication-free Graph Generation

Figure 7.2: A two dimen-

sional random geometric

graph with 256 vertices

and a radius of 0.11 on

nine PEs. The local ver-

tices of PE 4 are high-

lighted in blue. The non-

local vertices computed re-

dundantly by PE 4 are

highlighted in green.

7.5.1 Parallelization

We now discuss how to parallelize our approach in a communication-free way. To

the best of our knowledge, the resulting generator is the �rst e�cient distributed

implementation of a RGG generator for d > 2.

Our generator again uses the notion of chunks. A chunk in the RGG case represents a

rectangular section of the unit cube. We therefore partition the unit cube into P disjoint

chunks and assign one of them to each PE. There is one caveat with this approach, in

that the possible values for P are limited to powers of d. To alleviate this issue, we

generate more than P chunks and distribute them evenly between PEs. To be more

speci�c, we are able to generate k = 2db ≥ P chunks and then distribute them to the

PEs in a locality-aware way by using a Z-order curve. [251]

Each PE is then responsible for generating the vertices in its chunk(s) as well as

all their incident edges. Again, we use a divide-and-conquer approach similar to the

previous generators.

For this purpose the unit cube is evenly partitioned into 2d equal-sized subcubes. In

turn, the probability for a vertex to be assigned to an individual subcube is the ratio of the

area of the subcube to the area of the whole cube. Thus, we can generate 2d−1 binomial

random variates to compute the number of vertices within each of the subcubes. The

binomial distribution is parameterized using the number of remaining vertices n and the

aforementioned subcube probability p. As for the ER generators, variates are generated

by exploiting pseudorandomization via hash functions seeded on the current recursion

subtree. Therefore, we generate the same variates on di�erent PEs that follow the same

recursion. In turn, we require no communication for generating local vertices. Note

that the resulting recursion tree has at most dlogP e levels and size (2dP − 1)/2d − 1.

Once a PE is left with a single chunk, we compute additional binomial random variates

to get the number of vertices in each cell of side length c ≥ r.

As we want each PE to generate all incident edges for its local vertices, we have

to make sure that the cells of neighboring chunks that are within the radius of local

vertices are also generated. Because each cell has a side length c of at least r, this

means we have to generate all cells directly adjacent to the chunk(s) of a PE. Due to

the communication-free design of our algorithm, the generation of these cells is done

through recomputations using the same divide-and-conquer algorithms as for the local

cells. We therefore repeat the vertex generation process for the neighboring cells. Note

that for su�ciently large graphs, each chunk consists of many cells so that redundantly

generating border layers of cells becomes a negligible overhead. An example of the

subgraph that a single PE generates for the two dimensional case is given in Figure 7.2.

Afterwards, we can simply iterate over all local cells and generate the corresponding

edges by vertex comparisons with all vertices in each neighboring cell. To avoid duplicate

edges, we only perform vertex comparisons for local neighboring cells with a higher id.

194

RGG Generator

7.5.2 Analysis of the Parallel Algorithm

The above communication-free free parallel algorithm emulates a more traditional

algorithms that places n points uniformly at random into their cells and performs the

necessary distance calculations. Each PE takes time O(n/P + logP) for generating

chunks together with the required parts of the cell array. We do not analyze the number

of performed distance calculation directly but indirectly by analyzing the emulated

algorithm. We �rst note that using standard Cherno� bound arguments, one can prove

the following lemmas.

Lemma 7.4. If the random variable Occ denotes the occupancy of a cell then Occ =

O(E[Occ] + lnn) with probability 1− n−c for any constant c > 0. J

Lemma 7.5. If the random variable W denotes the number of cells allocated to one PE

then W = O(n/P + lnn) with probability 1− n−c for any constant c > 0. J

Furthermore, analogous to Theorem 7.3, one can prove that the expected work at

each PE is O((m+ n)/P) (taking into account that at most a constant fraction of cells

has to be generated redundantly).

Lemma 7.6. There are expected O((m+ n)/P) distance calculations per PE. J

However, this does not su�ce to bound the parallel execution time since the PE

assigned the largest work determines the overall running time. We conjecture that the

amount of work performed on each PE is O((m+ n)/P) whp. for n = Ω
(
p log2 n

)
.

However, we do not know how to prove that formally due to dependencies in the involved

random variables (e.g., the variables Yij and Zij from the proof of Theorem 7.3). Instead,

we prove the following more loose result.

Theorem 7.7. For any c > 0, there is a constant a(c) such that n ≥ a(c)P 2 log3 P im-

plies that the amount of work performed by each PE is O((m+ n)/P) with probability

at least 1− n−c. J

Proof. Let X = X1,. . . , Xn denote the vector of positions of the n randomly placed

points. Let Y (X) denote the number of distance computations performed by a �xed PE.

Since this is a function of n independent random variables, we can apply the bounded

di�erence inequality. [233] We have

P[Y (X) > E[Y (X)] + δ] ≤ exp

(
−2δ2

nb2

)
, (7.6)

where b is a bound on the maximum change in the value of Y (X) when one of the

random variables Xi is changed. Changing Xi means moving point i. This changes the

number of distance computation by the occupancy of the O(1) cells neighboring the

source and target cell of the moved point. Since the worst-case value of the occupancies

is very large (n), we condition on the case that the bound from Lemma 7.4 applies. Note

that the remaining cases are su�ciently unlikely, say have probability ≤ n−c/2.

If δ is large enough such that exp(−2δ2/nb2) ≤ n−c/2P , Eq. (7.6) yields the desired

result. The factor 2 in the right hand side comes from the fact that we reserve half of the

195

Communication-free Graph Generation

allowed failure probability for the above conditioning. The factor P comes from the fact

that we want to bound the work done on all PEs. Since we already assume that n > 2P ,

we will make the stronger requirement exp(−2δ2/nb2) ≤ n−(c+1)
. Solving for δ yields

δ ≥ b
√

(c+ 1)n ln(n)/2 = Ω
(
b
√
n lnn

)
. (7.7)

We now make a case distinction on the ball radius r. If r ≥ (ln(n)/n)1/d
, the

expected occupancy Θ
(
nrd
)

of a cell is Ω(lnn) and Lemma 7.4 yields that b = Θ
(
nrd
)

is also a high probability bound. Condition (7.7) then becomes δ = Ω(n3/2rd
√

ln(n)).

At the same time we want δ = O(E[m/P]) = O
(
n2rd/P

)
; see also Eq. (7.5). Both con-

ditions can hold if n3/2rd
√

ln(n) = O
(
n2rd/P

)
. This is equivalent to n = Ω

(
P 2 lnn

)
.

Since this is only a nontrivial condition when n is polynomial in P , we get the equivalent

condition n = Ω
(
P 2 lnP

)
≤ Ω

(
P 2 ln3 P

)
.

Similarly, for the case r < (ln(n)/n)1/d
, the expected occupancy of a cell isO(lnn)

and Lemma 7.4 yields b = Θ(lnn). Condition (7.7) becomes δ = Ω
(√
n ln1.5 n

)
. We

want at the same time that δ = O(n/P). Both conditions hold when

√
n ln1.5 n =

O(n/P), or, equivalently, n = Ω
(
P 2 ln3 n

)
implying n = Ω

(
P 2 ln3 P

)
. �

7.5.3 Adaptation to GPGPUs

As before, each PE is responsible for generating the vertices and edges of one chunk.

The algorithm for GPGPUs follows two phases. In the �rst phase, the PE generates the

appropriate seeds and vertex numbers for the cells of its chunk and all neighboring

cells on the CPU. Subsequently, the vertices of these cells are sampled on the GPGPU.

Depending on the expected number of vertices per cell, a cell is either processed by

a whole block with several threads or by a single thread, therefore grouping several

cells in one block. Recall, as the cell side length c is greater than r, only the cells of

neighboring chunks immediately adjacent to the PEs chunk need to be generated.

In the second phase, the actual edges between the vertices are determined, which

requires a three step algorithm. In the �rst step, for each cell and its neighbors, the

number of edges with length smaller than r are counted on the GPGPU. Secondly, the

pre�x sum of these counts provides both the total number of edges generated as well

as o�sets into the edge array for each block. The CPU can then allocate memory on

the GPGPU for the third stage and the cells are processed again, this time actually

outputting all edges into the newly allocated array. The amount of work performed per

vertex is the same for all vertices of a cell – as the same number of vertices need to be

considered in the neighboring cells – but can di�er between cells. Therefore, each cell

is processed by one block on the GPGPU to avoid any load balancing issues.

7.6 RDT Generator

The point generation for Delaunay graphs follows the principles of RGG, di�ering only

in the de�nition of the cell side length c set to the mean distance of the (d+1)th-nearest

neighbor for n vertices in the unit d-hypercube, c ≈ [(d+ 1)/n]1/d. [42]

196

RHG Generators

To produce the DT of the generated point set, our algorithm proceeds as follows. For

each assigned chunk, the PE considers the chunk itself plus a halo of neighboring cells.

Initially, the cells directly adjacent to the chunk are added to the halo. The PE computes

the DT of the chunk plus halo and checks whether all points of the convex hull are from

the halo and whether each computed simplex s that contains at least one point from the

inside of the assigned chunk has a circumsphere that is completely contained within

the chunk plus halo. The local computation �nishes when both conditions are ful�lled.

Otherwise, the halo is expanded by one layer of cells and the DT is updated; see also

[140, 220]. As for RGG, all PEs generate the same vertices for the same cell.

We do not have a complete analysis of the algorithm but note that by Lemma 7.5,

each PE get assigned O(n/P + logP) nodes from the chunks whp. and that the halo

contributes only a lower order term as long as the number of extension steps remains con-

stant. Our experiments indicate that usually no repetitions at all are needed. Moreover,

a Delaunay triangulation of a random point set can be computed in linear time. [114]

Hence, we might conjecture a running time of O(n/P + logP) for our algorithm.

Adaptation to GPGPUs

For the RDT generator, the points can be sampled on the GPGPU according to the

algorithm outlined for the RGG generator in the previous section. Following point

generation, the algorithm of Cao et al. [78] can be used to compute the DT in two and

three dimensions on the GPGPU. Their algorithm initially produces a near-Delaunay

triangulation on the GPGPU and then �xes potential violations using a star splaying

technique on the CPU. The subsequent steps can be e�ciently performed on the GPGPU

again: checking whether the circumhypersphere of all simplices is contained within the

halo and, if not, generating the next layer of halo cells by �rst generating the seeds and

vertex numbers of those cells on the CPU and then sampling the points on the GPGPU.

Since Cao et al. propose an incremental construction algorithm, it can be directly applied

to insert the newly generated halo points into the DT.

7.7 RHG Generators

We now describe two approaches for generating random hyperbolic graphs. The �rst

generator (Rhg) requires precomputing local vertices before processing neighborhood

queries and allows for an already partitioned output graph. However, this comes

at the cost of load balancing and memory limitations. The second generator (sRhg)

processes vertices and their incident edges in a streaming fashion. Although this does

not directly give a partitioned output graph, it signi�cantly improves load balancing and

memory requirements. Additionally, we cover important optimizations that improve

the performance of both generators.

197

Communication-free Graph Generation

Figure 7.3: Partitioning of the hyperbolic plane into set of equidistant annuli and chunks and

cells. Each chunk is distributed to one PE and further subdivided into cells. The number of

vertices is n = 512 with an average degree of d̄ = 4 and a powerlaw exponent of γ = 2.6. The

expected number of vertices per cell is set to 24
. The local vertices for each PE are highlighted

in di�erent colors.

7.7.1 In-memory Generator

As for the RGG generator, we can naïvely create a random hyperbolic graph in Θ(n2)

by comparing all pairs of vertices. We �rst improve this bound by partitioning the

hyperbolic plane (cf. [68, 223, 224]). To this end, we split the hyperbolic disk of radius R

into k := bαR/ln(2)c concentric annuli of constant height, i.e. annulus i covers the

radial interval [`i−1, `i) with `0 = 0 and `k = R. This results in k = O(log n) annuli

due to Eq. (7.1).

Since each PE has to determine the number of vertices in each annulus, we compute a

multinomial random variate with k outcomes: we iteratively compute a set of dependent

binomial random variates via pseudorandomization. The probability that a speci�c

vertex is assigned to annulus i is given by integration over the radial density function

(Eq. (7.3)) between the annulus’ limits `i and `i+1:

pi =

∫ `i+1

`i

f(r)dr
(Eq.7.3)

=
cosh(α`i+1)− cosh(α`i)

cosh(R)− 1
.

Hence, the expected number ni of vertices in annulus i follows E[ni] = n · pi.

We further partition each annulus in the angular direction into P chunks using

a divide-and-conquer approach that uses binomial random variates as for the other

generators. The resulting recursion tree within a single annulus has a height of dlogP e.
Finally, we perform a third partitioning of chunks into a set of equal-sized cells

in the angular direction. The number of cells per chunk is chosen such that each cell

contains an expected constant number of vertices k. Figure 7.3 shows the resulting

partitioning of vertices in the hyperbolic plane into cells and annuli.

Lemma 7.8. Assuming n = Ω(P logP), our partitioning algorithm assigns each PE

O(n/P) vertices with high probability. J

198

RHG Generators

Proof. Chunks are chosen such that they assign each PE i an equally sized angular

interval of the hyperbolic plane [i · 2π/P, (i+ 1) · 2π/P). The number of vertices per

chunk in an annulus is generated through a set of binomial random variates. This

results in a uniform distribution of the vertices in the interval [0, 2π) with respect to

their angular coordinate. Thus, each PE is assigned O(n/P) vertices in expectation.

Assuming n = Ω(P logP) this holds whp. by a standard Cherno� bound. �

Lemma 7.9. Generating the grid data structure for P PEs takes timeO(P log n+ n/P)

with high probability. J

Proof. The time spent during the chunk creation per annulus is O(P) whp. since the

size of the recursion tree is at most 2P − 1 and we only spend expected constant time

per level for generating the binomial random variates. We have to repeat this recursion

for each of the O(log n) annuli. Thus, the total time spent for the recursion over all

annuli is O(P log n). The runtime bound then follows by adding the time for vertex

creation (Lemma 7.8). �

7.7.2 Neighborhood �eries

We now describe how we use our grid data structure to e�ciently reduce the number of

vertex comparisons. For this purpose, we begin by iterating over the cells in increasing

order from the innermost annulus outwards and perform a neighborhood query for

each vertex.

The query begins by determining how far the angular coordinate of a potential

neighbor u = (ru, θu) is allowed to deviate from the angular coordinate of our query

vertex v = (rv, θv). If we assume that u lies in annulus iwith a lower radial boundary `i,

we can use the distance inequality

|θu − θv| ≤ acos
(cosh(rv) cosh(`i)− cosh(R)

sinh(rv) sinh(`i)

)
to determine this deviation. We then gather the set of cells that lie within the resulting

boundary coordinates. To do so, we start from the cell that intersects the angular

coordinate of our query vertex and then continue outward in both angular directions

until we encounter a cell that lies outside the boundary. For each cell that we encounter,

we perform distance comparisons to our query vertex and add edges accordingly. To

avoid the costly evaluation of trigonometric functions for each comparison we maintain

a set of precomputed values (see Section 7.7.5.1). Note that in order to avoid duplicate

edges in the sequential case, we can limit neighborhood queries to annuli that have an

equal or larger radial boundary than our starting annulus.

Lemma 7.10. Consider a query vertex with radius r and an annulus with boundaries

[a, b). Our candidate selection overestimates the probability mass of the actual query

range by a factor of OE(b−a, α) where OE(x, α) := α−1/2
α

1−eαx
1−e(α−1/2)x . J

Proof. If r < R−b, the circle around the querying vertex covers the annulus completely.

Hence, each candidate is a true neighbor and the selection process is optimal.

199

Communication-free Graph Generation

We now consider r ≥ R−a and omit the fringe case of R−b < r < R−a which

follows analogously. The probability mass µQ := µ [BR(r) ∩ (Bb(0)\Ba(0))] of the

intersection of the actual query circleBR(r) with the annulusBb(0)\Ba(0) is calculated

in Eq. (7.19) (Appendix). Our generator overestimates the actual query range at the border

and covers the mass µH := 1
π∆θ(r, a)

∫ b
a ρ(y)dy as detailed in Eq. (7.20) (Appendix).

The claim follows by the division of both mass functions µH/µQ. �

Corollary 7.11. Given a constant annulus height, i.e., b−a = O(1), Lemma 7.10

implies a constant overestimation for any α>1/2. In case of b−a = bln(2)/αc, we have

OE(1, α) ≤ √e ≈ 1.64 ∀α>1/2. J

Lemma 7.12. Let Nj be the number of neighbors the point pj=(rj , θj) has from below,

i.e. neighbors with smaller radius. With high probability there exist only O
(
n/ log2 n

)
points with Nj = O

(
n1−αd̄α log(n)

)
while the remainder of points with rj > R/2 has

Nj = O
(
n1−2α log2α(n)d̄2α

)
neighbors. J

Proof. Let X1, . . . , Xn be indicator variables with Xi=1 if p and pi are adjacent. Due

to radial symmetry we directly obtain the expectation value of Xi conditioned on the

radius pi:

E[Xi | ri= x] = P[Xi=1 | ri= x] =

{
1 if x < R− r
∆θ(x, r)/π otherwise

We remove the conditional using the Law of Total Expectation and Eqs. (7.16) and (7.17):

E[Xi] =

R−r∫
0

ρ(x)dx +
1

π

r∫
R−r

ρ(x)∆θ(x,R)dx (7.8)

=
[
e−αr−e−αR

]
(1+o(1)) +

1

π

α

α−1
2

e−αr (7.9)

·
[
e(α− 1

2
)(2r−R) − 1

]
(1±O

(
e−r)

)
(7.10)

Fix the radius rT = R− 2
α log logn with R/2 < rT (wlog) and consider three cases

for r: First, we ignore all points r ≤ R/2 as they belong to the central clique and are

irrelevant here. Second, observe that with high probability there exist O
(
n/ log2(n)

)
points below rT . Exploiting the monotonicity of Eq. (7.10) in r, we maximize it by

setting r = R/2, which cancels out the second term. Linearity of the expectation

value, substitution of R = 2 log(n) +C , and the de�nition of the expected degree yield

E[
∑

iXi] = O
(
n
(
d̄/n

)α)
. Then, Cherno�’s bound gives

∑
iXi = O

(
n1−αd̄α log(n)

)
with high probability. Third, for all points above rT , set r = rT yielding

∑
iXi =

O
(
n1−2α log2α(n)d̄2α

)
with high probability analogously. �

Lemma 7.13. The time complexity of the sequential Rhg generator for n vertices with

radiusR, an average degree d̄, and a powerlaw exponent γ ≥ 2 isO(m) with probability

1− n−c for any constant c > 0. J

200

RHG Generators

Proof. We bound our generators time complexity for each component individually:

• The preprocessing requires O(1) time per point making it non-substantial.

• Processing the vertices within the cells requires O(n) time in total with high

probability.

• By applying Lemma 7.12 and Corollary 7.11, the candidate selection requires

O
(
n log d̄

)
= O(m) time with high probability.

• All distance calculations require in total O(m) time since Corollary 7.11 bounds

the fraction of computations that do not yield an edge to O(1). �

To adapt our queries for a distributed setting, we need to recompute all non-local vertices

that lie within the hyperbolic circle (of radius R) of any of our local vertices. To �nd

these vertices, we perform an additional inward neighborhood query.

Queries in the distributed setting work similarly to the sequential case, with the

addition that any non-local chunks that we encounter during the search are recomputed.

These newly generated vertices are then assigned their respective cells and stored for

future searches.

One issue with this approach is that the innermost annulus, which contains only

a constant number of vertices (w.h.p.), is divided into P chunks. However, since all

vertices with radius r ≤ R/2 form a clique and are almost always contained within the

search radius for any given vertex, we compute and store these points redundantly in

a single chunk on all PEs. This severely lowers the running time for inward searches,

especially for a large number of PEs.

Theorem 7.14. The expected time complexity of the parallel Rhg generator for n

vertices with radius R, average degree d̄ and a powerlaw exponent γ ≥ 2 is

O
(
n+m

P
+ P log n+ n1−α(P d̄)αn

1
2α

)
. J

Proof. We bound the time complexity by considering each component individually:

• Building our cell data structures takes time O(P log n) as shown in Lemma 7.9.

• Sampling local vertices and edges has an expected running time ofO((n+m)/P)

as for the sequential approach.

• The expected number of vertices recomputed during the inward search can be

bounded by µ(Br(0)) = O
(
n1−α(P d̄)α

)
(see Lemma 7.15).

• The expected number of edges computed for high degree vertices (as well as the

number of vertices recomputed during the outward search) can pessimistically

be bounded by assuming that vertices in the inner annuli (see Lemma 7.15) all

have maximum degree ∆ = n1/(2α)+o(1)
. [159] This yields an expected number

of O
(
(n1−α(P d̄)αn1/(2α))

)
edges. �

201

Communication-free Graph Generation

begin-of-request

tokens

end-of-request

tokens
node token

`i

`i+1

`i+2

`i+3

(1) v (2)

∆θ

sweep direction (increasing angles)

Figure 7.4: The shaded area illustrates the region in which candidates for node v can be found

(an overestimate of the do�ed hyperbolic query circle). It is encoded with one request per

annulus. Instead of generating points at random, sRhg draws the beginning of requests (1) and

then places the points (2) accordingly by increasing their angle by ∆θ. Only when the sweep-line

encounters the begin of a request in annulus i, the request is propagated to annulus i+1.

7.7.3 Streaming Generator

We now present sRhg, a generator that improves the load balancing and the memory

requirements of Rhg. Extending [271], its main idea is to invert the neighborhood search:

while Rhg selects a node and then directly searches all neighbors by ruling out wrong

candidates, sRhg does the opposite and �rst accumulates all queries a node is candidate

in before processing them in a single batch. This not only reduces unstructured accesses

to main memory, but more importantly allows us to narrow the window of space that

has to be kept in memory.

As for Rhg, we decompose the hyperbolic plane into a set of concentric annuli and

draw the number of points in each annuli uniformly at random. This step is performed

by all PEs independently, and we use pseudorandomization to ensure that each PE draws

the same numbers without communication. Next we perform the second decomposition

by splitting each annulus in the angular direction into a set of P chunks of equal size.

Conceptually, sRhg then executes a sweep-line algorithm in angular direction

starting with the innermost annulus. To this end, the PE maintains a sweep-line state

per annulus storing the currently active requests and pending events: as illustrated in

Figure 7.4, we use tokens for each node v to mark the position of v, as well as the begin
and end of the region in which neighbor candidates of v can be found.

sRhg executes the next pending event (i.e. the unprocessed token with smallest

polar coordinate) of the current annulus:

• A begin-of-request token adds the request to the current sweep state, and creates

a begin-of-request token for the next higher annulus (if existing). It also generates

an appropriate end-of-request token for the current annulus.

• An end-of-request removes the request from the current sweep state.

• If a node token is found, the distance to each node with a request in the current

sweep state is computed and an is edge emitted if it is below the threshold R.

202

RHG Generators

0

3
π

1

3
π

2

3
π

3

3
π

4

3
π

5

3
π

Clique

Global

Stream

main phase of

of chunk

endgame of

chunk 1

Figure 7.5: The hyperbolic plane is partitioned along the polar axis into P chunks of equal

size. Radially, there are two groups: the lower global annuli which are preprocessed and kept

in memory, and the upper streaming annuli. In the main phase, each PE streams through its

chunks towards increasing polar angles (red arrow). Requests overlapping into the next chunk

are then completed in the final phase.

Observe this design causes sRhg to process the begin-of-request token of a node v

before its node token becomes active. We hence invert the causality relation, and draw

begin-of-request tokens from a monotonic sequence of uniform variates and position a

matching point token accordingly.

To reduce the memory footprint, we do not complete an annulus before starting the

next higher one. Instead, each PE interleaves the processing of its local annuli with the

only constraint that no sweep-line may overtake its adjacent neighbor below it. This is

legal, since the only information �ow is from lower to higher annuli: it is triggered by

begin-of-request tokens which never move towards smaller angles during this process.

sRhg partitions the annuli into two groups, lower global annuli and upper streaming
annuli, and starts by processing the global annuli �rst (see Figure 7.5):

• Global annuli are those where the maximum potential request width of a point

within that annulus is larger than 2π/P (the width of a single chunk). Similarly

to Rhg, we merge the innermost annuli with a radial boundary below R/2 into a

special clique annulus.

• Streaming annuli are those where the maximum potential request width of a point

within that annulus is at most 2π/P .

Let rG be the smallest radial boundary of a streaming annulus (i.e. every streaming

annulus i has a lower boundary of `i−1 ≥ rG). We obtain rG . R/2 + log(2P/π) for

P ≥ 2 by solving 2∆θ(rG, rG) = 2π/P for rG and applying Eq. (7.16).

Lemma 7.15. The expected number of vertices generated in the global annuli is

O
(
n1−α(P d̄)α

)
. J

203

Communication-free Graph Generation

Proof. Consider a point (rG, θ) with a request width of at most 2∆θ(rG, rG). The

number of vertices nG(P) that each PE has to generate during the global phase is thus

binomially distributed around the mean of

E[nG(P)] = nµ(BrG(0)) = n

(
d̄P

2n

)α(α− 1
2

α

)2α

= O
(
n1−α(P d̄)α

)
. �

Lemma 7.16. Assuming n = Ω(P logP), the number of vertices generated in the

streaming annuli of any PE is O(n/P) with high probability. J

Proof. Each PE is assigned a polar interval of 2π/P width and generates all streaming

points whose request begins there. As the angle at which a request starts is drawn

uniformly at random, the numbers (n1, . . . , nP) of vertices generated by each PE are

distributed multinomially with an equal bucket mass of p = 1/P . We pessimistically

place all point with in the streaming annuli (cf. Lemma 7.15), and hence have

∑
i ni = n

andE[ni] = O(n/P) for all i. Concentration follows directly from Cherno� bounds. �

7.7.4 Global Annuli

By construction, points in the global annuli have long requests, potentially covering the

whole hyperbolic space. In order to guarantee that no PE has to generate all vertices,

requests within the lower global annuli are computed redundantly on all PEs. Again,

consistency across PEs is achieved using pseudorandomness. Each PE then restricts the

requests to its own streaming chunk and propagates applicable ones to a designated

insertion bu�er in the �rst upper streaming annulus.

During the creation of a request, it might happen that we encounter an angular

deviation of [a, b] where either a < 0 or b > 2π. Taking the angular 2π-period of the

hyperbolic plane into account, these requests are separated into two ranges. To be

more speci�c, we separate the angular deviation [a, b] with a < 0 into the two ranges

[a+ 2π, 2π] and [0, b]. The case b > 2π is treated analogously.

Due to the nature of hyperbolic space, vertices in the global annuli are likely to have

a very high degree as they have a relatively small hyperbolic distance to any other point.

However, due to our request-centric approach the computation of their neighbors in

the upper streaming annuli is fully distributed.

We distribute the execution of requests for the inner annuli evenly across all PEs.

This results in a much more even distribution of work compared to the query-centric

approach. However, it does not directly produce a partitioned output graph.

7.7.5 Streaming Annuli

After this so-called global phase, we continue with the upper streaming annuli. By

construction, each PE is responsible for generating and processing all requests within

its local chunks (i.e. one per annulus).

204

RHG Generators

It maintains a context for each of its streaming annuli consisting of:

• The sweep state containing all active requests.

• An PRNG emitting monotonically increasing variates distributed uniformly over

the chunk’s polar interval.

• A priority queue to receive begin-of-request tokens from the annuli below (referred

to as insertion bu�er).

• A priority queue storing points generated after drawing their begin-of-request.

• A priority queue storing end-of-request tokens.

As aforementioned, we execute a sweep-line algorithm and always process (and

remove) the token with smallest angle from one of the four sources. Note that by

de�nition of the angular width of each request, the candidate selection for each request

gives the same overestimation as our previous generator (see Lemma 7.13). The in-order

generation of requests and edges however signi�cantly decreases unstructured memory

accesses compared to Rhg.

While sRhg needs to process annuli in an interleaved fashion to bound the insertion

bu�ers’ sizes, it tries to infrequently switch between annuli to improve data locality.

We implemented this by splitting each chunk into cells; the number of cells per annulus

is chosen such that the expected number of points in them is constant. The algorithm

then switches between annuli only after processing complete cells.

We conclude the main generation if all sweep-lines reached the upper bound of the

PE’s polar interval. Observe that at this point, unprocessed node or end-of-request token

can remain which are dealt with during �nal phase.

For the �nal phase, each PE is responsible for generating edges from pairs where

either the request or vertex stem from the main phase. To do so, we repeat the same

process as in the local phase, but replicate the con�guration of the PE responsible for

the adjacent chunks. We also annotate vertices and requests from these foreign chunks

in order to not generate duplicate edges.

The �nal phase involves at most one additional chunk as all points and requests

with large polar shift were processed during the global phase. In practice, it can often be

stopped earlier once all old vertices and requests are processed, we count their number.

Lemma 7.17. If we limit the �nal phase to the size of a chunk, the expected number of

edges generated for streaming annuli is O
(
(nP)2−αd̄α

)
. J

Proof. Following the proof of Lemma 7.12, we introduce indicator variablesX1, . . . , Xn

with Xi = 1 if two points p and pi are adjacent. This yields the expected value

E[Xi] =

R−r∫
0

ρ(x)dx +
1

π

r∫
R−r

ρ(x)∆θ(x,R)dx

=
[
e−αr−e−αR

]
(1+o(1)) +

1

π

α

α−1
2

e−αr ·
[
e(α− 1

2
)(2r−R) − 1

]
(1±O

(
e−r)

)

205

Communication-free Graph Generation

We now (pessimistically) assume r = rG (Lemma 7.15). The resulting expected number

of neighbors is given by E[Xi] = O
(
Pα−1(d̄/n)α − (d̄/n)2α

)
. In turn, we can use

Lemma 7.16 to bound the expected total number of request and vertex pairs for vertices

in the streaming annuli by O
(
(n/P)2−αd̄α

)
. �

Lemma 7.18. The time complexity of the sequential sRhg generator for n vertices

with radius R, an average degree d̄, and a powerlaw exponent γ ≥ 2 is O(m) with

probability 1− n−c for any constant c > 0. J

Proof. We bound the time complexity by considering each component individually:

• The preprocessing requires O(1) time per point making it non-substantial.

• Handling of cliques is trivially bounded by O(m) as every step emits an edge.

• By applying Lemma 7.12 and Corollary 7.11, the candidate selection requires

O
(
n log d̄

)
= O(m) time with high probability. Here we exploit that request

tokens can be addressed to discrete cells allowing for linear time integer sorting.

• All distance calculations require in total O(m) time since Corollary 7.11 bounds

the fraction of computations that do not yield an edge to O(1). �

Theorem 7.19. The expected time complexity of the parallel sRhg generator for n

vertices with radius R, average degree d̄ and a powerlaw exponent γ ≥ 2 is bounded by

O
(
n+m
P + P log n+ n1−α(P d̄)α + (nP)2−αd̄α

)
. J

Proof. We bound the time complexity by considering each component individually:

• Building our cell data structures takes time O(P log n) as shown in Lemma 7.9.

• The expected number of vertices that have to be recomputed for the global annuli

O
(
n1−α(P d̄)α

)
due to Lemma 7.15.

• Lemma 7.17 bounds the expected number of distance comparisons for the outer

annuli to O
(
(n/P)2−αdα

)
. �

Given the running time of our parallel algorithm, we assume n/P = k = Ω(log n)

vertices per PE and set k to n2/3
. For values of γ ≥ 3 this results in a running time

linear in the number of edges per PE O(m/P). However, for very small values of γ

close to 2, the running time is dominated by the global phase an becomes nearly linear.

7.7.5.1 Further Optimizations

Adjacency tests without trigonometric functions

The runtime of preliminary versions of our generators was dominated by repeated

evaluations of trigonometric functions. We address this issue with a precomputing

scheme. Let p = (rp, θp) and q = (rq, θq) be two arbitrary vertices in DR and let `i be

the lower radial boundary of annulus i.

206

RHG Generators

The scheme accelerates the two most frequent query types, namely the computation

of request widths of the form ∆θ(rp, `i) and tests whether the hyperbolic distance

d(p, q) < R of two vertices falls below the threshold R. The former computation type

occurs Ω(n) times, while the latter is required in each of the Ω(m) candidate checks.

Based on Eq. (7.15) we obtain

∆θ(rp, `i) = acos
(

coth(rp) · coth(`i)−
cosh(R)

sinh(`i)
· 1

sinh(rp)

)
, (7.11)

where coth(x) := cosh(x)/ sinh(x).

By precomputing coth(rp) and 1/ sinh(rp) for each vertex, as well as coth(`i) and

cosh(R)/ sinh(`i) for each annulus, the argument of cos−1
follows from two multipli-

cations and a subtraction. Similarly, we test d(p, q) < R by rewriting Eq. (7.4) as

cos(θp) cos(θq) + sin(θp) sin(θq)

> coth(rp) coth(rq)− cosh(R)
1

sinh(rp)

1

sinh(rq)
. (7.12)

The left-hand-side is an expansion of cos(θp − θq). Hence, the precomputation of

cos(θp) and sin(θp) for each vertex gives distance checks in at most �ve multiplications

and two additions; it can be further improved by reusing parts of earlier computations.

After precomputation, Section 7.7.5.1 can be vectorized e�ciently to compute the

distance between a node and multiple requests in a data parallel fashion. To support

vectorized computations, we also use a structure-of-arrays memory layout to store

active candidates. We employ the Vc library [199] for explicit vectorization.

Batch-processing of Requests

Our streaming generator e�ectively sweeps all annuli in an interleaved fashion and

maintains for each annulus a separate state containing the active candidates. During

this sweep, it encounters three event types, namely the occurrence of a vertex, the

beginning of a request, and eventually its end.

Our implementation splits each annulus into cells of equal width and then processes

these events batch-wise. Given the number nj of vertices in annulus j, we select

the number cj of cells in annulus j such that c ≤ ni/ci < 2c where c is a small

tuning parameter (typically 8). More precisely, we choose cj as a power-of-two which

by construction aligns cell boundaries between annuli and avoids corner cases when

traversing the geometry.

When entering a cell, we move all requests contained into the active state by

�rst overwriting obsolete requests that went out-of-scope in the last cell; we thereby

avoid redundant operations otherwise caused by separated deletions and insertions.

Subsequently, all vertices contained are matched against the active candidates again

increasing data locality and exploiting minor synergies.

The usage of cells also allows us to relax the sorting of requests received from below

since we only need to distribute start and endpoints of requests to the appropriate cells.

Our implementations hence only stores for each request the indices of cells in which it

starts and ends, and orders the items in a radix heap.

207

Communication-free Graph Generation

7.8 Experimental Evaluation

We now present the experimental evaluation of our graph generators. For each algorithm,

we perform a running time comparison and analyze its scaling behavior.

7.8.1 Implementation

An implementation of our graph generators (KaGen) in C++ is available at h�ps:

//github.com/sebalamm/KaGen. We use Spooky Hash
3

as a hash function for pseudoran-

domization. Hash values are used to initialize a Mersenne Twister [232] for generating

uniform random variates. Non-uniform random variates are generated using the stocc

library
4
. If the size of our inputs (e.g., the adjacency matrix size) exceeds 64 bit, we use

the multiple-precision �oating points library GMP
5

and a reimplementation of the stocc

library. Pro�ling indicates that most generators spend only a negligible fraction of their

time in random number generation (≤ 1 %). For the ER generator this �gure is about

20 %. Hence, we did not experiment with alternative implementations. All algorithms

and libraries are compiled using g++ version 5.4.1 using optimization level fast and

-march=native. In the distributed setting, we use Intel MPI version 1.4 compiled

with g++ version 4.9.3.

7.8.2 Experimental Setup

We use two di�erent machines to conduct our experiments. Sequential comparisons are

performed on a single core of a dual-socket Intel Xeon E4-2670 v3 system with 128 GB

of DDR4-2133 memory, running Ubuntu 14.04 with kernel version 3.13.0-91-generic. If

not mentioned otherwise, all results are averages of ten iterations with di�erent seeds.

For scaling experiments and parallel comparisons we use the Phase 1 thin nodes of

the SuperMUC supercomputer. The SuperMUC thin nodes consist of 18 islands and a

total of 9216 nodes. Each compute node has two Sandy Bride-EP Xeon E5-2680 8-core

processors, as well as 32 GB of main memory. Each node runs the SUSE Linux Enterprise

Server (SLES) operating system. We use the maximum number of 16 cores per node

for our scaling experiments. The maximum size of our generated instances is limited

by the memory per core (2 GB). To generate even larger instances, one could use a full

streaming approach which will be discussed in Section 7.9.

We analyze the scaling behavior of our algorithms in terms of weak and strong

scaling. Weak scaling measures how the running time varies with the number of PEs for

a �xed problem size per PE. Analogously, strong scaling measures the running time for

a �xed problem size over all PEs. Due to memory limitations of the SuperMUC, strong

scaling experiments are performed with a minimum of 1024 PEs. Again, results are

averaged over ten iterations with di�erent seeds.

3

h�p://www.burtleburtle.net/bob/hash/spooky.html

4

h�p://www.agner.org/random/

5

h�p://www.mpfr.org

208

https://github.com/sebalamm/KaGen
https://github.com/sebalamm/KaGen
http://www.burtleburtle.net/bob/hash/spooky.html
http://www.agner.org/random/
http://www.mpfr.org

Experimental Evaluation

219 223 227

Number of edges m

0.1

10.0
R

un
ni

ng
tim

e
(s

)

Directed

219 223 227

Number of edges m

Undirected

KaGen(n = 224)

Boost(n = 224)

KaGen(n = 222)

Boost(n = 222)

Running time G(n,m) Figure 7.6: Running

time for the sequential

directed (le�) and

undirected (right) Erdős-

Rényi generators for 222

and 224
vertices and 216

to 228
edges.

7.8.3 Erdős-Rényi Generator

There are various implementations of e�cient sequential Erdős-Rényi generators avail-

able (e.g., [35]). However, there is little to no work on distributed memory generators.

Thus, we perform a sequential comparison of our generator to the implementation

found in the Boost
6

library. Their generator uses a sampling procedure similar to

Algorithm D [334] and serves as an example for an e�cient linear time generator.

For our comparison, we vary the number of vertices from 218
to 224

and the number

of edges from 216
to 228

. Figure 7.6 shows the running time for both generators for the

two largest sets of vertices.

First, we note that both implementations have a constant time per edge for large m.

However, the Boost implementation also has an increasing time per edge for growing

numbers of vertices n. In contrast, the running time of our generator is independent of

n. This is no surprise, since our generator uses a simple edge list and does not maintain

a full graph data structure.

For the directed G(n,m) model, our generator is roughly 10 times faster than Boost

for the largest value of m = 228
. In the undirected case, our G(n,m) generator is

roughly 21 times faster and has an equally lower running time All in all, the results are

consistent with the optimal theoretical running times of O(n+m) for both algorithms.

Next, we discuss the scaling behavior of our Erdős-Rényi generators. For the weak

scaling experiments, each PE is assigned an equal number of n/P vertices and m/P

edges to sample. In particular, we set n = m/24
and let the number of edges per PE

range from 222
to 226

. For the strong scaling experiments, we keep the number of edges

�xed from 234
to 238

. Results are presented in Figure 7.7 and Figure 7.8 respectively.

We can see that our directed generator has an almost perfect scaling behavior. Only

for the smaller input sizes and more than 212
PEs, the logarithmic term of our running

time becomes noticeable. The minor irregularities that we observe for the largest number

of PEs are due to performance di�erences for nodes in the supercomputer. Nonetheless,

our results are consistent with our asymptotic running time O((n+m)/P + logP)).

If we look at the scaling behavior of our undirected generator, we can see that

6

h�p://www.boost.org/doc/libs/1_62_0/libs/graph/doc/erdos_renyi_generator.html

209

http://www.boost.org/doc/libs/1_62_0/libs/graph/doc/erdos_renyi_generator.html

Communication-free Graph Generation

Figure 7.7: Running time

for generating m edges

and n = m/24
ver-

tices on P PEs using the

G(n,m) generators.

23 27 211 215

Number of PEs P

1.0

R
un

ni
ng

tim
e

(s
)

Directed

23 27 211 215

Number of PEs P

Undirected

n/P = 222 n/P = 220 n/P = 218

Weak scaling G(n,m)

Figure 7.8: Running time

for generating m edges

and n = m/24
ver-

tices on P PEs using the

G(n,m) generators.

211 213 215

Number of PEs P

0.1

1.0

10.0

R
un

ni
ng

tim
e

(s
)

Directed

211 213 215

Number of PEs P

Undirected

n = 234 n = 232 n = 230

Strong scaling G(n,m)

for small numbers of PEs the running time starts to increase and then remains nearly

constant. This is due to the fact that as the number of PEs/chunks increases, the number

of redundantly generated edges also increases up to twice the number of sequentially

sampled edges. This e�ect is not noticable in the strong scaling case, since we perform

these experiments with a minimum of 1024 PEs. Furthermore, for smaller values of

m/P and large P , we also see a linear increase in running time. We attribute this to the

linear time O(P) needed to locate the correct chunks for each PE.

7.8.4 RGG Generator

There are various implementations of the naïve Θ(n2) generator available (e.g., [163]).

However, a more e�cient and distributed algorithm is presented by Holtgrewe et al. [178].

Since their algorithm and our own generator are nearly identical in the sequential

case, we are mainly interested in their parallel running time for a growing number of PEs.

Therefore, we measure the total running time and vary the input size per PE n/P from

216
to 220

. It should be noted that Holtgrewe et al. only support two dimensional random

geometric graphs and thus the three-dimensional generator is excluded. The radius is

set to r = 0.55
√

lnn
n /
√
P . This choice ensures that the resulting graph is almost always

connected [21] and is used in many previous papers. Figure 7.9 shows the running time

of both competitors for a growing number of P = p2
PEs. Additionally, Figure 7.10

shows weak scaling experiments for our two- and three-dimensional generators. Finally,

we present the strong scaling behavior of our generators in Figure 7.11. For these

210

Experimental Evaluation

23 27 211

Number of PEs P

0.1

1.0

10.0

R
un

ni
ng

tim
e

(s
)

Scaling comparison 2D RGG(n, r) KaGen(n = 220)

Holtgrewe(n = 220)

KaGen(n = 218)

Holtgrewe(n = 218)

KaGen(n = 216)

Holtgrewe(n = 216)

Figure 7.9: Running time

of 2d-RGG generators for

growing numbers of PEs

P = p2
and a con-

stant input size n/P per

PE. The radius is set to

r = 0.55
√

lnn
n /
√
P .

23 27 211 215

Number of PEs P

1.0

10.0

100.0

R
un

ni
ng

tim
e

(s
)

2D

23 27 211 215

Number of PEs P

3D

n/P = 222 n/P = 220 n/P = 218

Weak scaling RGG(n, r) Figure 7.10: Running

time for generating n

vertices on P PEs using

the RGG generators.

The radius r is set to

0.55 {2,3}
√

lnn
n /
√
P .

experiments, the number of vertices n is �xed from 226
to 232

.

Due to the recomputations used by our generator, Holtgrewe et al. quickly become

faster by up to a factor of two as the number of PEs increases. To be more speci�c, the

number of neighbors that we have to generate redundantly increases from zero for one

PE up to eight neighbors for more than four PEs. This increase in running time can be

bounded by computing the additional amount of vertices created through redundant

computations and multiplying it by the average degree nπr2
. For our particular choice

of r this yields roughly twice the running time needed for the sequential computation,

which is consistent with the experimental results. However, for su�ciently sparse

graphs, the additional time for recomputations is negligible as the number of vertices

in each cell becomes constant. A very similar analysis can also be done for our three-

dimensional generator. Again, minor irregularities are due to performance di�erences

for individual nodes in the supercomputer.

211 213 215

Number of PEs P

1.0

10.0

100.0

R
un

ni
ng

tim
e

(s
)

2D

211 213 215

Number of PEs P

3D

n = 234

n = 232
n = 230

n = 228

Strong scaling RGG(n, r) Figure 7.11: Running

time for generating n

vertices on P PEs using

the RGG generators.

The radius r is set to

0.55 {2,3}
√

lnn
n .

211

Communication-free Graph Generation

Figure 7.12: Running

time for generating a

graph with n vertices on

P PEs using the RDT

generators.

23 27 211 215

Number of PEs P

1.0

10.0

R
un

ni
ng

tim
e

(s
)

2D

23 27 211 215

Number of PEs P

3D

n/P = 222

n/P = 220
n/P = 218

n/P = 216

Weak scaling RDG(n)

Figure 7.13: Running

time for generating a

graph with n vertices on

P PEs using the RDT

generators.

211 213 215

Number of PEs P

0.1

1.0

10.0

R
un

ni
ng

tim
e

(s
)

2D

211 213 215

Number of PEs P

3D

n = 232

n = 230
n = 228

n = 226

Strong scaling RDG(n)

Once we reach 212
PEs, the communication required by Holtgrewe et al. rapidly

becomes noticeable and KaGen is signi�cantly faster. Overall, the results are in line with

the asymptotic running time presented in Section 7.5.

7.8.5 RDT Generator

Our implementation uses the CGAL library [175] to compute the DT of the vertices in a

chunk and its halo. CGAL provides a state-of-the art implementation also used by most

of the other available DT generators. We therefore omit sequential measurements.

The experimental setup for the RDT is equivalent to the RGG scaling experiments.

For the weak scaling experiments, we vary the input size per PE from 218
to 222

for the

2D RDT and – due to memory constraints – from 216
to 220

for the three-dimensional

one. Moreover, for 3D RDT and 215
PEs, only the smallest input size could be computed

within the memory limit per core of SuperMUC. For the strong scaling experiments,

the input size varies from 226
to 232

. Our experiments show an almost constant time

—depicted in Figure 7.12 and Figure 7.13— well in agreement with our conjectured

asymptotic running time of O(n/P + logP). Similarly to the RGG, the initial increase

in runtime can be attributed to the redundant vertex generation of neighboring cells. As

the halo rarely grows beyond the directly adjacent cells, no signi�cant further increase

in runtime can be observed for more than 28
PEs.

212

Experimental Evaluation

0.1

1.0

10.0

100.0

d̄ = 16, γ = 2.2 d̄ = 16, γ = 3.0

106 107 108 109

Number of nodes n

0.1

10.0

1000.0
d̄ = 256, γ = 2.2

106 107 108 109

Number of nodes n

d̄ = 256, γ = 3.0

NkGen
RHG

HyperGen
sRHG

R
un

ni
ng

tim
e

(s
)

Figure 7.14: Running

time as function of

number n of nodes

for powerlaw expo-

nents γ ∈ {2.2, 3}
(i.e., α ∈ {0.6, 1})
and average degrees

d̄ ∈ {16, 256}. All

generators use 39

threads or processes, on

a dual-socket Intel Xeon

Broadwell E5-2640 v4

machine with and

128 GB of RAM.

7.8.6 Rhg Generator

We compare Rhg and sRhg to the state-of-the-art generators NkGen
7

[224], and Hy-

perGen [271] (see Section 7.3.3). Since both reference implementations support shared-

memory parallelism only, we restrict the experiments to a single machine with 40 hard-

ware threads.

We measure the runtime of all generators as the number n of nodes varies between

106 ≤ n ≤ 109
for di�erent average degrees d̄ and powerlaw exponents γ. These values

mimic settings found in various real-world networks. [223]

In general, NkGen exhibits the highest runtime per edge generated. We attribute this

to the fact that the implementation uses only partial precomputation and heavily relies

on unstructured accesses to main memory. NkGen is typically followed by Rhg which

demonstrates limited scaling for small values of γ; in this setting, the increase in runtime

for large graphs is primarily caused by exhaustion of the system’s main memory. We

consider this unrepresentative for the distributed case, in which the collective memory

available is typically much larger.

The related sRhg and HyperGen are consistently the fastest implementations with

sRhg producing up to 7.5 · 108
edges per second for d̄ = 256 and γ = 3 on a single

machine. Similar to Rhg both use precomputation as a means to speed up distance

computation. Additional performance gains are due their emphasis on cache and mem-

ory e�ciency and data parallelism.

Finally, we present the results of our scaling experiments for the Rhg generators. For

the weak scaling experiments each PE is again assigned an equal number of n vertices.

Note, that we use a designated computing node with 16 cores for calculating the inner

core for our second generator. Thus, the corresponding scaling experiments start at

32 cores. The number of vertices per PE ranges from 216
to 224

. Again, for the strong

scaling experiments the number of vertices is �xed and ranges from 228
to 232

. The

powerlaw exponent γ varies from 2.2 to 3.0 to cover di�erent extremes of the degree

7

Optimized version of the generator found in the NetworKit library h�p://network-analysis.info [271].

213

http://network-analysis.info

Communication-free Graph Generation

Figure 7.15: Running

time for generating a

graph with n vertices,

average degree d̄ = 16

and γ = 3.0 on P

PEs using both Rhg

generators.

23 27 211 215

Number of PEs P

1.0

10.0

100.0

R
un

ni
ng

tim
e

(s
)

Non-streaming

27 210 213

Number of PEs P

Streaming

n/P = 224

n/P = 222
n/P = 220

n/P = 218
n/P = 216

Weak scaling RHG(n, 16, 3)

Figure 7.16: Running

time for generating a

graph with n vertices,

average degree d̄ = 16

and γ = 3 on P PEs

using the non-streaming

Rhg generator.

211 213 215

Number of PEs P

1.0

10.0

100.0

R
un

ni
ng

tim
e

(s
)

Non-streaming

211 213 215

Number of PEs P

Streaming

n = 236

n = 234
n = 232

n = 230
n = 228

Strong scaling RHG(n, 16, 3)

distribution. Figure 7.15 (γ = 3) shows the weak scaling results of the Rhg generators

with an average degree of d̄ = 16. Likewise, Figure 7.16 (γ = 3) shows the strong

scaling results of the Rhg generators with an average degree of d̄ = 16.

Looking at the scaling behavior of our �rst generator, we see that there is a con-

siderable increase in running time for a growing number of PEs. We can attribute this

behavior to the redundant computations that are introduced through parallelization.

Additionally, high degree vertices are hard to distribute e�ciently if we want a parti-

tioned output graph. This severely impedes the scaling behavior. Since the maximum

degree is O
(
n1/(2α)

)
with high probability [159], these vertices dominate the running

time of our algorithm. Overall, these e�ects are less noticable in the case of our strong

scaling experiments, because we start with a minimum of 1024 PEs.

If we examine the scaling behavior of our second algorithm, we can see that these

e�ects are less noticeable, especially for larger values of γ. For smaller values of γ,

the running time of our algorithm is again dominated by the time needed to generate

the inner core (global annuli) on its dedicated computing node. Overall, our second

generator is roughly 16 times faster than our �rst generator. However, keep in mind that

the resulting graph is not fully partitioned, i.e., not all incident edges are generated on

the corresponding PEs. Thus, we can achieve a similar speedup for our �rst generator,

by only performing outward queries and omitting the inward ones. Nonetheless, the

lower memory requirements of our second generator enable us to generate up to 16

times larger instances.

214

Conclusion

23 27 211 215

Number of PEs P

10.0

100.0

R
un

ni
ng

tim
e

(s
)

Weak scaling RMAT (n,m)

n/P = 222 n/P = 220 n/P = 218

Figure 7.17: Running

time for generating a

graph with n vertices

and m = 24n edges on

P PEs using the R-MAT

generator.

7.8.6.1 Comparison with R-MAT

In order to further evaluate the performance of our generators, in particular of our

hyperbolic generators, we now compare them to the R-MAT generator. To this end, we

use the reference implementation available at the Graph 500 website (graph500.org). The

R-MAT generator is commonly used in benchmarks for large-scale graph computations

due to its scalability and �exibility. Figure 7.17 shows the weak scaling behavior of

R-MAT for an equal number of m/P edges per PE. In particular, we set the number of

vertices to n = m/24
and let the number of edges per PE range from 222

to 226
.

First, we see that R-MAT has a slight increase in running time for growing numbers

of PEs (and thus a growing number of vertices). This increase in running time is due to

the fact that R-MAT needs to generateO(log n) random variates for each edges. Second,

if we compare the overall performance of R-MAT with our own generators we can

see that it is roughly ten times slower than the streaming version of our hyperbolic

graph generator. Furthermore, it is up to 15 times slower than our undirected Erdős-

Rényi generator. This di�erence in performance can be attributed to the di�erence in

the number of random variates that each generator consumes. Due to their generation

cost, minimizing the number of variates yields large performance bene�ts.

Finally, Figure 7.18 shows the strong scaling behavior of R-MAT for a �xed number

of m edges ranging from 228
to 232

. We see that R-MAT has near-optimal scaling

behavior even for the smallest inputs tested. Comparing this to the performance of our

own generators, we can see that it does not su�er from the same increase in running

time that our hyperbolic graph generators show for small inputs. This is due to the fact

that the running time of R-MAT has no additive term that increases with a growing

number of PEs.

7.9 Conclusion

We presented scalable graph generators for a set of commonly used network models.

Our work includes the G(n,m) and G(n, p) models, random geometric graphs, random

Delaunay graphs and random hyperbolic graphs.

Our algorithms make use of a combination of divide-and-conquer schemes and grid

data structures to narrow down their local sampling space. We redundantly compute

215

graph500.org

Communication-free Graph Generation

Figure 7.18: Running

time for generating a

graph with n vertices

and m = 24n edges on

P PEs using the R-MAT

generator.

211 213

Number of PEs P

1.0

10.0

100.0

R
un

ni
ng

tim
e

(s
)

Strong scaling RMAT (n,m)

n = 232 n = 230 n = 228

parts of the network that are within the neighborhood of local vertices. These compu-

tations are made possible through the use of pseudorandomization via hash functions.

The resulting algorithms are embarrassingly parallel and communication-free.

Our extensive experimental evaluation indicates that our generators are competitive

to state-of-the-art algorithms while also providing near-optimal scaling behavior. In

turn, we are able to generate instances with up to 243
vertices and 247

edges in less than

22 minutes on 32 768 cores.
8

Therefore, our generators enable new network models to be

used for research on a massive scale. In order to help researchers to use our generators,

we provide all algorithms in a widely usable open source library. Finally, to show the

broad applicability of the concepts used in our generators, we provide adaptations for

their use in a GPGPU setting.

Future Work

As mentioned in Section 7.8.2, we would like to extend our remaining generators to use

a streaming approach similar to sRhg (see Section 7.7.3). This would drastically reduce

the memory needed for the auxiliary data structures, especially for the spatial network

generators. Allowing the e�cient generation of random hyperbolic graphs on GPGPUs

also remains for future work.

Furthermore, we would like to extend our communication-free paradigm to various

other network models such as the Stochastic Block Model and the Binomial Random
Hyperbolic Graph. [200] More speci�cally, we would like to extend the KaGen library by

a faster generator for R-MAT graphs than currently available.

Finally, our generators allow us to perform an extensive study on new graph models

for high-performance computing benchmarks. In turn, these benchmarks could target a

wider variety or real-world models and scenarios. A more detailed theoretical analysis

using tighter bounds, especially for the parallel running times of our generators would

be bene�cial for this purpose.

8

Using the directed G(n,m) generator.

216

Hyperbolic Geometry Related Definitions

Acknowledgment

The authors gratefully acknowledge the Gauss Centre for Supercomputing e.V. (www.

gauss-centre.eu) for funding this project by providing computing time on the GCS

Supercomputer SuperMUC at Leibniz Supercomputing Centre (www.lrz.de). The au-

thors gratefully acknowledge the Gauss Centre for Supercomputing (GCS) for providing

computing time through the John von Neumann Institute for Computing (NIC) on the

GCS share of the supercomputer JUQUEEN [317] at Jülich Supercomputing Centre

(JSC). GCS is the alliance of the three national supercomputing centres HLRS (Univer-

sität Stuttgart), JSC (Forschungszentrum Jülich), and LRZ (Bayerische Akademie der

Wissenschaften), funded by the German Federal Ministry of Education and Research

(BMBF) and the German State Ministries for Research of Baden-Württemberg (MWK),

Bayern (StMWFK) and Nordrhein-Westfalen (MIWF). We thank the Center for Scienti�c

Computing, University of Frankfurt for making their HPC facilities available. This

work was partially supported by Deutsche Forschungsgemeinschaft (DFG) under grants

ME 2088/3-2, and ME 2088/4-2.

Appendix 7.A Hyperbolic Geometry Related Definitions

Radial density:

ρ(r) := α
sinh(αr)

cosh(αR)− 1
(7.13)

Radial cdf:

µ(Br(0)) :=

∫ r

0
ρ(x)dx =

cosh(αx)− 1

cosh(αR)
(7.14)

Angular deviation:

∆θ(r, b) :=

{
π if r+b < R

acos
[cosh(r) cosh(b)−cosh(R)

sinh(r) sinh(b)

]
otherwise

(7.15)

217

www.gauss-centre.eu
www.gauss-centre.eu
www.lrz.de

Communication-free Graph Generation

Appendix 7.B Hyperbolic Geometry Related Approximations

Gugelmann et al. derived the following approximations
9
. [159]

Angular deviation:

∆θ(r, b) =

{
π if r + b < R

2e
R−r−b

2 (1 + Θ(eR−r−b)) if r + b ≥ R
(7.16)

Radial cdf:

µ(Br(0)) =

∫ r

0
ρ(x)dx =

cosh(αr)

cosh(αR)− 1
(7.17)

= eα(r−R)(1 + o(1)) (7.18)

The probability mass µQ of the intersection of the actual query circle BR(r) with the

annulus Bb(0) \Ba(0) as de�ned in Lemma 7.10 is given by:

µQ := µ [(Bb(0)\Ba(0)) ∩BR(r)]

=
2

π
e−

r
2
−(α− 1

2
)R

[
α

α−1
2

(
e(α− 1

2
)b − e(α− 1

2
)a
)

+O
(
e−(α− 1

2
)a
)]

(7.19)

Rhg and sRhg overestimate the query range at the border and covers the mass µH :

µH :=
1

π
∆θ(r, a)

b∫
a

ρ(y)dy

=
2

π
e−

r
2
−(α− 1

2
)R
[
eαb−a/2 − e(α− 1

2
)a
]
·
(

1±O
(
e(1−α)(R−a)−r

))
(7.20)

9

We drop the (1 + O(·)) error terms in our calculations without further notice if they are either

irrelevant or dominated by other simpli�cations made

218

Hyperbolic Geometry Related Approximations

219

8
E�iciently Generating Geometric Inhomoge-

neous and Hyperbolic Random Graphs

joint work with T. Bläsius, T. Friedrich, M. Katzmann, U. Meyer, and C. Weyand

Binomial Random Hyperbolic

Graph with n = 200, d̄ = 8,

α = 1, T = 0.9

Random Hyperbolic Graph (RHG) and Geometric Inhomogenous Random Graphs

(GIRG) are two similar generative network models designed to resemble complex

real-world networks; they have a powerlaw degree distribution with controllable

exponent β, and high clustering that can be controlled via the temperature T .

We present the first implementation of an e�icient GIRG generator running in

expected linear time. Besides varying temperatures, it also supports underlying

geometries of higher dimensions. It is capable of generating graphs with ten million

edges in under a second on commodity hardware. The algorithm can be adapted to

RHGs. Our resulting implementation is the fastest sequential RHG generator, despite

the fact that we support non-zero temperatures. Though non-zero temperatures are

crucial for many applications, most existing generators are restricted to T = 0. We

also support parallelization, although this is not the focus of this paper. Moreover,

we note that our generators draw from the correct probability distribution, i.e., they

involve no approximation.

Besides the generators themselves, we also provide an e�icient algorithm to deter-

mine the non-trivial dependency between the average degree of the resulting graph

and the input parameters of the GIRG model. This makes it possible to specify the

desired expected average degree as input.

Moreover, we investigate the di�erences between RHGs and GIRGs, shedding new

light on the nature of the relation between the two models. Although RHGs represent,

in a certain sense, a special case of the GIRG model, we find that a straight-forward

inclusion does not hold in practice. However, the di�erence is negligible for most

use cases.

This chapter is based on the peer-reviewed conference article [48] (Best Paper ESA-B).

[48] T. Bläsius, T. Friedrich, M. Katzmann, U. Meyer, M. Penschuck, and C. Weyand. Ef-

�ciently generating geometric inhomogeneous and hyperbolic random graphs. In

M. A. Bender, O. Svensson, and G. Herman, editors, European Symp. on Algorithms
ESA, volume 144 of LIPIcs, pages 21:1–21:14. Schloss Dagstuhl – Leibniz-Zentrum

für Informatik, 2019. doi:10.4230/LIPIcs.ESA.2019.21 .

My contribution

I contributed substantially to the engineering of Girgs and HyperGirgs.

https://doi.org/10.4230/LIPIcs.ESA.2019.21

Geometric Inhomogeneous and Hyperbolic Random Graphs

8.1 Introduction

Network models play an important role in di�erent �elds of science [87]. From the

perspective of network science, models can be used to explain observed behavior in

the real world. To mention one example, Watts and Strogatz [342] observed that few

random long-range connections su�ce to guarantee a small diameter. This explains why

many real-world networks exhibit the small-world property despite heavily favoring

local over long-range connections. From the perspective of computer science, and

speci�cally algorithmics, realistic random networks can provide input instances for

graph algorithms. This facilitates theoretical approaches (e.g., average-case analysis),

as well as extensive empirical evaluations by providing an abundance of benchmark

instances, solving the pervasive scarcity of real-world instances.

There are some crucial features that make a network model useful. The generated

instances have to resemble real-world networks. The model should be as simple and

natural as possible to facilitate theoretical analysis, and to prevent atypical artifacts.

And it should be possible to e�ciently draw networks from the model. This is important

for the empirical analysis of model properties and for generating benchmark instances.

A model that has proven itself useful in recent years is the hyperbolic random
graph (RHG) model [200]. RHGs are generated by drawing vertex positions uniformly

at random from a disk in the hyperbolic plane. Two vertices are joined by an edge

if and only if their distance lies below a certain threshold; see Section 8.2.2. RHGs
resemble real-world networks with respect to crucial properties. Most notable are the

powerlaw degree distribution [159] (i.e., the number of vertices of degree k is roughly

proportional to k−β with β ∈ (2, 3)), the high clustering coe�cient [159] (i.e., two

vertices are more likely to be connected if they have a common neighbor), and the

small diameter [135, 256]. Moreover, RHGs are accessible for theoretical analysis (see,

e.g., [159, 135, 256, 47]). Finally there is a multitude of e�cient generators with di�erent

emphases [16, 223, 222, 224, 271, 139, 138]; see Section 8.1.2 for a discussion.

Closely related to RHGs is the geometric inhomogeneous random graph (GIRG)
model [70]. Here every vertex has a position on the d-dimensional torus and a weight

following a power law. Two vertices are then connected if and only if their distance

on the torus is smaller than a threshold based on the product of their weights. When

using positions on the circle (d = 1), GIRGs approximate RHGs in the following sense:

the processes of generating a RHG and a GIRG can be coupled such that it su�ces to

decrease and increase the average degree of the GIRG by only a constant factor to obtain

a subgraph and a supergraph of the corresponding RHG, respectively. Compared to

RHGs, GIRGs are potentially easier to analyze, generalize nicely to higher dimensions,

and the weights allow to directly adjust the degree distribution.

Above, we described the idealized threshold variants of the models, where two

vertices are connected if an only if their distance is small enough. Arguably more

realistic are the binomial variants, which allow longer edges and shorter non-edges with

a small probability. This is achieved with an additional parameter T , called temperature.
For T → 0, the binomial and threshold variants coincide. Many publications focus on

222

Introduction

the threshold case, as it is typically simpler. This is particularly true for generation

algorithms: in the threshold variants one can ignore all vertex pairs with su�cient

distance, which can be done using geometric data structures. In the binomial case, any

pair of vertices could be adjacent, and the search space cannot be reduced as easily. For

practical purposes, however, a non-zero temperature is crucial as real-world networks

are generally assumed to have positive temperature. Moreover, from an algorithmic

perspective, the threshold variants typically produce particularly well-behaved instances,

while a higher temperature leads to di�cult problem inputs. Thus, to obtain benchmark

instances of varying di�culty, generators for the binomial variants are key.

8.1.1 Contribution and Outline

Based on the algorithm by Bringmann, Keusch, and Lengler [70], we provide an e�cient

GIRG generator. It includes the binomial case and allows higher dimensions. Its expected

running time is linear. To the best of our knowledge, this is the �rst e�cient generator

for the GIRG model. Moreover, we adapt the algorithm to the RHG model, including the

binomial variant. Compared to existing RHG generators (most of which only support

the threshold variant), our implementation is the fastest sequential RHG generator.

Refactoring the original GIRG algorithm [70] allows us to parallelize our genera-

tors. They do not use multiple processors as e�ectively as HyperGen tailored towards

parallelism. Still, we achieve comparable runtimes on commodity hardware (16 threads).

Our generators come as an open source C++ library
1

with documentation, command-

line interface, unit tests, micro benchmarks, and OpenMP [267] parallelization using

shared memory. An integration into NetworKit [316] is available.

Besides the e�cient generators, we have three secondary contributions. (I) We

provide a comprehensible description of the sampling algorithm that should make

it easy to understand how the algorithm works, why it works, and how it can be

implemented. Although the core idea of the algorithm is not new [70], the previous

description is somewhat technical. (II) The expected average degree can be controlled

via an input parameter. However, the dependence of the average degree on the actual

parameter is non-trivial. In fact, given the average degree, there is no closed formula to

determine the parameter. We provide a linear-time algorithm to estimate it. (III) We

investigate how GIRGs and RHGs actually relate to each other by measuring how much

the average degree of the GIRG has to be decreased and increased to obtain a subgraph

and supergraph of the RHG, respectively.

In the following we �rst discuss our main contribution in the context of existing RHG
generators. In Section 8.2, we formally de�ne the GIRG and RHG models. Afterwards we

describe the sampling algorithm in Section 8.3. In Section 8.4 we discuss implementation

details, including the parameter estimation for the average degree (Section 8.4.1) as

well as multiple performance improvements. Section 8.5 contains our experiments: we

investigate the scaling behavior of our generator in Section 8.5.1, compare our RHG
generator to existing ones in Section 8.5.2, and compare GIRGs to RHGs in Section 8.5.3.

1

h�ps://github.com/chistopher/girgs

223

https://github.com/chistopher/girgs

Geometric Inhomogeneous and Hyperbolic Random Graphs

Table 8.1: Existing hyperbolic random graph generators. The columns show the names used

throughout the paper; the conference appearance; a reference (journal if available); whether the

generator supports the binomial model; and the asymptotic running time. The time bounds hold

in the worst-case (wc), with high probability (whp), in expectation (exp), or empirically (emp).

Name First Published Ref. Binom. Running Time

Pairwise CPC’15 [16] D Θ(n2) (wc)

Rhg�adTree ISAAC’15 [223] O
(
(n3/2 +m) log n

)
(wc)

Nk�ad IWOCA’16 [222] D O
(
(n3/2 +m) log n

)
(wc)

NkBand, NkBandOpt HPEC’16 [224] O(n log n+m) (emp)

Girgs ESA’16 [50] D Θ(n+m) (exp)

HyperGen SEA’17 [271] O(n log log n+m) (whp)

Rhg IPDPS’18 [139] Θ(n+m) (exp)

sRhg JPDC’19 [138] Θ(n+m) (exp)

HyperGirgs this paper D Θ(n+m) (exp)

8.1.2 Comparison with Existing Generators

We are not aware of previous GIRG implementations. Concerning RHGs, most algo-

rithms only support the threshold case; see Table 8.1. The only published exceptions

are the trivial quadratic algorithm [16], and an O
(
(n3/2 +m) log n

)
algorithm [222]

based on a quad-tree data structure [223]. The latter is part of NetworKit; we call it

Nk�ad. Moreover, the code for a hyperbolic embedding algorithm [50] includes an

RHG generator implemented by Bringmann based on the GIRG algorithm [70]; we refer

to it as Girgs in the following.

Girgs has been widely ignored as a high-performance generator. This is because it

was somewhat hidden, and it is heavily outperformed by other threshold generators.

Experiments show that our generator HyperGirgs is much faster than Nk�ad, which

is to be expected considering the asymptotic running time. Moreover, on a single

processor, we outperform Girgs by an order of magnitude for T = 0 and by a factor

of 4 for higher temperatures. As Girgs does not support parallelization, this speedup

increases for multiple processors.

For Threshold RHGs, there are the following generators. The quad-tree data structure

mentioned above was initially used for the threshold generator Rhg�adTree [223].

It was later improved leading to the algorithm currently implemented in NetworKit

(NkBand) [224]. A later re-implementation by Penschuck [271] improves it by about a

factor of 2 (NkBandOpt). However, the main contribution of [271] was a new generator

that features sublinear memory and near optimal parallelization (HyperGen). Up to

date, HyperGen was the fastest Threshold RHG generator on a single processor. Our

generator, HyperGirgs, improves by a factor of 1.3 – 2 (depending on the parameters)

but scales worse for more processors. Finally, Funke et al. [139] provide a generator

designed for a distributed setting to generate enormous instances (Rhg). Its runtime

was later further reduced (sRhg) [138].

224

Models

8.2 Models

8.2.1 Geometric Inhomogeneous Random Graphs

GIRGs [70] combine elements of random geometric graphs [149] andChung-Lu graphs [92,

93]. Let V = {1, . . . , n} be a set of vertices with positive weights w1, . . . , wn following

a powerlaw with exponent β > 2. Let W be their sum. Let Td be the d-dimensional

torus for a �xed dimension d ≥ 1 represented by the d-dimensional cube [0, 1]d where

opposite boundaries are identi�ed. For each vertex v ∈ V , let xv ∈ Td be a point

drawn uniformly and independently at random. For x, y ∈ Td let ||x − y|| denote

the L∞-norm on the torus, i.e. ||x − y|| = max1≤i≤d min{|xi − yi|, 1 − |xi − yi|}.
Two vertices u 6= v are independently connected with probability puv . For a positive

temperature 0 < T < 1,

puv = min

1, c

(
wuwv/W

||xu − xv||d

)1/T
 (8.1)

while for T = 0 a threshold variant of the model is obtained with

puv =

{
1 if ||xu − xv|| ≤ c(wuwv/W)1/d,

0 else.

The constant c > 0 controls the expected average degree. We note that the above

formulation slightly deviates from the original de�nition; see Section 8.2.3 for details.

8.2.2 Hyperbolic Random Graphs

RHGs [200] are generated by sampling random positions in the hyperbolic plane and

connecting vertices that are close. More formally, let V = {1, . . . , n} be a set of vertices.

Let α > 1/2 and C ∈ R be two constants, where α controls the powerlaw degree

distribution with exponent β = 2α+1 > 2, and C determines the average degree d̄. For

each vertex v ∈ V , we sample a random point pv = (rv, θv) in the hyperbolic plane,

using polar coordinates. Its angular coordinate θv is chosen uniformly from [0, 2π)

while its radius 0 ≤ rv < R with R = 2 log(n) + C is drawn according to the density

function f(r) = α sinh(αr)
cosh(αR)−1 . In the threshold case of RHGs two vertices u 6= v are

connected if and only if their distance is below R. The hyperbolic distance d(pu, pv) is

de�ned via cosh(d(pu, pv)) = cosh(ru) cosh(rv)− sinh(ru) sinh(rv) cos(θu − θv).

The binomial variant adds a temperature T ∈ [0, 1] to control the clustering, with

lower temperatures leading to higher clustering. Two nodes u, v ∈ V are then connected

with probability pT (d(pu, pv)) where pT (d) = (exp[(d−R)/(2T)] + 1)−1
. For T → 0,

the two de�nitions (threshold and binomial) coincide.

8.2.3 Comparison of GIRGs and RHGs

Bringmann et al. [70] show that the RHG model can be seen as a special case of the GIRG
model in the following sense. Let dHRG be the average degree of a RHG. Then there

225

Geometric Inhomogeneous and Hyperbolic Random Graphs

Figure 8.1: 2d grid for

weight bucket pairs with

a connection probability

of [2−3, 2−4). Colored

cell pairs represent neigh-

bors. Note that the

ground space is a torus

and a cell is also a neigh-

bor to itself.

exist GIRGs with average degree dGIRG and DGIRG with dGIRG ≤ dHRG ≤ DGIRG

such that they are sub- and supergraphs of the RHG, respectively. Moreover, dGIRG and

DGIRG di�er only by a constant factor. Formally, this is achieved by using the big-O

notation instead of a single constant c for the connection probability. We call this the

generic GIRG framework. It essentially captures any speci�c model whose connection

probabilities di�er from Eq. (8.1) by only a constant factor. From a theoretical point of

view this is useful as proving something for the generic GIRG framework also proves it

for any manifestation, including RHGs.
To see how RHGs �t into the generic GIRG framework, consider the following

mapping [70]. Radii are mapped to weights wv = e(R−rv)/2
, and angles are scaled

to �t on a 1-dimensional torus xv = θv/(2π). One can then see that the hyperbolic

connection probability pT (d) under the provided mapping deviates from Eq. (8.1) by

only a constant. Thus, c in Eq. (8.1) can be chosen such that all GIRG probabilities are

larger or smaller than the corresponding RHG probabilities, leading to the two average

degrees dGIRG and DGIRG mentioned above. Bringmann et al. [70] note that the two

constants, which they hide in the big-O notation, do not have to match. They leave it

open if they match, converge asymptotically, or how large the interval between them is

in practice. We investigate this empirically in Section 8.5.3.

8.3 Sampling Algorithm

As mentioned in the introduction, the core of our sampling algorithm is based on the

algorithm by Bringmann et al. [70]. In the following, we �rst give a description of the

core ideas and then work out the details that lead to an e�cient implementation.

To explain the idea, we make two temporary assumptions and relax them in Sec-

tion 8.3.1 and Section 8.3.2, respectively. For now, assume that all weights are equal and

consider only the threshold variant T = 0. The task is to �nd all vertex pairs that form

an edge, i.e., their distance is below the threshold c(wuwv/W)1/d
. Since all weights are

equal, the threshold in this restricted scenario is the same for all vertex pairs.

One approach to quickly identify adjacent vertices is to partition the ground space

into a grid of cells. The size of the cells should be chosen, such that (I) the cells are as small

as possible and (II) the diameter of cells is larger than the threshold c(wuwv/W)1/d
. The

latter implies that only vertices in neighboring cells can be connected thus narrowing

down the search space. The former ensures that neighboring cells contain as few vertex

pairs as possible reducing the number of comparisons. Figure 8.1 shows an example of

such a grid for a 2-dimensional ground space.

8.3.1 Inhomogeneous Weights

Assume that we have vertices with two di�erent weights w1, w2, rather than one. As

before, the cells should still be as small as possible while having a diameter larger than

the connection threshold. However, there are three di�erent thresholds now, one for

each combination of weights. To resolve this, we can group the vertices by weight and

use three di�erently sized grids to �nd the edges between them.

226

Sampling Algorithm

Figure 8.2: 2d grid for

weight bucket pairs with a

connection probability of

[2−3, 2−4). The gray cells

represent multiple distant

cell pairs combined to one

pair consisting of the red

outlined parent cell pair.

As GIRGs require not only two but many weights, considering one grid for every

weight pair is infeasible. The solution is to discretize the weights by grouping ranges

of weights into weight buckets. When searching for edges between vertices in two

weight buckets, the pair of largest weights in these buckets provides the threshold for

the cell diameter. This choice of the cell diameter satis�es property (II). Property (I) is

violated only slightly, if the weight range within the bucket is not too large. Thus, each

combination of two weight buckets uses a grid of cells, whose granularity is based on

the maximum weight in the respective buckets.

As a tradeo�, we choose dlog2 ne many buckets which yields a sublinear number of

grids. Moreover, the largest and smallest weight in a bucket are at most a factor two

apart. Thus, the diameter of a cell is too large by at most a factor of four.

With this approach, a single vertex has to appear in grids of di�erent granularity. To

do this in an e�cient manner, we recursively divide the space into ever smaller grid cells,

leading to a hierarchical subdivision of the space. This hierarchy is naturally described

by a tree. For a 2-dimensional ground space, each node has four children, which is why

we call it quadtree. Note that each level of the quadtree represents a grid of di�erent

granularity. Moreover, the side length of a grid cell on level ` is 2−`. For a pair (i, j) of

weight buckets, we then choose the level that �ts best for the corresponding weights,

i.e., the deepest level such that the diameter of each grid cell is above the connection

threshold for the largest weights in bucket i and j, respectively. We call this level the

comparison level, denoted by CL(i, j). It su�ces to insert vertices of a bucket into the

deepest level among all its comparison levels. This level is called the insertion level and

we denote it by I(i). In Section 8.3.4, we discuss in detail how to e�ciently access all

vertices in a given grid cell belonging to a given weight bucket.

8.3.2 Binomial Variant of the Model

For T > 0, neighboring cell pairs are still easy to handle: a constant fraction of vertex

pairs will have an edge and one can sample them by explicitly checking every pair. For

distant cell pairs and a �xed pair of weight buckets, the distance between the cells yields

an upper bound on the connection probability of included vertices; see Eq. (8.1). The

probability bound depends on both, the weight buckets and the cell pair distance, using

the maximum weight within the buckets and the minimum distance between points in

the cells. We note that the individual connection probabilities are only a constant factor

smaller than the upper bound.

Knowing this, we can use geometric jumps to skip most vertex pairs [8]. The

approach works as follows. Assume that we want to create an edge with probability

p for each vertex pair. For this process, we de�ne the random variable X to be the

number of vertex pairs we see until we add the next edge. Then X follows a geometric

distribution. Thus, instead of throwing a coin for each vertex pair, we can do a single

experiment that samples X from the geometric distribution and then skip X vertex

pairs ahead. Since not all vertex pairs reach the upper bound p, we accept encountered

pairs with probability puv/p to get correct results.

Although distant cell pairs are handled e�ciently, their number is still quadratic,

227

Geometric Inhomogeneous and Hyperbolic Random Graphs

Algorithm 11: Sample GIRG by Recursive Iteration of Cell Pairs

Input: cell pair (A,B); initially called with A, B set to the root of the quadtree

1 forall bucket pairs (i, j) that process the cell pair (A,B) do
2 if A and B are neighbors then
3 emit each edge (u, v) ∈ V A

i
× V B

j
with probability puv

4 else
5 choose candidates S ⊆ V A

i
× V B

j
using geometric jumps and p

6 emit each edge (u, v) ∈ S with probability puv/p

7 if A and B are neighbors and not maximum depth reached then
8 forall children X of A do
9 forall children Y of B do
10 Recurse(X, Y)

most of which yield no edges. To circumvent this problem, the sampling algorithm, yet

again, uses a quadtree. In the set of cell pairs to compare for one weight bucket pair,

non-neighboring cells are grouped together along the quadtree hierarchy. They are

replaced by their parents as shown in Figure 8.2 until their parents become neighbors.

In conclusion, for each pair of weight buckets (i, j) the following two types of

cell pairs have to be processed. Any two neighboring cell pairs on the comparison

level CL(i, j); and any distant cell pair with level larger or equal CL(i, j) that has

neighboring parents. The resulting set of distant and neighboring cell pairs for a �xed

bucket pair partitions Td × Td.

8.3.3 E�iciently Iterating over Cell Pairs

The previous description sketches the algorithm as originally published. Here, we pro-

pose a refactoring that greatly simpli�es the implementation and enables parallelization.

We attribute a signi�cant amount of HyperGirgs’ speed up over Girgs to this change.

Instead of �rst iterating over all bucket pairs and then over all corresponding cell

pairs, we reverse this order. This removes the need to repeatedly determine the cell

pairs to process for a given bucket pair. Instead it su�ces to �nd the bucket pairs that

process a given cell pair. This only depends on the level of the two cells and their type

(neighboring or distant). Inverting the mapping from bucket pairs to cell pairs in the

previous section yields the following. A neighboring cell pair on level ` is processed for

bucket pairs with a comparison level of exactly `. A distant cell pair on level ` (with

neighboring parents) is processed for bucket pairs with a comparison level larger than or

equal to `. Thus, for each level of the quadtree we must enumerate all neighboring cell

pairs, as well as distant cell pairs with neighboring parents. Algorithm 11 recursively

enumerates exactly these cell pairs.

228

Implementation Details

Figure 8.3: Linearization

of the cells on level 1 (top)

and 2 (bo�om) for d = 2.

8.3.4 E�icient Access to Vertices by Bucket and Cell

A crucial part of the algorithm is to quickly access the set of vertices restricted to a

weight bucket i and a cell A, which we denote by V A
i . To this end, we linearize the cells

of each level as illustrated in Figure 8.3. This linearization is called Morton code [251]

or z-order curve [268]. It has the nice properties that (I) for each cell in level `, its

descendants in level `′ > ` in the quadtree appear consecutively; and (II) it is easy to

convert between a cells position in the linear order and its d-dimensional coordinates

(see Section 8.4.2).

We sort the vertices of a �xed weight bucket i by the Morton code of their containing

cell on the insertion level I(i), using arbitrary tie-breaking for vertices in the same cell.

This has the e�ect that for any cell A with level(A) ≤ I(i), the vertices of V A
i appear

consecutive. Thus, to e�ciently enumerate them, it su�ces to know for each cell A the

index of the �rst vertex in V A
i . This can be precomputed using pre�x sums leading to

the following lemma.

Lemma 8.1. After linear preprocessing, for all cells A and weight buckets i with

level(A) ≤ I(i), vertices in the set V A
i can be enumerated in O(|V A

i |). J

Proof. The proof is discussed in Section 8.A (Appendix). �

8.4 Implementation Details

The description in the previous section is an idealized version of the algorithm. For an

actual implementation, there are some gaps to �ll in. Omitting many minor tweaks, we

want to sketch optimizations that are crucial to achieve a good practical runtime in the

following and refer to Section 8.B (Appendix) for more details.

8.4.1 Estimating the Average Degree Parameter

Here, we sketch how to estimate the parameter c in Eq. (8.1) to achieve a given expected

average degree. We estimate the constant based on the actual weights, not on their

probability distribution. This leads to lower variance and allows user-de�ned weights.

We start with an arbitrary constant c, calculate the resulting expected average degree

E[d̄] and adjust c accordingly, using a modi�ed binary search. This is possible, as E[d̄]

is monotone in c. We derive an exact formula for E[d̄], depending on c and the weights.

It cannot simply be solved for c, which is why we use binary search.

For the binary search, we need to evaluate E[d̄] for di�erent values of c. This

is potentially problematic, as the formula for E[d̄] sums over all vertex pairs. The

issue preventing us from simplifying this formula is the minimum in the connection

probability. Therefore, we �rst ignore the minimum and subtract an error term for those

vertex pairs, where the minimum takes e�ect. The remaining hard part is to calculate

this error term. Let ES be the set of vertex pairs appearing in the error term and let S

be the set of vertices with at least one partner in ES .

229

Geometric Inhomogeneous and Hyperbolic Random Graphs

Although |ES | itself is su�ciently small, S is too large to determine ES by iterating

over all pairs in S × S. We solve this by iterating over the vertices in S, sorted by

weight. Then, for each vertex we encounter, the set of partners in ES is a superset of

the partners of the previous vertex with smaller weight. This allows us to compute E[d̄]

in time O(S).

8.4.2 E�iciently Encoding and Decoding Morton Codes

Recall from Section 8.3.4 that we linearize the d-dimensional grid of cells using Morton

code. As vertex positions are given as d-dimensional coordinates, we have to convert

the coordinates to Morton codes (i.e., the index in the linearization) and vice versa. This

is done by bitwise interleaving the coordinates.

For example, the 2-dimensional Morton code of the four-bit coordinates a =

a3a2a1a0 and b = b3b2b1b0 is a3b3a2b2a1b1a0b0. We evaluated di�erent encoding

and decoding approaches via micro benchmarks. The fastest approach, at least on Intel

processors, was an assembler instruction from BMI2 proposed by Intel in 2013 [184].

8.4.3 Generating RHGs Avoiding Expensive Mathematical Operations

The algorithm in Section 8.3 can be used to generate RHGs. It works conceptually the

same, except that most formulas change. This has for example the e�ect that we no

longer get a closed formula to determine the insertion level of a weight bucket or the

comparison level of a bucket pair. Instead, one has to search them, by iterating over

the levels of the quadtree. Further, RHGs introduce many computationally expensive

mathematical operations like the hyperbolic cosine. This can be mitigated as follows.

For the threshold model, an edge exists if the distance d is smaller than R. Con-

sidering how the hyperbolic distance is de�ned (Section 8.2.2), reformulating it to

cosh(d) < cosh(R) avoids the expensive acosh, while cosh(R) remains constant dur-

ing execution and can thus be precomputed. Similar to recent Threshold RHG generators,

we compute intermediate values per vertex such that cosh(d) can be computed using

only multiplication and addition [138, 271].

For the binomial model, evaluating the connection probability is a performance

bottleneck. The straightforward way to sample edges is: compute the connection

probability pT (d) depending on the distance, sample a uniform random value u ∈ [0, 1],

and create the edge if and only if u < pT (d). We can improve this by precomputing

the inverse of pT (d) for equidistant values in [0, 1]. This lets us, for small ranges in

[0, 1], quickly access the corresponding range of distances. Changing the order, we �rst

sample u ∈ [0, 1], which falls in a range between two precomputed values, which in

turn yields a range of distances. If the actual distance lies below that range, there has to

be an edge and if it lies above, there is no edge. Only if it lies in the range, we actually

have to compute the probability pT (d).

230

Experimental Evaluation

8.4.4 Parallelization

The algorithm has �ve steps: generate weights, generate positions, estimate the average

degree constant, precompute the geometric data structure, and sample edges. The �rst

two are trivial to parallelize. For estimating the constants, we parallelize the dominant

computations with linear running time. To sample the edges, we make use of the fact

that we iterate over cell pairs in a recursive manner. This can be parallelized by cutting

the recursion tree at a certain level and distributing the independent subproblems among

multiple processors.

For the preprocessing we have to do three subtasks: compute for each vertex its

containing cells on its insertion level, sort the vertices according to their Morton code

index, and compute the pre�x sum for all cells. We parallelize all three tasks and optimize

them by handling all weight buckets together, sorting by weight bucket �rst and Morton

code second. This is done by encoding this criterion into integers that are sorted with

parallel radix sort.

8.5 Experimental Evaluation

We perform three types of experiments. In Section 8.5.1 we investigate the scaling

behavior of our GIRG generator, broken down into the di�erent tasks performed by the

algorithm. In Section 8.5.2 we compare our RHG generator with existing generators. In

Section 8.5.3 we experimentally investigate the di�erence between RHGs and their GIRG
counterpart. Whenever a data point represents the mean over multiple iterations, our

plots include error bars that indicate the standard deviation. Besides the implementation

itself, all benchmarks and analysis scripts are also accessible in our source repository.

8.5.1 Scaling of the GIRG Generator

We investigate the scaling of the generator, broken down into �ve steps.

Weights: Generate powerlaw weights.

Positions: Generate points on Td.

Binary: Estimate the constant controlling the average degree.

Pre: Preprocess the geometric data structure (Section 8.3.4).

Edges: Sample edges between all vertex pairs as described in Algorithm 11.

Figure 8.4 shows the sequential runtime over the number of nodes n (top left), number of

edges m (top right), temperature T (bottom right), and dimension d (bottom right). The

performance is measured in nanoseconds per edge. Each data point represents the mean

over 10 iterations. To make the measurements independent of the graph representation,

we do not save the edges, but accumulate a checksum instead. Note that the top right

plot increases the average degree, resulting in a decreased time per edge.

The empirical runtimes match the theoretical bounds: it is linear in n and m, grows

exponentially in the dimension d, and is una�ected by the temperature T . The overall

time is dominated by the edge sampling. Generating the weights includes expensive

231

Geometric Inhomogeneous and Hyperbolic Random Graphs

Figure 8.4: Sequential

runtime for the steps of

the GIRG sampling algo-

rithm averaged over 10 it-

erations. Each plot varies

a di�erent model param-

eter deviating from a

base configuration d =

1, n = 215
, T = 0, β =

2.5, and d̄ = 10. The

base configuration is in-

dicated by a dashed ver-

tical line.

103 104 105 106

Number of Nodes n

10 1

100

101

102

W
al

lti
m

e
[n

s]
 p

er
 E

dg
e

Weights
Positions
Binary
Pre
Edges
Total

105 106 107 108

Number of Edges m

10 2

10 1

100

101

102

W
al

lti
m

e
[n

s]
 p

er
 E

dg
e

2.0 2.5 3.0 3.5 4.0 4.5 5.0
1/T

101

102

W
al

lti
m

e
[n

s]
 p

er
 E

dg
e

1 2 3 4 5
Dimension d

100

101

102

103

104

W
al

lti
m

e
[n

s]
 p

er
 E

dg
e

exponential functions, making it the slowest step after edge sampling. Generating the

positions is signi�cantly faster even for higher dimensions. For the parameter estimation

using binary search, one can see that the runtime never exceeds the time to generate the

weights. For non-zero temperature T the performance of the binary search is similar

to the generation of the weights, as it also requires exponential functions. The lower

runtimes per edge for the increasing number of edges (top right) show that the runtime

is dominated by the number of nodes n. Only for very high average degrees, the cost

per edge outgrows the cost per vertex.

8.5.2 RHG Runtime Comparison

We evaluate the runtime performance of HyperGirgs compared to the generators in

Table 8.1, excluding the generators with high asymptotic runtime as well as Rhg and

sRhg. Both are designed for distributed machines. Executed on a single compute

node, the performance of the faster sRhg is comparable to HyperGen [138]. To avoid

systematic biases between di�erent graph representations, the implementations are

modi�ed
2

not to store the resulting graph. Instead, only count the edges produced and

we ensure that the computation of incident nodes is not optimized away by the compiler.

We used di�erent machines for our sequential and parallel experiments. The former

are done on an Intel Core i7-8700K with 16 GB RAM, the latter on an Intel Xeon CPU
E5-2630 v3 with 8 cores (16 threads) and 64 GB RAM.

Our generator HyperGirgs is consistently faster than the competitors, independent

of the parameter choices; see �gures 8.5a and 8.5b. Only for unrealistic high average

degrees of 1000, HyperGen slightly outperforms HyperGirgs.

Moreover, HyperGirgs beats Girgs, the only other e�cient generator supporting

non-zero temperature, by an order of magnitude. For higher temperatures, we compare

2

The modi�cations are publicly available and referenced in our GitHub repository.

232

Experimental Evaluation

106 107 108 109

Number of Edges m

101

102

103

W
a
llt

im
e
 [

n
s]

 p
e
r

E
d

g
e

GIRGs

HyperGIRGs

HyperGen

NkBand

NkBandOpt

(a) d̄ = 100, β = 2.2, T = 0, sequential

105 106 107 108

Number of Edges m

102

103

W
al

lti
m

e
[n

s]
 p

er
 E

dg
e

(b) d̄ = 10, β = 3, T = 0, sequential

105 106 107 108

Number of Edges m

103

104

105

W
a
llt

im
e
 [

n
s]

 p
e
r

E
d

g
e

GIRGs

HyperGIRGs

NkQuad

(c) d̄ = 10, β = 2.2, T = 0.5, sequential

105 106 107 108

Number of Edges m

102

103

W
al

lti
m

e
[n

s]
 p

er
 E

dg
e

(d) d̄ = 10, β = 3, T = 0, parallel (16 threads)

Figure 8.5: Comparison

of RHG generators aver-

aged over 5 iterations.

(a) and (b): Threshold

variant for di�erent av-

erage degrees d̄ and pow-

erlaw exponents β.

(c): Binomial variant,

temperature T = 0.5.

(d): The same configura-

tion as (b) but utilizing

multiple cores.

our algorithm with the two other non-quadratic generators Nk�ad (included in Net-
worKit) and Girgs; see Figure 8.5c. We note that Girgs uses a di�erent estimation for

R, which leads to an insigni�cant left-shift of the corresponding curve. In Figure 8.5c,

one can clearly see the worse asymptotic running time of Nk�ad. Compared to Girgs,

HyperGirgs is consistently four times faster.

Figure 8.5d shows measurements for parallel experiments using 16 threads. The

parameters coincide with Figure 8.5b. Girgs does not support parallelization and is

outperformed even more. For su�ciently large graphs, the fastest generator in this

multi-core setting is HyperGen, which is speci�cally tailored towards parallel execution.

Nonetheless, HyperGirgs shows comparable performance and overtakes the other two

generators NkBand and NkBandOpt. We note that even on parallel machines, the

sequential performance is of high importance: one often needs a large collection of

graphs rather than a single huge instance. In this case, it is more e�cient to run multiple

instances of a sequential generator in parallel.

8.5.3 Di�erence Between RHGs and GIRGs

Recall from Section 8.2.3 that a RHG with average degree dHRG has a corresponding

GIRG sub- and supergraphs with average degrees dGIRG and DGIRG, respectively.

We experimentally determine, for given RHGs, the values for dGIRG by decreasing

the average degree of the corresponding GIRGs until it is a subgraph of the RHG.

Analogously, we determine the value for DGIRG. We focus on the threshold variant of

the models, as this makes the coupling between RHGs and GIRGs much simpler (the

graph is uniquely determined by the coordinates). Figure 8.6a shows dGIRG and DGIRG,

compared to dHRG for growing n. One can see that dGIRG andDGIRG are actually quite

233

Geometric Inhomogeneous and Hyperbolic Random Graphs

104 105 106

Number of Nodes n

80

100

120

140

160

De
gr

ee Smallest GIRG Supergraph
HRG Reference Graph
Largest GIRG Subgraph

(a) n ∈ [212, 221], d̄ = 100, β = 2.5, T = 0

100 110 120 130 140 150
Degree

100

101

102

103

104

105

106

107

Nu
m

be
r o

f E
dg

es
 m

HRG\GIRG
HRG Reference Graph
GIRG\HRG

(b) n = 105
, d̄ = 100, β = 2.5, T = 0

Figure 8.6: Relation between the RHG and the GIRG model. (a) The values for dHRG, dGIRG,

DGIRG averaged over 50 iterations. (b) The number of missing (RHG \ GIRG) and additional

(GIRG \ RHG) edges depending on the expected degree of the corresponding GIRG. It can be

interpreted as a cross-section of one iteration in (a).

far apart. They in particular do not converge to the same value for growing n. However,

at least dGIRG seems to approach dHRG. This indicates that every RHG corresponds to

a GIRG subgraph that is missing only a sublinear fraction of edges. On the other hand,

the average degree of the GIRG has to be increased by a lot to actually contain all edges

also contained in the RHG.

Figure 8.6b gives a more detailed view for a single RHG. Depending on the average

degree of the GIRG, it shows how many edges the GIRG lacks and how many edges

the GIRG has in addition to the RHG. For degree 100, the GIRG contains about 38 k

additional and lacks about 42 k edges. These are rather small numbers compared to the

50 M edges of the graphs.

Appendix 8.A Omi�ed Proof of Lemma 8.1

Lemma 8.2. (Restated Lemma 8.1) After linear preprocessing, for all cellsA and weight

buckets i with level(A) ≤ I(i), vertices in the set V A
i can be enumerated in O(|V A

i |).

J

Proof. As mentioned above, we have to sort the vertices Vi of each weight bucket i

according to the index (Morton code) of the containing cell. Clearly, the d-dimensional

coordinates of the cell containing a given vertex is obtained in constant time by rounding.

From this one can obtain the index in constant time (also see Section 8.4.2). This can

be done using, e.g., bucket sort with respect to this index to sort the vertices. In the

following, we refer to this sorted array with Vi.

Besides these sorted arrays Vi of vertices, one for each weight bucket i, we store for

each cell C at level I(i) the number of vertices preceding the vertices in cell C . Note

that this is simply the pre�x sum of the number of vertices in all cells that come before

cell C . Denote this pre�x sum of cell C with PC .

Now let i be a weight bucket and let A be a cell identifying the requested set of

vertices V A
i (with level(A) ≤ I(i)). Let C1, . . . , Cj be the descendants of cell A at level

I(i), appearing in this order according to the Morton code.

234

Implementation Details

Recall that the vertices in C1, . . . , Cj appear consecutive in the sorted array Vi. Thus,

V A
i is given by the range [PC1 , . . . , PCj+1) in Vi.

In terms of running time, each weight bucket requires O(|Vi| + 2d·I(i)) time for

bucket sort and O(2d·I(i)) time for the pre�x sums, where 2d·I(i) is the number of cells

in the insertion level I(i). Over all weight buckets, the term |Vi| sums up to |V | and

Bringmann et al. [70] show that the same holds for 2d·I(i). �

Appendix 8.B Implementation Details

8.B.1 Avoiding Double Counting Buckets, Cells, and Vertices

The algorithm as described in Section 8.3 iterates over pairs of buckets, cells, and

vertices. All three entities need to be handled correctly to avoid visiting vertex or cell

pairs multiple times. Consider the recursive Algorithm 11. In lines 8 and 9, it is su�cient

to consider only cell pairs with A ≤ B, because the pairs (A,B) and (B,A) can be

handled simultaneously. Meaning, if a cell pair is processed by the bucket pair (i, j),

then it needs to be processed by the bucket pair (j, i) (cf. line 1). However, the bucket

pair (i, i) should occur once per cell pair. Alternatively, one can separate the cell pairs

(A,B) and (B,A), but instead consider only bucket pairs (i, j) with i ≤ j. In any case,

bucket pairs (i, i) require special treatment for cell pairs of the form (A,A). Then, only

edges between vertices u < v should be checked (lines 3,5-6). If self-loops are desired,

the constraint can be relaxed to u ≤ v.

8.B.2 Estimating the Average Degree Parameter

This section covers the estimation for the binomial version of the model T > 0. The

calculations for the threshold case T = 0 are analogous (and simpler).

Typically, a random graph generator accepts the expected average degree or the

number of edges as an input parameter. In the following we describe how binary search

can be used to estimate the constant c in the edge probability puv (Eq. (8.1)) for a desired

expected average degree. The constant is found based on the actual weights instead of

their probability distribution, because the resulting average degree has lower variance

and the generator should be able to accept user-de�ned weights as well. Note that we

implement GIRGs without explicitly modeling the constant c, because scaling all weights

by cT emulates the same behavior.

Let Xuv be a random indicator variable for the existence of edge uv.

E[Xuv] = E

min

1, c

(
wuwv/W

||xu − xv||d

)1/T



= E

min

1,

cTd (wuwvW

) 1
d

||xu − xv||

d/T



235

Geometric Inhomogeneous and Hyperbolic Random Graphs

Let k = cT/d (wuwv/W)1/d
. To remove the minimum, we distinguish between short

edges that are guaranteed to exist and long edges that exist with probability below 1.

E[Xuv] = P[||xu − xv|| ≤ k]

+ P[k < ||xu − xv||] · E

c(wuwv/W

||xu − xv||d

)1/T
∣∣∣∣∣∣ k < ||xu − xv||



If k ≥ 0.5 then the weights guarantee the existence of the edge uv independent

of position. For simplicity we assume that k ≤ 0.5 for all vertex pairs. In the end

we subtract an error to account for the ignored pairs. For any constant t ≤ 0.5,

P[||xu − xv|| ≤ t] = (2t)d, which is the fraction of the ground space which is covered

by a hypercube with radius t. The probability for a short edge becomes

P[||xu − xv|| ≤ k] = (2k)d = 2dcT
(wuwv

W

)
. (8.2)

The probability density function of ||xu − xv|| between 0 and 0.5 is the derivative of

(2x)d, namely d2dxd−1
. We calculate the probability for a long edge based on two

speci�c weights.

P[k < ||xu − xv||] · E

c ·(wuwv/W

||xu − xv||d

)1/T

| k < ||xu − xv||


= P[k < ||xu − xv||] ·

∫ 0.5
k c ·

(
wuwv/W

xd

)1/T
· d2dxd−1dx

P[k < ||xu − xv||]

= c
(wuwv

W

)1/T
d2d

∫ 0.5

k
xd−1−d/Tdx

= c
(wuwv

W

)1/T
d2d

[
1

d(1− 1/T)
· xd−d/T

]0.5

k

= c
(wuwv

W

)1/T d2d

d(1− 1/T)

((
1

2

)d−d/T
− kd(1−1/T)

)

= c
(wuwv

W

)1/T 2d

1− 1/T

(
2d/T

2d
−
(
c
T
d

(wuwv
W

)1/d
)d(1−1/T)

)

= c
(wuwv

W

)1/T 2d/T

1− 1/T
− c

(wuwv
W

)1/T 2d

1− 1/T
cT−1

(wuwv
W

)1−1/T

= c
(wuwv

W

)1/T 2d/T

1− 1/T
− cT

(wuwv
W

) 2d

1− 1/T

(8.3)

236

Implementation Details

We add short and long edges (Eq. (8.2) and Eq. (8.3)).

E[Xuv] = 2dcT
(wuwv

W

)
+ c

(wuwv
W

)1/T 2d/T

1− 1/T
− cT

(wuwv
W

) 2d

1− 1/T

= 2dcT
(wuwv

W

)(
1 +

1

1/T − 1

)
− c

(wuwv
W

)1/T 2d/T

1/T − 1

= cT
2d

1− T
(wuwv

W

)
− c 2d/T

1/T − 1

(wuwv
W

)1/T

(8.4)

The expected average degree E
[
d̄
]

is computed as follows.

E
[
d̄
]
· n = cT

2d

1− T
∑
u∈V

∑
v 6=u

(wuwv
W

)
− c 2d/T

1/T − 1

∑
u∈V

∑
v 6=u

(wuwv
W

)1/T
(8.5)

We compute the sums for all vertex pairs by subtracting an error for the re�exive edges.

∑
u∈V

∑
v 6=u

(wuwv
W

)
=
∑
u∈V

∑
v∈V

wuwv
W

−
∑
v∈V

w2
v

W
= W −

∑
v∈V

w2
v

W

∑
u∈V

∑
v 6=u

(wuwv
W

)1/T
=
∑
u∈V

(
w

1/T
u

W 1/T

∑
v∈V

w1/T
v

)
−
∑
v∈V

(
w2
v

W

)1/T

We earlier assumed k ≤ 0.5 and still have to subtract an error for the ignored vertex

pairs. Let ER be the set of vertex pairs (u, v) with 0.5 < k = c
T
d

(
wuwv
W

)1/d
and let

R be the set of vertices with at least one edge in ER. For each vertex pair in ER, the

probability for a short edge is 1 instead of what we got in Eq. (8.2) and the probability

for a long edge is 0 instead of Eq. (8.3). Therefore, the error due to an edge (u, v) ∈ ER
can be obtained by subtracting 1 from Eq. (8.4).

Now we are ready to �nd the constant c for a desired average degree using binary

search over the monotone function f(c) = E
[
d̄
]
. The function f is given by Eq. (8.5)

substituting the sums and subtracting the error for vertex pairs with k > 0.5.

f(c) = cT · 2d

n(1− T)

(
W −

∑
v∈V

w2
v

W

)

− c · 2d/T

n(1/T − 1)

(∑
u∈V

(
w

1/T
u

W 1/T

∑
v∈V

w1/T
v

)
−
∑
v∈V

(
w2
v

W

)1/T
)

− 1

n

∑
(u,v)∈ER

(
cT

2d

1− T
(wuwv

W

)
− c 2d/T

1/T − 1

(wuwv
W

)1/T
− 1

)

The binary search takes O(n) time to compute various sums and O(1 + |ER|) per

evaluation of f(c). We partially sort the weights for all vertices inR to iterate e�ciently

over ER. Since the upper and lower bound for the binary search are found with an

exponential search, the size of R might grow until the upper bound is found. We lazily

extend a sorted pre�x of the weight array while raising the upper bound.

237

Geometric Inhomogeneous and Hyperbolic Random Graphs

Figure 8.7: Performance

of Morton code gener-

ation in dimensions 2

to 5 on an Intel proces-

sor. Input coordinates

are limited to b32/dc
bits each, because the re-

sult is saved as a 32 bit

integer. 5 10 15
Bits per Coordinate

100

101

Ru
nt

im
e

[n
s]

d = 2
FOR
FOR OPT
MASKS
BMI2

2 4 6 8 10
Bits per Coordinate

d = 3

2 4 6 8
Bits per Coordinate

d = 4

2 4 6
Bits per Coordinate

d = 5

The time to evaluate f(c) can be quadratically reduced from O(|ER|) to O(|R|) by

exploiting that for any two vertices u and v with wu ≤ wv , a pair (u, x) ∈ ER implies

(v, x) ∈ ER. Thus, if we iterate the vertices in R by increasing weight, we can reuse

the computations for the last vertex.

8.B.3 E�iciently Encoding and Decoding Morton Codes

Recall from Section 8.3.4 that we linearize the d-dimensional grid of cells using Morton

code. As vertex positions are given as d-dimensional coordinates, we have to convert

the coordinates to Morton codes (i.e., the index in the linearization) and vice versa. A

Morton code is obtained by bitwise interleaving two or more coordinates. E.g., the 2-

dimensional Morton code of the four-bit coordinates a = a3a2a1a0 and b = b3b2b1b0 is

a3b3a2b2a1b1a0b0. Implementation-wise, there are the following encoding approaches.

FOR, FOR OPT Set each bit of the result with shifts and bitwise operations (FOR).

Since we know the level of a cell, we know the number of relevant bits in each

coordinate. Considering only relevant bits improves performance signi�cantly

(FOR OPT).

MASKS For details on this method, we refer to the open source library libmorton [31]

and the author’s related blog posts
3
. The approach is hard to generalize to multiple

dimensions.

LUT A lookup table computed at compile time
4

can be used. The input is divided into

chunks; a precomputed result for each chunk is obtained and shifted into place.

BMI2 The Parallel Bits Deposit/Extract assembler instructions from Intels Bit-Manipulation-

Instruction-Set 2 [184] provide a solution with one assembler instruction per input

coordinate. BMI2 is available on Intel CPUs since 2013 and supported by recent

AMD CPUs (Zen).

All approaches except LUT support a complementary decoding operation. We

measured the approaches, excluding LUT, on an Intel i7-8550U processor (see Figure 8.7)

3

h�ps://www.forceflow.be

4

h�ps://github.com/kevinhartman/morton-nd

238

https://www.forceflow.be
https://github.com/kevinhartman/morton-nd

Implementation Details

5 10 15
Bits per Coordinate

101

102

Ru
nt

im
e

[n
s]

d = 2
FOR
FOR OPT
MASKS
BMI2

2 4 6 8 10
Bits per Coordinate

d = 3

2 4 6 8
Bits per Coordinate

d = 4

2 4 6
Bits per Coordinate

d = 5 Figure 8.8: Performance

of Morton code genera-

tion in dimensions 2 to

5 on an AMD proces-

sor. Input coordinates

are limited to b32/dc
bits each, because the re-

sult is saved as a 32 bit

integer.

and an AMD Ryzen7-2700X (see Figure 8.8). On Intel, BMI2 is consistently the fastest and

at least an order of magnitude faster than FOR. Surprisingly, FOR OPT is not monotone

in the number of bits per coordinate for dimensions below 5. Inspection of the generated

assembly
5

reveals that the compiler employed SIMD instructions. On AMD, BMI2 is the

slowest. Our GIRG generator uses BMI2 if enabled and the loop with early termination

(FOR OPT) otherwise.

8.B.4 Avoiding Computationally Expensive Math for RHGs

The RHG model requires many computationally expensive mathematical operations.

We signi�cantly improve the performance of the generator by avoiding or reusing the

results of those operations. The �rst optimization applies to the threshold variant and

the second optimization to the binomial version.

For the threshold model, an edge exists if the distance d is smaller than R. Con-

sidering how the hyperbolic the distance is de�ned (Section 8.2.2), reformulating it

to cosh(d) < cosh(R) avoids the expensive acosh, while cosh(R) remains constant

during execution. Similar to recent Threshold RHG generators, we compute intermediate

values per vertex such that cosh(d) can be computed using only multiplication and

addition [138, 271].

For the binomial model, evaluating the connection probability pT (d) from the

optimized cosh(d) is a performance bottleneck and made up half of the total runtime.

Evaluating pT (d) includes an expensive exponential function and cannot avoid the

acosh like in the threshold model. We introduce a distance �lter (see Figure 8.9a) to

reduce the frequency of the operation resulting in a speedup of approximately factor

two. The process before was: compute the probability pT (d), sample a uniform random

value u ∈ [0, 1], and emit an edge if u < pT (d). The idea of our �lter is that we invert

the probability function and compute p−1
T (d) in advance for multiple equidistant values

between 0 and 1. Each entry x 7→ p−1
T (x) in the �lter represents the distance — or

rather proximity — needed for an edge probability of x. During edge sampling, we

generate u ∈ [0, 1] before evaluating pT . The generated u falls in an interval between

two precomputed entries l ≤ u < h in our �lter. We know that pT is monotonically

decreasing so p−1
T (l) ≥ p−1

T (u) > p−1
T (h), meaning the higher the distance the lower

5

g++8 -std=c++14 -O3 -march=skylake

239

Geometric Inhomogeneous and Hyperbolic Random Graphs

Figure 8.9: Distance Fil-

ter (le�) and tasks for

parallelization in the 1-

dimensional case (right).

d

pT (d)

1.0

0.5

0.0

.75

.25

h

`

p−1
T (`)p−1

T (h)

u

edge no edge

compute pT (u)

(a) Sketch of the distance filter optimization to

avoid computationally expensive mathematical

operations, providing a x2 speedup.

0 2πππ/2 3π/2

start of recursion
level 0

level 1

0

1 2

3 4 5 6

7 8 9 10 11 12 13 14

(b) Visited cell pairs up to level 3. The arrows

represent the 8 neighboring cell pairs in level 2

and 12 distant cell pairs in level 3.

the probability and vice versa. Instead of emitting an edge if and only if u < pT (d),

we emit an edge if p−1
T (h) ≥ d and skip the edge if p−1

T (l) ≤ d. Only if pT (d) is

in the interval between l and h, the expensive pT (d) has to be evaluated. Since u is

uniformly distributed, the probability to hit the interval where pT (d) has to be evaluated

is 1/(k − 1), where k is the number of entries in the �lter. Our generator uses k = 100.

Additionally, we avoid the acosh by directly storing cosh[p−1
T (x)] in the �lter.

8.B.5 Parallelization

This section describes how the sampling algorithm can be parallelized focusing on the

preprocessing building the geometric data structure (Section 8.3.4) and on the recursion

enumerating pairs of grid cells for sampling the edges (Section 8.3.3). The presented

approach applies to the GIRG and RHG implementations.

The preprocessing for a weight bucket i computes the containing cell on the insertion

level for all vertices in Vi. We optimized the process by processing all weight buckets

together. The containing cell for all vertices in V is computed in parallel. We sort

vertices by weight bucket �rst and by cell second. Theoretically, bucket sort results in

linear runtime. For the implementation, however, we use a parallel radix sort instead.

The vertices Vi of weight bucket i form a contiguous subsequence in V . Moreover, Vi
is sorted by cell, allowing parallel computation of the pre�x sums for all cells in the

insertion level of the weight bucket.

The recursion is executed in parallel and experiments suggest a near optimal scaling

when the number of threads is a power of two. Each thread has a local random generator.

We use static scheduling to produce deterministic results even for the binomial model.

However, the ordering of edges in the edge list varies, because each thread locally

bu�ers generated edges before writing them while locking a mutex. We distinguish

two stages of execution. The �rst stage is to “saw o�” the recursion tree at a certain

level and collect the omitted recursive calls as tasks to execute in stage two. A task is

represented by a cell pair from which to pick up the execution later. One thread collects

240

Implementation Details

the tasks by traversing the recursion tree without sampling any edges (omitting lines

1-6 in Algorithm 11). Meanwhile, the other threads process the pairs that the main

thread passed through. When all tasks are collected stage two begins. In stage two, the

threads pick up the “loose ends” of the cut recursion tree. There are three di�erent types

of tasks with varying load. For 1-dimensional geometry, level ` > 2, and assuming a

number of threads that is constant in n, the types of tasks are the following. There are

2` heavy tasks given by a neighboring cell pair of the form (A,A). Their number of

recursive calls grows exponentially with each subsequent level implying a load of O(n).

There are 2` light tasks given by a neighboring cell pair of the form (A,A+ 1). They

produce four recursive calls per subsequent level implying a load of O(log n). Finally,

there are 3 · 2`−1 constant tasks given by a distant cell pair. They invoke no recursive

calls at all. The number of distant cell pairs in a level is explained by Figure 8.9b. For

each cell B in level `− 1 with children A and A+ 1, the distant cell pairs in level ` are

(A,A+ 2), (A,A+ 3), (A+ 1, A+ 3).

Since heavy tasks dominate the runtime during stage two, we distribute heavy tasks

evenly among all threads. This is why the approach scales best when the number of

threads is a power of two. The level where we saw o� the recursion tree is a tuning

parameter of the generator. We choose it, such that there are two heavy tasks per thread

to reduce load imbalance if one thread stalls. To apply the same scheduling approach

to higher dimensions it su�ces to know that the load of tasks remains similar and the

number of heavy tasks is 2`d.

241

9Summary

Cross reference network of present thesis.

Nodes correspond to sections and chapters.

The present thesis considers algorithmic aspects of generating massive

random graphs. We develop e�cient sampling algorithms for the following

commonly used stochastic processes and network models.

• Barabási-Albert Graphs, Preferential Attachment R Chapter 3

• LFR Graphs, Edge Switching, Con�guration Model R Chapter 4

• Curveball, Global Curveball R Chapter 5

• Threshold Random Hyperbolic Graphs R Chapters 6 and 7

• Binomial R Chapter 8Hyperbolic and Geometric Inhomogenous Random Graphs

In this chapter, we summarize our results obtained for various machine

models ranging from sequential schemes over I/O-e�cient algorithms to

parallel solutions, including distributed computing and di�erent types of

shared-memory parallelism.

Summary

9.1 Preferential A�achment

Chapter 3 is based on [239] and introduces the �rst two I/O-e�cient sampling ap-

proaches for random graph models based on preferential attachment. We initially focus

on Barabási-Albert (BA) graphs to demonstrate the techniques and subsequently discuss

further applications:

R Section 3.6

additional features such as seed graphs exceeding main memory, vertices with inho-

mogenous initial degrees, the inclusion of uniform node sampling, directed graphs, and

edges between two randomly chosen vertices.

The main algorithmic challenge of BA lies in its iterative graph growing process

that adds one node per time step. Each new node is directly connected to the existing

graph by randomly drawing neighbors weighted by their current degrees. Batagelj

and Brandes observe for their internal memory generator BB-BA that the underlying

dynamic weighted sampling problem can be reduced to uniformly selecting entries from

the edge list produced so far.

As BB-BA requires unstructured I/Os, it cannot e�ciently produce graphs that do

not �t into main memory. We therefore propose the two algorithms MP-BA and TFP-BA:

• TFP-BATFP-BA:

R Section 3.2

is a simple and easily generalizable sequential generator inspired by

BB-BA. Rather than reading from random positions in the edge list, TFP-BA �rst

precomputes all necessary read operations and sorts them by the memory address

they read from. As the algorithm produces the edge list monotonously moving

from beginning to end, it scans through the sorted read request and forwards the

still cached values to the target positions using an I/O-e�cient priority queue.

We show that this approach causes O(scan(m0) + sort(m)) I/Os, where m0 is

the number of edges in the seed graph and m is the number of edges produced.

TFP-BA outperforms a fast implementation of BB-BA by several orders of magni-

tude once the graph size exceeds the available RAM by only 2 %.

• MP-BAMP-BA:

R Section 3.3

is a highly engineered parallel generator and o�oads a number of subtasks

onto a general purpose graphics processor. The algorithm implements dynamic

weighted sampling using a binary tree T partially stored in external memory.

Each node u of the generated graph corresponds to a leaf in T labeled with the

degree of u; any inner node stores the total weight of all leaves contained in its

left subtree.

In order to select a neighbor, MP-BA �rst has to sample a leaf according to the

current degree distribution and then increment the leaf’s weight to account for the

newly gained edge. The key insight is that we can do both in a single top-down

traversal from the root to the sampled leaf. This allows us to combine the queries

for sampling and updating into a single operation and, in turn, to coalesce queries

into batches. We show that MP-BA executes O(sort(n0 +m)) I/Os, where n0 is

the number of nodes in the seed graph and m is the number of edges produced.

We use two forms of parallelism: �rstly, we cut T at a certain depth to process

the subtrees rooted there pleasingly parallel. In order to handle the high volume

244

Simple Graphs from Prescribed Degree Sequence

of requests near T ’s root, we additionally design a PRam algorithm to process

multiple requests to the same tree node in parallel.

MP-BA’s implementation executes the latter part on a GPU for maximal through-

put. In total, we �nd that MP-BA is 17.6 times faster than BB-BA for instances

�tting in main memory and scales well into the EM regime. Compared to a previ-

ous solution on a distributed cluster with 48 dual-socket machines, MP-BA yields

competitive results and poses a viable alternative using only a single machine.

9.2 Simple Graphs from Prescribed Degree Sequence

In Chapter 4, we present EM-LFR, a complex pipeline consisting of four novel I/O-

e�cient algorithms to sample large instances from the LFR graph model. Our scalable

implementation of EM-LFR can even supply benchmark data for distributed community

detection schemes [170].

In comprehensive survey:

R Section 2.6

this section, we focus on LFR’s most challenging component, namely the problem

of uniformly sampling a simple graph from a prescribed degree sequence. It is a common

task in network analysis; e.g., to obtain null models (see Section 1.2.7.1), to perturb

existing graphs, or as a building block in graph generators.

The generators considered in the following are Markov-Chain-Monte-Carlo (MCMC)

approaches. Even if such solutions are frequently used, we are unaware of general and

practically applicable bounds on their mixing times. Thus, we do not claim rigorous

bounds on the total work to obtain a uniform sample, and rather derive the complexity

of each approach as a function of Markov chain steps carried out.

Even the ranking of the perturbation schemes remains a mostly open problem. To

the best of our knowledge, there exist only few analytical results pertaining to the

relative performance of the MCMC schemes (e.g., [84] comparing CB’s mixing time to

ES). Phrased as asymptotic inclusions with signi�cant gaps, these �ndings provide little

practical guidance. We, therefore, approach the problem empirically (cf. [282]).

1. EM-HH with EM-ES: Both algorithms form an I/O-e�cient variant of the Fixed-
Degree-Sequence-Model (FDSM). It �rst deterministically generates a biased simple

graph matching a prescribed degree sequence. Then it uses the Edge Switching (ES)

MCMC approach to obtain a uniform sample.

For EM-HH:

R Section 4.4

the �rst step, we design an I/O-e�cient algorithm inspired by a generator due

to Havel and Hakimi [173, 165]. The main algorithmic contribution lies in the

e�cient usage of a compressed representation of the supplied degree sequence. It

groups together all nodes with the same degree and allows e�cient queries and

updates by EM-HH.

In our analysis, we only account for internal I/Os triggered by EM-HH. This is

motivated by the fact that our EM-LFR pipeline moves the algorithm’s input and

output directly between stages without an additional round trip to disk.
1

We show

1

If the output needs to be streamed to disk, the single scan required dominates the total I/O complexity.

245

Summary

that our algorithm is I/O-optimal and observe further that EM-HH is I/O-free for

many practical settings. More formally, we �nd that with high probability EM-HH

does not need any I/O to generate graphs with O
(
M2γ

)
edges if an ordered

degree sequence from a powerlaw distribution with exponent γ is supplied.

The Edge Switching MCMCEM-ES:

R Section 4.5

gives the means to perturb the graph: in each step, the

algorithm selects two edges uniformly at random and exchanges their endpoints

if the resulting graph remains simple (i.e., if the new edges are neither self-loops

nor already contained in the graph). Our I/O-e�cient variant EM-ES processes

Θ(m) switches in a single batch. In contrast to Θ(m) unstructured I/Os of the

original formulation, EM-ES causes O(scan(m)) I/Os for a structured scan of the

edge list. Within a batch, several types of dependencies between switches can

occur and have to be handled. EM-ES achieves this using Time Forward Processing
and multiple sort- and scan-passes of edges and switches. We show that EM-ES

triggers O(sort(n+m)) I/Os in total to execute Θ(m) switches.

2. EM-CM/ES:EM-CM/ES:

R Section 4.6

The previous combination of EM-HH followed by EM-ES starts with

a highly biased simple graph. EM-CM/ES takes another route by starting with

a random but non-simple graph and switches edges until we obtain a simple

random graph.

To this end, we implement an I/O-e�cient generator for the Con�guration Model
and modify EM-ES to accept non-simple inputs without increasing its I/O com-

plexity. The modi�ed algorithm accepts all switches that neither increase the

multiplicity of a given edge nor introduce self-loops. Non-simple edges are also

switched more frequently than legal edges to accelerate the repair phase.

Observe, however,empirical performance:

R Section 4.10.7

that it does not su�ce to rewire non-simple edges using the

presented variant of ES as it produces a biased sample [18, 24]. Instead, additional

ES steps are necessary. Even then, our empirical comparison suggests that EM-

CM/ES can converge faster to a uniform sample than the previous method.

3. EM-CB: Curveball (CB) [321] implements an MCMC process similar to ES with

the following modi�cation: instead of selecting random edges, CB selects two

random nodes u 6= v, and trades their neighborhoods as follows. First, CB freezes

all edges that either connect u and v themselves or link to neighbors which u and

v have in common. Then, the remaining neighbors are randomly shu�ed while

maintaining the degrees of u and v. A single CB trade can therefore in�ict “more

change” to a graph than a single edge switch; depending on the processed graph,

a state in CB’s Markov chain may have up to 2Θ(n)
neighbors while the degrees in

ES’s chain are bounded by O
(
n4
)

[81]. Empirical data suggests that fewer trades

are necessary to mix a graph (though each trade may require more work).

CB exposes more data locality than ES since all information required to carry out

a trade is contained in the two neighborhoods. This is in contrast to ES, which

requires additional unstructured reads to prevent a switch from introducing multi-

edges. Note, however, that an undirected edge is classically stored twice — once for

246

Geometrically Embedded Random Graphs

each endpoint. In this scenario, frequent unstructured updates are necessary and

negate the previously mentioned locality bene�ts. Our EM-CB:

R Section 5.4.1

I/O-e�cient EM-CB thus

relies on a dynamic data structure and assigns each edge only to the endpoint that

is traded next. EM-CB uses Time Forward Processing to ensure that the complete

neighborhood of a node is available when needed.

EM-CB works in batches. At the beginning of each batch, it samples
2

the node

pairs to be traded within the batch and organizes them in dedicated indices. These

auxiliary data structures are used to address the TFP messages and to determine

which endpoint of an edge will be traded �rst. We show that EM-CB issues

O(r[sort(n) + sort(m)]) I/Os to carry out r global trades (see below).

Since IM-CB:

R Section 5.4.2

the I/O-e�cient auxiliary data structures cause overheads, we investigate

another trade-o� between I/Os and computation. To this end, we propose IM-CB,

a variant of EM-CB. It is intended for small and medium-sized graphs where a

certain degree of unstructured accesses to main memory is acceptable.

4. EM-GCB and EM-PGCB: We Undirected Global

Curveball:

R Section 5.3.3

generalize Global Curveball (G-CB) to undirected

graphs. An undirected global trade is a sequence of bn/2c single trades such that

the neighborhood of each node is traded at most once. We show that the process

converges to a uniform distribution and give empirical evidence of its superior

performance compared to CB.

G-CB EM-GCB:

R Section 5.4.3

allows us to eliminate the support data structures of EM-CB and IM-CB.

Since each node participates once
3

in a global trade, we interpret a global trade

as a random permutation of nodes where we trade pairwise adjacent nodes. Our

I/O-e�cient algorithm EM-GCB for undirected G-CB maintains this permutation

implicitly using a collision-free and invertible hash function.

EM-PGCB EM-PGCB:

R Section 5.4.4

is a parallel extension of EM-GCB. It subdivides each batch into so-

called microchunks and executes the trades contained in parallel. The size of each

microchunk is chosen such that almost all trades contained are independent; a

variant of work stealing is used to resolve rare dependencies. We give experimental

evidence that, in some cases, EM-PGCB can achieve the same quality as EM-ES

nearly one order of magnitude faster.

9.3 Geometrically Embedded Random Graphs

Random Hyperbolic Graphs (RHGs) are a popular network model which naturally exhibits

many features commonly observed in complex networks. RHG assigns each node

a position on a two-dimensional hyperbolic disk of radius R. These positions are

conveniently expressed in polar coordinates meaning that each point is located in terms

of its distance r (radius) to the disk’s center and an angular coordinate θ.

2

The trade sequence may also be provided as input. In contrast to G-CB, arbitrary pairs are supported.

3

For simplicity, we assume here that n is even; see Section 5.4.3 for the general case.

247

Summary

InThreshold RHG the so-called Threshold RHG [159] variant, we connect all pairs of points whose

hyperbolic distance is smaller than R. Denote the points’ coordinates with (ri, θi) and

(rj , θj) respectively, then their hyperbolic distance d(pi, pj) is de�ned as

cosh(d(pi, pj)) = cosh(ri) cosh(rj)− sinh(ri) sinh(rj) cos(θi − θj). (9.1)

Thus, the hyperbolic distance is a function of the relative and absolute positions of

both points; the closer a point is to the disk’s center, the more neighbors it is expected

to have. We obtain a powerlaw degree distribution with a controllable exponent by

choosing an appropriate radial density function when randomly placing points.

Binomial RHGBinomial RHG extends Threshold RHG by adding a positive temperature parameter T

that a�ectslocal cohesion:

R Section 1.2.5

the local cohesion. In the binomial variant, each pair of nodes pi 6= pj is

independently connected by an edge with probability pT (d(pi, pj)) de�ned as follows:

pT (d) =

[
exp

(
d−R

2T

)
+ 1

]−1

(9.2)

Binomial RHG contains Threshold RHG as pT becomes a step function for T → 0.

9.3.1 A Fast and Memory-E�icient Streaming Generator for RHG

Most RHG generators (including HyperGirgs in Chapter 8) work in two phases. In a

preprocessing step, they �rst sample all points and store them in some form of geometric

data structure. In the main phase, they query the precomputed data to �nd the point

pairs that imply an edge.

In Chapter 6, we demonstrate that in practice these support structures have a large

memory footprint that renders them unsuitable for accelerator hardware with a small

dedicated memory. We then present HyperGen, a streaming generator for Threshold
RHGs which instead samples the points on demand. It executes a sweep-line algorithm

and stores the set of nodes that may still �nd neighbors in its sweep-line state; we refer

to them as candidates.

Roughlypoint sampling:

R Section 6.2

speaking, HyperGen randomly samples points with non-decreasing angular

coordinates.
4

For each new point, the algorithm identi�es all su�ciently close candidates

and emits edges to them. The generator then marks the point a candidate itself and

advances the sweep-line. HyperGen stops the sweep-line at additional points, e.g., to

prune candidates whose distances to the sweep-line are so large that they cannot �nd

neighbors anymore.

To manage the computational cost of maintaining the sweep state, we use several

conservative approximations that do not infringe on the generator’s faithful reproduction

of RHGs. They exploit the distribution of points as well as properties of the hyperbolic

distance function. The majority of points can be quickly pruned from the algorithm’s

state. In contrast, the few points that have small radii stay candidates for a signi�cantly

4

This is an over-simpli�cation to avoid a detailed discussion of the sweep-line’s behavior. For technical

reasons discussed in Section 6.2, HyperGen does not consider the coordinate of point u itself, but instead

samples the point of smallest angle at distance R from u and then places u accordingly.

248

Geometrically Embedded Random Graphs

longer period of time. To accommodate the di�erent requirements, HyperGen partitions

the hyperbolic disk into Θ(log n) concentrical bands. Each band has its own sweep-line

and state which remain synchronized with the states of its adjacent bands.

Observe that, due to the angular periodicity of the hyperbolic disk, points sampled

late (i.e., with angles near 2π) can be adjacent to points discovered and pruned much

earlier. HyperGen accounts for this by restarting the sampling process until all candi-

dates of the �rst phase are processed. It exploits pseudorandomness to obtain consistent

point coordinates in both phases.

We HyperGen:

R Section 6.3

show that HyperGen has a memory footprint ofO
(
[n1−αd̄α + log n] log n

)
with

high probability. For realistic average degrees d̄ = o(n/ log1/α(n)) this is a signi�cant

asymptotic reduction over classical approaches.

Parallelization parallelism:

R Section 6.3.2

is possible by splitting the disk into segments of equal size. Some

care has to be taken to manage the dependencies near the segments’ borders. HyperGen

also signi�cantly accelerates the frequent distance computations precomputation:

R Section 6.4.1

by preparing auxiliary

values per point. This removes all transcendental functions (here sinh, cosh, and cos)

from Eq. (9.1). Re�ned versions of these techniques carry over to Chapters 7 and 8.

Our implementation is designed with SIMD in mind and is explicitly vectorized. It

uses SIMD instructions to compute eight hyperbolic distances simultaneously (which is

only possible because we �rst removed the aforementioned transcendental functions).

In an experimental evaluation, we compare HyperGen with four state-of-the-art

generators. It is consistently the fastest, reaching a speedup of nearly 30 compared to the

second fastest competitor. On commodity hardware, HyperGen produces 370 million

edges per second for graphs with 106 ≤ m ≤ 1012
while utilizing less than 600 MB of

RAM. We demonstrate nearly linear scalability on an Intel Xeon Phi with 60 processors

and 240 hardware threads.

9.3.2 A Communication-Agnostic Generator for RHG

Funke et al. [139] present KaGen, a random graph generator suite for distributed com-

puting including Rhg, a communication-agnostic generator for Threshold RHG. Rhg and

HyperGen were developed independently at roughly the same time, and share ideas to

sample speci�c subsections of the hyperbolic disk using pseudorandomization. While

HyperGen uses a monotonous sweep-like motion optimized for memory usage, Rhg

uses less structured queries. They are supported by a �ne-grained partitioning of the

hyperbolic space which ingeniously allows random access to any cell.

In Chapter 7 sRhg:

R Section 7.7.3

(based on the journal version [138] of [139]), we combine both tech-

niques and improve the load balancing to obtain the communication-agnostic sweep-line

generator sRhg which consistently outperforms Rhg. We demonstrate its scalability to

up to 32,768 cores and produce a graph with n = 239
nodes is less than a minute.

9.3.3 GIRG-based Generator

In Chapter 8, we engineer a previously known expected linear time sampling algorithm

for GIRGs by Bringmann et al. [70] and adapt it to Binomial RHGs. We refer to our

249

Summary

algorithms as Girgs and HyperGirgs, respectively.
5

To the best of our knowledge,

Girgs is the �rst practically e�cient generator for the GIRG model. Here,comparison RHG & GIRG:

R Section 8.2.3

we focus on

RHGs since the algorithmic treatment of both models is very similar.

HyperGirgs �rst samples all points and builds a data structure that can be interpreted

as a polar quad-tree. While the structure is similar to the previous state-of-the-art

generator by v. Looz et al. [223], di�erences in details result in a polynomial gap in

their runtimes. In the following, we refer to nodes of the quad-tree astree-nodes tree-nodes (to

distinguish them from the hyperbolic nodes contained).

Bringmann et al. propose the following neighborhood search which we adapt for

HyperGirgs. For simplicity, we initially restrict ourselves to Threshold RHGs. The

generator enumerates all pairs of tree-nodes that may contain point pairs su�ciently

close to imply an edge. This is done in a pessimistic and oblivious fashion, i.e., without

considering the actual points represented by the tree-nodes. HyperGirgs then emits

edges by testing all point pairs contained in each previously enumerated pair of tree-

nodes. To avoid asymptotically signi�cant overheads, the algorithm pairs tree-nodes as

high up in the quad-tree as possible without adding unintended distance computations.

The quad-tree needs to support e�cient random access to all points contained within

any tree-node at any depth. Similarly to [70], HyperGirgs achieves this using z-order

space-�lling curves [268] to map the tree to memory. This choice allows us to e�ciently

build and query the quad-tree using Morton codes [251].

Inedge probability pT (d):

R Eq. (9.2)

case of Binomial RHGs with T > 0, any node pair has a positive (yet mostly

negligible) probability pT (d) to be connected. HyperGirgs therefore has to consider

all tree-node pairs — even those with a tiny connection probability. Ingeneral sampling

technique:

R Section 2.3.3.4 �.

the latter case,

we bound the connection probability from below and use geometric jumps followed by

rejection sampling to prune the search space. We also engineer an exact look-up table-

based sampling scheme to reduce the evaluation of transcendental functions during the

computation of linking probabilities pT (d).

HyperGirgs processes the tree-node pairs pleasingly parallel. As a special feature,

our implementation guarantees reproducibility in the sense that two runs with the

same set of parameters and seed values output the same set of edges (though not

necessarily in the same order). Compared to existing RHG generators (most of which

only support Threshold RHG), our implementation is the fastest sequential RHG generator

and competitive for shared-memory parallelism.

Our implementation of Girgs supports geometric spaces in up to �ve dimensions.

The algorithm’s overall structure is similar to HyperGen, though we need to replace

the quad-tree with a high-dimensional variant and adapt details pertaining to the tree-

node pairing and distance computation. In Section 8.B.3 (Appendix), we discuss the

implications to Morton codes, and study several implementations including a bit-parallel

variant using the Bmi2 instruction-set extension for x86 processors [184].

5

Bringmann et al. already discuss the applicability to RHG by showing an asymptotic inclusion of

RHG in GIRG. The models are, however, not identical as we empirically demonstrate in Section 8.5.3. Our

modi�cations, leading to HyperGirgs, close this gap.

250

Future Research Opportunities

9.4 Future Research Opportunities

Network models and matching generators remain an open �eld for future research.

Here, we provide a non-exhaustive selection of issues related to Chapters 3 to 8 and refer

to Section 2.11 for general remarks on future challenges of scalable graph generation.

9.4.1 Preferential A�achment

Most Pref. A�ach. sampling

without multi-edges:

R Section 2.4.2.2

high-performance preferential attachment schemes (including MP-BA) can produce

multi-edges. The issue has typically little practical impact since for most su�ciently

large seed graphs
6

only few multi-edges are emitted and can be easily removed in

post-processing. Still, the intermediate presence of multi-edges introduces a bias during

sampling which justi�es further research into faithful preferential attachment for simple

graphs with little performance penalties.

Another line of research pertains to alternative query models such as local sampling

of huge random objects [153]. Here, the user may repeatedly inquire about speci�c local

properties while the generator needs to supply consistent answers without sampling

the whole object. There are already results in the context of BA graphs. Even et al. [126]

propose such an “on-the-�y generator” allowing the user to query the neighborhoods

of arbitrary nodes. With high probability the generator answers in time O
(
log5 n

)
and

increases the size of the internal data structure by O
(
log2 n

)
bits while consuming

O
(
log4 n

)
random bits. Further, the communication-agnostic

generator for BA:

R Section 2.4.2.1

communication-agnostic generator by Sanders and

Schulz [294] can consistently answer queries to arbitrary positions of the graph’s edge

list in constant expected time and O(log n) time with high probability. Due to its use of

pseudorandomness, the generator consumes no random bits and requires no internal

data structure to track already given answers.

It, hence, seems promising to extend advanced query models to additional network

models (cf. [45]), and to identify applications and practically relevant query semantics.

This also entails the design of matching scalable generators.

9.4.2 Simple Graphs from Prescribed Degree Sequence

Most MCMC schemes to generate uniformly distributed simple graphs with a prescribed

degree sequence lack rigorous mixing time bounds that are practically useful. In general,

it is even di�cult to predict their relative performance. Experimental campaigns can

provide practical guidance and expose structural insights that might eventually lead to

analytical results. Our empirical �ndings of Chapters 4 and 5 are only a �rst step towards

this goal. In on-going research, we are investigating more advanced experimental

techniques (e.g., inspired by [51]) and consider additional graph classes to obtain broadly

reliable experimental results.

6

The star graph is a worst-case input as every second sample is expected to yield the central hub. We

can, however, �rst process the seed graph with a slower generator to make it less pathological and then

hand it over to a faster scalable implementation.

251

Summary

Observe that for some graph classes such as regular graphs or degree sequences

following a powerlaw distribution with exponent γ > 2.88, dedicated processes are

available and achieve expected linear total work (e.g., [24, 143, 236]). While the underly-

ing algorithms tend to be quite intricate (e.g., more than 20 carefully balanced switching

types in [18, 24]), our preliminary results suggest that they can be made practical [18].

Even then, further research is required to render those approaches truly scalable.

9.4.3 Random Hyperbolic Graphs

The generation of RHGs has been heavily investigated and (near) optimal sampling

algorithms exist for important models of computation. To the best of our knowledge, our

generators HyperGen, sRhg, and HyperGirgs remain the practically fastest solutions

available for shared-memory and distributed parallelism. Still, open problems remain.

HyperGen and sRhg only consider Threshold RHG and we are not aware of compara-

ble results for strictly positive temperatures. To obtain a memory-e�cient generator for

Binomial RHG, it seems possible to extend HyperGen using ideas proposed in [336, Sec.

3.7]. This, however, requires either a new point sampling scheme or novel approaches to

handle the longevity of requests in the binomial variant. Further, a combination of Rhg

with the cell-skipping of HyperGirgs is conceivable even if Rhg’s current partitioning

does not support the merging of cells as done by HyperGirgs.

Another line of inquiry pertains to the parametrization of RHG. For Threshold RHG,

v. Looz et al. describe the state-of-the-art solution to derive the radiusR of the hyperbolic

disk in order to match a prescribed density and powerlaw exponent [223]. We are not

aware of equally reliable means to estimate the parameters of Binomial RHG. However,

our Girgs generator can rescale the provided node weights (which correspond to radii

in the RHG model) toGIRG scaling:

R Section 8.B.2

match a required density very accurately; similar techniques seem

possible for Binomial RHG.

Going even further, one might not only estimate the model’s global parameters,

but actually learn an embedding (i.e., estimate point positions) of a prescribed graph at

scale (see e.g., [50, 144]). Many learning methods involve an optimization process which

needs to (partially) generate the graph in each step. If the embedding is su�ciently

similar to the point distributions implied by RHG, the previously discussed sampling

techniques may help to accelerate such tasks.

252

253

254

Bibliography

[1] M. G. Aartsen et al. The IceProd framework: Distributed data processing for the icecube

neutrino observatory. CoRR, abs/1311.5904, 2013. arXiv:1311.5904.

[2] M. G. Aartsen et al. The IceProd framework: Distributed data processing for the

icecube neutrino observatory. J. Parallel Distributed Comput., 75:198–211, 2015.

doi:10.1016/j.jpdc.2014.08.001.

[3] E. Abbe. Community detection and stochastic block models. Found. Trends Commun. Inf.
Theory, 14(1-2):1–162, 2018. doi:10.1561/0100000067.

[4] D. Achlioptas, A. Coja-Oghlan, M. Hahn-Klimroth, J. Lee, N. Müller, M. Penschuck, and

G. Zhou. The random 2-SAT partition function. CoRR, abs/2002.03690, 2020. Accepted for

Random Structures And Algorithms. arXiv:2002.03690.

[5] Advanced Micro Devices Inc. AMD Accelerated Parallel Processing — OpenCL Programming
Guide, nov 2013. Revision 2.7.

[6] P. Afshani, R. Fagerberg, D. Hammer, R. Jacob, I. Kostitsyna, U. Meyer, M. Penschuck,

and N. Sitchinava. Fragile complexity of comparison-based algorithms. In M. A. Ben-

der, O. Svensson, and G. Herman, editors, European Symp. on Algorithms ESA, volume

144 of LIPIcs, pages 2:1–2:19. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2019.

doi:10.4230/LIPIcs.ESA.2019.2.

[7] A. Aggarwal and J. S. Vitter. The input/output complexity of sorting and related problems.

Commun. ACM, 31(9):1116–1127, 1988. doi:10.1145/48529.48535.

[8] J. H. Ahrens and U. Dieter. Sequential random sampling. ACM Trans. Math. Softw.,
11(2):157–169, 1985. doi:10.1145/214392.214402.

[9] S. G. Aksoy, E. Purvine, E. C. Sanchez, and M. Halappanavar. A generative graph

model for electrical infrastructure networks. J. Complex Networks, 7(1):128–162, 2019.

doi:10.1093/comnet/cny016.

[10] M. Alam and K. S. Perumalla. GPU-based parallel algorithm for generating massive

scale-free networks using the preferential attachment model. In J. Y. Nie, Z. Obradovic,

T. Suzumura, R. Ghosh, R. Nambiar, C. Wang, H. Zang, R. Baeza-Yates, X. Hu, J. Kep-

ner, A. Cuzzocrea, J. Tang, and M. Toyoda, editors, IEEE Int. Conf. on Big Data Big-
Data, pages 3302–3311. Institute of Electrical and Electronics Engineers IEEE, 2017.

doi:10.1109/BigData.2017.8258315.

[11] M. Alam, K. S. Perumalla, and P. Sanders. Novel parallel algorithms for fast multi-GPU-

based generation of massive scale-free networks. Data Science and Engineering, 4(1):61–75,

2019. doi:10.1007/s41019-019-0088-6.

[12] M. M. Alam, M. Khan, and M. V. Marathe. Distributed-memory parallel algorithms

for generating massive scale-free networks using preferential attachment model. In

W. Gropp and S. Matsuoka, editors, Int. Conf. for High Performance Computing, Networking,
Storage and Analysis SC, pages 91:1–91:12. Assoc. for Computing Machinery ACM, 2013.

doi:10.1145/2503210.2503291.

[13] M. M. Alam, M. Khan, A. Vullikanti, and M. V. Marathe. An e�cient and scalable

algorithmic method for generating large: scale random graphs. In J. West and C. M.

Pancake, editors, Int. Conf. for High Performance Computing, Networking, Storage and
Analysis SC, pages 372–383. Institute of Electrical and Electronics Engineers IEEE, 2016.

doi:10.1109/SC.2016.31.

255

http://arxiv.org/abs/1311.5904
https://doi.org/10.1016/j.jpdc.2014.08.001
https://doi.org/10.1561/0100000067
http://arxiv.org/abs/2002.03690
https://doi.org/10.4230/LIPIcs.ESA.2019.2
https://doi.org/10.1145/48529.48535
https://doi.org/10.1145/214392.214402
https://doi.org/10.1093/comnet/cny016
https://doi.org/10.1109/BigData.2017.8258315
https://doi.org/10.1007/s41019-019-0088-6
https://doi.org/10.1145/2503210.2503291
https://doi.org/10.1109/SC.2016.31

Bibliography

[14] R. Albert and A. L. Barabási. Statistical mechanics of complex networks. Reviews of
Modern Physics, 74(1):47–97, Jan 2002. doi:10.1103/revmodphys.74.47.

[15] R. Albert, B. DasGupta, and N. Mobasheri. Topological implications of negative curvature

for biological and social networks. Phys. Rev. E, 89:032811, mar 2014. URL: h�ps://link.

aps.org/doi/10.1103/PhysRevE.89.032811, doi:10.1103/PhysRevE.89.032811.

[16] R. Aldecoa, C. Orsini, and D. V. Krioukov. Hyperbolic graph generator. Comput. Phys.
Commun., 196:492–496, 2015. doi:10.1016/j.cpc.2015.05.028.

[17] A. D. Alexandrov, M. F. Ionescu, K. E. Schauser, and C. J. Scheiman. LogGP: Incorporating

long messages into the LogP model - one step closer towards a realistic model for parallel

computation. In C. E. Leiserson, editor, ACM Symp. on Parallel Algorithms and Architectures
SPAA, pages 95–105. ACM, 1995. doi:10.1145/215399.215427.

[18] D. Allendorf. Implementation and evaluation of a uniform graph sampling algorithm for

prescribed power-law degree sequences. Master’s thesis, Goethe University Frankfurt,

Germany, 2020.

[19] J. Alstott, E. Bullmore, and D. Plenz. powerlaw: A python package for analysis of heavy-

tailed distributions. PLOS ONE, 9(1):1–11, Jan 2014. doi:10.1371/journal.pone.0085777.

[20] O. Angel, R. van der Hofstad, and C. Holmgren. Limit laws for self-loops and multiple

edges in the con�guration model, 2017. arXiv:1603.07172.

[21] M. J. Appel and R. P. Russo. The connectivity of a graph on uniform points on [0, 1]d.

Statistics & Probability Letters, 60(4):351–357, 2002.

[22] L. Arge. The bu�er tree: A new technique for optimal I/O-algorithms (extended abstract).

In S. G. Akl, F. K. H. A. Dehne, J. R. Sack, and N. Santoro, editors, Int. Workshop on
Algorithms and Data Structures WADS, volume 955 of LNCS, pages 334–345. Springer, 1995.

doi:10.1007/3-540-60220-8_74.

[23] L. Arge. The Bu�er Tree: A technique for designing batched external data structures.

Algorithmica, 37(1):1–24, 2003. doi:10.1007/s00453-003-1021-x.

[24] A. Arman, P. Gao, and N. C. Wormald. Fast uniform generation of random graphs with

given degree sequences. In D. Zuckerman, editor, IEEE Symp. on Foundations of Comp.
Science FOCS, pages 1371–1379. Institute of Electrical and Electronics Engineers IEEE,

2019. doi:10.1109/FOCS.2019.00084.

[25] J. Atwood, B. F. Ribeiro, and D. Towsley. E�cient network generation under general

preferential attachment. In C. W. Chung, A. Z. Broder, K. Shim, and T. Suel, editors, Int.
World Wide Web Conf. WWW, pages 695–700. Assoc. for Computing Machinery ACM,

2014. doi:10.1145/2567948.2579357.

[26] K. Azadbakht, N. Bezirgiannis, F. S. d. Boer, and S. Aliakbary. A high-level and scalable

approach for generating scale-free graphs using active objects. In S. Ossowski, editor,

ACM Symp. on Appl. Computing, pages 1244–1250. Assoc. for Computing Machinery ACM,

2016. doi:10.1145/2851613.2851722.

[27] A. Bacher, O. Bodini, A. Hollender, and J. O. Lumbroso. MergeShu�e: a very fast,

parallel random permutation algorithm. In L. Ferrari and M. Vamvakari, editors, GASCom,

volume 2113 of CEUR Workshop Proceedings, pages 43–52. CEUR-WS.org, 2018. URL:

h�p://ceur-ws.org/Vol-2113/paper3.pdf.

256

https://doi.org/10.1103/revmodphys.74.47
https://link.aps.org/doi/10.1103/PhysRevE.89.032811
https://link.aps.org/doi/10.1103/PhysRevE.89.032811
https://doi.org/10.1103/PhysRevE.89.032811
https://doi.org/10.1016/j.cpc.2015.05.028
https://doi.org/10.1145/215399.215427
https://doi.org/10.1371/journal.pone.0085777
http://arxiv.org/abs/1603.07172
https://doi.org/10.1007/3-540-60220-8_74
https://doi.org/10.1007/s00453-003-1021-x
https://doi.org/10.1109/FOCS.2019.00084
https://doi.org/10.1145/2567948.2579357
https://doi.org/10.1145/2851613.2851722
http://ceur-ws.org/Vol-2113/paper3.pdf

[28] L. Backstrom, P. Boldi, M. Rosa, J. Ugander, and S. Vigna. Four degrees of separation. In

N. S. Contractor, B. Uzzi, M. W. Macy, and W. Nejdl, editors, Web Science WebSci, pages

33–42. Assoc. for Computing Machinery ACM, 2012. doi:10.1145/2380718.2380723.

[29] D. A. Bader, H. Meyerhenke, P. Sanders, C. Schulz, A. Kappes, and D. Wagner. Bench-

marking for graph clustering and partitioning. In Encyclopedia of Social Network Analysis
and Mining, pages 73–82. Springer, 2014. doi:10.1007/978-1-4614-6170-8_23.

[30] S. H. Bae and B. Howe. GossipMap: a distributed community detection algorithm for

billion-edge directed graphs. In J. Kern and J. S. Vetter, editors, Int. Conf. for High
Performance Computing, Networking, Storage and Analysis SC, pages 27:1–27:12. Assoc.

for Computing Machinery ACM, 2015. doi:10.1145/2807591.2807668.

[31] J. Baert. Libmorton: C++ Morton encoding/decoding library, 2018. URL: h�ps://github.

com/Forceflow/libmorton.

[32] A. L. Barabási and R. Albert. Emergence of scaling in random networks. Science,
286(5439):509–512, 1999.

[33] A. L. Barabási, R. Albert, and H. Jeong. Mean-�eld theory for scale-free random networks.

Physica A: Statistical Mechanics and its Applications, 272(1-2):173–187, 1999.

[34] A. L. Barabási et al. Network science. Cambridge university press, 2016.

[35] V. Batagelj and U. Brandes. E�cient generation of large random networks. Physical
Review E, 71(3), Mar 2005. doi:10.1103/physreve.71.036113.

[36] N. Baumann and S. Stiller. Network models. In U. Brandes and T. Erlebach, editors,

Network Analysis: Methodological Foundations [Dagstuhlseminar, 13-16 April 2004], volume

3418 of LNCS, pages 341–372. Springer, 2004. doi:10.1007/978-3-540-31955-9_13.

[37] A. Beckmann, R. Dementiev, and J. Singler. Building a parallel pipelined exter-

nal memory algorithm library. In IEEE Int. Parallel and Distributed Processing
Symp. IPDPS, pages 1–10. Institute of Electrical and Electronics Engineers IEEE, 2009.

doi:10.1109/IPDPS.2009.5161001.

[38] E. A. Bender and E. R. Can�eld. The asymptotic number of labeled graphs with given

degree sequences. J. Comb. Theory, Ser. A, 24(3):296–307, 1978. doi:10.1016/0097-

3165(78)90059-6.

[39] J. L. Bentley and J. B. Saxe. Generating sorted lists of random numbers. ACM Trans. Math.
Softw., 6(3):359–364, 1980. doi:10.1145/355900.355907.

[40] P. Berenbrink, D. Hammer, D. Kaaser, U. Meyer, M. Penschuck, and H. Tran. Simulating

population protocols in sub-constant time per interaction. In European Symp. on Algo-
rithms ESA, volume 173 of LIPIcs, pages 16:1–16:22. Schloss Dagstuhl - Leibniz-Zentrum

für Informatik, 2020. doi:10.4230/LIPIcs.ESA.2020.16.

[41] A. Berger and C. J. Carstens. Smaller universes for sampling graphs with �xeddegree

sequence, 2018. arXiv:1803.02624.

[42] P. Bhattacharyya and B. K. Chakrabarti. The mean distance to the nth neighbour in a

uniform distribution of random points. European J. of Physics, 29(3):639, 2008.

[43] M. H. Bhuiyan, J. Chen, M. Khan, and M. V. Marathe. Fast parallel algorithms for Edge-

Switching to achieve a target visit rate in heterogeneous graphs. In Int. Conf. on Parallel
Processing ICPP, pages 60–69. Institute of Electrical and Electronics Engineers IEEE, 2014.

doi:10.1109/ICPP.2014.15.

257

https://doi.org/10.1145/2380718.2380723
https://doi.org/10.1007/978-1-4614-6170-8_23
https://doi.org/10.1145/2807591.2807668
https://github.com/Forceflow/libmorton
https://github.com/Forceflow/libmorton
https://doi.org/10.1103/physreve.71.036113
https://doi.org/10.1007/978-3-540-31955-9_13
https://doi.org/10.1109/IPDPS.2009.5161001
https://doi.org/10.1016/0097-3165(78)90059-6
https://doi.org/10.1016/0097-3165(78)90059-6
https://doi.org/10.1145/355900.355907
https://doi.org/10.4230/LIPIcs.ESA.2020.16
http://arxiv.org/abs/1803.02624
https://doi.org/10.1109/ICPP.2014.15

Bibliography

[44] T. Bingmann, M. Axtmann, E. Jöbstl, S. Lamm, H. C. Nguyen, A. Noe, S. Schlag, M. Stumpp,

T. Sturm, and P. Sanders. Thrill: High-performance algorithmic distributed batch data

processing with C++. In J. Joshi, G. Karypis, L. Liu, X. Hu, R. Ak, Y. Xia, W. Xu, A. H. Sato,

S. Rachuri, L. H. Ungar, P. S. Yu, R. Govindaraju, and T. Suzumura, editors, IEEE Int. Conf.
on Big Data BigData, pages 172–183. Institute of Electrical and Electronics Engineers IEEE,

2016. doi:10.1109/BigData.2016.7840603.

[45] A. S. Biswas, R. Rubinfeld, and A. Yodpinyanee. Local access to huge random objects

through partial sampling. In T. Vidick, editor, Innovations in Theoretical Comp. Science
Conf. ITCS, volume 151 of LIPIcs, pages 27:1–27:65. Schloss Dagstuhl - Leibniz-Zentrum

für Informatik, 2020. doi:10.4230/LIPIcs.ITCS.2020.27.

[46] A. Blanca and M. Mihail. E�cient generation ε-close to G(n, p) and generalizations.

CoRR, abs/1204.5834, 2012. URL: h�p://arxiv.org/abs/1204.5834, arXiv:1204.5834.

[47] T. Bläsius, C. Freiberger, T. Friedrich, M. Katzmann, F. Montenegro-Retana, and M. Thi-

e�ry. E�cient shortest paths in scale-free networks with underlying hyperbolic ge-

ometry. In I. Chatzigiannakis, C. Kaklamanis, D. Marx, and D. Sannella, editors,

Int. Colloquium on Automata, Languages, and Programming ICALP, volume 107 of

LIPIcs, pages 20:1–20:14. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2018.

doi:10.4230/LIPIcs.ICALP.2018.20.

[48] T. Bläsius, T. Friedrich, M. Katzmann, U. Meyer, M. Penschuck, and C. Weyand. E�ciently

generating geometric inhomogeneous and hyperbolic random graphs. In M. A. Bender,

O. Svensson, and G. Herman, editors, European Symp. on Algorithms ESA, volume 144

of LIPIcs, pages 21:1–21:14. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2019.

doi:10.4230/LIPIcs.ESA.2019.21.

[49] T. Bläsius, T. Friedrich, A. Krohmer, and S. Laue. E�cient embedding of scale-free graphs

in the hyperbolic plane. In P. Sankowski and C. D. Zaroliagis, editors, European Symp.
on Algorithms ESA, volume 57 of LIPIcs, pages 16:1–16:18. Schloss Dagstuhl – Leibniz-

Zentrum für Informatik, 2016. doi:10.4230/LIPIcs.ESA.2016.16.

[50] T. Bläsius, T. Friedrich, A. Krohmer, and S. Laue. E�cient embedding of scale-free

graphs in the hyperbolic plane. IEEE/ACM Trans. Netw., 26(2):920–933, 2018. URL: h�p:

//doi.ieeeComp.ociety.org/10.1109/TNET.2018.2810186, doi:10.1109/TNET.2018.2810186.

[51] T. Bläsius, T. Friedrich, M. Katzmann, A. Krohmer, and J. Striebel. Towards a systematic

evaluation of generative network models. In A. Bonato, P. Pralat, and A. M. Raigorodskii,

editors, Algorithms and Models for the Web Graph, volume 10836 of LNCS, pages 99–114.

Springer, 2018. doi:10.1007/978-3-319-92871-5_8.

[52] G. E. Blelloch. Pre�x sums and their applications. Technical report, Citeseer, 1990.

[53] V. Blondel, J. L. Guillaume, R. Lambiotte, and E. Lefebvre. Fast unfolding of communities

in large networks. J. of Statistical Mechanics: Theory and Experiment, 2008(10), 2008. URL:

h�p://dx.doi.org/10.1088/1742-5468/2008/10/P10008.

[54] M. Bode, N. Fountoulakis, and T. Müller. On the largest component of a hyperbolic model

of complex networks. Electr. J. Comb., 22(3):P3.24, 2015. URL: h�p://www.combinatorics.

org/ojs/index.php/eljc/article/view/v22i3p24.

[55] M. Boguñá, M. Kitsak, and D. Krioukov. Cosmological networks. New J. of Physics,
16(9):093031, Sep 2014. doi:10.1088/1367-2630/16/9/093031.

258

https://doi.org/10.1109/BigData.2016.7840603
https://doi.org/10.4230/LIPIcs.ITCS.2020.27
http://arxiv.org/abs/1204.5834
http://arxiv.org/abs/1204.5834
https://doi.org/10.4230/LIPIcs.ICALP.2018.20
https://doi.org/10.4230/LIPIcs.ESA.2019.21
https://doi.org/10.4230/LIPIcs.ESA.2016.16
http://doi.ieeeComp.ociety.org/10.1109/TNET.2018.2810186
http://doi.ieeeComp.ociety.org/10.1109/TNET.2018.2810186
https://doi.org/10.1109/TNET.2018.2810186
https://doi.org/10.1007/978-3-319-92871-5_8
http://dx.doi.org/10.1088/1742-5468/2008/10/P10008
http://www.combinatorics.org/ojs/index.php/eljc/article/view/v22i3p24
http://www.combinatorics.org/ojs/index.php/eljc/article/view/v22i3p24
https://doi.org/10.1088/1367-2630/16/9/093031

[56] M. Boguñá, F. Papadopoulos, and D. Krioukov. Sustaining the internet with hyperbolic

mapping. Nature Communications, 1(1), Sep 2010. doi:10.1038/ncomms1063.

[57] M. Boguná, R. Pastor-Satorras, A. Díaz-Guilera, and A. Arenas. Models of social networks

based on social distance attachment. Physical review E, 70(5):056122, 2004.

[58] M. Bohr. A 30 year retrospective on Dennard’s MOSFET scaling paper. IEEE Solid-State
Circuits Society Newsletter, 12(1):11–13, 2007.

[59] B. Bollobás. Random Graphs, Second Edition, volume 73 of Cambridge Studies in Advanced
Math. Cambridge University Press, 2011. doi:10.1017/CBO9780511814068.

[60] B. Bollobás, C. Borgs, J. T. Chayes, and O. Riordan. Directed scale-free graphs. In

ACM-SIAM Symp. on Discrete Algorithms SODA, pages 132–139. ACM-SIAM, 2003. URL:

h�p://dl.acm.org/citation.cfm?id=644108.644133.

[61] B. Bollobás, O. Riordan, J. Spencer, and G. E. Tusnády. The degree sequence of a

scale-free random graph process. Random Struct. Algorithms, 18(3):279–290, 2001.

doi:10.1002/rsa.1009.

[62] A. Bonato. A survey of models of the web graph. In A. López-Ortiz and A. M. Hamel,

editors, Workshop on Combinatorial and Algorithmic Aspects of Networking CAAN, volume

3405 of LNCS, pages 159–172. Springer, 2004. doi:10.1007/11527954_16.

[63] S. P. Borgatti, K. M. Carley, and D. Krackhardt. On the robustness of centrality

measures under conditions of imperfect data. Soc. Networks, 28(2):124–136, 2006.

doi:10.1016/j.socnet.2005.05.001.

[64] S. P. Borgatti and M. G. Everett. Models of core/periphery structures. Soc. Networks,
21(4):375–395, 2000. doi:10.1016/S0378-8733(99)00019-2.

[65] U. Brandes and M. Mader. A quantitative comparison of stress-minimization approaches

for o�ine dynamic graph drawing. In M. J. v. Kreveld and B. Speckmann, editors, Int. Symp.
on Graph Drawing GD, volume 7034 of LNCS, pages 99–110. Springer, 2011. doi:10.1007/978-

3-642-25878-7_11.

[66] R. A. Bridges, J. P. Collins, E. M. Ferragut, J. A. Laska, and B. D. Sullivan. A multi-level

anomaly detection algorithm for time-varying graph data with interactive visualization.

Social Netw. Analys. Mining, 6(1):99:1–99:14, 2016. doi:10.1007/s13278-016-0409-y.

[67] K. Bringmann and T. Friedrich. Exact and e�cient generation of geometric random

variates and random graphs. In F. V. Fomin, R. Freivalds, M. Z. Kwiatkowska, and D. Peleg,

editors, Automata, Languages, and Programming – Int. Colloquium ICALP, Proceedings, Part
I, volume 7965 of LNCS, pages 267–278. Springer, 2013. doi:10.1007/978-3-642-39206-1_23.

[68] K. Bringmann, R. Keusch, and J. Lengler. Geometric inhomogeneous random graphs.

CoRR, abs/1511.00576, 2015. URL: h�p://arxiv.org/abs/1511.00576, arXiv:1511.00576.

[69] K. Bringmann, R. Keusch, and J. Lengler. Sampling geometric inhomogeneous random

graphs in linear time. In K. Pruhs and C. Sohler, editors, European Symp. on Algorithms
ESA, volume 87 of LIPIcs, pages 20:1–20:15. Schloss Dagstuhl – Leibniz-Zentrum für

Informatik, 2017. doi:10.4230/LIPIcs.ESA.2017.20.

[70] K. Bringmann, R. Keusch, and J. Lengler. Geometric inhomogeneous random graphs.

Theor. Comput. Sci., 760:35–54, 2019. doi:10.1016/j.tcs.2018.08.014.

[71] G. Brinkmann. Program Fullgen-a program for generating nonisomorphic fullerenes. see
h�p://cs.anu.edu.au/bdm/plantri, 2011.

259

https://doi.org/10.1038/ncomms1063
https://doi.org/10.1017/CBO9780511814068
http://dl.acm.org/citation.cfm?id=644108.644133
https://doi.org/10.1002/rsa.1009
https://doi.org/10.1007/11527954_16
https://doi.org/10.1016/j.socnet.2005.05.001
https://doi.org/10.1016/S0378-8733(99)00019-2
https://doi.org/10.1007/978-3-642-25878-7_11
https://doi.org/10.1007/978-3-642-25878-7_11
https://doi.org/10.1007/s13278-016-0409-y
https://doi.org/10.1007/978-3-642-39206-1_23
http://arxiv.org/abs/1511.00576
http://arxiv.org/abs/1511.00576
https://doi.org/10.4230/LIPIcs.ESA.2017.20
https://doi.org/10.1016/j.tcs.2018.08.014
http://cs.anu.edu.au/bdm/plantri

Bibliography

[72] G. Brinkmann and B. D. McKay. Fast generation of planar graphs. MATCH Commun.
Math. Comput. Chem, 58(2), 2007.

[73] T. Britton, M. Deijfen, and F. Liljeros. A weighted con�guration model and inhomogeneous

epidemics. J. of Statistical Physics, 145(5):1368–1384, Sep 2011. doi:10.1007/s10955-011-

0343-3.

[74] A. D. Broido and A. Clauset. Scale-free networks are rare. Nature Communications, 10(1),

Mar 2019. doi:10.1038/s41467-019-08746-5.

[75] V. Buchhold, P. Sanders, and D. Wagner. E�cient calculation of microscopic travel

demand data with low calibration e�ort. In F. B. Kashani, G. Trajcevski, R. H. Güting,

L. Kulik, and S. D. Newsam, editors, ACM SIGSPATIAL Int. Conf. on Advances in Geographic
Information Systems SIGSPATIAL, pages 379–388. Assoc. for Computing Machinery ACM,

2019. doi:10.1145/3347146.3359361.

[76] F. Buckley and F. Harary. Distance in graphs. Addison Wesley, 1990.

[77] N. Buzun, A. Korshunov, V. Avanesov, I. Filonenko, I. Kozlov, D. Turdakov, and H. Kim.

EgoLP: Fast and distributed community detection in billion-node social networks. In

Z. H. Zhou, W. Wang, R. Kumar, H. Toivonen, J. Pei, J. Z. Huang, and X. Wu, editors, IEEE
Int. Conf. on Data Mining Workshops ICDM, pages 533–540. Institute of Electrical and

Electronics Engineers IEEE, 2014. doi:10.1109/ICDMW.2014.158.

[78] T. T. Cao, A. Nanjappa, M. Gao, and T. S. Tan. A GPU accelerated algorithm for 3d

delaunay triangulation. In J. Keyser and P. V. Sander, editors, Symp. on Interactive 3D
Graphics and Games I3D, pages 47–54. Assoc. for Computing Machinery ACM, 2014.

doi:10.1145/2556700.2556710.

[79] C. J. Carstens. Proof of uniform sampling of binary matrices with �xed row sums and

column sums for the fast Curveball algorithm. Physical Review E, 91:042812, 2015.

[80] C. J. Carstens. Topology of Complex Networks: Models and Analysis. PhD thesis, RMIT

University, 2016.

[81] C. J. Carstens, A. Berger, and G. Strona. Curveball: a new generation of sampling

algorithms for graphs with �xed degree sequence. CoRR, abs/1609.05137, 2016. URL:

h�p://arxiv.org/abs/1609.05137, arXiv:1609.05137.

[82] C. J. Carstens, M. Hamann, U. Meyer, M. Penschuck, H. Tran, and D. Wagner. Parallel

and I/O-e�cient randomisation of massive networks using Global Curveball trades. In

Y. Azar, H. Bast, and G. Herman, editors, European Symp. on Algorithms ESA, volume

112 of LIPIcs, pages 11:1–11:15. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2018.

doi:10.4230/LIPIcs.ESA.2018.11.

[83] C. J. Carstens and K. J. Horadam. Switching edges to randomize networks:

what goes wrong and how to �x it. J. Complex Networks, 5(3):337–351, 2017.

doi:10.1093/comnet/cnw027.

[84] C. J. Carstens and P. Kleer. Comparing the Switch and Curveball Markov Chains for

sampling binary matrices with �xed marginals. CoRR, abs/1709.07290, 2017. URL: h�p:

//arxiv.org/abs/1709.07290, arXiv:1709.07290.

[85] L. Carter and M. N. Wegman. Universal classes of hash functions. J. Comput. Syst. Sci.,
18(2):143–154, 1979. doi:10.1016/0022-0000(79)90044-8.

260

https://doi.org/10.1007/s10955-011-0343-3
https://doi.org/10.1007/s10955-011-0343-3
https://doi.org/10.1038/s41467-019-08746-5
https://doi.org/10.1145/3347146.3359361
https://doi.org/10.1109/ICDMW.2014.158
https://doi.org/10.1145/2556700.2556710
http://arxiv.org/abs/1609.05137
http://arxiv.org/abs/1609.05137
https://doi.org/10.4230/LIPIcs.ESA.2018.11
https://doi.org/10.1093/comnet/cnw027
http://arxiv.org/abs/1709.07290
http://arxiv.org/abs/1709.07290
http://arxiv.org/abs/1709.07290
https://doi.org/10.1016/0022-0000(79)90044-8

[86] J. M. Cebrian, L. Natvig, and M. Jahre. Scalability analysis of AVX-512 extensions. J.
Supercomput., 76(3):2082–2097, 2020. doi:10.1007/s11227-019-02840-7.

[87] D. Chakrabarti and C. Faloutsos. Graph mining: Laws, generators, and algorithms. ACM
Comput. Surv., 38(1):2, 2006. doi:10.1145/1132952.1132954.

[88] S. Chatterjee and P. Diaconis. Estimating and understanding exponential random graph

models. The Annals of Statistics, 41(5):2428–2461, Oct 2013. doi:10.1214/13-aos1155.

[89] V. Chauhan, A. Gutfraind, and I. Safro. Multiscale planar graph generation. Appl. Network
Science, 4(1):46:1–46:28, 2019. doi:10.1007/s41109-019-0142-3.

[90] J. Chen and I. Safro. Algebraic distance on graphs. SIAM J. Scienti�c Computing, 33(6):3468–

3490, 2011. doi:10.1137/090775087.

[91] Y. J. Chiang, M. T. Goodrich, E. F. Grove, R. Tamassia, D. E. Vengro�, and J. S. Vitter.

External-memory graph algorithms. In K. L. Clarkson, editor, ACM-SIAM Symp. on Discrete
Algorithms SODA, pages 139–149. ACM-SIAM, 1995. URL: h�p://dl.acm.org/citation.cfm?

id=313651.313681.

[92] F. Chung and L. Lu. The average distances in random graphs with given expected

degrees. Proceedings of the National Academy of Sciences, 99(25):15879–15882, Dec 2002.

doi:10.1073/pnas.252631999.

[93] F. Chung and L. Lu. Connected components in random graphs with given expected degree

sequences. Annals of Combinatorics, 6(2):125–145, Nov 2002. doi:10.1007/pl00012580.

[94] V. Chvátal and P. L. Hammer. Aggregation of inequalities in integer programming.

In Studies in Integer Programming, pages 145–162. Elsevier, 1977. doi:10.1016/s0167-

5060(08)70731-3.

[95] K. Chykhradze, A. Korshunov, N. Buzun, R. Pastukhov, N. N. Kuzyurin, D. Turdakov, and

H. Kim. Distributed generation of billion-node social graphs with overlapping community

structure. In P. Contucci, R. Menezes, A. Omicini, and J. Poncela-Casasnovas, editors,

Workshop on ComplexNetworks CompleNet 2014, volume 549 of Studies in Computational
Intelligence, pages 199–208. Springer, 2014. doi:10.1007/978-3-319-05401-8_19.

[96] A. Clauset, C. R. Shalizi, and M. E. J. Newman. Power-law distributions in empirical data.

SIAM Review, 51(4):661–703, 2009. doi:10.1137/070710111.

[97] G. W. Cobb and Y. P. Chen. An application of Markov Chain Monte Carlo to community

ecology. The American Mathematical Monthly, 110(4):265–288, 2003. URL: h�p://www.

jstor.org/stable/3647877.

[98] T. F. Consortium, R. PMII, R. C. (DGT), et al. A promoter-level mammalian expression

atlas. Nat., 507(7493):462–470, 2014. doi:10.1038/nature13182.

[99] D. E. Culler, R. M. Karp, D. A. Patterson, A. Sahay, E. E. Santos, K. E. Schauser, R. Subra-

monian, and T. von Eicken. LogP: A practical model of parallel computation. Commun.
ACM, 39(11):78–85, 1996. doi:10.1145/240455.240477.

[100] H. A. David and H. N. Nagaraja. Order statistics. Encyclopedia of Statistical Sciences, 2004.

[101] J. Dean and S. Ghemawat. MapReduce: simpli�ed data processing on large clusters.

Commun. ACM, 51(1):107–113, 2008. URL: h�p://doi.acm.org/10.1145/1327452.1327492,

doi:10.1145/1327452.1327492.

261

https://doi.org/10.1007/s11227-019-02840-7
https://doi.org/10.1145/1132952.1132954
https://doi.org/10.1214/13-aos1155
https://doi.org/10.1007/s41109-019-0142-3
https://doi.org/10.1137/090775087
http://dl.acm.org/citation.cfm?id=313651.313681
http://dl.acm.org/citation.cfm?id=313651.313681
https://doi.org/10.1073/pnas.252631999
https://doi.org/10.1007/pl00012580
https://doi.org/10.1016/s0167-5060(08)70731-3
https://doi.org/10.1016/s0167-5060(08)70731-3
https://doi.org/10.1007/978-3-319-05401-8_19
https://doi.org/10.1137/070710111
http://www.jstor.org/stable/3647877
http://www.jstor.org/stable/3647877
https://doi.org/10.1038/nature13182
https://doi.org/10.1145/240455.240477
http://doi.acm.org/10.1145/1327452.1327492
https://doi.org/10.1145/1327452.1327492

Bibliography

[102] R. Dementiev, L. Kettner, and P. Sanders. STXXL: standard template library for XXL data

sets. Softw. Pract. Exp., 38(6):589–637, 2008. doi:10.1002/spe.844.

[103] A. Denise, M. Vasconcellos, and D. J. Welsh. The random planar graph. In Congressus
numerantium, 1996.

[104] R. H. Dennard, F. H. Gaensslen, H. Yu, V. L. Rideout, E. Bassous, and A. R. LeBlanc. Design

of ion-implanted MOSFET’s with very small physical dimensions. IEEE J. of Solid-State
Circuits, 9(5):256–268, 1974.

[105] L. Devroye. Non-Uniform Random Variate Generation. Springer, 1986. doi:10.1007/978-1-

4613-8643-8.

[106] L. Devroye and P. Kruszewski. The botanical beauty of random binary trees. In F. J.

Brandenburg, editor, Int. Symp. on Graph Drawing GD, volume 1027 of LNCS, pages

166–177. Springer, 1995. doi:10.1007/BFb0021801.

[107] P. Diaconis, S. P. Holmes, and S. Janson. Threshold graph limits and random threshold

graphs. Internet Math., 5(3):267–320, 2008. doi:10.1080/15427951.2008.10129166.

[108] P. Dinklage, J. Ellert, J. Fischer, D. Köppl, and M. Penschuck. Bidirectional text compression

in external memory. In M. A. Bender, O. Svensson, and G. Herman, editors, European
Symp. on Algorithms ESA, LIPIcs. Schloss Dagstuhl – Leibniz-Zentrum für Informatik,

2019. doi:10.4230/LIPIcs.ESA.2019.41.

[109] S. N. Dorogovtsev and J. F. Mendes. Evolution of networks: From biological nets to the
Internet and WWW. OUP Oxford, 2013.

[110] S. N. Dorogovtsev and J. F. F. Mendes. Evolution of networks. Advances in Physics,
51(4):1079–1187, Jun 2002. doi:10.1080/00018730110112519.

[111] S. N. Dorogovtsev, J. F. F. Mendes, and A. N. Samukhin. Anomalous percolation properties

of growing networks. Phys. Rev. E, 64:066110, Nov 2001.

[112] M. Drobyshevskiy and D. Turdakov. Random graph modeling: A survey of the concepts.

ACM Comput. Surv., 52(6):131:1–131:36, 2020. doi:10.1145/3369782.

[113] N. Durak, T. G. Kolda, A. Pinar, and C. Seshadhri. A scalable null model for directed

graphs matching all degree distributions: In, out, and reciprocal. In IEEE Network Science
Workshop NSW, pages 23–30. Institute of Electrical and Electronics Engineers IEEE, 2013.

doi:10.1109/NSW.2013.6609190.

[114] R. A. Dwyer. Higher-dimensional Voronoi diagrams in linear expected time. Discret.
Comput. Geom., 6:343–367, 1991. doi:10.1007/BF02574694.

[115] H. Edelsbrunner. Voronoi Diagrams, pages 293–333. Springer, 1987.

[116] S. Edunov, D. Logothetis, C. Wang, A. Ching, and M. Kabiljo. Generating synthetic

social graphs with Darwini. In IEEE Int. Conf. on Distributed Computing Systems
ICDCS, pages 567–577. Institute of Electrical and Electronics Engineers IEEE, 2018.

doi:10.1109/ICDCS.2018.00062.

[117] F. Eggenberger and G. Pólya. Über die Statistik verketteter Vorgänge. ZAMM-J. of
Appl. Mathematics and Mechanics/Zeitschrift für Angewandte Mathematik und Mechanik,

3(4):279–289, 1923.

[118] R. B. Eggleton and D. A. Holton. Simple and multigraphic realizations of degree sequences.

In ACCM’80, Lecture Notes in Math., pages 155–172. Springer, 1980. URL: h�p://dx.doi.

org/10.1007/BFb0091817.

262

https://doi.org/10.1002/spe.844
https://doi.org/10.1007/978-1-4613-8643-8
https://doi.org/10.1007/978-1-4613-8643-8
https://doi.org/10.1007/BFb0021801
https://doi.org/10.1080/15427951.2008.10129166
https://doi.org/10.4230/LIPIcs.ESA.2019.41
https://doi.org/10.1080/00018730110112519
https://doi.org/10.1145/3369782
https://doi.org/10.1109/NSW.2013.6609190
https://doi.org/10.1007/BF02574694
https://doi.org/10.1109/ICDCS.2018.00062
http://dx.doi.org/10.1007/BFb0091817
http://dx.doi.org/10.1007/BFb0091817

[119] O. El-Daghar, E. Lundberg, and R. A. Bridges. EGBTER: capturing degree distribution,

clustering coe�cients, and community structure in a single random graph model. In

U. Brandes, C. Reddy, and A. Tagarelli, editors, Int. Conf. on Advances in Social Networks
Analysis and Mining ASONAM, pages 282–289. Institute of Electrical and Electronics

Engineers IEEE, 2018. doi:10.1109/ASONAM.2018.8508598.

[120] S. Emmons, S. G. Kobourov, M. Gallant, and K. Börner. Analysis of network clustering

algorithms and cluster quality metrics at scale. PLoS ONE, 11(7):1–18, Jul 2016. URL:

h�p://dx.doi.org/10.1371/journal.pone.0159161.

[121] P. Erdős and A. Rényi. On random graphs I. Publicationes Mathematicae Debrecen, 1959.

[122] P. Erdős and A. Rényi. On the evolution of random graphs. Mathematical Institute of the
Hungarian Academy of Sciences, 5(1), 1960.

[123] P. L. Erdös, C. S. Greenhill, T. R. Mezei, I. Miklós, D. Soltész, and L. Soukup. The mixing

time of the swap (switch) markov chains: a uni�ed approach. CoRR, abs/1903.06600, 2019.

URL: h�p://arxiv.org/abs/1903.06600, arXiv:1903.06600.

[124] A. V. Esquivel and M. Rosvall. Comparing network covers using mutual information,

2012. arXiv:1202.0425.

[125] L. Euler. Solutio problematis ad geometriam situs pertinentis. Commentarii academiae
scientiarum Petropolitanae, pages 128–140, 1741.

[126] G. Even, R. Levi, M. Medina, and A. Rosén. Sublinear random access generators for

preferential attachment graphs. In I. Chatzigiannakis, P. Indyk, F. Kuhn, and A. Muscholl,

editors, Automata, Languages, and Programming – Int. Colloquium ICALP, volume 80

of LIPIcs, pages 6:1–6:15. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2017.

doi:10.4230/LIPIcs.ICALP.2017.6.

[127] C. T. Fan, M. E. Muller, and I. Rezucha. Development of sampling plans by using sequential

(item by item) selection techniques and digital comp. J. of the American Statistical Assoc.,
57(298), 1962.

[128] R. A. S. Fisher and F. Yates. Statistical tables for biological, agricultural, and medical research.

Oliver and Boyd, 1963.

[129] M. J. Flynn. Some comp. organizations and their e�ectiveness. IEEE Transactions on Comp.,
C-21(9):948–960, 1972.

[130] A. Fog. Instruction tables. version 2020-10-11. URL: h�ps://www.agner.org/optimize/

instruction_tables.pdf.

[131] S. Fortunato. Community detection in graphs. Physics Reports, 486(3-5):75–174, Feb 2010.

doi:10.1016/j.physrep.2009.11.002.

[132] S. Fortunato and M. Barthélemy. Resolution limit in community detection. PNAS, 104(1):36–

41, 2007. URL: h�ps://doi.org/10.1073/pnas.0605965104.

[133] S. Fortunato and D. Hric. Community detection in networks: A user guide. Physics Reports,
659:1–44, Nov 2016. doi:10.1016/j.physrep.2016.09.002.

[134] T. Friedrich and A. Krohmer. On the diameter of hyperbolic random graphs. In M. M.

Halldórsson, K. Iwama, N. Kobayashi, and B. Speckmann, editors, Automata, Languages,
and Programming – Int. Colloquium ICALP, Proceedings, Part II, volume 9135 of LNCS,

pages 614–625. Springer, 2015. doi:10.1007/978-3-662-47666-6_49.

263

https://doi.org/10.1109/ASONAM.2018.8508598
http://dx.doi.org/10.1371/journal.pone.0159161
http://arxiv.org/abs/1903.06600
http://arxiv.org/abs/1903.06600
http://arxiv.org/abs/1202.0425
https://doi.org/10.4230/LIPIcs.ICALP.2017.6
https://www.agner.org/optimize/instruction_tables.pdf
https://www.agner.org/optimize/instruction_tables.pdf
https://doi.org/10.1016/j.physrep.2009.11.002
https://doi.org/10.1073/pnas.0605965104
https://doi.org/10.1016/j.physrep.2016.09.002
https://doi.org/10.1007/978-3-662-47666-6_49

Bibliography

[135] T. Friedrich and A. Krohmer. On the diameter of hyperbolic random graphs. SIAM J.
Discret. Math., 32(2):1314–1334, 2018. doi:10.1137/17M1123961.

[136] T. Friedrich. From graph theory to network science: The natural emergence of hyperbol-

icity (tutorial). In Int. Symp. on Theoretical Aspects of Comp. Science STACS, pages 5:1–5:9,

2019. doi:10.4230/LIPIcs.STACS.2019.5.

[137] M. Frigo, C. E. Leiserson, H. Prokop, and S. Ramachandran. Cache-oblivious algorithms.

In IEEE Symp. on Foundations of Comp. Science FOCS, pages 285–298. IEEE Comp. Society,

1999. doi:10.1109/SFFCS.1999.814600.

[138] D. Funke, S. Lamm, U. Meyer, M. Penschuck, P. Sanders, C. Schulz, D. Strash, and M. v.

Looz. Communication-free massively distributed graph generation. J. Parallel Distributed
Comput., 131:200–217, 2019. doi:10.1016/j.jpdc.2019.03.011.

[139] D. Funke, S. Lamm, P. Sanders, C. Schulz, D. Strash, and M. v. Looz. Communication-free

massively distributed graph generation. In IEEE Int. Parallel and Distributed Processing
Symp. IPDPS, pages 336–347. Institute of Electrical and Electronics Engineers IEEE, 2018.

doi:10.1109/IPDPS.2018.00043.

[140] D. Funke and P. Sanders. Parallel d-d Delaunay triangulations in shared and distributed

memory. In S. P. Fekete and V. Ramachandran, editors, Workshop on Algorithm Engineering
and Experiments ALENEX, pages 207–217. Society for Industrial and App. Math. SIAM,

2017. doi:10.1137/1.9781611974768.17.

[141] É. Fusy. Uniform random sampling of planar graphs in linear time. Random Struct.
Algorithms, 35(4):464–522, 2009. doi:10.1002/rsa.20275.

[142] E. Galin, A. Peytavie, E. Guérin, and B. Benes. Authoring hierarchical road networks.

Comput. Graph. Forum, 30(7):2021–2030, 2011. doi:10.1111/j.1467-8659.2011.02055.x.

[143] P. Gao and N. C. Wormald. Uniform generation of random regular graphs. SIAM J.
Comput., 46(4):1395–1427, 2017. doi:10.1137/15M1052779.

[144] G. García-Pérez, A. Allard, M. Á. Serrano, and M. Boguñá. Mercator: uncovering faithful

hyperbolic embeddings of complex networks. New J. of Physics, 21(12):123033, dec 2019.

doi:10.1088/1367-2630/ab57d2.

[145] D. Garlaschelli. The weighted random graph model. New J. of Physics, 11(7):073005, Jul

2009. doi:10.1088/1367-2630/11/7/073005.

[146] M. N. Garofalakis, J. Gehrke, and R. Rastogi, editors. Data Stream Management - Process-
ing High-Speed Data Streams. Data-Centric Systems and Applications. Springer, 2016.

doi:10.1007/978-3-540-28608-0.

[147] O. Gebhard, M. Hahn-Klimroth, O. Parczyk, M. Penschuck, M. Rolvien, J. Scarlett, and

N. Tan. Near optimal sparsity-constrained group testing: improved bounds and algorithms.

CoRR, abs/2004.11860, 2020. URL: h�ps://arxiv.org/abs/2004.11860, arXiv:2004.11860.

[148] E. N. Gilbert. Random graphs. The Annals of Mathematical Statistics, 30(4):1141–1144, Dec

1959. doi:10.1214/aoms/1177706098.

[149] E. N. Gilbert. Random plane networks. J. of the Society for Industrial and App. Math.,
9(4):533–543, Dec 1961. doi:10.1137/0109045.

[150] M. Girvan and M. E. J. Newman. Community structure in social and biological net-

works. Proceedings of the National Academy of Sciences, 99(12):7821–7826, Jun 2002.

doi:10.1073/pnas.122653799.

264

https://doi.org/10.1137/17M1123961
https://doi.org/10.4230/LIPIcs.STACS.2019.5
https://doi.org/10.1109/SFFCS.1999.814600
https://doi.org/10.1016/j.jpdc.2019.03.011
https://doi.org/10.1109/IPDPS.2018.00043
https://doi.org/10.1137/1.9781611974768.17
https://doi.org/10.1002/rsa.20275
https://doi.org/10.1111/j.1467-8659.2011.02055.x
https://doi.org/10.1137/15M1052779
https://doi.org/10.1088/1367-2630/ab57d2
https://doi.org/10.1088/1367-2630/11/7/073005
https://doi.org/10.1007/978-3-540-28608-0
https://arxiv.org/abs/2004.11860
http://arxiv.org/abs/2004.11860
https://doi.org/10.1214/aoms/1177706098
https://doi.org/10.1137/0109045
https://doi.org/10.1073/pnas.122653799

[151] C. Gkantsidis, M. Mihail, and E. W. Zegura. The Markov Chain simulation method for

generating connected power law random graphs. In R. E. Ladner, editor, Workshop on
Algorithm Engineering and Experiments, pages 16–25. Society for Industrial and App. Math.

SIAM, 2003.

[152] A. Goldenberg, A. X. Zheng, S. E. Fienberg, and E. M. Airoldi. A survey of statisti-

cal network models. Foundations and Trends in Machine Learning, 2(2):129–233, 2009.

doi:10.1561/2200000005.

[153] O. Goldreich, S. Goldwasser, and A. Nussboim. On the implementation of huge random

objects. SIAM J. Comput., 39(7):2761–2822, 2010. doi:10.1137/080722771.

[154] N. J. Gotelli and G. R. Graves. Null models in ecology. Smithsonian Institution, 1996.

[155] R. L. Graham. Bounds on multiprocessing timing anomalies. SIAM J. of App. Math.,
17(2):416–429, 1969.

[156] C. S. Greenhill. A polynomial bound on the mixing time of a markov chain for sampling

regular directed graphs. Electr. J. Comb., 18(1), 2011. URL: h�p://www.combinatorics.org/

Volume_18/Abstracts/v18i1p234.html.

[157] C. S. Greenhill. The switch markov chain for sampling irregular graphs (extended abstract).

In P. Indyk, editor, ACM-SIAM Symp. on Discrete Algorithms SODA, pages 1564–1572.

Society for Industrial and App. Math. SIAM, 2015. doi:10.1137/1.9781611973730.103.

[158] C. S. Greenhill and M. Sfragara. The Switch Markov Chain for sampling irregular graphs

and digraphs. Theor. Comput. Sci., 719:1–20, 2018. doi:10.1016/j.tcs.2017.11.010.

[159] L. Gugelmann, K. Panagiotou, and U. Peter. Random hyperbolic graphs: Degree sequence

and clustering - (extended abstract). In A. Czumaj, K. Mehlhorn, A. M. Pitts, and R. Watten-

hofer, editors, Int. Colloquium on Automata, Languages, and Programming ICALP, volume

7392 of LNCS, pages 573–585. Springer, 2012. doi:10.1007/978-3-642-31585-5_51.

[160] P. Gupta and P. R. Kumar. The capacity of wireless networks. IEEE Trans. Inf. Theory,

46(2):388–404, 2000. doi:10.1109/18.825799.

[161] A. Gutfraind, I. Safro, and L. A. Meyers. Multiscale network generation. In Int. Conf.
on Information Fusion FUSION, pages 158–165. Institute of Electrical and Electronics

Engineers IEEE, 2015. URL: h�p://ieeexplore.ieee.org/document/7266557/.

[162] J. Hackl and B. T. Adey. Generation of spatially embedded random networks to model

complex transportation networks. In Int. Probabilistic Workshop, pages 217–230. Springer,

Nov 2016. doi:10.1007/978-3-319-47886-9_15.

[163] A. Hagberg, D. Schult, and P. Swart. Exploring network structure, dynamics, and function

using NetworkX. In Python in Science Conf. SciPy, pages 11–15, Pasadena, CA, 2008.

[164] W. W. Hager, J. T. Hungerford, and I. Safro. A multilevel bilinear programming al-

gorithm for the vertex separator problem. Comp. Opt. and Appl., 69(1):189–223, 2018.

doi:10.1007/s10589-017-9945-2.

[165] S. L. Hakimi. On realizability of a set of integers as degrees of the vertices of a linear graph. i.

J. of the Society for Industrial and App. Math., 10(3):496–506, Sep 1962. doi:10.1137/0110037.

[166] M. Hamann, U. Meyer, M. Penschuck, H. Tran, and D. Wagner. I/O-e�cient generation of

massive graphs following the LFR benchmark. CoRR, abs/1604.08738, 2017.

265

https://doi.org/10.1561/2200000005
https://doi.org/10.1137/080722771
http://www.combinatorics.org/Volume_18/Abstracts/v18i1p234.html
http://www.combinatorics.org/Volume_18/Abstracts/v18i1p234.html
https://doi.org/10.1137/1.9781611973730.103
https://doi.org/10.1016/j.tcs.2017.11.010
https://doi.org/10.1007/978-3-642-31585-5_51
https://doi.org/10.1109/18.825799
http://ieeexplore.ieee.org/document/7266557/
https://doi.org/10.1007/978-3-319-47886-9_15
https://doi.org/10.1007/s10589-017-9945-2
https://doi.org/10.1137/0110037

Bibliography

[167] M. Hamann, U. Meyer, M. Penschuck, H. Tran, and D. Wagner. I/O-e�cient generation of

massive graphs following the LFR benchmark. ACM J. of Experimental Algorithmics, 23,

2018. doi:10.1145/3230743.

[168] M. Hamann, U. Meyer, M. Penschuck, and D. Wagner. I/O-e�cient generation of massive

graphs following the LFR benchmark. In S. P. Fekete and V. Ramachandran, editors,

Workshop on Algorithm Engineering and Experiments ALENEX, pages 58–72. Society for

Industrial and App. Math. SIAM, 2017. doi:10.1137/1.9781611974768.5.

[169] M. Hamann, B. Strasser, D. Wagner, and T. Zeitz. Simple distributed graph clustering

using modularity and Map Equation. CoRR, abs/1710.09605, 2017. URL: h�p://arxiv.org/

abs/1710.09605, arXiv:1710.09605.

[170] M. Hamann, B. Strasser, D. Wagner, and T. Zeitz. Distributed graph clustering using

modularity and Map Equation. In M. Aldinucci, L. Padovani, and M. Torquati, editors,

Euro-Par 2018: Int. Conf. on Parallel and Distributed Computing, volume 11014 of LNCS,

pages 688–702. Springer, 2018. doi:10.1007/978-3-319-96983-1_49.

[171] P. L. Hammer and B. Simeone. The splittance of a graph. Combinatorica, 1(3):275–284,

1981. doi:10.1007/BF02579333.

[172] S. Harenberg, G. Bello, L. Gjeltema, S. Ranshous, J. Harlalka, R. Seay, K. Padmanabhan,

and N. Samatova. Community detection in large-scale networks: a survey and empirical

evaluation. Wiley Interdisciplinary Reviews: Computational Statistics, 6(6):426–439, Jul

2014. doi:10.1002/wics.1319.

[173] V. Havel. Poznámka o existenci konečných grafů. Časopis pro pěstování matematiky,

080(4), 1955.

[174] M. Herlihy, V. Luchangco, and M. Moir. Obstruction-free synchronization: Double-ended

queues as an example. In Int. Conf. on Distributed Computing Systems ICDCS, pages

522–529. IEEE Comp. Society, 2003. doi:10.1109/ICDCS.2003.1203503.

[175] S. Hert and M. Seel. dd convex hulls and Delaunay triangulations. In CGAL 4.7 User and
Reference Manual. CGAL, 2015.

[176] P. W. Holland, K. B. Laskey, and S. Leinhardt. Stochastic blockmodels: First steps. Social
Networks, 5(2):109–137, Jun 1983. doi:10.1016/0378-8733(83)90021-7.

[177] P. Holme and B. J. Kim. Growing scale-free networks with tunable clustering. Physical
Review E, 65(2), Jan 2002. doi:10.1103/physreve.65.026107.

[178] M. Holtgrewe. A scalable coarsening phase for a multi-level graph partitioning algorithm.

Master’s thesis, University of Karlsruhe, 2009.

[179] M. Holtgrewe, P. Sanders, and C. Schulz. Engineering a scalable high quality graph parti-

tioner. In IEEE Int. Parallel and Distributed Processing Symp. IPDPS, pages 1–12. Institute

of Electrical and Electronics Engineers IEEE, 2010. doi:10.1109/IPDPS.2010.5470485.

[180] L. Hubert and P. Arabie. Comparing partitions. J. of Classi�cation, 2(1):193–218, 1985.

URL: h�p://dx.doi.org/10.1007/BF01908075.

[181] L. Hübschle-Schneider and P. Sanders. Linear work generation of R-MAT graphs. CoRR,

abs/1905.03525, 2019. arXiv:1905.03525.

266

https://doi.org/10.1145/3230743
https://doi.org/10.1137/1.9781611974768.5
http://arxiv.org/abs/1710.09605
http://arxiv.org/abs/1710.09605
http://arxiv.org/abs/1710.09605
https://doi.org/10.1007/978-3-319-96983-1_49
https://doi.org/10.1007/BF02579333
https://doi.org/10.1002/wics.1319
https://doi.org/10.1109/ICDCS.2003.1203503
https://doi.org/10.1016/0378-8733(83)90021-7
https://doi.org/10.1103/physreve.65.026107
https://doi.org/10.1109/IPDPS.2010.5470485
http://dx.doi.org/10.1007/BF01908075
http://arxiv.org/abs/1905.03525

[182] L. Hübschle-Schneider and P. Sanders. Parallel weighted random sampling. In M. A.

Bender, O. Svensson, and G. Herman, editors, European Symp. on Algorithms ESA, volume

144 of LIPIcs, pages 59:1–59:24. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2019.

doi:10.4230/LIPIcs.ESA.2019.59.

[183] M. L. Huson and A. Sen. Broadcast scheduling algorithms for radio net-

works. In Proceedings of MILCOM ’95, volume 2, pages 647–651 vol.2, nov 1995.

doi:10.1109/MILCOM.1995.483546.

[184] Intel Corporation. Intel®64 and IA-32 Architectures — Software Developer’s Manual —
Volume 2, 2019.

[185] F. Iorio, M. Bernardo-Faura, A. Gobbi, T. Cokelaer, G. Jurman, and J. Saez-Rodriguez. E�-

cient randomization of biological networks while preserving functional characterization of

individual nodes. BMC Bioinform., 17:542:1–542:14, 2016. doi:10.1186/s12859-016-1402-1.

[186] S. Itzkovitz, R. Milo, N. Kashtan, G. Ziv, and U. Alon. Subgraphs in random networks.

Physical Review E, 68(2), Aug 2003. doi:10.1103/physreve.68.026127.

[187] J. JáJá. An Introduction to Parallel Algorithms. Addison Wesley, 1992.

[188] X. Jia. Wireless networks and random geometric graphs. In Int. Symp. on Parallel
Architectures, Algorithms,and Networks I-SPAN, pages 575–580. Institute of Electrical and

Electronics Engineers IEEE, 2004. doi:10.1109/ISPAN.2004.1300540.

[189] M. Kaiser. Mean clustering coe�cients: the role of isolated nodes and leafs on clustering

measures for small-world networks. New J. of Physics, 10(8), 2008. URL: h�p://dx.doi.org/

10.1088/1367-2630/10/8/083042.

[190] T. Kawamoto and M. Rosvall. Estimating the resolution limit of the map equation in

community detection. Physical Review E, 91:012809, 2015. URL: h�ps://dx.doi.org/10.1103/

PhysRevE.91.012809.

[191] P. Kennedy. Amazon EC2 cloud compute instances benchmarked w/ rackspace, 2013.

(accessed on 10 October 2019).

[192] H. J. Kim, Y. Lee, B. Kahng, and I. m. Kim. Weighted scale-free network in �nancial

correlations. J. of the Physical Society of Japan, 71(9), 2002.

[193] J. M. Kleinberg, R. Kumar, P. Raghavan, S. Rajagopalan, and A. Tomkins. The web as a

graph: Measurements, models, and methods. In T. Asano, H. Imai, D. T. Lee, S. I. Nakano,

and T. Tokuyama, editors, Computing and Combinatorics COCOON, volume 1627 of LNCS,

pages 1–17. Springer, 1999. doi:10.1007/3-540-48686-0_1.

[194] R. Kleinberg. Geographic routing using hyperbolic space. In IEEE INFOCOM 2007 - 26th
IEEE Int. Conf. on Comp. Communications, pages 1902–1909, 2007.

[195] D. E. Knuth. The Art of Comp. Programming, Volume II: Seminumerical Algorithms, 2nd
Edition. Addison Wesley, 1981.

[196] T. G. Kolda, A. Pinar, T. D. Plantenga, and C. Seshadhri. A scalable generative

graph model with community structure. SIAM J. Scienti�c Computing, 36(5), 2014.

doi:10.1137/130914218.

[197] P. Krapivsky, G. Rodgers, and S. Redner. Degree distributions of growing networks.

Physical Review Letters, 86(23):5401, 2001.

267

https://doi.org/10.4230/LIPIcs.ESA.2019.59
https://doi.org/10.1109/MILCOM.1995.483546
https://doi.org/10.1186/s12859-016-1402-1
https://doi.org/10.1103/physreve.68.026127
https://doi.org/10.1109/ISPAN.2004.1300540
http://dx.doi.org/10.1088/1367-2630/10/8/083042
http://dx.doi.org/10.1088/1367-2630/10/8/083042
https://dx.doi.org/10.1103/PhysRevE.91.012809
https://dx.doi.org/10.1103/PhysRevE.91.012809
https://doi.org/10.1007/3-540-48686-0_1
https://doi.org/10.1137/130914218

Bibliography

[198] M. Kretz. Extending C++ for explicit data-parallel programming via SIMD vector types.
PhD thesis, Goethe University Frankfurt am Main, 2015. URL: h�p://publikationen.ub.

uni-frankfurt.de/frontdoor/index/index/docId/38415.

[199] M. Kretz and V. Lindenstruth. Vc: A C++ library for explicit vectorization. Softw. Pract.
Exp., 42(11):1409–1430, 2012. doi:10.1002/spe.1149.

[200] D. Krioukov, F. Papadopoulos, M. Kitsak, A. Vahdat, and M. Boguñá. Hyperbolic geometry

of complex networks. Physical Review E, 82(3), Sep 2010. doi:10.1103/physreve.82.036106.

[201] P. R. Kumar, M. J. Wainwright, and R. Zecchina. Mathematical Foundations of Complex
Networked Information Systems: Politecnico Di Torino, Verrès, Italy 2009, volume 2141.

Springer, 2015.

[202] R. Kumar, J. Novak, and A. Tomkins. Structure and evolution of online social networks.

In T. Eliassi-Rad, L. H. Ungar, M. Craven, and D. Gunopulos, editors, ACM SIGKDD Int.
Conf. on Knowledge Discovery and Data Mining, pages 611–617. Assoc. for Computing

Machinery ACM, 2006. doi:10.1145/1150402.1150476.

[203] R. Kumar, P. Raghavan, S. Rajagopalan, D. Sivakumar, A. Tomkins, and E. Upfal. Ran-

dom graph models for the web graph. In IEEE Symp. on Foundations of Comp. Sci-
ence FOCS, pages 57–65. Institute of Electrical and Electronics Engineers IEEE, 2000.

doi:10.1109/SFCS.2000.892065.

[204] S. Kumar. Co-authorship networks: a review of the literature. Aslib J. Inf. Manag.,
67(1):55–73, 2015. doi:10.1108/AJIM-09-2014-0116.

[205] K. Kurihara, Y. Kameya, and T. Sato. A frequency-based stochastic blockmodel. Workshop
on Information-Based Induction Sciences, 1(1):N2, 2006.

[206] S. Lamm. Communication e�cient algorithms for generating massive networks. Master’s

thesis, Karlsruhe Institute of Technology, 2017. doi:10.5445/IR/1000068617.

[207] L. Lamport and N. A. Lynch. Distributed computing: Models and methods. In J. van

Leeuwen, editor, Handbook of Theoretical Comp. Science, Volume B: Formal Models and
Semantics, pages 1157–1199. Elsevier and MIT Press, 1990. doi:10.1016/b978-0-444-88074-

1.50023-8.

[208] A. Lancichinetti and S. Fortunato. Benchmarks for testing community detection algorithms

on directed and weighted graphs with overlapping communities. Physical Review E, 80(1),

Jul 2009. doi:10.1103/physreve.80.016118.

[209] A. Lancichinetti and S. Fortunato. Community detection algorithms: A comparative

analysis. Physical Review E, 80(5), Nov 2009. URL: h�p://link.aps.org/doi/10.1103/PhysRevE.

80.056117.

[210] A. Lancichinetti, S. Fortunato, and F. Radicchi. Benchmark graphs for testing community

detection algorithms. Physical Review E, 78(4), Oct 2008. doi:10.1103/physreve.78.046110.

[211] A. Lancichinetti, F. Radicchi, J. J. Ramasco, and S. Fortunato. Finding statistically signi�cant

communities in networks. PLoS ONE, 6(4):1–18, Apr 2011. URL: h�p://dx.doi.org/10.1371/

journal.pone.0018961.

[212] C. Lee and D. J. Wilkinson. A review of stochastic block models and extensions for graph

clustering. Appl. Network Science, 4(1):122, 2019. doi:10.1007/s41109-019-0232-2.

268

http://publikationen.ub.uni-frankfurt.de/frontdoor/index/index/docId/38415
http://publikationen.ub.uni-frankfurt.de/frontdoor/index/index/docId/38415
https://doi.org/10.1002/spe.1149
https://doi.org/10.1103/physreve.82.036106
https://doi.org/10.1145/1150402.1150476
https://doi.org/10.1109/SFCS.2000.892065
https://doi.org/10.1108/AJIM-09-2014-0116
https://doi.org/10.5445/IR/1000068617
https://doi.org/10.1016/b978-0-444-88074-1.50023-8
https://doi.org/10.1016/b978-0-444-88074-1.50023-8
https://doi.org/10.1103/physreve.80.016118
http://link.aps.org/doi/10.1103/PhysRevE.80.056117
http://link.aps.org/doi/10.1103/PhysRevE.80.056117
https://doi.org/10.1103/physreve.78.046110
http://dx.doi.org/10.1371/journal.pone.0018961
http://dx.doi.org/10.1371/journal.pone.0018961
https://doi.org/10.1007/s41109-019-0232-2

[213] J. Leskovec, D. Chakrabarti, J. M. Kleinberg, and C. Faloutsos. Realistic, mathematically

tractable graph generation and evolution, using Kronecker multiplication. In A. Jorge,

L. Torgo, P. Brazdil, R. Camacho, and J. Gama, editors, European Conf. on Principles and
Practice of Knowledge Discovery in Databases PKDD, volume 3721 of LNCS, pages 133–145.

Springer, 2005. doi:10.1007/11564126_17.

[214] J. Leskovec, D. Chakrabarti, J. M. Kleinberg, C. Faloutsos, and Z. Ghahramani. Kronecker

graphs: An approach to modeling networks. J. Mach. Learn. Res., 11:985–1042, 2010. URL:

h�ps://dl.acm.org/citation.cfm?id=1756039.

[215] J. Leskovec, J. M. Kleinberg, and C. Faloutsos. Graphs over time: densi�cation laws,

shrinking diameters and possible explanations. In R. Grossman, R. J. Bayardo, and K. P.

Bennett, editors, ACM SIGKDD Int. Conf. on Knowledge Discovery and Data Mining, pages

177–187. Assoc. for Computing Machinery ACM, 2005. doi:10.1145/1081870.1081893.

[216] J. Leskovec and A. Krevl. SNAP Datasets: Stanford large network dataset collection.

h�p://snap.stanford.edu/data, Jun 2014.

[217] D. A. Levin, Y. Peres, and E. L. Wilmer. Markov chains and mixing times. American

Mathematical Society AMS, Providence, Rhode Island, 2009.

[218] L. Li, D. Alderson, J. C. Doyle, and W. Willinger. Towards a theory of scale-free graphs:

De�nition, properties, and implications. Internet Math., 2(4):431–523, 2005. URL: h�ps:

//projecteuclid.org:443/euclid.im/1150477667.

[219] E. Lindholm, J. Nickolls, S. F. Oberman, and J. Montrym. NVIDIA tesla: A uni�ed graphics

and computing architecture. IEEE Micro, 28(2):39–55, 2008. doi:10.1109/MM.2008.31.

[220] S. Lo. Parallel Delaunay triangulation in three dimensions. Comput.Methods in
Appl.Mech.Eng., 237-240:88–106, 2012.

[221] Y. C. Lo, C. T. Li, and S. D. Lin. Parallelizing preferential attachment models for generating

large-scale social networks that cannot �t into memory. In Int. Conf. on Privacy, Security,
Risk and Trust PASSAT, and Int. Confernece on Social Computing SocialCom, pages 229–238.

Institute of Electrical and Electronics Engineers IEEE, 2012. doi:10.1109/SocialCom-

PASSAT.2012.28.

[222] M. v. Looz and H. Meyerhenke. Querying probabilistic neighborhoods in spatial data

sets e�ciently. In V. Mäkinen, S. J. Puglisi, and L. Salmela, editors, Int. Workshop on
Combinatorial Algorithms IWOCA, volume 9843 of LNCS, pages 449–460. Springer, 2016.

doi:10.1007/978-3-319-44543-4_35.

[223] M. v. Looz, H. Meyerhenke, and R. Prutkin. Generating random hyperbolic graphs in

subquadratic time. In K. M. Elbassioni and K. Makino, editors, Algorithms and Computation
- Int. Symp. ISAAC, volume 9472 of LNCS, pages 467–478. Springer, 2015. doi:10.1007/978-

3-662-48971-0_40.

[224] M. v. Looz, M. S. Özdayi, S. Laue, and H. Meyerhenke. Generating massive complex

networks with hyperbolic geometry faster in practice. In IEEE High Performance Extreme
Computing Conf. HPEC, pages 1–6. Institute of Electrical and Electronics Engineers IEEE,

2016. doi:10.1109/HPEC.2016.7761644.

[225] A. Lumsdaine, D. P. Gregor, B. Hendrickson, and J. W. Berry. Challenges in parallel graph

processing. Parallel Process. Lett., 17(1):5–20, 2007. doi:10.1142/S0129626407002843.

[226] D. Lusher, J. Koskinen, and G. Robins. Exponential random graph models for social networks.
Cambridge University Press, 2013.

269

https://doi.org/10.1007/11564126_17
https://dl.acm.org/citation.cfm?id=1756039
https://doi.org/10.1145/1081870.1081893
http://snap.stanford.edu/data
https://projecteuclid.org:443/euclid.im/1150477667
https://projecteuclid.org:443/euclid.im/1150477667
https://doi.org/10.1109/MM.2008.31
https://doi.org/10.1109/SocialCom-PASSAT.2012.28
https://doi.org/10.1109/SocialCom-PASSAT.2012.28
https://doi.org/10.1007/978-3-319-44543-4_35
https://doi.org/10.1007/978-3-662-48971-0_40
https://doi.org/10.1007/978-3-662-48971-0_40
https://doi.org/10.1109/HPEC.2016.7761644
https://doi.org/10.1142/S0129626407002843

Bibliography

[227] N. V. R. Mahadev and U. N. Peled. Threshold Graphs and Related Topics. Elsevier, 1995.

[228] P. Mahadevan, D. V. Krioukov, K. R. Fall, and A. Vahdat. Systematic topology analysis

and generation using degree correlations. In L. Rizzo, T. E. Anderson, and N. McKeown,

editors, ACM SIGCOMM Conf. on Applications, Technologies, Architectures, and Protocols
for Comp. Communications, pages 135–146. Assoc. for Computing Machinery ACM, 2006.

doi:10.1145/1159913.1159930.

[229] M. Mahdian and Y. Xu. Stochastic Kronecker graphs. In A. Bonato and F. R. K. Chung,

editors, Int. Workshop on Algorithms and Models for the Web Graph WAW, volume 4863 of

LNCS, pages 179–186. Springer, 2007. doi:10.1007/978-3-540-77004-6_14.

[230] A. Maheshwari and N. Zeh. A survey of techniques for designing I/O-e�cient algorithms.

In U. Meyer, P. Sanders, and J. F. Sibeyn, editors, Algorithms for Memory Hierarchies,
Advanced Lectures [Dagstuhl ResearchSeminar, March 10-14, 2002], volume 2625 of LNCS,

pages 36–61. Springer, 2002. doi:10.1007/3-540-36574-5_3.

[231] P. Massart. Concentration inequalities and model selection, volume 6. Springer, 2007.

[232] M. Matsumoto and T. Nishimura. Mersenne Twister: A 623-dimensionally equidistributed

uniform pseudo-random number generator. ACM Trans. Model. Comput. Simul., 8(1):3–30,

1998.

[233] C. J. H. McDiarmid. On the method of bounded di�erences. Surveys in Combinatorics,
pages 148–188, 1989.

[234] C. C. McGeoch. A Guide to Experimental Algorithmics. Cambridge Uni-

versity Press, 2012. URL: h�p://www.cambridge.org/us/academic/subjects/

Comp.-science/algorithmics-complexity-Comp.-algebra-and-computational-g/

guide-experimental-algorithmics.

[235] A. McGregor. Graph stream algorithms: a survey. SIGMOD Rec., 43(1):9–20, 2014.

doi:10.1145/2627692.2627694.

[236] B. D. McKay and N. C. Wormald. Uniform generation of random regular graphs of

moderate degree. J. Algorithms, 11(1):52–67, 1990. doi:10.1016/0196-6774(90)90029-E.

[237] S. Meinert and D. Wagner. An experimental study on generating planar graphs. In M. J.

Atallah, X. Y. Li, and B. Zhu, editors, Joint Int. Conf. on Frontiers in Algorithmics and
Algorithmic Aspects in Information and Management FAW-AAIM, volume 6681 of LNCS,

pages 375–387. Springer, 2011. doi:10.1007/978-3-642-21204-8_39.

[238] R. Meusel, S. Vigna, O. Lehmberg, and C. Bizer. Graph structure in the web - revisited: a

trick of the heavy tail. In C. W. Chung, A. Z. Broder, K. Shim, and T. Suel, editors, Int.
World Wide Web Conf. WWW, pages 427–432. Assoc. for Computing Machinery ACM,

2014. doi:10.1145/2567948.2576928.

[239] U. Meyer and M. Penschuck. Generating massive scale-free networks under resource

constraints. In M. T. Goodrich and M. Mitzenmacher, editors, Workshop on Algorithm
Engineering and Experiments ALENEX, pages 39–52. Society for Industrial and App. Math.

SIAM, 2016. doi:10.1137/1.9781611974317.4.

[240] U. Meyer and M. Penschuck. Large-scale graph generation and big data: An overview on

recent results. Bulletin of the EATCS, 122, 2017. URL: h�p://eatcs.org/beatcs/index.php/

beatcs/article/view/494.

270

https://doi.org/10.1145/1159913.1159930
https://doi.org/10.1007/978-3-540-77004-6_14
https://doi.org/10.1007/3-540-36574-5_3
http://www.cambridge.org/us/academic/subjects/Comp.-science/algorithmics-complexity-Comp.-algebra-and-computational-g/guide-experimental-algorithmics
http://www.cambridge.org/us/academic/subjects/Comp.-science/algorithmics-complexity-Comp.-algebra-and-computational-g/guide-experimental-algorithmics
http://www.cambridge.org/us/academic/subjects/Comp.-science/algorithmics-complexity-Comp.-algebra-and-computational-g/guide-experimental-algorithmics
https://doi.org/10.1145/2627692.2627694
https://doi.org/10.1016/0196-6774(90)90029-E
https://doi.org/10.1007/978-3-642-21204-8_39
https://doi.org/10.1145/2567948.2576928
https://doi.org/10.1137/1.9781611974317.4
http://eatcs.org/beatcs/index.php/beatcs/article/view/494
http://eatcs.org/beatcs/index.php/beatcs/article/view/494

[241] U. Meyer and M. Penschuck. Large-scale graph generation: Recent results of the SPP 1736

– Part II. it - Information Technology, 2020.

[242] U. Meyer, P. Sanders, and J. F. Sibeyn, editors. Algorithms for Memory Hierarchies, volume

2625 of LNCS. Springer, 2003. doi:10.1007/3-540-36574-5.

[243] S. Milgram. The small world problem. Psychology today, 2(1):60–67, 1967.

[244] J. C. Miller and A. A. Hagberg. E�cient generation of networks with given expected

degrees. In A. M. Frieze, P. Horn, and P. Pralat, editors, Algorithms and Models for the
Web Graph – Int. Workshop WAW, volume 6732 of LNCS, pages 115–126. Springer, 2011.

doi:10.1007/978-3-642-21286-4_10.

[245] R. Milo. Network motifs: Simple building blocks of complex networks. Science,
298(5594):824–827, Oct 2002. doi:10.1126/science.298.5594.824.

[246] R. Milo, N. Kashtan, S. Itzkovitz, M. Newman, and U. Alon. On the uniform generation of

random graphs with prescribed degree sequences, 2003. arXiv:cond-mat/0312028.

[247] M. Molloy and B. A. Reed. A critical point for random graphs with a given degree sequence.

Random Struct. Algorithms, 6(2/3):161–180, 1995. doi:10.1002/rsa.3240060204.

[248] G. E. Moore et al. Cramming more components onto integrated circuits, 1965.

[249] S. Moreno, J. J. P. III, and J. Neville. Scalable and exact sampling method for prob-

abilistic generative graph models. Data Min. Knowl. Discov., 32(6):1561–1596, 2018.

doi:10.1007/s10618-018-0566-x.

[250] S. Moreno, J. J. P. III, J. Neville, and S. Kirshner. A scalable method for exact sampling

from Kronecker family models. In R. Kumar, H. Toivonen, J. Pei, J. Z. Huang, and X. Wu,

editors, IEEE Int. Conf. on Data Mining ICDM, pages 440–449. Institute of Electrical and

Electronics Engineers IEEE, 2014. doi:10.1109/ICDM.2014.148.

[251] G. M. Morton. A comp. oriented geodetic data base and a new tech-

nique in �le sequencing. Technical report, Int. Business Machines Company

New York, 1966. URL: h�ps://domino.research.ibm.com/library/cyberdig.nsf/0/

0dabf9473b9c86d48525779800566a39?OpenDocument.

[252] R. Motwani and P. Raghavan. Randomized algorithms. Chapman & Hall/CRC, 2010.

[253] T. Munzner. Exploring large graphs in 3D hyperbolic space. IEEE Comp. Graphics and
Applications, 18(4):18–23, 1998. doi:10.1109/38.689657.

[254] S. Muthukrishnan and G. Pandurangan. Thresholding random geometric graph prop-

erties motivated by ad hoc sensor networks. J. Comput. Syst. Sci., 76(7):686–696, 2010.

doi:10.1016/j.jcss.2010.01.002.

[255] S. A. Myers, A. Sharma, P. Gupta, and J. J. Lin. Information network or social network?:

the structure of the twitter follow graph. In C. W. Chung, A. Z. Broder, K. Shim, and

T. Suel, editors, Int. World Wide Web Conf. WWW, pages 493–498. Assoc. for Computing

Machinery ACM, 2014. doi:10.1145/2567948.2576939.

[256] T. Müller and M. Staps. The diameter of KPKVB random graphs. CoRR, abs/1707.09555,

2017. URL: h�p://arxiv.org/abs/1707.09555, arXiv:1707.09555.

[257] F. Nake. Das doppelte Bild. In Digitale Form, volume 3,2 of Bildwelten des Wissens:
Kunsthistorisches Jahrbuch für Bildkritik. De Gruyter, 2006.

271

https://doi.org/10.1007/3-540-36574-5
https://doi.org/10.1007/978-3-642-21286-4_10
https://doi.org/10.1126/science.298.5594.824
http://arxiv.org/abs/cond-mat/0312028
https://doi.org/10.1002/rsa.3240060204
https://doi.org/10.1007/s10618-018-0566-x
https://doi.org/10.1109/ICDM.2014.148
https://domino.research.ibm.com/library/cyberdig.nsf/0/0dabf9473b9c86d48525779800566a39?OpenDocument
https://domino.research.ibm.com/library/cyberdig.nsf/0/0dabf9473b9c86d48525779800566a39?OpenDocument
https://doi.org/10.1109/38.689657
https://doi.org/10.1016/j.jcss.2010.01.002
https://doi.org/10.1145/2567948.2576939
http://arxiv.org/abs/1707.09555
http://arxiv.org/abs/1707.09555

Bibliography

[258] M. E. J. Newman. The structure and function of complex networks. SIAM Review,

45(2):167–256, 2003. doi:10.1137/S003614450342480.

[259] M. E. J. Newman. Analysis of weighted networks. Physical Review E, 70(5), Nov 2004.

doi:10.1103/physreve.70.056131.

[260] M. E. J. Newman. Networks: An Introduction. Oxford University Press, 2010.

doi:10.1093/ACPROF:OSO/9780199206650.001.0001.

[261] M. E. J. Newman and M. Girvan. Finding and evaluating community structure in networks.

Physical Review E, 69(026113):1–16, 2004. URL: h�p://link.aps.org/abstract/PRE/v69/

e026113.

[262] M. E. J. Newman, S. H. Strogatz, and D. J. Watts. Random graphs with arbi-

trary degree distributions and their applications. Physical Review E, 64(2), Jul 2001.

doi:10.1103/physreve.64.026118.

[263] M. Newman. Power laws, pareto distributions and Zipf’s law. Contemporary Physics,
46(5):323–351, 2005. doi:10.1080/00107510500052444.

[264] S. Nobari, X. Lu, P. Karras, and S. Bressan. Fast random graph generation. In A. Ailamaki,

S. Amer-Yahia, J. M. Patel, T. Risch, P. Senellart, and J. Stoyanovich, editors, Int. Conf. on
Extending Database Technology EDBT, pages 331–342. Assoc. for Computing Machinery

ACM, 2011. doi:10.1145/1951365.1951406.

[265] NVIDIA Corp. CUDA C Programming Guide, 2015. URL: h�p://docs.nvidia.com/cuda/

pdf/CUDA_C_Programming_Guide.pdf.

[266] NVIDIA Corp. CURAND LIBRARY, Mar 2015. URL: h�p://docs.nvidia.com/cuda/pdf/

CURAND_Library.pdf.

[267] OpenMP Architecture Review Board. OpenMP application program interface version 5.0,

2018. URL: h�ps://www.openmp.org/wp-content/uploads/OpenMP-API-Specification-5.

0.pdf.

[268] J. A. Orenstein and T. H. Merrett. A class of data structures for associative search-

ing. In D. J. Rosenkrantz and R. Fagin, editors, ACM SIGACT-SIGMOD Symp. on Princi-
ples of Database Systems, pages 181–190. Assoc. for Computing Machinery ACM, 1984.

doi:10.1145/588011.588037.

[269] E. Parsonage and M. Roughan. Fast generation of spatially embedded ran-

dom networks. IEEE Trans. Network Science and Engineering, 4(2):112–119, 2017.

doi:10.1109/TNSE.2017.2681700.

[270] M. D. Penrose. Random Geometric Graphs. Oxford University Press, 2003. URL: h�p://www.

maths.bath.ac.uk/~masmdp/rgg.html, doi:10.1093/acprof:oso/9780198506263.001.0001.

[271] M. Penschuck. Generating practical random hyperbolic graphs in near-linear time and

with sub-linear memory. In C. S. Iliopoulos, S. P. Pissis, S. J. Puglisi, and R. Raman, editors,

Int. Symp. on Experimental Algorithms SEA, volume 75 of LIPIcs, pages 26:1–26:21. Schloss

Dagstuhl – Leibniz-Zentrum für Informatik, 2017. doi:10.4230/LIPIcs.SEA.2017.26.

[272] M. Penschuck, U. Brandes, M. Hamann, S. Lamm, U. Meyer, I. Safro, P. Sanders, and

C. Schulz. Recent advances in scalable network generation. CoRR, abs/2003.00736, 2020.

arXiv:2003.00736.

[273] K. Popper. The Logic of Scienti�c Discovery. Hutchinson, 1959.

272

https://doi.org/10.1137/S003614450342480
https://doi.org/10.1103/physreve.70.056131
https://doi.org/10.1093/ACPROF:OSO/9780199206650.001.0001
http://link.aps.org/abstract/PRE/v69/e026113
http://link.aps.org/abstract/PRE/v69/e026113
https://doi.org/10.1103/physreve.64.026118
https://doi.org/10.1080/00107510500052444
https://doi.org/10.1145/1951365.1951406
http://docs.nvidia.com/cuda/pdf/CUDA_C_Programming_Guide.pdf
http://docs.nvidia.com/cuda/pdf/CUDA_C_Programming_Guide.pdf
http://docs.nvidia.com/cuda/pdf/CURAND_Library.pdf
http://docs.nvidia.com/cuda/pdf/CURAND_Library.pdf
https://www.openmp.org/wp-content/uploads/OpenMP-API-Specification-5.0.pdf
https://www.openmp.org/wp-content/uploads/OpenMP-API-Specification-5.0.pdf
https://doi.org/10.1145/588011.588037
https://doi.org/10.1109/TNSE.2017.2681700
http://www.maths.bath.ac.uk/~masmdp/rgg.html
http://www.maths.bath.ac.uk/~masmdp/rgg.html
https://doi.org/10.1093/acprof:oso/9780198506263.001.0001
https://doi.org/10.4230/LIPIcs.SEA.2017.26
http://arxiv.org/abs/2003.00736

[274] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery. Numerical Recipes in C,
2nd Edition. Cambridge University Press, 1992. URL: h�p://www.nr.com/.

[275] D. d. S. Price. A general theory of bibliometric and other cumulative advantage processes.

JASIS, 27(5):292–306, 1976. doi:10.1002/asi.4630270505.

[276] D. J. D. S. Price. Networks of scienti�c papers. Science, 149(3683):510–515, 1965. URL:

h�p://www.jstor.org/stable/1716232.

[277] N. Przulj, D. G. Corneil, and I. Jurisica. Modeling interactome: scale-free or geometric?

Bioinform., 20(18):3508–3515, 2004. doi:10.1093/bioinformatics/bth436.

[278] X. Que, F. Checconi, F. Petrini, T. Wang, and W. Yu. Lightning-fast community detection

in social media: A scalable implementation of the Louvain algorithm. Technical report,

Auburn University, 2013. Tech. Rep. AU-CSSE-PASL/13-TR01.

[279] A. R. Rao, R. Jana, and S. Bandyopadhyay. A Markov Chain Monte Carlo method for

generating random (0, 1)-matrices with given marginals. Sankhyā: The Indian J. Statistics,
Series A, 1996.

[280] J. Ray, A. Pinar, and C. Seshadhri. Are we there yet? when to stop a markov chain while

generating random graphs. In A. Bonato and J. C. M. Janssen, editors, Int. Workshop on
Algorithms and Models for the Web Graph WAW, volume 7323 of LNCS, pages 153–164.

Springer, 2012. doi:10.1007/978-3-642-30541-2_12.

[281] J. Ray, A. Pinar, and C. Seshadhri. A stopping criterion for markov chains when

generating independent random graphs. J. Complex Networks, 3(2):204–220, 2015.

doi:10.1093/comnet/cnu041.

[282] S. Rechner. Markov Chain Monte Carlo algorithms for the uniform sampling of combinatorial
objects. PhD thesis, Martin-Luther-Universität Halle-Wittenberg, 2018. URL: h�p://dx.doi.

org/10.25673/2241.

[283] C. Robert and G. Casella. Monte Carlo statistical methods. Springer, 2013.

[284] R. W. Robinson and N. C. Wormald. Almost all regular graphs are hamiltonian. Random
Struct. Algorithms, 5(2):363–374, 1994. doi:10.1002/rsa.3240050209.

[285] A. S. Rodionov and H. Choo. On generating random network structures: Trees. In P. M. A.

Sloot, D. Abramson, A. V. Bogdanov, J. J. Dongarra, A. Y. Zomaya, and Y. E. Gorbachev,

editors, Computational Science - ICCS 2003, Int. Conf., volume 2658 of LNCS, pages 879–887.

Springer, 2003. doi:10.1007/3-540-44862-4_95.

[286] D. Ron, I. Safro, and A. Brandt. Relaxation-based coarsening and multiscale graph organi-

zation. Multiscale Model. Simul., 9(1):407–423, 2011. doi:10.1137/100791142.

[287] M. Rosvall, D. Axelsson, and C. T. Bergstrom. The map equation. The European Physical J.
Special Topics, 178(1):13–23, 2009. URL: h�p://dx.doi.org/10.1140/epjst/e2010-01179-1.

[288] I. Safro, P. Sanders, and C. Schulz. Advanced coarsening schemes for graph partitioning.

ACM J. of Experimental Algorithmics, 19(1), 2014. doi:10.1145/2670338.

[289] R. Sal�. A long-period random number generator with application to permutations. In

COMPSTAT, 1974.

[290] P. Sanders. Random permutations on distributed, external and hierarchical memory. Inf.
Process. Lett., 67(6):305–309, 1998. doi:10.1016/S0020-0190(98)00127-6.

273

http://www.nr.com/
https://doi.org/10.1002/asi.4630270505
http://www.jstor.org/stable/1716232
https://doi.org/10.1093/bioinformatics/bth436
https://doi.org/10.1007/978-3-642-30541-2_12
https://doi.org/10.1093/comnet/cnu041
http://dx.doi.org/10.25673/2241
http://dx.doi.org/10.25673/2241
https://doi.org/10.1002/rsa.3240050209
https://doi.org/10.1007/3-540-44862-4_95
https://doi.org/10.1137/100791142
http://dx.doi.org/10.1140/epjst/e2010-01179-1
https://doi.org/10.1145/2670338
https://doi.org/10.1016/S0020-0190(98)00127-6

Bibliography

[291] P. Sanders. Fast priority queues for cached memory. ACM J. of Experimental Algorithmics,
5:7, 2000. doi:10.1145/351827.384249.

[292] P. Sanders, S. Lamm, L. Hübschle-Schneider, E. Schrade, and C. Dachsbacher. E�cient

parallel random sampling - vectorized, cache-e�cient, and online. ACM Trans. Math.
Softw., 44(3):29:1–29:14, 2018. doi:10.1145/3157734.

[293] P. Sanders, S. Schlag, and I. Müller. Communication e�cient algorithms for fundamental

big data problems. In X. Hu, T. Y. Lin, V. V. Raghavan, B. W. Wah, R. Baeza-Yates, G. C.

Fox, C. Shahabi, M. Smith, Q. Yang, R. Ghani, W. Fan, R. Lempel, and R. Nambiar, editors,

IEEE Int. Conf. on Big Data, pages 15–23. Institute of Electrical and Electronics Engineers

IEEE, 2013. doi:10.1109/BigData.2013.6691549.

[294] P. Sanders and C. Schulz. Scalable generation of scale-free graphs. Inf. Process. Lett.,
116(7):489–491, 2016. doi:10.1016/j.ipl.2016.02.004.

[295] P. Sanders, K. Mehlhorn, M. Dietzfelbinger, and R. Dementiev. Sequential and Parallel
Algorithms and Data Structures - The Basic Toolbox. Springer, 2019. doi:10.1007/978-3-030-

25209-0.

[296] W. E. Schlauch, E. A. Horvát, and K. A. Zweig. Di�erent �avors of randomness: comparing

random graph models with �xed degree sequences. Social Netw. Analys. Mining, 5(1):36:1–

36:14, 2015. doi:10.1007/s13278-015-0267-z.

[297] W. E. Schlauch and K. A. Zweig. In�uence of the null-model on motif detection. In

J. Pei, F. Silvestri, and J. Tang, editors, IEEE/ACM Int. Conf. on Advancesin Social Networks
Analysis and Mining ASONAM, pages 514–519. Assoc. for Computing Machinery ACM,

2015. doi:10.1145/2808797.2809400.

[298] Schloss Dagstuhl - Leibniz Center for Informatics. DBLP: Compute science bibliography.

August 2020 Snapshot. URL: h�ps://dblp.uni-trier.de/.

[299] C. Schulz, A. Nocaj, M. El-Assady, S. Frey, M. Hlawatsch, M. Hund, G. K. Karch, R. Netzel,

C. Schätzle, M. Butt, D. A. Keim, T. Ertl, U. Brandes, and D. Weiskopf. Generative

data models for validation and evaluation of visualization techniques. In M. Sedlmair,

P. Isenberg, T. Isenberg, N. Mahyar, and H. Lam, editors, Workshop on Beyond Time and
Errors on NovelEvaluation Methods for Visualization BELIV, pages 112–124. Assoc. for

Computing Machinery ACM, 2016. doi:10.1145/2993901.2993907.

[300] M. . Serrano and M. Boguñá. Weighted con�guration model. In AIP Conf. Proceedings,
volume 776. AIP, 2005.

[301] C. Seshadhri, T. G. Kolda, and A. Pinar. Community structure and scale-free collections of

erdős-rényi graphs. Physical Review E, 85(5), May 2012. doi:10.1103/physreve.85.056109.

[302] C. Seshadhri, A. Pinar, and T. G. Kolda. A hitchhiker’s guide to choosing parameters of

stochastic Kronecker graphs. CoRR, abs/1102.5046, 2011. URL: h�p://arxiv.org/abs/1102.

5046, arXiv:1102.5046.

[303] Y. Shavitt and T. Tankel. Hyperbolic embedding of internet graph for distance estimation

and overlay construction. IEEE/ACM Trans. Netw., 16(1):25–36, 2008. URL: h�p://doi.acm.

org/10.1145/1373452.1373455, doi:10.1145/1373452.1373455.

[304] S. S. Shen-Orr, R. Milo, S. Mangan, and U. Alon. Network motifs in the transcrip-

tional regulation network of Escherichia coli. Nature Genetics, 31(1):64–68, Apr 2002.

doi:10.1038/ng881.

274

https://doi.org/10.1145/351827.384249
https://doi.org/10.1145/3157734
https://doi.org/10.1109/BigData.2013.6691549
https://doi.org/10.1016/j.ipl.2016.02.004
https://doi.org/10.1007/978-3-030-25209-0
https://doi.org/10.1007/978-3-030-25209-0
https://doi.org/10.1007/s13278-015-0267-z
https://doi.org/10.1145/2808797.2809400
https://dblp.uni-trier.de/
https://doi.org/10.1145/2993901.2993907
https://doi.org/10.1103/physreve.85.056109
http://arxiv.org/abs/1102.5046
http://arxiv.org/abs/1102.5046
http://arxiv.org/abs/1102.5046
http://doi.acm.org/10.1145/1373452.1373455
http://doi.acm.org/10.1145/1373452.1373455
https://doi.org/10.1145/1373452.1373455
https://doi.org/10.1038/ng881

[305] J. R. Shewchuk. Delaunay re�nement algorithms for triangular mesh generation. Comput.
Geom., 22(1-3):21–74, 2002. doi:10.1016/S0925-7721(01)00047-5.

[306] A. Shine and D. Kempe. Generative graph models based on Laplacian spectra? In L. Liu,

R. W. White, A. Mantrach, F. Silvestri, J. J. McAuley, R. Baeza-Yates, and L. Zia, editors,

The World Wide Web Conf. WWW, pages 1691–1701. Assoc. for Computing Machinery

ACM, 2019. doi:10.1145/3308558.3313631.

[307] J. Shun, Y. Gu, G. E. Blelloch, J. T. Fineman, and P. B. Gibbons. Sequential random

permutation, list contraction and tree contraction are highly parallel. In P. Indyk, editor,

ACM-SIAM Symp. on Discrete Algorithms SODA, pages 431–448. Society for Industrial and

App. Math. SIAM, 2015. doi:10.1137/1.9781611973730.30.

[308] F. Simini, M. C. González, A. Maritan, and A. L. Barabási. A universal model for mobility

and migration patterns. Nature, 484(7392), 2012.

[309] G. Simmel. Soziologie: Untersuchungen über die Formen der Vergesellschaftung. Duncker &

Humblot, 1908.

[310] R. Sitzenfrei, M. Möderl, and W. Rauch. Automatic generation of water dis-

tribution systems based on GIS data. Environ. Model. Softw., 47:138–147, 2013.

doi:10.1016/j.envsoft.2013.05.006.

[311] G. M. Slota, J. W. Berry, S. D. Hammond, S. L. Olivier, C. A. Phillips, and S. Rajamanickam.

Scalable generation of graphs for benchmarking HPC community-detection algorithms.

In M. Taufer, P. Balaji, and A. J. Peña, editors, Int. Conf. for High Performance Computing,
Networking, Storage and Analysis SC, pages 73:1–73:14. Assoc. for Computing Machinery

ACM, 2019. doi:10.1145/3295500.3356206.

[312] T. A. B. Snijders. Statistical models for social networks. Annual Review of Sociology, 37,

2011.

[313] E. Stadlober. Ratio of uniforms as a convenient method for sampling from classical

discrete distributions. In E. A. MacNair, K. J. Musselman, and P. Heidelberger, editors,

Winter Simulation Conf., pages 484–489. Assoc. for Computing Machinery ACM, 1989.

doi:10.1145/76738.76801.

[314] E. Stadlober. The ratio of uniforms approach for generating discrete random variates. J.
Computational and App. Math., 31(1), 1990.

[315] E. Stadlober and H. Zechner. The patchwork rejection technique for sampling

from unimodal distributions. ACM Trans. Model. Comput. Simul., 9(1):59–80, 1999.

doi:10.1145/301677.301685.

[316] C. L. Staudt, A. Sazonovs, and H. Meyerhenke. NetworKit: A tool suite for large-scale

complex network analysis. Network Science, 4(4):508–530, 2016. doi:10.1017/nws.2016.20.

[317] M. Stephan and J. Docter. Jülich Supercomputing Centre. JUQUEEN: IBM Blue Gene/Q

Supercomp. System at the Jülich Supercomputing Centre. J. of large-scale research facilities,
2015, 1, A1. h�p://dx.doi.org/10.17815/jlsrf-1-18.

[318] N. Stephens, S. Biles, M. Boettcher, J. Eapen, M. Eyole, G. Gabrielli, M. Horsnell, G. Magklis,

A. Martinez, N. Prémillieu, A. Reid, A. Rico, and P. Walker. The ARM scalable vector

extension. IEEE Micro, 37(2):26–39, 2017. doi:10.1109/MM.2017.35.

275

https://doi.org/10.1016/S0925-7721(01)00047-5
https://doi.org/10.1145/3308558.3313631
https://doi.org/10.1137/1.9781611973730.30
https://doi.org/10.1016/j.envsoft.2013.05.006
https://doi.org/10.1145/3295500.3356206
https://doi.org/10.1145/76738.76801
https://doi.org/10.1145/301677.301685
https://doi.org/10.1017/nws.2016.20
http://dx.doi.org/10.17815/jlsrf-1-18
https://doi.org/10.1109/MM.2017.35

Bibliography

[319] A. Stivala, G. Robins, and A. Lomi. Exponential random graph model parameter

estimation for very large directed networks. PLOS ONE, 15(1):e0227804, Jan 2020.

doi:10.1371/journal.pone.0227804.

[320] S. H. Strogatz. Exploring complex networks. Nature, 410(6825):268, 2001.

[321] G. Strona, D. Nappo, F. Boccacci, S. Fattorini, and J. San-Miguel-Ayanz. A fast and unbiased

procedure to randomize ecological binary matrices with �xed row and column totals.

Nature Communications, 5(1), Jun 2014. doi:10.1038/ncomms5114.

[322] A. Stukowski. Structure identi�cation methods for atomistic simulations of crystalline

materials. Modelling and Simulation in Materials Science and Engineering, 20(4):045021,

2012.

[323] L. Tabourier, C. Roth, and J. Cointet. Generating constrained random graphs using multiple

edge switches. ACM J. Exp. Algorithmics, 16, 2011. doi:10.1145/1963190.2063515.

[324] The Lemur Project. ClueWeb12 Web Graph, Nov 2013. h�p://www.lemurproject.org/

clueweb12/webgraph.php.

[325] C. Thomassen. Kuratowski’s theorem. J. of Graph Theory, 5(3):225–241, 1981.

doi:10.1002/jgt.3190050304.

[326] J. Travers and S. Milgram. An experimental study of the small world prob-

lem. In S. Leinhardt, editor, Social Networks, pages 179–197. Academic Press,

1977. URL: h�p://www.sciencedirect.com/science/article/pii/B9780124424500500183,

doi:https://doi.org/10.1016/B978-0-12-442450-0.50018-3.

[327] E. Turro et al. Whole-genome sequencing of patients with rare diseases in a national

health system. Nat., 583(7814):96–102, 2020. doi:10.1038/s41586-020-2434-2.

[328] J. Ugander, B. Karrer, L. Backstrom, and C. Marlow. The anatomy of the Facebook social

graph. CoRR, abs/1111.4503, 2011. URL: h�p://arxiv.org/abs/1111.4503, arXiv:1111.4503.

[329] L. G. Valiant. A bridging model for parallel computation. Commun. ACM, 33(8):103–111,

1990. doi:10.1145/79173.79181.

[330] D. E. Vengro� and J. S. Vitter. Supporting i/o-e�cient scienti�c computation in TPIE. In

IEEE SPDP, pages 74–77. IEEE, 1995. doi:10.1109/SPDP.1995.530667.

[331] N. D. Verhelst. An e�cient MCMC algorithm to sample binary matrices with �xed

marginals. Psychometrika, 73(4):705–728, 2008.

[332] F. Viger and M. Latapy. E�cient and simple generation of random simple con-

nected graphs with prescribed degree sequence. J. Complex Networks, 4(1):15–37, 2016.

doi:10.1093/comnet/cnv013.

[333] J. S. Vitter. Faster methods for random sampling. Commun. ACM, 27(7):703–718, 1984.

doi:10.1145/358105.893.

[334] J. S. Vitter. An e�cient algorithm for sequential random sampling. ACM Trans. Math.
Softw., 13(1):58–67, 1987. doi:10.1145/23002.23003.

[335] J. S. Vitter. Algorithms and data structures for external memory. Foundations and Trends
in Theoretical Comp. Science, 2(4):305–474, 2006. doi:10.1561/0400000014.

[336] M. von Looz. High-Performance Graph Algorithms. PhD thesis, KIT – Karlsruhe Institute

of Technology, 2018.

276

https://doi.org/10.1371/journal.pone.0227804
https://doi.org/10.1038/ncomms5114
https://doi.org/10.1145/1963190.2063515
http://www.lemurproject.org/clueweb12/webgraph.php
http://www.lemurproject.org/clueweb12/webgraph.php
https://doi.org/10.1002/jgt.3190050304
http://www.sciencedirect.com/science/article/pii/B9780124424500500183
https://doi.org/https://doi.org/10.1016/B978-0-12-442450-0.50018-3
https://doi.org/10.1038/s41586-020-2434-2
http://arxiv.org/abs/1111.4503
http://arxiv.org/abs/1111.4503
https://doi.org/10.1145/79173.79181
https://doi.org/10.1109/SPDP.1995.530667
https://doi.org/10.1093/comnet/cnv013
https://doi.org/10.1145/358105.893
https://doi.org/10.1145/23002.23003
https://doi.org/10.1561/0400000014

[337] J. Von Neumann. Various techniques used in connection with random digits. In Monte
Carlo Method, volume 12, pages 36–38. National Bureau of Standards, 1951.

[338] M. D. Vose. A linear algorithm for generating random numbers with a given distribution.

IEEE Trans. Software Eng., 17(9):972–975, 1991. doi:10.1109/32.92917.

[339] A. J. Walker. An e�cient method for generating discrete random variables with general

distributions. ACM Trans. Math. Softw., 3(3):253–256, 1977. doi:10.1145/355744.355749.

[340] C. Walshaw. A multilevel algorithm for force-directed graph drawing. In J. Marks, editor,

Int. Symp. on Graph Drawing GD, volume 1984 of LNCS, pages 171–182. Springer, 2000.

doi:10.1007/3-540-44541-2_17.

[341] Z. Wang, R. J. Thomas, and A. Scaglione. Generating random topology power grids.

In Hawaii Int. Int. Conf. on Systems Science HICSS, page 183. Institute of Electrical and

Electronics Engineers IEEE, 2008. doi:10.1109/HICSS.2008.182.

[342] D. J. Watts and S. H. Strogatz. Collective dynamics of small-world networks. Nature,
393(6684):440–442, Jun 1998. doi:10.1038/30918.

[343] D. J. Watts, P. S. Dodds, and M. E. Newman. Identity and search in social networks. science,
296(5571):1302–1305, 2002.

[344] B. M. Waxman. Routing of multipoint connections. IEEE J. Sel. Areas Commun., 6(9):1617–

1622, 1988. doi:10.1109/49.12889.

[345] N. C. Wormald. Models of random regular graphs. London Mathematical Society Lecture
Note Series, 1999.

[346] S. Xie, A. Kirillov, R. B. Girshick, and K. He. Exploring randomly wired neural networks

for image recognition. In IEEE/CVF Int. Conf. on Comp. Vision ICCV, pages 1284–1293.

Institute of Electrical and Electronics Engineers IEEE, 2019. doi:10.1109/ICCV.2019.00137.

[347] J. Yang and J. Leskovec. Community-a�liation graph model for overlapping network

community detection. In M. J. Zaki, A. Siebes, J. X. Yu, B. Goethals, G. I. Webb, and X. Wu,

editors, IEEE Int. Conf. on Data Mining ICDM, pages 1170–1175. Institute of Electrical and

Electronics Engineers IEEE, 2012. doi:10.1109/ICDM.2012.139.

[348] J. Yang and J. Leskovec. Structure and overlaps of ground-truth communities in networks.

ACM TIST, 5(2):26:1–26:35, 2014. doi:10.1145/2594454.

[349] A. Yoo and K. W. Henderson. Parallel generation of massive scale-free graphs. CoRR,

abs/1003.3684, 2010. URL: h�p://arxiv.org/abs/1003.3684, arXiv:1003.3684.

[350] M. Zaharia, R. S. Xin, P. Wendell, T. Das, M. Armbrust, A. Dave, X. Meng, J. Rosen,

S. Venkataraman, M. J. Franklin, A. Ghodsi, J. Gonzalez, S. Shenker, and I. Stoica. Apache

spark: a uni�ed engine for big data processing. Commun. ACM, 59(11):56–65, 2016. URL:

h�p://doi.acm.org/10.1145/2934664, doi:10.1145/2934664.

[351] J. Zeng and H. Yu. A study of graph partitioning schemes for parallel graph community

detection. Parallel Comput., 58:131–139, 2016. doi:10.1016/j.parco.2016.05.008.

[352] L. Zhang, M. Small, and K. Judd. Exactly scale-free scale-free networks. CoRR,

abs/1309.0961, 2013. URL: h�p://arxiv.org/abs/1309.0961, arXiv:1309.0961.

[353] J. Y. Zhao. Expand and contract: Sampling graphs with given degrees and other com-

binatorial families. CoRR, abs/1308.6627, 2013. URL: h�p://arxiv.org/abs/1308.6627,

arXiv:1308.6627.

277

https://doi.org/10.1109/32.92917
https://doi.org/10.1145/355744.355749
https://doi.org/10.1007/3-540-44541-2_17
https://doi.org/10.1109/HICSS.2008.182
https://doi.org/10.1038/30918
https://doi.org/10.1109/49.12889
https://doi.org/10.1109/ICCV.2019.00137
https://doi.org/10.1109/ICDM.2012.139
https://doi.org/10.1145/2594454
http://arxiv.org/abs/1003.3684
http://arxiv.org/abs/1003.3684
http://doi.acm.org/10.1145/2934664
https://doi.org/10.1145/2934664
https://doi.org/10.1016/j.parco.2016.05.008
http://arxiv.org/abs/1309.0961
http://arxiv.org/abs/1309.0961
http://arxiv.org/abs/1308.6627
http://arxiv.org/abs/1308.6627

	Introduction
	Motivation
	Goals
	Outline

	Random Graphs in the Context of Network Analysis
	From Networks to Graphs
	Graph Theory
	Random Graphs
	Density
	Clustering
	Hidden Distances
	Prescribed Degree Sequences as Null Models

	Practical Engineering Challenges
	The Cost of Data Transfer
	Advanced Features of Modern Computers
	Shared-Memory Parallelism
	Data Parallelism

	Articles Included in the Present Thesis

	Recent Advances in Scalable Network Generation
	Introduction
	Graph Properties and Uses of Generators
	Graph Properties
	Use Cases

	General Algorithmic Models and Techniques
	Models of Computation
	Random Permutations
	Basic Sampling Techniques
	Sampling from Huge Sets

	Basic Models
	Erdos-Rènyi and Gilbert Graphs
	Preferential Attachment

	Random Spatial Graphs
	Random Geometric Graphs
	Random Hyperbolic Graphs
	Geometric Inhomogenous Random Graphs
	Random Planar Graphs

	Random Graphs with Prescribed Degree Sequences
	Chung-Lu
	Configuration Model
	Edge Switching
	Curveball and Global Curveball

	Block Models
	Stochastic Block Model
	R-MAT / Kronecker Graphs
	LFR
	CKB

	Graph Replication
	BTER
	Darwini
	Multilevel generators
	dK-Graphs

	Additional Graph Types
	Directed Graphs
	Weighted Graphs
	Connected Graphs
	Regular Graphs
	Threshold Graphs

	Software Packages
	Future Challenges

	Preferential Attachment
	Introduction
	External Memory Model
	Barabási-Albert Preferential Attachment Model
	Review of the * Algorithm
	Related Work
	Our Contributions

	The Sequential * Algorithm for EM
	The Parallel * Algorithm for EM
	The Decision Tree
	I/O-Efficiency
	Balancing
	Parallelism

	Implementation of *
	Token-wise Parallel * for GPGPU
	Tree Decomposition on CPU

	Experimental Results
	Balancing and Iterations in
	Runtime and Scalability
	Large Seed Graphs
	Previous Results

	Preferential Attachment beyond BA
	Alternative Vertex Sampling
	Non-Uniform Node Degrees

	Massive Graphs Following the * Benchmark
	Introduction
	Random Graphs from a Prescribed Degree Sequence
	Our Contribution

	Preliminaries and Notation
	Notation
	External Memory Model
	*: Time Forward Processing

	The * Benchmark
	*: Deterministic Edges from a Degree Sequence
	Data Structure
	Algorithm
	Improving the I/O Complexity

	*: I/O-efficient Edge Switching
	* for Independent Swaps
	Phases Request nodes and load nodes
	Phases Simulate swaps and load existence
	Phase Perform swaps
	Phase Update edge list
	Phase Inter-Swap Dependencies
	Target Edge Dependencies
	Source Edge Dependencies
	Complexity

	*: Sampling of Graphs from Degree Sequence
	Configuration Model
	Edge Rewiring for Non-Simple Graphs

	*: Community Assignment
	A Simple, Iterative, But not yet Complete Algorithm
	Enforcing Constraint on Community Size (R2)
	Assignment with Overlapping Communities

	/: Merging Intra- and Inter-Community Graphs
	*: Global Edge Rewiring
	*: Community Edge Rewiring

	Implementation
	Experimental Results
	Notation and Setup
	*'s State Size
	Inter-Swap Dependencies
	Test Systems
	Performance of *
	Performance of *
	's Performance and Mixing Comparison with
	Convergence of *
	Performance of *
	Qualitative Comparison of *

	Outlook and Conclusion
	Appendix
	Summary of Definitions
	Comparing * Implementations
	Comparing * and *

	Global Curveball
	Introduction
	Our Contributions

	Preliminaries and Notation
	External Memory Model
	*: Time Forward Processing

	Randomization Schemes
	Edge Switching
	Simple Undirected Curveball Algorithm
	Undirected Global Trades

	Novel Curveball Algorithms for Undirected Graphs
	*: A Sequential I/O-efficient Curveball Algorithm
	*: An Internal Memory Version of *
	: An I/O-efficient Global Curveball Algorithm
	*: An I/O-efficient Parallel Global Curveball Algorithm

	Experimental Evaluation
	Mixing of Edge-Switching, Curveball and Global Curveball
	Runtime Performance Benchmarks

	Conclusion and Outlook
	Appendix
	*
	*
	EM-GCB
	Linear Congruential Maps
	*
	Data Structure for Message Transportation
	Improvements for Type (iii) Messages

	Analysis of *
	Macrochunk Size
	Heuristic on Intra-Batch Dependencies

	Additional Experimental Results
	Swaps Performed by Curveball and Global Curveball
	Autocorrelation Time of Curveball and Edge Switching

	Streaming Random Hyperbolic Graphs
	Introduction
	Our Contribution
	Notation
	The Hyperbolic Random Graph Model G_{alpha, C}(n)
	Hyperbolic Graph Generators

	MemGen: a Fast Algorithm with Linear Memory Usage
	Candidate Selection is at Worst a Constant Approximation
	Nearly Sorted Points/Request Allow for Faster Sorting

	HyperGen: Reducing MemGen's Memory Footprint
	Accelerating the Endgame
	Parallelism

	Implementation
	Adjacency Tests without Trigonometric Functions
	Optimising NkGen for Streaming

	Experimental Evaluation
	Runtime
	Memory Consumption
	Scalability

	Appendix
	Definitions, Useful Identities and Approximations
	Hyperbolic Functions
	Definitions Related To Geometry
	Approximations

	Additional Experimental Results

	Communication-free Graph Generation
	Introduction
	Preliminaries
	Network Models
	Sampling Algorithms
	GPGPU Computation Model

	Related Work
	Model
	Model
	* Model
	Model
	Miscellaneous

	Generator
	Directed Graphs
	Undirected Graphs
	Adaptations for the G(n,p) Model

	Generator
	Parallelization
	Analysis of the Parallel Algorithm
	Adaptation to GPGPUs

	Generator
	Generators
	In-memory Generator
	Neighborhood Queries
	Streaming Generator
	Global Annuli
	Streaming Annuli

	Experimental Evaluation
	Implementation
	Experimental Setup
	Erdos-Rényi Generator
	Generator
	Generator
	 Generator

	Conclusion
	Appendix
	Hyperbolic Geometry Related Definitions
	Hyperbolic Geometry Related Approximations

	Geometric Inhomogeneous and Hyperbolic Random Graphs
	Introduction
	Contribution and Outline
	Comparison with Existing Generators

	Models
	Geometric Inhomogeneous Random Graphs
	Hyperbolic Random Graphs
	Comparison of and

	Sampling Algorithm
	Inhomogeneous Weights
	Binomial Variant of the Model
	Efficiently Iterating over Cell Pairs
	Efficient Access to Vertices by Bucket and Cell

	Implementation Details
	Estimating the Average Degree Parameter
	Efficiently Encoding and Decoding Morton Codes
	Generating Avoiding Expensive Mathematical Operations
	Parallelization

	Experimental Evaluation
	Scaling of the * Generator
	Runtime Comparison
	Difference Between * and *

	Appendix
	Omitted Proof of lem:girgs/access
	Implementation Details
	Avoiding Double Counting Buckets, Cells, and Vertices
	Estimating the Average Degree Parameter
	Efficiently Encoding and Decoding Morton Codes
	Avoiding Computationally Expensive Math for
	Parallelization

	Summary
	Preferential Attachment
	Simple Graphs from Prescribed Degree Sequence
	Geometrically Embedded Random Graphs
	A Fast and Memory-Efficient Streaming Generator for *
	A Communication-Agnostic Generator for *
	-based Generator

	Future Research Opportunities
	Preferential Attachment
	Simple Graphs from Prescribed Degree Sequence
	Random Hyperbolic Graphs

