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1 Summary 

The oleochemical and petrochemical industries provide diverse chemicals used in personal care 

products, food and pharmaceutical industries or as fuels, oils, polymers and others. However, 

fossil resources are dwindling and concerns about these conventional production methods have 

risen due to their strong negative impact on the environment and contribution to climate change. 

Therefore, alternative, sustainable and environmentally friendly production methods for 

oleochemical compounds such as fatty acids, fatty alcohols, hydroxy fatty acids and dicarboxylic 

acids are desired. The biotechnological production by engineered microorganism could fulfill 

these requirements. The concept of metabolic engineering, which is the modification of metabolic 

pathways of a host organism for increased production of a target compound, is a widely used 

strategy in biotechnology to generate cell factories or chassis strains for robust, efficient and high 

production. In this work, the versatile model and industrial yeast Saccharomyces cerevisiae was 

manipulated by metabolic engineering strategies for increased production of the medium-chain 

fatty acid octanoic acid and de novo production the derived 8-hydroxyoctanoic acid. 

Octanoic acid production was enabled by the fatty acid biosynthesis pathway by use of a mutated 

fatty acid synthase (FAS
RK

) in a wild type FAS deficient strain. The yeast fatty acid synthase 

(FAS) consists of two polypeptides, α and β, which assemble to a α6β6 complex in a co-

translational manner by interaction of the subunits. Because this step might be subject to cellular 

regulation, the α- and β- subunits of fatty acid synthase were fused to form a single-chain 

construct (fusFAS
RK

), which displayed superior octanoic acid production compared with split 

FAS
RK

. Thus, FAS
RK

 expression was identified as a limiting step of octanoic acid production. But 

the strains that produce octanoic acid have a severe growth defect that is undesirable for 

biotechnological applications and could lead to lower production titers. One reason is the strong 

inhibitory effect of octanoic acid. Another possibility is that the mutant FAS no longer produces 

enough essential long-chain fatty acids. To compensate for this, the mutated split and fused FAS 

variants were co-expressed individually in a strain harboring genomic wild type FAS alleles. In 

addition, mutant and wild type variants of fused and split FAS were co-expressed together in a 

FAS deficient strain. However, both cases resulted in decreased octanoic acid titers potentially by 

physical and/or metabolic crosstalk of the FAS variants.  
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The fatty acid biosynthesis relies on cytosolic acetyl-CoA for initiation and derived malonyl-CoA 

for elongation and requires NADPH for reductive power. To increase production of octanoic 

acid, engineering strategies for increased acetyl-CoA and NADHP supply were investigated. 

First, the flux through the native cytosolic acetyl-CoA and NADPH providing pyruvate 

dehydrogenase bypass was enhanced by overexpression of the target genes ADH2, ALD6 and 

ACS
L461P

 from Salmonella enterica in combination or individually. Next, the acety-CoA forming 

heterologous phosphoketolase/phosphotransacetylase pathway was expressed and NADPH 

formation was increased by redirecting the flux of glucose-6-phosphate into the NADPH 

producing oxidative branch of the pentose phosphate pathway. In particular, the flux through 

glycolysis and pyruvate dehydrogenase bypass was reduced by downregulating the expression of 

the phosphoglucose isomerase PGI1 and deleting the acetaldehyde dehydrogenase ALD6. 

Glucose-6-phosphate was guided into the pentose phosphate pathway by overexpressing the 

glucose-6-phosphate dehydrogenase ZWF1. The first approach did not influence octanoic acid 

production but the latter increased yields in the glucose consumption phase by 65 %. However, 

combining the superior fusFAS
RK

 with acetyl-CoA and NADPH supply engineering strategies 

did not result in additive production effects, indicating that other limitations hinder high octanoic 

acid accumulation. Limitations could be caused in particular by the strong inhibitory effects of 

octanoic acid or by intrinsic limitations of the FAS
RK

 mutant.    

To enlarge the octanoic acid production platform towards other derived valuable oleochemical 

compounds the de novo production of 8-hydroxyoctanoic acid was targeted. Since short- and 

medium-chain fatty acids have a strong inhibitory effect on Saccharomyces cerevisiae, the 

inhibitory effect of hydroxy fatty acid and dicarboxylic with eight or ten carbon atoms were 

compared and revealed only little or no growth impairment. Subsequently, the formation of 8-

hydroxyoctanoic acid was targeted by a terminal hydroxylation of externally supplied octanoic 

acid in a bioconversion. For that, three heterologous genes, encoding for cytochromes P450 

enzymes and their cognate cytochrome P450 reductases were expressed and 8-hydroxyoctanoic 

acid production was compared. In addition, the use of different carbon sources was compared. A 

cytochrome P450 from Fusarium oxysporum f. sp. Lycopersici displayed highest production 

when ethanol/glycerol was used as the carbon source. Hence, it was chosen for a de novo 

biosynthesis by combinatorial expression with a FAS
RK

 for octanoic acid supply. This resulted in 
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production of 3 mgL
-1

 of 8-hydroxyoctanoic acid. However, at the end of fermentation a large 

amount of octanoic acid was still present and was not converted, revealing that the activity of the 

cytochrome P450 and its cognate P450 reductase are limiting 8-hydroxyoctanoic acid production. 

In summary, in this work octanoic acid biosynthesis in Saccharomyces cerevisiae was 

successfully increased with the fatty acid biosynthesis pathway through a novel fusion strategy of 

the FAS genes and engineering of precursor supply pathways. Current challenges and potential 

limitations in octanoic acid production were discovered and are discussed. In addition, the 

platform for medium-chain fatty acid production was extended to include a derivatization 

pathway for the first de novo production of 8-hydroxyoctanoic acid in Saccharomyces cerevisiae.  
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2 Introduction 

2.1 The oleochemical industry and market 

 

The industry that processes renewable vegetable oils and animal fats into suitable products is 

known as the oleochemical industry. Their products are used in food, as biofuels or 

oleochemicals, which are utilized in industrial products such as soaps, detergents, personal care 

products, solvents, surfactants, pharmaceuticals and polymers among many others. The biggest 

share of the annual production of vegetable oils of more than 80 % was used in human food in 

1998, but more than 14 % was also used for production of chemicals (Hill, 2000) equaling to 14-

17 million tons (MT) per year. The market of oleochemical products has grown steadily, due to 

increased prices for petrochemicals and the rising demand for production from sustainable 

sources (Oleochemicals Market Size, Share & Trends Analysis Report By Product, 2020). Thus, 

the annual consumption of vegetable oils, which reached 100-105 MT in the year 2000 (Hill, 

2000; Metzger and Bornscheuer, 2006) more than doubled to 206 MT in 2019/20 (Oilseeds: 

World Markets and Trade, 2020), representing a market size for oleochemicals of more than 20 

billion USD in 2019 (Oleochemicals Market Size, Share & Trends Analysis Report By Product, 

2020). For comparison, world consumption of fossil oil processed by the petrochemical industry 

reached an estimated volume of 400 MT in the year in 2002 (Metzger and Bornscheuer, 2006). 

The oil crops used by oleochemical industry are palm, soybean and rapeseed which together 

accounted for about 60 % of the vegetable oil market in 2006 (Rupilius and Ahmad, 2007). 

Especially palm oil has increased its market share and production tremendously surpassing 

soybean production for the first time in 2006 (Rupilius and Ahmad, 2007 and reference therein). 

A logical consequence considering its superior productivity of about 4 MT/Ha*year compared to 

0.4 MT/Ha*year for soybeans (Rupilius and Ahmad, 2007). 

Two oils are extracted from the fruit of the oil palm, palm oil and palm kernel oil, which are 

mainly composed of fatty acids (FA) bound in triacylglycerides (TAG) but differ in their exact 

composition (Norhaizan et al., 2013). Being the major constituents of vegetable oil, FA are the 

biggest share in the oleochmicals market (Oleochemicals Market Size, Share & Trends Analysis 

Report By Product, 2020). The dominant FA components of palm oil are long-chain fatty acids 
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(C16-C18, LCFA), which are equally divided between saturated and monounsaturated FA. In 

contrast, the largest FA fraction of 66-80 % of palm kernel oil are mainly saturated medium-

chain fatty acids (C8-C14, MCFA) (Norhaizan et al., 2013). Palm kernel oil, with the exception 

of coconut oil (Rupilius and Ahmad, 2007), is the only vegetable oil or fat rich in MCFA and also 

short-chain fatty acids (C4-C6, SCFA) such as hexanoic acid (Norhaizan et al., 2013).  

The increasing demands for palm oil have in consequences led to an expansion of oil palm 

plantations in tropical regions. Although it is a renewable raw resource, there is a growing 

awareness of the negative environmental impacts that oil plantations cause (Schmidt, 2015). They 

cause deforestation and fragmentation of tropical forests (Vijay et al., 2016), loss of biodiversity 

(Fitzherbert et al., 2008; Vijay et al., 2016), air and water pollution (Comte et al., 2015), 

increased greenhouse gas emission (Reijnders and Huijbregts, 2008) and flood risks (Khatun et 

al., 2017) as well as multiple social problems (Khatun et al., 2017 and references therein). But, 

oleochemicals are important products of modern industry and daily life. However, their steadily 

growing demand has a strong negative impact on the environment. Therefore, the search for a 

more environmentally friendly and sustainable production method is a current key challenge. 

2.2 Applications and uses of fatty acids and their derivatives 

  

While several vegetable oils or fats are used directly for industrial purposes, for instance shea or 

cocoa butter in cosmetic products, isolated FA and derived compounds have multiple applications 

depending on their physiochemical properties defined by chain length, functional groups and 

degree of saturation. The carboxyl head group and double C-C bonds of unsaturated fatty acids 

(UFA) allow chemical modification into an almost unlimited amount of chemicals and 

compounds, which include bulk and fine chemicals, precursor compounds and more. Chemical 

synthesis reactions for the modification of FA and derived compounds have consequently been 

intensively researched and reviewed (Biermann et al., 2000; Hou, 2000; Behr and Gomes, 2010). 

The main FA derivatives, namely fatty acid methyl esters (FAME), fatty acid ethyl esters 

(FAEE), fatty alcohols, hydroxy fatty acids (HyFA), dicarboxylic acids (DCA), alkanes, and 

many more (Fig. 1), are introduced in this section in regard to their uses.  
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Biofuels 

Fuels produced from renewable sources instead of fossil resources are termed biofuels and are 

considered a more environmentally friendly alternative. Such biofuels must have the same 

characteristics as current fuels and ideally be compatible with current infrastructure and 

combustion engines in order to be used as a ‘drop in’ variant (Peralta-Yahya et al., 2012). Fuels 

are a complex mixture of hydrocarbons consisting of branched, linear and cyclic alkanes and 

aromatics that determine their characteristics of energy content, octane or cetane number, 

volatility, viscosity, corrosiveness and freezing point (Lee et al., 2008), which must be achieved 

by ‘drop in’ biofuels. FA themselves are not suitable biofuels due to their ionic nature caused by 

the carboxyl group, but FA derived alcohols, alkanes (Peralta-Yahya et al., 2012) and FAME in 

the medium- to long-chain range share characteristics with diesel and jet fuels (Lee et al., 2008). 

Especially short and medium chain fatty alcohols from C5-C12 have been explored for use as 

biofuels in diesel blends and have improved properties in comparison to others (reviewed in 

Rajesh Kumar and Saravanan, 2016). 

 

Surfactants, lubricants, detergents and emulsifiers  

The importance of FA and their derivatives for use in consumer and industrial products has 

increased considerably from the 1940s to the 1950s in the USA (Ruston, 1952). Since then, they 

have been used mainly in the form of surfactants in household, cleaning and cosmetic products as 

shampoos, liquid soaps, lotions, suspensions, foam stabilizers, and further in fabric softeners and 

textile auxiliaries, oil and paint additives and surface coatings (Ruston, 1952; Farris, 1979; Maag, 

1984; Johansson and Svensson, 2001). Surfactants are surface-active agents with the dual 

characteristics of a hydrophilic head group and a hydrophilic tail and with the characteristic of 

forming micelles when a critical concentration is reached (Dave and Joshi, 2017). As such, they 

act as detergents with cleansing properties or emulsifiers for fat or oil and water mixtures. To 

reach these needed characteristics M/LCFA and their derivatives are esterified with e.g. glycerol 

and glucosides or are aminated, ethoxylated, condensed and sulfated to a large quantity of 

different compounds with the desired properties (Maag, 1984; Johansson and Svensson, 2001; 

Xue et al., 2018).  
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Biopolymers and plastics 

Frequently used polymers such as polyethylene, polypropylene and polystyrene are derived from 

fossil resources, but the development of polymers from renewable resources is considered an 

important advance in the market of commodity plastics and medical products (Williams and 

Hillmyer, 2008). Additionally, these traditional plastics are chemically stable and not 

biodegradable or compostable, resulting in a large amount of plastic waste ending up in the 

environment (Zink et al., 2018), causing to pollution of the oceans (Eriksen et al., 2014) and soil 

(Liu et al., 2014) in the form of macro- or mircoplastics. Therefore, in addition to being produced 

from renewable sources, biodegradability or compostability is an important property of new 

plastics for packaging and other purposes (Ciriminna and Pagliaro, 2020). For production of 

biodegradable polymers used as drug delivery particles, FA and their derivatives are increasingly 

incorporated into the structures due to their hydrophobic nature, which can provide improved 

material properties of flexibility, melting point, degradation and release properties (Jain et al., 

2008; Sokolsky-Papkov et al., 2009). However, for polymer reactions at least two functional 

groups are necessary, so that only modified bifunctional FA are suitable. Therefore, FA 

derivatives applied in polymerization reactions i.e. for polyesters carry either an additional 

hydroxyl- or carboxyl group. For instance, modified monomers based on DCA like adipic acid 

(hexanedioic acid) or sebacic acid (decanedioic acid) have been used (Jain et al., 2008; Sokolsky-

Papkov et al., 2009). Additionally, UFA such as oleic acid and others have been modified at their 

double bond to meet the requirements for polymer reactions (Galià et al., 2010; Hinzmann et al., 

2020).  

 

Pharmaceuticals and uses of fatty acids as antimicrobials 

FA in the range of short- to long-chain have long been known to exhibit antimicrobial properties 

and have received more attention in recent years for their potential applications in pharmaceutical 

and other industries (reviewed in Desbois and Smith, 2010; Desbois, 2012; Churchward et al., 

2018). Antimicrobial properties against bacteria, fungi, viruses and algae were demonstrated for 

FA from chain length of 8-22 carbon atoms for different degrees of saturation (Desbois and 

Smith, 2010). Although the mode of action is not fully understood yet, their inhibitory or cidal 

effects are associated with membranes interaction at high concentrations that solubilize fractions 
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of the membrane and thereby interfere with membrane processes (Desbois and Smith, 2010). But 

recent evidence supports the view that their mode of action is more complex than incorporation 

into membranes and further research is regarded as necessary (Churchward et al., 2018).  

 

Fig. 1: Oleochemicals derived from fatty acids. Structure and features of different fatty acid derived oleochemicals 

are shown. Modification of fatty acids and derivatives include esterification, amination, sulfation, ethoxylation, 

oxidation and polymerization and others to an almost unlimited amount of different compounds. R denotes 

hydrocarbon chains of variable lengths. 

 

The efficacy of FA as an antimicrobial agent depends on chain length and degree of saturation, 

with highest activity for saturated FA in the medium-chain range of 10-12 carbon atoms, 

gradually decreasing with longer or shorter-chain length (Desbois and Smith, 2010). Having such 

potent antimicrobial properties, FA have multiple applications in medicine or in agriculture and 
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food production (Desbois, 2012). For example, the rapidly emerging resistance to conventional 

antibiotics and drugs by human pathogens is a growing threat (Ventola, 2015). In addition, health 

concerns of consumers have risen for the use of conventional antibiotics in animal food industry 

and there restrictions have been placed on their use to avoid the potential emergence of resistant 

bacterial populations that could be transmitted to humans (Dibner and Richards, 2005). 

Therefore, the use of FA against drug resistant pathogens and human infections, as well as to 

control infections in live stocks and against plant pathogens, is being discussed in various studies 

as an alternative to conventional methods (Desbois and Smith, 2010; Desbois, 2012).  

2.3 Biotechnology and metabolic engineering 

 

Current methods of FA production through the processing of vegetable oils have raised concerns 

about a negative impact on the environment. Hence, suitable, environmentally friendly, 

sustainable and cost-effective production methods are required. One such alternative could be the 

production by microbial systems through biotechnological applications. Microorganisms can be 

cultivated in bioreactors in fermentation processes, using not only renewable resources but also 

waste materials as a carbon source (Weber et al., 2010). This could reduce excessive land use for 

plantations and competition with food production. Fermentation processes are often carried out 

under milder conditions in aqueous solutions, in contrast to the use of solvents and harsh 

conditions in chemical synthesis. In addition, the extraction of secondary metabolites from plants 

is dependent on the availability of the raw material and is often a time-consuming, low yield but 

high effort process. Biotechnological production with microorganisms could offer a more 

economical process independent of weather or season.  

Biotechnology is a broad field, which uses living organisms or derived systems for industrial 

applications for commercial purposes. It is classified according to the field of application in 

“white” or “industrial biotechnology” for technical applications, “red biotechnology” for 

production of pharmaceuticals and “green biotechnology” for use of plants and plant systems for 

agriculture (Schüler, 2016). Advances in biology and related fields especially related to genetic 

manipulation of organisms (genetically modified organism; GMO) have initiated modern 

biotechnology. While agricultural biotechnology of genetically modified plants is viewed 



2 Introduction 

   10 

   

critically and there is controversy in regards to food safety, environmental risks, labeling and 

consumer rights (McCullum et al., 2003) as well as patentability, social and ethical risks 

(Nezhmetdinova et al., 2020), which is more pronounced in Europe and coupled to a stricter 

regulation (Falk et al., 2002; McCullum et al., 2003), there is less controversy expected for 

industrial biotechnology by use of GMO (discussed by Paula and Birrer, 2006).  

Within modern pharmaceutical or industrial biotechnology, the field of metabolic engineering, 

which can be defined as the rational manipulation of metabolic pathways of an organisms to 

enable or optimize biosynthesis of a desired substance, has become an impactful strategy. 

Different milestones in the development of molecular biology, biochemistry and genetics as well 

as methodological achievements, have contributed to modern metabolic engineering. Following 

the understanding of basic genetic principles, molecular structure and functionality, heterologous 

gene expression in E. coli paved the way into the field of biotechnology by recombinant DNA 

technology (Cohen et al., 1973). Further milestones in genetic engineering techniques (reviewd in 

Nielsen, 2001) and understanding of metabolic fluxes and their regulation (Woolston et al., 2013) 

have led to rational approaches of pathway design and analysis of the performance of the 

modified strains for production of the desired product and improved yields (Nielsen, 2001).  

Recent developments have reduced the costs and time for genetic modification of strains and 

their analysis. These include cloning methods like Gibson Assembly (Gibson et al., 2009) or 

Golden Gate Cloning (Lee et al., 2015), artificial gene synthesis (Hughes and Ellington, 2017), 

next generation sequencing (Goodwin et al., 2016) and genetic engineering techniques by 

CRISPR/Cas9 (Jinek et al., 2012). Lately, computational modelling of metabolic networks 

(Kerkhoven et al., 2015) and high throughput engineering and screening methods (Liu and Jiang, 

2015) have emerged. In addition, the availability of protein structures and databases is increasing 

steadily, making a large number of alternative enzymes and information rapidly accessible.  

Although a lower environmental impact of microbial biotechnology is evident in contrast to 

petro- or oleochemistry, the success of a biotechnological production depends on its ability to 

compete on the market with conventional production methods in terms of market price and 

availability. Many different compounds can be produced by engineered microorganisms 

including biofuels like ethanol, 1-butanol and fatty alcohols (Jang et al., 2012, 2012; Nielsen et 

al., 2013; Cho et al., 2015; Kim et al., 2016), bulk or fine chemicals (Cho et al., 2015; Suástegui 
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and Shao, 2016), pharmaceuticals and drug precursors (Lee et al., 2009), organic compounds 

(Park and Lee, 2008), food additives like flavors and antioxidants (Lin et al., 2014; Schempp et 

al., 2018) and plant secondary metabolites (Marienhagen and Bott, 2013). But industrial 

production is often ineffective due to low yields and high production costs for extraction and 

downstream processing, which prevents a market introduction in competition to petro- or 

oleochemical industry. Nevertheless, large-scale commercial production of compounds with 

various applications has been launched or industrial production is being pursued (reviewed in 

Jullesson et al., 2015). These include production of pharmaceuticals like hydrocortisone 

(Szczebara et al., 2003) or the antimalarial drug artemisinin (Paddon et al., 2013), the flavoring 

compound vanillin (Gallage and Møller, 2015), chemical building blocks like 1,4-butandiol or 

advanced biofuels like farnesene (Meadows et al., 2016) and many others (Jullesson et al., 2015). 

Taken together, metabolic engineering and biotechnology are important technologies at present 

and are likely to increase their industrial importance in the future. 

Metabolic engineers have worked on a variety of prokaryotic and eukaryotic organisms for 

utilization in biotechnological applications. Among those, the budding yeast S. cerevisiae is one 

of the most intensively studied model organisms (Karathia et al., 2011). Therefore, there is a deep 

understanding of its physiology and genetics, which is merged in freely available data bases such 

as the Saccharomyces Genome Database (SGD) (Cherry et al., 1998). Due to the interest and its 

research history, many tools for molecular biology are available and have been improved over 

time, ensuring easy manageability of S. cereviasiae for metabolic engineering and making it one 

of the most potent candidates for biotechnological applications. In addition, the yeast has been 

used in the production of bread, wine and beer for hundreds of years, which makes it a ‘generally 

recognized as save’ (GRAS) organisms. Throughout this thesis, the yeast S. cerevisiae is used as 

the biotechnological host organism, so the following sections focus mainly on the metabolism 

and engineering aspects of this yeast. 

2.4 De novo biosynthesis of fatty acids in Saccharomyces cerevisiae 

 

In all organisms, FA are fundamental compounds of life. They are essential for membrane 

formation in form of phospholipids (Carman and Han, 2011), function as signaling molecules 

(Georgiadi and Kersten, 2012) or as energy storage in form of TAG or sterol esters (SE) (Welte 
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and Gould, 2017). The biosynthesis of FA is mediated by fatty acids synthases (FAS). Although 

the underlying chemistry is conserved, there are two distinct architectures of FAS machinery: 

either dissociated enzymes (type II) or a multifunctional complex (type I), which carries all 

reaction centers. The type I FAS is present in the cytosol of eukaryotes and some prokaryotes 

such as Actinomycetales, Mycobacteria, Corynebacteria, Rhodococcus and Nocardia (Schweizer 

and Hofmann, 2004), whereas type II FAS is mainly present in bacteria (White et al., 2005), but 

can also be found in mitochondria of eukaryotes (Hiltunen et al., 2009). Type I FAS can 

additionally differ in their gene organization and are encoded in a single gene in mammals 

(Schweizer and Hofmann, 2004), but in fungi in either one or two genes (i.e. FAS1 and FAS2 in 

S. cerevisiae) (Fischer et al., 2020). As the focus of this thesis is the fungal type I FAS machinery 

of S. cerevisiae it is introduced in more detail below.  

The structure of yeast FAS was first solved in 2006 (Jenni et al., 2006) followed by publications 

of structures with higher resolution (Lomakin et al., 2007; Johansson et al., 2008; Johansson et 

al., 2009), which describe the organization and reaction process of yeast FAS in detail. FAS 

subunits are encoded by the genes FAS2 (α-chain) and FAS1 (β-chain) and assemble as a α6β6 

hetro-dodecamer of 2.6 MDa, forming a rigid, barrel-shaped structure which encapsulates all 

active centers in two dome-like structures (Jenni et al., 2006).  

FA biosynthesis is a circular mechanism (Fig. 2) of activation, priming, (multiple) elongation 

step(s), chain modification and termination (Lomakin et al., 2007). Biosynthesis begins with a 

priming reaction mediated by the acetyl-transferase domain (AT), which transfers acetyl from 

Acetyl-CoA (AcCoA), to the acyl carrier protein (ACP). ACP serves as a substrate shuttle for the 

active center within the reactive chamber. The acetyl moiety is handed over to the ketoacyl 

synthase domain (KS) and the elongation unit malonyl-CoA (MalCoA) is loaded to the empty 

ACP by the malonyl/palmitoyl transferase (MPT). ACP delivers the malonate to the KS domain, 

where the malonate and acetate are condensed to a 3-ketoacyl intermediate. Following a 

reduction by the ketoacyl reductase (KR) with NADPH, the maturing FA is dehydrated by the 

dehydratase (DH), until reduced a second time by the enoyl reductase (ER), which uses NADPH 

for reduction. The reduced acyl chain is then guided to several rounds of elongation with 

malonate, until reaching its final length. The acyl chain is released from FAS and bound to CoA 

by the MPT domain. The FA can be released from CoA by activity of thioesterases (TE), which 
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form free CoA and free FA. The FA released from yeast type I FAS are exclusively saturated 

acyl chains in the range of 14- 18 carbon atoms. The formation of the saturated C16 FA palmitate 

requires net 8 AcCoA, 7 ATP and 14 NADPH (van Rossum et al., 2016b).  

 

Fig. 2: Fatty acid biosynthesis cycle of Saccharomyces cerevisiae. The circular mechanism of fatty acid 

biosynthesis is displayed schematically. Acetyl-CoA and malonyl-CoA are transferred to the FAS by the acetyl 

transferase (AT) and malonyl/palmitoyl transferase (MPT) domains and are covalently bound to the acyl carrier 

protein (ACP). They are condensed by the ketosynthase (KS) and processed by ketoreductase (KR), dehydratase 

(DH) and enoyl reducatse (ER). The acyl chain is either released by the MPT domain or condensed with another 

malonyl-ACP for a new cycle of elongation and processing.  

 

Besides saturated FA, UFA are also essential components of membranes and energy storage and 

an estimated amount of 70-80 % of the acyl chains contain a double bond at the Δ
9
 position 

(Martin et al., 2007). The responsible Δ
9
 fatty acid desaturase (encoded in OLE1), is essential and 

its gene expression is tightly regulated by the OLE pathway, which senses the FA composition of 

membranes (Ballweg and Ernst, 2017). This regulation allows balancing between UFA and 
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saturated FA, which determine membrane properties of thickness, rigidity, phase behavior and 

fluidity (Holthuis and Menon, 2014) upon environmental or nutritional changes.  

The encapsulation of FA synthesis in the barrel-shaped interior reaction chamber of FAS and 

shuttling of intermediates to the active centers by covalent binding to the ACP domain (Jenni et 

al., 2006) contributes to an rapid and efficient process. Taken together FA biosynthesis by FAS 

complex can be seen a substrate channeling system (Huang et al., 2001; Schmitt and An, 2017). 

Substrate channeling is defined as the active or passive passing of metabolites from one active 

center to the next without diffusion into the cellular fluid (Srere, 1987).  Thus, the transport and 

path of reactants alongside cascade reactions is efficiently controlled (Wheeldon et al., 2016). 

This withholds many advantages over free diffusion of reactants (Huang et al., 2001) e.g. the 

transit time from one reaction to the next is reduced, intermediates are shielded from side 

reactions and unfavorable chemical equilibria are circumvented (Huang et al., 2001 and 

references therein). 

2.5 Fatty acid degradation by the β-oxidation pathway 

 

Besides the ability of de novo FA biosynthesis, microorganisms can take up FA from the 

environment and use them as a carbon source, which is advantageous over an energy demanding 

biosynthesis (Hiltunen et al., 2003). In addition, FA which are stored as an energy source in the 

form of TAG or SE must be effectively broken down into utilizable units. This catabolic pathway 

is known as the β-oxidation (reviewed in Hiltunen et al., 2003; van Roermund et al., 2003), 

which is compartmentalized in the peroxisomes in S. cerevisiae. Before the actual β-oxidation 

takes place, FA must be converted into an activated form by esterification with CoA, which is 

mediated by fatty acyl-CoA synthases (Hiltunen et al., 2003). Several genes encode for fatty acyl-

CoA synthases, which differ in their substrate preference and localization. Associated with lipid 

particles are the LCFA specialized Faa1p, Faa4p and Fat1p. The latter has a substrate preference 

for very LCFA (C20-C26) and is a bifunctional enzyme involved in activation and transport into 

the peroxisomes (Black and DiRusso, 2007). In contrast, LCFA are imported into peroxisomes in 

their activated from by activity of the ABC transporters Pxa1p and Pxa2p (Hettema et al., 1996). 

MCFA are thought to enter peroxisome by passive diffusion (Hettema and Tabak, 2000) or a flip-
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flop mechanism (Hettema et al., 1996), where they are then activated by the MCFA specific 

peroxisomal Faa2p (Hiltunen et al., 2003). The first step of β-oxidation of saturated activated FA 

is the introduction of a double bond to form a trans-2-enoyl-CoA intermediate and hydrogen 

peroxide. In S. cerevisiae this reaction is catalyzed by the fatty acyl-CoA oxidase Pox1p, which is 

the only oxidase for this purpose. The trans-2-enoyl-CoA intermediate is hydrated and oxidized, 

under formation of NADH, by the bifunctional enoyl-CoA hydratase and 3-hydroxyacy-CoA 

dehydrogenase Pox2p. In the last step, AcCoA is cleaved of the intermediate by activity of the 3-

ketoacyl-CoA thiolase Pot1p. As a result, the FA is shortened by two carbon atoms and can 

undergo another round of β-oxidation. For degradation of UFA additional enzymes including 

Δ
3,5

- Δ
2,4 

dienoyl-CoA isomerase (Dci1p) 2,4-dieonyl-CoA reductase (Sps19p) and Δ
2
-Δ

3
-enoyl-

CoA isomerase (Eci1p) are required (van Roermund et al., 2003).  

2.6 Engineering strategies for short- and medium-chain fatty acid biosynthesis 

 

In recent years different studies have developed engineering strategies for S. cerevisiae and other 

organisms to increase production of FA and enable FA derivative formation. Although having 

compelling properties for industrial applications, FA in the short- and medium-chain range are 

only produced in trace amounts in S. cerevisiae, in contrast to LCFA (Cotrell et al., 1986). In 

order to realize production of S/MCFA two alternative engineering strategies were developed. 

The manipulation of the chain length control mechanisms of the FA biosynthesis and reversal of 

the β-oxidation. Both strategies are reviewed in details as part of this thesis in (Baumann et al., 

2020) and are introduced briefly in this section.  

The β-oxidation (reviewed by Hiltunen et al., 2003) is the degradation pathways of FA (see 2.5). 

Its reactions, however, are equilibrium balanced and are therefore reversible, which would lead to 

production of FA instead of degradation. Functional reversal of the β-oxidation cycle was first 

demonstrated by expression of the individual genes in E. coli (Dellomonaco et al., 2011) and later 

in S. cerevisiae (Lian et al., 2014) and initially resulted in increased production of n-butanol and 

enabled S/MCFAEE production. In the first round of the reversed cycle two AcCoA moieties are 

converted to acetoacetyl-CoA by a thiolase and further processing and the activity of an acyl-

CoA TE results in formation of the C4 product n-butanol. Additional rounds of the cycle increase 
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the chain length by two carbon atoms each. The choice of the termination enzyme and the 

thiolase defines the length of the acyl-CoA and can result in the formation of C4-C10 compounds 

in E. coli (Kim et al., 2015) or improve C9-C12 FA production in S. cerevisiae (Teixeira et al., 

2017).  

The FAS machinery of S. cerevisiae naturally releases acyl-CoAs in the long-chain range by 

regulating additional elongation rounds for the maturing chains as well as release after reaching 

the appropriate length. Then FA can be released from CoA by activity of soluble TE. 

Manipulating the chain length control mechanism for a premature release of FA in S. cerevisiae 

has been targeted to enable synthesis of S/MCFA. Expression of soluble heterologous TE, which 

exhibit activity towards short- and medium-chain acyl variants, was established and combined 

with different heterologous FAS variants like the human type I FAS or bacterial type II FAS 

(Leber and Da Silva, 2014; Fernandez-Moya et al., 2015), which increased accumulation of 

S/MCFA. However, yeast FAS encapsulates the FA biosynthesis in its interior reaction chambers, 

thereby reducing accessibility of external TE to the acyl-ACP intermediate for premature 

cleavage. Nevertheless, some type I FAS, for instance from Rhodosporidium toruloides, harbor 

two redundant ACP domains located inside of the reaction chamber for substrate shuttling (Zhu 

et al., 2017). Replacing one of the ACP domains by a medium-chain specific TE successfully 

placed the TE inside of reaction chamber and increased MCFA biosynthesis by premature release 

of the FA from ACP (Zhu et al., 2017). Later it was demonstrated in E. coli that the specificity of 

the TE TesA can be modulated by protein engineering from long-chain to medium-chain (Deng 

et al., 2020), so that more improvements in S/MCFA production by TE expression can be 

expected in future.  

Besides the introduction specific TE, a premature release of FA was achieved by manipulating 

FAS directly. Different mutation in key active sites of domains, which are involved in chain 

length regulation of released acyl chains including the KS, AT and MPT domains, have been 

evaluated for their FA profile (Gajewski et al., 2017). The rationale of the mutations is to minder 

binding of longer-chain acyl intermediates in the KS binding channel (G1250S, M1251W and 

F1279Y in KS domain) by building a steric hindrance and thereby promoting release instead of 

condensation for a new round of elongation. Additionally, the MPT domain has been engineered 

for a lowered affinity for the elongation unit MalCoA by weakening the stabilization of the 
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carboxyl group (R1834K) and thereby favoring release of shorter acyl chains. Lastly, the loading 

of the priming substrate AcCoA by the AT domains was elevated by introduction of a previously 

evaluated I3016A mutation, because an increased priming by AcCoA in combination with 

reduced elongation by MalCoA promotes production of S/MCFA. Single or combined 

aforementioned point mutations enabled production of S/MCFA (Gajewski et al., 2017). Later, 

the rational FAS mutations were combined with an embedded medium-chain specific TE in a 

Mycobacterium vaccae FAS which successfully increased MCFA biosynthesis in S. cerevisiae 

(Zhu et al., 2020) although titers remained below the initial study with S. cerevisiae FAS 

(Gajewski et al., 2017).  

2.7 Engineering of fatty acid derivatives production by expression of a 

cytochrome P450 system  

 

The de novo biosynthesis of FA derivatives, which are valuable products with numerous 

applications (see 2.2) is desired and has been targeted before in S. cerevisiae and other organism 

by design of artificial pathways and expression of heterologous enzymes. For instance, 

production of the biofuel compound 1-octanol was achieved by expression of a heterologous 

carboxylic acid reductase and a phosphopantetheinyl transferase required for activation of the 

reductase in a strain previously engineered for octanoic acid (OA) production (Henritzi et al., 

2018).  

Recently, for modification of FA the ω-oxidation pathway, a pathway which is involved in FA 

degradation in higher eukaryotes like humans, animals, plants and insects when β-oxidation is 

blocked (Miura, 2013), has been implemented. In this two-step pathway FA are terminally 

hydroxylated (terminal carbon is referred to as ω-position) resulting in ω-hydroxy fatty acids (ω-

HyFA), followed by further oxidation of the hydroxyl group to α,ω-dicarboxylic acids (α,ω-

DCA) which are then routed to a bilateral β-oxidation (Verkade, 1938). The initial terminal 

hydroxylation reaction in the ω-oxidation pathway is carried out by a versatile superfamily of 

enzymes referred to as cytochrome P450s (CYP). 

CYP are heme carrying moonogygenases, which can be found in mammals, plants and some 

yeast and bacteria and new insights in the past decades have contributed to the understanding of 
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their structure, mode of action and biological role, which have been reviewed in detail (Munro et 

al., 2007b; Munro et al., 2013). The name P450 results from a characteristic spectrum at 450 nm, 

which originates from the binding of carbon monoxide to the heme iron (Omura and Sato, 1964). 

Their mode of action is the transfer of one oxygen atom from molecular oxygen (O2) to a 

substrate, which usually leads to hydroxylation, while the other is used to form H2O (Katagiri et 

al., 1968). This reaction requires the transfer of two electrons, which are delivered by one or 

more redox partners primordially from NADH or NADPH (Munro et al., 2007b). Usually P450 

systems consists of 3 components redox systems (class I) mostly found in prokaryotes or two 

component redox systems (class II), which are mainly found in eukaryotes (Munro et al., 2007b). 

However more recently some exceptions to this rule have been discovered (Munro et al., 2013). 

In the class I system the electrons are transferred from iron-sulphur proteins to the CYP, while 

the iron-sulphur proteins receive their electrons from NADH/NADPH binding FAD-reductases 

(Munro et al., 2013). In contrast, in the class II system, electrons are transferred from NADPH to 

CYP by membrane bound FAD- and FMN- biding cytochrome P450 reductase (CPR) (Munro et 

al., 2013).  

Over the years of research history more and more CYP were discovered with versatile substrate 

preference and redox partners and deployed to metabolic engineering of desired products 

(Renault et al., 2014). For instance, CYP52 of the yeast Candida tropicalis naturally ω-

hydroxylates FA in the range of C12-C18 (Eschenfeldt et al., 2003). With the objective to 

selectively bioconvert externally supplied MCFA into ω-HyFA in S. cerevisiae Durairaj et al., 

2015 expressed and characterized two different heterologous CYP and CRP from Fusarium 

oxysporum and succeed in production of 8-hydroxyoctanoic acid, 10-hydroxydecanoic acid and 

12-hydroxydodecanoic acid. A combined reversal of the β-oxidation cycle and expression of the 

ω-oxidation pathway in E. coli resulted in de novo synthesis of α,ω-DCA in the range of C6-C10 

(Clomburg et al., 2015). C10-C12 α,ω-DCA were later produced in S. cerevisiae by 

bioconversion of supplied FA by expression of the heterologous ω-oxidation pathway genes 

CYP94C1 and the CPR ATR1 from Arabidopsis thaliana (Han et al., 2017). In this study the 

majority of the ω-HyFA were converted to DCA by endogenous mechanisms, which however, 

were not further elucidated. De novo biosynthesis of long-chain C16-C18 HyFA (at the ω or ω-1 

position) was achieved in yeast by blocking β-oxidation for increased FA  accumulation followed 
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by expression of a CYP from Starmerella bombicola and a CPR from Arabidopsis thaliana (Liu 

et al., 2019). 

2.8 Provision of precursors and cofactors for fatty acid biosynthesis 

 

The biosynthesis of FA requires AcCoA for priming, AcCoA derived MalCoA for elongation and 

NADPH for reductive equivalents. Providing the precursors and cofactors in sufficient amounts is 

a function of central metabolisms (Fig. 3). AcCoA is not only part of FA metabolisms but also a 

key substrate of the tricarboxylic acid (TCA) and glyoxylate cycle (Krivoruchko et al., 2015) and 

is involved in acetylation of proteins and histones (Galdieri et al., 2014; Krivoruchko et al., 

2015). Due to its central role AcCoA metabolism is compartmentalized in the cytosol, 

peroxisomes (as part of β-oxidation see 2.5), nucleus and mitochondria, where the majority of 

AcCoA is formed (Krivoruchko et al., 2015). In the nucleus it is majorly used for acetylation and 

is formed from acetate by nuclear acetyl-CoA synthases (ACS) (Krivoruchko et al., 2015). In the 

mitochondria AcCoA is synthesized by the pyruvate dehydrogenase (PDH) complex from 

pyruvate which is translocated into mitochondria prior to conversion (Pronk et al., 1996). But 

AcCoA cannot freely cross the mitochondrial membrane and there is no effective transport 

system of AcCoA from mitochondria to the cytosol. In the carnitine shuttle the acetyl group of 

AcCoA is bound to carnitine, transported over the membrane into the other compartment where it 

is regenerated by transfer of the acetyl group to CoA. However, the transcription of genes 

involved in the carnitine shuttle is repressed by glucose (Schmalix and Bandlow 1993; Elgersma 

1995). Furthermore, S. cerevisiae does not have a carnitine biosynthesis pathway and is 

dependent on exogenous carnitine supply (van Roermund et al., 1995; Swieger et al., 2001) and if 

active in vivo, the carnitine shuttle is directional and functions as a transport system of AcCoA 

from the cytolsol into the mitochondria only (van Rossum et al., 2016a).  Therefore, FA 

biosynthesis depends on the successive and cytosolic reactions from pyruvate to AcCoA, which 

are referred to as the pyruvate dehydrogenase bypass (PDH-bypass). First, pyruvate is 

decarboxylated to acetaldehyde by the pyruvate decarboxylases (PDC). Then, acetaldehyde is 

converted to acetate by aldehyde dehydrogenases, which generate either NADH (Ald2p) or 

NADPH (Ald6p). Finally acetate is esterified with CoA by acetyl-CoA synthethases (Acs1p and 

Acs2p), which requires the hydrolysis of ATP. Due to the Crabtree effect of S. cerevisiae, 
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alcoholic fermentation of acetaldehyde towards ethanol by alcohol dehydrogenases (ADH) is the 

dominant pathway on fermentable carbon sources. Upon the diauxic shift from glucose to ethanol 

consumption, ethanol is converted back to acetate and into AcCoA.  

 

Fig. 3: Pathways for acetyl-CoA and NADPH formation for fatty acid biosynthesis from glucose in S. cerevisiae. Genes or 

gene classes are displayed in blue, pathway names in red or grey, one-step reactions as solid arrows and multiple-step reactions as 

dashed arrows. Only relevant cofactors and genes are shown for clarity. Abbreviations are used as follows: TCA cycle, 

tricarboxylic acid cycle; PDH-bypass, pyruvate dehydrogenase bypass; G6P, glucose-6-phosphate; F6P, fructose-6-phosphate; 

AcCoA, acetyl-CoA; MalCoA; malonyl-CoA, PDC, pyruvate decarboxylases; ACS, acetyl-CoA synthethsases.  

 

The universal electron donor NADPH serves different functions in reductive biosynthesis, 

detoxification, oxidative defense and regulation of protein activity (Agledal et al., 2010). Its 

function in metabolisms is, with exceptions, dedicated to anabolic pathways like the FA 

biosynthesis. In contrast, NADH is more involved in catabolic pathways (Bakker et al., 2001). 

Since NADPH must be available for FA biosynthesis and other functions in the cytosol, the ratio 

of NADPH/NADP
+ 

in this compartment, which was determined by a sensor reaction under 

glucose limited and chemostatic conditions, is strongly in favor of NADPH (ratio 
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NADPH/NADP
+
 15.60 ± 0.60), which is more than 10 times higher than for whole cell 

measurements (ratio NADPH/NADP
+
 of 1.05 ± 0.08) (Zhang et al., 2015).  

The NADPH provision has been attributed to two main dehydrogenases in yeast when grown on 

glucose. The major cytosolic NADPH source is the glucose-6-phosphate dehydrogenase 

(Grabowska and Chelstowska, 2003), encoded by ZWF1, which catalyzes the first and rate 

limiting step of the pentose phosphate pathway (PPP) (reviewed in Stincone et al., 2015) and is 

expressed constitutively (Nogae and Johnston, 1990; Thomas et al., 1991). A metabolic flux 

analysis with C13 labeled glucose revealed that 24 % of the glucose that enters the cell is fluxing 

towards the PPP in glucose-limited chemostat cultures (van Winden et al., 2005). An important 

role for NADPH formation has the PDH-bypass in the reaction catalyzed by aldehyde 

dehydrogenase Ald6p. Deletion of either ZWF1 or ALD6 generates viable mutants, while a 

double deletion mutant is not viable or at least strongly growth-impaired on glucose (Grabowska 

and Chelstowska, 2003; Minard and McAlister-Henn, 2005), suggesting that ALD6 is essential in 

the absence of ZWF1 (Grabowska and Chelstowska, 2003). A third source for cytosolic NADPH 

was discovered in the isocitrate dehydrogenase Idp2p, which catalyzes the oxidation of isocitrate 

to alpha-ketogluterate. IDP2 expression is reduced on glucose but elevated in presence of non-

fermentable carbon sources (Loftus et al., 1994). Thus, its role in NADPH formation lies in 

growth of non-fermentable carbon sources and after the diauxic shift when the cells are grown 

with glucose (Minard and McAlister-Henn, 2005).  However, when treated with 3 mM of the 

external oxidizing agent hydrogen peroxide and grown on ethanol as the sole carbon source, a 

Δzwf1 mutant fails to grow, while in contrast a Δidp2 and Δald6 mutant strains shows growth 

(Minard and McAlister-Henn, 2005). This indicates that ZWF1 is also the major and essential 

source of NADPH when ethanol is the carbon source.  

2.9 Engineering strategies for enhanced cytosolic acetyl-CoA and NADHP 

supply in Saccharomyces cerevisiae 

 

The requirement of cytolsolic AcCoA and NADPH for FA biosynthesis and other metabolites has 

motivated metabolic engineers to modulate the metabolism towards an increased supply of these 

target compounds. There are several ways to achieve increased AcCoA and NADPH supply for 
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FA in S. cerevisiae, which are outlined in details in a publication as part of this thesis (Baumann 

et al., 2020) and are briefly introduced in this section. 

One extensively studied and straight forward strategy to increase the cytosolic AcCoA formation 

is to increase flux through the native PDH-bypass (Fig. 3). This is achieved by overexpression of 

the relevant genes (ALD6, ACS1 or a superior mutated and heterologous variant from Salmonella 

enterica, 
Se

ACS
L641P

; Shiba et al., 2007) and additionally by minimizing ethanol formation as a 

competing pathway. Different studies confirmed the beneficial impact of ALD6 and 
Se

ACS
L641P 

on
 

production titers of various different FA and derived compounds (Krivoruchko et al., 2013; Jong 

et al., 2014; Lian et al., 2014; Feng et al., 2015). A positive effect by the reduction of ethanol 

formation was demonstrated by deleting either the main (ADH1) (Li et al., 2014) or multiple 

ADH (ADH1, ADH4) (Lian et al., 2014).  

The most promising alternative strategy is the expression of a phosphoketolase 

(PK)/phosphotransacteylase (PTA) pathway. First acetyl-phosphate and either erythrose-4-

phosphate or glyceraldehyde-3-phosphate is formed by the PK from the substrates fructose-6-

phosphate or xylulose-5-phosphate. Then acetyl-phosphate is converted to AcCoA by the PTA. If 

the pathway is implemented with a xylulose-5-phosphate specific PK (xPK) there are two 

advantages over AcCoA formation by the PDH-bypass. Xylulose-5-phosphate is formed in the 

PPP downstream of the oxidative branch (Stincone et al., 2015), which is the main NADPH 

providing pathway in S. cerevisiae (see 2.8). Additionally the PTA reaction does not require ATP 

in contrast to AcCoA formation by Acs1p and Acs2p, which implies an energetic advantage. 

Therefore, the implementation of an xPK/PTA pathway for FA biosynthesis with redirection the 

metabolic flux via the PPP leads to the highest theoretical yield of all known precursor-supply 

pathways (van Rossum et al., 2016b). Indeed, expression of the PK/PTA pathway for production 

of FAEE led to increased production titers (Jong et al., 2014). Later it was discovered, that the 

acetyl-phosphate intermediate formed by a PK can be dephosphorylated by an endogenous 

glyceraldehyde-3-phosphate phosphatase (GPP1), whose deletion should be implemented to 

increase production titers (Meadows et al., 2016).  

AcCoA formation in S. cerevisiae is highly compartmentalized and partially formed in the 

mitochondria by the PDH complex, but cannot freely cross the membrane. To access this AcCoA 
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pool for cytosolic FA biosynthesis a heterologous citrate-oxaloacetate shuttle was implemented, 

which can transport AcCoA indirectly over the membranes. Such strategies naturally occur in the 

oleaginous yeast Yarrowia lipolytica (Y. lipolytica) (Vorapreeda et al., 2012), which accumulates 

lipids of up to 40 % of its cellular dry weight (Ageitos et al., 2011). However, this strategy 

compromises with the lowest theoretical yields of all supply pathways (van Rossum et al., 

2016b). In the citrate-oxaloacetate shuttle, mitochondrial AcCoA is loaded to oxaloacetate by the 

citrate synthase (CS) to form citrate. Citrate is then exported from the mitochondria and AcCoA 

and oxaloacete are released in the cytosol by a heterologous ATP-citrate lyase, which requires 

ATP for the reaction. This strategy was first implemented alone (Tang et al., 2013) and further 

optimized by overexpressing the mitochondrial pyruvate carrier (Yu et al., 2018) and combined 

with strategies to increase NADPH formation by increased PPP flux (Yu et al., 2018) and 

expression of a transhydrogenase cycle consisting of a malate enzyme and malate dehydrogenase 

transforming NADH into NADPH (Zhou et al., 2016; Yu et al., 2018). In fed batch fermentations 

these combined strategies have shown the highest reported titers for LCFA production in S. 

cerevisiae so far (Yu et al., 2018). In a different strategy, a bacterial PDH complex from 

Enterococcus faecalis was expressed directly in the cytosol of S. cerevisiae for AcCoA supply 

and increased free FA production of mainly unsaturated C16:1 and C18:1 FA by 83 % when 

combined with other engineering strategies (Zhang et al., 2020). 
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2.10 Aim of this thesis 

 

In this thesis, the aim was to engineer and optimize S. cerevisiae for biotechnological production 

of MCFA and FA derivatives. The focus should be on the production of the C8 FA OA and its 

derivative 8-hydroxyoctanoic acid. To enable synthesis of specifically OA, the native FAS was 

exchanged for a previously developed FAS variant with an arginine to lysine exchange in the 

MPT domain (R1834K; FAS
RK

) (Gajewski et al., 2017).  

To improve OA biosynthesis, FAS should be investigated as an engineering target. S. cerevisiae 

FAS is split in two polypeptides α and β, which are co-translationally assembled into the FAS 

complex. Because this step may be subject to cellular regulation and may be rate-limiting, the 

two polypeptides were fused into a single-chain construct. This fused FAS variant was 

investigated for OA production and showed improved performance to the split version (Wernig et 

al., 2020b). Furthermore, it should be investigated whether co-expression of the mutated (fused 

and split) FAS
RK

, which causes growth impairments in contrast to the wild type (WT) version, 

and a WT-FAS is beneficial for cell viability and OA production.  

Fatty acid biosynthesis is dependent on AcCoA and NADPH. An aim of this work was to 

evaluate different approaches to engineering the supply pathways of acety-CoA and NADPH for 

OA production. The native PDH-bypass should be evaluated as an engineering target by 

overexpression of the genes involved in ethanol degradation to AcCoA. In addition, AcCoA and 

NADPH supply should be enhanced by expression of a heterologous PK/PTA pathway and by 

increasing the metabolic flux into the PPP.  

Furthermore, an aim of this thesis was the construction of a de novo biosynthesis of 8-

hydroxyoctanoic acid by hydroxylation of the terminal carbon of OA through expression of a 

heterologous CYP and a CPR. Potential limitations of the pathway, such as inhibitory effects of 

8-hydroxyoctanoic on cell growth, supply of the CYP cofactor heme and the use of different 

carbon sources in the fermentation should be evaluated for the production.  
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3 General Discussion 

3.1 Production of octanoic acid and 8-hydroxyoctanoic acid in Saccharomyces 

cerevisiae 

 

In this thesis the optimization of OA production and engineering of de novo biosynthesis of 8-

hydroxyoctanoic acid in S. cerevisiae is addressed. Throughout this work OA was produced by a 

mutated FAS (FAS
RK

) by the FA biosynthesis pathway. The production of OA from priming 

cytosolic AcCoA requires furthermore three elongation rounds with MalCoA. MalCoA is 

generated from AcCoA by Acc1p and requires hydrolysis of ATP and in each elongation round 

two NADPH are used for reductions. The net reaction of OA from AcCoA is: 

4acetyl-CoA + 6NADPH +H
+ 

+ 3ATP + H2O → OA + 4CoA + 6NADP
+
 + 3ADP + Pi (1) 

When OA is further converted to 8-hydroxyoctanoic acid by a CYP pathway as described in 

(Wernig et al., 2020a) the net reaction changes to: 

4acetyl-CoA + 7NADPH +H
+ 

+ 3ATP + O2 +2H
+
 → 8-hydroxyoctanoic acid + 4CoA + 7NADP

+
 

+ 3ADP + Pi  (2) 

In consequence, OA and 8-hydroxyoctanoic acid production have a high demand for AcCoA, 

MalCoA and NADPH. Therefore, in one publication the engineering for AcCoA and NADPH 

supply for OA production were evaluated for the first time by different strategies (Wernig et al., 

2021). For further improvement of OA production one publication deals with optimization of the 

mutated FAS by fusing the distinct β-chain (FAS1) and the α-chain (FAS2) (fusFAS
RK

), which 

increased production compared to the separate expression of the FAS genes (FAS1
RK

/FAS2) 

(Wernig et al., 2020b). Many FA derived compounds such as ω-HyFA are valuable industrial 

products (see 2.2). By expression of a heterologous CYP and a CPR in combination with the OA 

producing FAS, the first de novo biosynthesis of 8-hydroxyoctanoic acid was demonstrated here 

(Wernig et al., 2020a).  



3 General Discussion 

   26 

   

In the following chapters, the different aspects of OA production and 8-hydroxyoctanoic acid 

biosynthesis are discussed and evaluated. The different possibilities of S/MCFA production by 

reverse β-oxidation or FA biosynthesis are compared (3.2) and different engineering strategies in 

other organisms than S. cerevisiae are discussed (3.3). Current potential limitations in the 

production of OA are shown (3.4), potential strategies to improve 8-hydroxyoctanoic acid 

production are discussed (3.5) and a future outlook of S/MCFA production in microorganisms is 

given (3.6)  

3.2 Comparison of short- and medium-chain fatty acid production strategies in 

Saccharomyces cerevisiae: Modified fatty acid biosynthesis and reverse β-

oxidation 

 

In this work and in the literature different strategies for production of S/MCFA have been 

examined. Either the native FA biosynthesis is modified for an early termination of FA 

production or the β-oxidation cycle is reversed to operate in an anabolic way (see 2.6). These two 

different strategies are compared and discussed in this section.  

For performing one cycle of the reversed β-oxidation, at least four different enzymes are 

necessary (Dellomonaco et al., 2011). Initiated by condensation of two AcCoA, the execution of 

one round of the cycle leads to production of butyryl-CoA, which can be either dedicated for 

further elongation or termination and conversion to 1-butanol, for instance. This however 

requires additional enzymes (Dellomonaco et al., 2011). Specifically, for an additional round of 

the cycle, a condensation of the acyl-intermediate with another AcCoA and specific termination 

for a product with desired chain-length e.g. by TE, is necessary. The reversed β-oxidation cycle is 

executed with only AcCoA as a starter and elongation unit. The intermediates are bound to CoA 

and NADH or NADPH can be used for reductive steps. Many challenges in the development of 

the reversed β-oxidation exist in yeast (Teixeira et al., 2017), but are not only restricted to S. 

cerevisiae. 

The fact that only AcCoA is used for priming and also elongation of acyl-CoA products in the 

reverse β-oxidation cycle bears an energetic advantage and a higher theoretical yield compared to 

production via FA biosynthesis, where the elongation unit MalCoA is generated by carboxylation 
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of AcCoA at the expense of ATP (Dellomonaco et al., 2011). Additionally the use of NADH 

instead of NADPH for reductive power could be advantageous as yeast naturally has a high 

turnover of NADH (Bakker et al., 2001). However the AcCoA and NADH requirement of the 

pathway seems to be higher than the natural occurrence in E. coli and yeast (Teixeira et al., 

2017), as deletion of NADH consuming pathways in E. coli (Dellomonaco et al., 2011) and 

increased NADH supply in S. cervisiae (Lian and Zhao, 2015) improved the performance of the 

pathway. Additionally, since all intermediates are bound to CoA an increased CoA demand exists 

and an improvement of the CoA supply is necessary as demonstrated for 1-butanol production in 

S. cerevisiae (Schadeweg and Boles, 2016a), which adds to the engineering challenges.  

Several advantages and disadvantages arise from the fact that the reversed β-oxidation is carried 

out by individual enzymes. Because intermediates are bound to CoA it is difficult to measure 

them effectively thereby investigating performance of the individual enzymes. Nevertheless, in 

enzyme assays, the performance of different enzymes on C4-CoA intermediates was analyzed in 

cell extracts (Lian and Zhao, 2015). However, not for compounds with other chain lengths 

leaving the optimal substrate of the tested enzymes unexplored (Teixeira et al., 2017). For 

improvement of the β-oxidation pathway in E. coli or S. cerevisiae, most studies therefore rely on 

systematic evaluation of different enzymes and fine tuning the gene expression (Kim et al., 2015; 

Lian and Zhao, 2015; Wu et al., 2017), which is a rather time consuming and inefficient process 

considering the countless possibilities when four to six different enzymes are expressed.  

Furthermore, the intermediates of the pathway are freely accessible to side reaction or early 

termination. This withholds the possibility of production and accumulation of FA intermediates 

but potentially reduces the titers of the desired product by unwanted side reactions and 

termination. Therefore, the choice of the right termination enzyme i.e. the TE is crucial. 

However, most TE, as tested in E. coli, display a broad chain length substrate specificity and are 

not very specific (McMahon and Prather, 2014; Grisewood et al., 2017). Due to the challenging 

fine tuning of further elongation and specific termination, reversed β-oxidation in S. cerevisiae is 

so far either restricted to high production of C4 compounds (Schadeweg and Boles, 2016a, 

2016b) or S/MCFA production (C6-C12) at total titers below 12 mgL
-1 

(Lian and Zhao, 2015) or 

13 mgL
-1

 (Teixeira et al., 2017).  
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In contrast to reverse β-oxidation enzymes, the FAS is an evolved complex machinery, which 

harbors all the catalytic sites inside of a rigid structure (Jenni et al., 2006). The reaction chamber 

of FAS therefore can be seen as its own compartment for substrate channeling (see 2.4) executed 

by the ACP domain, which is advantageous over freely accessible intermediates. The 

intermediates are rapidly transferred to the active centers while side reactions are avoided. This 

makes the FAS complex a highly efficient production machine. However, the accessibility of 

soluble enzymes like heterologous TE for early termination and production of S/MCFA is 

decreased and needs a more challenging engineering strategy including heterologous FAS and 

enzyme engineering. Thus, only low production titers where achieved with this strategy (Zhu et 

al., 2017; Zhu et al., 2020). But as demonstrated before, the FAS chain length control machinery 

can be modulated by single amino acid exchanges, so that the exchange of a single arginine to 

lysine in the MPT domain is enough for specific and high production titers of OA (Gajewski et 

al., 2017). Overall these findings result in a more easy manipulable system than expression and 

fine tuning of multiple enzymes in the reverse β-oxidation.  

Reversal of the β-oxidation for S/MCAF production is a pathway with a higher theoretical yield 

than using FA biosynthesis. However engineering the specific production of FA in the chain 

length of C6-C12 is more challenging for reverse β-oxidation than by a mutated FAS, which is 

reflected in lower reported titers to date. Both strategies for S/MCFA and derivative production 

harbor different advantageous and disadvantageous over one another and many challenges need 

to be addressed for increased production (see above and 3.4).  

3.3 Engineering strategies for the production of fatty acids and their 

derivatives in different organisms 

 

In this thesis S. cerevisiae has been used for engineering of OA and 8-hydroxyoctanoic acid 

production. Other microorganisms like the bacterium E. coli and other yeasts, especially Y. 

lipolytica have also been exploited and engineered for FA and derived compounds like TAG,  

S/MCFA, fatty acohols, ω-HyFA and α,ω-DCA (Steen et al., 2010; Tai and Stephanopoulos, 

2013; Kim et al., 2015; Rutter et al., 2015; Rigouin et al., 2017; Shin and Lee, 2017; Xu et al., 

2018; Kim et al., 2019; Kim and Park, 2019; Deng et al., 2020; Hernández Lozada et al., 2020). 
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The use of different microorganisms for FA biosynthesis has different challenges, risks and 

advantages over the others. In this section the engineering strategies and achievements (also 

reviewed in Marella et al., 2018) in different organisms are compared and advantages and 

disadvantages in use of the different microorganisms are discussed.  

Besides S. cerevisiae the model organism E. coli is the most intensively studied one and has the 

longest history of research. Unsurprisingly, many studies focused on engineering of E. coli for 

FA and derived compound production. The strategies for enhanced FA applied in E. coli are 

similar to the approaches in S. cerevisiae.  This includes the engineering of precursor supply of 

AcCoA and MalCoA (Lee et al., 2011; Shin and Lee, 2017; Hernández Lozada et al., 2020), 

blocking of the β-oxidation (Deng et al., 2020) and expression of specific TE for release of free 

FA or termination for production for S/MCFA (Lu et al., 2008; Deng et al., 2020). AcCoA 

formation is highly compartmentalized in yeast, which needs to be considered in the engineering 

strategy for improved AcCoA supply. In contrast E. coli has the advantage of no 

compartmentalization of AcCoA metabolisms and therefore requires a more simple engineering. 

For production of S/MCFA in E. coli two different strategies were mainly applied. The 

implementation of a reversed β-oxidation (Dellomonaco et al., 2011; Kim et al., 2015; Wu et al., 

2017) and/or expression of (modified) short/medium-chain specific TE for termination of fatty 

acid elongation by reversed β-oxidation or the type II FAS system  (Steen et al., 2010; Kim et al., 

2015; Deng et al., 2020). When combined with the type II FAS of E. coli TE have a more easy 

access to acyl- intermediates due to the dissociated nature of the single FAS enzymes. In a recent 

study the TE TesA was modified to increased substrate specificity for MCFA and together with 

blockage of the FA degradation led to production of 2.7 gL
-1

 of OA
 
in a fed batch fermentation 

process from 104 g of glucose (Deng et al., 2020). Production of FA derivatives like 1-octanol 

was achieved by expanding previous strategies for OA production with expression of a specific 

acyl-CoA reductase (Hernández Lozada et al., 2020). E. coli was also engineered for 

biotransformation of multiple different supplied FA precursors to ω-HyFA and α,ω-DCA 

(reviewed in Kim and Park, 2019).   

Due to short generation time and availability of genetic tools E. coli is a suitable candidate for 

metabolic engineering. But yeasts are favored in industrial production settings due to several 

advantages. They can be advantageous in expression of eukaryotic enzymes, can tolerate higher 
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cell density and lower pH leading to an overall higher fermentation performance (Aronsson and 

Rönner, 2001; Ageitos et al., 2011), and are more stable and robust than E. coli. Even though 

engineering of increased production of FA and derivative is more challenging in S. cerevisiae, it 

is compensated by advantages in industrial production.  

Another logical progression in biotechnological production of FA and derivatives is the use and 

engineering of organisms, which naturally accumulate high amounts of lipids. Such organisms 

are highly interesting for an industrial production as they potentially reach higher titers by an 

already adapted metabolism. Microorganisms, which synthesize more than 20 % of their dry 

cellular weight in lipids, are known as oleaginous organisms (Papanikolaou, 2012). Some 

bacteria even reach lipid accumulation of more than 80 % of their dry cell weight (Alvarez and 

Steinbüchel, 2002). Belonging to the most researched oleaginous organisms in recent years are 

the yeasts Yarrowia lipolytica (Y. lipolytica) and Rhodopsoridium turoliodes (R. turoloides), 

which accumulate lipids in the form of TAG to 40 % and 76 % of their dry cell weigh (Ageitos et 

al., 2011). Especially Y. lipolitica has been in the focus (Adrio, 2017), because compared to other 

oleaginous yeasts it has a comparable longer research history with deeper understanding of its 

physiology and genetics and has more microbiological tools available than others.  

An increased lipid production, especially of TAG in Y. lipolytica has consequently been targeted 

in multiple studies. The strategies include overexpression of genes encoding of the TAG and 

MalCoA forming Dga1p and Acc1p (Tai and Stephanopoulos, 2013), combining this with 

overexpression of a fatty acyl desaturase, which was shown to be a rate liming step of FA 

biosynthesis (Qiao et al., 2015) or evolutionary engineering of the strains (Liu and Jiang, 2015). 

Also S/MCFA biosynthesis has been targeted in Y. lipolytica by expression of medium-chain 

specific TE and e.g. reached production of mainly decanoic acid and some OA comprising to 

40 % of total lipids produced (Rutter et al., 2015). Additionally, the type I FAS of Y. lipolytica 

has also been engineered for MCFA biosynthesis by narrowing the binding channel of the KS 

domain by exchanging I1220 to the bulky tryptophan, which enabled production of C14 FA of up 

to 11 % of total FA (Rigouin et al., 2017).  

In recent years the use of non-model organisms has been increased. Therefore, the development 

of the necessary toolboxes for genetic manipulation has been enhanced (Fatma et al., 2020). But 
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although being the most researched oleaginous yeast, there still is a lack of efficient toolboxes for 

metabolic engineering in Y. lipolytica compared to S. cerevisae. For instance the availability of 

selection markers is limited resulting in a more challenging and time consuming engineering 

process (Larroude et al., 2020). Some recent advances like a more efficient CRISPR/Cas9 

systems for easier genetic manipulation have been achieved (Larroude et al., 2020) but 

development of more tools for fast and easy genetic manipulation in the future is necessary and 

will only then show the full potential of oleaginous yeast for FA production (Ganesan et al., 

2019).  

3.4 Current challenges and limitations in octanoic acid production by mutated 

fatty acid synthases 

 

In this work two publications (Wernig et al., 2020b; Wernig et al., 2021) deal with increasing 

production of OA in S. cerevisiae. Within this thesis OA was produced by a mutated FAS 

(FAS
RK

) by the FA biosynthesis pathway and was increased by fusing the two distinct genes of S. 

cerevisiae FAS (FAS1 and FAS2) into a single-chain construct (fusFAS) (Wernig et al., 2020b). 

Furthermore OA production was increased by engineering of the AcCoA and NADPH supply 

(Wernig et al., 2021). The latter study revealed, that the combination of both strategies does not 

lead to an additive effect (Fig. 5D in Wernig et al., 2021) and does not further increase OA 

production. Two possibilities could prevent additive effects of the two strategies and are 

discussed in this section in details: (i) intrinsic limitation of the FAS
RK

 mutant, (ii) strong 

inhibitory effects of OA. Additionally, strategies which could increase production of OA are 

discussed.  

(i) Within the scope of this work, the FAS mutant of choice for OA production harbors an 

arginine to lysine (R1834K) exchange in the MPT domain (Gajewski et al., 2017). The rationale 

of this mutation was developed by Gajewski, 2017 due to the fact that the ratio between AcCoA 

and MalCoA concentration can influence the chain length control of a FAS in vitro, i.e. higher 

concentrations of the FA elongation unit MalCoA favor longer-chain FA production and higher 

concentrations of the starter unit AcCoA favors shorter FA (Kawaguchi et al., 1980). This effect 

was mimicked by reducing the affinity of the MPT domain for MalCoA, which acts similarly to 
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the reduced MalCoA concentrations. Additionally, the MPT domain releases acyl chains from 

FAS by using the same active site as for malonate binding. In competition for the binding site, 

weakening of the malonate binding was reasoned to favor the release of the acyl chain (Gajewski, 

2017). It was previously established in a crystalized MPT domain of human FAS that MalCoA 

binding is stabilized by a highly conserved arginine residue (Bunkoczi et al., 2009). The MalCoA 

binding then was weakened for S/MCFA production in vitro in a Corynebacterium 

ammoniagenes FAS by an exchange of the equivalent arginine to lysine (Gajewski, 2017). Later, 

this mutation was transferred to the FAS of S. cerevisiae (R1834K; FAS
RK

) which displayed 

production of mainly OA in vivo (Gajewski et al., 2017). The in the scope of this study developed 

fusFAS
RK

 and its enhanced expression by strong promoters increases OA production in an 

otherwise unmodified strain (Wernig et al., 2020b), demonstrating that FAS
RK

 itself is a limiting 

factor for OA biosynthesis. The reason might be the intrinsic functionality of the FAS
RK 

mutant, 

which could be operating at its maximum capacity due to reduced MalCoA loading. Therefore, 

increasing AcCoA and NADPH supply might not further increase production and the effects are 

not additive (Wernig et al., 2021). Additionally, by increasing the supply of AcCoA by strain 

engineering (Wernig et al., 2021) the natural AcCoA/MalCoA ratio is influenced. MalCoA is 

formed from AcCoA by activity of an acetyl-CoA carboxylase (Acc1p, Fig. 3). Although ACC1 

expression was not modified in the engineered OA producing strain (Wernig et al., 2021), to 

minimize LCFA production, MalCoA concentration might have been increased as well thereby 

counteracting the functionality of the RK mutant in an unfavorable way for OA production. It 

remains unknown, which AcCoA/MalCoA ratio is optimal for OA production by fusFAS
RK

 and 

how the distribution of AcCoA/MalCoA is effected in the developed strains (Wernig et al., 2021), 

but fine tuning of AcCoA and MalCoA concentrations is certainly important and should be 

investigated in the future.  

(ii) S/MCFA like OA are long known as strong inhibitors of S. cerevisiae growth (Viegas et al., 

1989; Alexandre et al., 1996; Legras et al., 2010; Borrull et al., 2015; Henritzi et al., 2018; 

Wernig et al., 2020a). As the cause, two different mechanisms have been discussed (also 

discussed in Wernig et al., 2020a). On the one hand, OA is a weak acid (pKa 4.89), which is 

thought to enter the cell in a protonated form by passive diffusion (Soumalainen and Nurmien, 

1976) or by an yet unknown carrier (Borrull et al., 2015) and subsequently dissociates in the 
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neutral cytosol of yeast, causing an accumulation of protons and pH decrease (Viegas and Sá-

Correia, 1997). Indeed, a pH drop in the yeast cytosol and ER was measured upon exposure to 

150 mgL
-1 

external
 
OA by expression of a pH sensitive GFP variant in these compartments 

(Reifenrath and Boles, 2018). This acidification activates H
+
-ATPases (Cabral et al., 2001), 

resulting in elevated use of ATP with increasing OA concentrations and reduced growth as a 

consequence. Additionally, biosynthesized OA is exported from the cells and found in majority in 

the fermentation supernatant (Pavlovic, 2016), where it is protonated again in the acidic medium 

and can re-enter cells. To counteract this inhibitory effect, the production medium was buffered 

at pH 6.5 with a phosphate buffer (Wernig et al., 2020a; Wernig et al., 2020b; Wernig et al., 

2021), which was demonstrated to increase OA production before (Pavlovic, 2016).  

One the other hand, S/MCFA can interfere with membranes causing growth inhibition. For 

instance in one study the majority of cell internal OA was found in the cell wall fraction of the 

yeast (Borrull et al., 2015). Recently, it was demonstrated that a S/MCFA production strain also 

exhibited increased incorporation of these FA into phospholipids in membranes (Xue et al., 

2020). Nevertheless, for functionality and activity of membrane proteins, membranes need to 

maintain their properties i.e. of thickness and fluidity, which directly correlates with packing, 

chain length and degree of saturation of incorporated FA (van der Rest et al., 1995). By 

interaction or incorporation of high concentrations of S/MCFA however, natural membrane 

integrity is disturbed and in consequence membrane leakiness is induced (Liu et al., 2013; Borrull 

et al., 2015). Unsurprisingly, the inhibitory effect of S/MCFA can therefore be counteracted by 

supplementation of the LCFA oleic acid (C18:1) (Liu et al., 2013), potentially by balancing 

membrane perturbation by S/MCFA with longer FA. However, supplementation of LCFA is not 

suitable for OA production for two reasons: (i) it is an undesirable scenario in terms of industrial 

production, as production costs would increase enormously and become uneconomical, and (ii) if 

an S/MCFA producing strain is supplemented with oleic acid, the production of SCFA is greatly 

reduced and shifted to longer-chain FA (i.e. C12) (Pavlovic, 2016), most likely due to down-

regulation of the native FA biosynthesis. Although buffering the medium counteracts the 

inhibitory effect of acidification by OA, its incorporation into the membrane could not be avoided 

in this way, causing a growth defect of OA producing strains (Wernig et al., 2020b; Wernig et al., 

2020a; Wernig et al., 2021).  
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An increased production of OA, by combining different strategies, might be prevented by the 

strong inhibitory effect as discussed above. To overcome this issue, either yeast strains need to be 

engineered for an increased robustness, the toxic compounds could be converted intracellularly to 

a non-toxic substance, of which they can be recovered after extraction or the product could be 

removed by an in situ extraction. However, the only reported engineering strategy to date to 

increase robustness towards externally supplied OA was an increased production of oleic acid 

(C18:1 FA), achieved by overexpression of a mutated superior Acc1
A1157

 for increased MalCoA 

formation (Besada-Lombana et al., 2017). As discussed above this is not an applicable strategy 

for OA production.  

Derivatization of FA to FAEE by esterification with ethanol is considered a mechanism of FA 

detoxification (Peddie, 1990; Borrull et al., 2015). Intracellular conversion of FA to FAEE, 

extraction of these compounds and recovery of the FA by chemical ester hydrolysis could be 

performed. But FAEE are highly volatile likely resulting in loss of product via outgassing, when 

formed in high concentration. In addition, we have shown that ω-HyFA and α,ω-DCA are less 

inhibitory to yeast than their corresponding FA (Wernig et al., 2020a). However, due to their 

chemical structure they are not suitable for an easy recovery of the FA by chemical reactions 

after extraction. Otherwise a process based solution like in situ extraction of the product by an 

adsorbing agent i.e. the anion exchange resin amberlite or others should be considered. Initial 

experiments indicated a feasibility of this strategy (Pavlovic, 2016).  

Among the different FAS mutants, which were developed for S/MCFA production many, 

including FAS
RK

, displayed a “leaky” FA production, meaning that besides S/MCFA also LCFA 

are produced (Gajewski et al., 2017). This fact harbors some advantages and disadvantages, 

which are discussed in the following section.  

The main advantage is that S/MCFA production is enabled rather conveniently by 

implementation of one mutation in the FAS gene or expression of the mutated version in a FAS 

deficient strain and this mutant also provided the essential LCFA for proliferation. However this 

also results in reduced production titers as the capacity of FAS is split between S/MCFA and 

LCFA production. In addition, this may contribute to the growth defect of production strains 

(Wernig et al., 2020a; Wernig et al., 2020b; Wernig et al., 2021) as reduced amounts of essential 

LCFA are formed. Recently, a FAS variant with the mutations I306A/ 
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G1250S/M1251W/F1279W that cannot complement an FAS-deficient strain for LCFA (Pavlovic, 

2016; Schrodt, 2019) was characterized as a FAS variant, that only produces S/MCFA in the 

range of  C6, C8, C10 (Schrodt, 2019). Thereby, the full capacity of the FAS could be used for 

S/MCFA production. For such a FAS variant LCFA need to be provided either externally, which 

is not a feasible option as described above, or by intrinsic production. In Schrodt, 2019 the FAS 

variant was characterized in a strain, which additionally harbors a genomic WT-FAS copy for 

LCFA provision. However, as demonstrated, co-expression of a mutated and WT-FAS reduces 

OA production (Wernig et al., 2020b) possibly by (i) competition for AcCoA, MalCoA and 

NADPH, (ii) elongation of octanoyl-CoA released from a mutated FAS by WT-FAS or (iii) 

formation of heterogeneous complexes of mutated peptides and WT peptides in the same α6β6 

complex, individually or by combinations (Wernig et al., 2020b). To avoid formation of 

heterogeneous complexes of mutated and non-mutated FAS variants, co-expression of other non-

fungal FA biosynthesis systems like the human FAS (Leber and Da Silva, 2014), bacterial type II 

FAS from E.coli (Fernandez-Moya et al., 2015), bacterial type I from Mycobacerium  (Yu et al., 

2017) or fungal FAS from Rhodospuridium toruloides (Zhou et al., 2016), which have been 

successfully expressed in S. cerevisiae before, could be tested.  

An alternative strategy for avoiding these pitfalls could be the separation of a growth- from a 

production phase. In an optimal scenario, the production of LCFA would be restricted to the 

growth phase and S/MCFA could be produced with full capacity by mutated FAS in a production 

phase. Indeed, it was demonstrated for the C22 fatty alcohol 1-docosanol, that separation of 

growth and production phase can increased production (Yu et al., 2017). The separation was 

achieved by a dynamic control of the 1-docosanol forming enzymes by expression from the 

GAL1 promoter, which is repressed by high glucose levels and activated by exposure to the 

inductor galactose. After enough biomass was gained 1-docosanol production was activated and 

showed increased titers compared to immediate expression (Yu et al., 2017). However, 

implementation of such a system is more challenging for OA production due to multiple reasons. 

Simultaneous expression of a WT-FAS for LCFA production and a mutated FAS for OA 

production should be avoided as this reduces production titers (Wernig et al., 2020b). Therefore, 

activation of expression of the OA producing FAS
RK

 variant in a production phase is likely not 

enough for increasing the production titers. The expression of the WT-FAS additionally needs to 

be deactivated after the growth phase. Activation or repression could be achieved by use of the 
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galactose activated GAL promoters (Johnston and Davis, 1984) or the methionine repressible 

MET3 (Mao et al., 2002) and MET25 promoters. Other systems for a dynamic expression control 

in S. cerevisiae were derived from the bacterial tet operator (tetO), in which gene expression is 

regulated for activation or repression in response to an inductor. The tet repressor system was 

shown to be feasible in S. cerevisiae (Cuperus et al., 2015) and a distinct homolog was 

engineered for specific off-switch by the inexpensive molecule camphor (Ikushima et al., 2015). 

However, the FAS complex is highly stable and long-lived with a half-live of more than 20 h 

(Enger et al., 1993), showing that switching off the expression in the production phase is not 

sufficient but additionally, efficient degradation of the complex must be induced, to avoid 

interference of the WT-FAS with mutated FAS. Being a large complex of 2.4 MDa (Jenni et al., 

2006), the FAS is not degraded via the proteasome but is delivered to the vacuole by autophagy 

(Shpilka et al., 2015) although many details of this mechanism yet remain elusive. Nevertheless, 

degradation by the proteasome can be induced by an auxin-inducible degron system, in which a 

degradation signal (degron) is fused to the desired protein and degradation is induced by 

supplementation of auxin (Morawska and Ulrich, 2013). However, to the best of my knowledge 

there is no tool available yet to initiate rapid vacuolar degradation of a protein in S. cerevisiae. 

3.5 Strategies to increase production of 8-hydroxyoctanoic acid in 

Saccharomyces cerevisiae 

 

The de novo production of 8-hydroxyoctanoic was demonstrated in S. cerevisiae by production of 

OA from the FAS
RK 

and sequential conversion to 8-hydroxyoctanoic acid by a CYP/CPR and 

improved further by changing the carbon source from glucose to ethanol/glycerol (Wernig et al., 

2020a). The production titer however remained low (3 mgL
-1

) and need to be improved for a 

profitable industrial application. In this section potential strategies to improve the production are 

presented and discussed.  

In the publication (Wernig et al., 2020a), we demonstrated that CYP/CPR activity is limiting the 

production of 8-hydroxyoctanoic acid, because high amounts of produced OA remained in the 

media and were not converted further. Therefore, to increase the production, improving the 

CYP/CPR activity should be considered first. CYP belong to the most studied enzyme class and 
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many new CYP have been discovered in recent years (Renault et al., 2014). We have selected and 

compared three different CYP/CPR pairs for 8-hydroxyoctanoic acid formation based on their 

substrate specificity. Due to the growing number of newly characterized CYP, many new 

heterologous candidates, which possibly have improved substrate preference and high activity in 

S. cerevisiae could be selected and compared to the ones used in Wernig et al., 2020a. 

Otherwise, a recent review (Jiang et al., 2020) summarized and discussed frequently applied 

strategies to improve the expression and performances of heterologous CYP in yeast. These 

include codon optimization, N-terminal modification, protein engineering, co-expression of CYP 

and CPR, fusion proteins of CYP-CPR and strain modifications to improve the microenvironment 

for CYP expression (Jiang et al., 2020). Codon optimization of heterologous genes is a well-

established strategy that can improve gene expression (Elena et al., 2014). Several examples 

demonstrated that codon optimization of heterologous CYP can improve protein expression in S. 

cerevisiae (Semiz and Sen, 2015), improve production titers (Wang et al., 2019) or enable high 

production (Liu et al., 2018), although in this last study codon-optimized CYP expression was not 

compared to non-codon optimized expression. Hence, codon optimization, which was not applied 

in Wernig et al., 2020a, should be considered as a future strategy to increase 8-hydroxyoctanoic 

acid production. 

Most eukaryotic CYP contain an N-terminal transmembrane helix and are anchored at the ER 

membrane. Although S. cerevisiae is a preferred host due to presence of an ER membrane, 

modifications of the N-terminus was investigated for improved expression in one exemplary 

study. Thus, the expression of a CYP from wheat was improved in S. cerevisiae by substituting 

the 5’ segment by the N-terminus of the endogenous CYP51 (Cabello-Hurtado et al., 2001).  

Natural substrate specificity of heterologous CYP not always meets the exact demands for a 

desired production pathway. Therefore, multiple studies have focused on rational enzyme 

engineering to improve the substrate specificity of expressed CYP. For instance, forskolin 

production was enhanced by engineering of the substrate recognition site of a CYP, which was 

shown to catalyze the rate limiting reaction in the pathway (Forman et al., 2018). Another 

example is the biotransformation of acetylated cortexolone to hydrocortisone by a heterologous 

CYP, which was enhanced by 3-fold by engineering of the CYP (R126D/Y398F) (Chen et al., 
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2020). As an alternative to rational engineering, random mutagenesis was applied. For instance, a 

mutant library of CYP102A1 was generated by error-prone PCR and tested by a newly developed 

synthetic RNA biosensor to link the CYP activity to GFP fluorescence and resulted in a CYP 

with a 30-fold increased activity (Michener and Smolke, 2014). Another example for a performed 

error-prone PCR to introduce mutations into a CYP that performs the hydroxylation of genistein 

was given by (Hatakeyama et al., 2017). The authors isolated a triple mutant variant from more 

than 2000 mutants, which displayed improved activity. Rational engineering and random 

mutagenesis were demonstrated to improve production by enhanced product specificity. Rational 

engineering however requires the availability of the protein structure and detailed knowledge of 

the active site, which is not always elucidated. Random mutagenesis requires a powerful high 

throughput screening system. While OA binding for the best performing CYP (CYP539A7 in 

Wernig et al., 2020a) was simulated computationally and allowed identification of the key 

residues of OA binding (Durairaj et al., 2015), there is no high throughput analysis method for 8-

hydroxyoctanoic acid. Thus, rational engineering for improved substrate specificity should be 

considered to improve 8-hydorxyoctanoic acid production.  

The activity of eukaryotic CYP requires efficient electron transfer from a CPR redox partner 

(Munro et al., 2013). A suitable CPR should be co-expressed because endogenous CPRs may not 

be compatible with the heterologous CYP (Jiang et al., 2020). For the reaction of OA to 8-

hydroxyoctanoic acid in Wernig et al., 2020a, efficient electron transfer to the CYP was ensured 

by expression of a cognate CPR. Although high expression of the CPR from strong promoters did 

not increase production titers (Wernig et al., 2020a) simple co-expression might not be enough 

for high CYP activity. To improve CYP-CPR pairing an artificial channeling system could be 

implemented. To perform channeling, enzymes must consist of multifunctional domains, be 

associated in complexes or clustered under certain conditions (Oreb et al., 2020). The first two 

are known as direct channeling, in which the intermediates of the reactions are directly channeled 

to the next active site avoiding diffusion and accessibility of reactants to side reactions. 

Clustering into protein agglomerates does not fully prevent diffusion of substrates but accelerates 

active site and substrate or protein-protein encounters and thereby increases metabolic rates 

(Castellana et al., 2014). To differentiate these, the latter is referred to as proximity channeling 

(Bauler et al., 2010; Castellana et al., 2014). The understanding of this concept has evoked 
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construction of artificial substrate- or proximity channeling systems to improved efficiency in 

desired pathways (Whitaker and Dueber, 2011; Chen and Silver, 2012; Thomik et al., 2017; 

Besada-Lombana et al., 2018; Oreb, 2020). For the construction, close proximity of the enzymes 

is mediated directly by fusion into one polypeptide chain, by fusion with protein-protein 

interaction domains to their termini, or by embedding them in artificial scaffold proteins (Oreb, 

2020). To bring the CYP and CPR partners into close proximity and create an artificial proximity 

channeling system for electron transfer, fusion of the CYP and CPR has been examined in 

multiple studies (reviwed in Munro et al., 2007a). For instance, the production of long-chain ω-

HyFA was improved by fusing the responsible CYP with its cognate CRP with a short linker, 

which outperformed their individual co-expression (Liu et al., 2019). As alternative strategies for 

proximity channeling, fusion with protein-protein interaction sites or usage of a scaffold protein 

could be investigated to increase CYP and CPR encounters. Additionally CYP can interact with 

other redox partners like cytochrome b5, which are considered to be involved in and increase the 

electron transfer (Schenkman and Jansson, 2003; Zhang et al., 2007). Indeed, co-expression of a 

cognate cytochrome b5 with CYP and CPR was shown to enhance production of artemisinin 

(Paddon et al., 2013) or glycyrrhetinic acid (Wang et al., 2019), for instance. Thus, fusion of CYP 

and CPR and co-expression of cytochrome b5 should be considered furthermore to improve CYP 

activity. In addition, CYP are heme dependent enzymes and the endogenous provision of heme 

has been considered to limit CYP activity and 8-hydroxyoctanoic acid production (Wernig et al., 

2020a). We demonstrated, that supplementation of hemin improves production of 8-

hydroxyoctanoic acid from glucose (Wernig et al., 2020a). Therefore, enhancement of heme 

supply by metabolic engineering strategies (Michener et al., 2012; Savitskaya et al., 2019) should 

be considered to increase the production.  

In conclusion, many different studies have focused on increasing the activity of heterologous 

CYP in S. cerevisiae by different strategies. Due to the low conversion of OA to 8-

hydroxyoctanoic acid, the CYP reaction was identified as the limiting step (Wernig et al., 2020a) 

and the strategies presented here should be elucidated in future to increase CYP activity and 8-

hydroxyoctanoic acid production.  
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 3.6 A future perspective on microbial production of oleochemiclas 

 

Various successes and challenges in the production of OA and 8-hydroxyoctanoic acid were 

reached and revealed in this work. The production of OA was successfully increased by different 

engineering strategies and de novo production of 8-hydroxyoctanoic acid was achieved. The final 

goal however, is to achieve high production titers and yields to implement an industrial 

production of S/MCFA and their derivatives. The here presented production titers remained too 

low for an economical industrial production. But further development in the field of S/MCFA 

production can be expected in the future. Much depends on the development of the crude oil and 

vegetable oil market prices, with which biotechnological production must compete and how 

much biotechnological production can be improved further.  

Multiple possibilities were outlined to overcome the mentioned challenges and to further increase 

production. The utilization of oleaginous organisms like Y. lipolytica and others will increase 

with more genetic tools in the future, providing thrilling host organism for oleochemicals 

production. Additionally, high throughput methods were developed recently to analyze 

production of S/MCFA (Baumann et al., 2018; Xue et al., 2020) of many samples in parallel. 

These include a S. cerevisiae biosensor that transforms S/MCFA concentrations in the media in a 

correlated GFP readout signal (Baumann et al., 2018) and a colony based matrix-assisted laser 

desorption/ionization time-of-flight mass spectrometry of membrane lipids (Xue et al., 2020). 

The authors of the latter study reasoned and demonstrated, by a previously established S/MCFA 

producing FAS variant, that an increased free S/MCFAFA production in S. cerevisiae increases 

the rate of S/MCFA in membrane lipids which were analyzed with a performance rate of 2s per 

sample (Xue et al., 2020). The establishment of rapid and efficient high throughput analytic 

methods enables the utilization of high throughput engineering approaches such as screening of 

strains and gene libraries, directed evolution and random mutagenesis, which could speed up 

engineering of producer strains and reveal engineering strategies, which so far have not been on 

the agenda of researchers. 

Additionally, biotechnological production of hexanoic acid and OA was established by anaerobic 

open culture microbiome consortia by chain elongation of short carboxylates from organic waste 
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materials such as acetate with ethanol as a source for carbon, energy and reducing equivalents 

(reviewed in Angenent et al., 2016). The reverse β-oxidation was identified as the responsible 

pathway for elongation. For instance, production of mainly hexanoic acid was achieved with a 

production rate of more than 57 gL
-1

d
-1 

by using ethanol and acetate as substrates (Grootscholten 

et al., 2013). However, undefined microbiome consortia, strict anaerobic conditions and the fact 

that only process conditions can be manipulated to achieve production goals are challenges that 

need to be addressed for a market introduction of this process.  

Even if a biotechnological production of OA and other S/MCFA is not able to compete with 

conventional production in the near future, S/MCFA are valuable platform chemicals that can be 

converted into or are the precursor to many different compounds of high market value. New de 

novo production pathways, based on FA or derived compounds can be established in future. For 

instance, the heterologous biosynthesis pathway of the pharmaceutical compounds of 

cannabinoids depend on hexanoyl-CoA as precursor (Luo et al., 2019). In conclusion, the here 

presented achievements and the outlined challenges are a valuable contribution to the 

biotechnological production of not only S/MCFA but of many other products derived from or 

involving FA.  
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6 Deutsche Zusammenfassung 

Viele wichtige Chemikalien und Stoffe werden von der petrochemischen Industrie aus Erdöl und 

der oleochemischen Industrie aus Pflanzenölen und Fetten gewonnen. Diese Produkte werden in 

den verschiedensten Bereichen der Industrie und des täglichen Lebens eingesetzt. So finden sie 

zum Beispiel Einsatz in Körperpflegeprodukten, in der Lebensmittel- und Pharmaindustrie oder 

als Kraftstoffe, Öle, Polymere und in vielen anderen Bereichen. Jedoch sind die fossilen 

Ressourcen endlich und geraten zunehmend durch ihren negativen Beitrag zum Klimawandel in 

die Kritik. Obwohl sie mit nachwachsenden Rohstoffen wie der Ölpalme oder der Kokosnuss 

arbeitet, ist auch die oleochemische Industrie aufgrund von negativen Auswirkungen auf die 

Umwelt zunehmend in die Kritik geraten. Ein steigender Bedarf an ihren Produkten hat zur 

Abholzung von Regenwäldern, den bevorzugten Anbaugebieten der Ölpalme, und an deren Stelle 

zu einem Ausbau von großen Monokulturen aus Ölpalmenplantagen geführt. Aufgrund dessen 

werden alternative, nachhaltige und umweltfreundliche Produktionsmethoden für eine Vielzahl 

von Oleochemikalien gesucht. Die Hauptprodukte der oleochemischen Industrie sind vor allem 

Fettsäuren und daraus abgeleitete Verbindungen wie Fettalkohole, Hydroxyfettsäuren und 

Dicarbonsäuren. Dabei sind Fettsäuren und deren Derivate mit kurzen oder mittellangen 

Kohlenstoffketten im Bereich von sechs bis zwölf Kohlenstoffatomen durch ihre vielseitigen 

Einsatzgebiete von besonderem Interesse.  

Eine nachhaltige und umweltfreundliche Produktionsmethode für Oleochemikalien könnte die 

biotechnologische Produktion durch genetisch veränderte Organsimen sein. Dabei wird der 

Stoffwechsel eines Wirtsorganismus durch sogenanntes metabolic engineering gezielt so 

verändert, dass eine gewünschte Verbindung produziert wird. Grundlegende Methoden des 

metabolic engineering sind die Expression von heterologen Genen, die Überexpression oder 

Deletion von endogenen Genen oder Optimierung der beteiligten Enzyme. Das Ziel ist es, 

Zellfabriken oder Chassis-Stämme für eine robuste, effiziente und hohe Produktion zu erzeugen. 

Ein Organismus, der aufgrund seiner Eigenschaften wie Robustheit, einfacher Handhabung und 

wegen der Verfügbarkeit von vielen Methoden zur Genmanipulation oft verwendet wird, ist die 

vielseitige Modell- und Industriehefe S. cerevisiae.  
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In dieser Arbeit wurde die Hefe S. cerevisiae für eine Produktion von der C8 Fettsäure  

Oktansäure eingesetzt und durch metabolic engineering Strategien optimiert. Außerdem wurde 

eine de novo Produktion der von der Oktansäure abgeleiteten 8-Hydroxyoktansäure etabliert und 

optimiert. Die Oktansäure ist jedoch kein natürlicherweise in größeren Mengen vorkommendes 

Produkt der Hefe S. cerevisiae. Natürlicherweise liefert die Fettsäurebiosynthese Fettsäuren im 

Bereich mit einer Länge von 16-18 Kohlenstoffatomen. Jedoch wurde in einer vorherigen Arbeit 

die Oktansäure-Produktion über die Fettsäure-Biosynthese durch eine neu entwickelte mutierte 

Fettsäuresynthase (FAS
RK

) ermöglicht. Durch den Einsatz der FAS
RK

 wird der natürliche  

Kettenlängenkontrollmechanismus hin zur Oktansäure manipuliert. Die FAS
RK 

Variante ist in der 

Lage, neben den essentiellen C16-C18 Fettsäuren auch Oktansäure zu produzieren. Um die 

Oktansäureproduktion in dieser Arbeit zu steigern wurden mögliche limitierende Faktoren und 

Reaktionen untersucht.  

Die FAS der Hefe setzt sich aus zwei Untereinheiten (α und β) zusammen, die einen funktionalen 

Komplex aus α6β6 bilden. Die Bildung des FAS-Komplexes erfolgt cotranslational durch eine 

Interaktion der α- und β-Untereinheiten. Da dieser Schritt möglicherweise einer zellulären 

Regulation unterliegt, könnte er für eine Limitierung der Oktansäureproduktion sorgen. Daher 

wurden α- und β-Untereinheiten der Fettsäuresynthase zu einem einzigen Konstrukt (fusFAS
RK

) 

genetisch fusioniert. Es zeigte sich, dass die Expression einer fusFAS
RK

 im Vergleich zur FAS
RK

 

zu einer höheren Produktion von Oktansäure führt. Dazu eingesetzt wurde ein zuvor etablierter S. 

cerevisiae Stamm, in dem beide FAS Gene FAS1 und FAS2 deletiert wurden. Zudem wurde die 

β-Oxidation, der Abbaumechanismus von Oktansäure, durch eine Deletion von FAA2, welches 

für eine Acyl-CoA Synthase codiert, blockiert. Die FAS
RK

-Expression konnte dadurch als ein 

limitierender Schritt der Oktansäureproduktion identifiziert werden. Stämme, die Oktansäure 

oder andere kurz- und mittelange Fettsäuren produzieren, zeigen im Vergleich zu ihren 

parentalen Stämmen eine starkes Wachstumsdefizit, der für eine biotechnologische Anwendung 

unerwünscht ist und zu einer geringeren Produktion führen kann. Ein Grund dafür ist die stark 

inhibierende Eigenschaft der Oktansäure. Eine andere Möglichkeit besteht darin, dass die 

mutierte FAS nicht mehr genügend der essentiellen langkettigen Fettsäuren herstellt um ein 

normales Wachstum der Zellen zu ermöglichen. Um dies auszugleichen wurden die beiden 

mutierten FAS varianten (FAS
RK

 und fusFAS
RK

) jeweils in einem Stamm mit genomischen WT-
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FAS Allelen coexprimiert. Zudem wurden jeweils mutierte und WT-Varianten der fusionierten 

FAS und gespaltenen FAS in einem FAS-defizienten Stamm coexprimiert. In beiden Fällen 

zeigten sich jedoch verminderte Oktansäure-Titer im Vergleich zur Expression von 

ausschließlich einer (fus)FAS
RK

, die möglicherweise durch physikalischen und/oder 

metabolischen Crosstalk der FAS-Varianten hervorgerufen werden.  

Die Fettsäurebiosynthese, die im Zytosol der Hefe abläuft, wird eingeleitet durch die Bindung 

eines Acetyl-Restes an den FAS-Komplex, der von Acetyl-CoA übertragen wird. Zur 

Verlängerung der Fettsäurekette wird von Acetyl-CoA abgeleitetes Malonyl-CoA verwendet, 

welches mit dem gebundenen Acyl-Rest kondensiert wird. Zudem wird für jede 

Elongationsrunde NADPH zur Reduktion der Fettsäureketten benötigt. Da die Fettsäuresynthese 

strikt von diesen Vorläufern abhängt, wurden für eine Steigerung der Oktansäureproduktion 

verschiedene engineering Strategien für eine erhöhte Bereitstellung von Acetyl-CoA und 

NADHP untersucht. Der natürliche Bereitstellungsweg für zytosolisches Acety-CoA ist der 

sogenannte Pyruvatdehydrogenase-Bypass. Zur Steigerung der Acetyl-CoA Bereitstellung wurde 

zunächst der metabolische Fluss über diesen Stoffwechselweg durch Überexpression von 

Zielgenen erhöht. So wurden die Gene AHD2, welches für eine Alkoholdehydrogenase kodiert, 

ALD6, welches für eine NADP
+ 

abhängige Aldehyddehydrogenase kodiert und eine heterologe 

und mutierte Acetyl-CoA Synthase (ACS1
L641P 

aus Salmonella enterica) einzeln oder in 

Kombinationen überexprimiert. Es zeigte sich jedoch, dass dadurch keine gesteigerte Produktion 

von Oktansäure erreicht wird. 

Als nächstes wurde die Expression eines alternativen heterologen Acetyl-CoA-Biosyntheseweges 

untersucht. In diesem Weg werden eine Xylulose-5-Phosphat spezifische Phosphoketolase 

eingesetzt, die Xylulose-5-Phosphat in Acetyl-Phosphat und Glyceraldehyd-3-Phosphat 

umwandelt. Das entstandene Acetyl-Phosphat wird dann durch eine Phosphotransacetylase in 

Acetyl-CoA konvertiert. Eine Xylulose-5-Phosphat spezifische Phosphoketolase wurde 

ausgewählt, da Xylulose-5-Phosphat ein Produkt aus dem Pentosephosphatweg ist, der für die 

hauptsächliche Bereitstellung von NADPH verantwortlich ist. Um die Xylulose-5-Phosphat- und 

die NADPH-Bildung zu erhöhen, wurde zudem der metabolische Fluss stärker in den 

Pentosephosphatweg geleitet. Dazu wurde der Fluss durch den Pyruvatdehydrogenase-Bypass 

und die Glykolyse durch eine Deletion des Acetaldehyddehydrogenase-Gens ALD6 und 
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Herunterregulation des Phosphoglukose-Isomerase-Gens PGI1 verringert. Durch Überexpression 

des ZWF1-Gens, das für das erste Enzym des oxidativen Pentosephosphatwegs (Glukose-6-

Phosphat-Dehydrogense) kodiert, wurde der Fluss in den Pentosephosphatweg geleitet. Eine 

Expression des Phosphoketolase/Phosphotransacetylase-Wegs in Kombination mit der Umleitung 

des metabolischen Flusses in den Pentosephosphatweg erhöhte die Ausbeute der 

Oktansäureproduktion während der Wachstumsphase auf Glukose um 65 %. Weitere 

Stammmodifikationen zur Steigerung des Flusses über den Pentosephosphatweg durch eine 

zusätzliche Überexpression der Gene ZWF1, SOL3 und GND1oder RPE1 führten nicht zu einer 

weiteren Steigerung der Oktansäureproduktion. Auch die Expression des  

Phosphoketolase/Phosphotransacetylase-Wegs limitierte die Oktansäureproduktion nicht, da die 

Integration von jeweils einer weiteren genomischen Kopie keine Auswirkungen auf die erzielten 

Produkttiter hatte. Zudem konnte eine Kombination des Phosphoketolase/Phosphotransacetylase-

Wegs mit engineering Strategien des Pyruvatdehydrogenase-Bypasses keine weitere Steigerung 

der Oktansäureproduktion herbeiführen. Im Einzelnen wurden die NAD
+
 abhängige Aldehyde 

Dehydrogenase (ALD2) deletiert oder die NADP
+
-abhängige Acetaldehyddehydrogenase (ALD6) 

durch einen Glukose-reprimierten/Ethanol-induzierten Promotor (pADH2) in der späteren Phase 

der Fermentation überexprimiert. Jedoch konnte dadurch keine Steigerung der 

Oktansäureproduktion erreicht werden.   

Als Nächstes wurde getestet, ob eine Kombination der beiden erfolgreichen Strategien aus 

Expression der fusFAS
RK

 und erhöhter Bereitstellung von Acetyl-CoA und NADPH durch 

Stamm-Engineering  eine Steigerung der Oktansäureproduktion herbeiführt. Die Effekte waren 

aber nicht additiv und die Produktion veränderte sich nicht. Daraus lässt sich schließen, dass 

zusätzliche Faktoren eine Erhöhung der Produktion verhindern. Mögliche Gründe könnten die 

stark wachstumshemmenden Effekte der Oktansäure sein oder andere intrinsische Limitierungen, 

die durch die Mutation in der FAS entstehen könnten.  

Neben kurzkettigen Fettsäuren sind viele davon abgeleitete Chemikalien wertvolle Stoffe für die 

Industrie. Eine Vielzahl von möglichen Anwendungen haben zum Beispiel Hydroxyfettsäuren, 

die über eine zusätzliche Hydroxylgruppe verfügen, oder Dicarbonsäuren, die über zwei 

Carboxylgruppen verfügen. Von besonderem Interesse sind dabei Hydroxyfettsäuren oder 

Dicarbonsäuren mit jeweils endständigen funktionellen Gruppen (ω-Hydroxyfettsäuren und α,ω- 
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Dicarbonsäuren). Zunächst wurden die wachstumsinhibierenden Eigenschaften von ω-

Hydroxyfettsäuren und α,ω- Dicarbonsäuren mit einer Länge von acht bis zehn Kohlenstoffen 

untersucht und zeigten eine geringere Wachstumsbeeinträchtigung als die entsprechenden 

Fettsäuren. Dann wurde die Bildung von 8-Hydroxyoktansäure aus zugefütterter Oktansäure in 

einer Biokonversion durch eine terminale Hydroxylierung der Oktansäure angestrebt. Dazu 

wurde die Expression von drei heterologen Gene, die für verschiedene Cytochrom P450-Enzyme 

codieren und zusammen mit ihren zugehörigen Cytochrom P450-Reduktasen exprimiert wurden, 

getestet und verglichen. Zudem wurde die Verwendung verschiedener Kohlenstoffquellen, wie 

Glukose, Galaktose und Ethanol/Glycerin für die Biokonversion untersucht. Ein Cytochrom P450 

aus Fusarium oxysporum f. sp. Lycopersici bewirkte die höchste Produktion, wenn 

Ethanol/Glycerin als Kohlenstoffquelle verwendet wurde. Anschließend wurde für die de novo 

Produktion von 8-Hydroxyoktansäure eine endogene Oktansäureproduktion durch eine mutierte 

FAS
RK 

mit der Hydroxylierungsreaktion von Cytochrom P450/Cytochrom P450 Reduktase in 

einem Stamm kombiniert. Dieser Ansatz ermöglichte eine Produktion von 3 mgL
-1

 8-

Hydroxyoktansäure. Es zeigte sich jedoch, dass am Ende der Fermentation noch große Mengen 

der Oktansäure im Medium vorhanden waren, die nicht zur 8-Hydroxyoktansäure umgesetzt 

wurden. Dies deutet darauf hin, dass die Aktivität des Cytochrom P450 und seiner zugehörigen 

P450-Reduktase die 8-Hydroxyoctansäure-Produktion limitiert. 

Zusammenfassend wurde in dieser Arbeit die Hefe S. cerevisiae erfolgreich durch metabolic 

enigneering Strategien für eine Produktion von Oktansäure optimiert. Es wurde gezeigt, dass die 

FAS selbst ein limitierender Faktor in der Oktansäure Produktion ist und dass eine Fusion der 

beiden FAS Gene FAS1 und FAS2 zu einer Steigerung der Oktansäureproduktion führt. Eine Co-

Expression von einer WT-FAS mit der mutierten fusionierten FAS führte jedoch zu einer 

Verringerung des Produktionstiters. Zudem wurde der Stoffwechsel von S. cerevisiae zur 

Bereitstellung der Ausgangstoffe für die Fettsäurebiosynthese optimiert. Dazu wurden 

verschiedene erfolgsversprechende Strategien angewendet und verglichen. Aktuelle 

Herausforderungen und Limitierungen in der Oktansäureproduktion durch eine mutierte FAS 

wurden entdeckt und skizziert. Darüber hinaus, wurde die hier verwendete Plattform zur 

Produktion von Oktansäure durch ein Cytochrom P450 erfolgreich erweitert und die erste de 

novo Produktion von 8-Hydroxyoktansäure in S. cerevisiae erreicht.  
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