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Zusammenfassung

Das Transkriptom eukaryotischer Zellen befindet sich in einem dynamischen,

sich stetig verändernden Prozess. Viele regulatorische Mechanismen werden

dabei von so genannten RNA-bindenden Proteinen (RBPs) kontrolliert. Diese

interagieren mit spezifischen Bindestellen auf der RNA. Eine wichtige Me-

thode zur Analyse des Bindeverhaltens von RBPs ist
”
individual-nucleotide

resolution UV crosslinking and immunoprecipitation“ (iCLIP). Dabei werden

die Protein-RNA-Kontakte in der Zelle mit Hilfe von UV-Strahlen fixiert. An-

schließend kann ein bestimmtes RBP durch einen Antikörper extrahiert, und

die daran gebunden RNA-Moleküle sequenziert werden. Dabei entstehen Mil-

lionen kleiner Sequenzstücke (
”
reads“), welche dann zum Beispiel gegen das

menschliche Genom aligniert werden können, um Rückschlüsse auf die Po-

sition des RBPs auf der RNA zuzulassen. Ziel meiner Arbeit war es, durch

die Auswertung von iCLIP-Daten die RBP-getriebene RNA-Prozessierung in

Eukaryoten besser zu verstehen.

Die hier vorgelegte Arbeit lässt sich in zwei Abschnitte unterteilen. Im ers-

ten Teil wird eine Verfahrensweise zur computergestützten Auswertung von

iCLIP-Daten beschrieben. Es existieren zwar bereits andere Verfahrenswei-

sen, diese sind allerdings entweder unvollständig oder beschreiben eine Ni-

schenlösung für eine bestimmte Fragestellung. Dabei wird in der Regel für das

jeweils zu untersuchende RBP und das verwendete experimentelle Setup ei-

ne speziell angepasste Art der Datenauswertung verwendet. Dadurch sind die

Ergebnisse verschiedener RBPs nur schwer miteinander zu vergleichen. Dies

ist aber gerade bei komplexeren Fragestellungen zwingend erforderlich. Unter

der Verwendung bereits publizierter iCLIP-Daten des Spleißfaktor
”
U2 small
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nuclear RNA auxiliary factor 2“ (U2AF2/ U2AF65) wurde deshalb eine stan-

dardisierte Verfahrensweise zur iCLIP-Datenauswertung entwickelt.

Im zweiten Abschnitt der Arbeit wird das Bindeverhalten des RBPs
”
se-

rine and arginine rich splicing factor 6“ (SRSF6) im Kontext von Diabetes

analysiert, indem die im ersten Teil definierte Verfahrensweise Anwendung

findet. Es ist bereits bekannt, dass die Expression von SRSF6 in Pankreas-

Zellen durch das Gen
”
GLI-similar 3“ (GLIS3 ) reguliert wird. In Typ-1- und

Typ-2-Diabetes (T1D, T2D) ist die Expression von GLIS3 gestört, was die Ex-

pression von SRSF6 beeinflusst. SRSF6 fungiert in der Zelle als ein Spleißfak-

tor, sodass eine Veränderung des Expressiosniveaus das gesamte Transkriptom

beeinflussen kann. Ziel dieses Teils der Arbeit ist es, die SRSF6-abhängigen

Veränderungen im Transkriptom von Beta-Zellen zu beschreiben, um daraus

Rückschlüsse über dessen Regulierung und den Einfluss auf Diabetes zu gewin-

nen. Dazu wurden sowohl iCLIP- als auch RNA-Seq-Daten aus der menschli-

chen Pankreas-Ziellinie EndoC-�H1 analysiert.

Eine Verfahrensweise zur Auswertung von iCLIP-Daten

Die Auswertung von iCLIP-Daten orientiert sich in der Regel an drei Schrit-

ten. Zunächst werden die Daten bezüglich ihrer Qualität geprüft. Bei diesem

Schritt werden zum Beispiel reads, welche mit Sequenzierfehlern behaftet sind,

aussortiert. Anschließend werden im sogenannten
”
peak calling“ Akkumula-

tionen von reads bestmöglich in einzelne Bindestellen zusammengefasst. Im

letzten Schritt wird dann versucht Rückschlüsse über das RBP aufgrund des

beobachteten Bindeverhaltens zu ziehen.

Das initiale Filtern der U2AF65 iCLIP-Daten lieferte 134.386.066 einzel-

ne reads, welche sich auf vier biologische Replikate aufteilten. Diese wurden

zu einem Meta-Replikat zusammengefasst und Bindestellen wurden mit Pure-

CLIP vorhergesagt. PureCLIP, wie auch andere Programme, sagt Bindestellen

mit unterschiedlicher Breite vorher. In unserem Fall erstreckten sich diese von

einem Nukleotid, bis hin zu einigen Bindestellen mit über 40 Nukleotiden an

Breite. Deshalb habe ich eine Methode zum Zusammenfassen und Vereinheit-

lichen der Bindestellenbreite entwickelt. Dabei wurden in einem definierten

Fenster benachbarte Bindestellen zunächst in Regionen zusammengefasst. An-

schließend wurden alle Regionen, welche größer als die Zielbreite waren, itera-

tiv aufgeteilt, wohingegen kleinere Regionen symmetrisch erweitert wurden. Im

Falle von U2AF65 konnten so ca. 300.000 Bindestellen mit neun Nukleotiden

in der Breite definiert werden.
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Ein Hauptproblem aller bisher existierenden peak calling Programme ist

die Verwendung von Replikaten. Es ist unbestritten, dass mehrere biologische

Replikate von Nöten sind, um signifikante und aussagekräftige Ergebnisse zu

erzielen. Aus diesem Grund wurde im Rahmen dieser Arbeit ein Vorgehen ent-

wickelt, welches es erlaubt, mit aktuell existierenden Programmen trotzdem

Replikate einzubeziehen. Dabei wurde zunächst das Signal aller Replikate in

einem Meta-Replikat zusammengefasst und als Input für PureCLIP verwendet.

Die initialen PureCLIP-Regionen wurden, wie oben beschrieben, in Bindestel-

len von neun Nukleotiden Breite zusammengefasst. Anschließend wurden alle

so definierten Bindestellen bezüglich ihrer Replikat-Unterstützung untersucht.

Dabei wurde zunächst für jedes Replikat ermittelt, wie viele reads in eine de-

finierte Bindestelle fallen. Daraus konnte ein prozentualer Schwellenwert für

jedes Replikat abgeleitet werden. Im Falle von U2AF65 wurde für das 10%

Perzentil ausgewählt. Für jede Bindestelle wurde verlangt, dass dieser Schwel-

lenwert von mindestens drei der vier Replikate erfüllt sein musste. Dieser Filter

reduzierte die Anzahl um rund 17,5%, von den ursprünglichen knapp 300.000

auf nun 248.916 Bindestellen. Mithilfe dieses Verfahrens ist es möglich, meh-

rere Replikate einzubeziehen und damit sowohl sensitiver als auch spezifischer

Bindestellen zu detektieren.

Teil einer jeden iCLIP-Analyse ist die Beschreibung des Bindespektrums

des RBPs. Dazu müssen orthogonale Informationen, wie beispielsweise Gen-

Annotationen, mit den definierten Bindestellen zusammengebracht werden. An

dieser Stelle habe ich die entscheidenden Gesichtspunkte bei der Auswahl ge-

eigneter Annotationsquellen beschrieben. In der vorliegenden Analyse wur-

den Annotationen von GENCODE verwendet. Es konnte gezeigt werden, dass

U2AF65 hauptsächlich in Genen bindet, welche für ein Protein kodieren. Au-

ßerdem konnte beobachtet werden, dass 81% aller Bindestellen in Introns lie-

gen; gefolgt von kodierenden Sequenzabschnitten (CDS, 10%) und den beiden

5’ und 3’ untranslatierten Regionen (3’UTR, 7%; 5’UTR, 1%). Dies bestätigt,

dass U2AF65 als ein Spleißfaktor an der Erkennung der Grenze zwischen Ex-

ons und Introns beteiligt ist und somit potenzielle Spleißstellen definiert. Das

Erkennen dieser Grenze ist in der Regel der Start der Spleißreaktion, für welche

die Bindung von U2AF65 entscheidend ist.

Der in diesem Abschnitt beschriebene Teil der Arbeit legt einen Grundstein

für eine einheitliche Prozessierung und Auswertung von iCLIP-Daten. Dadurch

ist es beispielsweise möglich, das Bindeverhalten von RBPs über verschiede-

ne Zelltypen oder Mutationen hinweg zu untersuchen, da der bindespezifische

Fußabdruck des RBPs genauer charakterisiert werden kann. Man erhält zum
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Beispiel Zugang zu Bindestellen auf Transkripten, welche im aktuellen Zelltyp

nur niedrig abundant sind. Zusätzlich ist es auch möglich, Bindestellen mit ge-

ringerer A�nität zum untersuchten RBP zu finden, welche oftmals auf eine Se-

kundärfunktion des RBPs hindeuten. Daher ist es wichtig das Bindespektrum

in diesem frühen Stadium der Analyse möglichst ganzheitlich zu definieren,

ohne dabei jedoch Abstriche bei der Genauigkeit zu machen. Ein so definiertes

Bindespektrum ist potenziell in der Lage die Genauigkeit von nachgeschal-

teten Vorhersagen zu verbessern. Programme, wie zum Beispiel GraphProt,

versuchen genau die Bindestellen zu finden, welche aufgrund des aktuellen

experimentellen Rahmens nicht gefunden werden können. Dazu werden zum

Beispiel Sequenz- oder Strukturinformationen von beobachteten Bindestellen

herangezogen. Es liegt also nahe, dass eine diverse initiale Beschreibung dieser

beobachteten Bindestellen solche Vorhersagen positiv beeinflussen kann.

Die Rolle von SRSF6 in pankreatischen Beta-Zellen

Wie eingangs schon erwähnt, führt die verminderte Expression von SRSF6 in

pankreatischen Beta-Zellen zu einer erhöhten Apoptose der Zellen. Um den

Einfluss der SRSF6-Bindung in Beta-Zellen zu beschreiben wurden iCLIP-

Experimente in vier biologischen Replikaten in der Zelllinie EndoC-�H1 durch-

geführt. Für die Charakterisierung des Bindeverhalten wurde zunächst die

oben beschriebene Verfahrensweise angewendet. Damit konnten 160.320 Bin-

destellen identifiziert werden. Diese waren auf insgesamt 8.533 Gene verteilt,

von denen 93% für ein Protein kodieren. Innerhalb dieser Gene konnten wir

eine Präferenz für die Bindung von kodierenden Sequenzabschnitten, im Ver-

gleich zu intronischen oder untranslatierten Regionen feststellen. Das genaue

Sequenzmotiv, welches SRSF6 auf der mRNA erkennt und bindet, war al-

lerdings unbekannt. Um dieses genauer zu charakterisieren wurden Tripletts

sowie Pentamere in definierten Fenstern um die Bindestellen herum gezählt.

Dabei konnte eine erhöhte Häufigkeit der Pentamere GAAGA, AGAAG, AA-

GAA und des Tripletts GAA festgestellt werden. Dies deutete auf ein Purin-

reiches Bindemotiv hin. Weiterhin konnte beobachtet werden, dass sich die

Frequenz von GA-reichen Pentameren ab 50 Nukleotiden vor der Bindestelle

bis ca. 25 Nukleotide nach der Bindestelle erhöhte. Das deutete darauf hin,

dass SRSF6 GA-reiche Regionen erkennt und sich gegen Ende dieser posi-

tioniert. Die Triplett-Analysen ergaben weiterhin, dass sich ununterbrochene

Wiederholungen von GAA positiv auf die Binderstärke auswirkten. Am deut-

lichsten war dies bei drei Wiederholungen des GAA-Tripletts zu sehen. Kom-
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plementiert wurden diese Beobachtungen durch eine de novo Motivsuche mit

DREME, welche ebenfalls ein GA-reiches Sequenzmotiv identifizierte. Zudem

ist das hier beschriebene Motiv von SRSF6 sehr ähnlich zu seinem orthologen

Partner in Maus, sowie zu dem des
”
serine and arginine rich splicing factor

4“ (SRSF4), welches ebenfalls erst kürzlich in Mauszellen beschrieben wurde.

Es ist bekannt, dass sich SR-Proteine gegenseitig regulieren, insbesondere die

Kreuzregulation zwischen SRSF6 und SRSF4. Daher ist es plausibel, dass bei-

de Proteine eine ähnliche Sequenzspezifität aufweisen. Mit der obigen Analyse

konnten wir meines Wissens nach erstmals das Bindemotiv des menschlichen

SRSF6-Proteins genau in vivo beschreiben, was den bisherigen Wissensstand

deutlich verbessert.

Wie schon beschrieben, ist SRSF6 ein wichtiger Spleißfaktor, welcher in

die Erkennung von Spleißstellen involviert ist. Dabei agiert das Protein meist

als Verstärker, sodass insbesondere schwache Spleißstellen von einer SRSF6-

Bindung profitieren. Es verstärkt diese und beeinflusst so die Definition von

Exon-Intron-Grenzen, auch im Kontext von alternativem Spleißen. Bei diesem

Prozess werden verschiedene Exons der
”
prä-messenger RNA“ (prä-mRNA)

eines Transkripts zu unterschiedlichen reifen mRNA-Molekülen zusammenge-

setzt. Um diejenigen Gene zu ermitteln, welche durch SRSF6 in ihrem Spleißen

betro↵en sind, wurden RNA-Sequenzierungsdaten (RNA-Seq) aus EndoC-�H1

Zellen mit SRSF6 im
”
knock-down“ (KD) und im

”
wildtype“ (WT) miteinan-

der verglichen. Es konnten dabei 1.212 signifikant veränderte Kassetten-Exons

(CE) beobachtet werden. Bei diesem klassischen alternativen Spleißereignis

wird ein Exon entweder in das Transkript eingebaut oder übersprungen. Es

existiert demnach im Kontext eines Spleißereignisses immer eine so genann-

te
”
inclusion“ und eine

”
skipping“-Isoform. Es konnte gezeigt werden, dass in

ca. zwei Drittel aller Fälle die
”
skipping“-Isoform gegenüber der

”
inclusion“-

Isoform vorherrschend war. Demzufolge scheint SRSF6 in diesen Fällen eine

stabilisierende Wirkung auf das Spleißen von Exons zu haben. Das Fehlen von

SRSF6 führt somit zu einem verminderten Einbau solcher Exons. Im Allge-

meinen passen diese Beobachtungen zu der bekannten Funktion von SRSF6

als Spleißverstärker.

Im letzten Teil der Analyse habe ich die oben definierten Bindestellen mit

den regulierten alternativen Exons kombiniert. Dazu wurden alle solche CE-

Ereignisse betrachtet, welche entweder direkt auf dem regulierten Exon, oder

auf einem der flankierenden konstitutiven Exons eine SRSF6-Bindestelle auf-

wiesen. Das Resultat war eine
”
RNA-Splicing-Map“, welche SRSF6-Bindung

auf potenziell direkt regulierten Exons darstellt. Hierbei zeigte sich, dass alter-
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native Exons, welche durch den SRSF6 KD weniger häufig in die finale Isoform

eingebaut wurden, eine verstärkte Bindung von SRSF6 direkt auf dem alter-

nativen Exon aufwiesen. In dem umgekehrten Fall von hochregulierten alter-

nativen Exons war die SRSF6-Bindung auf den flankierenden Exons im WT

deutlich verstärkt. Dies deutet darauf hin, dass SRSF6 als Spleißverstärker

spezifische
”
exonic splice enhancer“ (ESE) Sequenzelemente auf alternativen

Exons erkennt. Das Spleißen dieser Exons wird demnach von der direkten Bin-

dung durch SRSF6 reguliert. Dabei ist es durchaus denkbar, dass längere GA-

reiche ESEs die Bindung von mehreren SRSF6-Proteinen begünstigen. Diese

interagieren möglicherweise auch untereinander mittels der RS-Domäne, wel-

che aber auch andere Spleißfaktoren rekrutieren kann.

Einige der so durch SRSF6 regulierten Gene sind für ihren Einfluss auf Typ-

1- und Typ-2-Diabetes bekannt. Diese Gene weisen genetische Prädispositionen

auf, sodass Mutationen meist in Zusammenhang mit der Krankheit stehen. Es

konnte beobachtet werden, dass Prädispositionsgene vermehrt in Prozesse der

intrazellulären Signalweiterleitung, aber auch in allgemeinere Funktionen zur

Aufrechterhaltung des Zellzyklus eingebunden sind. Es liegt deshalb nahe, dass

ein verändertes Spleißverhalten einer Vielzahl solcher Gene die Homöostase

der Beta-Zellen nachhaltig beeinflusst und möglicherweise zu ihrem vermehr-

ten Absterben führen kann. Dieses deutet auf einen Zusammenhang der Beta-

Zellen-Apoptose mit der Regulation von SRSF6 durch GLIS3 hin. Dabei führt

eine Verminderung des Expressionsniveaus von GLIS3 auch zu einer entspre-

chenden Reduktion der SRSF6-Transkriptmenge. Dadurch kommt es insbeson-

dere bei Prädispositionsgenen für Diabetes zu einer Veränderung im Spleißen

alternativer Isoformen, da diese durch direkte SRSF6-Bindung reguliert wer-

den. Mit der vorliegenden Arbeit habe ich starke Hinweise liefern können, dass

der Spleißfaktor SRSF6 maßgeblich an der Aufrechterhaltung der Funktion von

Beta-Zellen beteiligt ist. Insbesondere die genaue Definition des Bindemotivs

erlaubt möglicherweise eine bessere Vorhersage von ESE-Elementen, welche

durch SRSF6 erkannt werden. Es ergeben sich dadurch auch potenzielle me-

dizinische Behandlungsmöglichkeiten. So könnten beispielsweise Bindestellen

auf alternativen Exons mit Hilfe von
”
antisense“-Oligonukleotiden (ASOs) blo-

ckiert werden, was sich positiv auf das Überleben von Beta-Zellen auswirken

kann.

Zusammenfassend lässt sich sagen, dass ich mit der hier vorgelegten Ar-

beit eine umfassende Verfahrensweise zur Prozessierung von iCLIP-Daten be-

schrieben habe. Diese konnte anschließend auf die konkrete Fragestellung nach

der spezifischen SRSF6-Bindingung in pankreatischen Beta-Zellen angewen-
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det werden. Dadurch ergaben sich weitreichende neue Erkenntnisse über den

Einfluss von SRSF6 auf die Beta-Zellen-Regulation im Zusammenhang mit

Diabetes.
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Abstract

Most cellular processes are regulated by RNA-binding proteins (RBPs). These

RBPs usually use defined binding sites to recognize and directly interact with

their target RNA molecule. Individual-nucleotide resolution UV crosslinking

and immunoprecipitation (iCLIP) experiments are an important tool to de-

scribe such interactions in cell cultures in-vivo. This experimental protocol

yields millions of individual sequencing reads from which the binding spec-

trum of the RBP under study can be deduced. In this PhD thesis I studied

how RNA processing is driven from RBP binding by analyzing iCLIP-derived

sequencing datasets.

First, I described a complete data analysis pipeline to detect RBP binding

sites from iCLIP sequencing reads. This workflow covers all essential process-

ing steps, from the first quality control to the final annotation of binding sites.

I described the accurate integration of biological iCLIP replicates to boost the

initial peak calling step while ensuring high specificity through replicate re-

producibility analysis. Further I proposed a routine to level binding site width

to streamline downstream analysis processes. This was exemplified in the re-

analysis of the binding spectrum of the U2 small nuclear RNA auxiliary factor

2 (U2AF2, U2AF65). I recaptured the known dominance of U2AF65 to bind

to intronic sequences of protein-coding genes, where it likely recognizes the

polypyrimidine tract as part of the core spliceosome machinery.

In the second part of my thesis, I analyzed the binding spectrum of the

serine and arginine rich splicing factor 6 (SRSF6) in the context of diabetes. In

pancreatic beta-cells, the expression of SRSF6 is regulated by the transcription

factor GLIS3, which encodes for a diabetes susceptibility gene. It is known that
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SRSF6 promotes beta-cell death through the splicing dysregulation of genes

essential to beta-cell function and survival. However, the exact mechanism of

how these RNAs are targeted by SRSF6 remains poorly understood. Here, I

applied the defined iCLIP processing pipeline to describe the binding landscape

of the splicing factor SRSF6 in the human pancreatic beta-cell line EndoC-�H1.

The initial binding sites definition revealed a predominant binding to coding

sequences (CDS) of protein-coding genes. This was followed up by extensive

motif analysis which revealed a so far, in human, unknown purine-rich binding

motif. SRSF6 seemed to specifically recognize repetitions of the triplet GAA. I

also showed that the number of contiguous triplets correlated with increasing

binding site strength. I further integrated RNA-sequencing data from the

same cell type, with SRSF6 in KD and in basal conditions, to analyze SRSF6-

related splicing changes. I showed that the exact positioning of SRSF6 on

alternatively spliced exons regulates the produced transcript isoforms. This

mechanism seemed to control exons in several known susceptibility genes for

diabetes.

In summary, in my PhD thesis, I presented a comprehensive workflow for

the processing of iCLIP-derived sequencing data. I applied this pipeline on

a dataset from pancreatic beta-cells to unveil the impact of SRSF6-mediated

splicing changes. Thus, my analysis provides novel insights into the regulation

of diabetes susceptibility genes.

10



Preface

The content of this PhD thesis is based on collaborative research projects be-

tween the group of Dr. Kathi Zarnack (BMLS, Goethe University FB15, Frank-

furt am Main), the group of Dr. Julian König (IMB, Mainz) and the group of

Dr. Décio L. Eizirik (ULB, Brussels). In my PhD project, I computationally

investigated RNA processing mechanisms by analyzing high-throughput se-

quencing data. All bioinformatic analyses shown in this thesis were performed

by myself, with the exceptions of the initial quality control steps, which were

performed by Dr. Anke Busch (IMB, Mainz) and Dr. Stefanie Ebersberger

(IMB, Mainz). Ines Alvelos (ULB, Brussels) and Reymond Sutandy (IMB,

Mainz) performed iCLIP library preparation, optimization, sequencing and

additional validations. For the sake of completeness some of the experimental

results were included in this thesis. The projects described in this thesis were

under the supervision of Dr. Kathi Zarnack and the described results have

also been published in the following articles:
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1 | Introduction

1.1 The complexity of the human transcrip-

tome

1.1.1 RNA regulatory mechanisms

The flow of genetic information within a cell was first described in 1957 (Crick,

1958). This process, known as the ’central dogma of molecular biology’, con-

sists of two main steps. First information organized in genes and encoded in

the deoxyribonucleic acid (DNA) is transcribed into ribonucleic acid (RNA).

Next, RNA molecules are translated into proteins. RNA transcription and

RNA processing are steps in between genes and proteins that serve as addi-

tional layers of regulation. Several forms of these RNA molecules exist, with

the messenger RNA (mRNA) being the form that is explicitly translated into

the final protein. Other RNA forms like transfer RNAs (tRNAs) or ribosomal

RNAs (rRNAs), to name only the most prevalent, serve in regulatory processes

to guide gene expression. The sum of all expressed types of RNA molecules

comprise the transcriptome of a cell or tissue.

The mRNA life cycle consists of a complex interplay between RNA-binding

proteins (RBPs) and further non-coding RNAs. These can interact at many

di↵erent positions during mRNA transcription, maturation, transport, trans-

lation or degradation (Djebali et al., 2012). The initial steps of the mRNA

life are shaped by transcription and maturation processes in the nucleus. In

eukaryotes such as human, mRNA synthesis is catalyzed by the RNA Poly-



1.1. THE COMPLEXITY OF THE HUMAN TRANSCRIPTOME

Figure 1.1: Schematic overview of the mRNA life cycle. Genetic
information encoded in the DNA is transcribed into the mRNA in the nucleus.
5’ capping and splicing are essential co-transcriptional modifications. Pre-
mRNA processing ends with the polyadenylation at the 3’ end. The mature
mRNA is exported into the cytoplasm. Additional factors control the mRNA
life in the cytoplasm, guiding translocation, transcription and degradation.

merase II (Cramer et al., 2001). The polymerase binds to the promotor region

of the DNA and transcribes the DNA sequence. The resulting pre-mRNA is

composed of exons and introns. Introns are non-coding sequence parts of the

mRNA which are not translated into the final protein. This allows for alter-

native rearrangements during splicing and also provides anchors and binding

points for RBPs needed in downstream processing steps. Exons represent cod-

ing parts and will be fused together in order to provide a single translatable

sequence. The majority of the exonic sequence is translated into the protein,

with exception to the 5’ and 3’ untranslated regions (UTRs). These regions

serve as major anchor points for proteins to alter the fate of the mRNA, such

as providing binding regions for nuclear export factors, directing the mRNA

to its final location or to regulate translation. Already during transcription, a

series of modifications is applied to the pre-mRNA. At first a cap structure is

added to the 5’ end that prevents the molecule from degradation via exonu-

cleases (Proudfoot, 2000). This is followed by the splicing process in which

exons are fused together while intronic sequence parts are removed. Lastly

multiple adenines are added to the 3’ end. This polyadenylation step com-

pletes the maturation process in the nucleus and leaves the mRNA ready for
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export, usually facilitated by nuclear export factors (Stewart, 2019). It is

worth to mention that transcription in general is a heavily parallelized process

and also many of the maturation steps happen in a co-transcriptional manner.

Once exported to the cytoplasm an mRNA can be either directly translated

into protein by the ribosome or stored for later usage. The mRNA can also

be transported to a specific location in the cell prior to translation, such as

to specific compartments or positions. The last step marks the degradation.

One example is the nonsense-mediated decay (NMD) surveillance mechanism

(Kurosaki and Maquat, 2016). It is a cellular pathway specifically for the

degradation of aberrant mRNAs that harbor a premature stop codon. Such

an error can be introduced in any of the maturation steps, for instance during

transcription due to polymerase slippage or during splicing. NMD thus pre-

vents the translation of truncated proteins and thereby keeps cell homeostasis.

1.1.2 Splicing and alternative splicing

The pre-mRNA splicing reactions are carried out by a large and highly dynamic

RNA-protein complex, known as the spliceosome. The spliceosome catalyzes

all reactions needed to remove the intron sequence between two exons in a

first step, while fusing these exons together in a second step. In general,

the spliceosome forms distinct complexes with well-known structures. These

complexes are formed by the interaction of five small nuclear ribonucleoproteins

(snRNPs), known as U1, U2, U4, U5 and U6, all of which consist of small

proteins together with uridine-rich small nuclear RNAs (Shi, 2017; Lerner and

Steitz, 1979). These snRNPs are considered the main building blocks of the

spliceosome. However, a large amount of other proteins is required as well to

catalyze each step of the splicing reaction.

Each intron consists of distinct sequence elements that are required for the

initial spliceosome assembly. These are the 3’ and 5’ splice sites (3’SS and 5’SS,

respectively), which mark the start and end position of the exon, as well as the

branchpoint sequence (BPS) and the poly-pyrimidine tract (PPT). The 5’SS is

also known as the donor site of the reaction, whereas the 3’SS is known as the

acceptor site (Frendewey and Keller, 1985). The spliceosome assembly starts

with the recognition of the 5’SS by the U1 snRNP, with direct base-pairing

(Rogers and Wall, 1980). Of note, this interaction is typically influenced by

members of the serine arginine-rich splicing factors (SR proteins) to modulate

splicing e�ciency (Jeong, 2017). 3’SS recognition starts with the binding of U2

small nuclear RNA auxiliary factor (U2AF), which is a heterodimer consisting
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1.1. THE COMPLEXITY OF THE HUMAN TRANSCRIPTOME

Figure 1.2: Cycle of the spliceosome assembly and disassembly. The
spliceosome assembles on the pre-mRNA forming distinct complexes. The as-
sembly is characterized by the stepwise interaction of small nuclear ribonucle-
oproteins (snRNPs). U1 and U2 facilitate the initial splice sites recognition
and form complex A. The addition of the tri-snRNP, consisting of U4, U5, and
U6 form complex B. U1 and U4 are released which results in the activated
complex B*. Here the first catalytic reaction leads to complex C. The post-
spliceosomal complex contains the fused exons and the lariat structure. Lastly
the complex disassembles and releases all produces, as well as U2, U5 and U6.
Figure adapted from (Lee and Rio, 2015).

of the subunits U2AF1 and U2AF2 (also known as U2AF35 and U2AF65,

respectively). Thereby U2AF1 recognizes the AG dinucleotide of the splice

site itself, while U2AF2 binds to the PPT directly upstream of it (Berglund

et al., 1998). This interaction is stabilized by the splicing factor 1 (SF1)

which binds to the branchpoint sequence while interacting with U2AF2. Once

fully assembled, U2AF recruits the U2 snRNPs which marks the beginning

of the splicing reaction and forms the pre-spliceosome complex A. Next U4,

U5 and U6 snRNPs join to form the precatalytic spliceosome (complex B).

The complex undergoes further conformational changes, releasing U1 and U4,

forming the activated spliceosome (B* complex). This complex carries out the

branching reaction in which the phosphodiester bond at the 5’SS is broken and

16



1.1. THE COMPLEXITY OF THE HUMAN TRANSCRIPTOME

then fused to the branchpoint sequence. This is followed by the second part

of the reaction in the post-spliceosomal complex where exon ligation occurs.

Lastly, the spliceosome complex dissolves, freeing the ligated exons, as well as

the intron sequence as a lariat structure (Padgett et al., 1984; Wahl et al.,

2009; Shi, 2017).

A single human gene usually gives rise to at least two di↵erent transcript

isoforms (Lee and Rio, 2015; Barbosa-Morais et al., 2012). The process of how

and which exons are included in a final isoform is called alternative splicing.

This is thought to provide many advantages by providing more flexibility in

the genomic coding capacity (Kim et al., 2007). In the case of human, more

than 95% of all genes are alternatively spliced (Kornblihtt, 2007). Setting up

and maintaining alternative splicing patterns is performed as a combination of

cis-acting sequence elements, as well as trans-acting binding factors (Lee and

Rio, 2015). These cis-acting sites can be either located in the intronic and

exonic part of the pre-mRNA. Trans-acting binding factors recognize such

sites which can either have a positive e↵ect on the splicing outcome in case of

splicing enhancers, or a negative e↵ect in the case of splicing silencers. Another

level of regulation is set by the cis-acting sequence elements, which are usually

short degenerate RNA motifs, that can be recognized by multiple di↵erent

proteins. This gets even more complex since di↵erent splicing regulators might

also depend on interacting co-factors as well as the cell type (Havlioglu et al.,

2007). Finally, it was also observed that chromatin modification as well as the

speed of the transcription influence the alternative splicing pattern (Dujardin

et al., 2013). The most prevalent alternative splicing pattern in vertebrates

is the exclusion or skipping of an entire exon, also known as cassette exons

(CE). Exons can also be mutually exclusive (MXE), where either one or the

other of two regulated exons is present in the final transcript. Additionally,

exons can be modulated by alternative 3’ and 5’ splice sites, thus leading to

slightly di↵erent versions of an exon. Another possible splicing event e↵ects

the intronic sequence, where the intron itself can be retained (IR) (Wang et al.,

2015). In humans this happens primarily in the untranslated regions (Galante

et al., 2004).

In summary, alternative splicing is a highly regulated mechanism that af-

fects mRNA abundance. The final splicing outcome is controlled by specific

sequence elements that allow the binding of specific splicing factors. Changes

to the splicing pattern may influence and reprogram the entire transcriptome

and thus change the fate of a cell or tissue. Unwanted changes to the splicing

pattern due to for example mutations lead to a wide range of diseases, such as
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Figure 1.3: Common mechanisms of alternative splicing. A number of
di↵erent alternative splicing processes can give rise to plenty of di↵erent tran-
script variants. Most commonly cassette exon skipping, the mutual inclusion
of exons, the usage of alternative 5’ and 3’ splice sites as well as retaining an
entire intron. Figure adapted from (Chen and Weiss, 2015).

neurodegenerative diseases and cancer (Cartegni and Krainer, 2002; Kashima

and Manley, 2003; David et al., 2010; David and Manley, 2010).

1.1.3 Function and design of RNA-binding proteins

To function properly mRNAs must contain additional information besides the

coding sequence. These elements are located in the UTR regions and are rec-

ognized by specific RBPs. RBPs are involved in nearly all regulatory processes

within the cell, covering a wide range of functionalities. They can assemble

in large complexes such as the spliceosome or ribosome but can also act alone

directed by specific sequence motifs (Dreyfuss et al., 2002).

To allow for an interaction with the RNA RBPs usually contain specific

structural domains (Lunde et al., 2007). Although a huge variety of di↵erent

RBPs exists, most of them are built from few RNA-binding modules, such as
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the RNA recognition motif (RRM), the K homology (KH) domain, or zinc-

finger type binding motifs (ZnF) (Burd and Dreyfuss, 1994). The variety

of functional RBPs arises from the diverse structural arrangement and copy

numbers of these domains. This allows for the formation of RNA-recognition

units with the ability to express wide ranges of a�nities and specifies to defined

sequence motifs. These recognition units can be combined with a wide range

of catalytic domains, to form enzymes that are specific for their target and the

reaction they catalyze (Auweter et al., 2006). Such structural units interact

with specific sequence motifs on the side of the RNA. Sequences range from

highly specific binding sites to short and degenerate motifs. Depending on

the tissue or regulation process the same motif might also be recognized by

di↵erent RBPs. The a�nity of an RBP to such a motif can also change in

the context of other RBPs being present, leading to cooperative binding and

competition. During alternative splicing for example, splicing enhancer and

silencer proteins can compete for the same sequence element (Kyburz et al.,

2006; Vagner et al., 2000).

More recently a new class of RBPs was discovered that lacked known RNA-

binding domains, described as ’unconventional RBPs’ (Hentze et al., 2018).

Many of these RBPs were identified on a high-throughput scale using mass

spectrometry anlaysis coupled with ultraviolet crosslinking. This suggests a

direct form of interaction, some of which might be mediated by intrinsically

disordered protein regions (Castello et al., 2016). Interestingly, CLIP-based

studies already described many of such ’unconventional RBPs’. For exam-

ple the alternative splicing regulator 3-hydroxyacyl-CoA dehydrogenase typ2

(HSD17B10) was identified as RBP yeast, but lacks known RNA-binding do-

mains (Beckmann et al., 2015).

RBPs execute their diverse function in the cytoplasm as well as in the nu-

cleus and some also shuttle between both compartments (Cáceres et al., 1998).

Nucleic RBPs are typically involved in pre-mRNA maturation such as splicing

regulators like SR proteins and heterogeneous nuclear ribonucleoproteins (hn-

RNPs). Cytoplasmic RBPs on the other hand predominantly bind to mature

sequence elements, such as UTRs and CDS. The 3’UTR in particular can be

seen as a hotspot for regulation, hosting several cis-acting sequence elements to

guide RBP binding for translation and localization. Some 3’UTR-bound com-

ponents are also deposited in the nucleus and travel to the cytoplasm with the

mRNA, thus influencing the downstream metabolism (Müller-McNicoll et al.,

2016; Singh et al., 2015).

19



1.2. SR PROTEINS SHAPE THE TRANSCRIPTOME

1.2 SR proteins shape the transcriptome

1.2.1 The SR protein family

An essential protein family for cell survival that acts as core splicing factors are

the serine arginine-rich splicing factors (SR proteins). They are involved in key

steps of the splicing reaction, such as splicing initiation by interaction with U1

and U2, but also in later spliceosome formation by recruitment of U4, U5 and

U6 (Wu and Maniatis, 1993; Blencowe et al., 1999). They assist in splice site

recognition and their interplay leads to the stabilization or destabilization of

exon boundaries, thus guiding the spliceosome. Usually SR proteins promote

exon inclusion when bound to exonic or intronic splicing enhancer sequences

(ESE and ISE, respectively) (Lin and Fu, 2007). hnRNP proteins on the other

hand often act as splicing repressors binding to exonic and intronic splicing

silencer sequence elements (ESS and ISS, respectively) (Zhu et al., 2001). Nev-

ertheless, they also compete for certain sequence elements to either repress or

enhance splicing.

Figure 1.4: Mechanisms of positive and negative control of pre-
mRNA splicing. The splicing process is influenced by cis-acting regions
and trans-acting factors. Intronic and exonic sequence regions can both act
as silencers (ESS, ISS) or enhancers (ESE, ISE). These sequence elements are
bound by splicing regulator proteins, such as heterogeneous nuclear ribonu-
cleoproteins (hnRNPs) or serine arginine rich proteins. SR proteins typically
promote splicing of a nearby splice site and interact with enhancer regions.
On the other side hnRNP proteins usually act to inhibit splicing of nearby
splice sites, thus interacting with silencer regions. Figure adapted from (Lee
and Rio, 2015).

The SR protein family consists of 12 evolutionary conserved proteins. They

are defined by the presence of one or two N-terminal RRM domains, which are

followed by an RS domain of at least 50 amino acids with a serine and arginine
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content of more than 40% (Manley and Krainer, 2010). The RRM domain fa-

cilitates the ability to directly bind RNA, whereas the RS domain is needed for

protein-protein interactions (Bourgeois et al., 2004). Of particular importance

are the serine residues, which regulate the protein activity by their phosphory-

lation status. Besides their well characterized function in pre-mRNA splicing,

SR proteins are also involved in other gene regulatory processes (Sapra et al.,

2009). With their ability to cycle between the nucleus and the cytoplasm they

bridge the gap between transcriptional and translational regulation processes

(Müller-McNicoll et al., 2016). The shuttling process is closely linked to the

phosphorylation status of the RS domain. At the end of the splicing cycle SR

proteins are dephosphorylated which allows the interaction with the nuclear ex-

port machinery. Once in the cytoplasm SR proteins can be re-phosphorylated

in order to return to the nucleus. By this, the SR protein activity as well as its

cellular localization are determined by the phosphorylation status (Zhou and

Fu, 2013).

Figure 1.5: Domain structures of the SR protein family. SR pro-
teins usually consist of a combination of four di↵erent protein domains (RRM,
RRMH, RS domain, Znf). RRM, RRMH and Znf domains give rise to a wide
range of RNA a�nities. The RS domain is of variable size, but characterized
by a serine-arginine content of above 40%. Figure adapted from (Änkö, 2014).

Although similar in their composition, individual SR proteins are not func-

tionally equivalent (Zahler et al., 1993). In their RNA-binding capacity various

di↵erent sequence preferences have been observed, suggesting unique speci-

ficities. For SRSF1 and SRSF7 binding to largely purine-rich sequence ele-
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ments was observed in vitro via systematic evolution of ligands by exponen-

tial enrichment (SELEX) (Schaal and Maniatis, 1999). SRSF3 on the other

hand binds predominantly pyrimidine-rich sequences. Furthermore, in vivo

approaches such as crosslinking and immunoprecipitation (CLIP) were also

applied to study the binding of SR proteins (Sanford et al., 2009). CLIP-Seq

approaches are used to capture direct RNA-protein interactions in vivo (for

details see chapter 1.3). Recently, CLIP-Seq studies revealed the splicing im-

pact of SRSF1 and SRSF2 by cooperative and competitive binding interactions

(Änkö, 2014; Müller-McNicoll et al., 2016).

1.2.2 SRSF6 a key splicing regulator

One important representative of the SR protein family is SRSF6. As almost

all SR proteins it is involved in constitutive and alternative splicing, likewise it

shuttles between the nucleus and the cytoplasm. It regulates splicing in a dose-

dependent fashion, since overexpression of SRSF6 a↵ects splice site recognition

(Screaton et al., 1995). SRSF6 misregulation usually has severe e↵ects on the

cell. For example, it has been described as a proto-oncogene contributing

to breast, lung, skin and colorectal cancer upon aberrant expression (Karni

et al., 2007). Furthermore, it was identified as a master regulator of tenascin-C

alternative splicing thus a↵ecting wound healing and hyperplasia (Jensen et al.,

2014). It was also shown that SRSF6 expression levels are coupled to those of

SRSF4, indicating a compensatory cross-talk between the two proteins. Such

co-regulatory e↵ects are well known and described for other SR proteins, such

as SRSF2 and SRSF5 (Müller-McNicoll et al., 2016). The human binding

motif of SRSF4 has been described in vivo as GA-rich (Änkö et al., 2012).

The binding motif of SRSF6 on the other hand is not as clearly described. In

vitro SELEX based studies report di↵ering motifs consisting of UCG and CAG

enriched sequence elements (Änkö, 2014; Liu et al., 1998). Contrary to this

a recent study described the SRSF6 binding motif in mouse as being GA-rich

(Müller-McNicoll et al., 2016). With the known compensatory e↵ects of SRSF4

and SRSF6 a similar binding motif seems reasonable. Yet the description of

this motif for SRSF6 in human cells is still missing.

1.2.3 The role of SRSF6 in diabetes

Diabetes is a chronic disease characterized by patients with low insulin lev-

els. Pancreatic beta-cells lose their ability to produce insulin, which leads to

hyperglycemia and several other short- and long-term complications. Type
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1 (T1D) and type 2 (T2D) are the two main forms of the disease. T1D is

caused by an autoimmune response, where the loss of beta-cells leads to the

failure of the pancreas to produce insulin. T2D is triggered by metabolic

stressors, which lead to insulin resistance and lastly result in low insulin levels

as well. In both cases however, genetic and environmental interactions trig-

ger the loss or failure of the insulin-producing pancreatic beta-cells (Weir and

Bonner-Weir, 2013). Physiologically, insulin-producing pancreatic beta-cells

are located in the islet of Langerhans region (also known as pancreatic islets)

(Zhou and Melton, 2018). In human, these islets comprise of about 2% of

the total pancreatic tissue. Within the islets approximately 60% of the cells

are insulin-producing beta-cells, followed by gluacon-producing ↵-cells (30%).

The remaining 10% is covered by �-cells, �-cells and ✏-cells (Ionescu-Tirgoviste

et al., 2015; Cabrera et al., 2006). Taken together all of these cells tightly reg-

ulate blood glucose levels by hormone secretion (Röder et al., 2016). In T1D

these regions face increased inflammation promoted by cytokines. Cytokines

are global regulators of the immune system typically responding to infection

and inflammation. Di↵erent classes of cytokines exist, those that promote the

disease (proinflammatory cytokines) and those that promote the healing pro-

cess (anti-inflammatory cytokines). In T1D, proinflammatory cytokines are

released by beta- and immune cells promoting pancreatic islet inflammation

(Dinarello, 2000).

Early detection of diabetes remains challenging because of the complex na-

ture of the disease. Genome-wide association studies (GWAS) however enable

the usage of high-throughput data to detect single-nucleotide polymorphisms

(SNPs) which might contribute to diabetes. Such SNPs can be combined

with known annotated genes in order to derive potential diabetes susceptibility

genes (Hakonarson and Grant, 2011). For T1D and T2D GWAS studies identi-

fied several such susceptibility genes (Barrett et al., 2009; Dupuis et al., 2010).

One of these is the Kruppel-like zinc finger protein Gli-similar 3 (GLIS3), which

is a known transcription factor (Barrett et al., 2009; Eizirik et al., 2020). The

exact mechanism of GLIS3 influences beta-cell function was shown by our col-

laborators in 2013. They showed that the knockdown (KD) of GLIS3 lead to

increased beta-cell apoptosis induced by proinflammatory cytokines. Further

they showed that the triggered apoptosis pathway is activated by AS (Nogueira

et al., 2013). That dysregulation of splicing can a↵ect beta-cell function and

impact their survival is not new. The impact of proinflammatory cytokines on

AS changes in human beta-cells is well described (Eizirik et al., 2012). What

was new however, was the observation that the activation of beta-cell apoptosis
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coincided with the inhibition of SRSF6. Explicitly, they found that reduced ex-

pression of GLIS3 also leads to a reduced expression of SRSF6 (Nogueira et al.,

2013). Next, they described the impact of SRSF6 in a follow-up study and

found that it is highly expressed in human pancreatic beta-cells (Juan-Mateu

et al., 2018). Its direct downregulation via KD showed the same dramatic e↵ect

on beta-cell function and survival as if mediated by GLIS3. They showed that

resulting splicing changes impacted diabetes-related biological processes such

as insulin secretion and c-Jun N-terminal kinase (JNK) signaling (Juan-Mateu

et al., 2018). Thereby they found a link between the expression of SRSF6 and

beta-cell survival and death in the context of diabetes. Nevertheless, the exact

mechanisms of SRSF6-mediated splicing changes remain an open question.

1.3 Approaches to study protein-RNA inter-

actions

1.3.1 CLIP technologies

Within a cell, thousands of RBPs are involved in a wide range of cellular

mechanisms, ranging from pre-mRNA splicing to translation, localization and

degradation. In each of these processes they are presented to a variety of pos-

sible RNA targets, while competing or cooperating with other RBPs. It is

thus important to study these RBP binding landscapes. Methods to study

protein-RNA interactions typically make use of RNA immunoprecipitation

(RIP). Formaldehyde can be used to retain protein-RNA interactions and al-

low the conservation of large RNP complexes (Niranjanakumari et al., 2002).

These approaches were subsequently coupled with di↵erent read-out strate-

gies, such as microarrays (RIP-Chip) or high-throughput sequencing (RIP-Seq)

(Tenenbaum et al., 2000; Zhao et al., 2010). The conservation of large RNP

complexes resulted in a rather broad identification of abundant RNAs bound to

the RBP. The identification of direct protein-RNA interactions was not pos-

sible. To enhance the specificity, UV crosslinking and immunoprecipitation

(CLIP) was developed. The idea was to preserve the endogenous protein-RNA

contact while adopting stringent purification methods to avoid the detection

of co-associations with other RBPs (Ule et al., 2003). Based on this idea a

variety of di↵erent derivates were developed, each of which improved on dif-

ferent parts of the protocol, such as RNA fragmentation, RBP purification or

cDNA library preparation. In the following I give a description of the individ-
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ual steps, emphasizing the general concepts rather than the details of a specific

protocol.

Figure 1.6: The core steps of major variants of CLIP. A covalent
protein-RNA crosslink is introduced by exposure to UV light. Cellular struc-
tures are cracked open and the RNA is fragmented. The RBP of interest is
captured by immunoprecipitation using antibodies. For reverse transcription
the primer sequence is ligated to the 3’ ends. All protocols usually include
a quality control step to monitor the size of the fragmented RNA complexes.
Complexes of the desired size are extracted and the protein particle is digested
to prepare the RNA for reverse transcription. Depending of the protocol dif-
ferent approaches exist to ligate the second primer to the 5’ end of the RNA
molecule. cDNAs from all protocols are forwarded to high-throughput se-
quencing. Figure adapted from (Lee and Ule, 2018).

All CLIP-based approaches have an initial crosslinking step in common.

Ultraviolet (UV) light introduces a covalent bond between the RBP and the

bound RNA. This crosslink requires direct contact between the nucleobase of

the RNA with an amino acid of the RBP. Thus, such covalent bonds pre-

serve the original protein-RNA contact while being very stable, which allows

for further stringent purification steps. Depending on the exact protocol,

di↵erent wave-lengths and exposure times are used. In a special variant of

the strategy cells are pre-incubated with photoactivatable ribonucleoside 4-

thiouridine (4SU), which alters the crosslinking behavior (PAR-CLIP) (Hafner
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et al., 2010). The UV crosslinking step is followed by cell lysis. Here, all other

nascent protein-RNA and protein-protein are disrupted, usually by bu↵ering

with ionic detergents. Thus, only the covalently crosslinked protein-RNA in-

teractions remain intact in the lysate. Next, RNAs are split into fragments

of cloneable size by treatment with RNase. This also removes the potential

to co-purify other RBPs that crosslink to the same RNA. This step leaves

the RBP of interest crosslinked to a small strand of RNA. The length of this

strand has to be carefully controlled. Overdigestion for example can lead to

the accumulation of short RNA fragments which narrows down the potential

size distribution of cDNAs (Haberman et al., 2017). Insu�cient RNA diges-

tion on the other side might lead to co-purification of additional RBPs. Some

protocols perform RNase treatment directly in the lysate, while others use a

bead-based RNase treatment strategy (Hafner et al., 2010; Kargapolova et al.,

2017). Purification of the RBP-RNA complex usually requires antibodies to

be available for the immunoprecipitation step. If this is not the case, tagged

RBPs can be expressed transiently from plasmids or genome editing can be

used to express an epitope-tagged version of the RBP (Van Nostrand et al.,

2017). In order for the resulting RNA fragments to be sequenced, common

adapter sequences have to be ligated to the 5’ and 3’ end of the fragments.

This include the forward and reverse primers for the sequencing as well as

primer sequences used in the reverse transcription (RT). Again, to minimize

RNA loss, most of the recent protocols perform this step on beads, compared

to the initial ligation steps on purified RNA fragments. Depending on the ex-

act protocol slightly di↵erent ligation strategies are used (Ule et al., 2005; Lee

and Ule, 2018). A key quality control step is the visualization of the purified

complexes via SDS-PAGE. This step is crucial to optimize any of the above

steps, like the RNA fragmentation. Usually a high and low RNase condition

are used for visualization. In the high RNase concentration, the specificity

of the purified complex is visualized, whereas in the low RNase concentration

RNAs are purified for further cDNA library preparation (Ule et al., 2003).

Next, complexes are cut from the gel and prepared for reverse transcription

(RT) into cDNAs. Proteinase K is used to digest the RBP, which leaves a short

peptide at the crosslink site on the RNA. Depending on the protocol di↵erent

RT enzymes and conditions are used. These have di↵erent impacts on the

amount of cDNAs that truncate at the crosslink site, compared to those that

are entirely revers transcribed (readthrough reads). In order to track PCR

amplification duplicates, some protocols introduced random unique molecular

identifier sequences (UMIs) to the barcode sequences that label each frag-
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ment (König et al., 2010). Free adapter sequences as well as RT primers are

usually removed by gel purification step. These sequences could otherwise

become templates that create contaminated cDNA libraries. Libraries domi-

nated by PCR artifacts could obscure the CLIP signal and lead to read loss.

While classical gel-based extraction provides the most precise method to select

RNA fragments of specific sizes, it is also prone to read loss and ine�cient for

many replicates. To increase the convenience and speed some protocols use

other size separation methods for example based on silica-like beads (Zarnegar

et al., 2016). Lastly, the resulting library is forwarded to high-throughput se-

quencing. Here, usually single-end sequencing is su�cient if the cDNA inserts

remained in original orientation. If this is the case, the read start will con-

tain the barcode information which is needed for downstream computational

analysis (Lee and Ule, 2018).

1.3.2 The iCLIP protocol

It has been observed that in standard CLIP conditions more than 80% of cDNA

truncate at the peptide residue that is left from initial protein crosslinking.

Individual-nucleotide resolution CLIP (iCLIP) was developed to exploit ex-

actly that, thereby achieving single nucleotide resolution. As for other CLIP-

based protocols, iCLIP starts with UV crosslinking to form covalent bonds

between the RBP and the RNA. In particular cells are irradiated with 150

mJ/cm2 at 254 nm in standard iCLIP. This is followed by cell lysis and partial

RNA digestion to obtain RNA fragments. Optimizing the conditions for the

RNase digestion is a critical step. For optimal read-out, it is desired to achieve

a target size of purified RNA molecules between 50 and 300 nucleotides (Hup-

pertz et al., 2014). Next are the immunoprecipitation and adapter ligation for

the reverse transcription steps. Here iCLIP incorporates a special RT primer

design. Two cleavable adapter regions, together with a defined barcode are

ligated to the 3’ end of the fragments. The barcode region contains two se-

quence parts. The first, sample-specific unique sequence tag allows for parallel

sequencing, since it can be used for later de-multiplexing. The second barcode

part represents a UMI that can be used to removed duplicates that might arise

from the PCR amplification step (Huppertz et al., 2014; König et al., 2010). In

iCLIP it is desired that the reverse transcription stops and the cDNA molecule

truncates directly at the crosslinking site. After gel-based size selection those

truncated cDNA molecules are re-captured via intramolecular circularization.

This attaches the second adapter to the 3’ end of the cDNAs. Before sequenc-
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ing the construct is linearized again by the endonuclease restriction enzyme

BamHI (Huppertz et al., 2014; König et al., 2012).

Figure 1.7: Details of the adapter ligation and reverse transcription
in iCLIP. The iCLIP protocol achieves single nucleotide resolution by cap-
turing the exact position of the truncation during reverse transcription. The
protein particle covalently bound to the RNA causes the reverse transcriptase
to truncate during cDNA generation. Truncated cDNAs are recaptured by
a special RT primer design. This primer contains both, the reverse and the
forward RT primer, with some additional barcode sequences. A circularization
step is used to fuse the forward primer to the truncation site. This is followed
by a linearization step and results in the final cDNA. Figure adapted from
(König et al., 2012).

Of note, a recent update of the iCLIP protocol (iCLIP2) describes di↵er-

ent optimization steps to improve the quality and complexity of the resulting

libraries. In particular, the circularization step was replaced by two sepa-

rate linker ligation steps. Further improvements are a PCR pre-amplification

step as well as bead-based size selection for the cDNAs. In order to allow for

larger library sizes also the composition of the barcode sequences was extended

(Buchbender et al., 2020). In summary the iCLIP protocol allows to specifi-

cally identify protein-RNA interactions on a single-nucleotide level. With its

transcriptome-wide and high-throughput scale detected interactions can be re-

inforced by making use of biological replicates. This ability to produce highly

reproducible data makes it the perfect tool to characterize the binding of RBPs

also in non-standard cell types, such as beta-cells.
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1.4 The computational analysis of iCLIP data

1.4.1 Initial processing of the sequence data

The analysis of CLIP-Seq-derived data is usually comprised of three main

steps. At first reads have to be mapped to a reference genome, followed by peak

calling and postprocessing to gain functional insights. While in general being

the same, most of these steps di↵er with regards to the specific CLIP protocol

that was used. Depending on the protocol, di↵erent diagnostic events have

to be used to identify the originally crosslinked position from the sequenced

reads. HITS-CLIP and PAR-CLIP are based on readthrough reads, thus the

whole read has to be used as read-out (Licatalosi et al., 2008). PAR-CLIP-

derived reads for example carry a thymidine-to-cytidine transition directly

at the crosslink site. This is because during cDNA generation the 4SU is

translated into a guanine instead of an adenine (Hafner et al., 2010). Such an

event can be exploited during the analysis to indirectly infer the exact position

of the original crosslink event. In iCLIP however, the crosslink position is

directly visible since about 80% of the cDNAs truncate directly at the crosslink

site. Therefore, the read start itself can be used as indicative event to define

the crosslink position (Sugimoto et al., 2012).

Common to all approaches is the initial quality control of the sequenced

reads, which follows most next-generation sequencing pipelines. This includes

the control of the sequencing performance by using per base read quality scores

(Phred scores). Also, possible adapter sequences are removed from the read

ends. Next reads can be quantified by aligning them to a selected reference

genome (Chakrabarti et al., 2018). The choice of the alignment software for

the initial read alignment however, depends on the RBP and the specific ques-

tion. Reads can be aligned to the transcriptome, allowing for a potential

transcript level resolution, while missing out on any binding to pre-mRNAs.

Thus, alignment to the genome is preferred in cases without prior knowledge

about the RBP. For the same reason, splice-aware aligners are preferred over

non-splice-aware aligners (Baruzzo et al., 2017). After mapping PCR am-

plification biases can be removed in the case of iCLIP-derived reads. Reads

mapping to the same location on the genome and sharing an identical UMI

sequence are most likely derived by PCR duplication, rather than representing

two independent crosslink events (Uhl et al., 2017).
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1.4.2 Peak calling

RBP binding is a highly dynamic process with a wide range of a�nities and

kinetics between the RBP and its target RNA (Jankowsky and Harris, 2015).

For that reason, no absolute threshold can be used to distinguish low-a�nity

sites from high-a�nity sites. Furthermore, not every mapped read corresponds

to a meaningful biological binding event. Peak calling analysis are used in order

to di↵erentiate between RBP binding and unspecific events (De and Gorospe,

2017). Peak calling usually consists of an initial round of peak identification,

followed by stringent filtering steps. Similar to the wide range of CLIP-based

protocols also a wide range of peak calling tools exists, each of which either

specifically developed or adapted from already existing tools. Since all tools

use di↵erent approaches for their specific use case, global comparisons and

benchmarking are challenging (Bottini et al., 2017).

For instance, PARalyzer and PIPE-CLIP were specifically developed for

mutation-based CLIP datasets, such as PAR-CLIP. The idea is to distinguish

diagnostic mutations like the characteristic T-to-C transitions from sequencing

errors, somatic mutations or single nucleotide polymorphisms. This is achieved

by direct thresholding in the case of PARalyzer and slightly more complex by

distributional modeling in the case of PIPE-CLIP (Corcoran et al., 2011; Chen

et al., 2014). Truncation-based peak calling tools on the other hand use the

nucleotide upstream of the mapped read as diagnostic event. Most tools model

these crosslinks as variations of the negative binomial distribution. This dis-

tribution accounts for the over-dispersed nature of count data, where in gen-

eral most counts are distributed over few positions. As a first tool ASPeak

adapted this modeling approach (Kucukural et al., 2013). Next, it was shown

that the zero-truncated variation of the negative binomial distribution is in

general a better fit. Tools like Piranha and PIPE-CLIP made use of it (Uren

et al., 2012; Chen et al., 2014). However, both tools depend on rather large

bins which obscure the original single nucleotide resolution. In contrary to

these distribution-based approaches, also permutation-based approaches were

developed. In iCount for example, counts are randomly distributed over user-

defined regions of interest taken from third-party annotation sources. These

counts serve as background to which the observed count frequencies are com-

pared in order to compute false discovery rates (König et al., 2010). CLIPer is

the tool preferred by the ENCODE consortium (Van Nostrand et al., 2020). It

consists of a two-step approach that uses distribution and permutation-based

approaches. The first step yields a false discovery rate and in a second step a
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Poisson distribution is used to remove peaks with lower counts than expected

by chance (Lovci et al., 2013). It is worth to mention that an important re-

quirement for truncation-based peak calling tools is to make use of the read

start as diagnostic event. Using the whole reads would lead to misalignment

and a loss of resolution (Van Nostrand et al., 2020). An inherent problem to

all of the above tools is the resulting peak width. Ideally, the width of a peak

would capture the binding footprint of the RBP. However, all of these tools

are either based on internal binning or require a manually set window size for

peak merging. This results in a wide spread of peak widths, in between and

within distinct methods, which reduces the biological validity of the results

and complicates downstream analysis. Additionally, the true binding a�nity

of an RBP might be obscured by the composition of the binding motif. It

has been shown that uridine-rich motifs have the overall highest crosslinking

e�ciency. This uridine bias causes disproportional crosslinking to uridines. It

is best noticeable in uridine-rich motifs that are shared between CLIP libraries

of di↵erent RBPs (Haberman et al., 2017; Sugimoto et al., 2012).

A conceptually di↵erent peak calling algorithm, specifically developed for

iCLIP and eCLIP data, comes in the form of PureCLIP (Krakau et al., 2017).

It implements a non-homogeneous hidden Markov model (HMM). This allows

not only to call peaks with single nucleotide precision, but also allows the inte-

gration of certain crosslink motifs to adjust for the uridine bias. The algorithm

splits the initial information from mapped reads into read start sites and in

a fragment density. The read starts relate to the single nucleotide crosslink

events, whereas the fragment density serves as a measure of enrichment within

the current region. The described model consists of four hidden states, which

are based on the two input types. A position can be either categorized as

crosslinked or non-crosslinked, as well as enriched or non-enriched. All posi-

tions of the state crosslinked and enriched are reported as peaks. To correct

for high crosslinking biases, uridine-rich motifs can directly be incorporated

into the model as covariates. This influences the emission probabilities of the

two crosslink-based states. Further control experiments can also be included

into the framework. Here the emission probability distribution of the enriched

states is modulated by the additional covariates. In general, PureCLIP out-

performs other peak calling methods on high-throughput iCLIP datasets. Its

ability to correct for known biases allows to reliably detect peaks, leading to

an increased precision in the definition of an RBP binding landscape.
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Figure 1.8: Overview of the PureCLIP peak calling approach. (A)
Mapped reads from the iCLIP/ eCLIP experiments are used to define two input
signals, the individual read start sites and a smoothed coverage of fragment
densities. These signals are used to assign each nucleotide position to its
most likely hidden state. Positions with the enriched and crosslinked state
are returned as crosslink sites. PureCLIP allows the incorporation of crosslink
motifs to adjust for known biases (B), as well as adjusting for experimental
biases by incorporation of a sequenced input experiment. Figure adapted from
(Krakau et al., 2017).

1.4.3 Post-processing

While the above steps follow a precisely defined question, various approaches

and ideas are summarized under the term ’post-processing’. Usually all of

these ideas have the extraction of biological insight in common. This can be

based on the single nucleotide coverage derived by the initial data processing,

or based on binding sites defined via peak calling. Most commonly the single

nucleotide coverage is integrated with additional orthogonal data to generate

a form of RNA-map (Ule et al., 2006). These maps are conceptually simple,

yet very powerful. Usually the distribution of crosslink events is shown around

regulated landmarks in the transcript. For example, regulated genes or exons

can be identified by RNA-Seq and the crosslink distribution can be overlaid.

Such approaches are used regularly and are also easily accessible for example
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directly by webservers (Rot et al., 2017; Park et al., 2016). Post-processing

based on called peaks however is less clear. For example, no clear pipeline

exits to adequately account for reproducibility between replicates. Some ideas

exit, suggesting either replicate merging before the actual peak calling step,

or merging final binding sites from replicates (Li et al., 2011; Chakrabarti

et al., 2018). In both cases a clear trade-o↵ between specificity and sensitivity

is made, but the how and when to use either approach is not discussed so

far. Also, methods to integrate binding sites with known gene and transcript

annotations are not described. However, this is a common task since the

usually general binding spectrum of an RBP is of high interest. In summary

this suggest that the computational processing of iCLIP data covers most of

the essential steps. Especially for peak calling a wide range of options exist.

Sadly, no standardized workflows exist to derive easily reproducible biological

insights from the processed data. This suggest that additional e↵orts have to

be made in that direction.

1.5 Aim of this thesis

While it is common that computational analysis approaches for iCLIP datasets

follow the three basic steps of mapping, peak calling and post-processing, a

standardized workflow is still missing. Most workflows and pipelines are either

custom solutions, or represent a patchwork of outdated tools applied to mod-

ern experimental protocols. Thus, iCLIP-based computational analysis lacks

comparability between RBPs or research groups.

For this reason, the first part of this thesis sets out to define a standard-

ized processing pipeline equal to other next-generation sequencing-based ap-

proaches. I describe a complete analysis workflow that allows for the reliable

detection of RBP binding sites from iCLIP data. All steps from initial quality

control via peak calling to binding site post-processing are covered. In contrary

to available pipelines, a particular focus is held on the post-processing step.

Here I give exact insights into the transcriptome-wide profiling of RBP foot-

prints. A special e↵ort is made to describe how peak calling can be managed

with multiple replicates, while accounting for reproducibility. Additionally,

the accurate integration with gene annotation data is described to streamline

down stream analysis processes.

Next, I apply the pipeline defined in the first step to an iCLIP dataset of

the splicing factor SRSF6 in pancreatic beta-cells. An in-depth profile of the

SRSF6 binding spectrum in the context of beta-cells is computed. These find-
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ings are further integrated with SRSF6-mediated alternative splicing changes

based on the analysis of RNA-Seq data. The combination of both datasets

unveils how SRSF6 might recognize exons to alter their fate. These findings

help to understand AS-mediated transcriptome changes in diabetes.
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2.1 Establishment of the iCLIP processing work-

flow

The described workflow resulted from a collaboration with our partners Dr.

Anke Busch and Dr. Stefanie Ebersberger from the IMB in Mainz. In sec-

tion 2.1.1 I summarized processing steps performed by Dr. Anke Busch. In

section 2.1.2 the PureCLIP-based peak calling was performed by Dr. Stefanie

Ebersberger, whereas the downstream binding site merging was performed by

myself. All described processing steps are based on a published iCLIP dataset

of U2AF65 (Zarnack et al., 2013).

2.1.1 Initial iCLIP data processing

At first, reads were checked for their sequencing quality using FastQC. Thereby

a minimum Phred score of 10 was required for all nucleotides of the barcode

region of the reads using the FastX-Toolkit (http://hannonlab.cshl.

edu/fastx_toolkit/). Adapter demultiplexing and barcode trimming

was performed with Flexbar (Dodt et al., 2012). A minimum overlap of 1 nt

was required between read and adapter sequence for the trimming and reads

were split into replicates by their barcode sequence. The following settings

were applied:

Flexbar -r <data.filtered.fastq.gz>

--zip-output GZ

--barcode barcodes.fasta

http://hannonlab.cshl.edu/fastx_toolkit/
http://hannonlab.cshl.edu/fastx_toolkit/
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--barcode-unassigned

--barcode-trim-end LTAIL

--barcode-error-rate 0

--adapter-seq adapter.seq

--adapter-trim-end RIGHT

--adapter-error-rate 0.1

--adapter-min-overlap 1

--min-read-length minReadLength

--umi-tags

Processed reads were mapped to the human reference genome (GRCh38.p7)

using STAR (Dobin et al., 2013). Soft-clipping was turned o↵ to retain the

crosslink position and up to two mismatches were allowed in the alignment.

The detailed program call was as follows:

STAR --runMode alignReads

--genomeDir genomeMappingIndex

--outFilterMismatchNoverReadLmax 0.04

--outFilterMismatchNmax

--outFilterMultimapNmax 1

--alignEndsType Extend5pOfRead1

--sjdbGTFfile annotation.gtf

--sjdbOverhang maxReadLength-1

--outReadsUnmapped Fastx

--outSJfilterReads Unique

--readFilesCommand zcat

--outSAMtype BAM SortedByCoordinate

--readFilesIn <sampleX.fastq.gz>

Reads mapping to the same position in the genome while sharing an identi-

cal random barcode sequence are likely to be PCR duplicates. These technical

artifacts were removed using UMI-tools (Smith et al., 2017). The detailed

program call was as follows:

umi_tools_dedup -I <sampleX.bam>

-L <sampleX.duprm.log>

-S <sampleX.duprm.bam>

--extract-umi-method read_id

--method unique

Lastly, reads were reduced to their starting position and shifted by one

nucleotide to transform mapped reads into crosslink events. For this step the

BEDTools suite was used (Quinlan and Hall, 2010).
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2.1.2 Binding site identification

PureCLIP was used as peak calling software to identify enriched peak regions

(Krakau et al., 2017). The tool takes the mapped and de-duplicated reads as

input and computes a list of crosslink sites. We used the tool with default

parameters, besides using the �ld flag for enhanced precision. The detailed

program call was as follows:

pureclip -i <merged.bam>

-bai <merged.bam.bai>

-g <genome.fasta>

-ld

-nt 8

-o <PureCLIP.crosslink_sites.bed>

-or <PureCLIP.crosslink_regions.bed>

PureCLIP crosslink sites are of single nucleotide width and can be combined

into binding sites by merging adjacent positions. This can be done by merging

sites that are closer to each other than the desired binding site width -1 nt.

To achieve 5-nt binding sites for example, all crosslink sites closer than 4-nt

would be merged. This ensures that the final binding sites are not overlapping

each other. To exclude spurious crosslink sites merged regions shorter than a

specific threshold should be removed. For example, merged sites that remained

single nucleotide width are probably caused by mapping artifacts since no

other position in close proximity was detected. I developed an in-house merge

and splitting routine for this purpose (see figure 3.4). The detailed scripts

are shown in the supplementary material section (supplementary code 5). In

the case of U2AF65 9-nt wide binding sites were computed. This means all

crosslink sites closer than 8-nt were merged. Resulting merged regions were

filtered to remove all regions shorter than 3-nt. To compute equally sized

binding sites merged regions shorter than 9-nt were extended and regions longer

than 9-nt were split up. Splitting was done iteratively always selecting the

position with the largest crosslink signal as the binding site center. Each

merged binding site was also required to harbor at least two of the original

crosslink sites. The detailed function call for the in-house script was as follows:

peaksToBindingSites(

peaks = peaksFiltered,

peaksSize = 9,

peaksSizeRemove = 2,

minXlinksPerPeak = 2,

minPureClipSites = 2,

clipSignalPlus = clipSignalPlus,
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clipSignalMinus = clipSignalMinus

)

2.1.3 Binding site reproducibility and downstream pro-

cessing

We investigated if a binding site is reproducible in each of the individual repli-

cates. The number of crosslinks, that directly overlapped the range of the

binding sites was counted for all replicates. This resulted in a crosslink event

distribution per replicate. As filtering threshold, we selected the 10% quan-

tile of each distribution, with a lower boundary of two crosslink events. This

resulted in the following thresholds: Replicate 1 ! 2 crosslinks, replicate 2

! 3 crosslinks, replicate 3 ! 4 crosslinks and replicate 4 ! 2 crosslinks. All

binding sites where the threshold was met by at least three replicates were

deemed reproducible.

To annotate direct gene targets, we overlapped the range of annotated

genes and transcripts with those of the reproducible binding sites. Here a

partial overlap was deemed su�cient. All binding sites overlapping multi-

ple di↵erent gene annotation ranges were discarded. To assess the overlap

with transcripts, binding site ranges were overlapped with those of annotated

transcripts. Again, a partial overlap was deemed su�cient. We considered

the following transcript regions for our annotation: Introns, coding sequence,

3’UTR and 5’UTR. Binding sites overlapping multiple di↵erent transcript type

regions were resolved by applying the following scheme: (1) Majority vote; As-

sign the binding site to that transcript region that is the most overlapping.

(2) Hierarchical rule; In case of ties, prefer intron > 3’UTR > CDS > 5’UTR.

Binding site numbers after each processing steps are given in table 3.3.

2.2 Definition of the SRSF6 binding spectrum

We analyzed four biological iCLIP replicates of SRSF6 in the human pancreatic

cell line EndoC-�H1. The library preparation and wet-lab work was performed

by Ines Alvelos of the Eizirik group. Details about the exact steps can be

found in section 2.4. The initial processing of the iCLIP data described in

section 2.2.1 was performed by Dr. Anke Busch using the pipeline described

in section 2.1.1. Here, I provide a detailed overview of the di↵erent steps that

were performed to characterize the SRSF6 binding behavior.
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2.2.1 iCLIP data processing

The initial sequencing yielded a total of 175,386,785 individual reads which

were monitored for data quality using FastQC. Sequencing reads were filtered

by the Phred score of the barcode region. Only reads with a sequencing quality

of above 20 in the sample barcode, or with a minimum of one position below 17

in the random barcode were retained for further analysis. Next, Flexbar was

used to demultiplex reads based on the sample barcode (Dodt et al., 2012).

Potentially remaining adapter sequences were trimmed o↵ from the right end

of the reads only, again using Flexbar. Thereby a minimum overlap of 1 nt

was required, while allowing up to one mismatch in 10 nt in the alignment. In

a next step, the 9 nt barcode regions were completely removed from the read

sequence, but stored as meta information in the read name. Reads shorter

than 15 nt were removed and all remaining reads were mapped to the hu-

man genome using STAR (Dobin et al., 2013). With soft-clipping turned o↵

and allowing for up to two mismatches, an average mappability of 78.4% was

achieved and only uniquely mapped reads were retained. Reads with identical

random barcode sequences mapped to the exact same position were removed

by the dedup function of the bamUtils tool suit, using the random barcode

sequence that was attached to the read name. Finally, reads were reduced to

their starting position and shifted by one nucleotide to capture the truncation

site and generate a crosslink coverage. A detailed overview of all read numbers

after each processing step is given in table 3.5.

2.2.2 Peak calling and binding site definition

As a first step, the crosslink events from all four replicates were merged into

a single file for peak calling with PureCLIP. Resulting crosslink sites were

filtered by their PureCLIP-score and the lowest 5% scoring sites were removed.

PureCLIP was used with default parameters, besides using the �ld flag for

enhanced precision. The detailed program call was as follows:

pureclip -i <merged.bam>

-bai <merged.bam.bai>

-g <genome.fasta>

-ld

-nt 8

-o <PureCLIP.crosslink_sites.bed>

-or <PureCLIP.crosslink_regions.bed>

All remaining sites were merged into 9-nt wide non-overlapping binding
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sites using an in-house R script (for details, see 5). These were filtered to

contain at least two positions that were initially called by PureCLIP. The

detailed function call for the in-house script was as follows:

peaksToBindingSites(

peaks = peaksFiltered,

peaksSize = 9,

peaksSizeRemove = 2,

minXlinksPerPeak = 2,

minPureClipSites = 2,

clipSignalPlus = clipSignalPlus,

clipSignalMinus = clipSignalMinus

)

These sites were overlaid with gene annotations. Binding sites overlap-

ping multiple di↵erent genes were excluded (3.1%). For protein-coding genes

a majority rule was applied to assign binding sites to a specific transcript re-

gion, followed by a hierarchical rule to handle ties (intron > CDS > 3UTR

> 5UTR). In-house scripts for the binding site definition can be found in the

supplementary material section 5.

2.2.3 Description of the SRSF6 binding motif

The definition of the binding motif was based on 5,000 randomly sampled bind-

ing sites. Triplet and pentamer frequencies were counted using the biostrings

R package allowing for overlaps (Pagès et al., 2017). For the counting three

windows were spanned around each binding site, the 9-nt center, the 20-nt

upstream as well as the 20-nt downstream of the binding site. Pentamer fre-

quencies were computed for all four transcript regions, such as introns, CDS,

3’UTR and 5’UTR. The top 300 pentamers of the CDS region were chosen and

analyzed in positional heatmaps. These were clustered by k-means clustering

with three centroids using the complexHeatmaps R package (Gu et al., 2016).

The de novo motif search was performed using DREME (Bailey, 2011) over all

binding sites. 201-nt long sequences centered at the binding site were used as

input. The position weight matrix of the second best hit (the GAA-rich motif)

was taken as input for FIMO (Grant et al., 2011) to search against all input

sequences. In-house scripts based on which these analyses were performed can

be found in the supplementary material section 5.
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2.3 RNA-Seq data analysis

For this analysis an RNA-Seq dataset previously published by our colleagues

of the Eizirik group was re-analyzed (available at GEO under the accession

GSE98485) (Juan-Mateu et al., 2018). The group performed a total RNA-

Seq experiment in EndoC-�H1 cells with five replicates exposed to control

(siCTL) and five to SRSF6 KD (siSRSF6). In the following I will give a

detailed description of the methods used for its analysis.

2.3.1 Analysis of alternative splicing changes

Initial read quality was monitored using FastQC. Adapter sequences were re-

moved from all 3’ ends using Flexbar (Dodt et al., 2012). Resulting reads

were trimmed to 98-nt in order to achieve a uniform read length. The exact

program call was as follows:

for i in ‘less $ <files>‘; do

echo "---Processing Sample $i"

s1=$<dir>/$i*R1*;

s2=$<dir>/$i*R2*;

flexbar --reads $s1

--reads2 $s2

--target $outdir/$i

--threads $threads

--post-trim-length 98

--min-read-length 98

done

Genomic mapping was performed with STAR without allowing soft-clipping

to maintain the defined read length (Dobin et al., 2013). The exact program

call was as follows:

for i in ‘less $ <files>‘; do

echo "---Processing Sample $i"

s1=$<dir>/$i*R1*;

s2=$<dir>/$i*R2*;

STAR --runMode alignReads

--runThreadN $threads

--genomeDir $index

--readFilesIn $s1 $s2

--outFilterMismatchNmax 2

--outFilterMultimapNmax 1

--outSAMtype BAM SortedByCoordinate

--outFileNamePrefix $outdir/$i

--alignEndsType EndToEnd

41



2.3. RNA-SEQ DATA ANALYSIS

done

Alternative splicing changes were analyzed using rMATS-turbo specifying

read type, read length and strand specificity (Shen et al., 2014). The exact

program call was as follows:

rmats --b1 <replicates_condition_1>

--b2 <replicates_condition_2>

--gtf <annotations.gtf>

--od <output_dir>

--t paired

--readLength 98

--nthread 4

--tstat 4

--cstat 0.0001

--libType fr

We determined the proportion of reported AS event types and focused the

further analysis on cassette exon (CE) events only. Initial CE events were fil-

tered for overlaps. If two or more CE events overlapped each other only the one

with the lowest FDR was retained. We considered an alternative splice event

to be significant if it passed a false discovery rate (FDR) < 0.05. Potential hits

were also filtered by their absolute splicing change (|�PSI| > 0.05). CE events

were further filtered by their log2-transformed sum of junction-spanning reads

supporting the event > 5 (mean between replicates). To integrate SRSF6-

regulated cassette exons with SRSF6 binding, we overlapped defined binding

sites with the entire alternatively spliced region. This region was defined as

the window from -100 nt of the 5’ splice site of the upstream constitutive exon

until +100 nt of the 3’ splice site of the downstream constitutive exon. All

scripts used to compute the described results are given in the supplementary

materials section 5.

2.3.2 Di↵erential expression analysis

Initial sequencing quality of the reads was monitored with FastQC. Adapter

sequences were removed from 3’ ends using Felxbar (Dodt et al., 2012). Reads

were filtered for sequencing quality adapting window-based quality trimming

again using Flexbar. The exact program call was as follows:

for i in ‘less $ <files>‘; do

echo "---Processing Sample $i"

s1=$<dir>/$i*R1*;

s2=$<dir>/$i*R2*;

flexbar --reads $s1
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--reads2 $s2

--target $outdir/$i\\

--threads $threads

--qtrim WIN

--qtrim-format i1.8

--qtrim-threshold 20

--qtrim-win-size 5

--adapters $adapter

--adapter-trim-end RIGHT

--adapter-min-overlap 3

--adapter-error-rate 0.1

done

Next reads were mapped with STAR to the human genome (Dobin et al.,

2013). Soft-clipping was enabled, but a maximum of two mismatches were

allowed and only uniquely-mapped reads were retained. The exact program

call was as follows:

for i in ‘less $ <files>‘; do

echo "---Processing Sample $i"

s1=$<dir>/$i*R1*;

s2=$<dir>/$i*R2*;

STAR --runMode alignReads

--runThreadN $threads

--genomeDir $index

--readFilesIn $s1 $s2

--outFilterMismatchNmax 2

--outFilterMultimapNmax 1

--outSAMtype BAM SortedByCoordinate

--outFileNamePrefix $outdir/$i

--alignEndsType EndToEnd

done

Expression levels were quantified by counting reads within annotated exons

using genomicAlignments (Lawrence et al., 2013). The exact function call was

as follows:

genomicAlignments::summarizeOverlaps(

features = ebg,

reads = <reads.bam>,

mode = "union",

singleEnd = FALSE,

ignore.strand=TRUE

)

The resulting count matrix was filtered for genes covered by at least 10

reads over all replicates. Di↵erential testing was performed using DESeq2
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(Love et al., 2014). We accounted for the paired nature of the dataset by

adding this information into the design formula. The exact function call was

as follows:

DESeq2::DESeqDataSet(

<summarizedObject>,

design = ˜ samplePair + genotype

)

Resulting P values were corrected for multiple testing using the Benjamini-

Hochberg correction and genes were considered significant if they passed an

adjusted P value threshold of < 0.001. We additionally filtered genes based

on their absolute log2-transformed fold-change (|LFC| > 1). Splicing regula-

tors were identified by their association with the Gene Ontology term ”RNA

splicing” (GO:0008380).

2.3.3 RNA splicing maps

We grouped alternatively spliced exons based on their �PSI values into de-

creased or increased inclusion sets. For each regulated cassette exon, we defined

a regulated region by including the flanking up- and downstream exons. The

respective 5’ and 3’ splice sites of these exons serve as anchor point to span

a symmetric window of 200-nt. This results in four distinct windows, each

of which centered at a splice site. Intronic window parts are always 100-nt

wide, whereas exon regions were defined based on the available exon length to

avoid overlaps. For each position all exons with at least one crosslink event

at a distinct position were counted and divided by the total number of exons.

This results in a relative crosslink frequency. Frequencies on the PSI-matched

background set were determined in the same way, but repeated 50 times to

calculate a mean and standard deviation for each nucleotide position. These

mean and standard deviation values were compared to the observed value of

the respective increased or decreased inclusion exon, to compute a positional Z-

score as well as a P value for the identification of significant positions. Scripts

for the computed maps can be found in the supplementary materials section

5.
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2.4 Biological methods

For completeness biological validations as well as a description of the initial

iCLIP are included in this thesis. All wet-lab experiments were performed by

Ines Alvelos. Here I give a short summary of the methods that were used.

2.4.1 iCLIP library preparation

The SRSF6 iCLIP libraries were prepared using a previously described pro-

tocol (Haberman et al., 2017; Sutandy et al., 2016). Initially, crosslink con-

ditions were optimized in HeLa cells and used as positive control. The final

iCLIP libraries were prepared from EndoC-�H1 cells in four biological repli-

cates. The cells were irradiated using 254 nm UV with 300 mJ/cm2 to induce

crosslinking between SRSF6 and the RNAs (König et al., 2010). Partial RNase

digestion was performed by adding 2 U of RNase I (Ambion) to the sample

lysates and immunoprecipitation was performed using a specific anti-SRSF6

antibody (Anti-SRSF6/SRP55 [aa250-300] LS-C290327, LifeSpan Bioscience,

The Netherlands). For sequencing, the prepared libraries were run on an Il-

lumina HiSeq 2500 sequencing system, sequenced as 75-nt single-end reads.

Sample barcodes used in this experiment are given in table 3.5.

2.4.2 mRNA extraction, quantitative PCR and RT-PCR

Poly(A)+ mRNAs were isolated using the Dynabeads mRNA DIRECT Kit

(Invitrogen, Carlsbad, CA). Reverse transcription was done using the the Re-

verse Transcriptase Core kit (Eurogentec, Belgium), after recovering mRNA

molecules in Tris-HCl elution solution. Quantitative PCR amplification was

performed using IQ SYBR Green Supermix (Bio Rad, Hercules, CA, USA)

and Rotor-Gene Q (Qiagen, Venlo, Netherlands). The standard curve method

(Overbergh et al., 1999) was used to calculate the PCR product concentration

as copies per l, while correcting for gene expression based on beta-actin lev-

els. A list of primers is given in table 2.1. For the validation of observed

alternative splicing events by RT-PCR designed primers were annealed to

the flanking constitutive exons and RT-PCR was performed using the Red-

Taq DNA polymerase (Bioline, UK). PCR products were analyzed using the

LabChip electrophoretic Agilent 2100 Bioanalyzer system and the DNA 1000

LabChip kit (Agilent Technologies, Diegem, Belgium). Quantification of the

PCR bands corresponding to a specific splice variant was done using the 2100
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Expert Software (Agilent Technologies, Diegem, Belgium), which was also used

to calculate percent inclusion ratios.

Table 2.1: Sequences of primers used for splicing analyses and quan-
titative RT-PCR Abbreviations used are as follows: SPL, primers used to
analyze splicing variants; qRT, primers used for quantitative RT-PCR.

Gene Application Forward (5’-3’) Reverse (5’-3’)

LMO7 SPL GGATAACAGAAGAAGTTGGGC CCATTTTGCAAGGTCATCCTGC
RBM6 SPL GGTACCTGAAGATGCCACAAAAG CCACCAATGTTTGCCTTACATCG
ITGB3BP SPL GCCTGTTAAAAGATCACTGAAG CTACTGCCCTCCAAAGCCTGTAT
STARD10 SPL CCCTGAAGAACCGTGATGTC CTTCTTCATGGCCTTGGGAGC
CDK2 SPL CATCAAGAGCTATCTGTTCCAGC GCATAGAAGTAACTCCTGGCC
CENPO SPL GGGAATTCTCGCTTCTGGCCTG GTTCCAAGAGCACCTTCCTGGG
BCAR1 SPL CAAAGGTGGTGGTGCCCACC CACGTCGTAGAGGTCAGGAGCC
ACTB qRT CTGTACGCCAACACAGTGCT GCTCAGGAGGAGCAATGATC
SRSF6 qRT CATAGGACGCCTGAGCTACA TGCCGTTCAGCTCGTAAAC

2.5 Programs

In the following part an overview of all programs and software tools used in

this thesis is given. Table 2.2 provides a summary about all programs, table

2.3 provides a summary of all R packages.

Table 2.2: List of tools used in this thesis. For each tool the version and
the respective reference is provided.

Program Version Reference

FastQC 0.11.4 online

Flexbar 3.0.3 (Dodt et al., 2012)
STAR 2.5.2b (Dobin et al., 2013)
Samtools 1.5.0 (Li et al., 2009)
IGV 2.3.97 (Robinson et al., 2011)
PureCLIP 1.0.0 (Krakau et al., 2017)
DREME 5.1.1 (Bailey, 2011)
FIMO 5.2.0 (Grant et al., 2011)
rMATS 4.0.1 (Shen et al., 2014)

FastQC FastQC was used to monitor the quality of sequencing reads (https:

//www.bioinformatics.babraham.ac.uk/projects/fastqc/). It

accepts unprocessed reads in terms of fastq files, as well as mapped reads in the

form of BAM/SAM files. It provides an overview about the reads phred qual-

ity scores per position to visualize the sequencing quality. It further shows

useful statistics about the GC content, read duplication rates and potential

46

https://www.bioinformatics.babraham.ac.uk/projects/fastqc/
https://www.bioinformatics.babraham.ac.uk/projects/fastqc/


2.5. PROGRAMS

Table 2.3: List of R packages used in this thesis. For each package the
version and the respective reference is provided.

Program Version Reference

GenomicAlignments 1.24.0 (Lawrence et al., 2013)
GenomicFeatures 1.40.1 (Lawrence et al., 2013)
rTracklayer 1.48.0 (Lawrence et al., 2009)
DESeq2 1.28.1 (Love et al., 2014)
Biostrings 2.56.0 (Pagès et al., 2017)
clusterProfiler 3.10.1 (Yu et al., 2012)
ggplot2 3.30.2 (Wickham, 2016)
complexHeatmaps 2.40.3 (Gu et al., 2016)

adapter contaminations. FastQC was used for the quality control of iCLIP

and RNA-Seq data.

Flexbar Flexbar is a preprocessing tool for any kind of high-throughput

sequencing data (Dodt et al., 2012). It provides options to e�ciently handle

reads in the form fastq and fasta data files. It for example provides options to

remove adapter sequences from read ends, filter reads for phread quality scores

as well as demultiplexing of libraries based on barcode sequences. Flexbar was

used in the processing of iCLIP and RNA-Seq data.

STAR STAR (Spliced Transcripts Alignment to a Reference) is a reference

based read aligner, that is splice-aware (Dobin et al., 2013). It was specifi-

cally designed with the challenges of RNA-seq data in mind, outperforming

most other alignment tools in terms of mapping speed. It allows for several

filter options on the resulting read alignments. The number of mismatches

per alignment as well as the number of multimapping reads can be controlled.

It also reports detailed statistics about uniquely mapped reads, such as av-

erage length, number of splices sites, mismatch or deletion rate per base. It

also allows to remove non-matching parts of the read in the alignment to en-

hance mappability with a feature called soft-clipping. STAR was used for the

mapping iCLIP and RNA-Seq reads to the human genome.

Samtools Samtools provides a collection of methods to manipulate align-

ment files (Li et al., 2009). Its tools can be used with any kind of alignment

software that produces BAM or SAM output files. Samtools was used for

sorting and indexing of BAM

47



2.5. PROGRAMS

IGV The Integrative Genomics Viewer allows used to visualize genome wide

data (Robinson et al., 2011). It takes a wide range of inputs, ranging from

very condensed data formats such as BigWig files, to total alignments in terms

of BAM files. It was used to visualize all various dataset, such as RNA-Seq

alignments, iCLIP BigWig files and GTF gene annotations.

PureCLIP PureCLIP is a peak calling tool that allows the detection of

protein-RNA interaction footprint (Krakau et al., 2017). It was specifically de-

veloped for protocols that yield single-nucleotide data, such as iCLIP or eCLIP.

It directly takes aligned reads as BAM files as input and returns crosslinked

positions associated with a significance score. Conceptually it trains a hidden

Markov model based on read coverage and read start sites (for details see xxx).

PureCLIP was used to call crosslink sites for the U2AF65 as well as the SRSF6

iCLIP datasets. We always used the merge of all replicates as input.

DREME DREME (Discriminative Regular Expression Motif Elicitation) is

part of the MEME-Suite and was designed to find short enriched sequence

motifs (Bailey, 2011). It takes direct sequences as input in the format of fasta

files. The input can be a single such file or it can be two sequences sets one

to search for enrichment and one background set as reference. In the case

where no background set is explicitly provided such a background is generated

internally by permutation. DREME was used to calculated the de-novo SRSF6

binding motif.

FIMO FIMO (Find Individual Motif Occurrences) is also part of the MEME-

Suit and was designed to can sequences for motif matches (Grant et al., 2011).

It takes the position-weight matrix from a motif, as well as the sequences to

search in as fasta file as input. It returns a set of sequences that contain the

input motif. FIMO was used to identify binding sites that show the de-novo

SRSF6 binding motif in their surroundings.

rMATS rMATS is the successor of the Multivariate Analysis of Transcript

Splicing (MATS) tool (Shen et al., 2014). It is able to handle replicate experi-

ments for the quantification of alternative splicing events (replicate-MATS). It

takes bam files of mapped reads as input and quantifies splicing events which

are deduced from an annotation file that has to be provided as input as well.

The quantification is based on splice junction-spanning reads; thus, it can

handle only reads that were aligned with a splice-aware alignment software.
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rMATS was used to quantify the AS changes in EndoC-BH1 cells upon SRSF6

KD.

R packages and scripts All computational scripts and statistical analysis

of this thesis were written in R (version 4.0.2). This ranges from the basic

visualization of for example mapped RNA-Seq reads, to complex orthogonal

data integration processes when creating RNA-splicing maps. It was also used

to implement all steps of the iCLIP binding site processing pipeline. These

custom scripts were created with functions from base R, as well as some addi-

tional open source packages that are either hosted by CRAN or Bioconductor.

Any genome encoded positional data, such as read and crosslink coverages, but

also gene and transcript annotations were processed with GenomicAlignments

and GenomicFeatures (Lawrence et al., 2013). These packages provide a wide

range of functionalities to structure and manipulated data that is encoded on

genomic coordinates. For input, export and conversion of such genomic coor-

dinate encoded files the rTracklayer package was used (Lawrence et al., 2009).

Di↵erential expression analysis was performed with DESeq2 package, that was

specifically developed for count-based RNA-Seq data (Love et al., 2014). It

takes a matrix as input that represents read counts per sample over genes,

as well as meta information about the input samples. Based on a provided

design formula the tool trains a generalized linear model (GLM) to compute

fold-changes and significance statistics for each gene. DESeq2 was used to

calculate fold-changes between the RNA-Seq data in SRSF6 KD vs. control

condition. K-mer based analysis, such as counting over various di↵erent ranges

was done with Biostrings (version 2.56.0) (Pagès et al., 2017). This package

provides utilities for fast and e�cient string matching and counting of bio-

logical sequence sets. Biostrings was used for the pentamer and triplet-based

profiling of the SRSF6 binding motif. To analyze the functional enrichment

of certain gene sets clusterProfiler was used (Yu et al., 2012). It provides an

interface for the statistical analysis of GO and KEGG profiles. It takes a test

set of GeneIDs and a set of background GeneIDs as input and performs over-

representation analysis of the associated terms. clusterProfiler was used to

calculate GO profiles of genes directly targeted by SRSF6 binding and genes

that were di↵erentially expressed in the RNA-Seq between the SRSF6 KD and

control conditions. All graphics, plots and visualizations were created using the

ggplot2 package, with the exception to matrices and heatmap visualizations,

which were created using the complexHeatmaps package (Wickham, 2016; Gu

et al., 2016).
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2.6 Databases

PubMed NCBI PubMed (https://pubmed.ncbi.nlm.nih.gov/)

is a free database from the National Center for Biotechnology Information

(NCBI) (Wheeler et al., 2007). The debase comprises of millions of biomedical

records and o↵ers free full-text versions articles. They also provide related

tools to search and query their literature database. In this thesis PubMed was

used for literature search and review.

GENCODE The GENCODE database (https://www.gencodegenes.

org/) provides genome wide gene and transcript annotations curated with

biological evidence (Frankish et al., 2019). They identify and classify gene fea-

tures in human and mouse while providing a periodically updated release. For

this thesis gene and transcript annotations of release 29 for the human genome

version xxx was used. These annotations were further filtered for their gene

and transcript level support. Only genes with a support  2 and transcripts

with as support  3 were used.

GWAS Catalog The GWAS database (https://www.ebi.ac.uk/gwas/

home) provides a catalog of human genome wide association studies (Buniello

et al., 2019). It is provided by the National Human Genome Research Institute

(NHGRI) and the European Bioinformatics Institutes (EBI). They provide a

comprehensive resource that archive thousands of studies investigating the as-

sociation of specific phenotypes with single-nucleotide polymorphisms. In this

thesis the database was used to retrieve a list of T1D and T2D diabetes sus-

ceptibility genes.

Immunobase The Immunobase database (https://genetics.opentargets.

org/immunobase) also provides a database for genetic association with cer-

tain phenotypes. They specifically focus on immune-mediated diseases. T1D

and T2D diabetes susceptibility genes were download from this resource as

well. The database was recently integrated into the GWAS catalogue and can

now be accessed via OpenTartes (Ochoa et al., 2020).
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3 | Results

3.1 Establishing an iCLIP processing workflow

Most cellular processes are regulated by RBPs with a wide range of a�nities,

for example to specific mRNA targets. RBPs use defined binding sites on

the mRNA to recognize their targets. One state-of-the-art method to study

these interactions on a transcriptome-wide scale is individual-nucleotide reso-

lution UV crosslinking and immunoprecipitation (iCLIP) coupled with high-

throughput sequencing. Similar to other high-throughput methods, like RNA-

Seq for example, iCLIP yields millions of sequencing reads. To generate bio-

logical insight from the sequenced data, computational analysis usually covers

three essential steps (see introduction 1.4). Initial read quality is checked and

pre-processing of the iCLIP reads is done to retrieve single crosslink events.

This is followed by peak calling and a variety of di↵erent post-processing steps.

In this chapter I set out to give a detailed overview of these steps, specifically

highlighting details of the post-processing part.

3.1.1 Initial data processing

In the presented workflow a published iCLIP dataset for the RNA-binding

protein U2AF65 in HeLa cells was chosen to demonstrate the individual pro-

cessing steps (Zarnack et al., 2013). The experiment consists of four biological

replicates. Library preparation as well as the sequencing was performed by the

König group (IMB Mainz). Further, the presented workflow was published in

2019 and represents the shared work and e↵orts of all authors (Busch et al.,
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2020). Initial sequencing data processing up to the point of obtaining a single-

nucleotide resolution crosslink coverage was performed by Dr. Anke Busch

(IMB Mainz core facility).

The sequencing yielded a total of 134,386,066 individual reads which were

subsequently processed to obtain crosslink events. The term ’crosslink event’

is used throughout this thesis to describe the detection of a protein-RNA con-

tact, measured by the sequenced reads. Major processing steps of particular

importance are the initial quality filtering specifically on the barcode part of

the read (figure 3.1). This was followed by sample de-multiplexing, where reads

got assigned to the individual replicate based on their experimental barcode.

Replicates were next mapped to the genome and PCR duplicates were removed

based on the random barcode sequence. A summary of the processing steps is

given in supplementary table 3.1 and described in the methods section (2.1.1).

Table 3.1: Read counts before and after de-duplication. Read counts
are given after mapping to the reference genome. Technical duplicates were
removed for downstream analysis.

Sample Uniquely mapped reads
Crosslink events after

de-duplication

Sample 1 8,027,421 6,666,142 (83.04%)
Sample 2 28,978,914 22,619,516 (78.06%)
Sample 3 40,053,868 30,510,305 (76.17%)
Sample 4 16,713,002 12,490,440 (74.73%)

Following up on these results I started to tackle the question of how to

best identify individual binding sites from the characteristic transcriptome-

wide iCLIP coverage. The term ’binding site’ is used throughout this thesis to

describe a small genomic region of around 10 nucleotides where crosslink events

are highly enriched. Thus, binding sites are always deduced from detected

crosslink events. Next, I also showed how binding site reproducibility can

be ensured over several biological replicates, followed by the demonstration

of useful downstream analysis such as the identification of target genes and

transcripts.

52



3.1. ESTABLISHING AN ICLIP PROCESSING WORKFLOW

Figure 3.1: Overview of the preprocessing workflow. First quality
filtering, trimming and sample de-multiplexing is applied on the entire library.
Next, individual samples are mapped and coverage tracks are generated after
the removal of technical duplicates. Processing steps are highlighted in grey,
while resulting data files are shown in yellow. Figure adapted from (Busch
et al., 2020).

3.1.2 The transcriptome-wide identification of RBP bind-

ing sites

RBPs typically bind to a variety of binding sites in coding and non-coding

RNAs with a broad a�nity range for the RNA sequence, RNA structure or

a combination of both. Datasets are influenced by this binding behavior as

well as by variable noise levels, such as technical aspects of the protocol or

the e�ciency of the immunoprecipitation. The analysis part that captures

regions of increased crosslinking in short distinct clusters is known as ’peak

calling’ (Chakrabarti et al., 2018). Up to this date a variety of di↵erent such

tools exists, tailored to a specific CLIP protocol or adapted from DNA-based

protocols such as ChIP-Seq analysis (Drewe-Boss et al., 2018). Here we used

PureCLIP as a peak calling tool, since it is specifically designed to capture

footprints of truncation-based protocols like iCLIP and eCLIP (Krakau et al.,

2017).

To enhance the sensitivity of the peak detection reads from all four repli-

cates were merged into a single file (Figure 3.2 A). The exemplary section of the

UBA2 gene showed two regions of dominant crosslink event pileups. Although

visible in each of the individual replicates, these regions were most prominent
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in the merge of all replicates. This indicated that crosslink events caused

by specific protein binding added up between replicates. More randomly dis-

tributed crosslink events, probably caused by unspecific experimental biases

did not show the same e↵ect. Thus, replicate merging was likely to enhance

the signal from potential binding sites, while not amplifying protocol biases.

PureCLIP-based peak calling resulted in a total of 1,929,191 crosslink sites.

The term ’crosslink sites’ is used throughout this thesis to describe a single

nucleotide-wide position on the genome, that was called significant by Pure-

CLIP. Significant sites are detected by prediction based on a hidden Markov

model (HMM). Further, PureCLIP o↵ers the automated merging of neighbor-

ing crosslink sites into larger regions. These regions were meant to capture the

width of the RNA-binding footprint of the studied RBP. However, the size of

these regions varied considerably, which could impair the downstream analysis

(Figure 3.2 B). For example, more than 25% of all crosslink sites remained un-

merged and thus spanned only a single nucleotide, whereas also regions larger

than 24-nt could be observed. This again showcased the need of defining a

unique binding site width to make conclusive statements about the binding

behavior of the present RBP.

In order to remove low quality binding sites, I applied a filter on the

PureCLIP-derived binding site strength score. PureCLIP computes a strength

score for each single nucleotide crosslink site. This score is deduced from the

log posterior probability ratio between the first and second most likely state

of the HMM. It thus represents a binding site strength measure that is in-

dependent of the underlying transcript abundance (Krakau et al., 2017). We

observed that the score distribution showed a near normal distribution with

an added tail towards small values (Figure 3.3 A, B). These low-a�nity po-

sitions were removed based on a threshold at the 5% quantile. This lead to

an approximately normal shaped distribution among the 1,795,322 resulting

crosslink sites. Depending on the binding mode the detected RBP footprint

might di↵er. Thus, the computation of a unique binding site width has to be

adapted whenever a new experiment is analyzed. To deduce an appropriate

binding site width for U2AF65, we analyzed the spread of crosslink events

around the center of the summarized binding sites (Figure 3.3 C, D). This can

be done for a range of potential binding site widths. Here we decided to start

with the smallest possible width of 3-nt, followed by an intermediate width of

9-nt and a large width of 29-nt. Thereby odd numbers were chosen to keep

binding sites symmetrical. We observed that the majority of crosslink events

piled up in a region of ten nucleotides around the binding site center. This
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clearly indicated that a binding site width of 29-nt would be too large. On the

other hand, a binding site width of 3-nt appeared to be too small, since not

all of the signal was captured. Thus, we decided to merge crosslink sites into

9-nt wide binding sites in the case of U2AF65.

Crosslink sites were merged by concatenating sites that were closer to each

other than 8-nt. This ensured that the resulting 9-nt wide binding sites were

not overlapping each other. The resulting regions varied in width and thus

regions longer than 9-nt needed to be reduced, while shorter regions had to

be elongated (Figure 3.4) (see methods 2.1.2). However, this procedure al-

lowed also non-crosslink sites to arrive in binding sites. In order to control the

number of these non-crosslink sites, we applied di↵erent filtering thresholds

(Figure 3.5 A). Per definition each binding site harbored at least one crosslink

site. A minimum of one crosslink site per binding site is thus the most in-

clusive threshold possible. With increasing stringency, the number of binding

sites that passed the threshold declined constantly. For example, 91% of all

binding sites were supported by two crosslink sites, whereas only 9.5% were

supported by six crosslink sites. Based on the binding site definition, most

binding sites showed the highest summed up crosslink signal directly at the

center position (Figure 3.5 B, C). Binding sites with a higher proportion of

crosslink sites on the other hand showed a broader crosslink profile. This hints

towards a potential enrichment of neighboring binding sites on highly abundant

transcripts. In order to achieve a balance between stringency and specificity

we decided for a minimum threshold of two crosslink sites for each U2AF65

binding site. We further required each binding site to harbor a crosslink site

at the center position. This center position is also required to show the maxi-

mum crosslink events within a binding site. In total these steps yielded 301,588

non-overlapping 9-nt wide binding sites (see table 3.2).

In summary, the described steps allow for an accurate definition of equally

sized binding sites over the entire transcriptome. Potential pitfalls arise in

the post-processing of crosslink sites, thus careful filtering steps needed to be

applied to ensure the reliability of the final binding site.
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Table 3.2: Merging of crosslink sites into binding sites. For the
U2AF65 binding site processing in each filtering and resizing step the number
of remaining regions is given. The initial crosslink sites were merged (resize
routine) and filtered by the resulting width (position filter). Further the cen-
ter of each binding site was required to be covered by a crosslink site, while
showing the highest number of individual crosslink events (center crosslink and
center maximum, respectively). Lastly a filter on the total number of crosslink
sites is applied (crosslink site filter).

Processing step
Number of crosslink/

binding sites

Crosslink sites 1,795,322
Resize routine 332,949
Position filter 331,200
Center crosslink 330,820
Center maximum 323,086
Crosslink sites filter 301,588
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Figure 3.2: Peak calling with PureCLIP. (A) Overview of the UBA2

gene locus showing the individual crosslink events for each sample as well as the
merge of all four replicates. The PureCLIP-computed crosslink sites are shown
underneath, together with the final U2AF65 binding sites after post-processing.
(B) Distribution of the width of PureCLIP binding regions resulting from the
concatenation of the predicted crosslink sites. Figure adapted from(Busch
et al., 2020).
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Figure 3.3: Estimation of the binding site width. (A, B) Distribution of
the PureCLIP-score associated with each crosslink site. The 5% line indicates
the score threshold that is used to remove poorly supported sites. (C, D)
Meta profile of crosslink events around the center of merged binding sites with
the indicated width. Binding sites were aligned at their central position and
crosslink events were counted in a 100-nt window around that center.
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Figure 3.4: Merging of the crosslink sites into binding sites. Crosslink
sites are subsequently merged into binding sites of 9-nt. (A) Crosslink sites
closer than 8-nt are fused to merged sites. (B) Merged sites longer than 9-
nt are iteratively splitted. (C) Merged sites shorter than 9-nt are extended
symmetrically. In both cases the crosslink site with the highest signal is chosen
as binding site center.

59



3.1. ESTABLISHING AN ICLIP PROCESSING WORKFLOW

Figure 3.5: Post-processing of computed binding sites. Crosslink sites
were merged into 9-nt wide binding sites, which are further filtered by ad-
ditional constraints. (A) Bar chart indicating the number of binding sites
retained given the indicated number of crosslink sites that overlapped a given
binding site. (B, C) Meta profile of crosslink events around the center of the
9-nt wide binding sites. Binding sites were aligned at their center position and
the mean number of crosslink events were counted in a 100-nt window around
the center.
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3.1.3 How to assess binding site reproducibility among

replicates

Initial peak calling was based on the merge of all replicates to enhance the

binding signal. This allowed the peak caller to also identify potential low-

a�nity binding sites, or binding sites from lowly abundant transcripts. On

the other hand, this procedure might create artificial binding sites, caused

by erroneous amplifications or sequencing biases in one of the replicates. To

control for these types of errors, we implemented a replicate reproducibility

filter. Since replicates might vary in their sequencing depth applying a single

count-based threshold over all replicates would oversimplify the problem. We

therefore developed a quantile-based approach to account for each replicate

individually (Figure 3.6 A). Here we counted the number of crosslink events

per binding site over the number of binding sites. The resulting distribution

showed for each replicate the degree of contribution to all binding sites. Sample

1 for instance showed a left-tailed distribution with many binding sites not

covered at all and only few binding sites covered by 40 or more crosslink

events. Sample 3 exhibited the opposite behavior, such that almost all sites

were covered with at least one crosslink and a substantial number of binding

sites were covered by 40 or more crosslinks. To account for this huge variability,

we proposed a quantile-based approach to define a replicate-specific crosslink

threshold. Here we used the 10% quantile, deeming all binding sites above this

threshold to be supported by the respective replicate. In addition, we adopted

a lower boundary of two crosslink events, to ensure a certain minimum signal

level. A further level of control was integrated by the number of replicates that

need to support a specific binding site (Figure 3.6 B). Depending on the desired

stringency any threshold from all to a single replicate support can be applied.

In the present example, a binding site was assumed to be reproducible if the

respective threshold was met by at least three of the four replicates. This filter

removed 17.5% of the initially computed binding sites, resulting in 248,916

reproducible binding sites. This showcased how the peak calling step can be

boosted by replicate merging while also ensuring su�cient individual replicate

support. The described method can be adapted to any number of replicates

or conditions.
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Figure 3.6: Reproducibility assessment between replicate experi-
ments. (A) The distribution of crosslink events per binding site is shown
for all four U2AF65 replicate experiments. For each replicate five possible
thresholds are indicated by the 10% - 50% quantiles which represents di↵erent
stringency thresholds. Here the 10% quantile is used as quality cuto↵. (B)
Summary of the binding site numbers that are shared between the di↵erent
replicates. Reproducible binding sites must be supported by any three of the
four replicates, indicated by the color code. The number of binding sites in
each set is shown to the right.
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3.1.4 Accurate annotation of gene and transcript re-

gions

In order to describe the binding spectrum of a given RBP one is typically

interested in the proportion of bound genes. This requires orthogonal data

sources to be overlaid with the previously defined binding sites. Depending on

the source, these annotations might di↵er in scope and reliability. Annotations

provided by GENCODE/ ENSEMBL for example provide the full spectrum of

putative isoforms, NCBI RefSeq in contrast provides a manually curated set

(Wheeler et al., 2007; O’Leary et al., 2016). For the analysis of the U2AF65

data we decided to use annotations provided by GENCODE (version 29 of

the human genome assembly version GRCh38). To remove redundancies and

to filter for annotation reliability, we applied additional filtering steps on the

gene and transcript support levels. We retained only genes with a support

level  2 and transcripts with a support level  3. These filtering steps re-

duced the number of annotated genes by 13% and the number of annotated

transcripts by 42%. This is particularly important since binding sites might

overlap with several di↵erent annotations, which complicates the assignment

process. These issues can potentially be resolved by the application of hier-

archical rules, such as prioritizing protein-coding genes over non-coding RNA

genes. However, one has to be aware that any of these rules might impact

further analysis downstream. In the present case we decided for a conserva-

tive approach and completely removed ambiguously overlapping binding sites

(2.1%). All remaining binding sites expressed a U2AF65-specific binding spec-

trum that was heavily dominated by protein-coding genes (Figure 3.7). In

total 96.4% of all binding sites resided in protein-coding genes. These genes

made up a total 90.4% of all genes to which a binding site could be unambigu-

ously assigned. This also highlights that a binding spectrum of an RBP can be

described from a gene or binding site driven perspective. For example a gene

might be described as a target, based on a single or hundreds of binding site

overlaps. It is thus important to describe the binding behavior in the context

of bound genes as well as specific binding sites.

Transcript annotations for protein-coding genes discriminate between in-

trons and exons, where the latter are further divided into coding sequence

as well as the 3’ and 5’UTRs. Integrating this type of information is partic-

ularly important when resolving the binding spectrum of an RBP, since its

relative positioning in the transcript hints towards potential functions. For

example, binding within intronic regions might point towards a role in pre-
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mRNA processing, while a positioning in the 3’UTR hints towards for example

translational regulation. Mechanisms that give rise to multiple di↵erent tran-

script isoforms per gene such as for example alternative splicing or alternative

polyadenylation increase the complexity of the assignment process (Lee and

Rio, 2015; Barbosa-Morais et al., 2012). Annotations of these transcript iso-

forms usually overlap by a large degree, thus making it very di�cult to trace

a binding site back to a single specific isoform. With 9.7% of all binding sites

overlapping di↵erent transcript regions, the problem was much more prevalent

than in the gene type overlaps described above (Figure 3.8 A). For instance,

17,743 binding sites overlapped with at least two di↵erent transcript regions.

Of note, we observed a total of 1,977 binding sites that did not overlap with

a single transcript region. These binding sites resided within the annotated

range of a protein-coding gene, but outside of any annotated transcript for

the particular gene. In the present case we removed these suspicious cases

resulting in 217,909 final binding sites (see table 3.3).

Table 3.3: U2AF65 binding site processing overview. The number of
initial crosslink sites was filtered by their PureCLIP score (global filter) and
merged into 9-nt wide binding sites (merged sites). These were accounted
for replicate reproducibility (reproducible sites) and assigned to the final gene
and transcript regions (assigned gene target and assigned transcript target,
respectively). For each filtering step also the number of target genes and
detected crosslinks over the indicated number of binding sites is given.

Number of crosslink/
binding sites

Number of
target genes

Number of
crosslinks

Crosslink sites 1,889,813 10,804 14,453,030
Global filter 1,795,322 10,792 14,162,759
Merged sites 301,588 10,476 11,891,988
Reproducible sites 248,916 10,249 11,187,556
Assigned gene target 226,561 9,416 9,643,611
Assigned transcript region 217,909 8,766 9,281,805

To resolve the transcript annotation challenge, one again has the option

between the application of specific rules and the conservative approach to dis-

card all ambiguous binding sites. In the present case we decided to implement

a majority vote system together with a hierarchical rule strategy, prioritizing

the type of transcript region that was most often overlapping (Figure 3.8 B,

C). In the case of U2AF65 we observed that 81% of all binding sites resided

in introns, followed by 3’UTR (10.5%), CDS (7.6%) and 5’UTR (1%). It is

worth mentioning that for most RBPs binding to introns does make up a high
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percentage. This is due to the di↵erent region size. With an average length of

6,529-nt introns are typically much longer than CDS (161-nt), 3’UTRs (562-nt)

or 5’UTRs (132-nt). We resolved this issue by dividing the total binding site

counts per transcript region by the respective length (Figure 3.8 D). However,

such a relative enrichment is heavily in favor of shorter regions, thus under-

estimating the influence of intronic binding. This is especially the case when

binding is focused on specific intronic regions such as the 3’ and 5’ splice site

in the case of U2AF35 and U2AF65 (Jeong, 2017). We therefore recommend

that both statistics, absolute binding as well as binding relative to the region

size, have to be looked at simultaneously.

In summary, I presented an accurate workflow to define the specific binding

spectrum of an RBP based on high-throughput iCLIP sequencing data. I de-

scribed how the performance of the peak calling can be pushed while preserving

replicate integrity. Additionally, I described a method to define binding sites

of equal width based on PureCLIP-called crosslink sites. Lastly the integration

of orthogonal annotation data from common sources was used to narrow down

the specific binding profile of U2AF65. In this case we identified 217,909 bind-

ing sites which revealed a preference for intronic binding. This nicely matched

the known function of U2AF65 as a splicing regulator and its role in early

spliceosome formation by splice site recognition (Jeong, 2017).
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Figure 3.7: Gene level assignment of binding sites. Reproducible bind-
ing sites overlap with gene annotations. (A, B) The gene perspective shows the
number of di↵erent gene target types that overlap with at least one binding
site. Absolute numbers are given in (A), whereas relative fractions are shown
in (B). (C, D) The binding site perspective that shows how many binding sites
overlap with the indicated type of target gene. Absolute numbers are given in
(C), whereas relative fractions are shown in (D).

66



3.1. ESTABLISHING AN ICLIP PROCESSING WORKFLOW

Figure 3.8: Transcript level assignment of binding sites. (A) Bar
chart indicating the number of binding sites that overlap with zero, one or
more conflicting annotations of di↵erent transcript regions. (B, C) Bar and
pie chart giving the number of binding sites assigned to a specific transcript
region after resolving overlaps. Absolute numbers are given in (B), whereas
relative fractions are shown in (C). (D) Bar chart that shows the relative
enrichment of each region. Absolut numbers of binding sites are normalized
by the summed length of the respective transcript region.
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3.2 The role of SRSF6 binding in human pan-

creatic beta-cells

In diabetes pancreatic beta-cells face increased apoptosis, in parts, based on the

expression levels of GLIS3. It could be observed that SRSF6 is a downstream

target of GLIS3. The mechanism of the GLIS3-mediated regulation was shown

in 2013, where also the influence of SRSF6 was first noticed (Nogueira et al.,

2013). This was followed up in 2018 where the influence of SRSF6 on beta-cell

survival was shown directly via KD experiments (Juan-Mateu et al., 2018).

These results originated from the group of Décio Eizirik (Brussels, Belgium),

with which we collaborated for the current project. We followed up on their

results, and the second aim of this thesis sets out to characterize the SRSF6-

dependent transcriptome changes in detail.

Individual nucleotide resolution UV crosslinking and immunoprecipitation

(iCLIP) experiments were carried out for the splicing factor SRSF6 in the

human pancreatic beta-cell line EndoC-�H1. Four biological iCLIP replicates

were used to describe the transcriptome-wide binding spectrum of SRSF6 and

integrated with associated alternative splicing (AS) profiles to gain mechanistic

insights of the SRSF6-mediated splicing regulation.

The project was carried out in cooperation with the group of Décio Eizirik

and the group of Julian König (IMB, Mainz) and was recently published in

the Life Science Alliance journal (Alvelos et al., 2020). The initial iCLIP

experiment as well as protocol adaptation and optimization were performed

by Ines Alvelos of the Eizirik group. Final iCLIP library preparation was done

at the IMB in Mainz by FX Reymond Sutandy and sequencing was performed

at the IMB core facility. Initial sequencing quality control as described above

was performed by Dr. Anke Busch (IMB, Mainz). RNA-Seq data for the AS

analysis was taken from a recently published research project of the Eizirik

group (Juan-Mateu et al., 2018). All splicing event validations by RT-PCR

were also performed by Ines Alvelos. The remaining bioinformatic analysis

were performed by myself. This included the processing of the iCLIP data

using the workflow described above, as well as the characterization of the

SRSF6-specific binding motif. I also analyzed the RNA-Seq data to detect AS

events, which I integrated with the iCLIP-derived binding sites. This resulted

in the discovery of SRSF6-mediated AS regulatory events in the context of

diabetes. A summary of all datasets used in this study is given in tables 3.4

and 3.5.
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Table 3.4: Summary of the SRSF6 RNA-Seq experiment in EndoC-
�H1 cells. The RNA-Seq experiment was performed in five paired replicates
and yielded a total of 353,558,932 reads for the SRSF6 KD and 334,335,772
reads for the WT condition.

Sample Condition Sequenced reads Mapped reads (%)

S1 SRSF6 KD 64,178,184 93.1
S1 WT 61,408,355 93.3
S2 SRSF6 KD 74,711,329 92.8
S2 WT 42,236,869 92.7
S3 SRSF6 KD 56,381,192 92.8
S3 WT 74,475,186 92.9
S4 SRSF6 KD 110,057,700 92.8
S4 WT 91,835,192 92.7
S5 SRSF6 KD 75,823,673 92.5
S5 WT 89,816,570 93.1

Table 3.5: Summary of the SRSF6 iCLIP experiments in EndoC-
�H1 cells. The iCLIP experiment was performed in four independent repli-
cates, which yielded a total of 68,449,054 crosslink events.

Sample Sample ID Barcode Sequenced reads Crosslink events

S1
imb koenig 2017 10
JKRS33 SRSF6 rep1

NNNCGCCNN 29,496,620 12,318,770

S2
imb koenig 2017 10
JKRS33 SRSF6 rep2

NNNTACGNN 77,766,901 27,542,289

S3
imb koenig 2017 10
JKRS33 SRSF6 rep3

NNNATACNN 38,186,626 16,161,814

S4
imb koenig 2017 10
JKRS33 SRSF6 rep4

NNNCGAGNN 29,936,638 12,426,181

3.2.1 SRSF6 binds to thousands of protein-coding genes

An iCLIP experiment typically yields millions of individual single nucleotide

crosslink events. Thus, extracting relevant information from the binding profile

is not straightforward. Several summarizing and filtering steps have to be

carefully performed to separate true binding signal from background noise. For

this step we build upon the previously established iCLIP processing pipeline

(see chapter 3.1) (Busch et al., 2020).

As a first step, the crosslink events from all four replicates were merged

into a single file. The merged file was subjected to a peak calling step using

PureCLIP. The resulting crosslink sites were filtered to retain only sites with

the 95% highest PureCLIP scores. This first filter removed low-confidence sites

probably resulting from very lowly abundant transcripts. Filtered crosslink
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sites were further merged into 9 nucleotide-wide binding sites, by employing

the iterative merge and split routine, as described above (figure 3.4). Resulting

binding sites were filtered to contain at least two crosslink sites. The center

position of each binding site was also required to be a crosslink site as well

as to exhibit the highest number of crosslink events (for details see methods

2.2.1). This process resulted in a set of 214,830 high-confidence binding sites.

By applying stringent filtering, we ensured that any downstream result was

based on binding sites with solid peak calling support. An overview of each

peak-to-binding site processing step is given in table 3.6.

Table 3.6: Merging of SRSF6 crosslink sites into binding sites. For
each filtering and resizing step the number of remaining peak regions is given.
The initial crosslink sites were merged (resize routine) and filtered by the re-
sulting width (position filter). Further the center of each binding site was
required to be covered by a crosslink site, while showing the highest number
of individual crosslink events (center crosslink and center maximum, respec-
tively). Lastly a filter on the total number of crosslink sites is applied (crosslink
site filter).

Processing step
Number of crosslink/

binding sites

Crosslink sites 1,600,050
Resize routine 269,353
Position filter 264,829
Center crosslink 264,418
Center maximum 259,544
Crosslink sites filter 214,830

Since peak calling was performed on the merge of all four replicates, the

resulting binding sites had to be verified by the individual replicates. As

described above the merging process boosted the power of the peak calling,

while potential biases were removed by the reproducibility filtering. Erroneous

amplifications for instance could lead to an artificially increased coverage in one

of the replicates and by this introduce artificial binding sites, or mask actual

binding sites supported by the other replicates. For each replicate the 20%

quantile of the crosslink distribution per binding site was set as threshold, with

a lower boundary of two crosslinks per binding site (figure 3.9 A). Replicate 2

for instance showed the overall highest number of crosslink events per binding

site, which resulted in a threshold of at least six crosslink events. Replicate 1 in

contrast showed a rather weak binding site coverage resulting in the minimum

threshold to be used. In total, a binding site needed to be supported by at least
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three of the four replicates to be deemed reproducible and thus be retained for

further analysis (figure 3.9 B). This procedure allowed to include also binding

sites with weaker reproducibility support although the vast majority of 133,892

binding sites is supported by all four replicates. In total, these steps cumulated

in 185,266 binding sites.

Figure 3.9: Reproducibility filtering of the SRSF6 binding sites.
SRSF6 binding sites are reproducible among four replicates. (A) Bar charts
showing the number of crosslink events per binding sites for each replicate.
The red line indicates the 20% quantile, which was used as replicate-specific
threshold. (B) Reproducible binding sites met the threshold of at least three
di↵erent replicates (green). The bar chart to the right indicates the set size
for each replicate.

In order to describe the targets that are bound by SRSF6, the final bind-

ing sites were overlaid with gene and transcript annotations, which resulted in

8,533 overlapping genes (for details see methods section 2.2.2). The vast major-

ity of binding sites mapped to protein-coding genes (93%), followed by lincR-
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NAs (3.2%) and antisense-RNAs (2.1%) (figure 3.10 A). This is expected, since

SRSF6 as a splicing regulator assists in the early recruitment of core spliceo-

somal units and thus is involved to a large extend in pre-mRNA processing of

protein-coding genes. To further narrow down the location of binding sites in

transcripts, we focused on those in protein-coding genes (figure 3.10 B). Here,

binding sites seemed to overlap intronic regions (48.3%) with a slight domi-

nance over coding sequences (40.1%), followed by 3’UTRs (8%) and 5’UTRs

(3.6%). Since the coverage over transcript regions is heavily influenced by the

region length, we normalized binding site counts to the summed length of each

transcript region (figure 3.10 C). This relative enrichment shows a strong dom-

inance of CDS over introns. The strong preference of SRSF6 to bind in exons

is further exemplified by the CCDC50 gene (figure 3.11). A broad spread of

crosslink coverage can be seen over the entire range of the annotated tran-

scripts, but binding sites predominantly resided in exons. Introns on the other

hand showed a more randomly distributed signal, probably pointing towards

more unspecific background binding. An overall summary of all binding site

processing steps is given in table 3.7.

Figure 3.10: SRSF6 predominantly binds to protein-coding genes.
(A) The pie chart shows the distribution of SRSF6 binding sites per annotated
gene type. Gene types that made up less than 1% were summarized under the
term ’Others’. (B) SRSF6 primarily binds to coding sequences (CDS). The
bar chart shows the distribution of SRSF6 binding sites per transcript region
on protein-coding genes. (C) Bar chart displaying the relative enrichment of
binding sites per region. Binding site numbers per region were normalized by
the summed length of the respective bound transcript regions.

The number of initial crosslink sites was filtered by their PureCLIP score

(global filter) and merged into 9-nt wide binding sites (merged sites). These
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Figure 3.11: SRSF6 preferentially binds on exons of the CCDC50
gene. Genome browser view of the CCDC50 gene (A) of the SRSF6 iCLIP
crosslink events (signal), with deduced binding sites (green) and the SRSF6
binding motif (yellow boxes). Binding is shown on selected annotated tran-
script isoforms (grey), with the SRSF6-regulated alternative exon alongside
the flanking constitutive exons (black). (B) Zoom-in of the alternative exon
region.

were accounted for replicate reproducibility (reproducible sites) and assigned

to the final gene and transcript regions (assigned gene target and assigned

transcript target, respectively). For each filtering step also the number of

target genes and detected crosslinks over the indicated number of binding

sites is given.

To gain functional insights into the binding spectrum of SRSF6, a Gene

Ontology (GO) enrichment analysis was performed for all genes with bound

transcripts (figure 3.12). A broad range of di↵erent GO terms were associated

with the genes of SRSF6-bound transcripts, such as cell cycle progress, histone

modification and DNA repair. This is expected for a splicing regulator that

binds to the vast majority of all expressed transcripts. However, also terms

pointing towards splicing and mRNA processing were found, which indicates

a potential cross-regulation among the protein class of splicing regulators.
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Table 3.7: Summarized SRSF6 binding site processing overview. The
number of initial crosslink sites was filtered by their PureCLIP score (global
filter) and merged into 9-nt wide binding sites (merged sites). These were
accounted for replicate reproducibility (reproducible sites) and assigned to the
final gene and transcript regions (assigned gene target and assigned transcript
target, respectively). For each filtering step also the number of target genes
and detected crosslinks over the indicated number of binding sites is given.

Number of crosslink/
binding sites

Number of
target genes

Number of
crosslinks

Crosslink sites 1,684,248 11,857 13,053,409
Global filter 1,600,050 11,821 12,754,216
Merged sites 214,830 10,329 7,831,081
Reproducible sites 185,266 9,766 7,451,934
Assigned gene target 168,096 9,222 6,341,329
Assigned transcript region 160,320 8,533 6,036,281

Figure 3.12: SRSF6-bound genes are associated with di↵erent func-
tions. Gene Ontology (GO) enrichment in SRSF6-bound genes. Gene counts
indicate the number of genes in the respective set. All expressed genes were
selected as reference background and P values from the hypergeometric distri-
bution are shown. A gene was deemed expressed if it exceeds a TPM threshold
of 1.
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3.2.2 Characterization of the SRSF6 binding motif

In order to interact and bind to their target RNA, RBPs typically consist of

RNA-binding domains which specifically recognize short degenerate sequence

motifs. The length, position and composition of such a motif varies largely be-

tween di↵erent RBPs. Thus, it is important to carefully define such a binding

motif for every protein under study. To investigate the sequence footprint of

SRSF6 we analyzed the local sequence content around the defined binding sites.

For computational reasons binding sites were randomly down-sampled to 5,000

representative binding sites from introns and coding sequences (CDS). For a

first quantitative description of the sequence content, all 1,024 possible pen-

tamers were counted in three distinct windows. These windows consisted of the

9-nt binding site itself, as well as a 20-nt flanking region up- and downstream

(figure 3.13 A). The mean count of each pentamer per window indicated an in-

creased frequency of GA-rich pentamers in CDS and an increased frequency of

U-rich pentamers in introns (figure 3.13 B). The pentamers GAAGA, AGAAG

and AAGAA were most prominently enriched in CDS, especially in the win-

dow downstream of the binding site. Binding sites in introns on the other

hand were dominated by uridine pentamers, most noticeably UUUUU, with

the highest observable frequency directly at the binding site. Such an enrich-

ment is well documented for CLIP-based experiments, since UV crosslinking

is biased towards uridines. It is also typical that this bias is enriched in non-

coding intronic regions compared to CDS (Sugimoto et al., 2012; Haberman

et al., 2017; Chakrabarti et al., 2018). Therefore, the immediate position of

binding sites follows to some extend this so-called uridine bias. For that reason,

the real sequence motif that is potentially recognized by SRSF6 can be found

outside, but in close proximity to the binding site. The GA-rich pentamers

identified in the flanking regions indicated exactly that.

We further focused our attention on these flanking regions and excluded

the bias driven 9-nt binding site part. Since uridine-rich pentamers were also

more frequently seen in introns, we limited the subsequent motif description

on the CDS. Most pentamers showed little to now clear enrichment, thus we

filtered all 1,024 initial pentamers by their observed frequencies and retained

only the top 300 with the highest frequencies in the CDS. In order to cap-

ture start and end point of the enrichment, a larger window of 200-nt was

spanned for the up- and down-stream flanking regions (figure 3.14 A). Pen-

tamer frequencies were counted again and summarized in a heatmap to gain

further positional insights. Next k-means clustering was used to split pen-
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Figure 3.13: GA-rich pentamers are enriched around SRSF6 bind-
ing sites in CDS. (A) A schematic representation that indicates the three
di↵erent windows in which pentamers were counted. The central 9-nt window
of the binding site itself (dark grey) and the two flanking 20-nt windows (light
grey). (B) Pentamers in CDS are enriched for G and A compared to introns,
where UUUUU is most prominent.

tamers into three clusters based on positional preferences (figure 3.14 B-D).

Cluster 1 almost exclusively consisted of AG-rich pentamers, that seemed to

enrich towards the binding site. Cluster 2 on the other hand showed an inverse

behavior, displaying the depletion of U-rich pentamers around the binding site.

Cluster 3, as the largest cluster of all three, consisted of all other pentamers

with no clear positional preferences. This indicated that the majority of the

sequence signal was already summarized by cluster 1 and 2.

In fact, when computing meta-profiles based on the two most frequent

pentamers in each cluster, the positional preferences became more clear-cut

(figure 3.15). The GA-rich pentamers GAAGA and AAGAA displayed a rising

frequency from up to 100 nucleotides before the binding site, that continued

to around 25 nucleotides after the binding site and then dropped sharply.

Mixed pentamers from cluster 3 exhibited no positional preferences and rather

displayed the background level. U-rich pentamers spiked at the binding site

center, strongly pointing towards the uridine bias. The GA-enrichment on

the other side suggested a strong preference for SRSF6 to position precisely

towards the end of such a GA-enriched region.

Binding motifs are usually short RNA sequences that can be recognized by

specific RNA-binding domains (RBDs) of the RBP. These motifs can di↵er in

their a�nity based on their sequence composition. The strength of the protein-

RNA interaction might depend on the number of proteins that assemble at a
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Figure 3.14: GA-rich pentamers are enriched in windows flanking
SRSF6 binding sites. (A) Scheme of the extended 100-nt binding site flank-
ing windows, where the binding site itself is excluded. (B) Cluster 1 from
the k-means clustering of the pentamer heatmap shows mainly GA-containing
pentamers that are enriched towards the center. (C) Cluster 2 is enriched
for U-rich pentamers, which are depleted towards the center. (D) Cluster 3
displaying the remaining pentamers with no clear positional preference.

given motif, as well as the type or the number of RBDs that facilitate the

contact (Lunde et al., 2007; Burd and Dreyfuss, 1994). Since the triplet GAA

was common among most pentamers analyzed so far (figures 3.13, 3.14, 3.15),

we asked whether such a triplet serves as a building block for a larger motif.

Therefore, we counted the number of GAA triplets in a 49-nt wide window

around the binding site center, to focus on the enriched region only. Next,

binding sites were grouped based on the counted number of GAA occurrences

and for each binding site the respective binding strength was assessed. Here

binding site strength is accounted for in terms of the PureCLIP score which

measures binding intensity independent of the underlying transcript abun-

dance (Krakau et al., 2017). This score was computed for each crosslink site

77



3.2. SRSF6 BINDING IN HUMAN PANCREATIC BETA-CELLS

Figure 3.15: SRSF6 binds predominantly towards the end of GA-
rich pentamer stretches. Metaprofile that shows the frequency of selected
pentamers in a 201-nt window centered around SRSF6 binding sites. The
two most enriched pentamers of each heatmap cluster are shown (figure 3.14).
GAAGA and AAGAA frequencies increase towards the binding site and peak
about 20-nt after the binding site. UUUUU and AUUUU are depleted in the
GA-rich regions and peak directly at the binding site center.

and the respective mean over all crosslink sites was chosen as representative

measure for each binding site. The same counting scheme was also applied to

the reverse complement triple UUC, which serves as a control (figure 3.16 A).

Interestingly, an increase of binding site strength coincided with an increase

in GAA triplet numbers, starting from two up to seven or more triplet oc-

currences. For the reverse complement, such an e↵ect could not be observed.

This indeed pointed towards stronger SRSF6 binding in regions that exhibit

a higher number of GAA triplets. This finding was further underpinned by

the number of binding sites associated with the respective triplet occurrences

(figure 3.16 B). With only 9 binding sites at seven or more triplets, UUC num-

bers declined much more rapidly compared to GAA, with 671 binding sites at

seven or more triplets.

In a similar fashion we further analyzed whether gaps would be allowed in

between repetitions of the GAA triplet. We compared the strength of binding

site groups that harbored one (GAAxGAA) and two (GAAxxGAA) nucleotide

gaps, as well as those with no gap (GAAGAA), in between two or more occur-

rences of the GAA triplet (figure 3.17). Strikingly already a single nucleotide

gap disrupted the motif, causing the binding site strength to drop significantly.

We observed 1,093 binding sites with a three-fold repetition of the GAA motif

to exhibit the strongest binding, compared to 11,256 binding sites with a two-

fold repetition. This indicated that SRSF6 binds strongest at binding sites

with three repetitions of the GAA triplet with no gaps in between.

To complement the motif description analysis, we lastly conducted a de
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Figure 3.16: SRSF6 specifically recognizes GAA triplets. The binding
site strength increases with the number of GAA triples. (A) The boxplot com-
pares the binding site strength of the triplet GAA with the reverse complement
UUC. The frequencies of these triplets are counted in a 30-nt window around
the binding site center and each box shows the distribution of the associated
binding site strength (log2-transformed PureCLIP score). (B) Bar chart that
shows the number of binding sites in each of the described categories.

novo motif search using DREME, this time including binding sites from all

regions of protein-coding transcripts (Bailey, 2011). For all SRSF6 binding

sites, a 201-nucleotide long sequence window was extracted and submitted to

the search in order to capture the full sequence range. The resulting second-

best hit motif nicely reflected the GAA enrichment detected by the k-mer

analysis (figure 3.18 A). This motif was preceded by a U-rich motif, again

reflecting the influence of the uridine bias (figure 3.18 B). Next the position

weight matrix of the GAA-rich DREME motif was submitted to FIMO, in

order to search for all binding sites that are supported by that motif (Grant

et al., 2011). We found that a total of 25,148 (19%) of all binding sites showed

the motif support, with binding sites overlapping the CDS showing the highest

support, followed by introns, 3’UTRs and 5’UTRs (figure 3.18 C).

In summary we could show that SRSF6 positioning is determined by a

GA-rich sequence motif. This motif is most likely constructed of GAA triplets

as central building blocks and that higher, but uninterrupted, repetitions of

these blocks lead to stronger SRSF6 binding on these sites.
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Figure 3.17: GAA-triplets in direct sequence lead to stronger bind-
ing. (A) Boxplot that shows the distribution of binding site strength (log2-
transformed PureCLIP score) for binding sites associated with two or more
triplets with no, 1-nt or 2-nt gaps in between. These scores are compared
to the strength of binding sites with no or one triplet (GAA, UUC) for com-
parison. B) Bar chart the shows the number of binding sites in each of the
described categories.

Figure 3.18: De novo motif analysis indicates a GAA based binding
motif for SRSF6 (A, B) Purine (second hit) and uridine (first hit) rich motifs
computed from the motif enrichment analysis using DREME (Bailey, 2011).
(C) The GAA-rich motif is present at 25,148 SRSF6 binding sites reinforcing
the role of the GAA regions on SRSF6 binding.

3.2.3 SRSF6 KD reshapes the beta-cell transcriptome

We followed up on the above analysis of the transcriptome-wide binding pat-

tern of SRSF6 with the analysis of expression level changes upon SRSF6 KD.

As a major splicing regulator SRSF6 is in general involved in pre-mRNA pro-

cessing. Thus, it might globally e↵ect gene expression and transcript levels. In

order to analyze di↵erential expression in the context of pancreatic beta-cells

and SRSF6 binding, we reanalyzed an RNA-Seq dataset published by our col-

leagues of the Eizirik group (Juan-Mateu et al., 2018). The dataset consisted

of five individual replicates. Five of which captured a SRSF6 KD condition,

whereas the others represented the control state (table 3.4). We used the RNA-
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Seq dataset for di↵erential expression testing between the SRSF6 KD and WT

condition with DESeq2 (Love et al., 2014). Mapped reads were counted in an-

notated exons to quantify gene expression levels in both conditions

For an initially quality control principal component analysis (PCA) was

performed. This type of analysis works best for homoscedastic data that shows

the same range of variance at di↵erent ranges of mean values. For expression

data, this is typically not the case since the absolute count di↵erences grow

larger, the higher a gene is expressed (Huber et al., 2002). To avoid this

bias, we used the regularized-log (rlog) strategy developed by the authors of

DESeq2. It essentially stabilizes the mean across di↵erent ranges of variance

applying a log2 derivate (figure 3.19 A). Resulting rlog transformed counts

were forwarded to the PCA analysis which showed a clear separation of the

samples based on their condition (figure 3.19 B). The scree plot further showed

that PC1 comprised 68% of all between-sample di↵erences (figure 3.19 C). PC2

and PC3 were more similar to each other with 14% and 7.5%, respectively. All

other components showed only minor contribution and thus can be neglected.

In total the PCA indicated high-quality data, ideal for a di↵erential expression

analysis, where no potential batch e↵ects have to be accounted for.

We next went to test for gene-specific fold changes asking for expression

changes between the WT and SRSF6 KD conditions. In total we observed

6,893 genes to significantly change their expression levels (Benjamini-Hochberg

adjusted P value < 0.001) (figure 3.20 A). With 49.6% of these genes showing

an up- and 50.4% showing a downregulation no general trend could be ob-

served. Both groups of regulated genes showed an equally good support by all

of the replicates (figure 3.20 B). The heatmap indicated that replicates reacted

evenly in the indicated condition. This is further supported by k-means clus-

tering performed on this heatmap, which nicely captured the two main groups

of up- and downregulated genes. Functional gene ontology (GO) enrichment

analysis did reveal a broad spectrum of a↵ected functionalities. For example,

genes were associated with terms like DNA replication, cell cycle and digestive

systems (figure 3.20 C). However, most genes showed less than a 2-fold change.

It is likely that these changes, although statistically significant, have little bi-

ological impact. In order to filter for larger changes, we applied a fold-change

cuto↵ (absolute log2 fold-change � 1). This greatly reduced the number of

regulated genes to as little as 106, again not indicating a preference for ei-

ther up- or downregulation. Among these were mainly housekeeping genes

involved maintaining cell homeostasis, such as ribosomal genes or members

of the solute carrier family (SLC ) (Liu, 2019). Interestingly, with the BCL2
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Figure 3.19: RNA-Seq replicate expression is dominated by the
SRSF6 KD. Principal component analysis (PCA) separates SRSF6 KD repli-
cates from controls. (A) Variance stabilizing transformation of the count data
using the rlog transformation (Love et al., 2014). The standard deviation is
shown over the mean expression, with a running median shown as a red line.
(B) Scree plot indicating the percentage of the variance that each component
contributes. (C) PCA plot of the first and second component (PC1, PC2)
explaining over 80% of the observed variance.

Interacting Protein 3 Like (BNIP3L) a first hint towards a potential influence

in cell apoptosis regulation is given (Edlich, 2018).

Since the di↵erential expression analysis did not reveal many severe changes

in transcript expression levels, we conducted alternative splicing analysis, which

serves as an additional layer of transcriptional regulation (Lee and Rio, 2015).

We quantified di↵erences in splice junction-spanning reads using the replicate

multivariate analysis of transcript splicing software (rMATS). Five di↵erent

alternative splicing events were reported, namely: ”cassette exon” (CE), ”re-

tained intron” (RI), ”mutually exclusive exon” (MXE), ”alternative 3’ splice

site” (A3SS) and ”alternative 5’ splice site” (A5SS). With a total of 71.8% the

majority of events corresponded to CE, followed by MXE, A3SS, A5SS and

RI (figure 3.21 A). Since rMATS reported many splicing events overlapping
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between the di↵erent categories, we applied a stringent filtering approach.

Thereby we focused on the most prevalent category of the CE events only.

From the initially reported 19,308 CE events 73.5% were removed by a filter

on the number of splice junction-spanning reads. Another 26.4% were excluded

by removing overlapping events that could not be resolved. This resulted in

a total of 1,380 statistically significant CE events with a false-discovery-rate

(FDR)  0.01. Depending on how SRSF6 regulates a cassette exon, increased

or decreased exon inclusion might be the observable result. In order to remove

exons that do not show a clear directional trend towards either skipping or

inclusion, CE events with changes smaller than 5% were excluded and treated

as unchanged (figure 3.21 B). The SRSF6 KD mainly leads to an increase in

exon skipping, with 975 cassette exons showing a significantly decreased inclu-

sion level, compared to 237 cassette exons with an increased inclusion level.

Thus, our results confirmed the findings of the alternative splicing analysis

previously conducted by our colleagues, which indicated that the SRSF6 KD

mainly leads to cassette exon skipping (Juan-Mateu et al., 2018).

Next, we overlaid the computed AS changes with the di↵erential expression

results computed above. From all significantly di↵erentially expressed genes

with a log2 fold-change > 2 only 31 also harbored a CE event and only five

out of these were also significant (figure 3.22 A). When further directly com-

paring DGE fold-changes with AS PSI values, no relation could be observed

(figure 3.22 B). PSI values appeared to be independent of the underlying tran-

script level change and vice versa. For instance, genes with exons displaying

the highest absolute inclusion level changes exhibited a near-zero fold-change.

With the exception of one gene, the majority of strongly regulated CE events

did not reside in genes with equally strong a↵ected expression levels. This

suggests that SRSF6 KD does not lead to an increased splicing of for example

poison cassette exons, which is a common mechanism to regulate gene expres-

sion through alternative splicing via NMD (Kurosaki and Maquat, 2016). On

the other side, SRSF4 showed an expression increase (LFC = 0.49), while hav-

ing an alternative exon that is more consequently spliced out (�PSI = -0.01).

This hints towards a possible compensatory e↵ect, which is known among the

SR proteins (Müller-McNicoll et al., 2016). Among all genes significantly af-

fected by di↵erential expression, many other splicing regulators were detected

(figure 3.22 C). Some of these also showed e↵ects in AS, predominantly in-

creased cassette exon skipping. We again observed SRSF4 among these which

further strengthen the idea of a stronger compensatory mechanisms within the

SR protein family.
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In summary, di↵erential gene expression analysis revealed widespread global

changes in transcript levels. These however were minor in magnitude, indicat-

ing possible compensatory e↵ects, for example by other SR proteins such as

SRSF4. AS analysis revealed a preference for CE skipping over inclusion upon

the SRSF6 KD. The overlap of both types of analysis pointed away from the

idea that SRSF6 directly induced drastic transcript level changes via alterna-

tive splicing. However, many di↵erent splicing regulators were a↵ected, which

points towards the fact that SRSF6 might act as a major splicing regulator in

human pancreatic beta-cells and influences the transcriptional response.
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Figure 3.20: SRSF6 modulates global transcript level expression.
Di↵erential expression result comparing the e↵ect of the SRSF6 KD against the
control using DESeq2 (Love et al., 2014). (A) MA plot showing the estimated
log2 fold-changes (LFC) against the expression level for each gene. Significant
changes are colored (Benjamini-Hochberg adjusted P value < 0.05) and LFCs
are corrected for the influence of lowly expressed genes. (B) Heatmap of all
significantly regulated genes. Counts for each replicate are rlog transformed
and normalized by a Z-score for plotting. The heatmap is split in two groups
using k-means clustering with two centroids. (C) GO enrichment analysis
for genes that significantly changed their expression levels upon the SRSF6

KD. Gene counts indicate the number of genes in the respective set and P

values from the hypergeometric distribution are shown. (D) Volcano plot that
displays the shrunken LFCs over the adjusted P values. An absolute threshold
of 1 (|LFC| > 1) on the fold-change is indicated by the two vertical dashed
lines. The adjusted P value cuto↵ of 0.05 is indicated by the horizontal dashed
line.
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Figure 3.21: SRSF6 KD mainly a↵ects cassette exons. Alternative
splicing analysis using rMATS (Shen et al., 2014) reveals an influence of the
SRSF6 KD in the splicing of alternative cassette exons. (A) Pie chart showing
the distribution of the detected alternative splice events. (B) Volcano plot like
illustration of the alternatively spliced cassette exon events. The di↵erence in
’percent spliced-in’ (�PSI) is shown against the P value (Bejamini Hochberg
corrected). The dashed lines represent the thresholds for the P value (0.05)
and the �PSI (5%). The 1,212 significant splice events are colored according
to the direction of the observed change.
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Figure 3.22: SRSF6-regulated splicing events a↵ect gene expression.
(A) Venn diagram showing the overlap between alternatively spliced cassette
exons in di↵erentially expressed genes. (B) Scatterplot that compares the
di↵erences in exon inclusion (percent spliced-in, PSI) to the gene expression
change (log2 fold-change, LFC). Genes are colored based on significance in
the di↵erential expression (DE) and/ or the alternative splicing (AS). In the
case of multiple AS events per gene, the most significant one was selected as
representative. (C) Many splicing regulator genes are a↵ected by the SRSF6

KD. The bar chart shows the LFC for selected splicing regulator genes, which
are additionally color-coded by the AS change.
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3.2.4 Alternative splicing is coupled to SRSF6 position-

ing on cassette exons

After analyzing the general splicing response of the SRSF6 KD, we further

asked how the position of SRSF6 impacts the observed splicing decisions. In

order to understand how exactly SRSF6 influences CE changes we integrated

our previously defined binding sites with the AS results. To detect CE events

that are direct targets of SRSF6 binding, we overlapped the binding sites with

specific CE models. We defined these models to range from the beginning of

the upstream exon, to the end of the downstream exon (figure 3.23 A). We

found that 765 (63%) cassette exon evens were overlapping with a least one

SRSF6 binding site (figure 3.23 B). Here we again observed that with 593 CE

events, the majority belonged to the decreased inclusion category, whereas in

contrast 172 CE events belonged to the increased inclusion category. This

overlapping approached allowed us to define a set of CE events that are direct

targets to SRSF6.

Figure 3.23: SRSF6-regulated cassette exons associate directly with
SRSF6 binding sites. (A) Scheme depicting the overlap of a gene and
cassette exon (CE) model with SRSF6 binding sites. Gene models are based on
GENCODE-derived transcript annotations, whereas a CE model consists of the
cassette exon, together with the flanking constitutive exons. (B) Venn diagram
showing the overlap of CE events with genes that harbor a SRSF6 binding
site. The numbers in brackets at arrowheads specify exons with significantly
decreased or increased inclusion.

One gene falling into this set encodes for the SR protein SRSF4. It serves

as a good candidate to exemplarily highlight the combined regulatory events

we observed so far. SRSF4 showed a large number of SRSF6 binding sites,

with a preference of CDS over introns (figure 3.24). It also is well expressed,

since high coverage was observed in both RNA-Seq conditions. The annotated

SRSF4 transcripts further showed two predominate isoforms that seemed to be
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regulated by the SRSF6 KD, one being the regular protein whereas the other

includes a poison cassette exon. It is well known that SR proteins regulate

their transcript levels by including exons harboring premature stop codons,

thus triggering degradation via NMD (Kurosaki and Maquat, 2016). In the

present case the SRSF6 KD led to increased CE skipping, potentially indicat-

ing compensatory e↵ects. The cell might react to low SRSF6 levels by an in-

creased expression of the functional isoform of SRSF4. This example perfectly

showcased the complex interplay between direct binding and transcriptional

changes in the context of SR proteins.

Figure 3.24: SRSF4 alternative splicing is regulated by the SRSF6
KD. The SR protein-encoding gene SRSF4 is significantly upregulated upon
the SRSF6 KD. (A) Genome browser shot that shows the SRSF6 iCLIP
crosslink events, with computed binding sites and the coverage of the RNA-Seq
over selected transcript annotations of SRSF4. (B) Zoom-in on the SRSF6-
regulated cassette exon event with sashimi-plot representation of the splice
junction spanning reads of the RNA-Seq coverage. Lines show exon-exon junc-
tions and numbers indicate the supporting reads.

To further address the exact positioning of SRSF6 on all identified tar-

gets, metaprofiles such as RNA-maps are a state-of-the-art method. Typically,

regular eukaryotic exons are either predominantly included or excluded given

a certain cell status. This is showcased by the bimodal distribution of esti-
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mated PSI values over all analyzed exons (figure 3.25 A). The distribution also

showed that most exons are included whereas fewer exons are excluded. This

immediately points towards a common problem when integrating orthogonal

data with alternatively spliced exons. Di↵erences in the base inclusion level

between exons must lead to di↵erences in the observed iCLIP coverage. For

instance, an exon with increased inclusion upon SRSF6 KD must have shown

less inclusion in the control and thus shows fewer iCLIP crosslink counts (fig-

ure 3.25 B). This was no minor e↵ect in our data and could not be neglected.

On average exons with an inclusion rate above 80% showed more than 150

crosslink events per exon. On the other side, less than 50 crosslink evens could

be observed for exons with an inclusion rate below 20%. When remained un-

resolved, this bias makes it impossible to compare crosslink coverages between

the increased and decreased inclusion set, as well as between any regulated set

and a potential background of non-regulated exons.

Figure 3.25: Exons with high inclusion harbor more crosslink events.
(A) Alternative exons have di↵erent inclusion levels in control (’percent spliced-
in’, PSI). Density plot that shows the distribution of PSI values in control con-
dition. (B) More iCLIP crosslinks are detected on exons with high inclusion
levels, compared to exons with low inclusion in control. Box and violin plots
show the distribution of crosslink events per exon (log2 transformed, normal-
ized to exon length). All 19,308 CE exon evens were stratified into 20% bins
(color shading) by their PSI

We resolved this issue by compiling PSI-matched background sets for the

exons with decreased inclusion, as well as for those with increased inclusion. It

was important to compute two separate background sets, since the decreased

inclusion exon set showed a completely di↵erent baseline exon inclusion than

the increased inclusion set (figure 3.26 A). The universe of all non-regulated

exons served as the total background set. We started adjusting the total
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background to a PSI-matched background, by splitting the inclusion level dis-

tribution of a regulated exon set into 5% quantiles. These quantiles were then

transferred over to the total background set and an adjusted background set

was picked randomly. The random picking step ensured that the number of

exons included in the PSI-matched distribution was similar to the number of

exons of the regulated exon set. We then repeated the matching and subsam-

pling process 50 times, to avoid any local pitfalls (figure 3.26 B). The strong

corrective e↵ect of the PSI-matching becomes visible when compared to a uni-

form background selection strategy (figure 3.26 C, D). Regardless of the type

of regulation set, increased or decrease, the uniform background set showed

the same baseline inclusion distribution. The PSI-matched distribution on

the other hand followed the distribution of the respective regulated set it got

adjusted for.

Next, we counted single nucleotide positions covered with crosslink events

on regulated and PSI-matched background exons by spanning a 200-nucleotide

window around each cassette exons splice sites. The flanking up- and down-

stream exons were used as reference points, so the same window was opened

(figure 3.27 A). This resulted in four windows, each of which centered around

a splice site. For exons that were shorter than 200-nt the largest possible

range was displayed. In these cases, the exons were split in half to ensure

that the windows remained non-overlapping. For each window we calculated

the relative crosslink frequency by counting the number of crosslink events per

nucleotide and dividing them by the number of exons that covered the par-

ticular nucleotide. For the PSI-matched background set we applied the same

counting scheme, but the mean and standard deviation over the 50 iterations

were displayed as reference (figure 3.27 B). In general, we observed increased

binding on the regulated exons compared to the flanking ones. This is in line

with SRSF6 being a global splicing regulator. However, the observed patterns

di↵ered between decreased and increased inclusion exon sets. Exons that got

decreased in their inclusion upon SRSF6 KD showed increased binding to the

cassette exon itself. This hints towards a direct enhancer function of SRSF6

on these exons. The opposing trend could be observed for increased inclusion

exons. Here SRSF6 bound more dominantly to the flanking up- and down-

stream exons, compared to the cassette exons. This suggested that SRSF6 in

these cases reinforced the flanking exons in order to facilitate exon skipping.

Meta-profiles are useful visualization methods, which in the present case

were used to summarize crosslink signal over multiple exons. However, one

has to be careful not to overestimate signal from for example exons of highly
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expressed transcripts, or exons with high-a�nity binding sites. For instance, a

single exon from a highly abundant transcript might distort the profile, leading

to false discoveries. For that reason, we computed heatmaps to complement our

meta-profile (figures 3.28, 3.29). Both trends observed in the meta-profile could

be reproduced by the RNA-splicing heatmaps. Here, rather than summed up,

each exon is displayed as an individual row and positions with crosslinks were

highlighted. For increased and decreased inclusion level exon sets these maps

indicated that the observed trends were supported by the signal from all exons,

rather than being a bias forged by a minority.

In summary, these results suggest that SRSF6 modulates alternative splic-

ing in a position-dependent manner. Increased binding to the up- and down-

stream flanking exons seemed to result in increased skipping of the regulated

exon. Increased binding directly at the cassette exon seemed to stabilize the

inclusion of that exon into the mature transcript. Thus, our results help to

understand how direct SRSF6 binding impacts the splicing outcome. Further,

this type of regulation was also described for other SR proteins, however the

exact mechanism is still debatable (Han et al., 2011; Sanford et al., 2009).
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Figure 3.26: Selection of PSI-matched background sets. PSI-matched
background sets show a similar mean inclusion level as up- and downregulated
exons. (A) Inclusion levels (PSI) di↵er between exons that decrease, increase or
remain unchanged. Box and violin plots show the distribution of PSI values in
control for the three groups. (B) Schematic overview of the computation of the
PSI-matched background from all unchanged exons. A random subset is picked
and corrected to exhibit a similar mean inclusion level to the upregulated set
(N=237) or to the downregulated set (N=975). This process was repeated 50
times to retrieve mean and standard deviations. (C) Exemplary distribution
of a selected PSI-matched distribution compared to a uniform background set
for exons with increased inclusion levels. (D) Exemplary distribution of a
selected PSI-matched distribution compared to a uniform background set for
exons with decreased inclusion levels.
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Figure 3.27: SRSF6 RNA splicing maps. (A) Scheme of the four selected
windows in which crosslink events are counted. The windows are always cen-
tered around the indicated 3’ or 5’ splice site. (B) SRSF6 shows more crosslink
events on alternative exons with decreased inclusion upon SRSF6 KD (blue),
compared to exons with increased inclusion. On exons with increased inclu-
sion the flanking constitutive exons display more crosslink events (orange).
The metaprofiles display the fraction of exons with a crosslink event at a given
position in the indicated window. For each comparison mean and standard
deviation of the respective PSI-matched background set is shown (light blue,
light orange). Positions on which the signal for the regulated exons di↵ers
significantly from the respective background set are shown in green (adjusted
P value < 0.05). These positions are further color-coded by their z-score, so
that darker values indicate stronger changes.
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Figure 3.28: SRSF6 crosslink events around downregulated cassette
exons. (A) Metaprofile that indicates the summed-up fraction of exons with
crosslink events at a given position for 100-nt on either side of the indicated
splice site (scheme shown on top). (B) Heatmap that shows the fraction of
exons with crosslink events per position. Rows are sorted by length and the
number of crosslink events. Grey positions indicate missing values because
of exon length. These positions were set to 0 in the heatmap and thus are
included in the metaprofile above.
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Figure 3.29: SRSF6 crosslink events around upregulated cassette
exons. (A) Metaprofile that indicates the summed-up fraction of exons with
crosslink events at a given position for 100-nt on either side of the indicated
splice site (scheme shown on top). (B) Heatmap that shows the fraction of
exons with crosslink events per position. Rows are sorted by length and the
number of crosslink events. Grey positions indicate missing values because
of exon length. These positions were set to 0 in the heatmap and thus are
included in the metaprofile above.
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3.2.5 SRSF6 regulates several susceptibility genes for

type 1 and type 2 diabetes

In diabetes, pancreatic beta-cells lose their insulin-producing capacity, result-

ing in hyperglycemia and long-term complications for the patient. A major

susceptibility gene for type 1 and type 2 diabetes is GLIS3. Interestingly, its

downregulation decreases the expression of SRSF6. It was further found that

SRSF6 itself regulates many genes involved in beta-cell function, such as insulin

secretion (Juan-Mateu et al., 2018). This suggested a link between SRSF6 in

its role as a key splicing regulator and the disease. In the above part we further

refined this link by describing how SRSF6 regulates beta-cell function through

direct binding. We next looked for specific diabetes susceptibility genes that

are targeted by the characterized mechanism. A compiled list of T1D and T2D

susceptibility genes was compiled from ImmunoBase and GWAS catalog. This

list was first overlaid with the list of all direct SRSF6 targets identified above.

We further narrowed the list of potential candidate genes down and asked for

only those genes that harbored the SRSF6 binding site within the region of

the cassette exon event (figure 3.30 A, B). We identified a total of 6 cassette

exon events targeted by direct SRSF6 binding for the T1D and 22 events for

the T2D susceptibility genes originating from five and 17 genes, respectively.

A direct comparison of the binding site strength and the di↵erence in the exon

inclusion level change revealed no direct correlation (figure 3.30 C, D). For

example, genes with a high or low �PSI value showed the same broad range

of binding site strength scores. However, some genes might be subjected to

a stronger SRSF6 dependent regulation, since the binding sites overlapping

the CE events were supported by the identified binding motif. Among these

was the cell-cycle regulators centromere protein O (CENPO) and the integrin

subunit beta 3 binding protein (ITGB3BP) which both interact with the his-

tone complexes (Foltz et al., 2006; Shattil et al., 1995). The cyclin dependent

kinase 2 (CDK2 ) gene encodes for a signaling kinase which also participates

in cell cycle regulation and its malfunction has been shown to be involved in

caner (Chung and Bunz, 2010). A susceptibility gene for both T1D and T2D

is breast cancer anti-estrogen resistance protein 1 (BCAR1 ) which is not only

involved in cell-cycle regulation and cancer, but also controls cell apoptosis

(Brinkman et al., 2000; Rufanova et al., 2009). These finding again confirm

the essential role of SRSF6-based AS regulation in human beta-cells. SRSF6

directly e↵ects multiple diabetes susceptibility genes and most of these genes

seem to control cell-cycle and apoptosis. This further links SRSF6-mediated
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regulation to beta-cell death as it is the cases in for example T1D.

Figure 3.30: SRSF6 directly binds to diabetes susceptibility genes.
SRSF6 regulates 6 and 22 splicing events in 5 T1D and 17 T2D susceptibility
genes. (A, B) Venn diagrams show the overlap of alternative splicing (AS)
events and genes with binding sites for T1D and T2D, respectively. (C, D)
Scatterplots show the inclusion level di↵erence (�PSI) against the binding
strength of the strongest binding site (log2 transformed PureCLIP score) as-
sociated with the indicated gene. Genes with exons that show significantly
increased of decreased inclusion values are color-coded in blue and orange, re-
spectively. Darker shades indicate the presents of the GAA-rich binding motif
directly at the AS event.

To validate the predicted changes, our colleagues from the Eizirik group

used semi-quantitative RT-PCR to test for the AS changes. They performed in-

dependent experiments for nine susceptibility genes in EndoC-�H1 cells under

control and SRSF6 KD conditions (figure 3.31). They could validate the pre-

dicted changes for all T1D susceptibility genes in which we found the cassette

exon event being a direct binding target of SRSF6. For CENPO and ITGB3BP

the observed splicing changes were particularly strong, further strengthening

the cell-cycle related influence of the SRSF6-controlled genes. With the RNA-
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binding motif protein 6 (RBM6) and the StAR related lipid transfer domain

containing 10 (STARD10 ) they also validated two T2D susceptibility genes,

which are involved in caner and cell metabolism regulation (Timmer et al.,

1999; Scanlan et al., 1998).

Figure 3.31: Validated splicing changes in diabetes susceptibility
genes. Splicing changes in diabetes susceptibility genes were validated by
semi-quantitative RT-PCR. Gel images are shown on top and paired data
points for the quantification are shown blow with significance indicated by
paired Students t-test (* P < 0.05, ** P < 0.01, *** P < 0.001). (A) Valida-
tions of SRSF6-regulated exons in T1D. (B) Validations for SRSF6-regulated
exons in T2D.

We additionally investigated how T1D and T2D susceptibility genes were

a↵ected in gene expression following the SRSF6 KD (figure 3.32 A, B). Along-

side the susceptibility genes described above, several other genes showed small

but noticeable e↵ects in gene expression. This might not be the driving force

behind beta-cell reactions to SRSF6 levels but it indicated that transcript level

changes were indeed present. This further highlights the complexity by which

SRSF6 a↵ects a plethora of di↵erent susceptibility genes. For example, most

genes are direct binding targets to SRSF6, but the induced reaction to the

transcriptome can be via di↵erential expression, alternative splicing or a com-

bination of both. On top of that, also several indirect e↵ects might exit. For

example, some SRSF6 regulated susceptibility genes might regulate additional
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susceptibility genes themselves. Such e↵ect could be shown by the computation

of protein-protein interaction networks (figure 3.32 C). The network identified

for example, similar to CDK2, additional signaling kinases involved in cell-

cycle regulations, like the cyclin dependent kinase inhibitor 1B (CDKN1B)

and cyclin D1 (CCND1 ) (Goode et al., 2009). This suggests the presence of

an even larger functional network of proteins that could be a↵ected by SRSF6.

In summary, we showed that the splicing regulator SRSF6 has thousands

of direct targets throughout the transcriptome in the context of pancreatic

beta-cells. The strongest of these binding sites displayed a GAA-rich consensus

binding motif and showed a specific and highly regulated binding mechanism to

tightly control transcriptome changes. These changes are mostly by alternative

splicing, with a preference for cassette exon skipping upon SRSF6 KD. We

furthermore saw that increased skipping of these exons was modulated by

SRSF6 reinforcing neighboring up- and downstream exons. On exons with

increased inclusion upon the KD SRSF6 normally binds directly to the cassette

exon, resulting in a stabilizing e↵ect. This mechanism seemed to be involved

in the diabetic context, since several T1D and T2D susceptibility genes were

regulated by the described system. In total this suggests that the GLIS3-

regulated splicing regulator SRSF6 plays a key role in beta-cell function and

thus contributes to the diabetes disease.
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Figure 3.32: SRSF6 impacts the expression of diabetes susceptibility
genes. (A, B) The expression of nine T1D (A) and 31 T2D (B) is a↵ected by
the SRSF6 KD in EndoC-�H1 cells. Genes also a↵ected by alternative splicing
are color coded. The bar charts show the change in gene expression (log2-
transformed fold-change). (C) Protein-protein interaction network (PPI) for
proteins encoded by SRSF6-regulated diabetes susceptibility genes. The PPI
network was obtained using STRING, with all 29 T1D and T2D susceptibility
genes as input which were significant in either the alternative splicing or the
di↵erential expression analysis.
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4 | Discussion

The mRNA life cycle is a highly regulated and controlled process that is shaped

to a large extend by the class of RNA-binding proteins (RBPs). They are in-

volved in each phase of the mRNA life to such an extent that the mRNA is

never seen alone (Müller-McNicoll and Neugebauer, 2013). A plethora of RBPs

are coating the mRNA in the cytosol and nucleus forming large messenger ri-

bonucleoprotein particles (mRNPs). This ranges from pre-mRNA processing,

where for example SR and hnRNP proteins are both involved in splicing (Shi,

2017), to mRNA packaging for nuclear export (Singh et al., 2012) and finally

degradation (Bicknell and Ricci, 2017). Such processes are indeed highly in-

tertwined, since most RBPs interact with each other or participate in multiple

regulatory processes. The cap-binding complex CBC for example is involved

in transcription and splicing as well as translation. It binds to the 5’-cap struc-

ture during transcription but also stays bound to the mRNA and travels to

the nuclear pore (Gonatopoulos-Pournatzis and Cowling, 2014; Narita et al.,

2007). All of these processes are further controlled by a range of external and

internal stimuli, adding to the highly dynamic form of the mRNA life (Zarnack

et al., 2020).

In the last decade iCLIP has been established as a state-of-the-art ex-

perimental method to study the protein-RNA interaction of RBPs at single

nucleotide resolution on a high-throughput scale (König et al., 2010). A very

recent update described key optimizations of the protocol increasing the com-

plexity of the produced sequencing libraries (Buchbender et al., 2020). A

wide range of RBPs and complexes were studied using iCLIP, leading to very

di↵erent research questions on di↵erent scales. For example, in vitro iCLIP



experiments were used to the specific regulation of U2AF65 based on other

RBPs (Sutandy et al., 2018). On the other side large multi-RBP complexes

like the spliceosomal assembly were monitored as well (Briese et al., 2019).

However, such studies usually feature a set of custom-tailored solutions on the

computational processing of the iCLIP-derived sequencing reads. This ranges

from a variety of di↵erent quality filtering standards, to the use of di↵erent

peak calling tools and downstream postprocessing steps. To meet these needs,

several processing pipelines exits for di↵erent derivates of CLIP-seq protocols

(Bottini et al., 2018; Uhl et al., 2017). However, specific guidance for iCLIP

analysis are missing. This highlighted the demand for a standardized iCLIP

processing workflow to ensure reliable binding site detection, which also leads

to better data comparability between groups and RBPs. This would ultimately

result in a better understanding of complex regulatory processes with many

RBPs involved.

In this thesis I described the process of computational iCLIP data process-

ing step-by-step, giving a detailed workflow to generate highly reproducible

results (Busch et al., 2020). In particular I described a way to boost the peak

calling step with multiple replicates, while maintaining a high sensitivity and

specificity. Upon this, binding sites were defined in uniform width so that

downstream processing is simplified. This led to detailed descriptions of the

binding spectrum of two splicing regulator proteins. First U2AF65 as part of

the core spliceosome machinery was used to exemplify the di↵erent processing

steps and its known binding properties were recaptured (Zarnack et al., 2013).

Next, I characterized the so far unknown binding spectrum of SRSF6 in hu-

man pancreatic beta-cells (Alvelos et al., 2020). The identified binding motif

matched a recent description in mouse cells (Müller-McNicoll et al., 2016).

Further, I showed how the exact positioning of SRSF6 directly influences the

splicing of cassette exons within known diabetes susceptibility genes. This ul-

timately revealed how SRSF6 shapes transcriptome changes and contributes

to beta-cell survival and death.

A pipeline for iCLIP data processing

A common problem to peak calling tools is that resulting binding sites di↵er

in width. This makes it challenging to compare binding sites between multiple

di↵erent RBPs and complicates downstream analysis that requires binding

sites to be harmonized. I developed an iterative merging scheme that allows

the combination of multiple PureCLIP-derived crosslink sites into binding sites
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of any desired width (Figure 3.4). One advantage of this strategy is that little

prior knowledge of the binding site width is required, which is not the case

for most other approaches (Chakrabarti et al., 2018). To run PARalyzer for

example, one has to decide on a bandwidth for the kernel density estimation,

which a↵ects the width of the returned binding cluster (Corcoran et al., 2011).

In contrast to these tools, I showed how the appropriate binding site width

can be deduced from the crosslink event coverage itself (Figure 3.3). Such

a unified width definition positively impacts downstream analyses like motif

definition and the integration of orthogonal data such as gene annotations.

Nevertheless, one has to be aware that this serves as an approximation to

detect the most prevalent trend in the binding profile of the RBP under study.

The same RBP might show di↵erent binding behaviors even within the same

cell type, depending on for example the presence of additional cofactors. In the

case of U2AF65 it was shown that the recruitment to the splice site is heavily

depending on additional RBPs, such as FUBP1, PTBP1, CELF6 and PCBP1.

Each of these cofactors a↵ects U2AF65 binding and thus alters the landscape

of possible binding sites, ultimately a↵ecting the splicing outcome (Sutandy

et al., 2018; Warf et al., 2009; Tavanez et al., 2012). Here a 9-nt window was

found appropriate for U2AF65, given the computed crosslink event profiles

(Figure 3.4). This also fitted to the known binding mode of the protein, which

binds the polypyrimidine tract with a tandem of two RRM domains, each

recognizing four nucleotides (Sickmier et al., 2006; Mackereth et al., 2011). It

also nicely captured the preferred a�nity of U2AF65 to intronic sequences,

which has already been shown (Zarnack et al., 2013; Shao et al., 2014).

Most peak calling tools for CLIP data so far make use of only a single

biological replicate. Only recently PureCLIP was extended to account for up

to two biological replicates (available from version 1.3.0), which is still not

enough for reliable iCLIP-based studies. Here I showed that the sensitivity

of the peak calling can be enhanced by merging multiple replicate libraries

prior to the peak calling (Figure 3.2). In a recent publication for example, I

described the binding profile of MRKN1 using three iCLIP replicates, high-

lighting the need for an appropriate integration (Hildebrandt et al., 2019).

Generating higher replicate numbers is common nowadays, since the iCLIP

protocol improved to an extend that allows the straightforward generation of

biological replicates (Haberman et al., 2017). In our study to describe the

binding profile of SRSF6 as well as in the present case of U2AF65, even four

biological replicates were used (Figures 3.6, 3.9). Merging replicates however,

if not handled properly causes less specific crosslink sites to be called. By
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adding up signal across replicates one might, by chance create an artificial cul-

mination of crosslink events. I explained how this bias can be controlled with

the use of replicate-specific thresholds (Figure 3.6). The library size of each

replicate was accounted for by computing an individual quantile-based cuto↵.

In the case of U2AF65 only 17.5% of the merged binding sites were found to

not be reproducible by at least two replicates, leading to a total of 248,916

reproducible binding sites.

As an alternative to this, binding sites could be called individually on each

replicate and merged again after the peak calling step in a split-and-combine

fashion. This approach was used in a recent publication describing the binding

profile of STRAP from eCLIP data with four biological replicates (Jin et al.,

2020). On the other side replicate merging might not be desired if replicates

di↵er tremendously from each other. This might be due to technical biases,

but also due to the experimental design when for example an RBP is studied in

di↵erent conditions. Despite this, one great advantage of binding site merging

is the enhanced sensitivity for either low a�nity binding sites or binding sites

on lowly abundant transcripts. Since iCLIP always represents a snapshot of

the cell, certainly not all genes are expressed and thus not all possible binding

sites are detectable (Signor and Nuzhdin, 2018). However, with the increased

sensitivity a higher proportion of the actual spectrum can be observed. This

for example positively impacts approaches that try to predict binding sites

on not expressed transcripts. Such tools take a given set of binding sites as

input and extract sequential and structural features to make their predictions

(Maticzka et al., 2014; Ghanbari and Ohler, 2020). In cases where an RBP

performs multiple functions and might recognize di↵erent binding sites on dif-

ferent sets for transcripts, it is straightforward to see that the prediction would

be hampered. Thus, it is important to initially describe the binding profile as

holistically as possible.

In addition, I described how defined binding sites can be overlapped with

orthogonal gene annotation data. These types of annotations are used in al-

most all high-throughput sequencing-based studies, for example in read map-

ping and alignment. Yet a common integration strategy is missing for iCLIP

data. This starts with the choice of the annotation source. For human and

mouse, GENCODE provides the full spectrum of annotated genes and putative

isoforms (Frankish et al., 2019). Starting from such an inclusive data source

coupled with specific filtering is preferred in most cases, compared to starting

with an already fine-tuned and specialized annotation. This prevents missing

out on potentially unexpected binding behaviors. Depending on the research
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question also more specific resources can be used as annotation base. FAN-

TOM or MiRBase for example provide annotations specific for lncRNAs or

micro-RNAs respectively, which could serve as a starting point for a targeted

analysis (Forrest et al., 2014; Kozomara and Gri�ths-Jones, 2010). Here the

entire GENCODE annotation was used in the first place. It was then filtered

for experimentally validated isoforms by RT-PCR, sequencing or by Havana

manual curation (Howald et al., 2012). Such a filtering is of particular impor-

tance, since all downstream results depend on these decisions. Most commonly

used approaches over-simplify this process by making arbitrary decisions early

on in the analysis process. In many cases simply the longest annotated tran-

script is chosen as representative (Jin et al., 2020). In the case of a recent study

describing the binding of U2AF65 based on additional cofactors, the analysis

was restricted to annotated introns only (Sutandy et al., 2018). The above

analysis on the U2AF65 binding spectrum revealed a similar trend, yet 10%

of binding sites were still located outside of introns (Figure 3.8). On the other

side also fine-tuned annotation resources exist for specific research questions.

For example, in the case of the APPRIS database principal and alternative

splice isoforms are annotated based on sequence, structure and conservation

features (Rodriguez et al., 2013). The direct application of hierarchical rules is

usually not desired when prior knowledge of the RBP is missing, since subsets

of binding sites might remain unnoticed. In contrary specific rules might also

be needed for certain binding sites to become visible. Many non-coding RNAs

for example reside in the intron region of protein-coding genes and are thus

missed when data analysis is tailored towards them (Uszczynska-Ratajczak

et al., 2018; Olena and Patton, 2010). In a recent study the binding of PTBP1

was analyzed and the assignment to genomic features was done following a

predefined hierarchy (Monzón-Casanova et al., 2020). In the present analysis

of U2AF65 a hierarchical rule was used as well, but only after the application

of a majority vote scheme. These two layers of resolving spurious annotations

tend to introduce less errors, while still retaining most binding sites and thus

lead to a better description of the binding preferences.

In summary, I showcased on the splicing regulator U2AF65 how accurate

binding site definition can be done. The integration of merged replicates fol-

lowed by reproducibility filtering allowed an increased sensitivity in the peak

calling. This led to an accurate definition of binding sites, capturing a high

proportion of the U2AF65 binding landscape. By avoiding most pitfalls when

deciding on appropriate annotations, I could also show how the biological bind-

ing preference can be deduced from these binding sites.
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A novel SRSF6 binding motif

In diabetes, pancreatic beta-cells lose their insulin-producing capacity, which

leaves patients with many short and long-term complications. Whereas in type

1 diabetes (T1D) an autoimmune response causes beta-cell death, patients with

type 2 diabetes (T2D) su↵er from gained insulin resistance (Weir and Bonner-

Weir, 2013). GLIS3 is a major transcription factor and genetic variations

of it are associated with susceptibility to both types of the disease (Dimitri

et al., 2011; Senée et al., 2006; Taha et al., 2003). Beta-cells showed increased

apoptosis upon GLIS3 KD triggered by alternative splicing (AS) changes in

the transcriptome (Barrett et al., 2009; Nogueira et al., 2013). Specifically, AS

changes in the pro-apoptotic protein BIM lead to increased beta-cell death,

via the activation the intrinsic mitochondrial pathway of apoptosis (Nogueira

et al., 2013). These changes were shown to be caused by a decreased expression

of the splicing regulator SRSF6, which is highly expressed in under normal

conditions (Juan-Mateu et al., 2018). In summary, these studies performed by

our collogues at the Eizirik group (ULB, Brussels) linked GLIS3 and SRSF6

expression to beta-cell survival. The exact mechanisms of SRSF6-induced AS

changes however remained unexplained.

Here I described the impact of SRSF6 on the transcriptome by direct bind-

ing, through the analysis of iCLIP experiments of SRSF6 in EndoC-�H1 cells.

I used the iCLIP workflow described above to carefully process four replicate

experiments. More than 185,000 binding sites in nearly 9,000 genes could be

identified. With about 16,000 genes being expressed in the EndoC-�H1 cells,

this indicates that SRSF6 targets nearly 60% of all expressed genes in that

cell type. This is in line with SRSF6 being a global splicing regulator a↵ecting

many splicing decisions (Screaton et al., 1995). Further, a preference for SRSF6

to bind to CDS from protein-coding genes was observed. Two earlier studies

that described the splicing enhancer function of SRSF6 also showed a strong

preference for exonic binding, predominantly in the CDS (Jensen et al., 2014;

Müller-McNicoll et al., 2016). Furthermore, binding sites were also seen to

cover the splice site region, thus extending beyond the exon-intron boundary.

This is similar to the behavior of other members from the SR protein family.

For example, binding to intronic splicing enhancers as well as recognition of

the branch-point sequences are described in the literature (Lou et al., 1998;

Änkö et al., 2012; Cho et al., 2011; Shen et al., 2004). As a secondary function,

apart from splicing regulation, SRSF6 might also be involved in non-splicing-

related functions, such as mRNA stability, export or translocation. This was
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also observed for other SR proteins and might explain the observed binding to

5’ and 3’ UTRs (Lemaire et al., 2002; Kim et al., 2014; Müller-McNicoll et al.,

2016). Interestingly, a GO analysis of the bound targets revealed a similar

picture (Figure 3.12). Splicing and mRNA processing-related terms were en-

riched, as well as numerous di↵erent regulatory terms, again pointing towards

the multi-functional impact of SRSF6.

RBPs typically interact with specific motifs in the RNA sequence of their

target transcripts. These motifs vary in length, position and composition be-

tween RBPs, giving rise to plenty of di↵erent RNA-binding possibilities. Pre-

vious studies described that SRSF6 and other SR proteins recognize short de-

generate sequences of about 4 to 8-nt length (Änkö et al., 2012). In the present

study I substantially refined the current knowledge of the binding specificity of

SRSF6. Here in-depth sequence analysis was performed to describe the binding

profile. Based on the defined binding sites, pentamer frequency analysis iden-

tified uridine- and GA-rich motifs (Figure 3.13). Directly at the binding site

center uridine pentamers were seen to be most frequent, whereas GA-rich pen-

tamers peaked outside of it. This showcased the e↵ect of the UV-crosslinking

bias which leads to binding sites being observed at uridine-rich positions (Sug-

imoto et al., 2012; Haberman et al., 2017; Chakrabarti et al., 2018). Such an

enrichment is especially characteristic for proteins that interact with the RNA

via RRM domains, such as SRSF6. These domains interact more frequently

with uridine than with any other base (Corley et al., 2020). The GA-rich pen-

tamers on the other side were enriched in the flanking regions displaying a clear

positional pattern. Most prominently GAAGA and AAGAA showed a rising

frequency from 100-nt upstream to 25-nt downstream of the binding sites (Fig-

ure 3.14). This was followed by a sharp drop in the frequencies, which indicates

that SRSF6 specifically recognizes GA-rich sequence elements and positions to-

wards the end of those (Figure 3.15). I further refined the binding motif to

the resolution of triples, where two or more uninterrupted repetitions of the

triplet GAA showed the strongest binding e↵ect (Figure 3.16). The binding

strength of sites with this motif grew progressively with increasing number of

triplets. This suggests that multiple SRSF6 proteins assemble on a given exon

to reach e↵ective splicing enhancement. Such an assembly could be stabilized

by protein-protein interactions via the RS domain (Figure 4.1). This domain

is very versatile, but mainly found to be involved protein-protein interactions

(Wu and Maniatis, 1993). However, it is also known that RS-domains in gen-

eral might contact the RNA directly at the branchpoint or the 5’ splice site

(Shen et al., 2004; Cao et al., 2019). It would also be imaginable that the
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observed footprint resembles the contact of the two RRM domains from the

same protein. Such an increased contact could lead to stronger binding po-

tentially to ensure the desired splicing e↵ect. However, it is typically hard to

conclude such a fine-tuned mechanism without further structural validation.

In a recent study for example iCLIP analysis and NMR structural biology were

coupled to describe the binding of U2AF65 in detail (Kang et al., 2020). On

the other hand, also, the binding of additional SR proteins or other RBPs that

recognize the same motif could be favored, possibly via interactions with the

RS-domain. Another possible scenario is that the repetition of the GAA motif

provides a selective advantage for the recognition over more degenerative mo-

tifs. This could ensure reliable exon inclusion, but also o↵ers the possibility

for compensatory regulatory mechanisms among SR proteins (Pandit et al.,

2013).

It is worth mentioning that the consensus motif for SRSF6 binding de-

fined herein di↵ers from those reported in previous studies. Mainly SELEX

(systematic evolution of ligands by experimental enrichment), but also RNA

immunoprecipitation experiments were used to describe the binding of SRSF6

in di↵erent cell types, but to my knowledge no conclusive consensus motif has

been reported (Liu et al., 1998; Park et al., 2019; Screaton et al., 1995). The

motif described above however perfectly fitted to a motif that was recently de-

rived from SRSF6 iCLIP experiments in mouse cells (Müller-McNicoll et al.,

2016). Additionally, the GAA-rich motif that I described has a higher similar-

ity to binding site sequences from other SR proteins like SRSF1, SRSF4 and

SRSF7 compared to previously defined motifs (Änkö et al., 2012; Änkö et al.,

2010; Sanford et al., 2008; Zheng et al., 1997). This underpins the result,

since SR proteins might frequently share functions and compensate each other

in a highly regulated cross-talk. SRSF4 for example is known to partially

compensate for a loss of SRSF6 and vice versa (Müller-McNicoll et al., 2016).

Taken together, these observations suggest that the RNA sequence specificity

of SRSF6 in vivo di↵ers substantially from the in vitro specificity previously

reported by SELEX experiments. This is of major importance for the scientific

field, since SR protein motifs are commonly used, for example in mechanistic

studies to predict the presence of exonic splicing enhancers (ESEs) (Cartegni

et al., 2003).

Detailed insights of the SRSF6 binding motif also impact the understand-

ing of human diseases. For example, transcriptomic genome-wide association

studies are used to characterize somatic variants and single-nucleotide poly-

morphisms (SNPs) in patient groups (Tranchevent et al., 2017; Solovyev and
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Shahmuradov, 2003). Thus, the association of a binding site and a SNP might

shed new lights on regulatory processes in certain diseases. The findings de-

scribed within this chapter thus have important implications for the inter-

pretation of these variants and their putative role in splicing regulation. This

reaches beyond the scope of diabetes alone, since SRSF6 is for example a known

proto-oncogene and contributes to diverse forms of cancer (Karni et al., 2007).

SRSF6 triggers AS changes by direct binding

Our colleagues from the Eizirik group previously reported that SRSF6 reg-

ulates a network of AS events in pancreatic beta-cells (Juan-Mateu et al.,

2018). They showed that SRSF6 influences the splicing of the mRNA encod-

ing apoptotic regulator proteins B-cell lymphoma 2 like 11 (BCL2L11/BIM)

and B-cell lymphoma 2 associated X (BCL2 associated X/BAX), which are

involved in pancreatic beta-cell apoptosis (Dooley et al., 2016; Schwerk and

Schulze-Ostho↵, 2005). They further showed that SRSF6 also acted upon

members of the JNK signaling cascade, which plays a role in in pancreatic

beta-cell death as well (Juan-Mateu et al., 2018; Gurzov and Eizirik, 2011; Fu

et al., 2009; Cunha et al., 2012). Thus, SRSF6 influences insulin secretion by

impacting beta-cell survival. Of note, in our analysis both BIM and BAX were

found to be targets of SRSF6, pointing towards direct e↵ects.

Here, I re-analyzed and integrated their RNA-Seq data with the above

iCLIP data, to demonstrate that the majority of AS events are associated

with direct binding of SRSF6. Initial AS analysis showed about 1,000 genes

with significantly a↵ected splicing isoforms due to the SRSF6 KD. I con-

firmed that cassette exon events were the predominant form of AS changes,

with a preference for increased exon skipping over exon inclusion (Figure 3.21).

This suggests that SRSF6 under normal conditions promotes exon inclusion

and might stabilize splicing by guiding splice site recognition. Moreover, my

analysis showed that SRSF6-driven splicing regulation is highly context- and

position-dependent, as previously described for other splicing factors (Bradley

et al., 2015; Ke and Chasin, 2011; Pandit et al., 2013). For the integration of

the iCLIP data with the observed splicing changes, di↵erences in isoform abun-

dance had to be accounted. This was controlled by computing PSI-matched

background sets specifically for exons that decreased or increased their inclu-

sion ratio upon SRSF6 KD (Figure 3.26). By doing so it could be ensured

that observations reflect genuine regulatory RNA-binding profiles, rather than

intrinsic biases. Such biases commonly impair conclusions from a direct com-
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parison of up- and down-regulated exons (Pandit et al., 2013). Based on this,

an increased binding of SRSF6 within exons that are downregulated upon

SRSF6 KD could be observed. This again supports the idea that SRSF6

mainly contributes to exon inclusion. Similar observations have been made by

early in vitro studies that reported SR proteins bind primarily to pre-mRNAs

at ISEs and ESEs (Graveley et al., 1999). By doing so, they assist in the re-

cruitment of spliceosomal components to the neighboring splice sites. Alterna-

tively, SRSF6 might also interfere with the binding of splicing silencers, such as

heterogeneous nuclear ribonucleoproteins (hnRNP). In particular, we observed

SRSF6 binding to the polypyrimidine tract where it could compete with hn-

RNP (Long and Caceres, 2009; Zarnack et al., 2013). A precise description of

the underlying mechanism by which SR proteins favor splice-site recognition

is still questionable. Some studies for example described that SRSF1 guides

the recruitment of the U1 snRNP protein U1-70k to facilitate donor splice

site recognition (Cho et al., 2011; Wu and Maniatis, 1993). Further similar

findings were made also for other SR proteins (Fu and Maniatis, 1992). It has

been shown that besides U1 snRNP, also the U2 auxiliary factor 2 (U2AF)

recruitment can be influenced by SRSF6 binding. SRSF6 binding is thought

to increase the a�nity of U1 and U2 to the respective 5’ and 3’ splice sites

(Long and Caceres, 2009). Additionally, also the interference of SRSF6 with

hnRNP on exonic sites is knonw (Zhu et al., 2001; Cáceres et al., 1994; Long

and Caceres, 2009). It is possible that the recruitment of SRSF6 to the ESE is

required to counteract a nearby ESS region which is for example bound by an

hnRNP protein (Zhu et al., 2001). Thus, SRSF6 might block ESS regions to

indirectly stabilize the recognition of the exon-intron boundary. Interestingly,

we observed about 200 exons that displayed increased inclusion upon SRSF6

KD, which suggests that their inclusion is weakened under normal conditions

(Figure 3.27). Such upregulated exons showed strong SRSF6 binding directly

on the flanking constitutive exons and the polypyrimidine tract. By binding to

these flanking exons, SRSF6 might enforce the exon-intron boundary definition

of these exons, while the alternative exon is only poorly recognized.

Taken together, this suggests that SRSF6 recognizes mainly ESE elements

of alternative exons to reinforce potentially weaker splices sites and assists in

exon inclusion (Figure 4.1). Thereby SRSF6 specifically recognizes a GA-rich

binding motif. Similar, yet di↵erent binding motifs would also allow for further

cross-regulation, which is known among the family of SR proteins (Lareau

et al., 2007; Ni et al., 2007). Similar findings were also made for other splicing-

regulatory proteins, which can enhance or repress alternative exon inclusion
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(Sanford et al., 2009; Eperon et al., 1993; Han et al., 2011). This reinforces

the idea that alternative splicing is a complex interplay of sequence elements

and di↵erent splicing-regulatory proteins interacting with each other.

Figure 4.1: Proposed schematic of the SRSF6-mediated AS regu-
lation. (A) SRSF6 binds to GA-rich sequence elements of exonic splicing
enhancer (ESE) regions. The RNA contact is probably mediated by the RRM
domains, while the RS domain might assist in protein-protein interactions, ei-
ther with additional SRSF6 proteins or further splicing regulators. (B) SRSF6
enforces splice site recognition of the alternative exon by binding ESEs on the
alternative exon. (C) SRSF6 promotes alternative exon skipping by reinforce-
ment of flanking constitutive exons.

SRSF6 regulates diabetes susceptibility genes

We were prompted to the influence of SRSF6 on diabetes by the susceptibility

gene GLIS3, which encodes an important transcription factor for beta-cell

maintenance (Nogueira et al., 2013; Juan-Mateu et al., 2018). Mutations on

the gene itself lead to severe neonatal diabetes, whereas lowered expression

increases the risk for T1D and T2D (Barrett et al., 2009; Cho et al., 2012;

Dupuis et al., 2010; Steck et al., 2014; Winkler et al., 2014). GLIS3-depleted

beta-cells in rats were shown to be associated with the inhibition of SRSF6,
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which in turn led to a splicing shift of the proapoptotic protein BCL2L11

(Nogueira et al., 2013). This protein is known to contribute to pancreatic

beta-cell apoptosis upon for example high glucose induction (McKenzie et al.,

2010). This was explicitly shown to be regulated by AS changes, that shift the

equilibrium to the expression of the isoform BIM S which is the most apoptotic

(Nogueira et al., 2013).

Interestingly, we observed that the KD of SRSF6 does not lead to severe

changes in the global transcription levels. Di↵erential expression analysis re-

vealed only minute changes in transcript abundance, with no preference for

up- or down-regulation (Figure 3.20). The comparison with the observed AS

changes also revealed no direct correlation, which suggests that no global reg-

ulatory pathway such as a widespread degradation of mis-spliced mRNAs via

nonsense-mediated mRNA decay (NMD) is triggered (Figure 3.22). Usually

NMD is a common consequence of AS, especially for the SR protein family

(Ni et al., 2007; Lareau et al., 2007). We found that SRSF6 rather triggers

AS changes to specifically alter certain isoforms. Thus, we reasoned that some

of these targets might be diabetes susceptibility genes, potentially bridging

the gap between SRSF6-mediated AS and the influence on diabetes. This hy-

pothesis was approached by looking for direct SRSF6-regulated splicing events

in a compiled list of known T1D and T2D susceptibility genes (Figure 3.30).

Among these 400 candidates five T1D and 17 T2D well-documented diabetes

susceptibility genes were identified (Pociot, 2017; Barrett et al., 2009; Bradfield

et al., 2011). These susceptibility genes are in general predicted to mediate

gene-environment interactions in diabetes, although further detailed molecular

analysis would be required to confirm these statements.

Taken together, the present work extended the current knowledge of SRSF6-

controlled susceptibility genes beyond the role of the known proapoptotic regu-

lators BCL2L11 and BCL2 associated X (Juan-Mateu et al., 2018). We thereby

highlighted the e↵ect of SRSF6 as a downstream target of GLIS3, acting on

beta-cell survival through the regulation of diabetes susceptibility genes via

AS. I explored the genome-wide binding profile of the RNA-binding protein

SRSF6 in human pancreatic beta-cells and integrated these results with ob-

served AS changes triggered by the decreased expression of SRSF6. The fact

that several diabetes susceptibility genes are directly targeted by this mech-

anism suggests the presence of a AS-regulated network with putative impact

on diabetes risk.
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5 | Conclusion and outlook

In the present thesis, I investigated the computational processing of iCLIP

derived sequencing data to study protein-RNA interactions. In particular I

investigated the binding profile of U2AF65 and SRSF6. In the first case a

published dataset was used to describe the initial processing, whereas in the

latter case conclusions on the impact of SRSF6 binding in the context of dia-

betes were drawn.

In the first part a pipeline to process iCLIP sequencing data was devel-

oped. On the example of the RNA binding protein U2AF65 I showed how

quality control, peak calling, replicate integration and binding site annotation

can be achieved in a reproducible manner. The described workflow allows the

detection of protein-RNA interactions on lowly abundant transcripts, as well

as on low a�nity binding sites, thus revealing a larger proportion of the actual

binding spectrum of a given RBP. Such an enhanced binding spectrum lowers

the number of missed binding sites and therefore might also reveal unknown

functions of RBPs. For example, an RBP might influence a broad range of

transcripts by interaction with the splicing machinery, but also defines the

translocation of a small set of transcripts by interaction with the UTR region.

In such cases a coarse computation of binding sites might detect the splicing

influence, but misses out on the secondary function. This has a potential large

impact, since many RBPs express more than one function in the cell (Singh

et al., 2015; Dreyfuss et al., 2002). Additionally, such a standardized pipeline

opens up the possibility of a wide range of comparisons. For example, the

binding of di↵erent RBPs might be compared to resolve the assembly of large

protein complexes or regulatory mechanisms. On the other side, one might



also analyze the change in the binding spectrum of an RBP between di↵erent

cell types, conditions or induced mutations. The comparison of such di↵er-

ences within the binding spectrum of an RBP is a relatively new approach, for

which a standardized binding site computation pipeline is a prerequisite. Thus,

the results of the present thesis allow to enhance the resolution of the given

experimental designs, while also allowing for the possibility of new research

questions to be asked.

The second part of this thesis described the binding spectrum of SRSF6

in the context of diabetes. In human pancreatic beta-cells SRSF6 acts down-

stream of the susceptibility gene GLIS3. Here, I described how SRSF6 itself

regulates the splicing of further diabetes susceptibility genes by direct binding

in the pancreatic beta-cell line EndoC-�H1. I described that SRSF6 enhances

the inclusion of certain exons via binding to ESE elements on the alternative

exon. It was also observed that exon skipping can be promoted by binding

to ESEs on flanking constitutive exons. This mechanism explained, at least

in parts, how the beta-cell transcriptome is changed in T1D and T2D. Genes

targeted by this mechanism were found to be associated with cell cycle regula-

tion and apoptosis. The exact molecular modifications however require further

functional validations. To treat diseases at the level of RNA splicing is rel-

atively new, but increasingly researched to potentially cure complex diseases

on the molecular level. For example, in the case of spinal muscle atrophy the

splicing of the SMN (survival motor neuron) genes can be modulated to restore

the healthy splicing pattern (Levin, 2019). Technically such approaches make

use of antisense oligonucleotides (ASOs) to block specific binding sites. As a

proof of principle, we already used ASOs in the related publication to modu-

late the splicing of the LMO7 gene (Alvelos et al., 2020). In the case of SRSF6

binding sites on further susceptibility genes could be used as potential targets.

ASOs could be designed specifically to the sequence of these binding sites and

used to restore the downstream splicing defects in the SRSF6 targets. This

would open up potential therapeutic opportunities, since the equilibrium of

alternative splicing events could be altered by the blockage of these positions.

This would ultimately change the transcriptional state of the cell potentially

restoring beta-cell function. Many clinical approaches nowadays make use of

bioinformatic tools and next-generation sequencing data to complement diag-

nostics for complex diseases. In particular the prediction of cis-acting sequence

variants is of major importance. Services like the Human Splicing Finder, or

ESEfinder search for splicing regulatory elements (SRE) based on known bind-

ing sequences of splicing RBPs, such as SRSF6 (Desmet et al., 2009; Cartegni
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et al., 2003). Here, the improved understanding of the SRSF6 binding motif

is of great advantage. It is commonly known that the quality of the prediction

of SREs varies within clinical cases or scientic contexts (Baralle and Buratti,

2017). Thus a better understanding of SRSF6 binding could globally a↵ect

the prediction of SREs and therefore impacts the treatment of diseases, even

beyond the scope of diabetes.
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Supplementary Material

In-house R scripts

Binding site merge and resize

The following scripts contain the R code for the binding site definition. The

central function ”mergePeaks” is used to summarize crosslink sites into binding

site of a user-defined width. These sites can be filtered for di↵erent properties

by using the functions ”pMinPos”, ”pPureCenter”, ”nSitesPureClip”, ”pMax-

Center”. All of these functions were designed to be for internal use. The end

user can should call the wrapper-function ”peaksToBindingSites” for conve-

nience.

Listing 5.1: Functions for the merge and resize routine.

1 #’ Merge and resize peaks called by PureCLIP. Single nt peaks are

merged into binding sites of equal width, by either extending

or iteratively reducing the size of the merged peak object.

2 #’

3 #’ @param peaks GRanges-Object (the PureCLIP output)

4 #’ @param peakSize numeric (desired output peak size)

5 #’ @param peaksSize_lowerThreshold numeric (define what merged

regions will be retained)

6 #’ @param clipSignalPlus RLE (single nuclotide crosslink events of

+ strand)

7 #’ @param clipSignalMinus RLE (single nuclotide crosslink events

of - strand)

8 #’ @return GRanges-Object of merged and resized peaks



9 #’ @example peaksMergeAndResize(peaks = p, peakSize = 9, peaksSize

_lowerThreshold = 2, clipSignalPlus = plus, clipSignalMinus =

minus)

10 mergePeaks <- function(peaks, peaksSize, csPlus,

11 csMinus, pMinSize){

12 ps1 = keepStandardChromosomes(peaks,pruning.mode = "coarse")

13 # merged peaks with gap width that is 1nt smaller than the

desired output binding site width

14 ps2 = reduce(ps1, min.gapwidth = peaksSize - 1)

15 # remove merged regions smaller than threshold (usually 1 or 2)

16 ps3 = ps2[width(ps2) > pMinSize]

17 names(ps3) = 1:length(ps3)
18 # merge and resize routine

19 pfrPlus <- GRanges()
20 pfrMinus <- GRanges()
21 ptpPlus <- subset(ps3, strand == "+")

22 ptpMinus <- subset(ps3, strand == "-")

23 # initiate resize

24 Counter = 0

25 while (TRUE) {

26 # quit if no more regions to check

27 if (length(ptpMinus) == 0 & length(ptpPlus) == 0) {

28 break
29 } else {

30 # handle positive strand

31 if (length(ptpPlus) != 0) {

32 # get max xlink position of each peak

33 pmPlus = as.matrix(csPlus[ptpPlus])
34 pmPlus[is.na(pmPlus)] = -Inf

35 pmPlus = max.col(pmPlus, ties.method = "first")

36 # make new peaks centered arround max position

37 cpPlus = ptpPlus

38 start(cpPlus) = start(cpPlus) + pmPlus - 1

39 end(cpPlus) = start(cpPlus)
40 cpPlus = cpPlus + ((peaksSize - 1)/2)

41 # store peaks

42 pfrPlus = c(pfrPlus, cpPlus)

43 # remove peak regions from rest of possible regions

44 cpPlus = as(cpPlus + ((peaksSize - 1)/2),

45 "GRangesList")

46 # update peak regions that are left for processing

47 ptpPlus = unlist(psetdiff(ptpPlus, cpPlus))

48 }

49 # handle negative strand

50 if (length(ptpMinus) != 0) {

51 pmMinus = as.matrix(csMinus[ptpMinus])
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52 pmMinus[is.na(pmMinus)] = -Inf

53 pmMinus = max.col(pmMinus, ties.method = "last")

54 # make new peaks centered arround max position

55 cpMinus = ptpMinus

56 start(cpMinus) = start(cpMinus) + pmMinus - 1

57 end(cpMinus) = start(cpMinus)
58 cpMinus = cpMinus + ((peaksSize - 1)/2)

59 # store peaks

60 pfrMinus = c(pfrMinus, cpMinus)

61 # remove peak regions from rest of possible regions

62 cpMinus = as(cpMinus + ((peaksSize - 1)/2),

63 "GRangesList")

64 # update peak regions that are left for processing

65 ptpMinus = unlist(psetdiff(ptpMinus, cpMinus))

66 }

67 Counter = Counter + 1

68 }

69 }

70 ps4 = c(pfrPlus, pfrMinus)

71 ps4 = sortSeqlevels(ps4)
72 ps4 = sort(ps4)
73 return(ps4)
74 }

75

76 #’ Filter that retains only peaks that harbour a defined number of

single nt crosslink events.

77 #’

78 #’ @param peaks GRanges-Object (the merged and resized peaks)

79 #’ @param minXlinksPerPeak number (threshold for the number of

xlink events)

80 #’ @param csPlus RLE (single nuclotide crosslink events of +

strand)

81 #’ @param csMinus RLE (single nuclotide crosslink events of -

strand)

82 #’ @example pMinPos(peaks = p, minXlinksPerPeak = 3, csPlus = plus

, csMinus = minus)

83 pMinPos <- function(peaks, minXlinksPerPeak, csPlus, csMinus){

84 # split by strand plus

85 pcPlus = peaks[strand(peaks) == "+"]

86 pcPlusMat = as.matrix(csPlus[pcPlus])
87 pcPlus = pcPlus[apply((pcPlusMat > 0), 1, sum) >

minXlinksPerPeak]

88 # split by strand minus

89 pcMinus = peaks[strand(peaks) == "-"]

90 pcMinusMat = as.matrix(csMinus[pcMinus])
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91 pcMinus = pcMinus[apply((pcMinusMat > 0), 1, sum) >

minXlinksPerPeak]

92 # combine sort return

93 pCurr = c(pcPlus, pcMinus)

94 pCurr = sortSeqlevels(pCurr)
95 pCurr = sort(pCurr)
96 return(pCurr)
97 }

98

99 #’ Filter that removes all binding sites where the center position

was not an initially called PureCLIP crosslink site.

100 #’

101 #’ @param peaks GRanges-Object (the merged and resized peaks)

102 #’ @param pureClipOriginal GRanges-Object (the PureCLIP output)

103 #’ @example pPureCenter(peaks = p, pureClipOriginal = pPureClip)

104 pPureCenter <- function(peaks, pureClipOriginal){

105 pCurr = peaks - (unique(width(peaks)) - 1)/2

106 pCurr = peaks[queryHits(findOverlaps(pCurr, pureClipOriginal))]

107 # combine sort return

108 pCurr = sortSeqlevels(pCurr)
109 pCurr = sort(pCurr)
110 return(pCurr)
111 }

112

113 #’ Filter that retains only those binding sites that harbor a

defined number of initially called PureCLIP sites

114 #’

115 #’ @param peaks GRanges-Object (the merged and resized peaks)

116 #’ @param pureClipOriginal GRanges-Object (the PureCLIP output)

117 #’ @param minSitesPure number (minimum PureCLIP site threshold)

118 #’ @example nSitesPureClip(peaks = p, pureClipOriginal = pOriginal

, minSitesPure = 2)

119 nSitesPureClip <- function(peaks, pureClipOriginal,

120 minSitesPure){

121 overlaps = findOverlaps(peaks, pureClipOriginal)

122 freq = table(queryHits(overlaps))
123 idx = as.numeric(names(freq[freq >= minSitesPure]))

124 pCurr = peaks[idx]

125

126 # combine sort return

127 pCurr = sortSeqlevels(pCurr)
128 pCurr = sort(pCurr)
129 }

130

131 #’ Filter that removes all binding sites whose center position

does not harbor the highest crosslink event count
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132 #’

133 #’ @param peaks GRanges-Object (the merged and resized peaks)

134 #’ @param csPlus RLE (single nuclotide crosslink events of +

strand)

135 #’ @param csMinus RLE (single nuclotide crosslink events of -

strand)

136 #’ @example pMaxCenter(peaks = p, csPlus = plus, csMinus = minus)

137 pMaxCenter <- function(peaks, csPlus, csMinus){

138 # find max per peak

139 peaksPlus = peaks[strand(peaks) == "+"]

140 peaksMinus = peaks[strand(peaks) == "-"]

141 pcPlusMat = as.matrix(csPlus[peaksPlus])
142 pcMinusMat = as.matrix(csMinus[peaksMinus])
143 pcPlusCount = apply(pcPlusMat, 1, max)
144 pcMinusCount = apply(pcMinusMat, 1, max)
145 # remove not max peaks

146 pcPlus = peaksPlus[pcPlusCount == pcPlusMat[,((unique(width(
peaks)) - 1) / 2) + 1]]

147 pcMinus = peaksMinus[pcMinusCount == pcMinusMat[,((unique(width(
peaks)) - 1) / 2) + 1]]

148 # combine sort return

149 pCurr = c(pcPlus, pcMinus)

150 pCurr = sortSeqlevels(pCurr)
151 pCurr = sort(pCurr)
152 return(pCurr)
153 }

154

155 #’ Wrapper function that subsequently calls: mergePeaks, pMinPos,

pPureCenter, pMaxCenter, nSitesPureClip and reports basic

statistics about how many peaks are removed in each step

156 #’

157 #’ @param peaks GRanges-Object (the PureCLIP output)

158 #’ @param peakSize numeric (desired output peak size)

159 #’ @param pMinSize numeric (define what merged regions will be

retained)

160 #’ @param minSitesPure number (minimum PureCLIP site threshold)

161 #’ @param minXlinksPerPeak number (threshold for the number of

xlink events)

162 #’ @param csPlus RLE (single nuclotide crosslink events of +

strand)

163 #’ @param csMinus RLE (single nuclotide crosslink events of -

strand)

164 #’ @example peaksToBindingSites(peaks = peaksFiltered, peaksSize =

9,

165 #’ pMinSize = 2, minXlinksPerPeak = 2, minSitesPure = 2,

166 #’ csPlus = csPlus, csMinus = csMinus)
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167 peaksToBindingSites <- function(peaks, peaksSize,

168 pMinSize,

169 minSitesPure, minXlinksPerPeak,

170 csPlus, csMinus){

171 peaks1 = mergePeaks(peaks = peaks,

172 peaksSize = peaksSize,

173 pMinSize = pMinSize,

174 csPlus = csPlus,

175 csMinus = csMinus)

176 peaks2 = pMinPos(peaks = peaks1,

177 minXlinksPerPeak = minXlinksPerPeak,

178 csPlus = csPlus,

179 csMinus = csMinus)

180 peaks3 = pPureCenter(peaks = peaks2,

181 pureClipOriginal = peaks)

182 peaks4 = pMaxCenter(peaks = peaks3,

183 csPlus = csPlus,

184 csMinus = csMinus)

185 peaks5 = nSitesPureClip(peaks = peaks4,

186 pureClipOriginal = peaks,

187 minSitesPure = minSitesPure)

188 reportDf = data.frame(
189 pStep = c("InitialPeaks", "Merge",

190 "MinPosFilter", "CenterPureClipFilter",

191 "CenterIsMaxFilter", "minSitesPure"),

192 nPeaks = c(length(peaks), length(peaks1),
193 length(peaks2),length(peaks3),
194 length(peaks4), length(peaks5)))
195 result = list(reportDf = reportDf, peaks = peaks5)

196 return(result)
197 }
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SRSF6 binding site definition

The following script was used to compute the binding sites specifically for SRSF6.

The function ”peaksToBindingSites” is called to compute 9-nt wide binding sites

in the first place. These sites are then filtered for replicate reproducibility and

overlapped with gene and transcript annotations, as it is described in the respective

section of the script.

Listing 5.2: SRSF6 Binding Site Definition.

1 ### ==============================================================

2 ### Load required packages

3 ### --------------------------------------------------------------

4 library(rtracklayer)
5 library(GenomicRanges)
6 library(GenomicFeatures)
7 library(dplyr)
8

9

10 ### ==============================================================

11 ### Import PureCLIP output

12 ### --------------------------------------------------------------

13 peaksInitial = "./data/PureCLIP_output.bed"

14 peaksInitial = import(con = peaksInitial, format = "BED")

15

16

17 ### ==============================================================

18 ### Filter peaks by PureCLIP score -> glaobal 5% cutoff

19 ### --------------------------------------------------------------

20 cutoff = quantile(peaksInitial$score, probs = seq(0,1, by = 0.05))

21 peaksFiltered = peaksInitial[peaksInitial$score >= cutoff[2]]

22 rtracklayer::export(peaksFiltered, "./data/peaksFilteredGlobal.bed

", format = "BED")

23

24

25 ### ==============================================================

26 ### Summarize peaks into 9nt wide binding sites

27 ### --------------------------------------------------------------

28 clipSignalPlus = "./data/clip_merge_plus.bw"

29 clipSignalPlus = import.bw(clipSignalPlus, as = "Rle")

30 clipSignalMinus = "./data/clip_merge_minus.bw"

31 clipSignalMinus = abs(import.bw(clipSignalMinus, as = "Rle"))

32

33 peaksProcessed = peaksToBindingSites(peaks = peaksFiltered,

34 peaksSize = 9,

35 peaksSize_lowerThreshold = 2,
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36 minXlinksPerPeak = 2,

37 minPureClipSites = 2,

38 clipSignalPlus =

clipSignalPlus,

39 clipSignalMinus =

clipSignalMinus)

40

41 rtracklayer::export(peaksProcessed$peaks, "./data/peaksMerged.bed"

, format = "BED")

42

43 ### ==============================================================

44 ### Filter binding sites for reproducibility on replicate level

45 ### --------------------------------------------------------------

46 # import replicates as RLE

47 folder = "./data/clip_all_replicates/"

48 files = list.files(folder, pattern = ".bw$", full.names = TRUE)

49 files = lapply(files, function(x){
50 c = abs(import(x, format = "BigWig", as = "Rle"))

51 std = standardChromosomes(c)
52 c = c[names(c) %in% std]

53 })

54 names(files) = 1:8

55

56 # describe the datasete

57 infos = data.frame(
58 ID = 1:8,

59 condition = rep("wt",8),
60 strand = rep(c("-","+"),4),
61 replicate = c(1,1,2,2,3,3,4,4))
62

63 # split peaks by strand

64 peaks = peaksProcessed$peaks
65 peaksPlus = peaks[strand(peaks) == "+"]

66 peaksMinus = peaks[strand(peaks) == "-"]

67

68 # count crosslinks on peaks -> plus strand

69 signalPlus = files[names(files) %in% infos$ID[infos$strand == "+"

]]

70 countsPlus = sapply(1:length(signalPlus), function(x){
71 sum(signalPlus[[x]][peaksPlus])
72 })

73 mcols(peaksPlus) = countsPlus

74

75 # count crosslinks on peaks -> minus strand

76 signalMinus = files[names(files) %in% infos$ID[infos$strand == "-"

]]
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77 countsMinus = sapply(1:length(signalMinus), function(x){
78 sum(signalMinus[[x]][peaksMinus])
79 })

80 mcols(peaksMinus) = countsMinus

81

82 # combine counts of both strands

83 peaksCount = c(peaksPlus,peaksMinus)
84 peaksCount = sortSeqlevels(peaksCount)
85 peaksCount = sort(peaksCount)
86 colnames(mcols(peaksCount)) = c("rep1", "rep2", "rep3", "rep4")

87

88 # compute replicate specific count threshold

89 df = as.data.frame(mcols(peaksCount))
90 cutoff = apply(df, 2, function(x){
91 quantile(x, probs = seq(0,1, by = 0.1))

92 })

93 cutoff = data.frame(q = cutoff[3,], variable = colnames(cutoff))
94 cutoff$q[cutoff$q < 2] = 2

95

96 # summarize replicate reproducibility

97 support = t(apply(mcols(peaksCount), 1, function(x){
98 ifelse(x >= cutoff$q, 1, 0)

99 }))

100

101 mcols(peaksCount)$support = rowSums(support)

102 peaksReproducible = peaksCount[peaksCount$support >= 3]

103

104

105 ### ==============================================================

106 ### Filter genome annotation

107 ### --------------------------------------------------------------

108 # Import annotation file

109 annotationFile = "./data/gencode.v29.annotation.gtf"

110 anno = import(annotationFile, format = "GTF")

111

112 # Filter feature level annotation

113 anno = anno[anno$level != 3]

114

115 # Filter transcript level annotation

116 anno$transcript_support_level[is.na(anno$transcript_support_level)
] = 0

117 anno$transcript_support_level[anno$transcript_support_level == "NA

"] = 10

118 anno = anno[anno$transcript_support_level == 0

119 | anno$transcript_support_level == 1

120 | anno$transcript_support_level == 2
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121 | anno$transcript_support_level == 3 ]

122

123 # Create txdb databse from filtered annotations

124 annoDb = makeTxDbFromGRanges(anno)

125

126 genesAll = genes(annoDb)

127 idx = match(genesAll$gene_id, anno$gene_id)
128 elementMetadata(genesAll) = cbind(elementMetadata(genesAll),

elementMetadata(anno)[idx,])

129

130

131 ### ==============================================================

132 ### Assign each binding site to the hosting gene

133 ### --------------------------------------------------------------

134 genesTargets = subsetByOverlaps(genesAll, peaksReproducible)

135 genesTargetsProt = genesTargets[genesTargets$gene_type == "protein

_coding"]

136 peaksProt = subsetByOverlaps(peaksReproducible, genesTargetsProt)

137 peaksFinal = peaksProt[countOverlaps(peaksProt, genesTargetsProt)

== T]

138

139

140 ### ==============================================================

141 ### Specify location of each binding site in the transcript

142 ### --------------------------------------------------------------

143 # count binding site overlap with transcript parts

144 cdseq = cds(annoDb) %>% countOverlaps(peaksFinal,.)

145 intrns = unlist(intronsByTranscript(annoDb)) %>% countOverlaps(

peaksFinal,.)

146 utrs3 = unlist(threeUTRsByTranscript(annoDb)) %>% countOverlaps(

peaksFinal,.)

147 utrs5 = unlist(fiveUTRsByTranscript(annoDb)) %>% countOverlaps(

peaksFinal,.)

148 overlapCounts = data.frame(cds = cdseq, intron = intrns, utr3 =

utrs3, utr5 = utrs5)

149

150 # init the hierarchical rule for ties

151 rule = c("intron", "cds", "utr3", "utr5")

152

153 # applying the majority vote and rule

154 overlapCounts = overlapCounts[, rule] %>% as.matrix %>%

155 cbind.data.frame(., outside = ifelse(rowSums(overlapCounts) ==

0, 1, 0) )

156 names = colnames(overlapCounts)
157 reg = apply(overlapCounts, 1, function(x){ names[which.max(x)] })

158
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159 # add final regions to binding sites object

160 mcols(peaksFinal)$region = reg

161

162 # remove binding sites outside of annotated regions

163 # (this is a special case where binding sites are located within

an annotated

164 # gene, but outside of any of it’s transcripts)

165 peaksFinal = peaksFinal[peaksFinal$region != "outside"]

166

167

168 ### ==============================================================

169 ### re-annotate final binding sites with initial PureCLIP scores

170 ### --------------------------------------------------------------

171 overlaps = findOverlaps(peaksFinal, peaksInitial)

172 matchDF = data.frame(qHits = queryHits(overlaps),

173 sHits = subjectHits(overlaps),

174 score = peaksInitial$score[subjectHits(
overlaps)])

175 scores = group_by(matchDF, qHits) %>%

176 summarize(pSum = sum(score),
177 pMax = max(score),
178 pMean = mean(score)) %>%

179 as.data.frame
180

181 mcols(peaksFinal)$pSum = scores$pSum
182 mcols(peaksFinal)$pMean = scores$pMean
183 mcols(peaksFinal)$pMax = scores$pMax
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SRSF6 binding motif definition

The following script holds the code to compute the SRSF6 binding motif. It requires

the binding sites computed with the scripts explained above as input. Internally

binding sites are represented as GenomicRanges objects. For the kmer counting

binding sites are represented by their central position. Kmer counting is based

on the stri locate all function from the stringi package. For convenience several

wrapper functions are given in the second code section.

Listing 5.3: Definition of the SRSF6 binding motif.

1 ### ==============================================================

2 ### Load required packages

3 ### --------------------------------------------------------------

4 library(Biostrings)
5 library(BSgenome.Hsapiens.UCSC.hg38)
6 library(GenomicRanges)
7 library(GenomicFeatures)
8 library(stringi)
9 library(reshape2)

10 library(ggplot2)
11 library(ggrepel)
12

13 ### ==============================================================

14 ### Load processed binding sites

15 ### --------------------------------------------------------------

16 load("./data/bindingSites.rda")
17 peaksFinal = bs

18

19 ### ==============================================================

20 ### Subsample binding sites per region

21 ### --------------------------------------------------------------

22 set.seed(1234)
23 sampCds = subset(peaksFinal, region == "cds") %>%

24 sample(., 5000)

25 sampIntron = subset(peaksFinal, region == "intron") %>%

26 sample(., 5000)

27

28 ### ==============================================================

29 ### Calculate pentamer frequency for each subsample

30 ### --------------------------------------------------------------

31 # pentamer freq in 9nt binding site center windows

32 df1 = countKmerFreq(sampCds, kmerSize = 5)

33 df2 = countKmerFreq(sampIntron, kmerSize = 5)

34 dfCenter = data.frame(kmer = rownames(df1),
35 exon = rowMeans(df1),
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36 intron = rowMeans(df2),

37 region = "center")

38

39 df1 = countKmerFreq(flank(sampCds, width = 20, start = T),

40 kmerSize = 5)

41 df2 = countKmerFreq(flank(sampIntron, width = 20, start = T),

42 kmerSize = 5)

43 dfUpstream = data.frame(kmer = rownames(df1),
44 exon = rowMeans(df1),

45 intron = rowMeans(df2),

46 region = "upstream")

47

48 df1 = countKmerFreq(flank(sampCds, width = 20, start = F),

49 kmerSize = 5)

50 df2 = countKmerFreq(flank(sampIntron, width = 20, start = F),

51 kmerSize = 5)

52 dfDownstream = data.frame(kmer = rownames(df1),
53 exon = rowMeans(df1),

54 intron = rowMeans(df2),

55 region = "downstream")

56

57 ### ==============================================================

58 ### Example plot for exon vs. intron pentamer frequencies

59 ### --------------------------------------------------------------

60 p = ggplot(dfCenter, aes(x = exon, y = intron)) +

61 geom_abline() +

62 geom_point(color = "darkgrey") +

63 geom_label_repel(data = subset(dfCenter,
64 exon > 0.03 | intron > 0.03),

65 aes(x = exon, y = intron, label = kmer),

66 color = "black", nudge_y = .001,

67 min.segment.length = unit(0, ’lines’),

68 size = 2, segment.size = .5, alpha = .5,

69 segment.alpha = .3) +

70 ggtitle("Center - 9nt")

71

72

73 ### ==============================================================

74 ### Calculate triplet frequency for GAA/ UUC

75 ### --------------------------------------------------------------

76 seqSet = RNAStringSet(getSeq(Hsapiens, peaksFinal - 4 + 30 ))

77 freq = oligonucleotideFrequency(seqSet, 3) %>% as.data.frame()
78

79 # extract triplets of interest

80 selKmers = c("GAA", "UUC")

81 selKmers = freq[colnames(freq) %in% selKmers]
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82

83 # group triplet frequency with PureCLIP score

84 df = data.frame(region = peaksFinal$region, pSum = peaksFinal$pSum
)

85 df = cbind(df, selKmers)

86 df = melt(df, id = c("region", "pSum"))

87

88

89 ### ==============================================================

90 ### Calculate triplet frequency for GAA/ UUC with gap sizes

(0,1,2)

91 ### --------------------------------------------------------------

92 seqSet = RNAStringSet(getSeq(Hsapiens, peaksFinal - 4 + 30)) %>%

93 as.character()
94

95 # single motif

96 d0 = data.frame(region = peaksFinal$region,
97 pSum = peaksFinal$pSum,
98 count = stri_count_regex(str = seqSet,

99 pattern = "UUC"),

100 pattern = "UUC")

101 d1 = data.frame(region = peaksFinal$region,
102 pSum = peaksFinal$pSum,
103 count = stri_count_regex(str = seqSet,

104 pattern = "GAA"),

105 pattern = "GAA")

106 dfSingleMotif = rbind(d0,d1)
107

108 # multiple motifs - no gap

109 d2 = data.frame(region = peaksFinal$region,
110 pSum = peaksFinal$pSum,
111 count = stri_count_regex(str = seqSet,

112 pattern = "GAAGAA"),

113 pattern = "GAAGAA")

114 d3 = data.frame(region = peaksFinal$region,
115 pSum = peaksFinal$pSum,
116 count = stri_count_regex(str = seqSet,

117 pattern = "GAAGAAGAA"),

118 pattern = "GAAGAAGAA")

119 dfNoGap = rbind(d2,d3)
120

121 # multiple motifs - with single gaps

122 d4 = data.frame(region = peaksFinal$region,
123 pSum = peaksFinal$pSum,
124 count = stri_count_regex(str = seqSet,

125 pattern = "GAA.GAA"),
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126 pattern = "GAA.GAA")

127 d5 = data.frame(region = peaksFinal$region,
128 pSum = peaksFinal$pSum,
129 count = stri_count_regex(str = seqSet,

130 pattern = "GAA.GAA.GAA"),

131 pattern = "GAA.GAA.GAA")

132 dfSingleGap = rbind(d4,d5)
133

134 # multiple motifs - with double gaps

135 d6 = data.frame(region = peaksFinal$region,
136 pSum = peaksFinal$pSum,
137 count = stri_count_regex(str = seqSet,

138 pattern = "GAA..GAA"),

139 pattern = "GAA..GAA")

140 d7 = data.frame(region = peaksFinal$region,
141 pSum = peaksFinal$pSum,
142 count = stri_count_regex(str = seqSet,

143 pattern = "GAA..GAA..GAA"

),

144 pattern = "GAA..GAA..GAA")

145 dfDoubleGap = rbind(d6,d7)

Listing 5.4: Functions for the kmer counting

1 # vectorize base R seq function

2 v.seq <- Vectorize(seq.default, vectorize.args = c("from", "to"))

3

4 #’ counts frequency of kmers over the given object

5 #’

6 #’ @param bs GRanges-Object (range to count in)

7 #’ @param kmerSize number (width of the kmer)

8 #’ @return matrix (with nrows = length(bs) and ncols = length(

kmerSize))

9 #’ @example countKmerFreq(peaks, 5)

10 countKmerFreq <- function(bs, kmerSize){

11 intBs = bs

12 frameSize = unique(width(intBs))
13 # extract sequences per region

14 seq = as.character(RNAStringSet(getSeq(Hsapiens, intBs)))

15 # compute all possible pentamers of the given size

16 kmers = names(oligonucleotideFrequency(RNAString("AA"),kmerSize)
)

17

18 # get start end position of every kmer in every sequence

19 # returns a list of lists

20 countsKmer = lapply(kmers, function(x){
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21 loc = stri_locate_all(seq, regex = x, omit_no_match = T)

22 })

23

24 # reformat start end postions into a matrix format

25 # each line of the matrix corresponds to the sequence of one

binding site

26 # each entry corresponds to the number of times a kmer was found

at the respective position

27 kmerMatrix = lapply(countsKmer, function(k){
28 currK = k[!isEmpty(k)]
29 if (length(currK) > 0) {

30 currKPos = sapply(currK, function(x){
31 y = as.data.frame(x)
32 v = rep(0, frameSize)

33 repl = v.seq(y$start, y$end)
34 v[as.numeric(repl)] = 1

35 return(v)
36 })

37 currKPos = rowSums(currKPos)

38 }

39 if (length(currK) == 0) {

40 currKPos = rep(0,frameSize)
41 }

42 return(currKPos)
43 })

44

45 # format final matrix

46 kmerMatrix = t(do.call("cbind",kmerMatrix))
47 rownames(kmerMatrix) = kmers

48 kmerMatrix = kmerMatrix / length(intBs)
49 return(kmerMatrix)
50 }
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Alternative splicing of SRSF6

The following script holds code for the processing of the AS events called by rMATs.

The rMATs output is transferred to a GenomicRanges representation for internal

usage. The GenomicRanges object is extended to a GenomicRangesList to capture

also the location of the flanking up- and down-stream exons of a given exon skipping

event.

Listing 5.5: Processing of AS events.

1 ### ==============================================================

2 ### Load required packages

3 ### --------------------------------------------------------------

4 library(GenomicRanges)
5 library(GenomicFeatures)
6

7 ### ==============================================================

8 ### Convert rMATS results into GRanges-Objects

9 ### --------------------------------------------------------------

10 se = read.table("./data/rMATs_output.txt", header = TRUE)

11 # create central object

12 events = GRanges(
13 seqnames = se$chr,
14 ranges = IRanges(start = se$exonStart_0base + 1,

15 end = se$exonEnd),
16 strand = se$strand,
17 geneID = se$GeneID,
18 geneSymbol = se$geneSymbol,
19 ijc_s1 = se$IJC_SAMPLE_1 %>% as.character,
20 sjc_s1 = se$SJC_SAMPLE_1 %>% as.character,
21 ijc_s2 = se$IJC_SAMPLE_2 %>% as.character,
22 sjc_s2 = se$SJC_SAMPLE_2 %>% as.character,
23 pval = se$PValue,
24 fdr = se$FDR,
25 incDiff = se$IncLevelDifference,
26 incLvl_s1 = se$IncLevel1,
27 incLvl_s2 = se$IncLevel2
28 )

29 # set tracing IDs

30 names(events) = se$ID
31 # summarize counts over all replicates

32 events = combineReplicateJunctionCounts(events)

33

34

35 ### ==============================================================

36 ### Convert rMATS results into GRanges-Objects
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37 ### --------------------------------------------------------------

38 # create central objects with center,up and downstream ranges

39 eventsCenter = GRanges(
40 seqnames = se$chr,
41 ranges = IRanges(start = se$exonStart_0base + 1,

42 end = se$exonEnd),
43 strand = se$strand,
44 geneID = se$GeneID,
45 geneSymbol = se$geneSymbol,
46 ijc_s1 = se$IJC_SAMPLE_1 %>% as.character,
47 sjc_s1 = se$SJC_SAMPLE_1 %>% as.character,
48 ijc_s2 = se$IJC_SAMPLE_2 %>% as.character,
49 sjc_s2 = se$SJC_SAMPLE_2 %>% as.character,
50 pval = se$PValue,
51 fdr = se$FDR,
52 incDiff = se$IncLevelDifference,
53 incLvl_s1 = se$IncLevel1,
54 incLvl_s2 = se$IncLevel2,
55 id = se$ID,
56 location = "center"

57 )

58 eventsUpstream = GRanges(
59 seqnames = se$chr,
60 ranges = IRanges(start = se$upstreamES + 1,

61 end = se$upstreamEE),
62 strand = se$strand,
63 geneID = se$GeneID,
64 geneSymbol = se$geneSymbol,
65 ijc_s1 = se$IJC_SAMPLE_1 %>% as.character,
66 sjc_s1 = se$SJC_SAMPLE_1 %>% as.character,
67 ijc_s2 = se$IJC_SAMPLE_2 %>% as.character,
68 sjc_s2 = se$SJC_SAMPLE_2 %>% as.character,
69 pval = se$PValue,
70 fdr = se$FDR,
71 incDiff = se$IncLevelDifference,
72 incLvl_s1 = se$IncLevel1,
73 incLvl_s2 = se$IncLevel2,
74 id = se$ID,
75 location = "upstream"

76 )

77 eventsDownstream = GRanges(
78 seqnames = se$chr,
79 ranges = IRanges(start = se$downstreamES + 1,

80 end = se$downstreamEE),
81 strand = se$strand,
82 geneID = se$GeneID,
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83 geneSymbol = se$geneSymbol,
84 ijc_s1 = se$IJC_SAMPLE_1 %>% as.character,
85 sjc_s1 = se$SJC_SAMPLE_1 %>% as.character,
86 ijc_s2 = se$IJC_SAMPLE_2 %>% as.character,
87 sjc_s2 = se$SJC_SAMPLE_2 %>% as.character,
88 pval = se$PValue,
89 fdr = se$FDR,
90 incDiff = se$IncLevelDifference,
91 incLvl_s1 = se$IncLevel1,
92 incLvl_s2 = se$IncLevel2,
93 id = se$ID,
94 location = "downstream"

95 )

96

97

98 ### ==============================================================

99 ### Combine flanking exons and central exons into a GRanges-List

100 ### --------------------------------------------------------------

101 ### Each list entry represents a single AS event. Each list has

exactly three entries (upstream exon, central exon, downstrem

exon).

102

103 # handle plus strand

104 centerPlus = as(subset(eventsCenter, strand == "+"), "GRangesList"

)

105 upstreamPlus = as(subset(eventsUpstream, strand == "+"), "

GRangesList")

106 downstreamPlus = as(subset(eventsDownstream, strand == "+"), "

GRangesList")

107 # combine lists and set ids

108 exonsPlus = pc(centerPlus, upstreamPlus, downstreamPlus)

109 exonsPlus = as(lapply(1:length(exonsPlus), function(x){
110 g = unlist(exonsPlus[x])
111 g$id = x

112 g$pos = c("center", "upstream", "downstream")

113 return(g)
114 }), "GRangesList")

115 # add tracing id

116 names(exonsPlus) = subset(eventsCenter, strand == "+")$id
117

118 # handle minus strand

119 centerMinus = as(subset(eventsCenter, strand == "-"), "GRangesList

")

120 upstreamMinus = as(subset(eventsUpstream, strand == "-"), "

GRangesList")
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121 downstreamMinus = as(subset(eventsDownstream, strand == "-"), "

GRangesList")

122 # combine lists and set ids

123 exonsMinus = pc(centerMinus, upstreamMinus, downstreamMinus)

124 exonsMinus = as(lapply(1:length(exonsMinus), function(x){
125 g = unlist(exonsMinus[x])
126 g$id = x

127 g$pos = c("center", "downstream", "upstream")

128 return(g)
129 }), "GRangesList")

130 # add tracing id

131 names(exonsMinus) = subset(eventsCenter, strand == "-")$id
132

133 # combine strands

134 exonSet = c(exonsMinus, exonsPlus)

135 exonSet = sort(exonSet)
136 exonSet = exonSet[order(names(exonSet))]
137 # store results

138 rtracklayer::export(exonSet, "./data/exonSet.bed", format = "BED")

139 rtracklayer::export(events, "./data/events.bed", format = "BED")

140

141

142 ### ==============================================================

143 ### Filter for overlaping events

144 ### --------------------------------------------------------------

145 # remove events with low junction read counts

146 eventsFilter0 = events

147 sel = apply(as.matrix(mcols(eventsFilter0)[c(3:6)]), 1,

148 function(x) length(x[x > 10]) >= 3)

149 eventsFilter1 = events[sel,]

150 eventsFilter2 = eventsFilter1

151 # iteratively remove overlapping events

152 while (max(countOverlaps(eventsFilter2)) > 1) {

153 print(paste0("start ", max(countOverlaps(eventsFilter2))))
154 ols = findOverlaps(eventsFilter2, drop.self = F) %>%

155 as.data.frame()
156 idx = sapply(1:nrow(ols), function(x){
157 ols$subjectHits[ols$queryHits == x]

158 })

159 idx = idx[!duplicated(idx)]
160 eventsFilter2 = sapply(1:length(idx), function(x){
161 curr.idx = unlist(idx[x])
162 curr.ranges = eventsFilter2[curr.idx]

163 if (length(curr.ranges) > 1) {

164 # select by lowest fdr exon

165 curr.ranges = curr.ranges[which.min(curr.ranges$fdr)]
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166 }

167 return(curr.ranges)
168 })

169 # update output

170 eventsFilter2 = unlist(GRangesList(eventsFilter2))
171 eventsFilter2 = eventsFilter2[!duplicated(eventsFilter2)]
172 print(paste0("end ", max(countOverlaps(eventsFilter2))))
173 }

174 # store results

175 rtracklayer::export(eventsFilter2,

176 con = "./data/eventsFilter2.bed",

177 format = "BED")

178

179 # remove overlapping results from exon set as well

180 exonSet = exonSet[names(exonSet) %in% names(eventsFilter2)]
181

182

183 ### ==============================================================

184 ### Filter for significantly AS exons

185 ### --------------------------------------------------------------

186 # apply significance thresholds

187 eventsFilter2$meanLog2Exp =

188 log2(
189 rowMeans(

190 as.matrix(
191 mcols(eventsFilter2[,c(3:6)]))))
192 eventsReg = subset(eventsFilter2, abs(incDiff) > 0.05 &
193 fdr < 0.05 &
194 meanLog2Exp > 5)

195 eventsNot = eventsFilter2[!eventsFilter2 %in% eventsReg]

196

197 # export and save processed AS events

198 rtracklayer::export(eventsReg,

199 con = "./data/eventsReg.bed",

200 format = "BED")

201 save(eventsReg, file = "./data/eventsReg.rda")

202 save(eventsNot, file = "./data/eventsNot.rda")

203 save(exonSet, file = "./data/exonSet.rda")

Listing 5.6: Functions for AS event processing.

1 #’ summarize replicate counts for junction and inclusion levels

2 #’

3 #’ @param x Granges object

4 #’ @return GRanges object with modified meta columns

5 #’ @example combineReplicateJunctionCounts(events)
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6 combineReplicateJunctionCounts <- function(x){
7 x$ijc_s1 = x$ijc_s1 %>%

8 strsplit(., split = ",") %>%

9 as.data.frame() %>%

10 apply(., 1, as.numeric) %>%

11 rowSums

12 x$sjc_s1 = x$sjc_s1 %>%

13 strsplit(., split = ",") %>%

14 as.data.frame() %>%

15 apply(., 1, as.numeric) %>%

16 rowSums

17 x$ijc_s2 = x$ijc_s2 %>%

18 strsplit(., split = ",") %>%

19 as.data.frame() %>%

20 apply(., 1, as.numeric) %>%

21 rowSums

22 x$sjc_s2 = x$sjc_s2 %>%

23 strsplit(., split = ",") %>%

24 as.data.frame() %>%

25 apply(., 1, as.numeric) %>%

26 rowSums

27 x$incLvl_s1 = as.character(x$incLvl_s1) %>%

28 strsplit(., split = ",") %>%

29 as.data.frame() %>%

30 apply(., 1, as.numeric) %>%

31 rowMeans

32 x$incLvl_s2 = as.character(x$incLvl_s2) %>%

33 strsplit(., split = ",") %>%

34 as.data.frame() %>%

35 apply(., 1, as.numeric) %>%

36 rowMeans

37 return(x)
38 }
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SRSF6 RNA-splicing map

The following script holds the code to generate the RNA-splicing map. The Ge-

nomicRangesList from the above script is required as input. The splice sites of each

exons are used as central point to span a symmetric window in which crosslinked

position are counted in. The result is a matrix, which is plotted as heatmap as well

as a summary profile.

Listing 5.7: Functions for the RNA splicing map.

1 ### ==============================================================

2 ### Load required packages

3 ### ==============================================================

4 library(ggplot2)
5 library(GenomicFeatures)
6 library(GenomicRanges)
7 library(matrixStats)
8

9 ### ==============================================================

10 ### Load required datasets

11 ### ==============================================================

12 # Load iCLIP data as single nucleotide crosslink events

13 clp.plus = import("./data/clip_merge_plus.bw",

14 format = "BigWig", as = "Rle")

15 clp.minus = import("./data/clip_merge_minus.bw",

16 format = "BigWig", as = "Rle")

17 # Load AS events

18 load(file = "./data/eventsReg.rda")

19 load(file = "./data/eventsNot.rda")

20 load(file = "./data/exonSet.rda")

21

22

23 ### ==============================================================

24 ### Compute RNA-Map for Up-regualted exons

25 ### ==============================================================

26 # select upregualted exons and exon sets

27 exnUp = eventsReg[eventsReg$incDiff > 0]

28 mcols(exnUp)$meanInc = rowMeans(as.matrix(mcols(exnUp[,10:11])))
29 exnUpFlankUpstream = exonSet[names(exonSet) %in% names(exnUp)] %>%

30 unlist %>% subset(., pos == "upstream")

31 exnUpFlankDownstream = exonSet[names(exonSet) %in% names(exnUp)]
%>%

32 unlist %>% subset(., pos == "downstream")

33 # sort and combine regualted exon regions

34 exnUp = sortSeqlevels(exnUp)
35 exnUp = sort(exnUp)
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36 exnUpFlankUpstream = sortSeqlevels(exnUpFlankUpstream)
37 exnUpFlankUpstream = sort(exnUpFlankUpstream)
38 exnUpFlankDownstream = sortSeqlevels(exnUpFlankDownstream)
39 exnUpFlankDownstream = sort(exnUpFlankDownstream)
40 mcols(exnUpFlankUpstream) = mcols(exnUp)

41 mcols(exnUpFlankDownstream) = mcols(exnUp)

42

43 # select background exons and exon sets

44 exnNot = eventsNot

45 mcols(exnNot)$meanInc = rowMeans(as.matrix(mcols(exnNot[,10:11])))
46 exnNotFlankUpstream = exonSet[names(exonSet) %in% names(eventsNot)

] %>%

47 unlist %>% subset(., pos == "upstream")

48 exnNotFlankDownstream = exonSet[names(exonSet) %in% names(
eventsNot)] %>%

49 unlist %>% subset(., pos == "downstream")

50 # sort and combine background exon regions

51 exnNot = sortSeqlevels(exnNot)
52 exnNot = sort(exnNot)
53 exnNotFlankUpstream = sortSeqlevels(exnNotFlankUpstream)
54 exnNotFlankUpstream = sort(exnNotFlankUpstream)
55 exnNotFlankDownstream = sortSeqlevels(exnNotFlankDownstream)
56 exnNotFlankDownstream = sort(exnNotFlankDownstream)
57 mcols(exnNotFlankUpstream) = mcols(exnNot)

58 mcols(exnNotFlankDownstream) = mcols(exnNot)

59

60 # iteratively sample background count frequency from PSI match

background distribution

61 sampleBcCenter = sampleBackground(exn = exnUp, bc = exnNot)

62 sampleBcFlankUpstream = sampleBackground(exn = exnUpFlankUpstream,

63 bc = exnNotFlankUpstream)

64 sampleBcFlankDownstream = sampleBackground(exn =

exnUpFlankDownstream,

65 bc =

exnNotFlankDownstream)

66 # summarize the background coverage

67 df1 = data.frame(mean = rowMeans(sampleBcCenter$matr1),
68 sd = rowSds(sampleBcCenter$matr1),
69 position = "ss5")

70 df2 = data.frame(mean = rowMeans(sampleBcCenter$matr2),
71 sd = rowSds(sampleBcCenter$matr2),
72 position = "ss3")

73 df3 = data.frame(mean = rowMeans(sampleBcFlankUpstream$matr1),
74 sd = rowSds(sampleBcFlankUpstream$matr1),
75 position = "up-ss5")

76 df4 = data.frame(mean = rowMeans(sampleBcFlankDownstream$matr2),
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77 sd = rowSds(sampleBcFlankDownstream$matr2),
78 position = "down-ss3")

79 df.bc = rbind(df1,df2,df3,df4)
80 df.bc$pos = -100:100

81

82 # compute coverage for upregulated exons

83 df1 = makeCounts(obj = exnUp, signal.p = clp.plus, signal.m = clp.

minus,

84 range = 101, which = "ss5")

85 df1 = cbind.data.frame(df1, calcPval(bc.matrix = sampleBcCenter$
matr1,

86 test.vector = df1$counts))
87 df2 = makeCounts(obj = exnUp, signal.p = clp.plus, signal.m = clp.

minus,

88 range = 101, which = "ss3")

89 df2 = cbind.data.frame(df2, calcPval(bc.matrix = sampleBcCenter$
matr2,

90 test.vector = df2$counts))
91 df3 = makeCounts(obj = exnUpFlankUpstream,

92 signal.p = clp.plus,

93 signal.m = clp.minus,

94 range = 101, which = "ss5")

95 df3 = cbind.data.frame(df3, calcPval(bc.matrix =

sampleBcFlankUpstream$matr1,
96 test.vector = df3$counts))
97 df3$position = "up-ss5"

98 df4 = makeCounts(obj = exnUpFlankDownstream,

99 signal.p = clp.plus,

100 signal.m = clp.minus,

101 range = 101, which = "ss3")

102 df4 = cbind.data.frame(df4,
103 calcPval(bc.matrix =

sampleBcFlankDownstream$matr2,
104 test.vector = df4$counts))
105 df4$position = "down-ss3"

106 df.real = rbind(df1,df2,df3,df4)
107

108 # adjust zscores to a readable scale

109 df.real$zscore[(df.real$zscore) > 6] = 6

110 df.real$zscore[df.real$zscore < 0] = 0

111 df.zscore = subset(df.real, padj < 0.05)

112

113 # define plotting order

114 df.real$position = factor(df.real$position,
115 levels = c("up-ss5", "ss3", "ss5", "down

-ss3"))
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116 df.bc$position = factor(df.bc$position,
117 levels = c("up-ss5", "ss3", "ss5", "down-

ss3"))

118 df.zscore$position = factor(df.zscore$position,
119 levels = c("up-ss5", "ss3", "ss5", "

down-ss3"))

120

121 # adjust computed results for plotting

122 upDfReal = cbind.data.frame(df.real,
123 type = "signal",

124 regulation = "up")

125 upDfBc = cbind.data.frame(df.bc,
126 type = "signal",

127 regulation = "up")

128 upDfZscore = cbind.data.frame(df.zscore,
129 type = "zscore",

130 regulation = "up")

131

132

133 ### ==============================================================

134 ### Compute RNA-Map for Down-regualted exons

135 ### ==============================================================

136 # select upregualted exons and exon sets

137 exnDown = eventsReg[eventsReg$incDiff < 0]

138 mcols(exnDown)$meanInc = rowMeans(as.matrix(mcols(exnDown[,10:11])
))

139 exnDownFlankUpstream = exonSet[names(exonSet) %in% names(exnDown)]
%>%

140 unlist %>% subset(., pos == "upstream")

141 exnDownFlankDownstream = exonSet[names(exonSet) %in% names(exnDown
)] %>%

142 unlist %>% subset(., pos == "downstream")

143 # sort and combine regualted exon regions

144 exnDown = sortSeqlevels(exnDown)
145 exnDown = sort(exnDown)
146 exnDownFlankUpstream = sortSeqlevels(exnDownFlankUpstream)
147 exnDownFlankUpstream = sort(exnDownFlankUpstream)
148 exnDownFlankDownstream = sortSeqlevels(exnDownFlankDownstream)
149 exnDownFlankDownstream = sort(exnDownFlankDownstream)
150 mcols(exnDownFlankUpstream) = mcols(exnDown)

151 mcols(exnDownFlankDownstream) = mcols(exnDown)

152

153

154 # iteratively sample background count frequency from PSI match

background distribution

155 sampleBcCenter = sampleBackground(exn = exnDown, bc = exnNot)
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156 sampleBcFlankUpstream = sampleBackground(exn =

exnDownFlankUpstream,

157 bc = exnNotFlankUpstream)

158 sampleBcFlankDownstream = sampleBackground(exn =

exnDownFlankDownstream,

159 bc =

exnNotFlankDownstream)

160 # summarize the background coverage

161 df1 = data.frame(mean = rowMeans(sampleBcCenter$matr1),
162 sd = rowSds(sampleBcCenter$matr1),
163 position = "ss5")

164 df2 = data.frame(mean = rowMeans(sampleBcCenter$matr2),
165 sd = rowSds(sampleBcCenter$matr2),
166 position = "ss3")

167 df3 = data.frame(mean = rowMeans(sampleBcFlankUpstream$matr1),
168 sd = rowSds(sampleBcFlankUpstream$matr1),
169 position = "up-ss5")

170 df4 = data.frame(mean = rowMeans(sampleBcFlankDownstream$matr2),
171 sd = rowSds(sampleBcFlankDownstream$matr2),
172 position = "down-ss3")

173 df.bc = rbind(df1,df2,df3,df4)
174 df.bc$pos = -100:100

175

176 # compute coverage for upregulated exons

177 df1 = makeCounts(obj = exnDown, signal.p = clp.plus, signal.m =

clp.minus,

178 range = 101, which = "ss5")

179 df1 = cbind.data.frame(df1, calcPval(bc.matrix = sampleBcCenter$
matr1,

180 test.vector = df1$counts))
181 df2 = makeCounts(obj = exnDown,

182 signal.p = clp.plus,

183 signal.m = clp.minus,

184 range = 101, which = "ss3")

185 df2 = cbind.data.frame(df2, calcPval(bc.matrix = sampleBcCenter$
matr2,

186 test.vector = df2$counts))
187 df3 = makeCounts(obj = exnDownFlankUpstream,

188 signal.p = clp.plus,

189 signal.m = clp.minus,

190 range = 101, which = "ss5")

191 df3 = cbind.data.frame(df3, calcPval(bc.matrix =

sampleBcFlankUpstream$matr1,
192 test.vector = df3$counts))
193 df3$position = "up-ss5"

194 df4 = makeCounts(obj = exnDownFlankDownstream,
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195 signal.p = clp.plus,

196 signal.m = clp.minus,

197 range = 101, which = "ss3")

198 df4 = cbind.data.frame(df4,
199 calcPval(bc.matrix =

sampleBcFlankDownstream$matr2,
200 test.vector = df4$counts))
201 df4$position = "down-ss3"

202 df.real = rbind(df1,df2,df3,df4)
203

204 # adjust zscores to a readable scale

205 df.real$zscore[(df.real$zscore) > 6] = 6

206 df.real$zscore[df.real$zscore < 0] = 0

207 df.zscore = subset(df.real, padj < 0.05)

208

209 # define plotting order

210 df.real$position = factor(df.real$position,
211 levels = c("up-ss5", "ss3", "ss5", "down

-ss3"))

212 df.bc$position = factor(df.bc$position,
213 levels = c("up-ss5", "ss3", "ss5", "down-

ss3"))

214 df.zscore$position = factor(df.zscore$position,
215 levels = c("up-ss5", "ss3", "ss5", "

down-ss3"))

216

217 # adjust computed results for plotting

218 downDfReal = cbind.data.frame(df.real,
219 type = "signal",

220 regulation = "down")

221 downDfBc = cbind.data.frame(df.bc,
222 type = "signal",

223 regulation = "down")

224 downDfZscore = cbind.data.frame(df.zscore,
225 type = "zscore",

226 regulation = "down")

227

228 ### ==============================================================

229 ### Plot the final map

230 ### ==============================================================

231 p = ggplot() +

232 geom_ribbon(data = downDfBc,

233 aes(x = pos, ymin = mean - sd, ymax = mean + sd),
234 alpha = .6, fill = "LightSteelBLue") +

235 geom_line(data = downDfBc,

236 aes(x = pos, y = mean),
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237 color = "LightSteelBLue", size = .7) +

238 geom_line(data = downDfReal,

239 aes(x = pos, y = counts), size = .7,

240 color = "SteelBLue") +

241 geom_ribbon(data = upDfBc,

242 aes(x = pos, ymin = mean - sd, ymax = mean + sd),
243 alpha = .6, fill = "#e2be9c") +

244 geom_line(data = upDfBc,

245 aes(x = pos, y = mean),
246 color = "#e2be9c", size = .7) +

247 geom_line(data = upDfReal,

248 aes(x = pos, y = counts),

249 size = .7, color = "Chocolate") +

250 facet_wrap(˜regulation+position, ncol = 4) +

251 xlab("Position in alternatively spliced exon") +

252 ylab("mean counts per nucleotide") +

253 geom_point(data = upDfZscore,

254 aes(x = pos, y = -.1, color = zscore),

255 size = 3, shape = 73) +

256 geom_point(data = downDfZscore,

257 aes(x = pos, y = -.1, color = zscore),

258 size = 3, shape = 73) +

259 scale_color_gradient(low = "white", high = "#2E8B57") +

260 theme_bw() +

261 ggtitle("RNA-Maps") +

262 geom_hline(yintercept = 0, color = "darkgrey")
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evolutionary landscape of alternative splicing in vertebrate species. Science,

338(6114):1587–1593.

Barrett, J. C., Clayton, D. G., Concannon, P., Akolkar, B., Cooper, J. D., Erlich,

H. A., Julier, C., Morahan, G., Nerup, J., Nierras, C., et al. (2009). Genome-

wide association study and meta-analysis find that over 40 loci a↵ect risk of

type 1 diabetes. Nature genetics, 41(6):703.

Baruzzo, G., Hayer, K. E., Kim, E. J., Di Camillo, B., FitzGerald, G. A., and

Grant, G. R. (2017). Simulation-based comprehensive benchmarking of RNA-

seq aligners. Nature methods, 14(2):135.

Beckmann, B. M., Horos, R., Fischer, B., Castello, A., Eichelbaum, K., Alleaume,

A.-M., Schwarzl, T., Curk, T., Foehr, S., Huber, W., et al. (2015). The RNA-

binding proteomes from yeast to man harbour conserved enigmRBPs. Nature

communications, 6(1):1–9.

Berglund, J. A., Abovich, N., and Rosbash, M. (1998). A cooperative interaction

between U2AF65 and mBBP/SF1 facilitates branchpoint region recognition.

Genes & development, 12(6):858–867.

Bicknell, A. A. and Ricci, E. P. (2017). When mRNA translation meets decay.

Biochemical society transactions, 45(2):339–351.

Blencowe, B. J., Bowman, J. A., McCracken, S., and Rosonina, E. (1999). SR-related

proteins and the processing of messenger RNA precursors. Biochemistry and

cell biology, 77(4):277–291.

Bottini, S., Hamouda-Tekaya, N., Tanasa, B., Zaragosi, L.-E., Grandjean, V.,

Repetto, E., and Trabucchi, M. (2017). From benchmarking HITS-CLIP peak

detection programs to a new method for identification of miRNA-binding sites

from Ago2-CLIP data. Nucleic acids research, 45(9):e71–e71.

Bottini, S., Pratella, D., Grandjean, V., Repetto, E., and Trabucchi, M. (2018).

Recent computational developments on CLIP-seq data analysis and microRNA

targeting implications. Briefings in bioinformatics, 19(6):1290–1301.
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Röder, P. V., Wu, B., Liu, Y., and Han, W. (2016). Pancreatic regulation of glucose

homeostasis. Experimental & molecular medicine, 48(3):e219–e219.

Rodriguez, J. M., Maietta, P., Ezkurdia, I., Pietrelli, A., Wesselink, J.-J., Lopez, G.,

Valencia, A., and Tress, M. L. (2013). APPRIS: annotation of principal and

alternative splice isoforms. Nucleic acids research, 41(D1):D110–D117.

Rogers, J. and Wall, R. (1980). A mechanism for RNA splicing. Proceedings of the

national academy of sciences, 77(4):1877–1879.

Rot, G., Wang, Z., Huppertz, I., Modic, M., Lenče, T., Hallegger, M., Haberman,
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