ChemBioChem

Supporting Information

Activation, Structure, Biosynthesis and Bioactivity of Glidobactin-like Proteasome Inhibitors from *Photorhabdus laumondii*

Lei Zhao, Camille Le Chapelain, Alexander O. Brachmann, Marcel Kaiser, Michael Groll, and Helge B. Bode*

Table of Contents

Experimental Procedures	S5
Strain construction	S5
Strain cultivation and sample preparation	S5
HPLC-MS analysis	S6
Molecular networking	S6
Compound isolation	S6
NMR analysis	S6
Quantification of production of GLNPs	S7
Yeast 20S proteasome purification	S7
Proteasome inhibition assays	S7
Crystal growth, data collection and structure elucidation	S 8
Antiprotozoal activity and mammalian cell cytotoxicity assays	S 8
Supplementary Tables	. S9
Table S1. HR-MS data of GLNPs identified in this study	. S9
Table S2. ¹ H (500 MHz) and ¹³ C (125 MHz) NMR data of 1 in DMSO-d ₆ (δ in ppm)	510
Table S3. ¹ H (500 MHz) and ¹³ C (125 MHz) NMR data of 1 in methanol-d ₄ (δ in ppm) S	511
Table S4. ¹ H (500 MHz) and ¹³ C (125 MHz) NMR data of 2 in methanol-d ₄ (δ in ppm) S	512
Table S5. ¹ H (500 MHz) and ¹³ C (125 MHz) NMR data of 3 in methanol-d ₄ (δ in ppm) S	513
Table S6. ¹ H (500 MHz) and ¹³ C (125 MHz) NMR data of 4 in methanol-d ₄ (δ in ppm) S	514
Table S7. ¹ H (500 MHz) and ¹³ C (125 MHz) NMR data of 5 in methanol-d ₄ (δ in ppm) S	515
Table S8. ¹ H (500 MHz) and ¹³ C (125 MHz) NMR data of 6 in methanol-d ₄ (δ in ppm) S	516
Table S9. ¹ H (500 MHz) and ¹³ C (125 MHz) NMR data of 7 in methanol-d ₄ (δ in ppm) S	517
Table S10. ¹ H (500 MHz) and ¹³ C (125 MHz) NMR data of 8 in methanol-d ₄ (δ in ppm) S	518
Table S11. ¹ H (500 MHz) and ¹³ C (125 MHz) NMR data of 9 in methanol-d ₄ (δ in ppm) S	519
Table S12. Quantification of main GLNPs produced in heterologous E. coli strains and	<i>P</i> .
laumondii pCEP_gli mutant	520
Table S13. Bioactivity of 1-5 against different protozoan parasites and mammalian L6 C	ells
	520
Table S14. X-ray data collection and refinement statistics	521
Table S15. Bacterial strains constructed and used in this study	522
Table S16. Plasmids constructed and used in this study Supervisition	523
Table S17. Primers used in this study	524
Supplementary Figures	525
Figure S1. Production of GLNPs in (a) E. coli plu1881-1877 and (b) E. coli plu1881-18	880
and <i>plu1879–1877</i>	525
Figure S2. Production of GLNPs in <i>E. coli plu1880</i> and <i>plu1879–1877</i> (without <i>plu1881</i>). S	526
Figure S3. Production of GLNPs in E. coli plu1881-1880 and plu1878-1877 (with	out
plu1879)	526

Figure S4. Production of GLNPs in E. coli plu1881-1880 and plu1879-1878 (without
plu1877)
Figure S5. The overall network of molecular networking for MeOH extracts of P. laumondii
wild type (yellow) and pCEP_gli mutant (green)
Figure S6. Structure confirmation of 1–9 by their MS/MS fragmentation patterns
Figure S7. Production of straight-chain fatty acid moiety containing GLNPs in P. laumondii
Δ <i>bkdABC</i> pCEP_gli mutant
Figure S8. Proposed biosynthesis for selected GLNP 2 from subclass I and GLNP 29 from
subclass IV
Figure S9. Possible biosynthesis for cinnamalacetic acid moiety of selected GLNP 4 and
cinnamic acid moiety of selected GLNP 5 from subclass II
Figure S10. Production of IPS and cinnamic acid and cinnamalacetic acid containing GLNPs in
P. laumondii (a) pCEP-gli, (b) $\Delta stlA$ pCEP-gli, (c) $\Delta stlB$ pCEP-gli, and (d) $\Delta stlCDE$ pCEP_gli
mutants
Figure S11. Proposed biosynthesis for selected GLNP (a) 28, (b) 8 and (c) 6 from subclass III
Figure S12. ¹ H NMR (500 MHz, DMSO-d ₆) spectrum of 1
Figure S13. ¹³ C NMR (500 MHz, DMSO-d ₆) spectrum of 1
Figure S14. ¹ H NMR (500 MHz, methanol-d ₄) spectrum of 1
Figure S15. ¹³ C NMR (125 MHz, methanol-d ₄) spectrum of 1
Figure S16. ¹ H NMR (500 MHz, methanol-d ₄) spectrum of 2
Figure S17. ¹³ C NMR (125 MHz, methanol-d ₄) spectrum of 2
Figure S18. ¹ H NMR (500 MHz, methanol-d ₄) spectrum of 3
Figure S19. ¹³ C NMR (125 MHz, methanol-d4) spectrum of 3
Figure S20. COSY (methanol-d4) spectrum of 3
Figure S21. HSQC (methanol-d4) spectrum of 3
Figure S22. HMBC (methanol-d4) spectrum of 3
Figure S23. ¹ H NMR (500 MHz, methanol-d ₄) spectrum of 4
Figure S24. ¹³ C NMR (125 MHz, methanol-d ₄) spectrum of 4 S50
Figure S25. COSY (methanol-d4) spectrum of 4
Figure S26. HSQC (methanol-d4) spectrum of 4
Figure S27. HMBC (methanol-d ₄) spectrum of 4
Figure S28. ¹ H NMR (500 MHz, methanol-d ₄) spectrum of 5
Figure S29. ¹³ C NMR (125 MHz, methanol-d ₄) spectrum of 5
Figure S30. COSY (methanol-d4) spectrum of 5
Figure S31. HSQC (methanol-d ₄) spectrum of 5
Figure S32. HMBC (methanol-d ₄) spectrum of 5
Figure S33. ¹ H NMR (500 MHz, methanol-d ₄) spectrum of 6
Figure S34. ¹³ C NMR (125 MHz, methanol-d ₄) spectrum of 6

Figure S36. HSQC (methanol-d4) spectrum of 6S62Figure S37. HMBC (methanol-d4) spectrum of 6S63Figure S38. ¹ H NMR (500 MHz, methanol-d4) spectrum of 7S64Figure S39. ¹³ C NMR (125 MHz, methanol-d4) spectrum of 7S65Figure S40. COSY (methanol-d4) spectrum of 7S66Figure S41. HSQC (methanol-d4) spectrum of 7S67Figure S42. HMBC (methanol-d4) spectrum of 7S68Figure S43. ¹ H NMR (500 MHz, methanol-d4) spectrum of 8S69Figure S43. ¹ H NMR (500 MHz, methanol-d4) spectrum of 8S70Figure S44. ¹³ C NMR (125 MHz, methanol-d4) spectrum of 8S71Figure S45. COSY (methanol-d4) spectrum of 8S72Figure S46. HSQC (methanol-d4) spectrum of 8S72Figure S47. HMBC (methanol-d4) spectrum of 8S73Figure S48. ¹ H NMR (500 MHz, methanol-d4) spectrum of 9S74Figure S49. ¹³ C NMR (125 MHz, methanol-d4) spectrum of 9S74Figure S49. ¹³ C NMR (125 MHz, methanol-d4) spectrum of 9S74Figure S49. ¹³ C NMR (125 MHz, methanol-d4) spectrum of 9S75Figure S49. ¹³ C NMR (125 MHz, methanol-d4) spectrum of 9S75Figure S50. COSY (methanol-d4) spectrum of 9S76Figure S51. HSQC (methanol-d4) spectrum of 9S77Figure S52. HMBC (methanol-d4) spectrum of 9S77Figure S52. HMBC (methanol-d4) spectrum of 9S78ReferencesS79	Figure S35. COSY (methanol-d ₄) spectrum of 6	S61
Figure S37. HMBC (methanol-d4) spectrum of 6	Figure S36. HSQC (methanol-d ₄) spectrum of 6	
Figure S38. ¹ H NMR (500 MHz, methanol-d4) spectrum of 7 .S64Figure S39. ¹³ C NMR (125 MHz, methanol-d4) spectrum of 7 .S65Figure S40. COSY (methanol-d4) spectrum of 7 .S66Figure S41. HSQC (methanol-d4) spectrum of 7 .S67Figure S42. HMBC (methanol-d4) spectrum of 7 .S68Figure S43. ¹ H NMR (500 MHz, methanol-d4) spectrum of 8 .S69Figure S44. ¹³ C NMR (125 MHz, methanol-d4) spectrum of 8 .S70Figure S45. COSY (methanol-d4) spectrum of 8 .S71Figure S46. HSQC (methanol-d4) spectrum of 8 .S72Figure S47. HMBC (methanol-d4) spectrum of 8 .S73Figure S48. ¹ H NMR (500 MHz, methanol-d4) spectrum of 9 .S74Figure S45. COSY (methanol-d4) spectrum of 8 .S73Figure S45. HSQC (methanol-d4) spectrum of 8 .S73Figure S45. 100 MHz, methanol-d4) spectrum of 9 .S74Figure S45. 110 C (methanol-d4) spectrum of 9 .S75Figure S45. 125 MHz, methanol-d4) spectrum of 9 .S75Figure S45. 125 MHz, methanol-d4) spectrum of 9 .S74Figure S49. ¹³ C NMR (125 MHz, methanol-d4) spectrum of 9 .S75Figure S50. COSY (methanol-d4) spectrum of 9 .S76Figure S51. HSQC (methanol-d4) spectrum of 9 .S77Figure S52. HMBC (methanol-d4) spectrum of 9 .S78 ReferencesS79	Figure S37. HMBC (methanol-d4) spectrum of 6	\$63
Figure S39. 13C NMR (125 MHz, methanol-d4) spectrum of 7S65Figure S40. COSY (methanol-d4) spectrum of 7S66Figure S41. HSQC (methanol-d4) spectrum of 7S67Figure S42. HMBC (methanol-d4) spectrum of 7S68Figure S43. 1H NMR (500 MHz, methanol-d4) spectrum of 8S69Figure S44. 13C NMR (125 MHz, methanol-d4) spectrum of 8S70Figure S45. COSY (methanol-d4) spectrum of 8S71Figure S46. HSQC (methanol-d4) spectrum of 8S72Figure S47. HMBC (methanol-d4) spectrum of 8S73Figure S48. 1H NMR (500 MHz, methanol-d4) spectrum of 9S74Figure S48. 1H NMR (500 MHz, methanol-d4) spectrum of 9S74Figure S49. 13C NMR (125 MHz, methanol-d4) spectrum of 9S75Figure S49. 13C NMR (125 MHz, methanol-d4) spectrum of 9S75Figure S49. 13C NMR (125 MHz, methanol-d4) spectrum of 9S75Figure S50. COSY (methanol-d4) spectrum of 9S76Figure S51. HSQC (methanol-d4) spectrum of 9S76Figure S52. HMBC (methanol-d4) spectrum of 9S78ReferencesS79	Figure S38. ¹ H NMR (500 MHz, methanol-d ₄) spectrum of 7	' S64
Figure S40. COSY (methanol-d4) spectrum of 7.S66Figure S41. HSQC (methanol-d4) spectrum of 7.S67Figure S42. HMBC (methanol-d4) spectrum of 7.S68Figure S43. ¹ H NMR (500 MHz, methanol-d4) spectrum of 8.S69Figure S44. ¹³ C NMR (125 MHz, methanol-d4) spectrum of 8.S70Figure S45. COSY (methanol-d4) spectrum of 8.S71Figure S46. HSQC (methanol-d4) spectrum of 8.S72Figure S47. HMBC (methanol-d4) spectrum of 8.S73Figure S48. ¹ H NMR (500 MHz, methanol-d4) spectrum of 9.S74Figure S48. ¹ H NMR (500 MHz, methanol-d4) spectrum of 9.S74Figure S49. ¹³ C NMR (125 MHz, methanol-d4) spectrum of 9.S75Figure S49. ¹³ C NMR (125 MHz, methanol-d4) spectrum of 9.S76Figure S50. COSY (methanol-d4) spectrum of 9.S76Figure S51. HSQC (methanol-d4) spectrum of 9.S77Figure S52. HMBC (methanol-d4) spectrum of 9.S78ReferencesS79	Figure S39. ¹³ C NMR (125 MHz, methanol-d ₄) spectrum of	7 S65
Figure S41. HSQC (methanol-d4) spectrum of 7.S67Figure S42. HMBC (methanol-d4) spectrum of 7.S68Figure S43. ¹ H NMR (500 MHz, methanol-d4) spectrum of 8.S69Figure S44. ¹³ C NMR (125 MHz, methanol-d4) spectrum of 8.S70Figure S45. COSY (methanol-d4) spectrum of 8.S71Figure S46. HSQC (methanol-d4) spectrum of 8.S72Figure S47. HMBC (methanol-d4) spectrum of 8.S73Figure S48. ¹ H NMR (500 MHz, methanol-d4) spectrum of 9.S74Figure S49. ¹³ C NMR (125 MHz, methanol-d4) spectrum of 9.S75Figure S49. ¹³ C NMR (125 MHz, methanol-d4) spectrum of 9.S75Figure S50. COSY (methanol-d4) spectrum of 9.S76Figure S51. HSQC (methanol-d4) spectrum of 9.S77Figure S52. HMBC (methanol-d4) spectrum of 9.S78ReferencesS79	Figure S40. COSY (methanol-d4) spectrum of 7	S66
Figure S42. HMBC (methanol-d4) spectrum of 7.S68Figure S43. ¹ H NMR (500 MHz, methanol-d4) spectrum of 8.S69Figure S44. ¹³ C NMR (125 MHz, methanol-d4) spectrum of 8.S70Figure S45. COSY (methanol-d4) spectrum of 8.S71Figure S46. HSQC (methanol-d4) spectrum of 8.S72Figure S47. HMBC (methanol-d4) spectrum of 8.S73Figure S48. ¹ H NMR (500 MHz, methanol-d4) spectrum of 9.S74Figure S49. ¹³ C NMR (125 MHz, methanol-d4) spectrum of 9.S75Figure S49. ¹³ C NMR (125 MHz, methanol-d4) spectrum of 9.S76Figure S50. COSY (methanol-d4) spectrum of 9.S76Figure S51. HSQC (methanol-d4) spectrum of 9.S77Figure S52. HMBC (methanol-d4) spectrum of 9.S78ReferencesS79	Figure S41. HSQC (methanol-d4) spectrum of 7	S67
Figure S43. ¹ H NMR (500 MHz, methanol-d4) spectrum of 8.S69Figure S44. ¹³ C NMR (125 MHz, methanol-d4) spectrum of 8.S70Figure S45. COSY (methanol-d4) spectrum of 8.S71Figure S46. HSQC (methanol-d4) spectrum of 8.S72Figure S47. HMBC (methanol-d4) spectrum of 8.S73Figure S48. ¹ H NMR (500 MHz, methanol-d4) spectrum of 9.S74Figure S49. ¹³ C NMR (125 MHz, methanol-d4) spectrum of 9.S75Figure S50. COSY (methanol-d4) spectrum of 9.S76Figure S51. HSQC (methanol-d4) spectrum of 9.S77Figure S52. HMBC (methanol-d4) spectrum of 9.S78ReferencesS79	Figure S42. HMBC (methanol-d4) spectrum of 7	S68
Figure S44. 13C NMR (125 MHz, methanol-d4) spectrum of 8.S70Figure S45. COSY (methanol-d4) spectrum of 8.S71Figure S46. HSQC (methanol-d4) spectrum of 8.S72Figure S47. HMBC (methanol-d4) spectrum of 8.S73Figure S48. 1H NMR (500 MHz, methanol-d4) spectrum of 9.S74Figure S49. 13C NMR (125 MHz, methanol-d4) spectrum of 9.S75Figure S50. COSY (methanol-d4) spectrum of 9.S76Figure S51. HSQC (methanol-d4) spectrum of 9.S77Figure S52. HMBC (methanol-d4) spectrum of 9.S78ReferencesS79	Figure S43. ¹ H NMR (500 MHz, methanol-d ₄) spectrum of 8	.
Figure S45. COSY (methanol-d4) spectrum of 8.S71Figure S46. HSQC (methanol-d4) spectrum of 8.S72Figure S47. HMBC (methanol-d4) spectrum of 8.S73Figure S48. ¹ H NMR (500 MHz, methanol-d4) spectrum of 9.S74Figure S49. ¹³ C NMR (125 MHz, methanol-d4) spectrum of 9.S75Figure S50. COSY (methanol-d4) spectrum of 9.S76Figure S51. HSQC (methanol-d4) spectrum of 9.S77Figure S52. HMBC (methanol-d4) spectrum of 9.S78ReferencesS79	Figure S44. ¹³ C NMR (125 MHz, methanol-d4) spectrum of	8 S70
Figure S46. HSQC (methanol-d4) spectrum of 8.S72Figure S47. HMBC (methanol-d4) spectrum of 8.S73Figure S48. ¹ H NMR (500 MHz, methanol-d4) spectrum of 9.S74Figure S49. ¹³ C NMR (125 MHz, methanol-d4) spectrum of 9.S75Figure S50. COSY (methanol-d4) spectrum of 9.S76Figure S51. HSQC (methanol-d4) spectrum of 9.S77Figure S52. HMBC (methanol-d4) spectrum of 9.S78ReferencesS79	Figure S45. COSY (methanol-d ₄) spectrum of 8	S71
Figure S47. HMBC (methanol-d4) spectrum of 8.S73Figure S48. ¹ H NMR (500 MHz, methanol-d4) spectrum of 9.S74Figure S49. ¹³ C NMR (125 MHz, methanol-d4) spectrum of 9.S75Figure S50. COSY (methanol-d4) spectrum of 9.S76Figure S51. HSQC (methanol-d4) spectrum of 9.S77Figure S52. HMBC (methanol-d4) spectrum of 9.S78ReferencesS79	Figure S46. HSQC (methanol-d ₄) spectrum of 8	
Figure S48. ¹ H NMR (500 MHz, methanol-d4) spectrum of 9.S74Figure S49. ¹³ C NMR (125 MHz, methanol-d4) spectrum of 9.S75Figure S50. COSY (methanol-d4) spectrum of 9.S76Figure S51. HSQC (methanol-d4) spectrum of 9.S77Figure S52. HMBC (methanol-d4) spectrum of 9.S78ReferencesS79	Figure S47. HMBC (methanol-d4) spectrum of 8	
Figure S49. 13C NMR (125 MHz, methanol-d4) spectrum of 9.S75Figure S50. COSY (methanol-d4) spectrum of 9.S76Figure S51. HSQC (methanol-d4) spectrum of 9.S77Figure S52. HMBC (methanol-d4) spectrum of 9.S78ReferencesS79	Figure S48. ¹ H NMR (500 MHz, methanol-d ₄) spectrum of 9	
Figure S50. COSY (methanol-d4) spectrum of 9.S76Figure S51. HSQC (methanol-d4) spectrum of 9.S77Figure S52. HMBC (methanol-d4) spectrum of 9.S78References	Figure S49. ¹³ C NMR (125 MHz, methanol-d4) spectrum of	9
Figure S51. HSQC (methanol-d4) spectrum of 9. S77 Figure S52. HMBC (methanol-d4) spectrum of 9. S78 References S79	Figure S50. COSY (methanol-d ₄) spectrum of 9	
Figure S52. HMBC (methanol-d ₄) spectrum of 9	Figure S51. HSQC (methanol-d ₄) spectrum of 9	S77
References	Figure S52. HMBC (methanol-d4) spectrum of 9	
	References	

Experimental Procedures

Strain construction

The construction of the promoter exchange mutant *P. laumondii* pCEP_gli was carried out as described previously.^[1] Briefly, the initial fragment of *plu1881* was amplified from the genomic DNA of *P. laumondii* using primers CEP_Gli_NdeI and CEP_Gli_SacI. The PCR amplicon was subcloned into vector pJET1.2 (Thermo/Fermentas) and subsequently digested and cloned into the vector pCEP-Cm via restriction sites *NdeI* and *SacI*. The resulting plasmid pCEP_gli was transformed into *E. coli* S17-1 λ *pir*. For conjugation, *P. laumondii* and *E. coli* S17-1 λ *pir* carrying pCEP_gli were grown in lysogeny broth (LB) medium with chloramphenicol (17 µg/mL) supplemented to *E. coli* S17-1 λ *pir*. After OD₆₀₀ 0.5–0.7, the cells were harvested and washed three times with fresh LB medium. Subsequently, the donor and recipient strains were mixed on a LB agar plate in a ratio of 1:3 and incubated at 37 °C for 3 hours followed by growth at 30 °C overnight. The next day, the bacterial cell layer was harvested and resuspended in fresh LB medium. Serial dilutions were spread out on selective LB agar plates with rifampicin (50 µg/mL) and chloramphenicol (17 µg/mL) and incubated at 30 °C for 2 days. The genotype of individual clones was verified by PCR.

The promoter exchange mutants *P. laumondii* $\Delta bkdABC$ pCEP_gli, $\Delta stlA$ pCEP_gli, $\Delta stlB$ pCEP_gli, and $\Delta stlCDE$ pCEP_gli were constructed in a similar way. *E. coli* ST18 carrying pCEP_gli was used as the donor strain with δ -aminolevulinic acid (50 µg/mL) added.^[2]

For heterologous expression of *plu1881–1877* in *E. coli*, different plasmids were constructed by introducing *plu1881–1877*, *plu1880*, *plu1879–1877*, *plu1881–1880*, *plu1878–1877* and *plu1879–1878* into pFF1, pACYC, pCDF, pACYC, pCDF and pCDF to get pLZ4, pLZ5, pLZ6, pLZ7, pLZ8, and pLZ9, respectively. The correct plasmids were verified by enzyme digestion and transformed into *E. coli* DH10B MtaA. Individual clones were analyzed by HPLC-MS for the production of the glidobactin-like natural products (GLNPs).

Strain cultivation and sample preparation

100 μ L of overnight cultures of *P. laumondii*, promoter exchange mutants and heterologous *E. coli* strains were inoculated into 10 mL fresh LB medium containing 2% Amberlite XAD-16 resin. Appropriate antibiotics and 0.1% L-arabinose (from a 25% stock solution) were added to LB medium when necessary. The cultures were cultivated at 30 °C and 200 rpm on a rotary

shaker. The XAD-16 beads were harvested after 3 days and extracted with 10 mL MeOH for 1 h. Subsequently, the extracts were analyzed by HPLC-MS.

HPLC-MS analysis

The HPLC-MS analysis was performed on a Dionex UltiMate 3000 system coupled to a Bruker Impact II QTOF mass spectrometer. The extracts were eluted on an ACQUITY UPLC BEH C₁₈ column (130 Å, 2.1 mm × 50 mm, 1.7 μ m) using a gradient from 5% to 95% MeCN/H₂O solution containing 0.1% formic acid at a flow rate of 0.4 mL/min for 16 min. Positive mode with scan range from 100 to 1200 *m/z* was used to detect GLNPs.

Molecular networking

The molecular network of the extracts from *P. laumondii* wide type and pCEP_gli mutant was created as described previously.^[3] Briefly, the obtained HPLC-MS/MS data were converted from DataAnalysis (version 4.3, Bruker) to .mzXML files and uploaded to the Global Natural Products Social (GNPS) Molecular Networking web (https://gnps.ucsd.edu/ProteoSAFe/static/gnps-splash.jsp) to create a molecular network.^[4] The default small data presets were used as the network analysis parameters except that precursor ion mass tolerance, fragment ion mass tolerance and minimum peak intensity were set to 0.05 Da, 0.01 Da and 100, respectively. The output molecular networking data were visualized using Cytoscape (version 3.6.1).

Compound isolation

To isolate GLNPs 1–9, the XAD-16 resin from 4 L cultures of *P. laumondii* pCEP_gli was harvested and extracted with MeOH. The extract was fractionated by Sephadex LH-20 chromatography using MeOH as the eluent. The enriched fractions containing 1–9 were collected and purified by semipreparative HPLC system using gradient MeCN/H₂O solution containing 0.1% formic acid to yield 1 (23.6 mg), 2 (16.3 mg), 3 (5.6 mg), 4 (21.0 mg), 5 (3.1 mg), 6 (1.6 mg), 7 (0.9 mg), 8 (1.6 mg), and 9 (3.3 mg).

NMR analysis

1D (¹H and ¹³C) and 2D (¹H⁻¹H-COSY, ¹H⁻¹³C-HSQC, and ¹H⁻¹³C-HMBC) NMR spectra were recorded on a Bruker AV 500 spectrometer at 500 MHz (¹H) and 125 MHz (¹³C) using DMSO-d₆ or methanol-d₄ as solvent. The ¹H and ¹³C NMR chemical shifts were referenced to the solvent peaks at $\delta_{\rm H}$ 2.50 and $\delta_{\rm C}$ 39.52 for DMSO-d₆ and $\delta_{\rm H}$ 3.31 and $\delta_{\rm C}$ 49.15 for methanol-d₄.

Quantification of production of GLNPs

Quantitative analysis of major GLNPs produced in heterologous *E. coli* strains and *P. laumondii* pCEP_gli mutant was carried out as described previously.^[5] Briefly, the isolated **1** was used as standard. Its serial concentrations (50–0.78 μ g/mL) were prepared and measured by HPLC-MS. The peak area at different concentrations was calculated to generate the equation $y = 4 \times 10^8 x + 3 \times 10^8 (R^2 = 0.9955)$. The extract samples from each strain were prepared as described above and analyzed by HPLC-MS. The peak area of expected compounds was obtained and their corresponding production titer was calculated based on the equation generated from **1**.

Yeast 20S proteasome purification

20S proteasome core particle (CP) from Saccharomyces cerevisiae (yCP) was purified as previously described.^[6] To briefly summarize, yeast strains were grown in 18 L YPD medium at 30 °C into early stationary phase. Cells were harvested by centrifugation for 15 min at 5000g and frozen at -20 °C until further use. 120 g yeast cells were solubilized in 150 mL of 50 mM KH₂PO₄/K₂HPO₄ buffer (pH 7.5) and disrupted with a French press. Cell debris were removed by centrifugation for 30 min at 40000g (4 °C). The resulting supernatant was filtered and saturated aqueous $(NH_4)_2SO_4$ was added to a final concentration of 30% (v/v). This solution was loaded on a Phenyl SepharoseTM 6 Fast Flow column (GE Healthcare) preequilibrated with 1 M (NH₄)₂SO₄ in 20 mM KH₂PO₄/K₂HPO₄ (pH 7.5). yCP was eluted by applying a linear gradient from 1 to 0 M (NH₄)₂SO₄. Proteasome-containing fractions were pooled and loaded onto a hydroxyapatite column (BioRad) equilibrated with 20 mM KH₂PO₄/K₂HPO₄ (pH 7.5). yCP was eluted by applying a phosphate buffer gradient (20 to 500 mM). After anion exchange chromatography (Resource Q column, GE Healthcare) with gradient elution (0-500 mM NaCl in 20 mM Tris/HCl, pH 7.5), yCP was subjected to size exclusion chromatography on a Superose 6 10/300 GL (GE Healthcare) using 150 mM NaCl in 20 mM Tris/HCl (pH 7.5). The protein was concentrated to 40 mg/mL in 20 mM Tris/HCl (pH 7.5) and stored at 4 °C for further use.

Proteasome inhibition assays

In vitro proteasome inhibition assays were performed by fluorescence assays in 96-well plates. Assay mixtures contained 10 μ g/mL of purified yCP in 20 mM Tris/HCl buffer (pH 7.5) containing 0.01% (w/v) SDS. Inhibitors were dissolved in DMSO and added at various concentrations. Assays were conducted in triplicates. A sample containing DMSO served as vehicle control. After an incubation time of 60 min at room temperature, the fluorogenic substrate

Suc-Leu-Val-Tyr-AMC (Bachem) was added to a final concentration of 333 μ M in order to measure the residual activity of the chymotrypsin-like (ChTL) site. The assay mixture was incubated for another hour at room temperature, then diluted with 300 μ L of 20 mM Tris/HCl (pH 7.5). Fluorescence was measured on a Varian Cary Eclipse photofluorometer with excitation and emission wavelengths of λ (excitation) = 360 nm and λ (emission) = 460 nm. The fluorescence values were normalized to the DMSO control. The IC₅₀ values were obtained by plotting the percent inhibition against inhibitor concentration [I] and fitting the experimental data to the following equation: % inhibition = $100 \times [I]_0/(IC_{50} + [I]_0)$.

Crystal growth, data collection and structure elucidation

Crystals were grown in hanging drop plates at 20 °C as previously described,^[6] using a protein concentration of 40 mg/mL in 20 mM Tris/HCl (pH 7.5). The drops contained 1 μ L of protein and 1 μ L of the reservoir solution consisting of 25 mM Mg(OAc)₂, 100 mM MES (pH 6.8) and 10% (v/v) 2-methyl-2,4-pentanediol (MPD). Crystals were soaked with the respective inhibitors in DMSO at final concentrations of 2 mM for at least 24 h following complementation of the droplets with cryoprotecting buffer consisting of 30% (w/v) MPD, 20 mM Mg(OAc)₂, 100 mM MES (pH 6.8). Crystals were supercooled in a stream of liquid nitrogen gas at 100 K (Oxford Cryo Systems). Datasets of proteasome:inhibitor complexes were collected up to 2.5 Å resolution using synchrotron radiation ($\lambda = 1.0$ Å) at the X06SA-beamline (Swiss Light Source, Villingen, Switzerland, Table S14). X-ray intensities were assessed with the program XDS and data reduction was carried out using XSCALE.^[7] Molecular replacement started with the coordinates of yCP (PDB ID: 5CZ4)^[8] and Translation/Libration/Screw (TLS) refinements were performed with REFMAC5 in the CCP4i suite.^[9] Structures were built with the programs MAIN^[10] and COOT.^[11] The amino acids numbering in the manuscript follows the primary sequence alignment of *Thermoplasma acidophilum*.^[12]

Antiprotozoal activity and mammalian cell cytotoxicity assays

Bioactivity of **3–5** against the parasites *Trypanosoma brucei rhodesiense* STIB900, *Trypanosoma cruzi* Tulahuen C4, *Leishmania donovani* MHOM-ET-67/L82 and *Plasmodium falciparum* NF54 and their cytotoxicity against rat skeletal myoblasts (L6 cells) were evaluated as described previously.^[13]

Supplementary Tables

Compound	Sum formula	Found $[M + H]^+$	Calcd. $[M + H]^+$	Δppm
1	$C_{27}H_{44}N_4O_6$	521.3322	521.3334	2.2
2	$C_{28}H_{46}N_4O_6$	535.3478	535.3490	2.3
3	$C_{28}H_{50}N_4O_6$	539.3797	539.3803	1.2
4	$C_{26}H_{34}N_4O_6$	499.2544	499.2551	1.5
5	$C_{24}H_{32}N_4O_6$	473.2390	473.2395	1.0
6	$C_{27}H_{48}N_4O_8$	557.3530	557.3545	2.6
7	$C_{28}H_{50}N_4O_8$	571.3686	571.3701	2.6
8	$C_{25}H_{44}N_4O_7$	513.3269	513.3283	2.7
9	$C_{26}H_{46}N_4O_7$	527.3423	527.3439	3.1
10	$C_{30}H_{52}N_4O_6$	565.3951	565.3960	1.5
11	$C_{28}H_{48}N_4O_6$	537.3629	537.3647	3.3
12	$C_{29}H_{52}N_4O_6$	553.3949	553.3960	1.8
13	$C_{30}H_{54}N_4O_6$	567.4104	567.4116	2.1
14	$C_{27}H_{48}N_4O_6$	525.3634	525.3647	2.5
15	$C_{26}H_{46}N_4O_6$	511.3480	511.3490	2.0
16	$C_{24}H_{42}N_4O_6$	483.3166	483.3177	2.2
17	$C_{26}H_{36}N_4O_6$	501.2697	501.2708	2.1
18	$C_{26}H_{38}N_4O_8$	535.2755	535.2762	1.4
19	$C_{24}H_{34}N_4O_7$	491.2492	491.2500	1.7
20	$C_{22}H_{32}N_4O_7$	465.2337	465.2344	1.4
21	$C_{28}H_{54}N_4O_8$	575.4002	575.4014	2.1
22	$C_{26}H_{48}N_4O_7$	529.3584	529.3596	2.3
23	$C_{28}H_{52}N_4O_7$	557.3898	557.3909	2.0
24	$C_{25}H_{48}N_4O_7$	517.3584	517.3596	2.3
25	$C_{24}H_{46}N_4O_7$	503.3430	503.3439	1.8
26	$C_{22}H_{42}N_4O_7$	475.3119	475.3126	1.5
27	$C_{26}H_{50}N_4O_7$	531.3742	531.3752	2.0
28	$C_{23}H_{45}N_3O_6$	460.3376	460.3381	1.2
29	$C_{28}H_{46}N_4O_5$	519.3523	519.3541	3.5
30	$C_{28}H_{50}N_4O_5$	523.3848	523.3854	1.2
31	$C_{28}H_{54}N_4O_7$	559.4054	559.4065	2.0
32	$C_{22}H_{39}N_3O_6$	442.2903	442.2912	1.9
33	$C_{27}H_{48}N_4O_7$	541.3580	541.3596	2.9
34	$C_{25}H_{44}N_4O_6$	497.3322	497.3334	2.3
35	$C_{27}H_{46}N_4O_6$	523.3478	523.3490	2.3
36	$C_{27}H_{44}N_4O_5$	505.3376	505.3384	1.7
37	$C_{25}H_{46}N_4O_7$	515.3426	515.3439	2.6
38	$C_{27}H_{52}N_4O_7$	545.3891	545.3909	3.2

Table S1. HR-MS data of GLNPs identified in this study

		HQ HQ 12
	5" 3"	P_{μ}^{HO}
	12"	$\dot{H} = \begin{array}{c} 14 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ $
		HN 4
		ِ 13
Position	$\delta_{\rm C}$, type	$\delta_{\rm H}$, mult. (J in Hz)
1-NH		7.41, t (6.1)
2	167.8, C	
3	123.3, CH	6.19, overlap
4	143.3, CH	6.41, d (11.7)
5	44.8, CH	4.32, m
6-NH		8.65, s
7	171.1, C	
8	51.3, CH	4.32, m
9	42.4, CH ₂	1.85, m; 1.58, d (11.5)
10	66.8, CH	3.57, m
11	39.9, CH_2^b	1.45, m
12	40.1, CH_2^b	3.01, m
13	18.6, CH ₃	1.25, overlap
14-NH		7.74, d (7.7)
1'	169.5, C	
2'	58.2, CH	4.32, overlap
3'-NH		7.88, d (8.5)
4'	67.0, CH	3.94, t (11.2)
5'	20.0, CH ₃	1.00, d (6.3)
1"	165.6, C	
2"	123.1, CH	6.10, overlap
3"	139.9, CH	7.00, dd (15.1, 10.7)
4''	128.6, CH	6.19, óverlap
5"	142.3, CH	6.10, overlap
6''	$32.3, CH_2$	2.12, g (7.0)
7"	$28.4, CH_2$	1.37, m
8"	28.6, CH ₂	1.25, m
9"	28.6, CH ₂	1.25, m
10"	31.3, CH ₂	1.25, m
11"	22.1, CH ₂	1.25, m
12"	14.0, CH ₃	0.85, t (6.7)

Table S2. ¹H (500 MHz) and ¹³C (125 MHz) NMR data^{*a*} of 1 in DMSO-d₆ (δ in ppm)

^{*a*}Identical with reported data^[14,15], ^{*b*}submerged in solvent

	5 へへへべ	
	12"	$\sim 1"$ N H 14 ~ 0
		HN 4
		13
Position	$\delta_{ m C}$, type	$\delta_{ m H}$, mult. (<i>J</i> in Hz)
2	171.5, C	
3	124.2, CH	6.36, d (15.9)
4	146.0, CH	6.63, d (11.4)
5	47.1, CH	4.57, m
7	173.6, C	
8	53.5, CH	4.41, d (4.3)
9	42.4, CH ₂	2.10, 1.79, m
10	69.1, CH	3.73, m
11	40.6, CH ₂	1.68, 1.59, m
12	41.4, CH ₂	3.20, m
13	18.9, CH ₃	1.32, m
1'	172.2, C	
2'	60.2, CH	4.41, d (4.3)
4'	68.7, CH	4.13, m
5'	20.3, CH ₃	1.17, d (6.4)
1"	169.4, C	
2"	122.6, CH	6.07, d (15.1)
3"	143.3, CH	7.16, dd (15.1, 10.7)
4''	130.0, CH	6.23, dd (15.0, 10.8)
5"	144.9, CH	6.14, dd (14.6, 7.4)
6''	34.1, CH ₂	2.18, q (7.1)
7''	30.1, CH ₂	1.45, m
8"	30.4, CH ₂	1.32, m
9"	30.4, CH ₂	1.32, m
10"	33.1, CH ₂	1.32, m
11"	23.9, CH ₂	1.32, m
12"	14.6, CH ₃	0.90, t (7.0)

Table S3. ¹H (500 MHz) and ¹³C (125 MHz) NMR data of 1 in methanol-d₄ (δ in ppm)

	13" 5" 12"	$\begin{array}{c} HO & HO \\ 3'' & 4' & H \\ 1'' & 1'' & 1' & 1' \\ H & O \\ 0 & 6 \\ HN & 4 \end{array}$
_		13
Position	$\delta_{\rm C}$, type	$\delta_{\rm H}$, mult. (<i>J</i> in Hz)
2	171.6, C	
3	124.2, CH	6.36, d (15.9)
4	146.1, CH	6.63, d (11.5)
5	47.1, CH	4.57, m
7	173.6, C	
8	53.5, CH	4.41, d (4.15)
9	42.6, CH ₂	2.10, 1.79, m
10	69.0, CH	3.73, m
11	40.6, CH ₂	1.68, 1.60, m
12	41.4, CH ₂	3.20, m
13	18.9, CH ₃	1.32, m
1'	172.2, C	
2'	60.2, CH	4.41, d (4.15)
4'	68.7, CH	4.13, m
5'	20.3, CH ₃	1.17, m
1"	169.4, C	
2"	122.6, CH	6.07, d (15.1)
3"	143.3, CH	7.16, dd (15.1, 10.7)
4"	130.0, CH	6.23, dd (15.1, 10.8)
5"	144.9, CH	6.14, dd (14.6, 7.4)
6"	34.1, CH ₂	2.18, q (7.1)
7"	30.1, CH ₂	1.45, m
8"	30.7, CH ₂	1.32, m
9"	28.5, CH ₂	1.32, m
10"	40.3, CH ₂	1.17, m
11"	29.3, CH	1.52, m
12"	23.2, CH ₃	0.88, d (6.6)
13"	23.2, CH ₃	0.88, d (6.6)

Table S4. ¹H (500 MHz) and ¹³C (125 MHz) NMR data of 2 in methanol-d₄ (δ in ppm)

Table S5. ¹H (500 MHz) and ¹³C (125 MHz) NMR data of **3** in methanol-d₄ (δ in ppm). COSY (bold) and key HMBC (arrows) are shown

	2	
Position	$\delta_{\rm C}$, type	$\delta_{\rm H}$, mult. (<i>J</i> in Hz)
2	171.6, C	
3	124.2, CH	6.36, dd (15.9, 0.6)
4	146.1, CH	6.63, d (10.9)
5	47.1, CH	4.58, submerged
7	173.6, C	
8	53.5, CH	4.41, d (9.6)
9	42.5, CH ₂	2.10, 1.79, m
10	69.0, CH	3.73, m
11	40.6, CH ₂	1.64, m
12	41.4, CH ₂	3.20, m
13	18.9, CH ₃	1.32, m
1'	172.3, C	
2'	60.0, CH	4.32, d (4.2)
4'	68.6, CH	4.11, m
5'	20.3, CH ₃	1.17, m
1"	176.8, C	
2"	37.1, CH ₂	2.30, m
3"	27.1, CH ₂	1.64, m
4''	30.5, CH ₂	1.32, m
5"	30.7, CH ₂	1.32, m
6"	30.9, CH ₂	1.32, m
7''	30.8, CH ₂	1.32, m
8"	31.2, CH ₂	1.32, m
9"	28.7, CH ₂	1.32, m
10"	40.4, CH ₂	1.17, m
11"	29.3, CH	1.52, m
12"	23.2, CH ₃	0.88, d (6.6)
13"	23.2, CH ₃	0.88, d (6.6)

Table S6. ¹H (500 MHz) and ¹³C (125 MHz) NMR data of **4** in methanol-d₄ (δ in ppm). COSY (bold) and key HMBC (arrows) are shown

Position	$\delta_{\rm C}$, type	$\delta_{\rm H}$, mult. (<i>J</i> in Hz)
2	171.6, C	
3	124.2, CH	6.36, dd (15.9, 1.0)
4	146.1, CH	6.63, m
5	47.1, CH	4.59, submerged
7	173.6, C	
8	53.6, CH	4.43, overlap
9	42.6, CH ₂	2.11, 1.81, m
10	69.0, CH	3.73, m
11	40.6, CH ₂	1.67, 1.60, m
12	41.3, CH ₂	3.20, m
13	18.8, CH ₃	1.34, d (4.5)
1'	172.2, C	
2'	60.3, CH	4.43, overlap
4'	68.7, CH	4.15, m
5'	20.3, CH ₃	1.19, m
1"	169.1, C	
2"	124.7, CH	6.30, d (15.0)
3"	143.0, CH	7.36, m
4"	127.8, CH	7.01, dd (15.5, 10.5)
5"	141.0, CH	6.94, d (15.6)
6"	137.9, C	
7"	128.3, CH	7.52, m
8"	130.0, CH	7.36, m
9"	130.0, CH	7.29, dd (8.3, 6.4)
10"	130.0, CH	7.36, m
11"	128.3, CH	7.52, m

Table S7. ¹H (500 MHz) and ¹³C (125 MHz) NMR data of **5** in methanol-d₄ (δ in ppm). COSY (bold) and key HMBC (arrows) are shown

Position	$\delta_{\rm C}$, type	$\delta_{\rm H}$, mult. (<i>J</i> in Hz)
2	171.5, C	
3	124.2, CH	6.36, dd (15.9, 0.7)
4	146.1, CH	6.62, d (12.3)
5	47.1, CH	4.56, br. s
7	173.6, C	
8	53.6, CH	4.43, d (10.4)
9	42.5, CH ₂	2.11, 1.81, m
10	69.1, CH	3.73, m
11	40.6, CH ₂	1.67, 1.60, m
12	41.4, CH ₂	3.20, m
13	18.9, CH ₃	1.34, d (5.2)
1'	172.2, C	
2'	60.3, CH	4.46, d (4.3)
4'	68.7, CH	4.17, m
5'	20.3, CH ₃	1.20, d (6.4)
1"	168.9, C	
2"	121.6, CH	6.80, d (15.8)
3"	142.7, CH	7.56, overlap
4''	136.4, C	
5"	129.1, CH	7.58, overlap
6"	130.1, CH	7.38, overlap
7"	131.1, CH	7.38, overlap
8"	130.1, CH	7.38, overlap
9"	129.1, CH	7.58, overlap

Table S8. ¹H (500 MHz) and ¹³C (125 MHz) NMR data of **6** in methanol-d₄ (δ in ppm). COSY (bold) and key HMBC (arrows) are shown

	1 NH2
	10
12".	
$\mathbf{v}\mathbf{v}\mathbf{v}$	5" 3" (1'N) 6 13 4'H 0 13

Position	$\delta_{\rm C}$, type	$\delta_{\rm H}$, mult. (<i>J</i> in Hz)
2	175.7, C	
3	40.0, CH ₂	2.45, 2.36, m
4	71.5, CH	3.99, m
5	50.5, CH	3.99, m
7	173.4, C	
8	52.3, CH	4.51, dd (8.4, 6.3)
9	40.5, CH ₂	2.02, 1.87, m
10	68.0, CH	3.85, m
11	34.8, CH ₂	1.87, 1.70, m
12	38.7, CH ₂	3.07, m
13	17.3, CH ₃	1.16, d (6.8)
1'	172.8, C	
2'	60.9, CH	4.34, d (4.5)
4'	68.5, CH	4.16, m
5'	20.2, CH ₃	1.22, d
1"	169.7, C	
2"	122.5, CH	6.09, d (15.1)
3"	143.4, CH	7.16, dd (15.1, 10.7)
4"	129.9, CH	6.23, dd (15.1, 10.7)
5"	145.1, CH	6.14, dd (14.6, 7.4)
6"	34.1, CH ₂	2.18, m
7"	30.1, CH ₂	1.44, m
8"	30.4, CH ₂	1.31, m
9"	30.4, CH ₂	1.31, m
10"	33.1, CH ₂	1.31, m
11"	23.9, CH ₂	1.31, m
12"	14.6, CH ₃	0.90, t (6.9)

Table S9. ¹H (500 MHz) and ¹³C (125 MHz) NMR data of **7** in methanol-d₄ (δ in ppm). COSY (bold) and key HMBC (arrows) are shown

	^{12"} 13"	$ \begin{array}{c} 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\$
Position	$\delta_{ m C}$, type ^{<i>a</i>}	$\delta_{\rm H}$, mult. (<i>J</i> in Hz)
2	175.6, C	
3	$40.0, CH_2$	2.46 dd (15.8, 4.3), 2.37, dd (15.7, 8.8)
4	71.5, CH	3.99, m
5	50.5, CH	3.99, m
7	173.4, C	
8	52.3, CH	4.52, m
9	$40.5, CH_2$	2.02, 1.87, m
10	68.0, CH	3.84, m
11	34.8, CH ₂	1.87, 1.70, m
12	38.7, CH ₂	3.07, m
13	17.3, CH ₃	1.17, overlap
1'	172.8, C	
2'	60.9, CH	4.34, d (4.5)
4'	68.5, CH	4.16, m
5'	20.2, CH ₃	1.23, d (6.4)
1"	169.7, C	
2"	122.5, CH	6.10, d (15.3)
3"	143.4, CH	7.16, dd (15.1, 10.6)
4''	129.9, CH	6.24, dd (15.1, 10.8)
5"	145.1, CH	6.15, dd (14.5, 7.4)
6"	34.1, CH ₂	2.19, q (7.0)
7''	30.1, CH ₂	1.45, m
8"	30.7, CH ₂	1.31, m
9"	28.5, CH ₂	1.31, m
10''	40.3, CH ₂	1.17, overlap
11"	29.3, CH	1.52, m
12"	23.2, CH ₃	0.88, dd (6.6, 1.1)
13"	23.2. CH ₃	0.88. dd (6.6. 1.1)

^aSome ¹³C NMR data were obtained inversely from ¹H-¹³C HSQC and ¹H-¹³C HMBC data

Table S10. ¹H (500 MHz) and ¹³C (125 MHz) NMR data of **8** in methanol-d₄ (δ in ppm). COSY (bold) and key HMBC (arrows) are shown

	1 NH ₂
12"	
	н і І н 13

Position	$\delta_{\rm C}$, type	$\delta_{ m H}$, mult. (<i>J</i> in Hz)	
4	176.1, C		
5	49.5, CH	4.36, m	
7	173.5, C		
8	51.8, CH	4.57, m	
9	$40.7, CH_2$	2.02, 1.89, m	
10	67.9, CH	3.89, m	
11	34.8, CH ₂	1.89, 1.70, m	
12	38.7, CH ₂	3.07, m	
13	17.7, CH ₃	1.41, d (7.4)	
1'	172.6, C		
2'	60.7, CH	4.36, m	
4'	68.5, CH	4.14, m	
5'	20.1, CH ₃	1.21, d (6.4)	
1"	169.6, C		
2"	122.5, CH	6.09, d (15.3)	
3"	143.3, CH	7.15, dd (15.1, 10.7)	
4''	129.9, CH	6.23, dd (15.1, 10.8)	
5"	145.0, CH	6.14, dd (14.7, 7.4)	
6"	34.1, CH ₂	2.18, dd (14.5, 7.2)	
7"	30.1, CH ₂	1.44, m	
8"	30.4, CH ₂	1.31, m	
9"	30.4, CH ₂	1.31, m	
10"	33.1, CH ₂	1.31, m	
11"	23.8, CH ₂	1.31, m	
12"	14.6, CH ₃	0.90, t (7.0)	

	¹² "	$\begin{array}{c} 1 \\ 1 \\ 1 \\ 3 \\ 3 \\ 1 \\ 3 \\ 1 \\ 3 \\ 1 \\ 1$
Position	$\frac{13"}{\delta_{\rm C}}$ type	$\delta_{\rm H}$, mult. (<i>I</i> in Hz)
4	176.6 C	
5	49.9 CH	4 35 m
7	173.4 C	4.55, III
, 8	51 9 CH	4 57 dd (8 1 6 7)
9	40.7. CH ₂	2.02. 1.87. m
10	67.8. CH	3.89. m
11	34.8, CH ₂	1.87, 1.70, m
12	38.7, CH ₂	3.07, m
13	17.8, CH ₃	1.40, d (7.3)
1'	172.6, C	
2'	60.7, CH	4.35, m
4'	68.5, CH	4.14, m
5'	20.2, CH ₃	1.21, d (6.4)
1"	169.6, C	
2"	122.6, CH	6.09, d (15.1)
3"	143.3, CH	7.15, dd (15.1, 10.7)
4"	130.0, CH	6.23, dd (15.1, 10.8)
5"	145.0, CH	6.14, dd (14.6, 7.4)
6''	34.1, CH ₂	2.18, q (7.0)
7"	30.2, CH ₂	1.45, m
8"	30.7, CH ₂	1.31, m
9"	28.5, CH ₂	1.31, m
10"	40.3, CH ₂	1.18, m
11"	29.3, CH	1.52, m
12"	23.2, CH ₃	0.88, d (6.6)
13"	23.2, CH ₃	0.88, d (6.6)

Table S11. ¹H (500 MHz) and ¹³C (125 MHz) NMR data of **9** in methanol-d₄ (δ in ppm). COSY (bold) and key HMBC (arrows) are shown

Strain	GLNP (mg/L)							
Suam	1	2	3	4	5	8	34	36
E. coli plu1881–1877	2.9	_	_	_	_	1.6	_	_
<i>E. coli plu1881–1880</i> and <i>plu1879–1877</i>	1.1	_	_	_	_	1.5	_	_
<i>E. coli plu1880</i> and <i>plu1879–1877</i>	_	-	_	_	_	-	2.2	1.3
<i>E. coli plu1881–1880</i> and <i>plu1878–1877</i>	0.7	_	_	_	_	0.9	_	_
P. laumondii pCEP_gli	2.6	2.9	2.7	7.2	2.9	_	_	_

Table S12. Quantification of main GLNPs produced in heterologous *E. coli* strains and *P. laumondii* pCEP_gli mutant

Table S13. Bioactivity of 1–5 against different protozoan parasites and mammalian L6 Cells

<u>Canadian</u>			IC ₅₀ (µM)		
Species	1	2	3	4	5
T. brucei rhodesiense	0.02	0.14	0.44	1.4	8.5
T. cruzi	34	1.3	0.68	79	>100
L. donovani	0.76	4.5	0.27	21	>100
P. falciparum	0.26	0.60	0.33	1.3	8.8
rat skeletal myoblasts	0.15	0.12	0.05	11	65

Crustalla granhia data	yCP: 3	yCP:4	yCP:5
Crystanographic data	(HB333)	(HB334)	(HB335)
Crystal parameters			
Space group	P2 ₁	P2 ₁	P2 ₁
Cell constants (Å)/°	a = 136.8	a = 135.7	a = 136.2
	b = 300.2	b = 301.6	b = 300.1
	c = 145.8	c = 144.4	c = 144.8
	$\beta = 113.3$	$\beta = 113.1$	$\beta = 113.1$
CPs/AU ^a	1	1	1
Data collection			
Beam line	X06SA, SLS	X06SA, SLS	X06SA, SLS
Wavelength (Å)	1.0	1.0	1.0
Resolution range $(Å)^b$	50-2.9 (3.0-2.9)	50-2.8 (2.9-2.8)	50-3.0 (3.1-3.0)
No. observations	714999	809866	656915
No. unique reflections ^c	231040	255091	210818
Completeness $(\%)^b$	97.0 (99.2)	97.5 (98.4)	99.0 (99.7)
R_{merge} (%) ^{b, d}	8.3 (56.2)	6.1 (54.3)	9.5 (52.0)
I/σ (I) ^b	11.7 (2.5)	13.4 (2.6)	10.9 (2.4)
Refinement (REFMAC5)			
Resolution range (Å)	15-2.9	15-2.8	15-3.0
No. reflections working set	217934	240805	198714
No. reflections test set	11470	12674	10458
No. nonhydrogen atoms	49820	49853	49805
No. of ligand atoms	152	144	136
Solvent (H ₂ O, ions, MES)	325	376	336
$R_{\text{work}}/R_{\text{free}}$ (%) ^e	14.4/21.2	17.4/20.2	16.7/20.6
rmsd bond (Å)/(°) ^{f}	0.007/1.1	0.006/1.1	0.006/1.1
Average B-factor (Å ²)	74.3	70.2	76.1
Ramachandran plot (%) ^g	98.0/1.7/0.3	98.0/1.7/0.3	97.9/1.8/0.3
PDB ID	6ZOU	6ZP6	6ZP8

Table S14. X-ray data collection and refinement statistics

^{*a*}Asymmetric unit

^bThe values in parentheses for resolution range, completeness, R_{merge} and I/σ (I) correspond to the highest resolution shell

^cData reduction was carried out with XDS^[16] and from a single crystal. Friedel pairs were treated as identical reflections

 ${}^{d}R_{merge}(I) = \Sigma_{hkl}\Sigma_j | I(hkl)_j - \langle I(hkl) \rangle | / \Sigma_{hkl} \Sigma_j I(hkl)_j$, where $I(hkl)_j$ is the jth measurement of the intensity of reflection hkl and $\langle I(hkl) \rangle$ is the average intensity

 ${}^{e}R = \Sigma_{hkl} ||F_{obs}| - |F_{calc}|| \Sigma_{hkl} ||F_{obs}|$, where R_{free} is calculated without a sigma cut off for a randomly chosen 5% of reflections, which were not used for structure refinement, and R_{work} is calculated for the remaining reflections

^fDeviations from ideal bond lengths/angles

^gNumber of residues in favored region/allowed region/outlier region

Strain	Genotype/Description	Reference
E. coli DH10B MtaA	F-mcrA, Δ (mrr-hsdRMS-mcrBC), Φ 80lacZ Δ M15, Δ lacX74, recA1, endA1, araD139, Δ (ara leu)7697, galU, galK, rpsL, nupG, λ -, entD::mtaA	[17]
E. coli S17-1λpir	Tp ^r Sm ^r recA thi hsdR RP4-2-Tc::MuKm::Tn7, λpir	[18]
E. coli ST18	E. coli S17-1 $\lambda pir \Delta hem A$	[19]
P. laumondii	wild type	[20,21]
P. laumondii ∆bkdABC	<i>bkdABC (plu1883-1885)</i> deletion mutant	Bode lab
P. laumondii ∆stlA	$\Delta stlA$ (<i>plu2234</i>) deletion mutant	Bode lab
P. laumondii $\Delta stl B$	$\Delta stlB$ (<i>plu2134</i>) deletion mutant	Bode lab
P. laumondii ∆stlCDE	$\Delta stlCDE$ (<i>plu2163-2165</i>) deletion mutant	Bode lab
P. laumondii pCEP_gli	P. laumondii with a promoter exchange in front of plu1881	this work
<i>P. laumondii ∆bkdABC</i> pCEP_gli	<i>P. laumondii</i> $\Delta bkdABC$ with a promoter exchange in front of <i>plu1881</i>	this work
<i>P. laumondii</i> ∆ <i>stlA</i> pCEP_gli	<i>P. laumondii</i> $\Delta stlA$ with a promoter exchange in front of <i>plu1881</i>	this work
P. laumondii ∆stlB pCEP_gli	<i>P. laumondii</i> $\Delta stlB$ with a promoter exchange in front of <i>plu1881</i>	this work
<i>P. laumondii ∆stlCDE</i> pCEP_gli	<i>P. laumondii</i> $\Delta stlCDE$ with a promoter exchange in front of <i>plu1881</i>	this work
E. coli plu1881–1877	E. coli DH10B MtaA expressing plu1881-1877 (pLZ4)	this work
<i>E. coli plu1881–1880</i> and <i>plu1879–1877</i>	<i>E. coli</i> DH10B MtaA coexpressing <i>plu1881–1880</i> (pLZ7) and <i>plu1879–1877</i> (pLZ6)	this work
<i>E. coli plu1</i> 880 and <i>plu1879–1877</i>	<i>E. coli</i> DH10B MtaA coexpressing <i>plu1880</i> (pLZ5) and <i>plu1879–1877</i> (pLZ6)	this work
<i>E. coli plu1881–1880</i> and <i>plu1878–1877</i>	<i>E. coli</i> DH10B MtaA coexpressing <i>plu1881–1880</i> (pLZ7) and <i>plu1878–1877</i> (pLZ8)	this work
<i>E. coli plu1881–1880</i> and <i>plu1879–1878</i>	<i>E. coli</i> DH10B MtaA coexpressing <i>plu1881–1880</i> (pLZ7) and <i>plu1879–1878</i> (pLZ9)	this work

Table S15. Bacterial strains constructed and used in this study

Plasmid	Genotype/Description	Reference
pACYC	modified from pACYC_tacI/I containing arabinose-inducible promoter and chloramphenicol resistance gene (Cm ^R)	Bode lab
pCDF	modified from pCDF_tacI/I containing arabinose-inducible promoter and spectinomycin resistance gene (Sm ^R)	Bode lab
pFF1	2µ ori, G418 ^R , P _{BAD} promoter, pCOLA ori, MCS, Ypet-Flag, Km ^R	[22]
pCEP-Cm	R6Kγ ori, oriT, araC, araBAD promoter, Cm ^R	[1]
pCEP_gli	initial fragment of plu1881 from P. laumondii assembled into pCEP-Cm, CmR	this work
pLZ4	plu1881-1877 from P. laumondii assembled into pFF1, Km ^R	this work
pLZ5	plu1880 from P. laumondii assembled into pACYC, Cm ^R	this work
pLZ6	plu1879–1877 from P. laumondii assembled into pCDF, Sm ^R	this work
pLZ7	plu1881-1880 from P. laumondii assembled into pACYC, Cm ^R	this work
pLZ8	plu1878–1877 from P. laumondii assembled into pCDF, Sm ^R	this work
pLZ9	plu1879–1878 from P. laumondii assembled into pCDF, SmR	this work

Table S16. Plasmids constructed and used in this study

Primer	5' to 3' Sequence	Targeting DNA fragment	Plasmid
CEP Gli Ndel		initial fragment of nlu1881	1 Iusiiiu
CEP Gli Sacl		from <i>P</i> laumondii	pCEP_gli
	TCGCAACTCTCTACTGTTTCTCCATACCCGTT		
LZ 10	TTTTTGGGCTAACAGGAGGAATTCCATGGGC	fragment I of	
22_10	TGGAATATATTTATTAACGC	<i>plu1881–1877</i> from <i>P</i> .	
LZ_12	CAGACTAAGACGCTGACACAGAG	laumondii	
LZ_11	CCGAGGTGATCGAGTTGG	fragment II of	-
LZ_14	GCTGATGTGACGTGCCAG	plu1881–1877 from P. laumondii	pLZ4
LZ_13	CGGAAGAGACGACAGAAGG	fragment III of	
	CTTCACCTTTGCTCATGAACTCGCCAGAACCA	nlu1881 - 1877 from P	
LZ_15	GCAGCGGAGCCAGCGGATCCGGCGCGCCTTA	laumondii	
	ATGAGGTACTTCAAATTTAAAGTAATCG		
LZ_17	ATTCCTTGCCAACGCCGGCTCAAC	fragment I of <i>plu1880</i>	
LZ_18	TCTAGCAGTTCACGCCAGATAG	from P. laumondii	_
LZ_19	AGTTGTGTCATCACTCAGTCGC	fragment II of plu1880	
LZ_20	TCATATCTGTCCTCCTGTTATTATTGATG	from P. laumondii	pLZ5
LZ 21	TCCATCAATAATAACAGGAGGACAGATATGA		
	CAATTAATCATCGGCTCGTATAATG	pACYC vector backbone	
LZ 22	AGCCATAGCCTGCGTTGAGCCGGCGTTGGCA	F	
LZ_23	AIGAGIGATICTICCCCAACG	<i>plu1879–1877</i> from <i>P</i> .	
LZ_24	TTAATGAGGTACTTCAAATTTAAAGTAATCG	laumonali	-
LZ 25	AGCGATTACTTTAAATTTGAAGTACCTCATTA		pLZ6
		pCDF vector backbone	
LZ_26	TCAUGAAGOTGAACCOTTGTTAGCCC		
17 27		fragment I of	
		<i>plu1881–1880</i> from <i>P</i> .	
LZ_18	TCTAGCAGTTCACGCCAGATAG	laumondii	_
LZ_19	AGTTGTGTCATCACTCAGTCGC	fragment II of	
LZ_20	TCATATCTGTCCTCCTGTTATTATTGATG	plu1881–1880 from P. laumondii	pLZ7
LZ 21	TCCATCAATAATAACAGGAGGACAGATATGA		
		pACYC vector backbone	
LZ_28	GAATTCCTCCTGTTAGCCC		
LZ_29	ATGAAACAACATCAAGGAAGCTATTAC	<i>plu1878–1877</i> from <i>P</i> .	
LZ_24	TTAATGAGGTACTTCAAATTTAAAGTAATCG	laumondii	
17.25	AGCGATTACTTTAAATTTGAAGTACCTCATTA		pLZ8
LZ_23	ACAATTAATCATCGGCTCGTATAATG	nCDE vector backbone	P220
LZ 30	TCAGGGGGTAATAGCTTCCTTGATGTTGTTTC	pedi vector backbone	
	ATGGAATTCCTCCTGTTAGCCC		
LZ_23	ATGAGTGATTCTTCCCCAACG	<i>plu1879–1878</i> from <i>P</i> .	
LZ_31	TTAGGTCTGGCTAACGACTTC	laumondu	-
LZ_32	AGGAAAATGAAGTCGTTAGCCAGACCTAACA		pLZ9
—		pCDF vector backbone	
LZ_26	TCATGGAATTCCTCCTGTTAGCCC		

Table S17. Primers used in this study. Restriction sites used for cloning are underlined

Supplementary Figures

Figure S1. Production of GLNPs in (a) *E. coli plu1881–1877* and (b) *E. coli plu1881–1880* and *plu1879–1877*. Extracted ion chromatograms (EICs) are shown.

Figure S2. Production of GLNPs in *E. coli plu1880* and *plu1879–1877* (without *plu1881*). EICs are shown.

Figure S3. Production of GLNPs in *E. coli plu1881–1880* and *plu1878–1877* (without *plu1879*). EICs are shown.

Figure S4. Production of GLNPs in *E. coli plu1881–1880* and *plu1879–1878* (without *plu1877*). EICs are shown. *the position of the double bond is not determined. Only ~1/8 of the amount of GLNPs were produced in this strain compared to strains carrying *plu1877*.

Figure S5. The overall network of molecular networking for MeOH extracts of *P. laumondii* wild type (yellow) and pCEP_gli mutant (green). GLNP subnetwork is shown in red frame.

S31

Figure S6. Structure confirmation of 1–9 by their MS/MS fragmentation patterns. MS/MS spectra and proposed fragment structures are shown for (a–i) 1–9.

Figure S7. Production of straight-chain fatty acid moiety containing GLNPs in *P. laumondii* $\Delta bkdABC$ pCEP_gli mutant. EICs are shown.

Figure S8. Proposed biosynthesis for selected GLNP **2** from subclass I and GLNP **29** from subclass IV. As the starter module, the non-ribosomal peptide synthetase (NRPS) Plu1878 activates *N*-acylated L-threonine with a coenzyme A (CoA)-activated fatty acid. The first NRPS module of Plu1880 activates L-lysine or (*S*)-4-hydroxy L-lysine, which is oxidized from L-lysine by Plu1881. The second NRPS module in Plu1880 activates L-alanine, which is further modified to 4-amino-2-pentenoic acid by polyketide synthetase (PKS) module of Plu1880. The macrolactam ring formation and the release of final product are catalyzed by the thioesterase (TE) domain. Domains: C: condensation, A: adenylation, T: thiolation, KS: ketosynthase, AT: acyltransferase, DH: dehydratase, KR: ketoreductase.

Figure S9. Possible biosynthesis for cinnamalacetic acid moiety of selected GLNP **4** and cinnamic acid moiety of selected GLNP **5** from subclass II. The biosynthesis for isopropylstilbene (IPS) in *P. laumondii* is shown in left frame.^[23,24] StlA (PAL): phenylalanine ammonium lyase, StlB: CoA ligase, StlC: cyclase, StlD: cinnamoyl-CoA condensing ketosynthase, Bkd: branched-chain keto acid dehydrogenase (BkdA, BkdB), BkdC: isovaleryl-CoA condensing ketosynthase.

Figure S10. Production of IPS and cinnamic acid and cinnamalacetic acid containing GLNPs in *P. laumondii* (a) pCEP-gli, (b) $\Delta stlA$ pCEP-gli, (c) $\Delta stlB$ pCEP-gli, and (d) $\Delta stlCDE$ pCEP_gli mutants.

Figure S11. Proposed biosynthesis for selected GLNP (a) 28, (b) 8 and (c) 6 from subclass III. The non-functional domains are shown in grey.

Figure S12. ¹H NMR (500 MHz, DMSO-d₆) spectrum of 1.

Figure S13. ¹³C NMR (500 MHz, DMSO-d₆) spectrum of 1.

Figure S14. ¹H NMR (500 MHz, methanol-d₄) spectrum of 1.

Figure S15. ¹³C NMR (125 MHz, methanol-d₄) spectrum of 1.

Figure S16. ¹H NMR (500 MHz, methanol-d₄) spectrum of 2.

Figure S17. ¹³C NMR (125 MHz, methanol-d₄) spectrum of 2.

Figure S18. ¹H NMR (500 MHz, methanol-d₄) spectrum of 3.

Figure S19. ¹³C NMR (125 MHz, methanol-d₄) spectrum of 3.

Figure S20. COSY (methanol-d4) spectrum of 3.

Figure S21. HSQC (methanol-d4) spectrum of 3.

Figure S22. HMBC (methanol-d₄) spectrum of 3.

Figure S23. ¹H NMR (500 MHz, methanol-d4) spectrum of 4.

Figure S24. ¹³C NMR (125 MHz, methanol-d₄) spectrum of 4.

Figure S25. COSY (methanol-d₄) spectrum of 4.

Figure S26. HSQC (methanol-d₄) spectrum of 4.

Figure S27. HMBC (methanol-d₄) spectrum of 4.

Figure S28. ¹H NMR (500 MHz, methanol-d₄) spectrum of **5**.

Figure S29. ¹³C NMR (125 MHz, methanol-d₄) spectrum of 5.

Figure S30. COSY (methanol-d₄) spectrum of 5.

Figure S31. HSQC (methanol-d₄) spectrum of 5.

Figure S32. HMBC (methanol-d4) spectrum of 5.

Figure S33. ¹H NMR (500 MHz, methanol-d₄) spectrum of 6.

Figure S34. ¹³C NMR (125 MHz, methanol-d₄) spectrum of 6.

Figure S35. COSY (methanol-d4) spectrum of 6.

Figure S36. HSQC (methanol-d₄) spectrum of 6.

Figure S37. HMBC (methanol-d4) spectrum of 6.

Figure S38. ¹H NMR (500 MHz, methanol-d₄) spectrum of 7.

Figure S39. ¹³C NMR (125 MHz, methanol-d₄) spectrum of 7.

Figure S40. COSY (methanol-d4) spectrum of 7.

Figure S41. HSQC (methanol-d₄) spectrum of 7.

Figure S42. HMBC (methanol-d₄) spectrum of 7.

Figure S43. ¹H NMR (500 MHz, methanol-d₄) spectrum of 8.

Figure S44. ¹³C NMR (125 MHz, methanol-d₄) spectrum of 8.

Figure S45. COSY (methanol-d4) spectrum of 8.

Figure S46. HSQC (methanol-d4) spectrum of 8.

Figure S47. HMBC (methanol-d4) spectrum of 8.

Figure S48. ¹H NMR (500 MHz, methanol-d₄) spectrum of 9.

Figure S49. ¹³C NMR (125 MHz, methanol-d₄) spectrum of 9.

Figure S50. COSY (methanol-d4) spectrum of 9.

Figure S51. HSQC (methanol-d4) spectrum of 9.

Figure S52. HMBC (methanol-d₄) spectrum of 9.

References

- E. Bode, A. O. Brachmann, C. Kegler, R. Simsek, C. Dauth, Q. Zhou, M. Kaiser, P. Klemmt, H. B. Bode, *ChemBioChem* 2015, *16*, 1115–1119.
- [2] L. Zhao, R. M. Awori, M. Kaiser, J. Groß, T. Opatz, H. B. Bode, J. Nat. Prod. 2019, 82, 3499–3503.
- [3] N. J. Tobias, H. Wolff, B. Djahanschiri, F. Grundmann, M. Kronenwerth, Y.-M. Shi, S. Simonyi, P. Grün, D. Shapiro-Ilan, S. J. Pidot, *Nat. Microbiol.* 2017, *2*, 1676–1685.
- M. Wang, J. J. Carver, V. V Phelan, L. M. Sanchez, N. Garg, Y. Peng, D. D. Nguyen, J. Watrous, C. A. Kapono, T. Luzzatto-Knaan, *Nat. Biotechnol.* 2016, *34*, 828–837.
- [5] X. Cai, V. L. Challinor, L. Zhao, D. Reimer, H. Adihou, P. Grün, M. Kaiser, H. B. Bode, Org. Lett. 2017, 19, 806–809.
- [6] N. Gallastegui, M. Groll, *Methods Mol. Biol.* **2012**, *832*, 373–390.
- [7] W. Kabsch, Acta Crystallogr. Sect. D Biol. Crystallogr. 2010, 66, 133–144.
- [8] E. M. Huber, W. Heinemeyer, X. Li, C. S. Arendt, M. Hochstrasser, M. Groll, *Nat. Commun.* 2016, 7, 1–10.
- [9] E. Potterton, P. Briggs, M. Turkenburg, E. Dodson, Acta Crystallogr. Sect. D Biol. Crystallogr. 2003, 59, 1131–1137.
- [10] D. Turk, Acta Crystallogr. Sect. D Biol. Crystallogr. 2013, 69, 1342–1357.
- [11] P. Emsley, B. Lohkamp, W. G. Scott, K. Cowtan, Acta Crystallogr. Sect. D Biol. Crystallogr. 2010, 66, 486–501.
- [12] J. Lowe, D. Stock, B. Jap, P. Zwickl, W. Baumeister, R. Huber, *Science* 1995, 268, 533–539.
- [13] I. Orhan, B. Şener, M. Kaiser, R. Brun, D. Tasdemir, Mar. Drugs 2010, 8, 47–58.
- [14] M. Oka, K. Yaginuma, K. Numata, M. Konishi, T. Oki, H. Kawaguchi, J. Antibiot. 1988, 41, 1338–1350.
- [15] M. L. Stein, P. Beck, M. Kaiser, R. Dudler, C. F. W. Becker, M. Groll, *Proc. Natl. Acad. Sci.* 2012, 109, 18367–18371.
- [16] W. Kabsch, Acta Crystallogr. Sect. D Biol. Crystallogr. 2010, 66, 125–132.
- [17] O. Schimming, F. Fleischhacker, F. I. Nollmann, H. B. Bode, *Chembiochem* 2014, 15, 1290–1294.
- [18] S. R, P. U, Puhler A, Nat. Biotechnol. 1983, 1, 784–790.

- [19] S. Thoma, M. Schobert, FEMS Microbiol. Lett. 2009, 294, 127–132.
- [20] E. Duchaud, C. Rusniok, L. Frangeul, C. Buchrieser, A. Givaudan, S. Taourit, S. Bocs, C. Boursaux-Eude, M. Chandler, J.-F. Charles, *Nat. Biotechnol.* 2003, 21, 1307–1313.
- [21] M. Fischer-Le Saux, V. Viallard, B. Brunel, P. Normand, N. E. Boemare, Int. J. Syst. Evol. Microbiol. 1999, 49, 1645–1656.
- [22] K. A. J. Bozhüyük, F. Fleischhacker, A. Linck, F. Wesche, A. Tietze, C.-P. Niesert, H. B. Bode, *Nat. Chem.* 2018, 10, 275–281.
- [23] S. A. Joyce, A. O. Brachmann, I. Glazer, L. Lango, G. Schwär, D. J. Clarke, H. B. Bode, *Angew. Chemie Int. Ed.* 2008, 47, 1942–1945.
- [24] S. W. Fuchs, K. A. J. Bozhüyük, D. Kresovic, F. Grundmann, V. Dill, A. O. Brachmann,
 N. R. Waterfield, H. B. Bode, *Angew. Chemie Int. Ed.* 2013, 52, 4108–4112.