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Abstract

Conditional yield skewness is an important summary statistic of the state of the econ-
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COVID pandemic did not disrupt these relations: historically high skewness cor-
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1 Introduction

What predicts changes in interest rates? The literature has come a long way from the

expectations hypothesis distinguishing between statistical, risk-adjusted, and subjec-

tive expectations. Regardless of the channel, the shape of the yield curve has emerged

as a key source of information (e.g., Campbell and Shiller, 1991; Cochrane and Pi-

azzesi, 2005; Piazzesi, Salomao, and Schneider, 2015). The Global Financial Crisis

of 2008/2009 led to unchartered territory for the yield curve, with short-term rates

constrained by the zero lower bound (ZLB) and long-term rates affected by uncon-

ventional monetary policies. In such an environment, interest rate risk was generally

perceived to be tilted to the upside, but the slope of the yield curve did not cap-

ture this. By contrast, interest rate skewness implied by Treasury options signaled

substantial upside risk to yields, suggesting that implied skewness might be a useful

forward looking measure to assess interest rate risk.

In this paper we argue that skewness is important for understanding yield dynamics

and forecasting bond returns both during the ZLB period and outside of it, inclusive of

the COVID pandemic. Because skewness measures the asymmetry in the distribution

of future rate changes, it is a natural candidate for capturing changes in the balance of

interest rate risks. That is in contrast to volatility, which captures market uncertainty

about interest rates (e.g., MOVE or TYVIX indices). We study a model-free measure

of the option-implied skewness of Treasury yields during the period from 1990 to 2021.

We show that it indeed contains rich information about the outlook for interest rates

throughout the whole sample.

Skewness exhibits substantial and persistent variation over time, which is related to

the business cycle and the stance of monetary policy. Importantly, implied skewness

contains significant additional predictive information, supporting the view that these

changes in conditional skewness are indeed informative about the balance of inter-

est rate risk. Specifically, implied skewness helps to anticipate bond excess returns,

monetary policy surprises around FOMC announcements, and survey forecast errors

for Treasury yields. We argue that our evidence is consistent with an environment

where some economic agents have biased beliefs, or, equivalently, exhibit systematic

expectational errors.
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There is a dearth of evidence regarding this aspect of the distribution of interest

rates. Indeed, many influential papers on non-normality of interest rates and its links

to monetary policy implicitly or explicitly assume zero conditional skewness (e.g.,

Das, 2002, Johannes, 2004). Even the path-breaking work of Piazzesi (2001), which

explicitly relates interest-rate jumps to FOMC announcements, treats the effects as

symmetric in empirical work and focuses on the effects of uncertainty surrounding

the announcements. There is a sound empirical reason for the extant perspective:

the sample skewness of Treasury yield changes is close to zero.

Thus, to set the stage for our subsequent analysis, we start by investigating the

time variation of conditional skewness of yields. We use two alternative measures of

conditional skewness: The first is realized yield skewness computed from daily price

data. The second is risk-neutral yield skewness as implied by Treasury option prices.

The two measures are qualitatively similar in our case, their difference reflecting the

skewness risk premium and measurement noise. For most of our empirical analysis, we

focus on option-implied skewness, which has several advantages including its forward-

looking nature, daily availability, and high statistical precision.

We document substantial and economically interesting time variation and persistence

in conditional skewness over the past 30 years. In stark contrast to unconditional

yield skewness, which is statistically indistinguishable from zero over this sample,

conditional skewness indicates prolonged periods of both substantial upward and

downward skew in the balance of interest rate risk. Option-implied skewness predicts

future realized skewness, establishing formal statistical evidence for the time variation

in conditional skewness. Aside from these cyclical fluctuations, yield skewness has

generally drifted down over the course of our sample.

We then ask what the macroeconomic drivers of skewness in yields are. To this end,

we assess the contemporaneous relationship of conditional skewness with financial

and macroeconomic variables, including the shape of the yield curve and the stance

of monetary policy. We find that yield skewness exhibits a close connection with a

number of variables, the most pronounced being its positive correlation with the slope

of the yield curve. Furthermore, skewness tends to be high when the Fed has recently

eased the stance of monetary policy, and low when the Fed has tightened its policy

stance.
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Our main evidence is on the information content in option-implied skewness for future

interest rates. We investigate whether the component of skewness that is orthogonal

to the aforementioned variables carries useful information. To that end, we test if it

can forecast key variables in bond markets and find that it does. Skewness exhibits

highly significant predictive power for excess bond returns and FOMC surprises, which

is robust to controlling for the shape of the yield curve and a wide range of other

predictors. During the COVID episode skewness has correctly predicted a steep rise

in 10-year yields from 0.5% in early 2020 to 1.5% in May 2021. Thus skewness appears

to contain genuinely new information about the future evolution of interest rates.

Given that the documented predictability may arise from time-varying risk premiums

or persistently biased beliefs, we next study the relation between survey forecasts and

skewness. Using the Blue Chip Financial Forecasts (BCFF) and Survey of Profes-

sional Forecasters (SPF), we associate conditional yield skewness at the time of the

surveys with the future consensus forecast error for the 10-year Treasury yield. We

find a strong statistical relationship between skewness and this forecast error for all

forecast horizons, which is robust to controlling for the shape of the yield curve.

This evidence supports the view that time-varying differences between statistical and

subjective expectations, or biased beliefs, play an important role for explaining the

predictive power of skewness for interest rates. Skewness appears to be a proxy for

the bias in beliefs about future interest rates.

That observation offers a clue about a possible economic mechanism behind the ev-

idence. One needs a framework where some agents have biased beliefs. We adopt

the heterogeneous beliefs two-agent framework by assuming that one agent knows

the true distribution of the state, while the other one has erroneous beliefs. As a

result, the usual measure of disagreement in these models becomes a measure of bias

in beliefs.

The heterogeneous beliefs model of Ehling, Gallmeyer, Heyerdahl-Larsen, and Illed-

itsch (2018) (EGHI) is particularly well suited for our purposes as it focuses on Trea-

sury bonds. When investors differ in beliefs about future inflation, they take different

positions in inflation-sensitive securities. In equilibrium, the investor who thinks in-

flation will be high buys inflation-linked and sells short nominal Treasury bonds,
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and an investor with the opposite view matches both positions on the other side to

clear the markets. Ex ante, each investor expects to capture wealth from the other

investor and, hence, both expect future consumption to be higher than without dis-

agreement about inflation. Thus, the real interest rate depends on the dispersion

in beliefs between the agents. Because of that dependence, the interest rate is non-

normally distributed even if differences in beliefs have a normal distribution. Thus,

time-variation in the dispersion in beliefs generates time-variation in yield skewness.

Time-variation in bond risk premiums is driven by the differences in beliefs as well

thereby linking skewness to expected excess bond returns.

Brooks, Katz, and Lustig (2020) document that FOMC announcement surprises cause

a persistent drift in Treasury yields and provide an explanation based on non-rational

expectations. Schmeling, Schrimpf, and Steffensen (2020) relate excess returns of fi-

nancial instruments connected to short-term interest rates to survey forecast errors

about future monetary policy. Conditional skewness, given its predictive power for

both high-frequency announcement surprises and lower-frequency Treasury bond re-

turns, captures a similar relationship. We find that skewness is directly connected to

the expectation errors, which may be its source.

Giacoletti, Laursen, and Singleton (2021) (GLS) show that disagreement about fu-

ture yields between 90th and 10th percentiles of BCFF predicts bond risk premiums.

Further, the authors argue that their evidence is inconsistent with the heterogeneous

beliefs mechanism. The standard channel affecting asset pricing is based on disagree-

ment about fundamentals, while GLS document no relation between disagreemnts

about inflation and yields. The mechanism that we advocate is distinct from the one

explored in GLS. First, we show that skewness predicts bond excess returns together

with the GLS measure of disagreement. Second, while the mathematics of biased

beliefs and disagreement are very similar in a heterogeneous beliefs model, empiri-

cally they are different. We demonstrate, using consensus forecasts from both BCFF

and SPF, that in contrast to the GLS evidence about disagreement, survey-based

expectation errors about inflation are related to expectation errors about yields.

Broadly, our paper is related to the literature on interaction of monetary policy

and bond markets pioneered by Balduzzi, Bertola, and Foresi (1997), Fleming and

Remolona (2001), Ang and Piazzesi (2003), and Piazzesi (2005).
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We forecast bond excess returns as in Cochrane and Piazzesi (2005), Ludvigson and

Ng (2009), and Cieslak and Povala (2015). The role of monetary policy surprises

for bond markets goes back to the work of Kuttner (2001) and Balduzzi, Elton, and

Green (2001), and speaks to the recent work of Nakamura and Steinsson (2018).

Errors in surveys about interest rates and the yield curve feature prominently in

Buraschi, Piatti, and Whelan (2019), Cieslak (2018), and Piazzesi, Salomao, and

Schneider (2015). Cieslak and Vissing-Jorgensen (2020) document the predictive

power of downside risk for Fed easing actions, the “Fed put”, which is related to our

finding that asymmetric risks predict Fed policy actions.

In terms of using options to measure skewness, the methodology follows that of Bak-

shi and Madan (2000) and Neuberger (2012). Beber and Brandt (2006) and Trolle

and Schwartz (2014) are primary empirical examples in fixed-income markets. The

last paper is the closest to ours in terms of measurment: they apply the Neuberger

(2012) approach to swaption prices and document time-variation in conditional skew-

ness. The sample period is relatively short, 2002-2009, and the authors do not relate

skewness to bond returns or survey-based forecasts of yields.

Hattori, Schrimpf, and Sushko (2016) demonstrate that unconventional monetary

policy has reduced option-implied tail risks for the stock and bond markets. Mertens

and Williams (2020) use option-implied distributions during the ZLB period to dis-

tinguish between the constrained and unconstrained monetary policy equlibria. Li

(2020) documents the connection between option-implied Treasury skewness and re-

cessions between 2000 and 2018.

The early work on heterogeneous beliefs is Harrison and Kreps (1978) and Detem-

ple and Murthy (1994). Heterogeneous beliefs-based asset pricing applications are

reviewed in Basak (2005). Xiong and Yan (2010) is the first application of heteroge-

neous beliefs to Treasury bonds. Our contribution to this literature is to point out a

link between dispersion in beliefs and non-normality of yields, both in theory and in

the data.
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2 Time variation in interest rate skewness

Interest rate skewness captures the degree of asymmetry in the probability distribu-

tion of changes in interest rates. Given that average interest rate changes are close to

zero, positive skewness indicates that large rate increases are more likely than large

rate declines, which implies that the balance of risk is tilted to the upside, and vice

versa.

Unconditional interest rate skewness—the sample skewness of Treasury yield changes

over long periods of time—has been essentially zero. In this section we document

that this contrasts with pronounced shifts and large cyclical swings over the last

three decades in conditional skewness, measured either as realized skewness (using

short rolling windows of Treasury yield changes) or option-implied skewness (using

model-free moments implied by Treasury options). The statistical evidence for this

time variation is that option-implied skewness strongly predicts realized skewness.

2.1 Data

The data we use in this analysis are Treasury yields, as well as Treasury futures

and options. Our Treasury yields are the daily smoothed Treasury yield curves from

Gürkaynak, Sack, and Wright (2007). When we need a monthly data frequency we

take monthly averages. Most of our analysis focuses on the 10-year yield.

The Treasury derivative prices are from CME group. In particular, we use end-of-day

prices of the 10-year T-Note futures contract, and options written on this contract.

Both types of contracts are among the most actively traded Treasury derivatives,

with high liquidity (in terms of open interest and volume) and long available price

histories. The deliverable maturities for this futures contract are between 6.5 and 10

years. Changes in futures prices are closely associated with negative yield changes in

the cheapest-to-deliver (CTD) Treasury security. Because skewness is scale invariant,

we can take the negative of the skewness of futures price changes as a measure of

skewness of yield changes for the CTD bond. Details are in Appendix A.1.
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Our sample period is from the beginning of January 1990 to the end of May 2021. The

starting date is dictated by the availability of options data allowing us to consistently

calculate option-based moments using prices across many contracts/strikes. While

the historical Treasury options data starts in May 1985, there are only few contracts

and prices available during the early years.

2.2 Sample statistics and unconditional skewness

The top panel of Table 1 reports summary statistics for quarterly changes (using the

last month of the quarter) in the 10-year yield, including the mean, median, variance

and third central moment. We report the statistics for the full sample and the first

and second half of the sample. In addition to sample statistics, we also calculate

90%-confidence intervals using a simple bootstrap, since yields are highly persistent

and the serial correlation of their changes is close to zero. The mean and median

are negative and, like the variance, have changed little between the first and second

sub-sample. By contrast, the third sample moment of quarterly yield changes shifted:

over the first half of the sample, the third moments is zero, while over the second half

it has turned negative.

The middle and bottom panels of Table 1 report the sample skewness coefficient

for yield changes and (negative) futures price changes, respectively, and we report

skewness for different frequences, ranging from one-month to twelve-month changes.

The results for bond yields and futures are similar: For the full sample, sample

skewness of interest rate changes is statistically close to zero. Its value in split samples

depends on the frequency, but it is typically higher and positive over the first half of

the sample and negative over the second half of the sample. The magnitude ranges

between -1 and 0.5, depending on the specific sample and frequency, is comparable

to the skewness estimates for foreign currency and equity index returns reported in

the literature (e.g., Chernov, Graveline, and Zviadadze, 2018, Table 1).

Thus, while the mean and variance of yield changes have not changed, the shape of

the asymmetry has shifted noticeably. While the skew of the distribution generally

appears slightly positive from 1990 to 2004, it has shifted significantly negative for
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the period from 2005 to 2021. This empirical pattern suggests that an unconditional,

full-sample perspective on skewness may miss interesting features of the distribution

of interest rates. Therefore we next turn to conditional yield skewness.

2.3 Realized and implied skewness

In order to measure yield skewness at a more granular level, and to understand

time variation, we follow the literature on skewness in stock returns and calculate

realized and option-implied measures of skewness. We use daily changes in prices

and implied volatility for Treasury futures to compute realized skewness (RSK) at

the monthly frequency (Neuberger, 2012, Equation 5). Again, the negative of futures

price skewness corresponds to yield skewness.

Figure 1A plots this time series of RSK, as well as a 12-month moving average.

Monthly realized yield skewness is volatile and on average close to zero, but exhibits

some persistence and pronounced time variation. During three episodes skewness was

markedly negative: the dot-com bubble 1998-2000, the financial crisis of 2007-2009,

and the period since 2015 when the Fed lifted its policy rate off the ZLB. Skewness

declines sharply in the wake of the COVID-19 pandemic in early 2020 but then reaches

historical high level in the wake of global fiscal and monetary stimulus.

Realized skewness allows us to gauge time variation but it is noisy, available only at

lower frequencies, and backward-looking. We now turn to option-implied skewness for

future Treasury yields. This implied skewness (ISK) measures the conditional, risk-

neutral skewness of future yield changes, as reflected in options on Treasury futures.

Details of how we construct ISK are in Appendix A.1. The negative of implied

skewness for Treasury futures price changes corresponds to skewness of Treasury yield

changes. On every trading day we calculate ISK for each futures contract expiration.

For most of our analysis, we then use ISK for the most active option contract, namely

the shortest quarterly contract, which has a maturity between about 1 and 3 months.

Figure 1B shows a time series of implied skewness that is linearly interpolated to a

constant horizon of 2.4 months (the average horizon of all option contracts). This
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daily series is highly persistent with a first-order autocorrelation of 0.95. Over the

full sample, the average level of ISK is positive, with a mean of 0.10 that is signifi-

cantly different from zero, and a standard deviation of 0.30. But this average level

of skewness masks substantial variation in risk perceptions about for future Treasury

yields. Similar to realized skewness, ISK has exhibited a general downward trend as

well as pronounced cyclical swings over the course of our sample. Particularly strik-

ing is the behavior during the first ZLB episode, when the Fed’s policy rate was near

zero. Between 2009 and 2014, ISK averaged 0.35, while outside of this period the

average was only 0.04. Before liftoff from the ZLB in 2015 skewness shifted markedly

negative, and it averaged -0.21 between 2015 and the end of the sample. As is the

case with RSK, the COVID stumulus has changed that trend with ISK reaching levels

of around 1.0 in mid-2020.

More formal statistical analysis is helpful to better understand the time variation

that is visually evident in these figures. Specifically, we want to test whether time

variation in option-implied skewness is statistically and economically significant. One

straightforward way to do so is to assess whether it predicts realized skewness. In

Table 2 we present results for various regression specifications, predicting monthly

realized skewness with its own lag, option-implied skewness or the shape of the yield

curve, all measured at the end of the previous month. To guard against serial cor-

relation due to the persistence of RSK we report Newey-West standard errors (with

automatic bandwidth selection). RSK exhibits significant autocorrelation, but lagged

values of ISK have even stronger predictive power than lagged values of RSK itself.

In a regression that includes both predictors, both are strongly significant (see col-

umn 3). The slope of the yield curve has some explanatory power for future RSK,

but once we include ISK this is driven out and the information in the yield curve

becomes irrelevant. In sum, there is strong evidence for time variation in the con-

ditional expectation of RSK, as captured by ISK. This establishes ISK as a useful

forward-looking measure of conditional yield skewness.
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3 Macro-finance drivers of yield skewness

The previous section documents time variation in conditional skewness of yields. We

now investigate which financial and macroeconomic drivers can potentially explain

the time variation in conditional yield skewness. This analysis will lead us closer to

the understanding of skewness’ informational content.

It turns out that skewness exhibits a statistically and economically significant rela-

tionship with the slope of the yield curve and stance of monetary policy. Periods

when the slope is high (low) or when the Fed has been easing (tightening) the stance

of monetary policy are characterized by high (low) option-implied skewness. The or-

thogonal component of skewness still exhibits interesting cyclical variation, which our

analysis in Section 4 shows to contain substantial additional predictive information.

We find little evidence for a mechanical effect of the ZLB on the level of skewness,

supporting the view that the importance of skewness is not limited to the ZLB period

alone.

3.1 Skewness and the yield curve

To provide a visual impression of the relationship between interest rates and skewness,

Figure 2 plots annual moving averages of implied skewness with the two-year and ten-

year Treasury yields. In addition, the figure also shades monetary policy easing and

tightening cycles, which we identify based on changes in the federal funds rate, since

shifts in monetary policy are a key driver of shifts in the yield curve (Piazzesi, 2005).

Figure 2 reveals several patterns. Skewness tends to increase when the yield curve is

steepening, in particular during the episodes in 2002-2003 and 2008-2013. Thus, the

term spread appears to be related to skewness. In addition, there is also a relationship

between skewness and the level of the yield curve, but it is more complicated and

appears to depend on the frequency. On the one hand, there is a general downward

trend in skewness and yields over the course of the sample. But on the other hand,

the level of yields and conditional skewness seem to move in opposite directions at

business cycle frequency.
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We formalize the evidence by a series of regressions reported in Table 3. In all

specifications, the dependent variable is conditional implied skewness, ISK. We use

monthly averages of skewness and interest rates. Due to the high persistence of

ISK, robust standard errors are calculated using the Newey-West estimator (with

automatic bandwidth selection), and they are reported in parentheses.

The relationship between RSK and ISK is the natural baseline and starting point for

an analysis of the drivers of implied skewness. Column 1 shows the corresponding

regression, and the estimates indicate a very strong contemporaneous relationship

between the two series. The next column reports estimates for a regression on the level

and slope of the yield curve. These are calculated as the first two principal components

of yields from one to ten years maturity, normalized such that high level/slope are

associated with high yields/an upward sloping yield curve. The numbers confirm that

the slope is important for skewness: an upward-sloping yield curve is associated with

high skewness. Level, by contrast, does not have a statistically significant relationship

with skewness. By including RSK, level and slope together we can account for more

than half of the variation in ISK, with an R2 of 0.50.

The two subsequent columns incorporate the interaction between level and slope,

which adds substantial explanatory power. The slope has a much stronger relationship

with skewness when the level of yields is low than when it is high, a pattern to some

extent driven by the ZLB period when slope and level were both historically low and

skewness skyrocketed. According to the specification in column 5, we can explain

54% of the variation in skewness just based on the yield curve—including the level-

slope interaction—and RSK. Thus, variation in yield skewness is closely related to

variation in yields themselves.

Figure 1C plots the residual from a regression of ISK on level, slope and a level-slope

interaction, that is, from the regression specification in column 4 of Table 3. This

residual exhibits neither the downward trend nor the pronounced negative level shift

after 2014. Accounting for the shifts in the yield curve also dampens the large cyclical

swings, compared to the original series. However, this unexplained portion still has

interesting cyclical variation, which we show below to contain substantial relevant

information about future yields.
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3.2 Skewness and the ZLB

Section 2 documented that implied skewness was significantly higher during the ZLB

period beginning in 2008. In light of this pattern, one might hypothesize that skew-

ness generally tends to be high when interest rates are low, i.e., close to the ZLB. In

particular, there could be a mechanical reason for positive skewness in the sense that

the ZLB does not allow a long left tail and thus necessarily makes the right tail com-

paratively longer. If this mechanism was a key driver of conditional skewness, then

it would suggest that skewness does not contain much forward-looking information

about the direction of interest rate risk. But our results instead indicate that prox-

imity to the ZLB itself is not an important factor explaining variation in conditional

skewness.

First, if conditional yield skewness depended on the proximity of yields to the ZLB,

then this should imply a negative relationship between skewness and the level of the

yield curve. By contrast, the estimates in Table 3 suggest either a non-existent or

positive relationship, depending on the specification. Furthermore, skewness is time-

varying and sign-switching in our sample prior to 2008, without any apparent time

trend despite the secular downward trend in interest rates (Bauer and Rudebusch,

2020). For example, yields were lower in 2016 than during most of the first ZLB

period, yet skewness was mainly negative in 2016.

Second, skewness behaved very differently during the two ZLB episodes in our sample.

Skewness turned positive when the ZLB was reached in 2008 and remained mainly

positive for several years, but then switched to negative in 2014, more than a year be-

fore the Fed lifted its policy rate off the ZLB. During the most recent period, skewness

remained negative for several months after the ZLB was reached, but then turned pos-

itive in mid-2020 before long-term Treasury yields commenced a pronounced increase,

as discussed in Section 4.4.

Third, a closer investigation of the entire option-implied density of future yields dur-

ing the two ZLB episodes shows no evidence of a mechanical ZLB explanation of

positive skewness. Figure 3 shows, for two different dates, the implied densities for

yields at the option expiration date, obtained from (i) the bond derivative prices,
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(ii) a normal-inverse-gamma distribution that matches the first four option-implied

moments (Eriksson, Ghysels, and Wang, 2009), (iii) an approximate mapping from

bond price changes to yield changes (see Appendix A.1), and (iv) the current CTD

bond yield.

The first date is December 31, 2012, a day with a particularly low yield level (1.14

percent) and a high level of skewness (0.8). The density pertains to the yield level

on February 22, 2013, the expiration date. Even for this extreme example of low

yields and high skewness during this episode, the 1st percentile of the distribution

is comfortably above the ZLB, at 0.6 percent. This suggests that the left tail is not

thinner because it is cut off by the ZLB, but instead because investors perceived an

upward tilted balance of risk and large right tail.1

The second date is June 16, 2020, a day with extremely low yields and negative skew-

ness, which was not uncommon during this episode. For this distribution, pertaining

to the yield level on August 21, the 1st percentile is deeply negative, at -0.6 percent,

suggesting that the ZLB does not eliminate left tails and mechanically lead to positive

skewness, at least not during this episode.

Overall, this evidence suggests that the high level of skewness during the first ZLB

episode was not mechanically driven by the proximity to the ZLB itself. Instead, other

factors affected risk perceptions during this episode, such as unconventional monetary

policies implemented by the Fed and the investor view that long-term yields might

return to higher levels if the impact of such policies proved transitory. Our results

below on the predictive power of skewness will further support the view that variation

in skewness reflects a changing outlook on interest rate risk and not a mechanical

impact of the ZLB.

3.3 Skewness and the monetary policy cycle

Figure 2 shows that skewness tends to increase during or after monetary easing cycles,

most prominently during the easing after the 2000 dot-com bust and during the

1Even a counterfactual distribution with an equally large negative skewness, at -0.8, still has a
1st percentile quite a bit above the ZLB, at 0.3 percent.
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Great recession and ZLB period. Vice versa, tightening episodes coincide with or

precede episodes of falling skewness. We now dig deeper into the relationship between

skewness and monetary policy cycles.

To this end, we estimate regressions that include indicator variables for monetary

easing and tightening cycles. Cross-correlations reveal that one-year lags of the in-

dicator variables for easing and tightening episodes have the strongest correlation

with skewness, so we include these lags instead of contemporaneous indicators in our

regressions. Columns 6 and 7 of Table 3 show the results.

Conditional skewness has a statistically strong and economically intuitive relation-

ship with the monetary policy cycle. A regression of ISK on the cyclical indicators,

shown in column 6, demonstrates their substantial explanatory power, with an R2

of 0.31. A third of the variation in conditional yield skewness is explained by the

monetary policy cycle. Skewness is high during and soon after monetary easing cy-

cles. Intuitively, these are episodes of upward-tilted interest risk because the Fed has

been lowering rates and the next monetary tightening cycle is likely to begin soon.

Vice versa, skewness is low during and early after monetary tightening cycles, peri-

ods where investors are turning their attention to downward risk to interest rates.

Thus, skewness appears to capture the changing balance of interest rate risk over the

business cycle.2

The relationship of skewness with the monetary policy cycle is so strong to even

drive out the relationship with the yield curve. When we add these indicators to a

regression with RSK and the yield-curve variables, the slope becomes insignificant,

as shown in column 7 of Table 3. This finding may be understood in light of the

fact that the slope of the yield curve mainly reflects the stance of monetary policy

(Rudebusch and Wu, 2008) and our two cylical indicators apparently provide a more

nuanced measure of the monetary policy cycle.

Overall, we find very strong contemporaneous statistical relationships, so that the

2We have also found evidence for the cyclical behavior of skewness using various business cycle
variables, including NBER recession dummies, industrial production grpwth, the output gap, the
Chicago Fed National Activity Index, among others. The two cyclical indicators in Table 3 are so
closely related to skewness that when we include them, other macroeconomic variables generally
become insignificant. We omit these results for the sake of brevity.
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shape of the yield curve together with indicators of the state of the monetary policy

cycle (in addition to past realized skewness) can explain a large share of the variation

in conditional yield skewness. When the yield curve is upward-sloping or the Fed

has been easing its policy stance then implied skewness tends to be high, and vice

versa. Given these strong contemporaeous correlations, it is important to control for

this type of information in our predictive analysis, which shows that skewness is more

informative about the future evolution of yields than any of these indicators.

4 The information in conditional skewness

Our evidence so far has established the cyclical variation in skewness and linked it

to economic driving forces and the business cycle. We now turn to the question

whether yield skewness contains useful forward-looking information for interest rates.

Consider the link between expectations about bond returns and risk premiums:

Et(RX
(n)
t,t+1) = Et(RX

(n)
t,t+1)− Es

t (RX
(n)
t,t+1)−

Covst (Mt,t+1, RX
(n)
t,t+1)

Es
t (Mt,t+1)

, (1)

where RX
(n)
t,t+1 = P

(n−1)
t+1 /P

(n)
t − 1/P

(1)
t is the excess gross return on n−period bond

with a price P
(n)
t , Mt,t+1 is the stochastic discount factor (SDF), and superscript s

refers to subjective probability.3 This representation is helpful because it demon-

strates that predictability of the future (excess) returns could be due either to vari-

ation in risk premiums or a time-varying bias in beliefs, or both. Variation in risk

premiums has traditionally been the common explanation of empirical results docu-

menting predictability of bond returns or interest rate changes. Recent work, how-

ever, has emphasized the possibility that such empirical correlations could be due to

the failure of the often implicit assumption of full information rational expectations

(FIRE), i.e., to changing biases in beliefs captured by the first two terms in equation

(1) (e.g., Bauer and Swanson, 2020, Bacchetta, Mertens, and van Wincoop, 2009,

3Excess gross returns allow for the cleanest decomposition, while our analysis below in Section
4.1 shows empirical results for excess log returns, as is common in this literature. The two are very
similar in the data, and our empirical results are essentially unchanged if we use excess gross returns.
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Buraschi, Piatti, and Whelan, 2019, Cieslak, 2018, Piazzesi, Salomao, and Schneider,

2015).

This representation guides our empirical work. We first establish whether skewness

predicts bond returns. We implement that analysis in two different ways: conven-

tional predictive regressions for monthly excess returns on Treasury bonds, similar

to Cochrane and Piazzesi (2005) and many others, and an analysis of monetary sur-

prises at daily frequency.4 Next, we disentangle the source of predictability by using

consensus survey forecasts as a proxy for subjective expectations.

4.1 Bond excess returns

We work with monthly data, and follow common practice by using end-of-month

interest rates. We use a one-quarter holding period for bond returns, given that ISK

is based on derivative contracts with expiration of about 1-4 months in the future, and

we calculate excess returns over the three-month T-bill rate as the risk-free short rate.

We obtain log excess returns, rx
(n)
t,t,+3, in the usual way for all bonds with maturities

from one through ten years. As in Cieslak and Povala (2015), we scale them by

maturity so that all excess returns have the same duration.

Our predictive regresisons are of the form

rxt,t+3 = β′Xt + εt,t+3, (2)

where rxt,t+3 = 1
10

∑10
n=1 rx

(n)
t,t+3/n is the weighted average log excess return across all

maturities, Xt is a vector of predictors observable at the end of month t, and εt,t+3 is

the serially correlated prediction error. The predictors in Xt always include, besides

a constant, at least the level, slope and curvature of the yield curve, calculated as

the first three principal components of yields, since a natural null hypothesis is that

the current yield curve reflects all the information that is relevant for expectations

of future interest rates (Duffee, 2011). For more reliable statistical inference in this

4Analysis of daily interest changes can be related to excess bond returns because due to their
high frequency (i) the risk-free return is close to zero so that returns are similar to excess returns
and (ii) rate changes are close to negative returns.
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setting with multi-period overlapping returns we calculate standard errors using the

reverse regression delta method of Hodrick (1992) and Wei and Wright (2013).

Table 4 reports estimates of Equation (2) for different sets of predictors. The first

column displays results for level, slope, and curvature alone. Level and slope are

significant, and the slope coefficient is positive, in line with previous work that found

a high slope to predict falling long-term yields and high bond returns (Campbell and

Shiller, 1991, Cochrane and Piazzesi, 2005).

Adding ISK roughly doubles the predictive power relative to the yields-only specifica-

tion (measured by R2) and the coefficient on ISK is highly significant. The coefficient

on ISK has a negative sign, and the coefficient on the slope becomes more positive

and more strongly significant. The fact that conditional yield skewness has significant

predictive power even controlling for the information yields—i.e., that the predictive

power of ISK is not subsumed by the shape of the yield curve—indicates a violation

of the spanning hypothesis (Duffee, 2011; Bauer and Hamilton, 2018).

Estimates for individual bond returns yield similar conclusions. The predictive power

of ISK for excess returns is stronger for short than for long bond maturities. We omit

the results for the sake of brevity.

As a more reliable method of inference that accounts for potential small-sample prob-

lems, Bauer and Hamilton (2018) propose a bootstrap method to test the spanning

hypothesis in predictive regressions for bond returns. Using their bootstrap procedure

leads to a small-sample p-value on the coefficient of ISK that is below 1%, confirm-

ing the result reported in the Table. ISK exhibits only moderate autocorrelation in

monthly data, with a first-order autocorrelation coefficient of 0.72, which alleviates

some of the usual concerns about inference with persistent predictors.

Column (3) uses RSK instead of ISK. Realized skewness also has predictive power for

bond returns, but less than implied skewness, as evidenced by the lower R2 in column

(3) than column (2). In column (4) we estimate a regression that includes both ISK

and RSK. In this specification, in addition to the yield curve predictors, it is only

ISK that exhibits significant predictive power, but not RSK.
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Column (5) adds a different control, namelyan estimate for the trend component

of nominal interest rates, or i∗, which Bauer and Rudebusch (2020) have found to

be important for predicting Treasury yields and returns. Accounting for the slow-

moving interest rate trend in this way further raises the predictive power for future

bond returns, but ISK remains highly statistically significant.

The last column explores the relation between ISK and the survey disagreement about

the 10-year yield advocated by Giacoletti, Laursen, and Singleton (2021) (GLS). The

sample for this regression is shorter because the GLS variable is currently available

only until November of 2018. The estimates show that ISK continues to be significant

when combined with yield disagreement, and that both variables add forecasting

power for future bond returns.

In additional, unreported analysis we have investigated further predictive models that

control for other variables. Our earlier estimates in Section 3 documented a strong

contemporaneous relationship with implied skewness for a level-slope interaction effect

and for indicator variables capturing the state of the monetary policy cycle. Including

these variables in the excess return regressions has no material effect on the predictive

power of ISK. This supports the view that the variation in implied skewness that is

orthogonal to the yield curve and business cycle indicators, the residual we plotted

in Figure 1C, contains information that is highly relevant for the future evolution

of interest rates. Lastly, the asset pricing literature has focused on the role option-

implied variance (e.g., Choi, Mueller, and Vedolin, 2017). Such a measure captures

the market uncertainty but does not posses directional information. Indeed, our

findings are unchanged when controlling for option-implied variance or volatility using

measures calculated from our Treasury options and using the TYVIX index.

Our interest rate data are the smoothed Treasury yields of Gürkaynak, Sack, and

Wright (2007), but we have also run predictive regressions using the popular un-

smoothed Fama-Bliss Treasury yields. Cochrane and Piazzesi (2005) famously doc-

umented in this dataset that a single linear combination of forward rates captures

essentially all of the predictive power of the yield curve for future excess returns

across bond maturities. Our evidence with the Fama-Bliss data, which we omit for

the sake of brevity, also shows that ISK strongly and robustly predicts future bond
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returns, for both the averaged bond return as well as for individual returns for 2-5

years bond maturities. Importantly, this finding is robust to controlling for the usual

yield factors, all five annual forward rates, or the powerful Cochrane-Piazzesi factor.

Finally, one might wonder about the role of the ZLB episode for these results. After

all, this is an episode during which yield skewness was substantially elevated, and

Treasury yields generally increased after the Fed lifted the policy rate off the ZLB, at

least for some time. To address this issue, we estimate predictive regressions for the

period before the ZLB, using a sample that ends in November 2008. Appendix A.2

shows the results, which reveal that the predictive power of conditional skewness was

in fact much stronger during this first part of the sample, before the ZLB became

a serious concern. In short, the ZLB episode does not contribute to the predictive

power of yield skewness.

4.2 Monetary policy surprises

We now zoom in on an important source of new information for bond markets: FOMC

announcements. Going back to Kuttner (2001), an extensive literature has studied

the reaction of interest rates to the surprise change in short-term interest rates. Such

monetary policy surprises are typically calculated based on intraday changes in money

market futures rates over a tight window around the FOMC announcements (Gürkay-

nak, Sack, and Swanson, 2005). Several recent papers, however, have found that the

high-frequency rate changes are predictable using publicly available macroeconomic

data (Bauer and Swanson, 2020; Cieslak, 2018; Miranda-Agrippino, 2017).

We measure the policy “surprise” as the first principal component of intraday rate

changes around the announcement that are derived from changes in Fed funds and

Eurodollar futures prices, following Nakamura and Steinsson (2018). This surprise,

denoted below by st, is a univariate summary of the shift in short- and medium-

term interst rates—the change in the expected path of future policy rates, up to a

term premium component. Appendix A.3 contains additional results for st measured

as either the target surprise or the path surprise of Gürkaynak, Sack, and Swanson
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(2005). We report estimates for predictive regressions

st = β′Xt−1 + εt, (3)

where t are days with FOMC announcements, Xt−1 are predictors observed on the

day before the announcement and εt is a prediction error. For statistical inference, we

report White heteroskedasticity-robust standard errors, because εt is not serially cor-

related between FOMC announcements. Our sample contains 213 FOMC announce-

ments from the beginning of 1994 (when the FOMC first started publicly stating a

target for the policy rate) to June 2019 (where our data for intradaily policy surprises

ends). The sample includes both scheduled and unscheduled FOMC announcements,

but our results are not sensitive to the exclusion of unscheduled announcements.

Table 5 reports results showing the predictive power of skewness for interest rate

changes around FOMC announcements. In most of the specifications, Xt contains

the level, slope and curvature of the yield curve, based on daily Treasury yields with

annual maturities from one to ten years. Subsequent specifications add ISK and RSK,

which are calculated from Treasury derivative prices over the 22 days preceding the

day before the FOMC announcement.5

Column (1) shows that yield factors alone do not have any predictive power. In

Column (2) we instead use ISK in a univariate regression, which shows that by itself

ISK has significant predictive power and explains close to six percent of the variance

in the monetary policy surprise. Column (3) shows that adding both ISK and the

yield curve completely changes the result compared to the yields-only specification in

column (1): Now both the slope and ISK are highly statistically significant, and the

R2 is about 10%. The slope’s coefficient is statistically negative, while the coefficient

of ISK is significantly positive, mirroring the findings for the return regressions in

Table 4.

If instead of ISK we include RSK as a predictor, it is also found to exhibit significant

predictive power, as shown in colum (4). But in this case, the R2 is only around

5ISK is taken as the mean of the daily ISK observations over these 22 days, or roughly one month,
before the FOMC meeting. RSK is calculated as in Section 2 but based on sums over the 22 trading
days before the FOMC meeting (instead of a calendar month). Moderate changes to these window
lengths do not materially affect our results.
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3%. Column (5) includes both ISK and RSK with the yield curve factors. The slope

and ISK are the most significant predictors in this specification, and the predictive

power is similar to the specification without RSK. Similarly to return regressions,

the information in implied skewness appears more relevant for predicting future rate

changes than the information in realized skewness.

Table 6 considers specifications with macroeconomic variables that have been found

to predict FOMC surprises in previous studies. Our goal here is to assess whether ISK

retains its predictive power even if we control for these additional predictors in our

regressions. In column (1) we include the predictors considered by Cieslak (2018):

the average federal funds rate over the month preceding the FOMC meeting, and

annual employment growth, measured as the 12-month log-change in total nonfarm

payroll employment, appropriately lagged so that it is known by the day before the

FOMC announcement. In this specification, employment growth but not the Federal

Funds rate exhibits predictive power. The lack of predictive power of the funds rate is

partly due to our different sample period and partly due to the different policy surprise

measure than in the estimates of Cieslak (2018). Using Cieslak’s exact sample and

regression specification we are able to replicate her results, and we still find that when

we add ISK to the regression it significantly raises the predictive power.

Columns (2) to (4) add the macroeconomic variables considered by Bauer and Swan-

son (2020): the Brave-Butters-Kelley business cycle indicator produced by the Chicago

Fed, the change in nonfarm payroll employment in the previous month (again appro-

priately accounting for the publication lag), and the return of the S&P 500 stock

index over the three months preceding the FOMC announcement. In all three cases,

both ISK and the Bauer-Swanson predictor exhibit statistically significant explana-

tory power for the FOMC policy surprise.

4.3 Survey forecast errors

The evidence on interest-rate predictability with skewness in Sections 4.1 and 4.2

speaks to time variation in expected excess bond returns, that is, the left-hand side
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of equation (1). The right-hand side of the equation tells us that the established pre-

dictability may arise because of systematic forecast errors that are related to skew-

ness. To investigate this possibility, we use survey forecasts as proxies for subjective

expectations.

Specifically, we calculate forecast errors for the 10-year Treasury yield from the Blue

Chip Financial Forecasts (BCFF). This is a monthly survey that contains forecasts for

the current quarter (nowcasts) and each of the next five quarters.6 The forecast target

is the quarterly average for the constant-maturity 10-year yield from the Fed’s H.15

statistical release, which we obtain from FRED. We calculate errors as the difference

between the realized value and the consensus forecast, which is the average of the

individual forecasts.

For each forecast horizon from h = 0 to 5 quarters we run monthly predictive re-

gressions of the forecast errors on information available at the time of the survey.

Specificially, we estimate the regression

yq(t,h) − ŷ(h)t = β′Xt + ε
(h)
t ,

where t indexes the month of the survey forecast, yq(t,h) is the average ten-year yield

over quarter q(t, h) that contains the month t+3h, ŷ
(h)
t is the forecast for the average

yield in quarter q(t, h), Xt are predictors observable at the time the survey forecasts

are made, and ε
(h)
t is a forecast error.7 For example, in January, February, and March,

forecasts for h = 1 are for the average over the second quarter (April to June). We

measure the predictors on the day of the BCFF survey deadline to ensure that they

are observable at the time the forecast is made.8 Our predictors Xt include ISK as

well as the level, slope and curvature of the yield curve.

The forecast errors of these regressions are necessarily serially correlated due to both

the monthly frequency and also overlapping observations. Because of the latter,

Hansen-Hodrick standard errors are preferable to Newey-West standard errors, see

6The surveys conducted before 1997 extend out only four quarters.
7Forecasts about yields can be related to forecasts about excess returns via Est (rx

(n)
t+1) = −(n−

1)Est (y
(n−1)
t+1 ) + ny

(n)
t − y(1)

t .
8The surveys are conducted between the 23rd and 26th of the preceding month; the January

survey is conducted between the 17th and the 21st of December.
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Cochrane and Piazzesi (2005). We use 3(h+1) lags to estimate the covariance matrix

of the parameter estimates.

Table 7 shows the results. For all forecast horizons, the coefficient on ISK is positive

and statistically significant at the five-percent level. As before, we find that in predic-

tive regressions with ISK and yield factors, the slope of the yield curve has a negative

coefficient, which is statistically significant for horizons of three quarters and beyond.

Appendix A.4 present results for a similar analysis using the consensus forecasts in

the Survey of Professional Forecasters. There we also find strong predictive power of

conditional skewness for survey forecast errors at all forecast horizons.

Previous work has documented that expectation errors are particularly pronounced for

short-term yields (Cieslak, 2018; Brooks, Katz, and Lustig, 2020). We have therefore

also investigated the predictive power for Blue Chip forecast errors for Treasury yields

of shorter maturities (1y, 2y, 5y). We found that ISK forecasts with higher accuracy

the shorter the yield maturity. We omit these results for the sake of brevity.

Finally, we also investigated the role of survey forecast revisions. Coibion and Gorod-

nichenko (2015) found that forecast revisions are strong predictors of forecast errors

for inflation and other macroeconomic variables, suggesting an important role of in-

formation rigidities for the expectation formation process. However, for long-term

Treasury yields, we have not found ex-ante survey revisions to have any predictive

power for ex-post forecast errors. Including revisions as additional predictors in the

regressions leaves our results essentially unchanged. Notably, Coibion and Gorod-

nichenko (2015) suggested that information rigidities play a larger role for less persis-

tent time series, while the ten-year Treasury yield is highly persistent, which might

explain this empirical finding.

This evidence suggests that the correlation of ISK with future interest rates that we

have documented above in Tables 4–6 is unlikely to be due entirely to its correlation

with risk premiums. Instead, it appears that conditional yield skewness is systemati-

cally related to the difference between subjective and true expectations about future

yields and bond returns, that is, to persistently biased beliefs of investors.
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4.4 Skewness in the time of COVID

As we noted earlier, skewness has reversed its downward trend and reached all-time

high values in the wake of the COVID pandemic. A natural question is whether the

unusual circumstances have disrupted the properties of skewness established in this

paper. The answer is no. In fact, the period immediately preceding the COVID

lockdown and the COVID period itself serve as a nice showcase of our findings.

Figure 4 displays the main actors in the reported evidence: ISK, the ten-year Treasury

yield and its survey forecasts from BCFF, and the slope of the yield curve, measured

as the difference between the ten-year and three-month Treasury yields. We see that

skewness was negative throughout 2019, and, in fact, sharply dropped to -1.5 in early

2020 as the pandemic was taking hold. After that, coincident with aggressive mone-

tary and fiscal stimulus, it started climbing back and ultimately reached historically

high values around 1.0 in the second half of 2020. Was skewness helpful in predicting

10-year yields during this period? Was it related to expectational errors of forecast

surveys?

Early 2019 and late 2020 are two episodes where the slope was close to zero in both

cases, predicting low bond returns and rising interest rates. But the level of skewness

differed substantially, negative during the first and positive during the second episode.

In 2019 the signal from the slope turned out to be incorrect, as yields dropped pre-

cipitously. This was correctly anticipated by the implied skewness. In 2020, while the

prediction of the flat yield curve for rising long-term rates ultimately turned out to

be correct, the slope was essentially unchanged over most of the year, so that it was

of little use as a timely indicator of interest rate risk. Skewness, by contrast, all of

a sudden rose subtantially in the middle of the year, correctly anticipating the rising

long-term yields. Both of these episodes highlight the extra information in skewness

that is not present in the current yield curve.

Large swings in skewness during this period indicate large expectational errors. Con-

sistent with our regression results in Table 7, forecasters were overshooting yields

in the beginning of the pandemic and then undershooting later in this episode. In

fact, in late 2020 expectational errors were large as Treasury yields began a sustained
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ascent from historical lows (from 0.5% to 1.5%). At the time market observers were

surprised by the development. Again, this was correctly predicted by skewness, which

started rising in advance of the rise in yields.

Thus, the COVID episode and the sudden rise in yields seem special at a first glance.

After all, yields rarely move by such large magnitudes over such short periods of

time. But it wasn’t so different from the vantage point of conditional skewness,

which correctly anticipated both the dramatic decline in long-term Treasury yields

in 2019 and early 2020, as well as their pronounced increase starting in the middle of

the COVID pandemic.

5 A potential explanation of the evidence

To summarize, we have accumulated the following evidence: Treasury yields exhibit

time-varying conditional skewness. A single measure of the skewness, ISK, is related

to the shape of the yield curve, and predicts, after controlling for the yied curve and

other usual suspects, bond excess returns and yield forecasting errors associated with

professional surveys. A natural question is whether this evidence is consistent with

an economic mechanism. That skewness is time-varying and is related to bond excess

returns via expectation errors implies that an explanation should feature non-normal

time-varying distribution and subjective beliefs.

The heterogeneous beliefs framework is an attractive candidate for capturing the

evidence because, as we show below, it does not require hardwiring non-normal dis-

tribution of state variables and differences in beliefs could be interpreted as expecta-

tion errors. Heterogeneous beliefs models are known to imply time variation in risk

premiums and volatility of asset returns. They also impact the spot risk-free rate.

Unfortunately, there is dearth of research on the term structure of interest rates.

In this section we adopt the EGHI model to demonstrate how heterogeneous beliefs

could be consistent with our evidence. We consider a special case of the framework

where one of the agents knows the true distribution of inflation while the other one

has an erroneous conditional expectation. This perspective is consistent with Reis
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(2020) who posits that bond traders are better informed than the general public,

which is proxied by surveys.

In this case, the usual disagreement between the agents becomes a measure of a

bias in beliefs, computed as the difference between (biased) survey-based and (true)

statistical inflation expectations, standardized by inflation’s volatility. As we show

in Appendix A.5, the bias in beliefs becomes a state variable, ∆t, that affects bond

yields, their departures from the normal distribution, and bond risk premiums.

In particular, bond yields are a quadratic function of the bias via the substitution

effect. That makes them non-normally distributed despite the normal state vari-

ables driving the economy. Thus, the presence of the biased beliefs directly affects

the distribution of yields. Finally, bias in beliefs affects time-variation in bond risk

premiums. Taken together, all these features are qualitatively consistent with the

presented evidence.

As a next step, we use an illustrative version of the EGHI model to understand how

skewness is related to the bias. Due to the complicated dependence of yields on states,

we resort to simulations to accomplish the analysis. We conduct a comparative static

exercise as follows.

We simplify the model by focusing on dynamics of inflation alone. Further, we assume

that ∆t is constant. See the special case in Appendix A.5. Lastly, we simulate the

true dynamics of inflation, and then compute nominal short rate and its skewness for

a range of values of ∆. Figure 5 plots of the dispersion in beliefs, ∆2, which captures

the substitution effects in the interest rates, vs the corresponding value of skewness.

Yield skewness depends on the dispersion in beliefs about inflation in a non-linear

fashion. For a small ∆2, skewness is close to zero precisely because yields become close

to normally distributed. Skewness turns negative for moderate size of ∆2, reaching a

minimum of −0.5 before increasing with the size of the bias. In summary, we conclude

that the model is capable of generating quantitatively the skewness’ scenarios that

we see in the data.

The EGHI model connects biased beliefs about inflation to the distribution of yields

and bond risk premiums. The presented evidence documents the connection of skew-
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ness and risk premiums to expectation error about yields. To trace out the explicit

connection to the predictions of the model, we document predictability of consensus

yield forecast errors based on expectation errors about inflation. Table 8 shows that

in the BCFF, inflation forecast errors are significantly positively correlated with yield

forecast errors. Appendix A.4 reports similar results for the SPF forecasts. These

results demonstrate that expectation errors about inflation and yields are related, in

line with the predictions of the model.

6 Conclusion

Our paper makes three contributions to the macro-finance literature. First, we doc-

ument novel empirical patterns for the conditional skewness of Treasury yields, in-

cluding a tight empirical relationship between conditional skewness and the shape of

the yield curve, the business cycle, and the stance of monetary policy. Second, we

show that option-based yield skewness contains useful forward-looking information

for interest rates, including predictive power for survey forecast errors. The evidence

suggests that conditional skewness captures biased beliefs about future interest rates.

Third, we argue that our empirical findings can be rationalized by a simple theoretical

framework with heterogeneous beliefs.
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A Appendix

A.1 Calculating option-implied moments of Treasury yields

Our Treasury derivatives data are end-of-day prices of Treasury futures and options from CME.9

We focus on the 10-year T-note futures contract (or “TY”). The deliverable securities for the TY
contract are “U.S. Treasury notes with a remaining term to maturity of at least six and a half
years, but not more than 10 years” (according to the CME contract specifications). The contract
expirations are at the end of each calendar quarter, and at each point in time three consecutive
quarterly contracts are available; the exact delivery date is roughly in the third week of the month.
The first quarterly contract is the most active, until about 2-3 weeks before expiration when trading
in the subsequent quarterly contract becomes more active. Therefore, when working with futures
prices (e.g., for calculating sample moments or realized moments of price changes), we always use the
first quarterly expiration that is not in the current calendar month (e.g., we use the March contract
until the end of February, and the June contract starting in the beginning of March).

The options on the TY contract are available for three quarterly and three serial (monthly) expi-
rations, and they each exercise into the next futures contract. For example, February and March
options exercise into the March futures contract, and April options exercise into June futures con-
tract. The last trading day for each options contract is the “2nd last business day of the month
prior to the contract month” so that trading for the March options ends at the end of February. We
denote by t the current trading day and by T the last trading day (or expiration date) of an options
contract. For most of our analysis we focus on the first quarterly option expiration. In some cases
we linearly interpolate option-implied moments to a constant horizon, and then we use 0.2 years
as the horizon which is about the average maturity of all option contracts (across all expirations,
strikes and put/call prices), and interpolate based on the data for the two expirations surrounding
this horizon.

Based on option prices on day t for the contract expiration T we can calculate conditional market-
based/risk-neutral moments for the price of the underlying futures contract at the time of the option
expiration, FT . The implied risk-neutral variance is

V artFT = Et(FT − Ft)2 = 2

[∫ ∞
Ft

C(K)dK +

∫ Ft

0

P (K)dK

]

= 2

∫ ∞
0

C(K)−max(0, FT −K)dK

where all moments are under the time-T forward measure, we treat Ft as the forward price for
simplicity, and the forward call and put prices for options with strike K are C(K) and P (K).
Because expectations are under the T -forward measure, EtFT = Ft, C(K) = Et max(0, FT −K) and
P (K) = Et max(0,K − FT ). The second line follows from put call parity, C(K)− P (K) = FT −K.

9For details see https://www.cmegroup.com/trading/interest-rates/us-treasury.html.
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The implied third moment is

Et(FT − Ft)3 = 6

[∫ ∞
Ft

(K − Ft)C(K)dK −
∫ Ft

0

(Ft −K)P (K)dK

]

= 6

∫ ∞
0

(K − Ft)(C(K)−max(0, FT −K))dK.

See also Trolle and Schwartz (2014) who use similar formulas for calculating swaption-implied mo-
ments for future swap yields. The implied skewness coefficient is

skewFt,T =
Et(FT − Ft)3

(V artFT )3/2

We now describe how we implement these measures empirically. In what follows σ is the normal
implied volatility (IV) for at-the-money options. Normal IV, the most common way to measure IV
in bond markets, is based on the Bachelier model and measures the volatility of future price changes
under the assumption that they are Gaussian. First, we filter our options data to reduce the impact
of measurement error and eliminate data errors, similar to Beber and Brandt (2006). Specifically,
we exclude options that

� have maturity of at most two weeks

� have prices of at most two ticks (2/64)

� have relative moneyness greater than 15, i.e., (Ft−K)/
√

(T − t)σ2 is at most 15 in absolute
value (options that are further out of the money tend to have unreliable/implausible IVs),

� are too far out of the money, with absolute moneyness of less than -15 (the absolute moneyness
is F −K for calls and K − F for puts),

� have distinct duplicate prices for the same strike (using the IVs and other prices we can
eliminate the erroneous price by hand),

� have prices which are not monotone across strikes, or

� violate the no-arbitrage condition that the price is no lower than the intrinsic value.

Then we calculate implied moments for each pair (t, T ) if we observe at least five option prices (puts
and calls across all strikes) in the following way:

1. We select all option prices that are ATM/OTM

2. We calculate the normal IVs for these observed prices.

3. We fit a curve in strike-IV space by linearly interpolating IVs and, outside the range of
observed prices, using IVs at the endpoints of the range.

4. We obtain a continuous price function C(X) by mapping the IVs back to call prices using the
Bachelier pricing formula.

5. We approximate the required integrals using trapezoid rule for grid of strike prices from Ft−10
to Ft + 10 with 200 grid points (see also Jiang and Tian, 2005).
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As a result we have, for each trading day t and option expiration T , conditional model-implied
variances and skewness coefficients for the change in the futures price between t and T .

With the moments for futures prices in hand we can also calculate certain moments for changes in the
yields of the cheapest-to-deliver (CTD) bond. The reason is that for small changes, the relationship
between changes in futures prices and changes in the CTD yield is approximately linear. The “dollar
value of a basis point” (DV01) is the negative sensitivity of the futures price (in points) to a change
in the CTD yield (in basis points). Denoting the change in the futures price as ∆F and the change
in the CTD yield by ∆y, we have

∆y ≈ − ∆F

DV 01
.

Under the assumption that the change in the CTD yield until expiration, yT − yt, is small, and that
DV 01 remains approximatley unchanged between t and T , we can obtain risk-neutral moments for
future yields as

V artyT ≈
V artFT
(DV 01)2

, Et(yT − yt)3 ≈ −Et(FT − Ft)
3

(DV 01)3
, skewyt,T ≈ −skew

F
t,T

The DV 01 data, as well as any information about the CTD bonds, becomes available on Bloomberg
in 2004. But this information is not required for the skewness coefficient, since skewness of yield
changes is approximately equal simply to the negative of the skewness of futures price changes.

Our derivation and implementation abstracts from the fact that Treasury options are American
options on futures contracts, and not, as assumed, European options on forward contracts. Existing
results suggest that accounting for early exercise would lead to only minor adjustments; see Bikbov
and Chernov (2009) and Choi, Mueller, and Vedolin (2017). In addition, since we only use out-of-
the-money options any adjustment for early exercise would be minimal, since there are no dividends
and the early-exercise premium increases with the moneyness of options.

A.2 Additional results for Treasury bond returns

Table A1 shows predictive regressions for excess bond returns similar to those in Table 4, but for a
sample that ends in November 2008, before the Fed lowered the policy rate to the ZLB. Limiting the
sample period in this way substantially increases the coefficient on ISK, and with only the exception
of the univariate regression in column 2 it also raises the statistical significance of this coefficient
and the R2 of the regression. Evidently, conditional yield skewness had even more predictive power
for bond returns before the ZLB period.

A.3 Additional results for FOMC announcement surprises

Since Gürkaynak, Sack, and Swanson (2005) the literature on high-frequency event studies of FOMC
announcements has focused on two measures of the policy surprises: a target surprise which, similar
to the original measure proposed by Kuttner (2001), measures the surprise change in the federal
funds rate, and a path surprise which captures the change in the expected policy path that is
orthogonal to the target surprise. The two surprises are the first two principal components of the
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high-frequency changes in different money market futures rates, appropriately rotated and scaled
(for details see Gürkaynak, Sack, and Swanson, 2005).

Table A2 shows estimates of predictive regressions for the target surprise (columns 1-5) and the
path surprise (6-10). Generally, ISK contains predictive power for both components of the policy
surprise. However, in regressions with macro variables, the predictive power tends to be stronger
for the path surprise. In additional, unreported results we have found that excluding the 9 unsched-
uled announcements in our dataset lowers the predictability of the target surprise but raises the
predictability of the path surprise.

A.4 Additional results for SPF forecast errors

Here we present additional evidence using the quarterly Survey of Professional Forecasters (SPF).
As in the BCFF, the forecast target is the quarterly average for the constant-maturity 10-year yield
from the Fed’s H.15 statistical release. Forecasts are reported for the current quarter (nowcasts)
and each of the subsequent four quarters. As the SPF consensus forecast we take the median of the
individual forecasts.

We run predictive regressions of the form

yt+h − ŷ(h)
t = β′Xt + εt,t+h, (A.1)

where t indexes the quarterly SPF surveys, yt is the average 10-year yield in quarter t, ŷ
(h)
t is

the survey consensus forecast made in quarter t for the average 10-year yield in quarter t + h, h
ranges from 0 to 4, Xt is a vector with predictors, and εt,t+h is a forecast error. To ensure that
the predictors Xt are observable at the time the forecast is made, we take observations on the day
before the response deadline of the survey. Because the forecast errors εt,t+h are serially correlated
we use Hansen-Hodrick standard errors with h lags.

Table A3 shows the results. For each forecast horizon, we estimate two specifications, one with ISK
only, and one that also includes yield factors. We find that ISK has statistically significant predictive
power for all forecast horizons. The specifications that also include yield curve factors show that
the slope tends to have additional predictive power for h > 0. As before, we find that the slope has
a negative coefficient while ISK has a positive coefficient.

Paralleling our analysis for the Blue Chip surveys (see Table 8 and the discussion in Section 5, we
also consider the relationship between yield forecast errors and inflation forecast errors in the SPF
surveys. The results in Table A4 show that there is generally a positive correlation, with a rela-
tionship that is strongly statistically significant for the one-quarter-ahead forecast, and marginally
significant for the two- and four-quarter horizons. Overall these results are consistent with our
findings from the Blue Chip surveys.

A.5 A model of biased beliefs

The model is adopted from Ehling, Gallmeyer, Heyerdahl-Larsen, and Illeditsch (2018).
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Setup

Consumption growth follows

dCt/Ct = µCdt+ σCdzC,t.

Inflation follows:

dΠt/Πt = xtdt+ σΠdzΠ,t,

dxt = κ(x̄− xt)dt+ σxdzx,t.

Expected inflaton xt is not observable. There are two agents in the economy who disagree about
its true dynamics, specifically its volatility σx. We assume that agent 1 is correct, that is σ1

x = σx.
Agent 2 represents the consensus survey forecast, σ2

x = σsx.

As a result, the second agent’s perceived inflation and its expectation follow:

dΠt/Πt = xstdt+ σΠdz
s
Π,t,

dxst = κ(x̄− xst )dt+ σ̂sxdz
s
Π,t,

dzsΠ,t = dzΠ,t + σ−1
Π (xt − xst )dt,

σ̂sx = σΠ

(√
κ2 + (σ−1

Π σsx)2 − κ
)
.

The first agent does not observe xt either, thus its filtered dynamics follow:

dxt = κ(x̄− xt)dt+ σ̂xdzΠ,t,

σ̂x = σΠ

(√
κ2 + (σ−1

Π σx)2 − κ
)
.

The expectation error is defined as

dzΠ,t − dzsΠ,t ≡ ∆tdt.

We can derive dynamics of the bias in beliefs ∆t as

d∆t = −β∆tdt+ σ∆dzΠ,t, β = κ+ σ−1
Π σ̂sx, σ∆ = σ−1

Π (σ̂sx − σ̂x).

Let P and Ps denote the true and subjective probabilities, respectively. Let ξt and ξst denote the
state-price density (SPD) under the probability P and Ps, respectively. Es is expectation taken
under Ps. Agents 1 and 2 solve their consumption-savings problems given by, respectively,

maxE

(∫ T

0

e−ρtu(C1
t /Ht)dt

)
s.t. E

(∫ T

0

ξtC
1
t dt

)
≤ w1

0,

maxEs

(∫ T

0

e−ρtu(C2
t /Ht)dt

)
s.t. Es

(∫ T

0

ξstC
2
t dt

)
≤ w2

0,
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where

u(X) ≡ X1−γ/(1− γ),

and habit Ht is

logHt ≡ logH0 · e−δt + δ

∫ t

0

e−δ(t−u) logCudu.

Dynamics of Ct and Ht imply that the relative log output ωt = log(Ct/Ht) follows

dωt = δ(ω̄ − ωt)dt+ σCdzC,t, ω̄ = (µC − σ2
C/2)/δ.

Results

Consumption allocations and state price densities. Denote the likelihood ratio by λt = dP/dPs =
y−1ξt/ξ

s
t , where y = y2/y1, and yi is the constant Lagrange multiplier from the respective budget

constraint. Optimal consumption allocations are

C1
t = f(λt)Ct, C2

t = (1− f(λt))Ct, f(λt) = (1 + (yλt)
1/γ)−1.

The state price densities are:

ξt = (y1)−1e−ρtC−γt Hγ−1
t f(λt)

−γ

= (y1)−1e−ρtC−γt Hγ−1
t (1 + (yλt)

1/γ)γ

=

γ∑
k=0

(
γ

k

)
(y1)−1e−ρtC−γt Hγ−1

t (yλt)
k/γ ,

ξst = (y2)−1e−ρtC−γt Hγ−1
t (1− f(λt))

−γ .

Note that yi and y cancel out in the SDF, ξiT /ξ
i
t.

Lastly,

dλt = ∆tλtdzΠ,t.

Bond pricing. Set y = 1 w.l.o.g. The real bond price is, for integer γ,

Bt,T = Et(ξT /ξt) =

γ∑
k=0

w
(k)
t Et

[
e−ρ(T−t)

(
CT
Ct

)−γ (
HT

Ht

)γ−1(
λT
λt

)k/γ]
=

γ∑
k=0

w
(k)
t Et

[
ξ

(k)
C,T

ξ
(k)
C,t

]
,

w
(k)
t =

(
γ

k

)
λ
k/γ
t (1 + λ

1/γ
t )−γ ,

ξ
(k)
C,t = e−ρtC−γt Hγ−1

t λ
k/λ
t .
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Then

dξ
(k)
C,t/ξ

(k)
C,t = −r(k)

t dt− γσC · dzC,t − γ−1k∆t · dzΠ,t,

r
(k)
t = ρ+ γµC − γ(γ + 1)σ2

C/2− δ(γ − 1)ωt +
1

2

k

γ

(
1− k

γ

)
∆2
t .

These expressions imply exponentially quadratic form in the states ∆t and ωt. Thus, bond prices
are weighted averages of exponentially quadratic functions of Gaussian state variables. The weights

w
(k)
t , which add up to 1, are affected by the bias in beliefs via λt.

The real short rate is obtained by applying Ito’s lemma to ξt and picking out the drift of the result:

rt = ρ+ γ(µC − σ2
C/2)− γ2σ2

C/2− δ(γ − 1)ωt +
1

2
(1− IES) f(λt)(1− f(λt))∆

2
t ,

where IES = γ−1 stands for intertemporal elasticity of substitution. IES < 1 for a risk averse
agent. The terms in the expression for rt are rate of time preference, consumption smoothing over
time, precautionary savings, habit, and substitution effect.

The nominal bond price is

Pt,T = Et(ξT /ξt ·Πt/ΠT ) =

γ∑
k=0

w
(k)
t Et

[
e−ρ(T−t)

(
CT
Ct

)−γ (
HT

Ht

)γ−1(
λT
λt

)k/γ
Πt

ΠT

]

=

γ∑
k=0

w
(k)
t Et

[
ξ

(k)
Π,T

ξ
(k)
Π,t

]
,

where ξ
(k)
Π,t = e−ρtC−γt Hγ−1

t λ
k/λ
t Π−1

t . Then

dξ
(k)
Π,t/ξ

(k)
Π,t = −i(k)

t − γσC · dzC,t − (σΠ + γ−1k∆t) · dzΠ,t,

i
(k)
t = ρ+ γµC − γ(γ + 1)σ2

C/2− σ2
Π − δ(γ − 1)ωt + xt +

k

γ
∆t +

1

2

k

γ

(
1− k

γ

)
∆2
t .

These expressions imply exponentially quadratic form in states xt, ∆t, and ωt. Thus, bond yields,
−(T − t)−1 logPt,T are non-normal because they are complicated non-linear functions of Gaussian
state variables.

The nominal short rate is

it = rt + σΠ(1− f(λt))∆t + xt − σ2
Π.

When there is no bias in beliefs, ∆t = 0, nominal bond yields become linear functions of the
Gaussian state variables xt and ωt. Thus, ∆t controls non-normality of yields, and their skewness,
in particular.

Bond risk premiums. If ∆t = 0, the bond risk premiums are constant as implied by the expression

for the SPD ξ
(k)
Π,t. It is also straightforward if cumbersome to show explicit bond risk premium

dependence on ∆t.
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Write the nominal bond price as

Pt,T =

γ∑
k=0

w
(k)
t P

(k)
t,T ,

where P
(k)
t,T are the artificial (exponential quadratic) bond prices corresponding to the SPD ξ

(k)
Π,t.

Then,

Et

(
dPt,T
Pt,T

)
=

γ∑
k=0

[
P

(k)
t,T

Pt,T
Et

(
dw

(k)
t

)
+ w

(k)
t Et

(
dP

(k)
t,T

Pt,T

)]

=

γ∑
k=0

w
(k)
t

P
(k)
t,T

Pt,T
· Et

(
dP

(k)
t,T

P
(k)
t,T

)
.

Expected bond return in each artificial economy is going to be the corresponding risk-free rate, i
(k)
t ,

plus a linear function of the prices of risk, one of which is constant, γσc, and the other one is linear
in disagreement, σΠ + γ−1k∆t. Continuing the previous expression, one can then write:

1

dt
Et

(
dPt,T
Pt,T

)
=

γ∑
k=0

w
(k)
t P

(k)
t,T

Pt,T
·
(
i
(k)
t + α

(k)
t + β

(k)
t γσc + γ

(k)
t (σΠ + γ−1k∆t)

)
,

where α, β and γ reflect sensitivities of a bond price w.r.t. to its factors (see, e.g., Ahn, Dittmar,
and Gallant, 2002 for explicit expressions). Thus, the risk premium is:

1

dt
Et

(
dPt,T
Pt,T

− itdt
)

=

γ∑
k=0

w
(k)
t P

(k)
t,T

Pt,T
×[

α̃
(k)
t +

(
k

γ
− σΠ(1− f(λt)) + γ

(k)
t γ−1k

)
∆t +

(
k

γ

(
1− k

γ

)
−
(

1− 1

γ

)
f(λt)(1− f(λt))

)
∆2
t

2

]
.

Special case: static bias

This model is referred to as GBM in EGHI. In this case xt = x, xst = xs, and Ct = Ht = 1. Then

dzsΠ,t = dzΠ,t + σ−1
Π (x− xs)dt,

dzΠ,t − dzsΠ,t = σ−1
Π (xs − x)dt ≡ ∆dt,

dλt = λt∆dzΠ,t.

Bond pricing. The real bond price is exactly the same, but λt has a different dynamic. That will

show up in the set of artificial SPDs ξ
(k)
C,t:

dξ
(k)
C,t/ξ

(k)
C,t = −r(k)

t − γ−1k∆ · dzΠ,t,

r
(k)
t = ρ+

1

2

k

γ

(
1− k

γ

)
∆2.
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As a result, the real short rate is

rt = ρ+
1

2

(
1− 1

γ

)
∆2f(λt)(1− f(λt)).

The nominal yields follow by analogy:

it = rt + σΠ(1− f(λt))∆ + x− σ2
Π.
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Figure 1: Yield skewness. Panel (A) displays monthly realized Treasury yield skew-
ness, calculated from changes in daily Treasury futures prices and implied volatilities,
with a 12-month moving average (blue line). Panel (B) plot daily implied Treasury
yield skewness, calculated from options on Treasury futures and interpolated to a
constant horizon of 0.2 years, with a 250-day moving average (blue line). Panel (C)
shows residual skewness from a regression of monthly implied skewness on yield-curve
factors (specification 4 in Table 3), with a 12-month moving average (blue line). Sam-
ple period: January 2, 1990, to May 28, 2021.
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Figure 2: Skewness and interest rates. Option-implied yield skewness (left
axis) with two-year and 10-year Treasury yields (right axis). Annual moving av-
erages of daily values. Turquoise/orange shaded areas indicate monetary policy eas-
ing/tightening cycles (based on changes in the fed funds rate). Sample period: Jan-
uary 1990 to May 2021.
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Figure 3: Densities for future yields at ZLB. Option-implied probabilities densi-
ties for future CTD bond yield given market prices on December 31, 2013 (left panel)
and June 16, 2020 (right panel). Red shaded area indicates 1st percentile.
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Figure 4: Skewness and interest rates since 2019. Ten-year Treasury yield, yield
forecasts from Blue Chip Financial Forecasts, option-implied yield skewness, and slope
of the yield curve (measured as difference between ten-year and three-month yield).
Sample period: January 2, 2019, to May 28, 2021.
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Figure 5: Bias in beliefs and skewness. Sample skewness of interest rates sim-
ulated from a simple model with biased beliefs (described in Appendix A.5). For
each value of ∆, 10,000 paths of the real short rate are simulated over a ten-year
horizon, using monthly time increments, and the skewness coefficient is calculated for
the distribution of the final value of the short rate. Parameter settings are x = 0.04,
γ = 5, σ = 0.02.
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Table 1: Summary statistics for changes in 10-year Treasury yield

Full sample 1990-2004 2005-2021

Summary statistics of quarterly yield changes
Mean -0.05 (-0.13, 0.01) -0.07 (-0.18, 0.03) -0.04 (-0.14, 0.05)
Median -0.02 (-0.10, 0.04) -0.04 (-0.18, 0.13) -0.02 (-0.14, 0.06)
Variance 0.23 (0.18, 0.28) 0.23 (0.18, 0.29) 0.23 (0.16, 0.31)
Third moment -0.03 (-0.06, 0.01) 0.00 (-0.04, 0.04) -0.05 (-0.11, 0.01)

Skewness of m-month yield changes
m = 1 0.03 (-0.41, 0.52) 0.52 (0.12, 0.96) -0.49 (-1.20, 0.16)
m = 2 -0.41 (-1.27, 0.36) 0.46 (0.15, 0.79) -1.05 (-2.52, -0.20)
m = 3 -0.24 (-0.56, 0.05) 0.01 (-0.35, 0.34) -0.46 (-1.05, -0.02)
m = 6 0.03 (-0.30, 0.37) 0.27 (-0.20, 0.77) -0.27 (-0.71, 0.19)
m = 12 0.36 (-0.10, 0.84) 0.40 (-0.30, 1.10) 0.37 (-0.19, 1.17)

Skewness of m-month (negative) futures price changes
m = 1 -0.14 (-0.63, 0.41) 0.40 (0.02, 0.81) -0.69 (-1.47, 0.04)
m = 2 -0.20 (-0.66, 0.30) 0.32 (0.05, 0.61) -0.72 (-1.55, -0.01)
m = 3 -0.16 (-0.39, 0.06) 0.15 (-0.07, 0.40) -0.45 (-0.84, -0.14)

Summary statistics for changes in 10-year Treasury yield and futures prices. Sample period: January
1990 to May 2021.
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Table 2: Predicting realized skewness

(1) (2) (3) (4) (5) (6) (7)

RSK 0.43∗∗∗ 0.20∗∗∗ 0.40∗∗∗ 0.19∗∗∗

(0.04) (0.06) (0.05) (0.06)
ISK 2.05∗∗∗ 1.51∗∗∗ 2.04∗∗∗ 1.52∗∗∗

(0.22) (0.27) (0.23) (0.27)
Level −0.02 −0.02 −0.02 −0.02

(0.06) (0.04) (0.04) (0.03)
Slope 0.27∗∗∗ 0.14∗∗ 0.05 0.04

(0.08) (0.06) (0.06) (0.06)
Curvature 0.08 0.15 −0.48 −0.31

(0.55) (0.33) (0.34) (0.31)
Constant 0.08 −0.09 −0.06 −0.39 −0.18 0.07 0.06

(0.07) (0.08) (0.07) (0.47) (0.32) (0.29) (0.26)

Observations 376 376 376 376 376 376 376
R2 0.18 0.23 0.26 0.05 0.19 0.24 0.26

Predictive regressions for one-month realized skewness (RSK). ISK is option-implied yield skewness;
RSK is realized yield skewness based on daily changes in futures prices and implied volatilities,
following Neuberger (2012); Level, Slope and Curvature are the first three principal components of
Treasury yields from one to ten years maturity (appropriately scaled). All predictors are measured
at the end of the previous month. Sample: monthly observations from January 1990 to May 2021.
Newey-West standard errors with automatic bandwidth selection are reported in parentheses, and
∗, ∗∗, and ∗∗∗ indicate statistical significance at the 10%, 5% and 1% levels, respectively.
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Table 3: Explaining the level of conditional yield skewness

(1) (2) (3) (4) (5) (6) (7)

RSK 0.14∗∗∗ 0.13∗∗∗ 0.13∗∗∗ 0.11∗∗∗

(0.02) (0.02) (0.02) (0.01)
Level 0.004 0.004 0.06 0.06∗∗∗ 0.01

(0.02) (0.01) (0.04) (0.02) (0.01)
Slope 0.10∗∗∗ 0.06∗∗∗ 0.20∗∗∗ 0.17∗∗∗ −0.01

(0.03) (0.02) (0.06) (0.04) (0.03)
Level*Slope −0.03∗∗ −0.03∗∗∗

(0.01) (0.01)
Easing 0.23∗∗∗ 0.19∗∗∗

(0.08) (0.07)
Tightening −0.16∗∗ −0.10∗

(0.08) (0.06)
Constant 0.10∗∗∗ −0.11 −0.05 −0.32 −0.27∗∗ 0.07 0.03

(0.03) (0.14) (0.10) (0.19) (0.12) (0.06) (0.11)

Observations 377 377 377 377 377 377 377
R2 0.44 0.15 0.50 0.19 0.54 0.31 0.58

Regressions for the level of option-implied yield skewness of the ten-year Treasury yield, using
monthly data from January 1990 to May 2021. RSK is monthly realized yield skewness based on
daily changes in futures prices and implied volatilities, following Neuberger (2012); Level and Slope
are the first two principal components of Treasury yields from one to ten years maturity, scaled
to correspond to level and slope of the yield curve; Easing and Tightening are dummy variables
indicating whether the Federal Reserve was easing or tightening monetary policy one year ago (based
on observed changes in the policy rate). Newey-West standard errors (with automatic bandwidth
selection) are reported in parentheses, and ∗, ∗∗, and ∗∗∗ indicate statistical significance at the 10%,
5% and 1% levels, respectively.
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Table 4: Predicting excess returns

(1) (2) (3) (4) (5) (6)

Level 0.003∗∗ 0.004∗∗ 0.004∗∗ 0.004∗∗ 0.01∗∗∗ 0.01∗∗∗

(0.002) (0.002) (0.001) (0.002) (0.01) (0.002)
Slope 0.02∗ 0.03∗∗∗ 0.03∗∗ 0.03∗∗∗ 0.05∗∗∗ 0.05∗∗∗

(0.01) (0.01) (0.01) (0.01) (0.01) (0.01)
Curvature 0.03 0.004 0.04 0.01 −0.05 −0.02

(0.06) (0.06) (0.06) (0.06) (0.07) (0.06)
ISK −0.34∗∗∗ −0.28∗∗ −0.32∗∗∗ −0.29∗∗

(0.12) (0.13) (0.12) (0.14)
RSK −0.06∗∗∗ −0.02

(0.02) (0.02)
i∗ −0.26∗∗

(0.12)
GLS −0.39∗∗

(0.17)
Constant −0.07 −0.15∗ −0.11 −0.15 0.26 −0.03

(0.10) (0.09) (0.09) (0.09) (0.18) (0.14)

Observations 374 374 374 374 374 347
R2 0.06 0.11 0.09 0.11 0.13 0.14

Predictive regressions for three-month excess bond returns (average of duration-normalized excess
returns on Treasury bonds with one to ten years maturity) using monthly data from January 1990
to May 2021. Predictors: Level, Slope and Curvature are the first three principal components of
end-of-month Treasury yields from one to ten years maturity (appropriately scaled); ISK is option-
implied yield skewness averaged over the last five business days of the month; RSK is monthly
realized yield skewness based on daily changes in futures prices and implied volatilities, following
Neuberger (2012); i* is an estimate of the trend component of nominal interest rates from Bauer
and Rudebusch (2020); GLS is survey disagreement about future ten-year yields from Giacoletti,
Laursen, and Singleton (2021). Standard errors based on the reverse regression delta method of Wei
and Wright (2013) are reported in parentheses, and ∗, ∗∗, and ∗∗∗ indicate statistical significance at
the 10%, 5% and 1% levels, respectively.
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Table 5: Predicting FOMC surprises with ISK and RSK

(1) (2) (3) (4) (5)

Level −0.0002 −0.001 −0.001 −0.001
(0.001) (0.001) (0.001) (0.001)

Slope −0.001 −0.007∗∗∗ −0.003 −0.007∗∗∗

(0.002) (0.003) (0.002) (0.003)
Curvature −0.016 −0.025∗ −0.015 −0.029∗∗

(0.013) (0.014) (0.013) (0.014)
ISK 0.030∗∗∗ 0.043∗∗∗ 0.059∗∗∗

(0.009) (0.012) (0.016)
RSK 0.004∗∗ −0.005∗

(0.002) (0.003)
Constant 0.003 −0.010∗∗∗ 0.018∗∗ 0.008 0.017∗

(0.007) (0.003) (0.009) (0.008) (0.009)

Observations 213 213 213 213 213
R2 0.009 0.056 0.099 0.027 0.112

Predictive regressions for the monetary policy surprise around FOMC announcements from January
1994 to June 2019. The dependent variable is the first principal component of 30-minute futures rate
changes around the announcement for five different contracts with up to about one year maturity.
Level, Slope and Curvature are the first three principal components of Treasury yields from one
to ten years maturity (appropriately scaled) measured on the day before the announcement; ISK
is option-implied yield skewness, RSK is realized yield skewness based on daily changes in futures
prices and implied volatilities, following Neuberger (2012), both implied and realized skewness use
data over the month (22 trading days) before the FOMC announcement. White heteroskedasticity-
robust standard errors are reported in parentheses, and ∗, ∗∗, and ∗∗∗ indicate statistical significance
at the 10%, 5% and 1% levels, respectively.
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Table 6: Predicting FOMC surprises with ISK and macro variables

(1) (2) (3) (4)

ISK 0.031∗∗∗ 0.028∗∗∗ 0.032∗∗∗ 0.021∗∗∗

(0.009) (0.009) (0.009) (0.008)
FFR −0.001

(0.001)
Annual employment growth 0.455∗∗∗

(0.169)
BBK index 0.010∗∗

(0.004)
Change in employment 0.057∗∗∗

(0.018)
S&P 500 return 0.135∗∗∗

(0.049)
Constant −0.013∗∗∗ −0.008∗∗∗ −0.016∗∗∗ −0.011∗∗∗

(0.004) (0.003) (0.004) (0.003)

Observations 213 213 213 213
R2 0.084 0.107 0.130 0.128

Predictive regressions for the monetary policy surprise around FOMC announcements from January
1994 to June 2019. The dependent variable is the first principal component of 30-minute futures rate
changes around the announcement for five different contracts with up to about one year maturity.
ISK is option-implied yield skewness averaged over the month (22 trading days) before the FOMC
announcement; FFR is the average federal funds rate over the calendar month preceding the meeting,
and Annual employment growth is the 12-month log-change in total nonfarm payroll employment
(appropriately lagged), as used by Cieslak (2018); BBK index is the Brave-Butters-Kelley business
cycle indicator form the Chicago Fed, Change in employment is the change in non-farm payrolls
released in the most recent employment report, and S&P 500 return is the stock return over the
three months (65 days) up to the day before the FOMC announcement, as used by Bauer and
Swanson (2020). White heteroskedasticity-robust standard errors are reported in parentheses, and
∗, ∗∗, and ∗∗∗ indicate statistical significance at the 10%, 5% and 1% levels, respectively.
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Table 7: Predicting Blue Chip forecast errors

Current 1Q ahead 2Q ahead 3Q ahead 4Q ahead 5Q ahead

(1) (2) (3) (4) (5) (6)

ISK 0.13∗∗∗ 0.33∗∗∗ 0.37∗∗ 0.43∗∗ 0.58∗∗∗ 0.70∗∗∗

(0.04) (0.10) (0.15) (0.17) (0.18) (0.17)
Level 0.004 0.01 0.01 0.02 0.03 −0.02

(0.01) (0.02) (0.04) (0.04) (0.04) (0.07)
Slope −0.005 −0.05 −0.09 −0.15∗ −0.20∗ −0.31∗∗

(0.02) (0.04) (0.06) (0.09) (0.10) (0.13)
Curvature −0.01 0.14 0.32 0.35 0.39 0.29

(0.10) (0.22) (0.27) (0.39) (0.50) (0.48)
Constant −0.07 −0.21 −0.35∗ −0.45 −0.56 −0.40

(0.05) (0.13) (0.19) (0.28) (0.39) (0.56)

Observations 372 371 368 365 362 276
R2 0.03 0.05 0.06 0.07 0.10 0.18

Predictive regressions for forecast errors in the h-quarter ahead consensus Blue Chip Financial
Forecasts for the ten-year Treasury yield, using monthly surveys from January 1990 to January 2021.
The forecast horizon h ranges from 0 (current/nowcast) to 5. ISK is option-implied yield skewness;
Level, Slope and Curvature are the first three principal components of end-of-month Treasury yields
from one to ten years maturity (appropriately scaled). All predictors are measured on the day of
the survey deadline. Hansen-Hodrick standard errors with 3(h+ 1) lags are reported in parentheses,
and ∗, ∗∗, and ∗∗∗ indicate statistical significance at the 10%, 5% and 1% levels, respectively.
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Table 8: Inflation and yield forecast errors in the Blue Chip survey

Dependent variable: Blue Chip inflation forecast error
Current 1Q ahead 2Q ahead 3Q ahead 4Q ahead 5Q ahead

(1) (2) (3) (4) (5) (6)

Yield forecast error 1.31∗∗ 1.00∗∗ 0.56∗∗ 0.36∗∗ 0.33∗ 0.67∗∗

(0.57) (0.45) (0.25) (0.16) (0.17) (0.28)
Constant 0.09 0.16 0.08 −0.04 −0.07 0.44

(0.11) (0.17) (0.17) (0.18) (0.22) (0.33)

Observations 372 371 368 365 362 276
R2 0.05 0.07 0.04 0.02 0.02 0.06

Regressions of forecast errors in the h-quarter-ahead consensus Blue Chip Financial Forecasts for CPI
inflation on corresponding forecast errors for the ten-year Treasury yield, using monthly surveys from
January 1990 to May 2021. The forecast horizon h ranges from 0 (current/nowcast) to 5. Hansen-
Hodrick standard errors with 3(h + 1) lags are reported in parentheses, and ∗, ∗∗, and ∗∗∗ indicate
statistical significance at the 10%, 5% and 1% levels, respectively.
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Table A1: Predicting excess returns: pre-ZLB sample

(1) (2) (3) (4) (5) (6)

Level 0.01∗∗ 0.01∗∗∗ 0.01∗∗ 0.01∗∗∗ 0.03∗∗ 0.01∗∗∗

(0.003) (0.003) (0.003) (0.003) (0.01) (0.004)
Slope 0.03∗ 0.03∗∗ 0.03∗∗ 0.03∗∗ 0.09∗∗ 0.05∗∗∗

(0.02) (0.02) (0.02) (0.02) (0.04) (0.02)
Curvature 0.01 0.09 0.05 0.09 −0.06 0.03

(0.12) (0.11) (0.11) (0.11) (0.18) (0.11)
ISK −0.75∗∗∗ −0.69∗∗∗ −0.73∗∗∗ −0.64∗∗∗

(0.24) (0.26) (0.23) (0.23)
RSK −0.09∗∗ −0.02

(0.04) (0.04)
i∗ −0.56∗

(0.30)
GLS −0.52∗

(0.27)
Constant −0.33 −0.27 −0.36 −0.28 0.34 −0.17

(0.25) (0.26) (0.24) (0.26) (0.34) (0.24)

Observations 227 227 227 227 227 227
R2 0.06 0.14 0.10 0.14 0.20 0.17

Predictive regressions for three-month excess bond returns (average of duration-normalized excess
returns on Treasury bonds with one to ten years maturity) using monthly data from January 1990 to
November 2008. Predictors: Level, Slope and Curvature are the first three principal components of
end-of-month Treasury yields from one to ten years maturity (appropriately scaled); ISK is option-
implied yield skewness averaged over the last five business days of the month; RSK is monthly
realized yield skewness based on daily changes in futures prices and implied volatilities, following
Neuberger (2012); i* is an estimate of the trend component of nominal interest rates from Bauer
and Rudebusch (2020); GLS is survey disagreement about future ten-year yields from Giacoletti,
Laursen, and Singleton (2021). Reverse regression standard errors, using the reverse regression delta
method of Wei and Wright (2013), are reported in parentheses, and ∗, ∗∗, and ∗∗∗ indicate statistical
significance at the 10%, 5% and 1% levels, respectively.
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Table A2: Predicting target and path FOMC surprises

Dependent variable:

Target surprise Path surprise

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

Level −0.003 0.002
(0.002) (0.002)

Slope −0.005 −0.01∗∗∗

(0.004) (0.005)
Curvature −0.06∗∗ −0.01

(0.03) (0.02)
ISK 0.09∗∗∗ 0.03∗ 0.03∗ 0.04∗∗ 0.02 0.05∗∗ 0.04∗∗∗ 0.03∗∗ 0.04∗∗∗ 0.03∗∗

(0.03) (0.02) (0.02) (0.02) (0.01) (0.02) (0.01) (0.01) (0.01) (0.01)
RSK −0.01∗∗∗ 0.003

(0.01) (0.004)
FFR −0.004∗ 0.002

(0.002) (0.002)
Empl. growth 0.42∗ 0.65∗∗

(0.24) (0.31)
BBK index 0.01 0.02∗∗∗

(0.01) (0.01)
Change in empl. 0.06∗∗ 0.08∗∗∗

(0.03) (0.03)
S&P 500 return 0.17∗∗ 0.14∗

(0.08) (0.08)
Constant 0.04∗∗ 0.002 −0.002−0.01−0.004 0.02 −0.02∗∗−0.001−0.01∗∗−0.004

(0.01) (0.01) (0.01) (0.01) (0.01) (0.01) (0.01) (0.004) (0.01) (0.004)

Observations 213 213 213 213 213 213 213 213 213 213
R2 0.09 0.04 0.04 0.05 0.06 0.08 0.08 0.08 0.09 0.07

Predictive regressions for the target and path factor of the monetary policy surprise around FOMC
announcements from January 1994 to June 2019, measured as in Gürkaynak, Sack, and Swanson
(2005). For a description of the predictors see the notes to Tables 5 and 6. White heteroskedasticity-
robust standard errors are reported in parentheses, and ∗, ∗∗, and ∗∗∗ indicate statistical significance
at the 10%, 5% and 1% levels, respectively.
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Table A3: Predicting SPF forecast errors

Dependent variable: SPF forecast error

Current 1Q ahead 2Q ahead 3Q ahead 4Q ahead

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

ISK 0.16∗∗∗ 0.19∗∗∗ 0.48∗∗∗ 0.56∗∗∗ 0.57∗∗∗ 0.69∗∗∗ 0.57∗∗∗ 0.75∗∗∗ 0.59∗ 0.83∗∗∗

(0.04) (0.04) (0.12) (0.10) (0.18) (0.17) (0.19) (0.26) (0.33) (0.29)
Level 0.002 −0.003 −0.01 0.005 0.02

(0.01) (0.03) (0.03) (0.06) (0.06)
Slope −0.01 −0.05∗ −0.10∗∗ −0.12 −0.16

(0.01) (0.03) (0.05) (0.08) (0.10)
Curve −0.17∗∗ −0.13 0.04 −0.04 0.02

(0.09) (0.17) (0.26) (0.38) (0.46)
Constant −0.08∗∗∗ −0.01 −0.25∗∗∗ −0.09 −0.40∗∗∗ −0.20 −0.54∗∗∗ −0.30 −0.69∗∗∗ −0.45

(0.02) (0.04) (0.06) (0.10) (0.08) (0.15) (0.07) (0.27) (0.14) (0.38)

Observations 118 118 117 117 116 116 115 115 114 114
R2 0.09 0.14 0.08 0.10 0.07 0.09 0.05 0.08 0.04 0.09

Predictive regressions for forecast errors in the h-quarter ahead median forecast for the ten-year
Treasury yield in the Survey of Professional Forecasters, using quarterly surveys from 1992:Q1 to
2020:Q3. The forecast horizon h ranges from 0 (current/nowcast) to 4. ISK is option-implied yield
skewness, Level, Slope and Curvature are the first three principal components of Treasury yields from
one to ten years maturity (appropriately scaled), measured on the day before the survey deadline.
All predictors are measured on the day before the survey deadline. Hansen-Hodrick standard errors
with h lags are reported in parentheses, and ∗, ∗∗, and ∗∗∗ indicate statistical significance at the
10%, 5% and 1% levels, respectively.

56



Table A4: Inflation and yield forecast errors in the SPF

Dependent variable: SPF inflation forecast error
Current 1Q ahead 2Q ahead 3Q ahead 4Q ahead

(1) (2) (3) (4) (5)

Yield forecast error 1.60 1.10∗∗∗ 0.52∗ 0.28 0.34∗

(1.21) (0.40) (0.29) (0.19) (0.20)
Constant 0.13 0.17 0.06 −0.05 −0.02

(0.11) (0.15) (0.18) (0.18) (0.22)

Observations 115 114 113 112 111
R2 0.05 0.08 0.03 0.01 0.02

Regressions of forecast errors in the h-quarter-ahead median forecast for CPI inflation in the Survey
of Professional Forecasters on the corresponding forecast errors for the ten-year Treasury yield, using
quarterly surveys from 1992:Q1 to 2020:Q3. The forecast horizon h ranges from 0 (current/nowcast)
to 4. Hansen-Hodrick standard errors with h lags are reported in parentheses, and ∗, ∗∗, and ∗∗∗

indicate statistical significance at the 10%, 5% and 1% levels, respectively.
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