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Climatic niches describe the climatic conditions in which species can persist. Shifts in climatic niches have been observed to coincide

with major climatic change, suggesting that species adapt to new conditions. We test the relationship between rates of climatic

niche evolution and paleoclimatic conditions through time for 65 Old-World flycatcher species (Aves: Muscicapidae). We combine

niche quantification for all species with dated phylogenies to infer past changes in the rates of niche evolution for temperature

and precipitation niches. Paleoclimatic conditions were inferred independently using two datasets: a paleoelevation reconstruction

and the mammal fossil record. We find changes in climatic niches through time, but no or weak support for a relationship between

niche evolution rates and rates of paleoclimatic change for both temperature and precipitation niche and for both reconstruction

methods. In contrast, the inferred relationship between climatic conditions and niche evolution rates depends on paleoclimatic

reconstruction method: rates of temperature niche evolution are significantly negatively related to absolute temperatures inferred

using the paleoelevation model but not those reconstructed from the fossil record. We suggest that paleoclimatic change might

be a weak driver of climatic niche evolution in birds and highlight the need for greater integration of different paleoclimate

reconstructions.
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The climatic niche describes the climatic conditions in which

a species can maintain a viable population in both space and

time (Hutchinson 1957; Pearman et al. 2008). Examining how it

changes over geological timescales is vital to our understanding

of adaptation, speciation, and extinction and how climate shapes

species diversity patterns (Hawkins et al. 2007; Moreno-Letelier

et al. 2014; Castro-Insua et al. 2018). Over the past millions of

years, Earth has experienced strong climate variability (Zachos

et al. 2001). Understanding the impact of these changes on or-

ganisms’ climatic niches provides clues to their response to cli-

mate change and may help predict whether lineages are able to

adapt their climatic niche to new conditions (Pearman et al. 2008;

1046
© 2021 The Authors. Evolution published by Wiley Periodicals LLC on behalf of The Society for the Study of Evolution.
This is an open access article under the terms of the Creative Commons Attribution-NonCommercial License, which permits use, distribution and reproduction in any medium,
provided the original work is properly cited and is not used for commercial purposes.
Evolution 75-5: 1046–1060

https://orcid.org/0000-0001-7866-7559
https://orcid.org/0000-0002-0390-8044
https://orcid.org/0000-0002-7931-6571
https://orcid.org/0000-0003-0477-5586
https://orcid.org/0000-0002-4085-636X
http://creativecommons.org/licenses/by-nc/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1111%2Fevo.14209&domain=pdf&date_stamp=2021-03-26


DOES PALEOCLIMATE DRIVE NICHE EVOLUTION?

Quintero and Wiens 2013a). However, this is not a simple task,

requiring knowledge of the evolutionary history of taxa, as well

as information on climatic change through time (Svenning et al.

2015).

There is a variety of indirect support for a relationship be-

tween climatic conditions and rates of niche evolution. For exam-

ple, current macroecological patterns in climatic niches suggest

a relationship with current climate and recent climate change;

recent rates of climatic niche evolution are fastest at higher

latitudes (Lawson and Weir 2014), where plio-pleistocene fluc-

tuations were greatest (Janzen 1967; Quintero and Wiens 2013b;

Liu et al. 2020). In addition, niche shifts in some lineages, as in-

ferred using molecular phylogenies, have been found to coincide

with periods of climatic change (Duran and Pie 2015; Nürk et al.

2015; Hua et al. 2019). However, in direct contrast, other studies

have found no evidence for a relationship between climatic

conditions and climatic niche changes (e.g., Schnitzler et al.

2012). It therefore remains unclear whether changes in climatic

niches through time are driven by climate at deep time scales.

Many different aspects of climate may affect rates of cli-

matic niche change (see Garcia et al. 2014 for a review). In

particular, understanding the relationship between the potential

speed of niche change (i.e., the rate) and the rate of climate

change can help understand whether species are able to adapt

their climatic niche to new conditions (Quintero and Wiens

2013a; Román-Palacios and Wiens 2020). Under changing

climatic conditions, lineages that are able to tolerate novel con-

ditions would be selected, resulting in climatic niche evolution

following climatic conditions through adaptation within lineages,

as well as through selective speciation and extinction of different

lineages. A positive relationship between rates of climate change

and rates of niche change would be expected as faster climatic

changes should impose a stronger selection pressure on climatic

niches, leading to higher apparent rates of niche change across

surviving lineages (Benton 2009; Duran and Pie 2015). However,

if climatic conditions change rapidly, species might not be able

to adapt fast enough (Quintero and Wiens 2013a). Further, no

relationship would be expected if organisms tolerate climatic

changes through behavioral adaptations or range shifts, or if

climatic niche changes are driven by other factors (e.g., avoiding

competition; Pitteloud et al. 2017).

In addition, niche evolution rates might be influenced by

absolute climatic conditions (i.e., the actual climate values at a

particular point in time). If absolute climate conditions drive the

evolution of the climatic niche, then we would expect to find

a positive relationship between climate conditions and rates of

niche evolution. Previous studies suggest different expectations

for the direction of this relationship concerning absolute temper-

ature. Temperature is known to influence biological processes

at a variety of levels. For example, mutation rates increase with

temperature (Gillooly et al. 2005; Oppold et al. 2016; Foucault

et al. 2018), whereas generation times decrease with temperature

(Gillooly 2000), leading to faster rates of molecular evolution.

These mechanisms may lead to increased rates of niche evolution

under higher temperatures, assuming a positive relationship of

molecular rates with rates of phenotypic evolution. However, em-

pirical examination of the relationship between rates of genetic

and phenotypic change has failed to confirm this assumption

(Davies and Savolainen 2006).

Alternatively, if the rates of trait evolution that emerge at

large phylogenetic scales are driven by underlying selection

pressure rather than through direct effects of climate on mutation

rates, a positive relationship between climate and rates of niche

evolution might not be expected. For example, Clavel and Mor-

lon (2017) found that body mass evolution of birds and mammals

was faster during cold periods. A similar mechanism to this

selection on body mass could directly apply to the physiological

thermal limits of species, causing a negative relationship be-

tween absolute temperature and rates of climatic niche evolution

through time.

Across extant species, the upper physiological limits of

climatic niches are not correlated with ambient temperatures but

the lower limits are, suggesting that lower temperatures exert a

greater selective pressure across species and that rates of niche

evolution may increase with cooling (Araújo et al. 2013; Khaliq

et al. 2017). Further, physiological tolerances to heat apparently

evolve more slowly than those to cold (Qu and Wiens 2020). Al-

ternatively, as the variation in temperature globally is larger at the

lower physiological limits of species’ climatic niches, this may

cause the negative relationship (Saupe et al. 2019). Temperate

regions have experienced higher rates of climatic niche evolution

and show much weaker phylogenetic conservatism in physiolog-

ical limits of current species than the tropics over the past several

million years (Lawson and Weir 2014; Khaliq et al. 2015),

which could indicate that cold and dry conditions pose a stronger

selection pressure than warm and moist conditions. Finally, no

relationship between absolute climatic conditions and niche evo-

lution rates would be expected if the climatic niche evolves by

stochastic rather than adaptive processes. Such a lack of relation-

ship has been suggested by modeling studies (Coelho et al 2019),

and by a lack of relationship between rates of niche evolution

and climate in plants and terrestrial vertebrates (Liu et al. 2020).

Although many studies have hypothesized that rates of

climatic niche change are driven by variations in temperature

and precipitation (Evans et al 2009, Duran and Pie 2015), a lack

of temporally resolved information on terrestrial environmental

conditions from the deep past has largely precluded explicitly

testing for a temporal relationship (e.g., Duran and Pie 2015;

Nürk et al. 2015, but see Stigall 2012; Saupe et al. 2014).

Previous studies have explored the evolution of climatic niches
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across deep time in relation to distribution, diversification, and

traits (Meseguer et al. 2015, 2018; Rolland et al. 2018), but to

our best knowledge, no previous study has explicitly tested for a

temporal relationship between paleoclimatic conditions and rates

of change in climatic niches inferred across multiple lineages.

Further, many studies that have related trait evolution to climatic

conditions in the past have relied on global temperature curves

derived from marine proxies (Zachos et al. 2008; Nürk et al.

2015; Clavel and Morlon 2017), which are unlikely to adequately

represent regional terrestrial climatic conditions. Additionally,

studies have been limited to examining temperature despite

precipitation being an important aspect of species’ climatic niche

(IPCC 2014; La Sorte et al. 2019; Boyle et al. 2020).

Paleoclimate simulations of atmospheric circulation models

with temporally explicit temperature and precipitation estimates

across the globe exist, but are only available for a limited set of

time intervals (Brown et al. 2018) and come with uncertainty, for

example, results are highly sensitive to model settings such as

atmospheric CO2 content (Forrest et al. 2015; Varela et al. 2015).

In particular, very few models are available for the Miocene and

Pliocene; Paleoclim, a database of paleoclimate simulations us-

ing the HadCM3L model, currently comprises just two climatic

layers older than the Pleistocene (for 3.205 and 3.3 million years

ago). Finally, terrestrial paleoclimate proxies from fossil records,

for example, plant assemblages or paleosols, have mostly been

investigated in local archives and have not been compiled for

entire continents or over long geological periods (e.g., Hamer

et al. 2007; Royer 2012).

In this study, we test for a relationship between climatic con-

ditions and phylogenetically reconstructed rates of niche change

using terrestrial paleoclimate estimates inferred independently

from two sources: (i) a paleoelevation model (Hagen et al. 2019)

and (ii) from the mammal fossil record (Liu et al. 2012). The

paleoelevation model reconstructs air surface temperatures at a

1-million-year temporal resolution and a 1° spatial resolution,

which were estimated by Hagen et al (2019) using lithological

indicators of past climatic conditions, and present-day tempera-

ture lapse rates with elevation. We additionally inferred regional

mean annual temperature (MAT) and precipitation (MAP)

through time from fossil occurrences of large mammalian herbi-

vores based on a functional relationship between tooth structure

and environment (Liu et al. 2012). The distribution of dental

functional traits in ungulates that occur in a location reflects the

type of resources available, and in turn ambient climatic condi-

tions (Liu et al. 2012, see also Fortelius et al. 2014). Although the

paleoclimate record reconstructed with the paleoelevation model

has a much higher temporal and spatial resolution, it is only

indirectly based on geological evidence, whereas paleoclimate

reconstructions based on the mammal fossil record constitute a

widely accepted proxy for both temperature and precipitation

from in situ evidence, albeit patchy in time and space.

We predicted and tested for relationships between estimated

rates of climatic niche change and (i) rates of paleoclimatic

change and (ii) absolute climatic conditions, by comparing

changes in both temperature and precipitation niches in an extant

passerine bird clade with corresponding climatic conditions

estimated by each paleoclimate dataset. Our first hypothesis

was that rates of niche change are positively associated with the

rate of climate change for both temperature and precipitation.

Second, we hypothesized that estimated rates of niche change

are negatively related to absolute temperature and precipitation,

that is, we expected to find faster rates of niche change occurring

in cold dry conditions. We tested these hypotheses using the

monophyletic, broadly distributed wheatear-chat clade (Aves:

Passeriformes: Muscicapidae, genera Oenanthe, Monticola, Saxi-

cola, Myrmecocichla, Emarginata, Campicoloides, Pinarochroa,

and Thamnolaea). This is a suitable clade to test these hypothe-

ses for ecological and practical reasons. Species are widely

distributed and occupy a variety of climatic conditions and habi-

tats. In addition, the clade’s geographic and temporal distribution

matches the areas and time period for which paleoclimatic data

from the mammalian fossil record were available.

Methods
SPECIES SAMPLING AND PHYLOGENETIC INFERENCE

We investigated climatic niche evolution in a monophyletic clade

comprising 71 species (following IOC taxonomy version 3.01;

Gill and Donsker 2012, see Table S1) of Old-World flycatchers

(the wheatear-chat clade). Phylogenetic relationships within

the group were obtained from Phillips et al. (2018, 2020) who

obtained and vetted sequence data for three genes (one nuclear

and two mitochondrial) from GenBank (www.ncbi.nlm.nih.gov/

genbank) for 65 species. These genes were selected as having

the greatest coverage across the group and evolving at differing

rates. Sequence data were missing for six species. The phylogeny

was estimated using Beast version 2.4.4 (Bayesian Evolutionary

Analysis Sampling Trees; Bouckaert et al. 2014). Four indepen-

dent runs, each for 50 million generations, were combined after

removing the burn-in. A maximum clade credibility (MCC) tree

was calculated using Tree Annotator (also in Beast version 2).

Finally, Phillips et al. (2018, 2020) derived absolute dates based

on a Luscinia fossil (Jenõ and János 2012), a closely related

outgroup to our clade of interest. Although it is possible that

this tree is not the true representation of all relationships within

the group, the majority of branches were strongly supported

with only seven nodes with posterior support below 0.9. Further,

relationships and dates were mostly consistent with previous

phylogenetic studies (Fig. S1; Phillips et al. 2018). In addition

to the MCC tree, we used 100 trees sampled randomly from the

posterior distribution to account for phylogenetic uncertainty.
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For an overview of the methods, see Figure S2. All follow-

ing analyses were performed in R (version 3.6.1) unless stated

otherwise.

CLIMATIC NICHE QUANTIFICATION

The fundamental climatic niche is often assumed to be best repre-

sented by physiological tolerance data (Pearman et al. 2008). De-

spite birds being well-studied, necessary physiological data are

not available for the vast majority of species (Khaliq et al. 2014).

Therefore, climatic niches were quantified using climatic con-

ditions within the species distribution. Geographic distributions

may be shaped by other factors such as competition (Yackulic

2017), meaning that they most likely provide an imperfect esti-

mation of a species fundamental climatic niche and instead repre-

sent the realized niche (Soberón 2007). However, despite this, it is

usually assumed that carefully vetted broad-scale geographic dis-

tributions provide a reasonable approximation of climatic niches

(Pigot et al. 2010; Khaliq et al. 2017). Here, we make use of

a newly compiled dataset of extent-of-occurrence range maps

that comprised both the breeding and nonbreeding ranges of bird

species (Eyres et al. 2020). Despite limitations for climatic niche

quantification (Graham and Hijmans 2006), such maps represent

the most consistent coverage of a species range that are currently

available at a global scale across large numbers of species (Kear-

ney et al. 2010; Wisz et al. 2013; Meyer et al. 2015).

As 22 out of the 65 species included in our analyses are

classified as migratory (Eyres et al. 2017), we made use of a

new database of nonbreeding ranges of migratory bird species

(GeoMiB; see Eyres et al. 2020 and Supporting Information for

details) to ensure that our niche quantifications take into account

the climatic conditions experienced by species in their breeding

and nonbreeding range (Eyres et al. 2017). The final species

occurrences used in the analyses were seasonal presences in 1°

latitude-longitude grid squares. For a complete description of

datasets, see methods in the Supporting Information.

So that niche quantification represented the climatic con-

ditions of migratory species, we used the climate data for the

season when each species is present in a particular part of their

range (i.e., when a species is in its breeding range and when it

is in the nonbreeding range). The three peak breeding months

for each species were determined from the literature (Handbook

of the Birds of the World; del Hoyo et al., 2019, see Eyres

et al. 2020 and Table S1). The three nonbreeding months for

each species were defined as starting six months later than the

breeding season (Laube et al. 2015). To ensure comparability

across species, climatic niches were calculated in the same way

for residents and migrants.

Monthly climatic data were obtained from the WorldClim

raw climate data dataset (averages from 1970 to 2000, resolution

10 arc minutes; Fick and Hijmans 2017). The following four cli-

matic variables were obtained: minimum, maximum, and average

daily temperatures within each month and total monthly precipi-

tation, hereafter referred to as Tmin, Tmax, Tmean, and Precipitation,

respectively. We chose to investigate the rates of change of these

three aspects of temperature niche (Tmin, Tmax, and Tmean) as well

as precipitation as they are most likely to be related to the cli-

matic variables that we were able to infer from the paleoelevation

model (temperature) and from the fossil record (temperature and

precipitation). All climate data were resampled into the same grid

cells as the occurrence data, so that a given species occurring in a

given grid cell had either three monthly values for each climatic

variable (breeding or nonbreeding occurrence) or six-monthly

values (year-round occurrence). As a measure of average climatic

conditions that species are exposed to, highest-density values

from this entire distribution of grid square values across the

entire species range throughout the six months (breeding and

nonbreeding) were determined from density plots using the hdr

function from the R package hdrcde (Hyndman et al. 2013) for

each of the four climatic variables (Tmin, Tmax, Tmean, and Precip-

itation). These highest-density values for each climatic variable

were used rather than the mean because climatic conditions

tolerated by species are often not normally distributed (Evans

et al. 2009). These values represent the most common conditions

each species is exposed to across its range, and were assumed to

be representative of the central niche position for each species.

RATES OF NICHE EVOLUTION

Rates of climatic niche change were reconstructed from the

inferred climatic niches of extant species combined with their

phylogeny. We calculated rates of climatic niche change for each

of the four climatic variables for four different time bin schemes

to match the time bins of the paleoclimate data (for more details

see below and Supporting Information). We assumed that the

fundamental climatic niche is captured by our niche position

quantification from geographic range maps, and therefore follow

previous studies in considering the evolutionary rates of change

in these inferred climatic niches as a meaningful approximation

of climatic niche evolution (Schnitzler et al. 2012; Title and

Burns 2015; Cooney et al. 2016). We recognize that the observed

climatic niche is not necessarily an evolving species trait (Dor-

mann et al. 2010; Soberón and Peterson 2011). Rates of realized

niche change were estimated using the variable rates model in

BayesTraits, version 2 (Venditti et al. 2011). This model assumes

trait evolution by Brownian motion (BM) but allows variable

rates between branches, permitting us to explore how the rate

of evolution varies across the tree. This analysis was carried out

on the MCC tree of Phillips et al. (2020). The model was run

using default priors and two independent MCMC chains for 1

billion iterations each. For each climatic variable, we carried out

two independent runs and removed the first 10,000 samples as
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burn-in. From each chain, we retained every 100,000th tree post

burn-in yielding 10,000 samples. The branches in each posterior

tree had been scaled proportionally to the rate of evolution.

All subsequent analyses were carried out on the pooled 20,000

posterior trees from both chains to account for uncertainty in the

inferences of rates of climatic niche change across the phylogeny.

We calculated temporal variation in rates of niche change

following Cooney et al. (2016). For each time bin, we calculated

the weighted mean rate of evolution across all branches present

in that time bin. Branches were weighted by the proportion

of the time bin they covered (so that a branch that is present

for the whole time bin has more weight than one that is only

present for part of the time bin). This was carried out for each

posterior tree and then averaged across trees. In addition, to

test for significant shifts on particular branches or clades, we

calculated the probability of a rate shift across all posterior trees

for each node in the tree.

MODEL FITTING AND ADEQUACY

The variable rates model in BayesTraits is a modification of the

BM model that allows variable rates of niche evolution across the

tree, and allows the identification of branches and clades where

the rate of niche evolution varies significantly. To determine

whether this model was better supported by the data than the

simpler constant-rate BM model, we ran two nested models:

one allowing the rates of evolution to vary across the phylogeny

(as above), and one where the rates were held constant. We

then calculated the log Bayes factors from the log marginal

likelihoods of the two models.

To ensure BM was an appropriate underlying model of niche

evolution for our data, we additionally fit three single process

models (BM, early burst [EB], and Ornstein-Uhlenbeck [OU];

see Harmon et al. 2010) using the fitContinous function in the R

package Geiger version 2.0.6.4 and included the standard error of

each climatic niche estimate to incorporate uncertainty. Models

were run across the MCC tree and 100 posterior phylogenies to

assess the influence of phylogenetic uncertainty. The adequacy

of these models, that is, potential violations of the assumptions

underlying each model, was also assessed using the arbutus

function in the R package arbutus version 0.1 (Pennell et al.

2015) for the MCC tree.

PALEOCLIMATIC CONDITIONS: PALEOELEVATIONAL

MODELING

Reconstructions of paleoclimatic conditions for the Neogene

(∼23–3 million years ago) were obtained from Hagen et al.

(2019). These reflect air surface temperature at a 1-million-year

temporal resolution and 1° spatial resolution for the study

region (Africa and Eurasia). They combine reconstructions of

broad climatic zones (Köppen zones) based on the geographic

distributions of lithological climate indicators with paleotopo-

graphic reconstructions. The resulting reconstructions provide

an estimate of average surface temperature that accounts for the

decrease of temperature with elevation (Fig. S3). For details, see

Hagen et al. (2019).

Average temperature was calculated as the mean across

the study region for each time point (every million year). Rate

of climate change was calculated as mean of the differences in

climatic conditions between successive time points for each grid

square. To ascertain whether differences in temperature inferred

from the mammal fossil record were sensitive to spatially non-

random sampling in the fossil record, we additionally calculated

mean temperature values for each time point only using those

grid cells that had fossil occurrences.

PALEOCLIMATIC CONDITIONS: MAMMAL FOSSIL

DATA

Temperature and precipitation were estimated from the mammal

fossil record for the Neogene, ∼23–2 million years ago following

Liu et al. (2012), using a linear regression method that estimates

MAT and MAP based on the dental traits of herbivore assem-

blages. In total, MAT and MAP were estimated for 1735 unique

fossil localities (Fig. S4). To incorporate a measure of uncertainty

in each of these point estimates, we calculated the minimum and

maximum possible value with the error term in the regression

analyses used to derive climatic estimates (Liu et al. 2012).

Geo-referenced and dated fossil records for large mammals

(Orders: Artiodactyla, Perissodactyla, Primates, Proboscidea)

were obtained from the NOW database (New and Old Worlds

Database of Fossil Mammals, www.helsinki.fi/science/now/)

for continents occupied by the study clade (Europe, Asia, and

Africa). To examine climatic trends through time, we used MN

(Mammal Neogene) temporal units. MN zonation is a strati-

graphic timescale of 16 consecutive zones used to date European

mammal fossil localities in the Miocene and Pliocene (Table S2).

Mammal fossil assemblages were assigned to each of these bio-

zones based on their age estimates using two assignment methods

that we refer to here as “strict” and “mid-point” assignment (full

description in Supporting Information). MAT and MAP were

estimated for 1735 unique fossil localities (fossil assemblages

with a unique combination of location and age-estimate; see

Table S2 for final numbers of fossils in each time bin).

Directly averaging paleoclimate records across the entire

geographic region for each time bin would not take into account

the spatial variation in sampling or the uncertainty in climate in-

ferences. Therefore, we gridded the entire region using a 1° grid

and summarized the records that fell into each grid square. For

each grid square, we calculated an average value of temperature

and precipitation and an uncertainty estimate (for details, see

Supporting Information). The number of grid squares containing
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fossil localities varied within each continent, that is, Africa,

Europe, and Asia (Fig. S4). To ensure the estimated climatic

conditions through time were not unduly influenced by the vari-

ation in spatial distribution of fossil localities, we first calculated

climatic averages for each continent, and then averaged these to

get an estimate for the entire study region. The average climate

value for each continent in each time bin was calculated as the

weighted mean of all the grid squares in a continent. The value

from each grid square was inversely weighted by its uncertainty

estimate to account for spatial heterogeneity in the uncertainty of

climatic estimates.

Rates of paleoclimatic change were calculated as absolute

differences in climatic conditions between successive time

bins, divided by the time difference between the mid points of

successive time bins. Rates were calculated for each continent

separately and rates for the entire study region were subsequently

calculated as the average of those values.

STATISTICAL ANALYSES

We tested for (i) a temporal relationship between paleoclimate

averages and mean rates of change in climatic niches in each

time bin, and for (ii) a relationship between rates of paleoclimatic

change and mean rates of change in climatic niches among sub-

sequent time bins. For each relationship, we tested two aspects

of climate (MAT and MAP) for the mammal fossil data, and

one aspect (MAT) for the paleoelevation model, as well as four

aspects of climatic niches (precipitation niche and the three tem-

perature variables). Because glacial-interglacial oscillations in

the Pleistocene were not well resolved at the temporal resolution

of either of our reconstructions (1 million years up to several

millions of years), we did not include the last ∼2 million years

(i.e., Pleistocene and Holocene) in our analyses.

We first tested for temporal autocorrelation using the acf

function in R and found a significant correlation between climate

at time t and climate at time t + 1 for all analyses. As some

relationships were nonlinear, we used generalized additive mod-

els (GAMs) that accounted for the temporal structure through

first order autoregressive models, taking the correlation among

subsequent time bins into account (Crawley 2007). Additionally,

results of linear generalized least squares (GLS) models are

reported in the supplement.

Results
RATES OF NICHE EVOLUTION

Using the molecular phylogeny, we inferred changes in temper-

ature and precipitation niches across the tree (Figs. 1A, 1B, and

S4) using the best-fitting variable rates model (see below for

comparison to other models). There was little difference between

the results for the three aspects of temperature niche (Tmin, Tmean,

and Tmax). We present the results from Tmin in the main text

and the others in the Supporting Information. No significant

branch or clade shifts in inferred rates of climatic niche change

were detected for the temperature niche using any of the three

temperature variables (Fig. 1A for Tmin; Figs. S3A and S3B for

Tmax and Tmean). The average rate of temperature niche change

across the tree showed an overall positive trend through time

(Figs. 1C, S4C, and S4D) indicating that temperature niche

evolution accelerated toward the present.

In contrast to temperature, we identified four significant

shifts in inferred rates of change in the precipitation niche within

the phylogeny (Fig. 1B). Significant shifts were found in the

branch leading to the Oenanthe-Myrmecocichla split, within

Oenanthe, within Myrmecocichla, and finally within the branch

leading to Saxicola. All four of these shifts were to faster rates

of niche evolution (Fig. 1B). Average rates of precipitation niche

change across the tree through time showed an overall positive

trend with rates increasing through time (Fig. 1D). There were

slight peaks in the rate of change for precipitation niche around

12 and 6 million years ago (Fig. 1D). Estimated rates of change

in the precipitation niche were more variable through time than

those of the temperature niche.

MODEL FITTING AND ADEQUACY

Model fitting and adequacy tests all supported the variable-rates

model as the most appropriate to describe climatic niche evo-

lution within the study group (a monophyletic clade within the

Muscicapidae). Comparison of mean AICC and likelihood values

for univariate models of BM, OU, and EB fitted across 100

posterior trees for the wheat-ear chat phylogeny showed strong

support for BM as an adequate fit for the data for all niche metrics

(Table S3). For all metrics of the temperature niche, AICC was

lowest for the BM model. For the precipitation niche, mean AICC

was lowest for models fitting an OU model of trait evolution.

However, the difference in AICC values between models fitting

OU and those fitting BM was less than 4 (2.673) indicating only

slightly lower support for the BM model than the OU model.

Likelihood values for all metrics of the climatic niche were high-

est for OU models, but never significantly different to those from

the BM models. Therefore, there was no substantial evidence

that OU is a better fit to the data than the simpler BM model, and

the latter was therefore a reasonable model for this application.

For all six metrics of model adequacy in arbutus, all models

(BM, OU, and EB) were confirmed as adequate for the three

temperature niche traits (Table S4). For precipitation niche, three

of the metrics suggested that none of the models were adequate.

These metrics test for accurate estimation of rate heterogene-

ity (C.var), for accurate modeling of variation in ancestral state

(S.ASR), and for deviations from the expected normal distributions
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Figure 1. The maximum clade credibility (MCC) phylogeny for Wheatears and Chats (n = 65 species) colored by estimates of the mean

rates of trait evolution for climatic niche aspects (A and B) and the mean rate of evolution through time estimated from 20,000 samples

with a BayesTraits analysis (C and D), for minimum temperature (A and C) and precipitation (B and D). Rate values were log-transformed

for visualization. Gray circles show rate shifts inferred on individual internal branches, with the relative size of each circle indicating the

posterior probability (PP) of a rate shift. Mean rate of climatic niche evolution (C and D) with 95% confidence intervals (dashed lines)

was calculated for each time period using the two time bin schemes (MN zones and every million years) as the weighted average of all

branches that were present in a time period.

of contrasts (D.cdf,). Therefore, these results suggest that all three

univariate models underestimated the overall rate heterogeneity,

providing further evidence in support of fitting a variable rates

model.

Finally, there was strong support for fitting the more com-

plex variable rates model over a univariate Brownian model of

trait evolution from the log Bayes factors calculated between

the variable rates model and fixed rate Brownian model in

BayesTraits. These were greater than five for all niche metrics

(Table S5).

PALEOCLIMATIC CONDITIONS

Paleoclimatic reconstructions of temperature for our study region

(Africa and Eurasia) differed between the two methods (Fig. 2).

Overall reconstructed temperature values from the mammal

fossil record were much higher and slightly more variable than

those reconstructed using a paleoelevation modeling approach

(Fig. 2A). Mean air surface temperature values inferred using

the paleoelevation reconstruction varied from 8.6 to 13.8°C

(difference ∼ 6°C), with an overall decrease over the last 24

million years. In contrast, temperature reconstructed from the

mammal fossil record was more variable, ranging from 14.0 to

21.9°C (difference ∼ 8°C), with a clear overall decrease over the

last 24 million years.

Rates of reconstructed temperature change inferred from the

mammal fossil record were also greater than those inferred from

paleoelevation models (Fig. 2C). Temperature reconstructions

(absolute values and rates) from the paleoelevation model were

more similar to temperature inferred from the mammal record,

when sampled at the same locations in time and space (Figs. 2A

and 2C). However, even then, they still depict quite different tem-

perature trajectories, indicating that the difference between the

two methods is not only due to different spatiotemporal coverage

and deserves further investigation.

For precipitation, only one source of paleoclimatic data

was available, that is, the mammal fossil record. We observed

stronger temporal patterns in this record than for temperature,

with precipitation values varying more than twofold between

∼700 and ∼1700 mm (Fig. 2B). Rates of paleoclimatic change

for precipitation were very variable through time, with a clear
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Figure 2. Absolute paleoclimatic values (A and B) and inferred rates of paleoclimatic change through time (C and D) for mean annual

temperature (red) and precipitation (blue). Temperature values were inferred from the full mammal fossil record (dark red) and from

reconstructions from Hagen et al. (2019) who used a paleoelevation modeling approach (red). In addition, we calculated temperature

values from paleoelevation reconstructions only using localities for which we have fossil data (light pink). Rates of climatic change were

calculated between successive time bins. Absolute precipitation (B) and rates of precipitation change (D) were only inferred from the

mammal fossil record. Error bars for absolute climate variables inferred from the mammal fossil record were calculated as the mean of

the standard errors for each region. Error bars show the standard error at each time point for each data source.

peak between MN5 and MN6 (roughly 12 million years ago;

Fig. 2D).

RELATIONSHIP BETWEEN PALEOCLIMATE AND

RATES OF NICHE EVOLUTION

We found no or weak evidence for a relationship between rates

of paleoclimatic change and rates of climatic niche evolution in

the wheatear-chat clade. First, we found a weak but significant

negative relationship between rates of temperature change in-

ferred from the paleoelevational model and rates of evolution

for the three measures of the temperature niche (Tmin, Tmean,

and Tmax, P-values < 0.04, R2 < 0.3; Fig. 3A and Table 1 for

GAM results; see Table S6 for consistent GLS results). However,

these significant negative relationships were driven by two time

points, the two most recent time intervals (Fig. 3C); when these

are removed, the relationship is no longer significant for any

of the three measures of temperature niche (P-values > 0.2).

Second, we found no significant relationship between rates of

paleoclimatic change inferred from the mammal fossil record

and rates of evolution of the climatic niche for both temperature

(Fig. 3D) and precipitation (Fig. S5 and Table S1).

We found mixed support for relationships between absolute

paleoclimate and rates of climatic niche evolution. Specifically,

we found a significant nonlinear relationship between abso-

lute temperature conditions reconstructed using paleoelevational

modeling and rates of evolution of the temperature niche (Fig. 3A

and Table 1). With increasing temperature (between 9 and 11°C),

estimated rates of niche evolution decreased almost linearly.

Beyond 11°C, estimated rates of niche evolution did not change

with temperature. Absolute temperature consistently explained
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method).

a large amount of the variation across all metrics of temperature

niche (all R2 values > 0.9).

In direct contrast to this, we did not find a significant

relationship between absolute temperature inferred from the

mammal record and rates of evolution of any of the temperature

niche values (Fig. 3D and Table 1). We also found no significant

relationship between absolute precipitation inferred from the

mammal fossil record and rates of evolution of precipitation

niche (Table 1 and Fig. S4).

Discussion
For the study clade, estimated mean rates of niche change for

both precipitation and temperature niche increased over time,

indicating that niches changed faster closer to the present. In

addition, we found four significant shifts in the precipitation

niche across the wheatear-chat phylogeny. These changes were

generally toward niches characterized as tolerating warmer and

drier conditions. Despite these changes in the climatic niche, we

found relatively little overall support for a relationship between

climatic conditions and rates of niche evolution through time.

We inferred very different paleoclimatic temperature conditions

depending on the method of reconstruction used. However, our

inferences from both methods broadly match well-known trends

that characterize the late Neogene with both methods showing

an overall decline in temperature over the last 20 million years

(e.g., see Fortelius et al. 2014).

We set out to test two hypotheses: (1) that there would

be a positive relationship between rates of climate change and

rates of niche evolution and (2) that there would be a (negative)

relationship between absolute climatic conditions and rates of

niche evolution. Support for the two hypotheses was found to

vary depending on the aspect of the climatic niche studied (i.e.,

temperature vs. precipitation) and for temperature depending

on the source of paleoclimatic reconstruction. Contrary to our

first hypothesis, and expectations from the literature, we did

not find a significant positive relationship between rates of

climate change and rates of niche evolution for the period of

interest for either temperature or precipitation, regardless of the

method of paleoclimatic reconstruction. Although we did find a

1054 EVOLUTION MAY 2021



DOES PALEOCLIMATE DRIVE NICHE EVOLUTION?

Table 1. Results from the final GAMs testing for a relationship

between rates of climatic niche evolution with (1) rates of change

in paleoclimatic conditions and (2) absolute paleoclimatic condi-

tions. Response variables were rates of climatic niche evolution

(either temperature variables or precipitation) inferred based on

phylogeny for the wheatear-chat clade. In the first set of mod-

els (1), the rates of paleoclimatic change in MAT and MAP were

used as respective fixed effects. (2) Absolute paleoclimatic values

for mean annual temperature and precipitation (MAT and MAP,

respectively) were included as the fixed effects. In the second set

of models, paleoclimate data were inferred using two different

methods: (a) reconstructions of temperature using a paleoeleva-

tion model were used and (b) temperature and precipitation were

inferred using the mammal fossil record. Temporal autocorrelation

in the data structure was accounted for in the model.

R2 adjusted F P-value

(1) Rates of paleoclimatic change
(a) Paleoelevation reconstruction
Tmin 0.122 5.567 0.036
Tmean 0.259 12.668 0.004
Tmax 0.237 8.995 0.012
(b) Mammal fossil record
Tmin –0.0919 0.003 0.957
Tmean –0.0919 0.002 0.970
Tmax –0.0781 0.255 0.624
Precipitation –0.0122 0.342 0.570
(2) Absolute climate values
(a) Paleoelevation reconstruction
Tmin 0.985 226.042 <0.001
Tmean 0.988 195.490 <0.001
Tmax 0.960 51.882 <0.001
(b) Mammal fossil record
Tmin –0.138 0.818 0.296
Tmean –0.105 1.008 0.339
Tmax –0.097 0.836 0.382
Precipitation 0.076 0.855 0.377

slight negative relationship between rates of temperature niche

evolution and rates of temperature change through time inferred

from the paleoelevational model, the statistical significance of

this relationship was entirely driven by the two most recent time

intervals and their drastically warmer temperature and slightly

higher rate of climatic niche evolution. We found no evidence

of a relationship between rates of temperature niche evolution

and rates of temperature change inferred from the mammal fossil

record. Regarding the second hypothesis, we found evidence that

partly rejected a relationship between absolute conditions and

rates of niche evolution through time, with the two methods of

temperature reconstruction providing different results. There was

a strong and significant negative relationship with temperature as

reconstructed from paleoelevation modeling, but there were no

significant relationships with either temperature or precipitation

as reconstructed from the mammal fossil record.

MIXED RESULTS FOR ABSOLUTE TEMPERATURE

Consistent with expectations that surviving species would have

adapted to changing climatic conditions through time, we find

a significant relationship between temperature as inferred from

the paleoelevational reconstruction and the inferred rates of

temperature niche change through time. Rates of niche evolution

were found to decrease with increasing temperature, seemingly

challenging the hypothesis that evolution is faster under warm

climates, as expected if high mutation rates occur at high temper-

atures and drive fast rates of thermal niche evolution (Gillooly

et al. 2005). However, our results are consistent with the obser-

vation that faster rates of evolution occur at high latitudes (where

conditions are cooler), and that phylogenetic niche conservatism

of thermal limits is higher in the tropics (Lawson and Weir 2014;

Khaliq et al. 2015). The results are also consistent with previous

studies showing that traits can evolve faster under cool conditions

(Clavel and Morlon 2017). However, it is possible that high rates

of niche evolution are not driven by cold temperatures as such,

but instead climatic heterogeneity. The latitudinal gradient in

rates of evolution is largely attributed to greater spatial hetero-

geneity in climate (i.e., a greater diversity of climatic conditions

in a given area) in temperate regions than in tropical regions. It

may be that across long timescales, periods of cold temperature

correspond to periods of temperate biomes and consequently

greater heterogeneity of climate in space (Clavel and Morlon

2017).

In contrast, we found no relationship between the inferred

rates of climatic niche change and major regional trends in either

absolute climate values or rates of climate change when using

climatic values reconstructed using the mammal fossil record.

This was the case for temperature, but also for precipitation (for

which we have no comparison due to lack of other large-scale

paleoclimate datasets). If the relationship between temperature

and rates of thermal niche evolution exists, as indicated by

temperature from the paleoelevation model, the lack of rela-

tionship using temperature from the mammal fossil record may

partly be explained by its spatial bias. Although we worked

to correct this bias, the geographic distribution of fossils is

heterogeneous through time and thus estimates of climate may

not be representative of the average conditions species were

experiencing through time (Fig. S4). This notion is strengthened

somewhat by our finding that recalculating the temperature from

paleoelevation modeling for the locations and time intervals

with data in the mammal fossil record leads to a temperature

trajectory through time that appears more similar to the one for

temperature reconstructed from the mammal fossils (Fig. S4).
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Nevertheless, temporal dynamics of paleotemperature

and consequently results for a relationship with rates of niche

evolution were very different depending on the method of recon-

struction used. It is unclear which reconstruction provides a more

accurate representation of the true paleoclimatic conditions that

taxa were exposed to: although the paleoelevation model offers a

nominally higher spatiotemporal resolution, it is only indirectly

based on proxy data, and apparently recovers long-term trends

better than local and short-term heterogeneity. In contrast, the

mammal fossil record is subject to spatial and temporal sampling

bias, so the reconstructed paleoclimate appears much noisier, but

may provide better direct evidence for local climatic conditions.

It is therefore very difficult to conclusively determine from our

study whether there is a general relationship between absolute

temperature and rates of temperature niche evolution through

time.

DOES CLIMATE MATTER FOR CLIMATIC NICHE

EVOLUTION IN BIRDS?

Our results indicate support for only some of the postulated re-

lationships. In particular, we find little support for a relationship

between rates of paleoclimate change and rates of niche evolu-

tion. Our results suggest that instead of changing their climatic

niches through adaptation, the wheatear-chat lineages exposed

to paleoclimate change may have altered their geographic dis-

tributions or behavior to cope with environmental conditions

(Virkkala and Lehikoinen 2017; Nogués-Bravo et al. 2018).

Considering the high mobility of birds, it is likely that instead

of adapting their niches they buffer climatic change through

adaptive behavior such as large-scale movements or small-scale

habitat and microhabitat choices (Keppel et al. 2017). This is

particularly relevant to this study clade, as a disproportionate

number of species (>30%) are migratory, and therefore have the

potential to be highly mobile.

Indeed, relatively fast range shifts and expansions have al-

ready been observed in birds in response to current and ongoing

climate change (Gillings et al. 2015; Massimino et al. 2015)

and in mammals in response to past changes (Eronen and Rook

2004). For mobile organisms, such as birds, other factors such as

habitat, resources, and competition may be more important for

niche dynamics than climate (Jønsson et al. 2012; Pitteloud et al.

2017). This idea is supported by Khaliq et al. (2014) who showed

that thermal tolerance limits of many bird species do not match

ambient climatic conditions, indicating that, although undeniably

important, environmental climatic conditions do not strictly

limit species’ distributions. Our results are also consistent with

previous studies that show that at narrow phylogenetic extents

(such as ours) biotic interactions such as competition are more

important than climatic factors for determining bird occurrences

(Barraclough and Vogler 2000; Graham et al. 2018).

Our rather mixed results appear in contrast with those of

other studies pointing toward consistent associations between

climate change and rate of climate niche changes. This might

reflect a taxonomic bias in the literature. Many previous studies

examining niche dynamics have focused on terrestrial nonvolant

organisms, for example, 38 out of the nearly 40 empirical

studies reviewed by Pearman et al. (2008) or studies on plant

biogeographical history (Meseguer et al. 2018). However, birds’

responses to changing climatic conditions may systematically

differ due to their high mobility, and could be expected to be

more similar to marine organisms because movement in the

marine realm is also much less restricted (Webb 2012). Consis-

tent with our results for birds, studies that have examined niche

dynamics in marine taxa found that niches are relatively stable

even when faced with significant environmental change (e.g.,

Stigall 2012; Saupe et al. 2014). However, it is worth noting that

Liu et al. (2020) found that overall rates of niche evolution are

similar for mobile terrestrial vertebrates and immobile plants.

SCOPE AND CAVEATS OF THE ANALYSES

Based on our results, we cannot dismiss the role of aspects

of climate other than those investigated here, such as changes

in seasonality or the emergence of novel climates, as being

important to birds. Instead of average conditions, rates of niche

change might rather be affected by extreme events (Greenville

et al. 2012; Grant et al. 2017). For example, although we do not

find a relationship between precipitation conditions and rates of

inferred niche change through time, we do observe a sudden drop

in precipitation around 12 million years ago (which is also seen

as a spike in the rate of precipitation change), which appears to

coincide with a peak in the estimated rates of precipitation niche

change in the wheatear-chat clade. Hence, some niche changes

may be driven by exceptional periods of strong climate change,

but our results imply that this is not consistent over time. Further,

we examined whether there is a relationship between rates of

niche change and average climatic conditions across a very

broad geographic range. If highly heterogeneous local climatic

conditions are driving rates of niche change, we might fail to find

a relationship between macroevolutionary trends and broad scale

macroclimatic trends, at the scale we investigated. Moreover, it is

important to consider that uncertainty of paleoenvironmental re-

constructions drastically increases deeper in time (Dolman et al.

2020). Similarly, we tested for a relationship between climate

and mean clade-wide rates of niche change. If some lineages

respond to climate and others do not, or if lineages respond in

opposing ways, we would not detect this from average rates.

As well as mechanistic explanations, there are methodologi-

cal reasons why we might not find a relationship between climate

and niche evolution. Although we have two very reasonable

sets of paleoclimatic data, the mammal fossil dataset is still
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comparably small (in terms of number of climatic estimates for

each time bin and continent). Therefore, we could only infer

climatic conditions at a coarse temporal resolution, severely

limiting the statistical power for analyses from the fossil record,

including the only analysis that was possible for precipitation.

This may explain why we found a significant relationship with

temperature, when inferred using the paleoelevational model but

not when using the mammal fossil record.

Our study further highlights the difficulties surrounding pa-

leoclimatic reconstructions. We recovered very nonoverlapping

estimates of paleotemperature and consequently results depend-

ing on reconstruction method. It is unclear which reconstruction

provides a more accurate representation of the climatic conditions

that our taxa were exposed to and it is difficult to obtain robust

uncertainty measures for either reconstruction. The mammal

fossil record provides good local estimates of climatic conditions

(Eronen et al. 2012); however, our analyses show that although

we use an extensive dataset (compared to other paleodata),

impacts of geographic biases and temporal resolution remain. To

guide future studies, we emphasize a need for more integrated

records from multiple proxies to increase spatial and temporal

resolution and extent of reconstructions (Forrest et al. 2015;

Hollis et al. 2019). Comparisons among different proxies and

reconstruction methods could provide valuable quantifications

of uncertainty (Axford et al. 2011; Evans et al. 2018). Moreover,

improving paleo reconstructions and applying mechanistic mod-

els could be a path toward disentangling rates of niche evolution

and environmental dynamics. Specifically, eco-evolutionary

mechanistic models accounting for trait evolution and fossiliza-

tion observer functions could reveal insights on niche evolution

dynamics when validated by empirical data such as fossils.

Finally, a major caveat of studies reconstructing rates of

climatic niche evolution is that the results are highly dependent

on niche characterization methods (Evans et al. 2009; Dormann

et al. 2010). Here, we assumed that the spatial distribution of

species is representative of the full range of climatic conditions

that a species is able to survive under (i.e., its fundamental niche).

However, other factors such as competition also shape species’

distributions (Soberón 2007), further confounding inferences

about climate-niche evolution relationships.

Conclusions
We found no or weak evidence of a relationship between rates of

paleoclimatic change and rates of niche evolution. In contrast, we

found mixed evidence of a negative relationship between temper-

ature and rates of niche evolution depending on the method used

for paleotemperature conditions. We suggest that climatic niches

in birds are only weakly linked to paleoclimatic change, presum-

ably because they can more easily respond to climate change

by redistributing in space rather than by adapting their climatic

niches. We highlight the need for more integrated records from

paleoclimatic proxies or improved paleoclimatic models to pro-

vide better spatiotemporal coverage of terrestrial paleoclimate.
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Figure S1. Maximum clade credibility tree for the wheatear-clade as obtained in a BEAST analyses (figure from Phillips et al. 2020).
Figure S2. Overview of the methods used. Rates of niche evolution (1) were inferred from current climatic niches and a dated phylogeny using a variable
rates model in BayesTraits.
Figure S3. Air surface temperature inferred using a paleoelevation reconstruction at 1-million-year temporal resolution and a 1° spatial resolution for our
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Figure S4. Distribution of mammal fossil localities used to infer paleoclimatic conditions through time.
Figure S4. The maximum clade credibility (MCC) phylogeny for Wheatears and Chats (n = 65 species) colored by estimates of the mean rates of
trait evolution for climatic niche traits and mean rate of evolution through time calculated from 20,000 samples from a BayesTraits analysis for mean
temperature (A and C) and maximum temperature (B and D).
Figure S5. Relationship between climate and rates of niche evolution for rates of paleoclimatic change (A: D) and absolute paleoclimatic conditions (E:J).
Table S1. List of study species and peak breeding months determined from descriptions in the Handbook of birds of the world (del Hoyo et al. 2019).
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