

Supplementary Material

Supplementary Figure 1. Barplot of the relative abundance of bacterial classes in *Aedes japonicus* larvae and in the breeding site water. *Klebsiella* represented 1% of the Gammaproteobacteria reads in both samples. Twelve larval midguts were lysed individually overnight and pooled during DNA isolation, directly on a DNeasy Mini spin column (QIAGEN DNeasy Blood & Tissue Kit). The pooled midgut DNA sample was eluted in 80 μl AE buffer. Metagenomics library preparation and paired-end (150 bp) sequencing was performed on an Illumina NovaSeq6000 instrument by Novogene. Raw sequence reads can be found at the European Nucleotide Archive (accession number PRJEB45737). Trimmed reads were uploaded to the Kaiju web server (v1.7.3) for taxonomic classification and searched against the non-redundant database (NCBI BLAST nr+euk; last updated: 2017-05-16). Results were downloaded and stacked bar plots representing the bacterial class level were created with R (version 4.0.5) and the package ggplot2 (version 3.3.3).

Supplementary Figure 2. Constrained ordination (RDA) showing the clustering profile among samples from each experimental treatment with regard to their affiliation. From the total variance based on Jaccard dissimilarities within the metabolite presence and absence matrix, a total of 23.89% is represented within the two constrained axes shown, distributing as follows: RDA_1(14.35%) and RDA_2(9.54%). Treatment 1 (green) included samples that served as experimental control (T₁). Treatment 2 (yellow) comprised breeding sites visited by an ovipositing female (T₂). Treatment 3 (purple) comprised breeding sites set up with manually deposited eggs (T₃).

Supplementary Table 1. Genomes used to search metabolic pathways displayed in Figure 2.

Strain	Accession No.	
Acinetobacter sp. Ag1	LBMZ00000000	
Acinetobacter sp. Ag2	LBNA00000000	
Acinetobacter sp. AR2-3	MJIQ00000000	
Asaia sp. SF2.1	AYXS00000000	
Chromobacterium sp. Panama	QARX01000001	
Elizabethkingia anophelis Ag1	CP007547	
Elizabethkingia anophelis As1	LFKT00000000	
Elizabethkingia anophelis R26	ANIW01000054	
Elizabethkingia anophelis AR6-8/AR4-6	CP023403/CP023404	
Enterobacter sp. Ag1	AKXM00000000	
Klebsiella sp. MC1F	JAGTYC000000000	
Leucobacter sp. Ag1	LAYO0000000	
Lysinibacillus sp. AR18-8	MDGU00000000	
Microbacterium sp. Ag1	LBCR00000000	
Microbacterium sp. AR7-10	MJIR00000000	
Pantoea sp. Ae16	MDJQ00000000	
Pseudomonas sp. Ag1	AKVH01000000	
Pseudomonas stutzeri AR9-4	MDGV00000000	
Serratia fonticola AeS1	MDJO00000000	
Serratia sp. Ag1	JQEI00000000	
Serratia sp. Ag2	JQEJ00000000	
Serratia marcescens strain Ano1	MJVB00000000	
Serratia marcescens strain Ano2	MJVC00000000	
Serratia marcescens As1	CP010584	
Sphingobacterium sp. Ag1	LBGU00000000	
Sphingomonas sp. Ag1	LAZX00000000	
Staphylococcus equorum AR8-13	MDJP00000000	
Staphylococcus hominis As1	LFKQ00000000	
Staphylococcus hominis As2	LFKR00000000	
Staphylococcus hominis As3	LFKS00000000	
Stenotrophomonas maltophilia As1	LFKU000000000.	
Thorsellia anophelis DSM 18579	FOHV01000000	

Supplementary Table 2. Quantification of metabolites from each sample in the network displayed in Figure 3. Also shown are the m/z ratios and retention times of each metabolite. The network and associated metadata can be accessed at https://gnps.ucsd.edu/ProteoSAFe/status.jsp?task=47c0d4e60d3d41c7ac9e738004711e55

Supplementary Table 3. Pairwise PERMANOVA assessing if the variance captured by the Jaccard dissimilarities among samples from each treatment were significant and what is the effect size (R²) that could be attributed to the conditions (biotic or abiotic) represented by each experimental group we proposed as a decoupling of the oviposition and larval development events. Treatment 1 included samples that served as experimental control. Treatment 2 comprised breeding sites visited by an ovipositing female. Treatment 3 comprised breeding sites set up with manually deposited eggs.

	Treatment 2	Treatment 3
Treatment 1	0.2464 **	0.3007 **
Treatment 2		0.2120 **

Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' '1