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Single-particle tracking enables the analysis of the dynamics of biomolecules in living cells
with nanometer spatial and millisecond temporal resolution. This technique reports on the
mobility of membrane proteins and is sensitive to the molecular state of a biomolecule and
to interactions with other biomolecules. Trajectories describe the mobility of single particles
over time and provide information such as the diffusion coefficient and diffusion state.
Changes in particle dynamics within single trajectories lead to segmentation, which allows
to extract information on transitions of functional states of a biomolecule. Here, mean-
squared displacement analysis is developed to classify trajectory segments into immobile,
confined diffusing, and freely diffusing states, and to extract the occurrence of transitions
between these modes. We applied this analysis to single-particle tracking data of the
membrane receptor MET in live cells and analyzed state transitions in single trajectories of
the un-activated receptor and the receptor bound to the ligand internalin B. We found that
internalin B-bound MET shows an enhancement of transitions from freely and confined
diffusing states into the immobile state as compared to un-activated MET. Confined
diffusion acts as an intermediate state between immobile and free, as this state is most
likely to change the diffusion state in the following segment. This analysis can be readily
applied to single-particle tracking data of other membrane receptors and intracellular
proteins under various conditions and contribute to the understanding of molecular states
and signaling pathways.
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INTRODUCTION

Cells sense their environment through membrane proteins, and extracellular stimuli are translated
into intracellular signaling cascades and a cellular response. This process often begins with ligands
that bind to membrane receptors, induce receptor oligomerization, and recruit other proteins such as
co-receptors. The formation of receptor oligomers and signaling platforms reduce the receptor
mobility and change its diffusion behavior (Stone et al., 2017; Dietz and Heilemann, 2019). Single-
particle tracking (SPT) is a method to measure and to reveal subtle changes in the diffusion of
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membrane receptors in cells and at the molecular level (Manzo
and Garcia-Parajo, 2015; Shen et al., 2017). SPT requires low
molecular densities, in order to allow single-molecule detection
and assignment of these into single-protein trajectories. Such low
molecular densities can be achieved by substoichiometric
labeling, by the introduction of a photoactivatable fluorophore,
or by using transiently binding labels that specifically target the
membrane protein (Manley et al., 2008; Giannone et al., 2010).
SPT provides information on diffusion coefficients and on the
type of motion, i.e. free diffusion, spatially confined movement,
and immobile particles (Michalet, 2010). It may also occur that a
molecule switches between different diffusion states within a
single trajectory; such transitions can be analyzed by
comparing the experimental dataset to Monte Carlo
simulations (Wieser et al., 2008), using hidden Markov models
(Persson et al., 2013; Sungkaworn et al., 2017; Liu et al., 2019),
analytic diffusion distribution analysis (Vink et al., 2020), local
MSD exponent values (Hubicka and Janczura, 2020), and
unsupervised Gibbs sampling (Karslake et al., 2021).

Receptor tyrosine kinases (RTKs) constitute a family of
membrane receptors comprising 58 different proteins
(Lemmon and Schlessinger, 2010). One subfamily is the MET
receptor family containing the hepatocyte growth factor receptor,
also known as MET. MET was first discovered as an oncogene in
1984 (Cooper et al., 1984). The role of MET together with its
physiological ligand hepatocyte growth factor/scatter factor
(HGF/SF) is manifold: It is essential in embryogenesis, is
involved in growth, and regulates cell migration (Bladt et al.,
1995; Schmidt et al., 1995; Uehara et al., 1995). MET
overexpression was found to be of relevance in several cancers
and is targeted in cancer therapy (Ichimura et al., 1996; Goyal
et al., 2013; Mo and Liu, 2017). Next to its canonical ligand HGF,
MET is targeted by the surface protein internalin B (InlB)
secreted by the pathogenic bacterium Listeria monocytogenes
that causes human listeriosis (Braun et al., 1998). InlB triggers
similar cellular responses as HGF/SF and induces bacterial
invasion into hepatocytes (Dramsi et al., 1995; Shen et al.,
2000; Niemann et al., 2007).

Here, we apply a segmentation analysis to single-molecule
trajectories of un-activated and InlB-bound MET and extract
the diffusion states and transitions between these diffusion
states. To follow activated MET, we used the N-terminal
internalin domain of InlB (InlB321) that binds to the
extracellular domain of MET and induces MET
phosphorylation (Banerjee et al., 2004; Niemann et al., 2007;
Ferraris et al., 2010; Dietz et al., 2013), and that we used in
previous work to measure the diffusion of MET in living HeLa
cells with single-particle tracking (Harwardt et al., 2017). We
found that MET bound to InlB diffuses slower than resting
receptors and that the immobile population increases. This
immobilization was assigned to interactions with the actin
cytoskeleton as well as to recruitment of MET to endocytosis
sites. Using a segmentation approach, we now present an
extended analysis of these data by taking into account that
single receptors may switch between different diffusive states
within single trajectories. For this analysis, single trajectories
were divided into segments showing uniform movement. These

segments were analyzed separately with regard to their diffusion
mode (free, confined, immobile) (Rossier et al., 2012; Harwardt
et al., 2017; Orré et al., 2021). In addition, we extracted the
transitions between different segments within single
trajectories, which report on functional transitions of the
MET receptor signaling complex. For MET, we found that
upon InlB activation the immobile state becomes more stable
and transitions into immobile states occur more often. The
confined diffusion state acts as an intermediate state between
immobile and free, as this state is most likely to change the
diffusion state in the following segment. This straight-forward
analysis routine can be transferred to SPT data of other
biological targets.

METHODS

Data Acquisition
The SPT data used within this study, together with
experimental details on data acquisition and sample
preparation, were previously published (Harwardt et al.,
2017). In brief, the universal point accumulation for
imaging in nanoscale topography (uPAINT) method
(Giannone et al., 2010) was applied to measure the
dynamics of the MET receptor in living HeLa cells. For the
resting receptor, an ATTO 647N-labeled, non-activating Fab
antibody fragment was used. The ligand-bound state was
probed using the InlB321 ligand site-specifically labeled with
ATTO 647N which was fully functional (Dietz et al., 2013;
Dietz et al., 2019). Imaging was performed in total internal
reflection fluorescence (TIRF) mode using an N-STORM
microscope (Nikon, Japan). For both un-activated MET and
InlB-bound MET, 60 cells were analyzed.

Single-Molecule Localization
The MET receptor was targeted with fluorescent labels and its
position in a cell membrane determined by analyzing image
stacks with the ThunderSTORM plugin (version dev-2016-09-
10-b1) (Ovesný et al., 2014) implemented in the image processing
program Fiji (Schindelin et al., 2015). Camera settings were
adjusted according to the manufacturer’s manual and the base
level was estimated by averaging the pixel intensity with the
shutter closed. Deviations from ThunderSTORM default settings
are the chosen fitting method “maximum likelihood”, activated
“multi-emitter fitting analysis” with a “maximum numbers of
molecules per fitting region” of 3 and a “limit intensity range”
spanning the 2-sigma interval of the photon distribution in log-
space, extracted from detected emitters with “multi-emitter fitting
analysis” disabled. The localizations were filtered by applying
“remove duplicates”.

Single-Particle Tracking
Trajectories of MET receptors were obtained by loading single-
molecule localization data provided by ThunderSTORM into the
swift tracking software (version 0.4.2) (Endesfelder et al.,
manuscript in prep). Parameters for swift analysis were
determined using the SPTAnalyser software. A detailed
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description is added to the manual at https://github.com/
JohannaRahm/SPTAnalyser. The parameters “diffraction_limit”
� 14 nm, “exp_displacement” � 85 nm (Fab)/75 nm (InlB), “p_
bleach” � 0.010 (Fab)/0.014 (InlB), and “p_switch” � 0.01 were set
globally for all cells. The parameters “exp_noise_rate” and
“precision” were calculated individually per cell. swift divides
trajectories into segments if the diffusion behavior of the particle
changes.

Diffusion State Analysis
The diffusion state analysis was performed with SPTAnalyser.
Diffusion coefficients of individual segments were calculated by
optimizing the parameters of a linear diffusion model on the basis
of the first four time steps of the mean squared displacement
using the method of least squares (Eq. 1). Segments with a
diffusion coefficient below 0 were discarded.

MSD(Δt) � 4DΔt (1)

Segments with a minimum length of 20 frames (400 ms) were
classified into diffusion states as previously reported (Rossier et al.,
2012; Harwardt et al., 2017; Orré et al., 2021). First, the segments
were separated into immobile and mobile diffusion applying a
diffusion coefficient threshold Dmin. The threshold is derived from
the dynamic localization error (Eq. 2) which was calculated for
each cell, with average values ofMSD(0) and diffusion coefficient D
(Savin and Doyle, 2005; Michalet, 2010). The third quartile was
used to determine Dmin (Eq. 3), where n is the number of time steps
used in the linear model to extract the diffusion coefficient. All
segments with a diffusion coefficient below Dmin � 0.0028 μm2/s
were classified as immobile.

σdyn �
�������������������
〈MSD(0)〉 + 4

3 〈D〉 · dt
4

√
(2)

Dmin �
σ2
dyn

4·n·dt (3)

Mobile segments were separated by fitting 60% of the MSD
plot with Eq. 4, where rc is the confined diffusion radius and τ is a
time constant. Segments with τ smaller than half the time interval
used to compute the MSD (120 ms) are classified as confined
diffusion, and values higher than that as free diffusion.

MSD(Δt) � 4
3
r2c · (1 − e−Δt/τ) (4)

Transition Counting
For each single trajectory in which at least two segments were
identified, the transition of the diffusion state between the segments
was determined. For the three diffusion states of immobile (i),
confined (c), and freely diffusing (f) particles, nine different
transitions are distinguished: i-i, i-c, i-f, c-i, c-c, c-f, f-i, f-c, f-f.
Segments with a length of less than 20 frames, or with a negative
diffusion coefficient, were not classified. Transitions between a
classified and an unclassified segment were neglected. Unclassified
segments that occurred between two classified segments, and that
had a length of up to 19 frames, were masked, and the transition

between the segment before and after the unclassified segment was
considered in the analysis. This means that all segments that were
shorter or equal than the mask length of 19 frames were removed
from the trajectories, and that transitions between the preceding
and the succeeding segment were counted. The mask value was
synchronized to the minimum length a segment must exceed to be
classified into a diffusion state. Transition counts were normalized
per cell and summed to one to compare the occurrences of
transition types. Transition counts were normalized per
diffusion state so that the counts of transition types proceeding
from the same diffusion state summed up to one to compare the
occurrences of diffusion states in adjacent segments.

Statistical Analysis
Mean values are listed with respective standard errors of the
mean (SEM). Mean values and SEMs were determined for each
cell and globally averaged. Nonparametric tests were chosen as
populations partly rejected the hypothesis of being normally
distributed (tested with the Shapiro-Wilk test for normality,
significance level � 0.05). Wilcoxon signed rank tests were used
to validate the comparison of distributions within a treatment
group (Supplementary Tables S2, S5). Mann-Whitney U tests
were used to validate the comparison of distributions from two
treatment groups (Supplementary Tables S1, S3, S4, S6). Levels
of significance were classified as follows: p > 0.05 no significant
difference (n.s.), p < 0.05 significant difference (*), p < 0.01 very
significant difference (**), p < 0.001 highly significant difference
(***). All tests were performed with SciPy (version 1.6.2)
(Virtanen et al., 2020).

Simulations
To evaluate the error rate of the diffusion state classification,
simulations of single-particle trajectories were performed. For
this purpose, the software ermine (Estimate Reaction-rates by
Markov-based Investigation of Nanoscopy Experiments) was
used to create simulations of trajectories of freely diffusing
particles. The probability distribution was defined by the
expectation value of the mean squared displacement r within
a timestep t (Eq. 5). The apparent mean squared displacement r
was calculated based on the apparent diffusion coefficientD and
the static error ε (Savin and Doyle, 2005) (Eq. 6). In order to
match the simulation close to the experimental data, the
following parameters were chosen: for D, the average
diffusion coefficient of 0.12 μm2/s of the mobile population
(confined and free) was used, t corresponds to the camera
integration time of 0.02 s, τ to the time lag between two
consecutive frames of 0.02 s, and ε to the average localization
error of 29 nm.

p(r|〈r2〉) � 2r
〈r2〉 · e

−( r2

〈r2〉
)

(5)

〈r2〉 � 4D(t − τ

3
) + 4ε2 (6)

The error rate of the diffusion state classification model was
estimated by classifying the simulated trajectories of freely
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diffusing particles into confined or free by fitting their MSD
values with Eq. 4 (seeDiffusion State Analysis Section). The false
negative rate was calculated as the number of confined classified
trajectories divided by the sum of confined and free classified
trajectories.

Availability
The analysis procedure introduced in this work can be straight-
forward applied to other single-particle tracking data.
Localizations can be detected with rapidSTORM (Wolter
et al., 2012) or ThunderSTORM (Ovesný et al., 2014) and
connected to trajectories with swift. Swift version 0.4.2, used
in this manuscript, and all subsequent versions of the swift
software, as well as documentation and test data sets, can be
obtained on the swift beta-testing repository (http://bit.ly/
swifttracking). The home-written software SPTAnalyser in
Python (3.7.6) estimates parameters for tracking with swift
and executes diffusion state analysis and transition counting.
SPTAnalyser has a graphical user interface with adaptable
analysis parameters and assists in processing large amounts
of data by creating macros for ThunderSTORM and batch files
for swift. SPTAnalyser is compatible with PALMTracer
(Bordeaux Imaging Center), which is a software for
localization and tracking available as a plugin for
MetaMorph (Molecular Devices, Sunnyvale, CA, USA). The
source code of SPTAnalyser, together with a detailed manual, is
available from https://github.com/JohannaRahm/SPTAnalyser.
Simulations of trajectories of freely diffusing particles were
conducted with ermine version 0.1 (https://github.com/
SMLMS/ermine-tutorial).

RESULTS

Extraction of Different Diffusion States
Within Single-Molecule Trajectories
We developed a data analysis workflow that extracts transitions
between diffusion states from single-particle trajectories
(Figure 1A, Supplementary Figure S1). We applied this
analysis to single-particle tracking data of MET receptors in
live HeLa cells recorded using the uPAINT principle
(Giannone et al., 2010). For that purpose, MET receptors were
either labeled with a monoclonal Fab fragment, which binds to
but does not activate the receptor, or with the bacterial ligand
InlB, which binds and activates the receptor (Figure 1B). Both
ligands were conjugated to the fluorophore ATTO 647N. The
positions of the fluorophore labels were measured in live cells
using TIRF microscopy and subsequently linked to trajectories
(Figure 1A). Individual trajectories were divided into segments
that exhibited uniform motion. Segments were classified as
immobile (i), confined (c), and freely diffusing (f) states and
transitions between diffusion states within single trajectories were
analyzed.

Segments of single trajectories of Fab- and InlB-bound
receptors exhibit different properties in terms of their
mobility, population of diffusion states, lengths, and
confinement radii (Figures 1C–F). Diffusion states (free,
confined, immobile) were determined by analyzing the MSD
plots of the segments (for details see Methods). The diffusion
coefficients of the InlB/MET complexes are significantly smaller
compared to Fab/MET for the confined (DInlB � 0.051 ±
0.003 μm2/s vs DFab � 0.094 ± 0.007 μm2/s) and free (DInlB �

FIGURE 1 | Analysis pipeline of single-particle tracking data of the METmembrane receptor. (A) Diffraction limited signal of membrane-bound fluorescently labeled
receptors is localized with subpixel accuracy (scale bar 1 μm) (left). Localizations are connected over time to trajectories and changes in diffusion behavior within a
trajectory give separated segments (schematic scale bar 100 nm) (middle). Segments are classified into the diffusion states immobile (blue), confined (green), and free
(orange) (right). Gray segments are below the necessary length to be classified and have no diffusion state label. Transitions between diffusion states are counted.
(B) Membrane bound MET receptors are labeled extracellularly with a monoclonal Fab fragment that binds but does not activate and with InlB that binds and activates
the receptor. Both ligands carry ATTO 647N as a fluorescent label. The movement of bound labels is detected and analyzed. The segment properties (C) diffusion
coefficient, (D) population of diffusion states, (E) segment length, and (F) confinement radius are displayed as violin plots; dashed lines mark the quartiles. For each
condition, Fab (blue) and InlB (gray), the average segment values of 60 cells are displayed.
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0.084 ± 0.003 μm2/s vs DFab � 0.134 ± 0.004 μm2/s) population
(Figure 1C). The diffusion coefficients for the immobile
populations are smaller than the precision of the method and
result from segments below the detection limit of mobility (see
Methods). Upon activation with InlB, the population of the freely
diffusing particles is reduced and driven towards the immobile
state (Figure 1D). Segment lengths are drastically shorter for
confined segments compared to the other two diffusion states
(Figure 1E). For example, in InlB-treated cells, a segment
classified as confined diffusion lasts an average of 0.64 ± 0.02 s
compared to 1.19 ± 0.03 s for immobile and 1.00 ± 0.04 s for a free
diffusion. InlB-bound receptors generally move in a more
confined manner, as confinement radii calculated for the
confined and free populations are smaller compared to un-
activated MET (Figure 1F). Interestingly, the confinement
radii of the free diffusion state are in the order of magnitude
of the cell sizes.

To evaluate the accuracy of the classification model, simulated
trajectories of freely diffusing particles were classified. An error
rate was calculated from freely diffusing particles particles that
were classified as confined diffusion (Supplementary Figure S2).
This error rate decreased with increasing trajectory length. In
addition, trajectories of freely diffusing particles were simulated
with number and trajectory length corresponding to the
distribution of trajectories in the Fab experiments, resulting in
an error rate of 15%. This suggests the possibility that trajectories

of freely diffusing particles contribute to the confined population
and reduce the average trajectory length, as a misclassification is
more likely with shorter trajectories.

The number of transition events observed for all
trajectories of a cell is 184 ± 11 within a measurement
period of 20 s. Compared to the average number of 1440 ±
90 trajectories per cell, this number appears relatively
small, which is because such events rarely occur within the
observed time window of a trajectory (1.36 ± 0.06 s). More
transition events occur in longer trajectories (Supplementary
Figure S1A). However, 70% of the trajectories do not change
their diffusion mode and consist of only one segment
(Supplementary Figure S1B). The number of transition
counts increases by up to 30% by masking unclassified
segments, i.e. segments with a length below the threshold
of 20 frames. For this, the transitions of adjacent segments
with a defined diffusion state around the masked segment are
counted. Without masking, the average is 22.2 ± 0.6% of
transitions between segments with a defined diffusion state.
With masking, this value is increased to 71.6 ± 0.7%
(Supplementary Figure S1C). Mostly no significant
changes are observed between the relative frequencies of
transitions when masking or without masking
(Supplementary Figures S1D,E). Only transitions between
immobile and free diffusion benefited slightly less from
masking than those of the other transition types.

FIGURE 2 | Single-molecule trajectories and quantification of transitions within trajectories. Single-molecule trajectories of (A) Fab-bound and (B) InlB-bound MET
receptors within exemplary cells. Diffusion states of segments are highlighted in colors (free: orange, confined: green, immobile: blue). Highlighted regions in the overview
images are shown as zoom-ins (right). In the zoom-ins only trajectories showing at least one transition are displayed. Scale bars 5 μm, zoom-ins 1 μm. Violin plots of the
nine different diffusion state transitions between segments within trajectories in (C) Fab-bound and (D) InlB-bound cells (i � immobile, c � confined, f � free). Counts
are normalized to one per cell. For each condition 60 cells were analyzed. Dashed lines mark the quartiles, crosses correspond to the means.
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METReceptor ActivationWith InlB Changes
Diffusion State Transitions Between
Segments
Segments of single-molecule trajectories of Fab-bound as well as
InlB-bound MET receptors were classified into freely diffusing,
confined moving, and immobile particles as described above.
Exemplary cells with color-coded segments are shown in
Figures 2A,B for resting and activated MET, respectively. In
the zoom-ins only trajectories with at least one transition are
displayed. In InlB-treated cells, the number of confined and
especially immobile segments increases in comparison to Fab-
treated cells, while at the same time the occurrence of freely
diffusing particles is significantly lower. In addition, an
increased confinement of InlB-bound receptors is visible.
These observations are in accordance with the increased
fractions of immobile and confined receptors (Figure 1D)
and the decreased confinement radius of InlB-bound MET
trajectories.

In the next step, we quantified the probability of specific
transitions between segments in individual trajectories (Figures
2C,D). From this analysis, we found a probability of 22 ± 1% for
Fab-bound receptors and 42 ± 2% for InlB-bound receptors that
an immobile particle stays immobile. A similar observation is
made for freely diffusing receptors, which mainly stay in this
diffusion state (Fab: 31 ± 2%, InlB: 13.2 ± 0.8%). Homogeneous
transitions of the confined diffusion state are less probable (Fab:
2.2 ± 0.3%, InlB: 2.6 ± 0.2%). This is interesting, as the confined
and immobile states for Fab-bound receptors (immobile: 15.6 ±
0.5%, confined: 17.4 ± 0.4%) are nearly equally populated
(Figure 1D), but significantly less homogeneous transitions
occur in the confined population. Regarding heterogeneous
transitions, transitions from free to immobile (Fab: 11.4 ±
0.4%, InlB: 9.8 ± 0.3%), immobile to free (Fab: 8.9 ± 0.4%,
InlB: 9.1 ± 0.3%), and confined to free for Fab-bound MET
(6.3 ± 0.4%) and confined to immobile for InlB-bound MET
(8.2 ± 0.3%) are most frequent.

Interestingly, when comparing the frequencies of transitions
between resting and InlB-bound MET receptors they mostly
differ highly significantly (Supplementary Figure S2). Only
the transitions from immobile to free and from confined to
confined do not change significantly. The transition from
immobile to immobile segments, from immobile to confined
segments, as well as from confined to immobile segments
increases for the activated cells. At the same time, transitions
to the freely diffusing state occur less probable out of the InlB-
activated state.

To visualize the differences between the different diffusion
states, we normalized the transitions with regard to the
respective diffusion state (Supplementary Figure S3). For
both, Fab-bound and InlB-bound MET receptor trajectories,
it clearly shows that the immobile and the free state are
relatively stable diffusion states, which we infer from the high
probability that an immobile particle stays immobile in the
next segment and a freely diffusing molecule remains freely
diffusing (Supplementary Figures S3 A,B). The confined
state appears to be a more intermediate state: a confined

diffusing receptor very likely changes its diffusion state in the
next segment, either getting immobilized or switching to free
diffusion. When comparing resting and InlB-activated MET
mobility most transitions significantly change
(Supplementary Figure 3C). Transitions towards the
immobile state become more likely and to the freely
diffusing state less probable in activated cells. The
transitions involving the confined diffusing state change
less significantly.

DISCUSSION

We report an analysis method for single-particle tracking data
that resolves segments of different diffusional states within single
trajectories. The method is sensitive to report segments of free,
confined, and immobile states within single trajectories, and
transitions between these diffusion states. This allowed us to
relate dynamic information on protein mobility to functional
states of a protein in a membrane, e.g. the immobilization upon
binding of a ligand to a receptor. This additional information
from single-particle tracking data complements the available
portfolio on analyzing mobility data of single proteins (Rossier
et al., 2012; Calebiro et al., 2013; Ibach et al., 2015; Sungkaworn
et al., 2017).

As a showcase example, we investigated the diffusion of
the MET receptor in living HeLa cells by analyzing available
single-particle tracking data of resting and InlB-activated
MET (Harwardt et al., 2017). Our analysis reports similar
diffusion coefficients for resting and InlB-bound MET. In
addition, we were able to segment trajectories and to reveal
transitions between diffusion states within single trajectories;
this information was so far averaged out by a global MSD
analysis of single-particle trajectories. The analysis of
segments in single MET receptor trajectories revealed that
upon activation, MET transits from a free diffusion state to
confined and immobile states and the immobile state becomes
more stable, which is in line with the canonical model of
receptor tyrosine kinase activation and internalization (Li
et al., 2005; Chung et al., 2010). Interestingly, we found
that the confined state has a short lifetime which is
reflected in the segment lengths as well as the transition
probabilities. This diffusion state can be seen as an
intermediate state of MET. Upon entry into this state, it is
probable that the receptor is soon either immobilized, e.g.
prior to endocytosis, or returns to a highly mobile state, e.g.
searching for interaction partners.

Our analysis procedure can be applied to single-particle
tracking data of other molecules and provides straight-forward
access to transitions in the mobility of proteins that can be
related to functional states. Future developments may focus on
extending the trajectory length and extracting the kinetics of
transitions within single trajectories. This could be achieved by
either using more stable fluorescent probes such as quantum
dots (Hagen et al., 2009; Li et al., 2012; Cognet et al., 2014), or
by recording single-molecule data with very low illumination
intensity and in combination with image analysis-assisted
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localization through e.g. denoising algorithms (Kefer et al.,
2021). Another exciting extension is dual-color SPT (Wilmes
et al., 2015, 2020), which in combination with segmentation
analysis may relate changes in diffusion states to molecular
interactions such as the formation of transient complexes
between two receptors.
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