
J. London Math. Soc. (2) 102 (2020) 405–436 doi:10.1112/jlms.12345

Masur–Veech volume of the gothic locus

David Torres-Teigell

Abstract

We calculate the Masur–Veech volume of the gothic locus G in the stratum H(23) of genus 4. Our
method is based on the use of the formulae for the Euler characteristics of gothic Teichmüller
curves to determine the number of lattice points of given area. We also use this method to recal-
culate the Masur–Veech volumes of the Prym loci P3 ⊂ H(4) and P4 ⊂ H(6) in genus 3 and 4.
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1. Introduction

The moduli space Hg of flat surfaces of genus g carries a remarkable SL(2,R)-action preserving
its natural stratification. By the famous theorem of Eskin, Mirzakhani and Mohammadi, orbit
closures are very nice geometric objects called affine invariant manifolds, that is, complex
linear subspaces of a stratum locally defined by linear equations with real coefficients in period
coordinates. The orbit closure of a generic flat surface is the whole stratum where it lives and, in
fact, the list of proper affine invariant submanifolds of strata currently known is not very large.

The main object of study in the present paper is the gothic locus G, a four-dimensional
affine invariant manifold in the stratum H(23) of genus 4 discovered by McMullen, Mukamel
and Wright in [25] (see Section 4.1 for definitions). This locus has the remarkable property
that it contains one of the few known infinite families of geometrically primitive Teichmüller
curves. It is also closely related to the flex locus F , a totally geodesic, irreducible complex
surface in M1,3. In the present paper, we prove the following.

Theorem 1.1. The Masur–Veech volume of the gothic locus G ⊂ H(23) in genus 4 is

vol(G) =
13

27 · 35
π4.
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Using period coordinates, one can define the so-called Masur–Veech measure ν on a stratum
H(a) as the pullback of the Lebesgue measure on H1(X,Z(ω); C) ∼= C2g+n−1, the normalisation
of which depends on the choice of a lattice in relative cohomology (see Section 2 and the
references therein for discussions on normalisations). The measure of the whole stratum is
obviously infinite, since one can always scale differentials. In order to solve this problem,
one can restrict their attention to the hyperboloid H1(a) ⊂ H(a) formed by flat surfaces of
area(X,ω) = i

2

∫
X
ω ∧ ω = 1. The measure of a set B ⊂ H1(a) is then defined to be the Masur–

Veech measure of the cone C(B) ⊂ H(a) over B. Masur and Veech proved independently [21,
32] that this measure is finite.

More generally, if the coefficients of the equations defining an affine invariant manifold N
are rational numbers, one can define a measure on N and N1 in the same way as for the whole
stratum (equivalently, one can consider the space of SL(2,R)-invariant finite measures ν1 on
H1(a) and consider their supports N1 = supp(ν1), see [13]).

For strata H(a) of flat surfaces almost everything is known: there are explicit formulae for
the volumes, recursions to calculate them and large genus asymptotics (see [6, 7, 14, 29]).
The usual strategy for the computation of the volumes, due originally to Eskin and Masur and
to Kontsevich and Zorich [34], is based on the interpretation of the Lebesgue volume as the
leading term of the number of lattice points in a cone as its radius tends to infinity.

In the case of strata Q(b) of finite-area quadratic differentials, there are precise formulae
for the volumes in genus 0 and explicit values in small genera (see [2, 15, 16]). Very
recently, the authors of [10] related the volume of the principal strata of quadratic differentials
with the constant term of a family of polynomials and gave a recursive formula to compute
them.

As far as we know, our result is the first example of computation of the Masur–Veech volume
of a proper affine invariant submanifold of a stratum, apart from the loci of canonical double
covers that can be naturally identified with strata of quadratic differentials.

Our method differs from the strategy of Eskin–Masur and Kontsevich–Zorich by a subtle but
relevant twist: although we do calculate the precise number of minimal torus covers of given
area and degree, we do not exhibit any of them.

Instead, we use the formulae for the Euler characteristics of gothic Teichmüller curves
from [28] to give this number. The key observation is that the number of minimal torus
covers (X,ω) → (C/Z ⊕ iZ, dz) of minimal area on an arithmetic Teichmüller curve C can be
interpreted as the degree of the natural map C → M1,1 to the moduli space of elliptic curves,
and this degree is given by the quotient of the Euler characteristics χ(C)/χ(M1,1).

The objective of exhibiting all minimal torus covers on G is actually a challenging problem.
In the case of full strata of abelian (respectively, quadratic) differentials, one can take a
combinatorial approach to the enumeration of square-tiled surfaces (respectively, pillowcase
covers) by determining all possible cylinder decompositions and counting the different square
tilings (see, for example, [16, 34]). However, one of the requirements to belong to the gothic
locus is the existence of a non-Galois degree three map to an elliptic curve, and this condition
does not have a direct interpretation in the flat geometry world. In order to enumerate the
torus covers in G one would therefore need to translate this condition into a combinatorial
feature that makes possible the determination of the possible cylinder decompositions. This
approach, that would also allow the enumeration of cusps of gothic Teichmüller curves, needs
techniques beyond the scope of this paper.

The article is organised as follows. In Section 2 we review the basic aspects of the theory
of flat surfaces, such as period coordinates on strata of abelian differentials, action of SL(2,R)
and definition of the Masur–Veech measure both on strata and on affine invariant manifolds.
Section 3.1 is devoted to the study of Hilbert modular surfaces of square-discriminant and
abelian surfaces with real multiplication and the calculation of the induced polarisation on the
abelian subvarieties generated by eigenforms. In Section 4 we introduce the Prym and gothic
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loci and study the infinite families of Teichmüller curves therein, giving formulae for their
Euler characteristics and classifying the square-tiled surfaces they contain. In Section 5 we use
Dirichlet series and modular forms to study the asymptotic behaviour of certain arithmetic
functions related to the Euler characteristics of Prym and gothic Teichmüller curves. Finally,
in Section 6 we compute the volume of the gothic locus and the volumes of the minimal
stratum in genus 2 and the two Prym loci in genus 3 and 4. We also review how to link
these last two values with the already known volumes of the corresponding strata of quadratic
differentials.

2. Masur–Veech volume and lattice points

In this section we introduce the Masur–Veech volume on strata of abelian differentials
and on affine invariant manifolds defined by rational equations in period coordinates. The
normalisation of this measure depends on the choice of an appropriate lattice, the covolume
of which is fixed to be one. The volume of an affine invariant manifold can then be calculated
by counting the leading term of the number of lattice points in the ‘hyperboloid’ of flat
surfaces of area at most N . This method, originally due to Kontsevich–Zorich and Eskin–Masur,
and later completely developed by Eskin–Okounkov [14, 15] using representation theory and
quasimodular forms, has allowed the determination of general formulae for the volumes of
different families of strata of abelian and quadratic differentials (see [2]) and the calculation of
these volumes in small genera (see [34] for the abelian case and [16] for the quadratic one). Here
we follow this strategy to derive an explicit formula for the volume of affine invariant manifolds.

Before we state the main result of this section, let us introduce some of the objects needed. By
a torus cover (X,ω) → (C/Λ, dz) we will mean a covering π : X → C/Λ such that π∗dz = ω.
The particular case (X,ω) → (C/Per(X,ω), dz), whenever the lattice of periods Per(X,ω)
(see (1)) is a sublattice of Z ⊕ iZ, is called the minimal torus cover of (X,ω). Note that, if we
denote by E the elliptic curve E = C/Z ⊕ iZ, then for a torus cover π : (X,ω) → (E, dz) one
has area(X,ω) = deg(π) (see definitions below).

With the normalisations of Section 2.3, the aforementioned method yields the following
formula.

Proposition 2.1. Let N be an affine invariant manifold defined by linear equations with
rational coefficients in period coordinates. Assume that N contains no rel deformation and
normalise the Masur–Veech volume with respect to the lattice ΛN

abs of cohomology classes in
N with absolute periods in Z ⊕ iZ. Define the sets

Cd(N ) = {(X,ω) ∈ N : π : (X,ω) → (E, dz) torus cover of degree d},
Sd,m(N ) = {(X,ω) ∈ N : π : (X,ω) → (C/Per(X,ω), dz) minimal

torus cover of degree m and area(X,ω) = d}.
Then the volume of the hypersurface N1 of flat surfaces of area 1 is given by

vol(N1) = lim
D→∞

1
DdimC N

D∑
d=1

| Cd(N ) |

= lim
D→∞

1
DdimC N

D∑
d=1

∑
m|d

σ
(

d
m

) | Sm,m(N ) |,

where σ(n) := σ1(n) denotes the sum of divisors of n.
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The assumption on the non-existence of rel deformations ensures that ΛN
abs is actually a

lattice (see sections below). In Section 6 we will relate this counting problem with sums of
Euler characteristics of arithmetic Teichmüller curves in N .

2.1. Strata of abelian differentials and period coordinates

The Hodge bundle Hg over the moduli space Mg is the moduli space of flat surfaces of genus g,
that is, pairs (X,ω) where X is a compact Riemann surface of genus g and ω ∈ H0(X,ΩX) is
a non-zero holomorphic 1-form, or abelian differential. A covering of flat surfaces π : (Y, η) →
(X,ω) is simply a map between Riemann surfaces such that η = π∗ω.

Given a flat surface (X,ω), the local charts given by z �→ ∫ z

z0
ω around regular points z0

and z �→ ∫ z

z0
ω1/k around zeroes z0 of ω of order k induce a translation structure on X, that

is, an atlas such that the transition functions on X \ Z(ω) are translations. This allows us to
represent (X,ω) as a union of polygons in the plane whose sides are identified by translations,
and it determines a flat metric on X \ Z(ω) given by the pullback of the euclidean metric
on the plane. The flat area of X is then given by the euclidean area of the polygon, which
agrees with area(X,ω) = i

2

∫
X
ω ∧ ω. Moreover, zeroes of order k of the differential correspond

to vertices of the polygon whose total angle sums up to 2π(k + 1).
Now, the zero set Z(ω) of an abelian differential ω is a divisor of degree 2g − 2 on X and one

can therefore stratify Hg according to the multiplicities of the zeroes of the differential, so that
if a = (a1, . . . , an) is a partition of 2g − 2, the stratum H(a) consists of flat surfaces (X,ω)
such that Z(ω) =

∑
aiPi, for pairwise different points Pi ∈ X. The dimension of the stratum

is dimC H(a) = 2g + n− 1. We will use exponential notation on the indices, for example,
H(12) := H(1, 1).

Using the lattices H1(X; Z ⊕ iZ) one can canonically identify nearby fibres of the Hodge
bundle. This identification, equivalent to the Gauss–Manin connection, allows us to define the
period coordinates parametrising a stratum H(a). In a small neighbourhood U of a point
(X,ω) ∈ H(a) one can define the period map

U ↪→ H1(X,Z(ω); C) ∼= C2g+n−1

(Y, η) �→ η(·),
where we identify H1(X,Z(ω); C) = Hom(H1(X,Z(ω); Z),C) and the linear map η(·) is defined
by η(γ) =

∫
γ
η for γ ∈ H1(X,Z(ω); Z). We also define the lattices of absolute and relative

periods of (X,ω) as

Per(X,ω) = {ω(γ) : γ ∈ H1(X; Z)},
RPer(X,ω) = {ω(γ) : γ ∈ H1(X,Z(ω); Z)}.

(1)

Consider now the natural map p : H1(X,Z(ω); C) → H1(X; C). A rel deformation of
(X0, ω0) ∈ H(a) is a path α(t) = (Xt, ωt) ∈ H(a), for t ∈ [0, 1], along which the lattice of
absolute periods Per(Xt, ωt) stays the same, that is, such that p ◦ α is constant.

It is sometimes convenient to restrict ourselves to the hypersurface H1(a) ⊂ H(a) of flat
surfaces of flat area 1. Note that, if {Aj , Bj : i = 1, . . . , g} are absolute periods with respect to a
symplectic basis of homology, Riemann bilinear relations imply that area(X,ω) = i

2

∑
j AjBj −

AjBj , and therefore H1(a) is locally a hyperboloid in period coordinates. The natural action
of C∗ on H(a) determines, for every flat surface (X,ω), a canonical point (X,λω) ∈ H1(a) for
some λ ∈ R+. Note that area(X,λω) = |λ|2 · area(X,ω), for λ ∈ C∗.

In a similar way one can define strata of quadratic differentials. In this case the bundle Qg

over the moduli space Mg parametrises pairs (Y, q) where q is a non-zero quadratic differential
on Y with at most simple poles and not the square q = ω2 of an abelian differential ω ∈
H0(Y,ΩY ). One can consider local charts given by z �→ ∫ z

z0

√
q as before in order to define a
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half-translation structure on Y , that is, an atlas such that the transition functions on Y \ Z(q)
are given by z �→ ±z + c. In this case the quadratic differential (Y, q) can be represented as
a union of polygons in the plane whose sides are identified by translations or translations
composed with rotations of order 2, and the total angle around a vertex sums up to π(k + 2),
where k is the order of the zero (or pole) of q at the corresponding point. Moreover, the
condition on the orders of the poles ensures that the total area of

∫
Y
|q| is finite.

Given a partition b = (b1, . . . , bn) of 4g − 4, where the bi are non-zero integers bi � −1,
we denote by Q(b) the stratum of quadratic differentials such that div(q) =

∑
biPi, which

has dimension dimC Q(b) = 2g + n− 2. In order to parametrise this stratum, consider the
canonical double cover π : X → Y defined by the condition that π∗q = ω2 for an abelian
differential ω ∈ H0(X,ΩX). If we denote by σ : X → X the involution that induces the map
π, the abelian differential ω lies in the −1-eigenspace H0

−(X,ΩX) of σ∗. Moreover, the
multiplicities a of ω are determined by those of q in the following way: each zero of q of
even multiplicity bi yields two distinct zeroes of ω of multiplicities bi/2, and each zero or pole
of odd multiplicity bi yields a zero of ω of multiplicity bi + 1. The map Q(b) → H(a) thus
defined turns out to be an immersion, and the stratum Q(b) is then locally parametrised by
the −1-eigenspace H1

−(X,Z(ω); C) of σ∗ via the period map

U ↪→ H1
−(X,Z(ω); C) ∼= C2g+n−2

(Y ′, q′) �→ ω′(·),
where π∗q′ = (ω′)2.

Similar to the abelian case, we will define the hypersurface Q1(b) ⊂ Q(b) of quadratic
differentials of area 1/2. The reason for this normalisation comes from the fact that the
canonical double cover (X,ω) of a quadratic differential (Y, q) of area 1/2 has area(X,ω) = 1.

2.2. SL(2,R)-action and affine invariant manifolds

There is a natural action of SL(2,R) and of GL+(2,R) on the strata of abelian and quadratic
differentials. In both cases, the action is induced by the affine action on the polygons in the
plane representing the differential or, equivalently, by postcomposition of the charts of the
translation or half-translation structure. Note that, in the abelian case, one can also construct
(XA, ωA) := A · (X,ω) where A ∈ GL+(2,R) by considering the smooth differential

ωA =
(
1 i

) ·A ·
(

Reω
Imω

)
on the differential manifold underlying X and taking the unique Riemann surface structure
XA with respect to which ωA is holomorphic.

An affine invariant manifold is a closed subset of a stratum H(a) locally given by real
linear equations in period coordinates. Since periods ω(γ) are precisely the holonomy vectors
in C ∼= R2, that is, the vectors representing the path γ in the flat picture of (X,ω), the action
of SL(2,R) in period coordinates is simply given by the affine action on CN ∼= (R2)N . In
particular, affine invariant manifolds are SL(2,R)-invariant. The converse is also true: any
GL+(2,R)-invariant closed analytic subspace is locally cut out by real linear equations [26,
Proposition 1.2]. Furthermore, Eskin, Mirzakhani and Mohammadi proved the striking result
that the closure of any GL+(2,R)-orbit is also an affine invariant manifold [13, Theorem 2.1].

In the rare case that an orbit GL+(2,R)(X,ω) is already closed, it projects to an (algebraic)
curve C inside Mg, which is then called the Teichmüller curve generated by (X,ω). We will
sometimes abuse the terminology and refer to the orbit itself as a Teichmüller curve. Note
that if π : (Y, π∗ω) → (X,ω) is a covering of flat surfaces, then the orbit GL+(2,R)(Y, π∗ω)
is also closed. We say that a Teichmüller curve is geometrically primitive if it does not arise
from such a covering construction. Not many families of geometrically primitive Teichmüller
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curves are known, see, for example, [25] for a brief overview. Among them, McMullen and
Calta independently constructed the Weierstraß curves in genus 2 [5, 22] and McMullen later
generalised this construction to the Prym–Teichmüller curves in genus 3 and 4 [24]. More
recently, Eskin, McMullen, Mukamel and Wright found six exceptional orbit closures, two of
which contain an infinite collection of Teichmüller curves [12, 25]. We will be particularly
interested in one of these families, the gothic Teichmüller curves in the stratum H(23). The
explicit construction of these families of Teichmüller curves will be carried out in Section 4.

Identifying the tangent space T(X,ω)N with a subspace of H1(X,Z(ω); C), the rank of the
affine invariant manifold N is defined as the number 1

2 dim p(T(X,ω)). Note that, whenever
dimN = 2 rank(N ), the kernel of p restricted to T(X,ω)N has dimension 0 and there are no
non-trivial rel deformations inside N .

2.3. Masur–Veech volume

We consider the following loci in H1(X,Z(ω); C)

ΛH(a)
rel := {(Y, η) ∈ H1(X,Z(ω); C) : RPer(Y, η) ⊂ Z ⊕ iZ},

ΛH(a)
abs := {(Y, η) ∈ H1(X,Z(ω); C) : Per(Y, η) ⊂ Z ⊕ iZ}.

Note that ΛH(a)
rel agrees with H1(X,Z(ω); Z ⊕ iZ). On the other hand the locus ΛH(a)

abs does not
define in general a lattice since rel deformations preserve it.

The most usual normalisation of the Masur–Veech volume uses the lattice ΛH(a)
rel (see [9,

Appendix A; 16] for other discussions on the different normalisations). We also note here
that points of these lattices represent certain torus covers, as we will see in the proof of
Proposition 2.1.

Take now the Lebesgue measure on H1(X,Z(ω); C) ∼= C2g+n−1, normalised so that the lattice
ΛH(a)
rel has unit covolume. Its pullback via the period map is a well-defined and SL(2,R)-

invariant measure ν on H(a) called the Masur–Veech measure. This measure is obviously
infinite, since one can always rescale (X,ω) inside H(a). However, it allows us to define the
following measure on the unit hyperboloid H1(a). For a subset B ⊂ H1(a) let us define the
cone

C(B) = {(X,λω) ∈ H(a) : (X,ω) ∈ B, λ ∈ (0, 1]}.
We then define the volume of B as vol(B) := ν(C(B)) (other authors consider instead the
measure defined by disintegration against the area — see [2, § 4.1] or (18)). Masur [21] and
Veech [32] proved that this measure is actually finite, that is, vol(H1(a)) < ∞.

One can similarly define a finite measure on the unit hyperboloid Q1(b) by fixing a lattice in
the space H1

−(X,Z(ω); C) parametrising the stratum Q(b), see Section 6.3 for a quick review
of the normalisations used in [2, 16].

Finally, let N ⊂ H(a) be an affine invariant manifold defined by linear equations with
rational coefficients in period coordinates and define the subspaces

ΛN
rel := ΛH(a)

rel ∩ N = {(Y, η) ∈ N : RPer(Y, η) ⊂ Z ⊕ iZ},

ΛN
abs := ΛH(a)

abs ∩ N = {(Y, η) ∈ N : Per(Y, η) ⊂ Z ⊕ iZ},
(2)

where we identify N with its image under the period map. The rationality condition implies
that ΛN

rel is a lattice in N .
If moreover N does not admit rel deformations, that is, dimN = 2 rank(N ), then ΛN

abs defines
a lattice in N as well. Since the gothic locus and the rest of affine invariant manifolds with
which we will work satisfy this last condition, we will use this lattice ΛN

abs to normalise the
Masur–Veech measure.
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In fact, completely analogously to the previous cases we can define the Masur–Veech measure
νN on N and the corresponding finite measure on N1 with respect to the chosen lattice. We will
sometimes abuse notation and write vol(N ) instead of vol(N1) whenever the context is clear.

Proof of Proposition 2.1. By the definition of the Masur–Veech volume on N1 with the
lattice normalisation given by ΛN

abs, one can approximate the volume vol(N1) by counting
points in the lattice 1

D0
ΛN
abs of area � 1, that is,

vol(N1) = lim
D0→∞

1
DdimR N

0

·
∣∣∣{ 1

D0
Λabs ∩ C(N1))

}∣∣∣.
Rescaling by D0 and recalling that the area of (X,ω) grows quadratically under homotheties,

we find that the following sets have the same cardinality:∣∣∣{ 1
D0

ΛN
abs ∩ C(N1))

}∣∣∣ = ∣∣{(X,ω) ∈ ΛN
abs : area(X,ω) � D2

0

}∣∣.
Now, for each (X,ω) ∈ ΛN

abs, since Per(X,ω) ⊂ Z ⊕ iZ we have the following commutative
diagram:

given by π(P ) =
∫ P

P0
ω mod Z ⊕ iZ and similarly for πmin. In particular, since area(E, dz) = 1,

one has area(X,ω) = deg(π).
Conversely, any degree d covering π : X → E such that ω = π∗dz factorises as π = j ◦ πmin

for the minimal torus covering πmin : X → C/Per(X,ω) and an isogeny j : C/Per(X,ω) → E.
Writing D = D2

0 proves the first equality of the formula.
In order to prove the second one, note that Cd(N ) =

⋃
m|d Sd,m. We claim that one has

| Sd,m(N ) | = σ
(

d
m

) | Sm,m(N ) |.
In fact, let us define the following function:

ϕ : Sd,m(N ) → Sm,m(N )
(X,ω) �→ M−1 · (X,ω),

where M = M(X,ω) ∈ M(2,Z) ∩ GL+(2,R) is the Hermite normal form associated to the lattice
Per(X,ω), that is, the unique matrix

M =
(
a s
0 c

)
, 0 < c, 0 � s < a, ac = [Z ⊕ iZ : Per(X,ω)] = d/m,

such that Per(X,ω) = aZ ⊕ (s + ic)Z (see, for example, [8, Section 2.4]).
This map is well defined, since one has Per(M−1 · (X,ω)) = M−1 · Per(X,ω) = Z ⊕ iZ, and

hence C/Per(M−1 · (X,ω)) = E. It is obviously surjective and, in fact, each (X0, ω0) ∈ Sm,m

has as many preimages as sublattices of Z ⊕ iZ of index d/m or, equivalently,

ϕ−1({(X0, ω0)}) =
{
M · (X0, ω0) : M =

(
a s
0 d

ma

)
0 � s < a

}
,

which has cardinality σ
(

d
m

)
. �
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3. Hilbert modular surfaces of square discriminant

Square-tiled surfaces generate (arithmetic) Teichmüller curves for which part of the Jacobian
admits real multiplication by a quadratic order Od2 of square discriminant. We will therefore
be interested on Hilbert modular surfaces Xd2(br) (see the next two subsections for the
definitions), which are the natural spaces parametrising such abelian varieties. In our case,
the relevant part of the Jacobian will be an abelian surface endowed with a polarisation of
type (1, n). This will imply that the lattice defining it will be isomorphic as an Od2-module
to the direct sum br ⊕O∨

d2 , where br is an Od2 -ideal of norm n. For each d, these ideals are
determined by the choice of a positive integer r|n.

Abelian surfaces with real multiplication by Od2 always contain two natural elliptic curves
generated by its eigenforms. These elliptic curves and their natural polarisation play an
important role in the theory of arithmetic Teichmüller curves. The following result determines
their induced polarisation, which depends not just on the discriminant d, but also on the ideal
br determining Xd2(br).

Theorem 3.1. Let [τ ] ∈ Xd2(br) and Tτ be the associated (1, n)-polarised abelian surface
with real multiplication by Od2 as in Section 3.4. Let E1, E2 ⊂ Tτ be the two elliptic curves
generated by the two eigenforms for real multiplication du1 and du2. The restriction of the
(1, n)-polarisation L on Tτ to E1 and E2 gives

L|E1 = lcm(d, r) · OE1(0) and L|E2 = lcm(d, n
r ) · OE2(0).

This result will allow us to relate the discriminant of an arithmetic Teichmüller curve and
the degree of the minimal torus cover associated to any square-tiled surface on it.

3.1. Hilbert modular surfaces

For any positive discriminant D ≡ 0, 1mod 4, write D = b2 − 4ac for some a, b, c ∈ Z. The
quadratic order of discriminant D is defined as OD = Z[T ]/(aT 2 + bT + c).

In the case where D = d2 for an integer d > 1, one has Od2 = Z[T ]/(T 2 − dT ) and this order
is isomorphic to the subring

Od2 = {a = (a1, a2) ∈ Z ⊕ Z : a1 ≡ a2 mod d} ⊂ Q ⊕ Q

with componentwise multiplication.
One can regard the pseudo-field Q ⊕ Q as an extension of Q via the diagonal inclusion

Q ↪→ Q ⊕ Q and define a Galois conjugation (a1, a2)σ = (a2, a1). This allows us to define a
norm N(a) := aaσ = a1a2 and a trace tr(a) := a + aσ = a1 + a2 as in the case of a field. The
element (d,−d) can therefore be interpreted as

√
D.

For any fractional ideal c ⊂ Q ⊕ Q, we denote by c∨ the dual with respect to the trace pairing,
that is, c∨ = {x ∈ Q ⊕ Q : tr(xc) ⊂ Z}. In particular,

O∨
d2 = 1√

D
Od2 =

〈
1
d (1,−1), (0, 1)

〉
.

Let b be an Od2-ideal. The Od2-module b⊕O∨
d2 is preserved by the Hilbert modular group

SL(b⊕O∨
d2) =

(
Od2

√
D b

1√
D
b−1 Od2

)
∩ SL2(Q ⊕ Q),

which can be embedded into SL(2,Q) in two different ways induced by the two natural
projections ιj : Od2 → Q. Associated with b we can construct the Hilbert modular surface

Xd2(b) = SL(b⊕O∨
d2)\H2,
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where a matrix acts by Möbius transformations on each component via the two embeddings
into SL(2,Q).

3.2. Ideals of type (1, n)

The Od2-module b⊕O∨
d2 can be equipped with a symplectic pairing of type (1,1) given by

〈(a, b), (x, y)〉 = tr(ay − bx) = a1y1 + a2y2 − b1x1 − b2x2. (3)

In the coordinates Od2 = 〈(1, 1), (0, d)〉 and O∨
d2 = 〈 1

d (0, d), 1
d (−1, 1)〉 this pairing is given by

the matrix

I =
(

0 J
−JT 0

)
, where J =

(
1 0
d 1

)
.

Let n be a square-free positive integer. We want to generalise this construction to find all
rank-2 Od2-modules with a symplectic pairing of signature (1, n). By [4] such a lattice splits
as a direct sum of Od2 -modules, and is therefore isomorphic to b⊕O∨

d2 for some Od2 -ideal b.
This isomorphism can moreover be chosen so that the symplectic form is mapped to the trace
pairing given by (3).

In order to construct all such Od2-modules, let us define for each divisor r of n the ideal

br = {(a1, a2) ∈ Z ⊕ Z : a1 ≡ a2 mod d, a1 ≡ 0 mod r, a2 ≡ 0 mod n/r}.
The trace pairing on the associated Od2-module br ⊕O∨

d2 is of type (r, n/r) or, equivalently,
(1, n). In this way one can generate all possible such Od2 -modules.

Lemma 3.2. Let n be a square-free positive integer. Every Od2-module of rank 2 with a
(1, n)-polarisation is isomorphic to br ⊕O∨

d2 for some divisor r|n.
Moreover, if g = (d, n) and �r = lcm(r, g) then br = bs if and only if �r = �s. In particular,

br = b�r for every r|n.

Proof. First note that the ideal b must satisfy Od2/b ∼= Z/nZ. The corresponding map ρ =
ρa : Od2 → Z/nZ is determined by the image ρ(0, d) = a that must satisfy ad− a2 ≡ 0 mod n.

In the prime case n = p, the only possibilities are a = 0 if (d, p) = p, and a = 0 or a = d
if (d, p) = 1. In both cases, ker ρ0 = bp and ker ρd = b1. The general case follows since n is
square-free and the kernel of

Od2 → ∏
Z/piZ ×∏Z/pjZ

(0, d) �→ (0, . . . , 0, d, . . . , d)

is precisely br for r =
∏

pi.
The second claim follows from writing g = gr · gn/r := gcd(d, r) · gcd(d, n/r) and noting that

both gr and gn/r necessarily divide each of the components of any element (a1, a2) ∈ br. �

Note that Galois action on these ideals is given by bσr = bn/r. In particular one always has
bσr �= br unless n|d, in which case b1 = bn is the unique ideal of type (1, n).

Corollary 3.3. Let d > 1 and let n be a square-free positive integer. The number of
isomorphism classes of Od2 -modules of rank 2 with a (1, n)-polarisation is σ0

(
n

(d,n)

)
, where σ0

counts the number of divisors. If d �≡ 0 mod n, each Galois orbit contains two elements.

We finish this section by explicitly calculating a basis for br in terms of n and d.
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Lemma 3.4. Let n be a square-free positive integer, r|n and let a, b ∈ Z be integers such
that ad + bnr = (d, n

r ). Then

br =
〈
(r · (d, n

r ), bn), (0, lcm(d, n
r ))
〉
Z
.

Proof. The element (0, lcm(d, n
r )) is primitive in br and the element r · (d, n

r ) · (1, 1) −
ar · (0, d) = (r · (d, n

r ), bn) belongs to br. Since these elements are obtained from the usual
generators of Od2 by the matrix (

r · (d, n
r ) 0

−ar n/r

(d,
n
r )

)
of determinant n, the result follows. �

3.3. Euler characteristics

The notion of Euler characteristic (of curves and of Hilbert modular surfaces) refers throughout
the text to orbifold Euler characteristics. The Euler characteristics of the classical Hilbert
modular surfaces XD = XD(OD) were computed by Siegel in [30]. A reference including also
the square-discriminant case is [3, Theorem 2.12]. The formula reads

χ(Xd2) = 2d3ζQ⊕Q(−1)
∑
r|d

μ(r)
r2

=
d3

72

∑
r|d

μ(r)
r2

, (4)

where μ is the Möbius function and the zeta function ζQ⊕Q is defined as the square of the
usual Riemann zeta function. The following formula relates the Euler characteristics of the
classical Hilbert modular surfaces Xd2 and the ones in the case of a (1,6)-polarisation [28,
Proposition 4.3]:

χ(Xd2(br))
χ(Xd2)

=

⎧⎪⎪⎨⎪⎪⎩
1, if (6, d) = 1
3/2, if (6, d) = 2
4/3, if (6, d) = 3
2, if (6, d) = 6.

(5)

3.4. Moduli of (1, n)-polarised abelian surfaces with real multiplication

An abelian surface T admits real multiplication by OD if there exists an embedding
OD ↪→ End(T ) by self-adjoint endomorphisms. We will always assume that the action is
proper, in the sense that it cannot be extended to an action of a larger quadratic discriminant
OE ⊃ OD.

The different components of the moduli space of (1, n)-polarised abelian varieties with a
choice of real multiplication by OD are parametrised by certain Hilbert modular surfaces (see
[18, Chapter 7]). We will focus here in the square-discriminant case and follow similar lines as
in [28, Section 4] for the non-square case.

In fact, if (T = C2/Λ,L) is an abelian variety with a (1, n)-polarisation L and a choice of
real multiplication by Od2 , then Λ is a rank-2 Od2-module with symplectic pairing of signature
(1, n), hence it is isomorphic to some br ⊕O∨

d2 by Lemma 3.2.
Conversely, for any ideal br and τ = (τ1, τ2) ∈ H2, we define the lattice

Λbr,τ = {(a1 + b1τ1, a2 + b2τ2)T | a = (a1, a2) ∈ br, b = (b1, b2) ∈ O∨
d2}. (6)

The quotient Tτ = C2/Λb,τ is an abelian surface with a (1, n)-polarisation (given by the trace
pairing) and real multiplication by Od2 . The isomorphism class of Tτ depends only on the
image of τ in XD(br). Note that the eigenforms du1 and du2 for real multiplication correspond
to (1, 0)T and (0, 1)T in this basis.
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It follows from Lemma 3.2 and Corollary 3.3 that the locus of (1, n)-polarised abelian
varieties with a choice of real multiplication by Od2 has σ0(n/(d, n)) components, each of
these components being parametrised by a Hilbert modular surface XD(br). This allows us to
characterise this locus in the case that we are studying. For the rest of the article we will keep
the following explicit choices for the representatives r|6.

Proposition 3.5. The moduli space of (1,6)-polarised abelian surfaces with a choice of real
multiplication by Od2 consists of the following Hilbert modular surfaces:

• Xd2(b1) for d ≡ 0 mod 6;
• Xd2(b1) ∪Xd2(b2) for d ≡ 3 mod 6,
• Xd2(b1) ∪Xd2(b3) for d ≡ 2, 4 mod 6, and
• Xd2(b1) ∪Xd2(b2) ∪Xd2(b3) ∪Xd2(b6) for d ≡ 1, 5 mod 6.

Note, however, that the locus of real multiplication in A2,(1,6) has in general fewer
components than the moduli space of abelian surfaces with a chosen real multiplication
by Od2 . In fact, the abelian varieties parametrised by Xd2(b) and by Xd2(bσ) map to the
same subsurface in A2,(1,6).

We can now prove the main result of the section.

Proof of Theorem 3.1. The covering map π : X → E associated to a square-tiled surface
(X,ω) induces a map π∗ : E → JacX, which is injective if π is primitive. Since in this situation
ω = π∗dz, we will be interested in the case where an eigenform for real multiplication by Od2

generates an abelian subvariety E ⊂ PrymX.
Let XD(br) parametrise a component of the moduli space of (1, n)-polarised abelian varieties

with a choice of real multiplication by Od2 as above. Recall the forgetful map

XD(br) → A2,(1,n)

[τ ] �→ Tτ

to the moduli space of (1, n)-polarised abelian varieties as in (6).
By Lemma 3.4, the period matrix of the abelian variety Tτ in the eigenform basis is given

by

Π =

(
r · (d, n

r ) 0 0 − 1
dτ1

bn lcm(d, n
r ) τ2

1
dτ2

)
,

for some integer b coprime to d.
Now note that the elliptic curves E1 and E2 are generated by the eigenforms for real

multiplication, that is,

E1 =
Cdu1

Λ1
⊂ Tτ and E2 =

Cdu2

Λ2
⊂ Tτ ,

where

Λ1 = 〈du1〉 ∩ Λbr,τ =
〈(

lcm(d, r)
0

)
,

(
τ1
0

)〉
Z

Λ2 = 〈du2〉 ∩ Λbr,τ =
〈(

0
lcm(d, n

r )

)
,

(
0
τ2

)〉
Z

.

The result follows from restricting the symplectic pairing (3) to these sublattices. �
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3.5. Boundary components of Hilbert modular surfaces

Recall the ideals

br := {(a1, a2) ∈ Z2 : a1 ≡ a2 mod d, a1 ≡ 0 mod r, a2 ≡ 0 mod 6
r},

b6/r := {(a1, a2) ∈ Z2 : a1 ≡ a2 mod d, a1 ≡ 0 mod 6
r , a2 ≡ 0 mod r} = bσr

and consider the Hilbert modular groups

SL(br ⊕O∨
d2) =

( Od2

√
D br

1
6
√
D
b6/r Od2

)
∩ SL2(Q ⊕ Q),

SL(br ⊕Od2) =

( Od2 br
1
6 b6/r Od2

)
∩ SL2(Q ⊕ Q),

where
√
D = (d,−d). These two groups are conjugate by (1 0

0
√
D) and the corresponding Hilbert

modular surfaces

SL(br ⊕O∨
d2)\H × H and SL(br ⊕Od2)\H × (−H)

are isomorphic under (τ1, τ2) �→ (dτ1,−dτ2). We will therefore sometimes use the latter to
simplify notation.

The Bairy–Borel compactification of the Hilbert modular surface XD(b) is given by

X̂D(b) = SL(b⊕O∨
D)\(H × H)D,

where

(H × H)D =
{

(H × H) ∪ P1(Q(
√
D)), if D �= d2,

(H ∪ P1(Q)) × (H ∪ P1(Q)), if D = d2,

and the action of SL(b⊕O∨
D) extends in the natural way (see [3, 31] for background). In

the case of quadratic discriminants D = d2, the Baily–Borel compactification X̂d2(br) has just
orbifold singularities and its boundary is formed by the curves

S1
d2(br) =

⋃
p∈P1(Q)

H × {p} and S2
d2(br) =

⋃
p∈P1(Q)

{p} × H

in X̂d2(br) and the set of cusps. The number of components of the curves Sj
d2(br) depends on

r and on the value of d, but we will see that it is bounded.
In order to describe the connected components of Sj

d2(br) we need to study the stabilisers of
cusps in the first and second components of H2. The different cases depend heavily on d mod 6
and a precise description of the geometry of these connected components exceeds the objectives
of this paper. The following estimate is enough for our purposes.

Lemma 3.6. The number of irreducible components of Sj
d2(br) is at most 12. Each of these

irreducible components is isomorphic to a curve K\H, where K is a Fuchsian group containing
Γ1(N) for N = 2160 d.

Proof. The number of components of S2
d2(br) is given by the number of orbits of P1(Q) × H

under SL(br ⊕Od2). By solving for its second coordinate, one can prove that the action of
SL(br ⊕Od2) on the first coordinate includes the action of the group A−1Γ0(6r)A, where
A = ( 0 1

−1 0). In particular the number of components of S2
d2(br) is bounded by the number of

cusps of Γ0(6r), which is at most C(Γ0(36)) = 12.
We now want to prove that the stabiliser of each component {p} × H contains a subgroup

isomorphic to Γ1(2160 d). This is trivial for the cusp at infinity by considering B−1Γ1(36d)B,
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with B = (1 0
0 6). In general, a case-by-case calculation shows that, apart from 0 and ∞, all

cusps of the groups A−1Γ0(6r)A have representatives of the form p = − 36
m for some m|360. In

particular, the matrix M = ( 1 0
m/36 1) sends this cusp to ∞ and, therefore, studying the cusp at

(p, p) of the Hilbert modular group SL(br ⊕Od2) is equivalent to studying the cusp at (∞,∞)
of the Hilbert modular group

M · SL(br ⊕Od2) ·M−1 = SL(bra−1 ⊕Od2), where a = m
36br + Od2 .

Using the inclusions m
36br ⊂ a ⊂ 1

36Od2 , it is a direct computation to show that, for
C = (1 0

0 216), the stabiliser Stab{p}×H SL(bra−1 ⊕Od2) contains a subgroup isomorphic to

C−1Γ1(N)C. In fact, for each matrix ( a 216b
360cd

36 e ) ∈ C−1Γ1(N)C the pair((
1 216b
0 1

)
,

(
a 216b

360cd
36 e

))
∈
( Od2 36br

m
36Od2 Od2

)
∩ SL2(Q ⊕ Q). �

4. Affine invariant manifolds and Teichmüller curves

Because of the formula for the volume in Proposition 2.1, we will be interested in counting the
number | Sm,m(N ) | of minimal torus covers with fixed degree and area m in the different affine
invariant manifolds. It is clear that they all belong to certain Teichmüller curves of square-
discriminant D = d2, but we need the precise relation between m and d in order to be able to
apply the formulae for the Euler characteristics.

More precisely, in the minimal stratum H(2) of genus 2, McMullen proved in [23,
Section 6] that any minimal torus cover πmin : (X,ω) → (C/Per(X,ω), dz) of degree m and
area(X,ω) = m belongs to Wm2(2). In [19, Proposition B.1; 20, Proposition 4.2] Lanneau
and Nguyen proved the equivalent result for Prym–Teichmüller curves in genus 3 and 4 using
cylinder decompositions.

Here we use Theorem 3.1 to classify minimal torus covers in the gothic locus. This method
extends easily to any affine invariant manifold and depends only on the polarisation on the
part of the Jacobian admitting real multiplication. We follow the definitions and notation
introduced in Sections 4.1 and 4.2.

Theorem 4.1. For each m > 0, the set of minimal torus covers of degree and area m in the
gothic locus G distributes among different Teichmüller curves in the following way:

Sm,m(G) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Sm,m(G1
m2) ∪ Sm,m(G2

(m/2)2) ∪ Sm,m(G3
(m/3)2) ∪ Sm,m(G6

(m/6)2),
if m ≡ 6, 30 mod 36,

Sm,m(G1
m2) ∪ Sm,m(G2

(m/2)2),
if m �≡ 6, 30 mod 36 and m ≡ 2 mod 4,

Sm,m(G1
m2) ∪ Sm,m(G3

(m/3)2),
if m �≡ 6, 30 mod 36 and m ≡ 3, 6 mod 9,

[4pt]Sm,m(G1
m2),

otherwise.

4.1. The Prym and gothic loci

Given an involution J : X → X of a compact Riemann surface X, we will denote by πJ : X →
X/J the quotient map and by H0

− := H0
−(X,ΩX) the −1-eigenspace of J∗. We will also say

that a map π : X → B to an elliptic curve B is an odd map (with respect to J) if there exists
an involution j : B → B such that πB ◦ J = j ◦ πB .
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The Prym loci in genus 3 and 4 and the gothic locus in genus 4 are affine invariant manifolds
of (complex) dimension four containing infinite families of geometrically primitive Teichmüller
curves (see [24, 25]). They are defined in the following way:

P3 = {(X,ω) ∈ H(4) : ∃ J : X → X involution, g(X/J) = 1, ω ∈ H0
−},

P4 = {(X,ω) ∈ H(6) : ∃ J : X → X involution, g(X/J) = 2, ω ∈ H0
−},

G = {(X,ω) ∈ H(23) : ∃ J : X → X involution, g(X/J) = 1, ω ∈ H0
−,

∃ πB : X → B odd map, deg(π) = 3, |π(Z(ω))| = 1}.
They are all defined by linear equations with integral coefficients in period coordinates (see

[25, (9.2)] for the gothic case).
For a surface (X,ω) in one of the Prym loci, the space of holomorphic differentials decomposes

as H0(X,ΩX) = π∗
J(H0(X/J,ΩX/J )) ⊕H0

−(X,ΩX). The corresponding lattices in homology
H−

1 (X; Z) := H1(X; Z) ∩ (H0
−(X,ΩX))∗ carry a polarisation of type (1,2) and (2,2) for P3 and

P4, respectively. One defines the Prym variety of (X,ω) as the abelian subvariety PrymX :=
(H0

−(X,ΩX))∗/H−
1 (X; Z) of the Jacobian JacX.

As for a surface (X,ω) in the gothic locus, the space of differentials decomposes
as H0(X,ΩX) = π∗

J(H0(X/J,ΩX/J )) ⊕ π∗
B(H0(B,ΩB)) ⊕H0

G(X,ΩX), for some subspace
H0

G(X,ΩX) containing ω. The lattice HG
1 (X; Z) := H1(X; Z) ∩ (H0

G(X,ΩX))∗ carries this time
a polarisation of type (1,6). We define equivalently the Prym variety of (X,ω) as the abelian
surface PrymX := (H0

G(X,ΩX))∗/HG
1 (X; Z) inside the Jacobian JacX.

We will also consider the stratum H(2) of genus 2 forms (X,ω) with a single zero and abuse
notation by writing PrymX = JacX in this case.

In each of these four affine invariant manifolds and for every discriminant D > 0 the
subspace

ND = {(X,ω) ∈ N : PrymX admits real multiplication by OD

with ω as an eigenform}
of eigenforms for real multiplication forms a closed GL+(2,R)-orbit. The corresponding
Teichmüller curves are denoted by WD(2) ⊂ H(2), WD(4) ⊂ P3, WD(6) ⊂ P4 and GD ⊂
G, respectively.

4.2. Euler characteristics of Teichmüller curves

The Euler characteristics of the infinite families of Teichmüller curves just defined have been
computed by various authors.

In genus 2, Bainbridge computed the Euler characteristics of non-arithmetic Weierstraß–
Teichmüller curves WD(2). Contrary to the Prym and gothic case, there is also an explicit
formula for the Euler characteristics of arithmetic Weierstraß–Teichmüller curves, given by
Eskin, Masur and Schmoll. This allows us to give an easy asymptotic formula for the Euler
characteristics of Hilbert modular surfaces with square discriminant.

Theorem 4.2 [3, 11]. The Euler characteristics of the Weierstraß–Teichmüller curves in
genus 2 are given by

χ(WD(2)) = − 9
2χ(XD), for D > 4 a non-square discriminant,

χ(Wd2(2)) = −d2(d−2)
16

∑
r|d

μ(r)
r2

, for d > 1.
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The Euler characteristics of the Prym–Teichmüller families WD(4) and WD(6) in genus 3
and 4 were calculated by Möller [27], and the number of connected components was given
by Lanneau and Nguyen [19, 20]. The situations in genus 3 and in genus 4 differ drastically.
Whereas Prym–Teichmüller curves WD(6) in genus 4 behave basically like the Weierstraß curves
in genus 2, the formulae for the Euler characteristic and the number of connected components
of the ones in genus 3 depend on the arithmetic structure of D.

Theorem 4.3 [19, 20, 27]. Let D = f2D0 > 4 be a non-square discriminant with conductor
f .
• The Prym–Teichmüller curve WD(6) in genus 4 is irreducible and its Euler characteristic

is given by

χ(WD(6)) = −7χ(XD), for D > 4 a non-square discriminant.

• The Prym–Teichmüller curve WD(4) in genus 3 is empty if D ≡ 5 mod 8, has one irreducible
component W 1

D(4) if D ≡ 0, 4 mod 8 and two irreducible components W 1
D(4) ∪W 2

D(4) if D ≡
1 mod 8. The Euler characteristic of each component W j

D(4) is given by

χ(W j
D(4)) =

{
− 5

2 χ(XD), if 2 � f ,

− 15
4 χ(XD), if 2 | f .

Finally, the Euler characteristics of the gothic Teichmüller curves were recently computed in
a joint work with Möller.

Theorem 4.4 [28]. Let D = f2D0 > 5 be a non-square discriminant with conductor f . The
gothic Teichmüller curve GD is non-empty if and only if D ≡ 0, 1, 4, 9, 12, 16 mod 24.

In this case, GD consists of several (perhaps still reducible) components. The number of
such components agrees with cD the number of ideals of norm 6 in OD, that is, one if D ≡
0, 12 mod 24, two components if D ≡ 4, 9, 16 mod 24 and four components if D ≡ 1 mod 24.
For a fixed D the Euler characteristics of all these components agree and are equal to

χ(Gj
D) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
− 3

2 χ(XD) − 2χ(Rj
D), if (6, f) = 1

− 9
4 χ(XD) − 2χ(Rj

D), if (6, f) = 2

−2χ(XD) − 2χ(Rj
D), if (6, f) = 3

−3χ(XD) − 2χ(Rj
D), if (6, f) = 6.

Here Rj
D denotes the (2,3)-reducible locus, which is the pullback to XD(bj) of the locus inside

the moduli space A2,(2,3) of (2,3)-polarised abelian surfaces consisting of products E1 × E2 of
elliptic curves with the natural (2,3)-polarisation 2 p∗1OE1(0) ⊗ 3 p∗2OE2(0) (see [28, Section 7]).
Its Euler characteristic is given by the arithmetic function −1

6cD
e(D, 6), that will be defined and

studied in Section 5.
With the square-discriminant case in mind, we will number the components according to the

Hilbert modular surface where they live, that is, the components Gr
d2 and Rr

d2 live in Xd2(br),
where the possible ideals br are given by Proposition 3.5. This choice of representatives r|6 (cf.
Lemma 3.2) makes the formulae relating the discriminant d2 of the Teichmüller curve and the
degree m of the associated minimal torus coverings simpler (see Theorem 4.1).

An obvious first remark is that, except in the genus 2 case, all these formulae are valid only
for non-square discriminants. The reason for this is that the usual method to calculate the
Euler characteristic of a Teichmüller curve C is the determination of its fundamental class [C]
in some compactification of the Hilbert modular surface it lies on. In the square-discriminant
case, one needs to take into account some extra boundary divisors that do not appear in the
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non-square case. We will next show that the contribution of these extra components to the
Euler characteristic of the Teichmüller curve Gr

d2 is negligible when computing asymptotics.

Lemma 4.5. Let D = d2 be a square discriminant and br an ideal of norm 6 in Od2 . There
exists a constant ε depending only on r and on (d, 6) such that

− 3
2 χ(Xd2(br)) − 2χ(Rr

d2) � χ(Gr
d2) �

(− 3
2 + ε

d

)
χ(Xd2(br)) − 2χ(Rr

d2).

Proof. By [28, Theorem 8.1], the class of the divisor of the gothic modular form GD in
H2(X̂D(br); Q) agrees for non-square-discriminant D with

[div(GD)] = [GD(b)] + 2[RD(b)].

In the case of a square-discriminant D = d2 one just needs to determine the vanishing order
of the modular form Gr

d2 along the extra boundary components Sj
d2(br).

Let us first assume br = b1, with associated (1,6)-symplectically adapted basis
O∨

d2 = 〈( 1
d ,− 1

d ), (0, 1)〉 = 〈η1, η2〉 (see [28, Section 4]). The corresponding linear forms read

ρ(x1, x2) =
x1

d
and ρσ(x1, x2) = −x1

d
+ x2,

and one can write the following Fourier expansion of Gr
d2(τ ) around the (unique!) cusp at

infinity (cf. [28, Proposition 8.2], where the convention of a (2,3)-simplectically adapted basis
was used)

GD(τ ) = 8π2i ·

⎛⎜⎜⎜⎜⎝
∑

a∈Λ 1
2 ,0

b∈Λ 1
2 , 16

(−1)a1+b1 (−a1+da2)(−b1+db2)
d2 q

a2
1+b21
d2

1 q
(− a1

d +a2)
2+(− b1

d +b2)
2

2

−
∑

a∈Λ 1
2 , 12

b∈Λ 1
2 , 26

(−1)a1+b1 (−a1+da2)(−b1+db2)
d2 q

a2
1+b21
d2

1 q
(− a1

d +a2)
2+(− b1

d +b2)
2

2

⎞⎟⎟⎟⎟⎠ ,

where Λi,j := Z2 + (i, j) and qk = exp(πiτk).
The smallest q1-exponent is 1

2d2 , achieved by all terms a = (± 1
2 , a2), b = (± 1

2 , b2). By looking
at the smallest q2-exponents of its coefficient

2
∑
a,b∈Z

(
q
(−1

2d +a)2+( 1
2d+b+ 1

6 )2

2 · (− 1
2+da)(

1
2+db+

d
6 )

d2

−q
(−1

2d +a)2+(−1
2d +b+ 1

6 )2

2 · (− 1
2+da)(− 1

2+db+
d
6 )

d2

−q
(−1

2d +a+
1
2 )2+( 1

2d+b+ 2
6 )2

2 · (− 1
2+da+

d
2 )(

1
2+db+

2d
6 )

d2

+q
(−1

2d +a+
1
2 )2+(−1

2d +b+ 2
6 )2

2 · (− 1
2+da+

d
2 )(− 1

2+db+
2d
6 )

d2

)
it is easy to see that this coefficient does not vanish generically, and therefore the modular
form behaves along S2

d2(b1) as q
1/(2d2)
1 .

Now, the stabiliser around (∞,∞) is given by the matrix group

Stab(∞,∞)(SL(b1 ⊕O∨
d2)) =

{(
1 μ
0 1

)
: μ ∈ M =

√
Db1

}
.
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Consider the basis M∨ = 1
6d2 b6 = 1

6d2 〈(6, 6), (0, d)〉 =: 〈(α1, α2), (β1, β2)〉. The exponentials{
X = q2α1

1 q2α2
2 = q

2/d2

1 q
2/d2

2 ,

Y = q2β1
1 q2β2

2 = q
1/(3d)
2

are local parameters around (∞,∞) for the Hilbert modular surface Xd2(b1). Replacing (q1, q2)
by the local parameters (X = q

2/d2

1 q
2/d2

2 , Y = q
1/(3d)
2 ) the correct minimal exponent becomes

X1/4, and the modular form vanishes to order 1/4 along S2
d2(b1).

Finally, the Euler characteristic of G1
d2 can be written as

χ(G1
d2) = −[ω1] · [G1

d2
] = −[ω1] ·

(
1
2
[ω1] +

3
2
[ω2] − 2[R1

d2 ] − 1
4
[S2

d2(b1)]
)
.

Pairing −[ω1] with [S2
d2(b1)] computes the Euler characteristic of S2

d2(b1), which by
Lemma 3.6 is bounded by (see, for example, [3, Proposition 10.5])

χ(S2
d2(b1)) � 12 · χ(Γ1(2160 d)\H) = −21602d2

∑
r|30 d

μ(r)
r2

.

By (4) this is in turn bounded by ε
dXd2(b1) for some constant ε.

The other cases follow from doing the same calculations for each of the components of
S2
d2(br). �

Remark. This approach would give a precise formula for the Euler characteristics of
arithmetic gothic Teichmüller curves. However, the case-by-case analysis of the different
components of S2

d2(br) for each of the possible values of r and of (d, 6) and the corresponding
calculation of the vanishing order of Gr

d2 exceed the objectives of this paper. For example,
computer simulations show that for r = 1 the Euler characteristic of G1

d2 is given by

χ(G1
d2) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
( 2
d − 3

2 )χ(Xd2(b1)) − 2χ(R1
d2), if (6, d) = 1,

( 6
d − 3

2 )χ(Xd2(b1)) − 2χ(R1
d2), if (6, d) = 2,

( 3
d − 3

2 )χ(Xd2(b1)) − 2χ(R1
d2), if (6, d) = 3,

( 9
d − 3

2 )χ(Xd2(b1)) − 2χ(R1
d2), if (6, d) = 6.

4.3. Minimal torus covers in Teichmüller curves

Our strategy is based on the fact that Euler characteristics allow us to compute the number
of minimal torus covers on a given Teichmüller curve.

Lemma 4.6. Let π : (X,ω) → (C/Per(X,ω), dz) be a minimal torus cover of degree m and

denote by C̃ = GL+(2,R)(X,ω) its orbit and by C the corresponding Teichmüller curve, that

the projection of C̃ to the moduli space. The number Sm,m(C̃) of minimal torus covers of

degree m and area m in C̃ equals −6χ(C).

Proof. By considering the flat surface M−1 · (X,ω) ∈ C̃, where M is the Hermite
normal form of the lattice Per(X,ω), we can assume that both the degree of (X,ω) →
(C/Per(X,ω), dz) and the area of (X,ω) are equal to m. In particular, since the action of
a matrix A ∈ GL+(2,R) changes the area by det(A), we can restrict our attention to its orbit
under SL(2,R).
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Table 1. Relation between the degree n of a minimal torus cover and the discriminant
d2 of the Teichmüller curve for G and P4.

d mod 6 br n d mod 2 br n

0 b1 n = d 0 b1 n = d

3 b1 n = d 1 b1 n = d

b2 n = 2d b2 n = 2d

2,4 b1 n = d

b3 n = 3d
1,5 b1 n = d

b2 n = 2d
b3 n = 3d
b6 n = 6d

Now, each point A · (X,ω) with A ∈ SL(2,R) comes with an associated covering A · (X,ω) →
A · (E, dz) and one can therefore define a map π : SL(2,R) · (X,ω) → M1,1, which sends each
point A · (X,ω) to the elliptic curve A · (E, dz) it covers. The number of minimal torus covers
on C̃ of degree m and area m is precisely the number of preimages of the square torus E.
Since this covering is unramified, this is given by the degree of the cover π which agrees with
χ(C)/χ(M1,1) = −6χ(C). �

We can now prove the theorem at the beginning of the section.

Proof of Theorem 4.1. Let πmin : (X,ω) → (C/Per(X,ω), dz) be a minimal torus cover in
G of degree and area m, and write EX = C/Per(X,ω). Accordingly, let PrymX correspond
to a point τ ∈ H2 in the Hilbert modular variety, that is, Tτ = PrymX ∈ Xd2(br) for some d
and r.

By the general theory, the covering map πmin induces an inclusion π∗
min : EX → JacX,

where the degree of the cover m = deg(πmin) agrees with the type of the restriction
OJacX(Θ)|π∗

minEX
= mOEX

(0) of the principal polarisation to π∗
minEX .

With the usual normalisation, we always assume that the eigenform ω = π∗
mindz corresponds

to du1 in Xd2(br), and therefore π∗
minEX = E1 as in Theorem 3.1 (one can equivalently see

the Teichmüller curve as a curve in Xd2(bσr ) with du2 as an eigenform). The theorem implies
that, for the component Gr

d2 belonging to the Hilbert modular surface Xd2(br), the degree is
given by m = lcm(d, r) (see Table 1 for the different values appearing in each case). Writing d
in terms of m yields the result. �

The very same strategy proves also the results of McMullen and Lanneau-Nguyen in genus
2, 3 and 4.

Theorem 4.7 [19, 20, 23]. For each m > 0, the sets of minimal torus covers of degree
and area m in the stratum H(2) and in the Prym loci P3 and P4 distribute among different
Teichmüller curves in the following way:

• Sm,m(H(2)) = Sm,m(Wm2(2));

• Sm,m(P3) =

{Sm,m(W 1
m2(4)), if m �≡ 2 mod 4,

Sm,m(W 1
m2(4)) ∪ Sm,m(W 2

(m/2)2(4)), if m ≡ 2 mod 4;

• Sm,m(P4) =

{Sm,m(W(m/2)2(6)), if m ≡ 0 mod 2,

∅, if m ≡ 1 mod 2.
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5. Asymptotics of sums over arithmetic progressions

In this section we use Dirichlet series and modular forms to calculate the asymptotic behaviour
of certain functions closely related to our counting problem. More precisely, the volumes of the
affine invariant manifolds in which we are interested will be given by an infinite sum of Euler
characteristics of Teichmüller curves weighted by certain σ function. These can in turn be
written in terms of the Euler characteristics of Hilbert modular surfaces and of the reducible
locus, which are given by some arithmetic functions e(D, k).

However, the formulae appearing in the gothic case depend heavily on the congruence class
of the discriminant considered (see Theorems 4.1 and 4.4). This implies that the sum for the
volume will split into different sums running through different arithmetic progressions, and we
will need to estimate each of the summands separately.

For a quadratic discriminant D = f2D0 with conductor f and a positive integer k � 1, let
us define the set of prototypes

Pk(D) =
{
[a, b, c] ∈ Z3 : a > 0 > c , D = b2 − 4 · k · ac
and gcd (f, b, c0) = 1, where c = c20 · c′ and c′ is square-free

}
.

The Euler characteristics of XD(b) and RD(b) are intimately related to the following
arithmetic functions:

e(1, k) = − 1
12

,

e(D, k) =
∑

[a,b,c]∈Pk(D)

a,

a(d) = |SL2(Z/dZ)| = d
∑
m|d

μ
(

d
m

)
m2.

The asymptotics of e(D, k) for fundamental discriminants D were calculated in [28,
Theorem 10.1]. Our main objective is to extend this study to the case D = d2 and to estimate
the growth of some related convolutions.

The main results of this section are the following propositions.

Proposition 5.1. The asymptotic behaviour of the functions e(d2, 1) and e(d2, 6) as d
grows is given by

e(d2, 1) =
5
12

a(d) + O(d5/2),

e(d2, 6) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

2 · 1
60 · a(d) + O(d5/2), if (6, d) = 1,

3
2 · 1

60 · a(d) + O(d5/2), if (6, d) = 2,

4
3 · 1

60 · a(d) + O(d5/2), if (6, d) = 3,

1
60 · a(d) + O(d5/2), if (6, d) = 6.

As stated above, the summands appearing in the formulae for the Masur–Veech volumes will
be formed in our case by certain convolutions where the divisors run over certain congruence
class. Let us define the following sums:

Sk(D) =
D∑

d=1

∑
m|d

(m,k)=k

σ
(

d
m

)
a(m) =

D∑
d=1

∑
m|d

(m,k)=k

∑
r|m

m3

r2 σ
(

d
m

)
μ(r), (7)
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We note here that the usual convolution (σ ∗ a)(n) is simply σ3(n). In our case it will be enough
to study the behaviour of Sk(D) when k is 1, a prime or a product of two primes.

Proposition 5.2. The asymptotic behaviour of the sums Sk(D) as D grows is given in the
cases k = 1, p, pq by

S1(D) =
π4D4

23 · 32 · 5 + O(D3),

Sp(D) =
π4D4

23 · 32 · 5 · p + 1
p2 + p + 1

+ O(D3),

Spq(D) =
π4D4

23 · 32 · 5 · p + 1
p2 + p + 1

· q + 1
q2 + q + 1

+ O(D3),

for any different primes p and q.

5.1. Dirichlet series

Given an arithmetic function f , its Dirichlet series is the formal series given by

Df (s) =
∞∑

n=1

f(n)
ns

, where s ∈ C.

Although we are in general not interested in the convergence of the series, it is worth noting
that if two Dirichlet series Df (s) and Dg(s) agree on some half-plane {Re(s) > a} where they
converge absolutely, then f(n) = g(n) for all n ∈ N.

Dirichlet series are useful to calculate convolutions of arithmetic functions. More precisely,
for multiplicative functions f and g, we define its convolution as the sum

(f ∗ g)(d) =
∑

mn=d

f(m)g(n).

Then one has

Df∗g(s) = Df (s)Dg(s).

Convolution is commutative and associative. In particular, the equality of Dirichlet series
above can be generalised to an arbitrary number of factors in the convolution.

Note also that, if we denote by jk(n) = nk the kth power and by 1(n) = 1 the constant
function 1, then Djk·f (s) = Df (s− k) and D1(s) = ζ(s).

The following equalities are either well known or straightforward (see, for example, [1,
Section 11.5]):

Dσk
(s) = ζ(s)ζ(s− k), for k > 1,

Dμ(s) = ζ(s)−1,

Djk(s) = ζ(s− k),

Dj·μ(s) = ζ(s− 1)−1.

(8)

In particular, as noted above, one has

Da(s) =
ζ(s− 3)
ζ(s− 1)

and Da∗σ(s) = ζ(s)ζ(s− 3) = Dσ3(s). (9)
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5.2. Divisor sums and modular forms

Our analysis is based on the results of Zagier in [33, Section 4]. Recall that the theta series θ
and the Eisenstein series G2 are modular forms defined by

θ(τ) =
∞∑

�=−∞
eπi�

2τ , G2(τ) =
−1
24

+
∞∑
a=1

σ(a)e2πiaτ .

Then the coefficients of the modular form

Fk(τ) := G2(2kτ)θ(τ) =
∞∑

n=0

ek(n)eπinτ

are given by

ek(n) =
∑

b2≡n mod 4k,
|b|�√

n

σ

(
n− b2

4k

)
,

where we define σ(0) = − 1
24 . It is immediate to see that, for a discriminant D = f2D0 as above,

one has

ek(D) =
∑
m|f

e( D
m2 , k). (10)

One can therefore use the coefficients of this modular form to determine the values e(D, k)
using Möbius inversion (see Proposition 5.1). This will allow us to study the asymptotic
behaviour of e(d2, 1) and e(d2, 6), and therefore of the Euler characteristics in which we
are interested.

Following Zagier, let us introduce the following Gauss sum (see [33, Theorem 2] for the
definitions and the facts claimed below):

γc(n) = c−1/2
2c∑
a=1

λ(a, c)e−πina/c,

where λ(a, c) is a Legendre symbol times a power of i, depending on the parities of a and c.
This is a multiplicative function in c, given at prime powers c = pr for n = d2 a square by

γ2r (d2) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1 if r = 0,
2r/2 if r is even and ν2(d2) = r − 2,
2(r−1)/2 if r is odd and ν2(d2) � r − 1,
0 otherwise,

(11)

for p = 2 and

γpr (d2) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1 if r = 0,
pr/2−1(p− 1) if r is even and νp(d2) � r,
p(r−1)/2 if r is odd and νp(d2) = r − 1,
0 otherwise,

(12)
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for odd primes, where νp(m) denotes the p-adic valuation of m. These Gauss sums allow us to
define the coefficients

e∗k(n) =
∞∑
c=1

(c, 2k)2

c2
γc(n),

ek(n) =
π2

72k2
n3/2e∗k(n),

(13)

which are well defined since the summands grow at most like c−2 (this is clear for n = d2, for
the general case it follows from the expressions in [33, Theorem 2]).

These coefficients were introduced by Zagier in [33, Section 4] for the case k = 1. There he
defines the Dirichlet series En(s), which for square n = d2 has the form

Ed2(s) =
ζ(s)
ζ(2s)

∑
a,c�1
ac|d

μ(a)
c2s−1as

(14)

and whose value at s = 2 is related to the coefficients above by e1(n) = π2

36n
3/2En(2). It can

also be proved (see [33] for the case k = 1 and the proof of Theorem 10.1 in [28] and the
references therein for the general case) that

ek(n) = ek(n) + O(n5/4) as n → ∞. (15)

All this allows us to prove the following result.

Lemma 5.3. Let k be a square-free positive integer. Then

e∗k(d
2) = k2

∑
m|k

μ(m)

⎛⎜⎝ ∏
p|m

p prime

p2−1
p2+1

⎞⎟⎠ e∗1(d
2
m),

where

dm :=
d∏

p|m pνp(d)
= max{x|d : (x,m) = 1}.

Proof. The summands in the function e∗k(n) are weakly multiplicative in c, so it admits an
Euler product expansion

e∗k(n) =
∏

p prime

Pk(p, n), where Pk(p, n) = 1 +
∞∑
j=1

(pj , 2k)2

p2j
γpj (n).

In particular, Pk(p, n) = P1(p, n) whenever p � k, whereas for p | k one has

Pk(p, n) = p2 P1(p, n) − (p2 − 1), if p �= 2 and

Pk(2, n) = 4P1(2, n) − 3 − 3γ2(n).

Let us focus on the case n = d2 a square. If p � k and p �= 2, equation (12) together with the
fact that p � dp imply that P1(p, d2

p) = 1 + 1/p2, and therefore

Pk(p, d2) = p2

(
P1(p, d2) − (p2 − 1)

(p2 + 1)
P1(p, d2

p)
)
.

As for p = 2, applying equation (11) one has γ2(d2) = 1 and P1(2, d2
2) = 5/2 and hence, if

2 � k,

Pk(2, d2) = 4
(
P1(2, d2) − 3

5 P1(2, d2
2)
)
.
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Finally, we can write

e∗k(d
2) =

∏
p�k

P1(p, d2) ·
∏
p|k

p2
(
P1(p, d2) − p2−1

p2+1 P1(p, d2
p)
)

= k2
∑
m|k

⎛⎝μ(m)
∏
p�m

P1(p, d2) ·
∏
p|m

p2−1
p2+1 P1(p, d2

p)

⎞⎠,

which gives the desired formula since, for p | m, the equality P1(p, d2
p) = P1(p, d2

m) holds. �

In the particular case that we are interested the previous lemma yields the following result.

Corollary 5.4.

e∗6(d
2) = 36

(
e∗1(d

2) − 3
5 e

∗
1(d

2
2) − 4

5 e
∗
1(d

2
3) + 12

25 e
∗
1(d

2
6)
)
.

5.3. Asymptotic behaviour of the Euler characteristics

The Euler characteristics of XD(b) and RD(b) can be written in terms of the arithmetic
functions defined above. By [17, Section 1; 28, Lemma 7.5], they are given by

χ(XD) = 1
30 e(D, 1), if D is not a square,

χ(Xd2) = 1
72 a(d),

χ(Rr
D) = −1

6cD
e(D, 6),

(16)

where cD denotes the number of ideals of norm 6 in OD ⊗ Q. In the case of a square-discriminant
D = d2 one has cd2 = σ0

(
6

(d,6)

)
.

We can finally use the results of the previous section to estimate the asymptotics of the
functions e(d2, k) and Sk(D).

Proof of Proposition 5.1. Applying the formula for e1(n) in terms of En(2) to the particular
case of n = d2, one has

e1(d2) =
5
12

d3
∑
a,c�1
ac|d

μ(a)
c3a2

.

Now Möbius inversion applied to (10) yields

e(d2, 1) =
∑
m|d

μ
(

d
m

)
e1(m2) =

∑
m|d

μ
(

d
m

)
e1(m2) +

∑
m|d

μ
(

d
m

)
(e1(m2) − e1(m2))

=
5
12

∑
m|d

μ
(

d
m

)
m3

∑
a,c�1
ac|m

μ(a)
c3a2

+
∑
m|d

μ
(

d
m

)
(e1(m2) − e1(m2)).

The first summand is given by the quadruple convolution

5
12

∑
m|d

μ
(

d
m

)
m3

∑
a,c�1
ac|m

μ(a)
c3a2

=
5
12

∑
acrs=d

μ(s)μ(a)ar3 = 5
12a(d),

where we have used the fact that the Dirichlet series of the quadruple convolution agrees with
Da(n)(s) = ζ(s− 3)/ζ(s− 1).
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As for the second summand, Möbius inversion together with the estimate (15) show that it
is O(d5/2) as d grows.

The same reasoning applied to the case k = 6 yields

e(d2, 6) =
∑
m|d

μ
(

d
m

)
e6(m2) =

∑
m|d

μ
(

d
m

)
e6(m2) +

∑
m|d

μ
(

d
m

)
(e6(m2) − e6(m2)).

Now, by Corollary 5.4 the first summand equals∑
m|d

μ
(

d
m

)
e6(m2) = π2

72

∑
m|d

μ
(

d
m

)
m3
(
e∗1(m

2) − 3
5 e

∗
1(m

2
2) − 4

5 e
∗
1(m

2
3) + 12

25 e
∗
1(m

2
6)
)
.

The result follows by a direct application of the two lemmas below to each of the four
summands. As an example we next show the case (6, d) = 2.

By applying again Möbius inversion to (10) and using Lemma 5.5, these four summands can
be written as

π2

72

∑
m|d

μ

(
d

m

)
m3e∗1(m

2) = e(d2, 1) + O(d5/2),

3
5
π2

72

∑
m|d

μ

(
d

m

)
m3e∗1(m

2
2) =

21
5

· 23ν2(d)−3 · e(d2
2, 1) + O(d5/2),

4
5
π2

72

∑
m|d

μ

(
d

m

)
m3e∗1(m

2
3) =

4
5
· e(d2, 1) + O(d5/2),

12
25

π2

72

∑
m|d

μ

(
d

m

)
m3e∗1(m

2
6) =

84
25

· 23ν2(d)−3 · e(d2
2, 1) + O(d5/2).

We can now use the equality e(d2, 1) = 5/12 · a(d) + O(d5/2) and Lemma 5.6 to get∑
m|d

μ
(

d
m

)
e6(m2) =

(
5
12 − 1

3

)
a(d) +

(− 7
4 + 7

5

)
23ν2(d)−3 · a(d2) + O(d5/2)

= 1
12 a(d) − 7

20 · 1
6 · a(d) + O(d5/2) = 1

40 a(d) + O(d5/2). �

In particular, the growth rates of the functions determining the Euler characteristics in (16)
are the same in the square and non-square case.

Proof of Proposition 5.2. The case k = 1 is straightforward: by (9) and using the hyperbola
trick one gets

S1(D) =
D∑

d=1

(σ ∗ a)(d) =
D∑

d=1

σ3(d) =
D∑

x=1


D
x �∑

y=1

y3 =
D∑

x=1

1
4

⌊
D

x

⌋2(⌊
D

x

⌋
+ 1
)2

.

Since the sum of the first N cubes is given by 1
4N

2(N + 1)2 and �z� = z + O(1), this sum is
dominated by D4

4

∑
x�D

1
x4 , with an error term O(D3). Since the sum of reciprocals of fourth

powers tends to π4/90, the result follows.
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Now, for a fixed D one has by Lemma 5.6

Sp(D) =

D/p�∑
d=1

∑
m|d

σ
(

d
m

)
a(pm)

= p(p2 − 1)

D/p�∑
d=1

∑
m|d

σ
(

d
m

)
a(m) + p


D/p�∑
d=1

∑
m|d

m≡0 mod p

σ
(

d
m

)
a(m)

= p(p2 − 1)S1

(
�D
p �
)

+ pSp

(
�D
p �
)
.

Since the growth of Sp(D) is dominated by that of S1(D) = D4π4/360 + O(D3), the result
follows from estimating Sp(D) and Sp(�D/p�).

Let now p and q be different primes. The same strategy as in the previous case yields

Spq(D) =

D/pq�∑
d=1

∑
m|d

σ
(

d
m

)
a(pqm) = p(p2 − 1)q(q2 − 1)S1

(
�D
pq �
)

+ pq(q2 − 1)Sp

(
�D
pq �
)

+ qp(p2 − 1)Sq

(
�D
pq �
)

+ pq Spq

(
�D
pq �
)
,

and the result follows by applying the previous cases. �

We end this section with the two small lemmas used in the last proofs.

Lemma 5.5. Let k be a square-free integer. Then∑
m|d

μ
(

d
m

)
m3e∗1(m

2
k) =

∏
p|(k,d)

p3νp(d)−3(p3 − 1) ·
∑
m|dk

μ
(

d
m

)
m3e∗1(m

2).

Proof. We first prove the case k = p. If p|d then, writing d = dp · pνp(d) one gets

∑
m|d

μ
(

d
m

)
m3e∗1(m

2
p) =

∑
m|dp

νp(d)∑
j=0

μ
(

d
mpj

)
m3p3je∗1(m

2)

= p3νp(d)−3(p3 − 1)
∑
m|dp

μ
(

d
m

)
m3e∗1(m

2).

The result follows from applying the formula recursively on all primes p dividing k. �

Lemma 5.6. Let p be a prime dividing d. Then

a(d) = p3νp(d)−2(p2 − 1) · a(dp).

In particular, for k square-free

a(kd) = a(d) ·
∏
p|k
p|d

p3 ·
∏
p|k
p�d

p(p2 − 1).

Proof. Write d = dp · pνp(d). By the definition of a(d) and the properties of the Möbius
function one can deduce

a(d) = d
∑
m|dp

0�j�νp(d)

μ
(

d
mpj

)
m2p2j = dpp

νp(d)
∑
m|dp

μ
(

dp

m

)
m2(p2νp(d) − p2νp(d)−2),

and the first formula follows.
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The formula for a(kd) follows from applying the first formula recursively on primes dividing
k. �

6. Calculation of the volumes

In this section we prove the main theorem of the paper and recalculate the volumes of H(2)
and of the Prym loci in genus 3 and 4 using our methods.

6.1. Volume of the gothic locus G
In order to calculate the volume of the gothic locus, we write asymptotics for the Euler
characteristics of the Teichmüller curves Gr

d2 in terms of the value of d mod 6.

Lemma 6.1. The Euler characteristics of the components Gr
d2 are given by

−χ(Gr
d2) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

13
720 · a(d) + ξ(d) if (6, d) = 1,

13
480 · a(d) + ξ(d) if (6, d) = 2,

13
540 · a(d) + ξ(d) if (6, d) = 3,

13
360 · a(d) + ξ(d) if (6, d) = 6,

where the error term ξ(d) = O(d5/2) as d → ∞.

Proof. First note that a(d) = d3
∏

p|d(1 − 1/p2) and therefore by (16) one has

χ(Xd2(br))
d

� K · a(d)
d

� K · d2

for some constant K > 0 independent of d. In particular, by Lemma 4.5 we have the estimate
χ(Gr

d2) � − 3
2χ(Xd2(br)) − 2χ(Rr

d2) + K ′ · d2 and the boundary contribution to the Euler
characteristic of Gr

d2 is negligible.
By Theorem 4.4 we need to study the asymptotics of χ(Xd2) and χ(Rd2). Using equations

(5) and (16) and Proposition 5.1 we have χ(Xd2) = 1
72a(d) and

2χ(Rd2) = − 1
3cd2

e(d2, 6) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

− 1
360 · a(d) + O(d5/2) if (6, d) = 1,

− 1
240 · a(d) + O(d5/2) if (6, d) = 2,

− 1
270 · a(d) + O(d5/2) if (6, d) = 3,

− 1
180 · a(d) + O(d5/2) if (6, d) = 6,

and the result follows. �

We finally calculate the volume of the gothic locus.

Proof of Theorem 1.1. By Proposition 2.1, we need to count the number Sm,m(G) of minimal
torus covers of fixed degree m in G. By Theorem 4.1 such number depends on the value of m,
and is always given by the number of square-tiled surfaces in some gothic Teichmüller curves
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Gr
(m/r)2 . By Lemma 4.6, this number equals −6χ(Gr

(m/r)2). Altogether, one has

vol(G) = lim
D→∞

1
D4

D∑
d=1

∑
m|d

σ
(

d
m

) | Sm,m(G) |

= lim
D→∞

1
D4

D∑
d=1

(∑
m|d

σ
(

d
m

)
(−6χ(G1

m2)) +
∑
m|d

(m,4)=2

σ
(

d
m

)
(−6χ(G2

(m/2)2))

+
∑
m|d

(m,9)=3

σ
(

d
m

)
(−6χ(G3

(m/3)2)) +
∑
m|d

(m,36)=6

σ
(

d
m

)
(−6χ(G6

(m/6)2))
)
,

where the last equality follows from Theorem 4.1.
The calculations for each of the summands in the limit follow the same lines. We prove in

detail the second one and state the rest of the results without proof.
Since the formulae for the Euler characteristics of Gr

d2 depend on the value of (d, 6), we first
write

D∑
d=1

∑
m|d

(m,4)=2

σ
(

d
m

)
(−6χ(G2

(m/2)2))

=

D/2�∑
d0=1

⎛⎜⎝ ∑
m0|d0

(m0,6)=1

σ
(

d0
m0

)
(−6χ(G2

m2
0
)) +

∑
m0|d0

(m0,6)=3

σ
(

d0
m0

)
(−6χ(G2

m2
0
))

⎞⎟⎠,

where we denote m = 2m0 and d = 2d0.
Now, using the asymptotics in Lemma 6.1 this sum becomes


D/2�∑
d0=1

⎛⎜⎝ ∑
m0|d0

(m0,6)=1

σ
(

d0
m0

)
( 6·13

720 a(m0) + 6 ξ(m2
0)) +

∑
m0|d0

(m0,6)=3

σ
(

d0
m0

)
( 6·13

540 a(m0) + 6 ξ(m2
0))

⎞⎟⎠.

The error terms can be disregarded using Möbius inversion, since 1
D4

∑
d5/2 → 0. By applying

definition (7) and an inclusion–exclusion argument one gets

D∑
d=1

∑
m|d

(m,4)=2

σ
(

d
m

)
(−6χ(G2

(m/2)2)) = 13
360

(
3S1

(�D
2 �
)− 3S2

(�D
2 �
)

+ S3

(�D
2 �
)− S6

(�D
2 �
))
.

By Proposition 5.2 the limit as D → ∞ of this summand divided by D4 is

13π4

360 · 24

(
3

23 · 32 · 5 − 3
23 · 3 · 5 · 7 +

1
2 · 32 · 5 · 13

− 1
2 · 3 · 5 · 7 · 13

)
=

43π4

28 · 34 · 52 · 7 .

Proceeding in the same way with the other three summands we get

lim
D→∞

1
D4

D∑
d=1

∑
m|d

σ
(

d
m

)
(−6χ(G1

m2)) =
17 · 43π4

27 · 34 · 52 · 7 ,

lim
D→∞

1
D4

D∑
d=1

∑
m|d

(m,4)=2

σ
(

d
m

)
(−6χ(G2

(m/2)2)) =
43π4

28 · 34 · 52 · 7 ,
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lim
D→∞

1
D4

D∑
d=1

∑
m|d

(m,9)=3

σ
(

d
m

)
(−6χ(G3

(m/3)2)) =
17π4

27 · 35 · 52 · 7 ,

lim
D→∞

1
D4

D∑
d=1

∑
m|d

(m,36)=6

σ
(

d
m

)
(−6χ(G6

(m/6)2)) =
π4

28 · 35 · 52 · 7 ,

the sum of which yields the result. �

6.2. Volumes of H(2), P3 and P4

In this section we recalculate the volumes of H(2) and the Prym loci in genus 3 and 4 using
our methods.

Theorem 6.2 [34]. The volume of the minimal stratum in genus 2 is

vol(H(2)) =
π4

26 · 3 · 5 .

Proof. Following the same analysis as above and using Theorem 4.2 one has

vol(H(2)) = lim
D→∞

1
D4

D∑
d=1

∑
m|d

σ
(

d
m

)
(−6χ(Wm2(2)))

= lim
D→∞

1
D4

D∑
d=1

∑
m|d

∑
r|m

3
8
m2(m−2)

r2 σ
(

d
m

)
μ(r)

= lim
D→∞

1
D4

⎛⎜⎝ 3
8S1(D) − 3

4

D∑
d=1

∑
m|d
r|m

m2

r2 σ
(

d
m

)
μ(r)

⎞⎟⎠.

The first summand grows like π4D4

26·3·5 + O(D3) by Proposition 5.2. One can easily calculate
the convolution in the second summand using the same techniques as in Section 5 to see that
it behaves like D3

3

∑D
x=1

1
x2 + O(D2 logD) for D → ∞, and the result follows. �

The volume of the Prym loci can be calculated from the volumes of the corresponding strata
of quadratic differentials. These were calculated by Goujard in [16, Appendix A] using the
convention for the volume form in [2]:

volAEZ(Q(−13, 3)) = 5
9π

4 and volAEZ(Q(−1, 5)) = 28
135π

4.

However, the usual problem with the clash of conventions and the subtleties in the differences
between normalisations increase the risk of errors (see Section 6.3 for a comparison of
normalisations).

Next we calculate these volumes using our methods. Note that, although strictly speaking
the formulae in Theorem 4.3 are only valid for non-square discriminant, one can proceed as in
Lemma 4.5 and prove that the boundary contributions are negligible.

Theorem 6.3. The volume of the Prym locus in genus 3 is

vol(P3) =
5

28 · 33
π4.
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Proof. From Theorems 4.7 and 4.3 we get

vol(P3(4)) = lim
D→∞

1
D4

D∑
d=1

(∑
m|d

−6χ
(
W 1

m2(4)
)
σ

(
d

m

)
+
∑
m|d

(m,4)=2

−6χ
(
W 2

(m/2)2(4)
)
σ

(
d

m

))

= lim
D→∞

1
D4

D∑
d=1

(
15
∑
m|d

σ

(
d

m

)
χ(Xm2)

+
15
2

∑
m|d

(m,2)=2

σ

(
d

m

)
χ(Xm2) + 15

∑
m|d

(m,4)=2

σ

(
d

m

)
χ(X(m/2)2)

)

= lim
D→∞

1
D4

(
5
24

S1(D) +
5
48

S2(D) +
5
24

(
S1

(⌊
D

2

⌋)
− S2

(⌊
D

2

⌋)))
,

where we have used that

D∑
d=1

∑
m|d

(m,4)=2

σ

(
d

m

)
χ(X(m/2)2) =


D/2�∑
d0=1

∑
m0|d0

(m0,2)=1

σ

(
d0

m0

)
χ(Xm2

0
) = S1

(⌊
D

2

⌋)
− S2

(⌊
D

2

⌋)
.

Calculating the limits of the four summands by means of Proposition 5.2 one gets

vol(P3(4)) =
π4

26 · 33
+

π4

27 · 32 · 7 +
π4

210 · 33
− π4

210 · 32 · 7 =
5π4

28 · 33
. �

Theorem 6.4. The volume of the Prym locus in genus 4 is

vol(P4) =
7

29 · 33 · 5 π4.

Proof. By writing m = 2m0 and d = 2d0, the formula for the volume of the Prym locus in
genus 4 can be written as

vol(P4) = lim
D→∞

1
D4

D∑
d=1

∑
m|d

m≡0(2)

σ
(

d
m

)(−6χ(W(m/2)2(6))
)

= lim
D→∞

42
D4


D/2�∑
d0=1

∑
m0|d0

σ
(

d0
m0

)
χ(Xm2

0
) = lim

D→∞
7

12 ·D4
S1

(�D
2 �
)
,

where the first equality comes from Proposition 2.1 and Theorem 4.7, the second one from the
formula for the Euler characteristic in Theorem 4.3 and the final one from (16). The estimate
in Proposition 5.2 yields the result. �

6.3. Lattices and volume normalisations for Prym

The strata Q(b) of quadratic differentials are parametrised by the −1-eigenspaces
H1

−(X,Z(ω); C) of the relative cohomology of the canonical double covers (X,ω). In [2, 16]
the authors normalise the volume by choosing the following lattice:

ΛQ(b)
AEZ := {(Y, η) ∈ H1

−(X,Z(ω); C) : RPer−(Y, η) ⊂ Z ⊕ iZ},
where RPer−(Y, η) = {ω(γ) : γ ∈ H−

1 (X,Z(ω); Z)}.
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The Prym loci are a particular case of this construction, that is, they are the image under
the canonical cover of certain strata of quadratic differentials.

Lemma 6.5. The canonical double cover of quadratic differentials induces bijections
Q(−13, 3) → P3 ⊂ H(4) and Q(−1, 5) → P4 ⊂ H(6).

Proof. The maps (X,ω) �→ (X/J, ω2) give the inverse of the canonical double cover map. �

In both cases we are in the minimal stratum, and one can therefore restrict to absolute
homology (actually this fact is more general: whenever all zeroes of Q(b) have odd order,
the anti-invariant space of relative homology H−

1 (X,Z(ω); Z) agrees with the absolute one
H−

1 (X; Z)). Moreover, given a surface (X,ω) ∈ P3 (respectively, a surface (X,ω) ∈ P4) the
polarisation on H−

1 (X,Z(ω); Z) is of type (1,2) (respectively, of type (2,2)). This implies the
following indices between lattices:

[ΛP3
abs : ΛQ(−13,3)

AEZ ] = 24 and [ΛP4
abs : ΛQ(−1,5)

AEZ ] = 28. (17)

To see this, for a (X,ω) ∈ P3 take a basis H1(X; Z) = 〈α1, α2,1, α2,2, β1, β2,1, β2,2〉 such that
H−

1 (X; Z) = 〈α1, α2,1 + α2,2, β1, β2,1 + β2,2〉 (cf. [19, Section 4]), and note that ω ∈ ΛP3
AEZ are

allowed to have half-integral periods ω(α2,1) = −ω(α2,2) and ω(β2,1) = −ω(β2,2) in 1
2 (Z ⊕ iZ).

A similar construction yields the result for P4 (cf. [20, Section 2]).
There are yet two other sources of disagreement between the AEZ-volumes and ours. The

first one, due to another difference in normalisation, is that they define the volume volAEZ

on Q1(b) by disintegration of the Masur–Veech volume element with respect to the area [2,
Section 4.1], that is,

volAEZ(B) = 2 dimC Q(b) · ν(C(B)) = 2 dimC Q(b) · vol(B), (18)

where vol denotes the volume element with our normalisation.
The second one is intrinsic: the poles of the differentials in Q(b) are numbered, but they

are forgotten under the canonical double cover. This implies (see [2, Remark 1.2]) that, for
a stratum of quadratic differentials Q(b) with k simple poles and its canonical double cover
H(a) one has

volAEZ(Q1(b)) = k! · volAEZ(H1(a)). (19)

All factors considered, one has (cf. [16, Appendix A]):

volAEZ(Q1(−13, 3)) =
5
9
π4 = 24 · 23 · 3! · vol(P3),

where the 24 corresponds to the different lattice normalisation in (17), the 23 to the measure
normalisation in (18) and the 3! to the numbering of the poles in (19), and

volAEZ(Q1(−1, 5)) =
28
135

π4 = 28 · 23 · vol(P4),

where the 28 corresponds to the different lattice normalisation in (17) and the 23 to the measure
normalisation in (18).
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28. M. Möller and D. Torres-Teigell, ‘Euler characteristics of gothic Teichmüller curves’, Geom. Topol.,

2019, to appear.
29. A. Sauvaget, ‘Volumes and Siegel–Veech constants of H(2g − 2) and Hodge integrals’, Geom. Funct.

Anal. 28 (2018) 1756–1779.
30. C. Siegel, ‘The volume of the fundamental domain for some infinite groups’, Trans. Amer. Math. Soc. 39

(1936) 209–218.
31. G. van der Geer, Hilbert modular surfaces, Ergebnisse der Mathematik und ihrer Grenzgebiete (Springer,

Berlin, 1988).
32. W. A. Veech, ‘Gauss measures for transformations on the space of interval exchange maps’, Ann. of Math.

115 (1982) 201–242.
33. D. Zagier, ‘On the values at negative integers of the zeta-function of a real quadratic field’, Enseign.

Math. (2) 22 (1976) 55–95.
34. A. Zorich, ‘Square tiled surfaces and Teichmüller volumes of the moduli spaces of abelian differentials’,

Rigidity in dynamics and geometry (Cambridge, 2000) (Springer, Berlin, 2002) 459–471.

https://doi.org/10.1017/fmp.2020.2
https://doi.org/10.1090/jams/950
https://doi.org/10.1017/S1474748019000057


436 DAVID TORRES-TEIGELL

David Torres-Teigell
Departamento de Matemáticas
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