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Abstract
We show that throughout the satisfiable phase the normal-

ized number of satisfying assignments of a random 2-SAT

formula converges in probability to an expression predicted

by the cavity method from statistical physics. The proof

is based on showing that the Belief Propagation algorithm

renders the correct marginal probability that a variable is set

to “true” under a uniformly random satisfying assignment.
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1 INTRODUCTION

1.1 Background and motivation

The random 2-SAT problem was the first random constraint satisfaction problem whose satisfiability

threshold could be pinpointed precisely, an accomplishment attained independently by Chvátal and

Reed [15] and Goerdt [31] in 1992. The proofs evince the link between the 2-SAT threshold and the

percolation phase transition of a random digraph. This connection subsequently enabled Bollobás,

Borgs, Chayes, Kim, and Wilson [12] to identify the size of the scaling window, which matches that
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of the giant component phase transition of the Erdős-Rényi random graph [11, 34]. Ramifications

and extensions of these results pertain to random 2-SAT formulas with given literal degrees [20], the

random MAX 2-SAT problem [21] and the performance of algorithms [46]. But despite the great

attention devoted to random 2-SAT over the years, a fundamental question, mentioned prominently in

the survey [29], remained conspicuously open: how many satisfying assignments does a random 2-SAT
formula typically possess? While percolation-type arguments have been stretched to derive (rough)

bounds [13], the exact answer remained beyond the reach of elementary techniques.

In addition to the mathematical literature, the 2-SAT problem attracted the interest of sta-

tistical physicists, who brought to bear a canny but nonrigorous approach called the cavity

method [37, 38]. Instead of relying on percolation ideas, the physics ansatz seizes upon a heuristic

message passing scheme called Belief Propagation. Its purpose is to calculate the marginal proba-

bilities that a random satisfying assignment sets specific variables of the 2-SAT formula to “true”.

According to physics intuition Belief Propagation reveals a far more fine-grained picture than a mere

percolation argument possibly could. Indeed, in combination with a functional called the Bethe free

entropy, Belief Propagation renders a precise conjecture as to the number of satisfying assignments.

We prove this conjecture. Specifically, we show that for all clause-to-variable densities below the

2-SAT threshold the number of satisfying assignments is determined by the Bethe functional applied to

a particular solution of a stochastic fixed point equation that mimics Belief Propagation. The formula

that we obtain does not boil down to a simple algebraic expression, which may explain why the problem

has confounded classical methods for nearly three decades. Nonetheless, thanks to rapid convergence of

the stochastic fixed point iteration, the formula can be evaluated numerically within arbitrary precision.

A crucial step towards the main theorem is to verify that Belief Propagation does indeed yield the

correct marginals, a fact that may be of independent interest.

By comparison to prior work on Belief Propagation in combinatorics (e.g., [17, 22, 23, 40]), we face

the substantial technical challenge of dealing with the “hard” constraints of the 2-SAT problems, which

demands that all clauses be satisfied. A second novelty is that in order to prove convergence of Belief

Propagation to the correct marginals we need to investigate delicately constructed extremal initial

conditions for the message passing process. Since these depend on the random 2-SAT formula itself,

we need to develop means to confront the ensuing stochastic dependencies between the construction of

the initial condition and the subsequent message passing iterations. We proceed to state the main results

precisely. An outline of the proofs and a detailed discussion of related work follow in Sections 2 and 3.

1.2 The main result

Let n> 1 be an integer, let d> 0 be a positive real and let m
d
= Po(𝑑n∕2) be a Poisson random

variable. Furthermore, let 𝚽 = 𝚽n be a random 2-SAT formula with Boolean variables x1, … , xn

and m clauses, drawn uniformly and independently from the set of all 4n(n− 1) possible clauses

with two distinct variables. Thus, each variable appears in d clauses on the average and the satis-

fiability threshold occurs at d = 2. We aim to estimate the number Z(𝚽) of satisfying assignments,

the partition function in physics jargon. More precisely, since Z(𝚽) remains exponentially large

for all d< 2 w.h.p., in order to obtain a well-behaved limit we compute the normalized logarithm

n−1 log Z(𝚽).
The result comes in terms of the solution to a stochastic fixed point equation on the unit interval.

Hence, let 𝒫 (0, 1) be the set of all Borel probability measures on (0, 1), endowed with the weak

topology. Furthermore, define an operator BP𝑑 ∶ 𝒫 (0, 1) → 𝒫 (0, 1), 𝜋 → 𝜋̂ as follows. With d+, d−

Poisson variables with mean d/2 and 𝝁𝜋,1,𝝁𝜋,2, … random variables with distribution 𝜋, all mutually
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independent, let 𝜋̂ be the distribution of the random variable∏d−
i=1 𝝁𝜋,i∏d−

i=1 𝝁𝜋,i +
∏d+

i=1 𝝁𝜋,i+d−
∈ (0, 1). (1.1)

Let 𝛿1∕2 ∈ 𝒫 (0, 1) signify the atom at 1/2 and write BP𝓁
𝑑 (⋅) for the 𝓁-fold application of the

operator BPd.

Theorem 1.1. For any d< 2 the limit 𝜋𝑑 = lim𝓁→∞BP𝓁
𝑑 (𝛿1∕2) exists and

lim
n→∞

1

n
log Z(𝚽)

= E

⎡⎢⎢⎣log

⎛⎜⎜⎝
d−∏
i=1

𝝁𝜋𝑑 ,i +
d+∏
i=1

𝝁𝜋𝑑 ,i+d−
⎞⎟⎟⎠ − 𝑑

2
log

(
1 − 𝝁𝜋𝑑 ,1𝝁𝜋𝑑 ,2

)⎤⎥⎥⎦ in probability. (1.2)

Of course, the fact that the r.h.s. of (1.2) is well-defined is part of the statement of Theorem 1.1.

By construction, the distribution 𝜋𝑑 is a solution to the stochastic fixed point equation

𝜋𝑑 = BP𝑑(𝜋𝑑). (1.3)

Equation (1.3) is known as the density evolution equation in physics lore, while the expression on

the r.h.s. of (1.2) is called the Bethe free entropy [35]. Hence, Theorem 1.1 matches the conjecture

from [37]. By comparison, Markov’s inequality (specifically, Z(𝚽) ≤ E[Z(𝚽)] ⋅ exp(o(n)) w.h.p.)

yields the elementary first moment bound

1

n
log Z(𝚽) ≤ 1

n
log E[Z(𝚽)] + o(1) = (1 − 𝑑) log 2 + 𝑑

2
log 3 + o(1) w.h.p., (1.4)

which, however, fails to be tight for any 0< d< 2 [43]. Furthermore, while (1.2) may appear difficult

to evaluate, the proof reveals that the fixed point iteration BP𝓁
𝑑 (𝛿1∕2) converges geometrically (in an

appropriate metric). In effect, decent numerical approximations can be obtained; see Figure 1. A quick

remark on the right figure is in order. The jumps on the graph are due to specific small tree compo-

nents of the formula. For instance, isolated variables can take either +1 or −1 independently, which

explains the jump at 1/2. In addition, isolated clauses with two variables that are not connected to any

other clause render variable marginals 1/3 or 2/3, depending on the signs. This explains the other two

noticeable jumps.

For d< 1 the random digraph on {x1,¬ x1, … , xn,¬ xn} obtained by inserting for each clause l1 ∨ l2
of 𝚽 the two directed edges ¬l1 → l2, ¬l2 → l1 is sub-critical, thus guaranteeing no weak giant com-

ponent and the distribution 𝜋𝑑 is supported on a countable set. Such description of clause is also

known as the implication graph, first introduced in [5]. In effect, for d< 1 the formula (1.2) can be

obtained via elementary counting arguments. By contrast, the emergence of a weak giant component

for 1< d< 2 turns the computation of Z(𝚽) into a challenge. Finally, for d> 2 the digraph contains a

strongly connected giant component w.h.p. Its long directed cycles likely cause contradictions, which

is why satisfying assignments cease to exist.

An asymptotically tight upper bound on n−1 log Z(𝚽) could be obtained via the interpolation

method from mathematical physics [30, 43]. We will revisit this point in Section 3. Thus, the principal

contribution of Theorem 1.1 is the lower bound on log Z(𝚽). The best prior lower bound was obtained
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FIGURE 1 Left: the red line depicts a numerical approximation to the r.h.s. of (1.2) after 24 iterations of BPd(⋅). The dotted

blue line displays the first moment bound. Right: the cumulative density functions of numerical approximations to BP24
𝑑 (𝛿1∕2)

for various d

by Boufkhad and Dubois [13] in 1999 via percolation arguments. However, this bound drastically

undershoots the actual value from Theorem 1.1. For instance, for d = 1.2, [13] gives n−1 log Z(𝚽) ≥
0.072 … , while actually n−1 log Z(𝚽) = 0.515 … w.h.p.

1.3 Belief propagation

To elaborate on the combinatorial meaning of the distribution 𝜋𝑑 , we need to look into the Belief Prop-

agation heuristic. Instantiated to 2-SAT, Belief Propagation is a message passing algorithm designed

to approximate the marginal probability that a specific variable takes the value “true” under a random

satisfying assignment. While finding satisfying assignments of a given 2-SAT formula is an easy com-

putational task, calculating these marginals is not. In fact, the problem is #P-hard [50]. Nonetheless,

we are going to prove that Belief Propagation approximates the marginals well on random formulas

w.h.p.

To introduce Belief Propagation, we associate a bipartite graph G(𝚽) with the formula 𝚽. One ver-

tex class Vn = {x1, … , xn} represents the propositional variables, the other class Fm = {a1, … , am}
represents the clauses. Each clause ai is adjacent to the two variables that it contains. Because each

clause contains two distinct variables and each of the m clauses is represented by a separate vertex,

G(𝚽) is a simple graph. We write 𝜕v = 𝜕(𝚽, v) for the set of neighbors of a vertex v of G(𝚽). Moreover,

for 𝓁 ≥ 1 let 𝜕𝓁v signify the set of all vertices at distance precisely 𝓁 from v.

Associated with the edges of G(𝚽), the Belief Propagation messages are probability distributions

on the Boolean values “true” and “false.” To be precise, any adjacent clause/variable pair a, x comes

with two messages, one directed from a to x and a reverse one from x to a. Encoding “true” and “false”

by ±1, we initialize all messages by

𝜈
(0)
𝚽,a→x(±1) = 𝜈

(0)
𝚽,x→a(±1) = 1∕2. (1.5)

For 𝓁 ≥ 1 the messages 𝜈
(𝓁)
𝚽,a→x, 𝜈

(𝓁)
𝚽,x→a are defined inductively. Specifically, suppose that clause a con-

tains the two variables x, y. Let r, s∈ {± 1} indicate whether x, y appear as positive or negative literals

in a. Then for t=±1 let

𝜈
(𝓁)
𝚽,a→x(t) =

1 − 1 {r ≠ t} 𝜈(𝓁−1)
𝚽,y→a(−s)

1 + 𝜈(𝓁−1)
𝚽,y→a(s)

,
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𝜈
(𝓁)
𝚽,x→a(t) =

∏
b∈𝜕x∖{a}𝜈

(𝓁)
𝚽,b→x(t)∏

b∈𝜕x∖{a}𝜈
(𝓁)
𝚽,b→x(1) +

∏
b∈𝜕x∖{a}𝜈

(𝓁)
𝚽,b→x(−1)

. (1.6)

The last expression is deemed to equal 1/2 if the denominator vanishes (which does not happen if 𝚽 is

satisfiable). Finally, the Belief Propagation estimate of the marginal of a variable x after 𝓁 iterations

reads

𝜈
(𝓁)
𝚽,x(t) =

∏
a∈𝜕x𝜈

(𝓁)
𝚽,a→x(t)∏

a∈𝜕x𝜈
(𝓁)
𝚽,a→x(1) +

∏
a∈𝜕x𝜈

(𝓁)
𝚽,a→x(−1)

, (1.7)

again interpreted to yield 1/2 if the denominator vanishes. For an excellent exposition of Belief

Propagation, including the derivation of (1.6)–(1.7), we point to [35, Chapter 14].

The next theorem establishes that (1.7) approximates the true marginals well for large 𝓁. In fact, we

prove a significantly stronger result. To set the stage, let S(𝚽) be the set of all satisfying assignments

of 𝚽. Assuming S(𝚽) ≠ ∅, let

𝜇𝚽(𝜎) = 1 {𝜎 ∈ S(𝚽)} ∕Z(𝚽) (𝜎 ∈ {±1}{x1,… ,xn}) (1.8)

be the uniform distribution on S(𝚽). Furthermore, write 𝝈 for a sample from 𝜇𝚽. Then for a satisfying

assignment 𝜏 ∈ S(𝚽) and 𝓁 ≥ 1 the conditional distribution 𝜇𝚽( ⋅ |𝝈𝜕2𝓁x1
= 𝜏𝜕2𝓁x1

) = 𝜇𝚽( ⋅ |∀y ∈
𝜕2𝓁x1 ∶ 𝝈y = 𝜏y) imposes the “boundary condition” 𝜏 on all variables y at distance 2𝓁 from x1. The

following theorem shows that Belief Propagation does not just approximate the plain, unconditional

marginals well w.h.p., but even the conditional marginals given any conceivable boundary condition.

Recall that P [Z(𝚽) > 0] = 1 − o(1) for d< 2.

Theorem 1.2. If d< 2, then

lim
𝓁→∞

lim sup
n→∞

E

[
max
𝜏∈S(𝚽)

|||𝜇𝚽(𝝈x1
= 1|𝝈𝜕2𝓁x1

= 𝜏𝜕2𝓁x1
) − 𝜈(𝓁)𝚽,x1

(1)||| ||| Z(𝚽) > 0

]
= 0. (1.9)

Since 𝜈
(𝓁)
𝚽,x1

does not depend on 𝜏, averaging (1.9) on the boundary condition 𝜏 ∈ S(𝚽) yields

lim
𝓁→∞

lim sup
n→∞

E

[|||𝜇𝚽(𝝈x1
= ±1) − 𝜈(𝓁)𝚽,x1

(±1)||| |Z(𝚽) > 0
]
= 0. (1.10)

Thus, Belief Propagation approximates the unconditional marginal of x1 well in the limit of large n and

𝓁. Indeed, because the distribution of 𝚽 is invariant under permutations of the variables x1, … , xn,

(1.10) implies that the marginals of all but o(n) variables xi are within ±o(1) of the Belief Propagation

approximation w.h.p.

But thanks to the presence of the boundary condition 𝜏, Theorem 1.2 leads to further discoveries.

For a start, applying the triangle inequality to (1.9) and (1.10), we obtain

lim
𝓁→∞

lim sup
n→∞

E

[
max
𝜏∈S(𝚽)

||𝜇𝚽(𝝈x1
= 1|𝝈𝜕2𝓁x1

= 𝜏𝜕2𝓁x1
) − 𝜇𝚽(𝝈x1

= 1)|| ||| Z(𝚽) > 0

]
= 0. (1.11)

Thus, no discernible shift of the marginal of x1 is likely to ensue upon imposition of any possible bound-

ary condition 𝜏. The spatial mixing property (1.11) is colloquially known as Gibbs uniqueness [33].
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Furthermore, (1.11) rules out extensive long-range correlations. Specifically, for any fixed 𝓁 the first

two variables x1, x2 with high probability have distance greater than 4𝓁 in G(𝚽). Therefore, (1.11)

implies that for all d< 2,

lim
n→∞

∑
s,t∈{±1}

E

[||𝜇𝚽(𝝈x1
= s,𝝈x2

= t) − 𝜇𝚽(𝝈x1
= s) ⋅ 𝜇𝚽(𝝈x2

= t)|| ||| Z(𝚽) > 0
]
= 0. (1.12)

Thus, the truth values 𝝈x1
,𝝈x2

are asymptotically independent. Of course, once again by permutation

invariance, (1.12) implies that asymptotic independence extends to all but o(n2) pairs of variables xi, xj
w.h.p. The decorrelation property (1.12) is called replica symmetry in the physics literature [33].

Finally, we can clarify the combinatorial meaning of the distribution 𝜋𝑑 from Theorem 1.1. Namely,

𝜋𝑑 is the limit of the empirical distribution of the marginal probabilities 𝜇𝚽(𝝈xi = 1).

Corollary 1.3. For any 0< d< 2 the random probability measure

𝜋𝚽 = 1

n

n∑
i=1

𝛿𝜇𝚽(𝝈xi=1) (1.13)

converges to 𝜋𝑑 weakly in probability. 1

Thus, the stochastic fixed point equation (1.3) that characterizes 𝜋𝑑 simply expresses that the

marginal probabilities 𝜇𝚽(𝝈xi = 1) result from the Belief Propagation recurrence (1.6).

1.4 Preliminaries and notation

Throughout we denote by Vn = {x1, … , xn} the variable set of 𝚽n. Generally, given a 2-SAT for-

mula Φ we write V(Φ) for the set of variables and F(Φ) for the set of clauses. The bipartite

clause/variable-graph G(Φ) is defined as in Section 1.3. For a vertex v of G(Φ) we let 𝜕(Φ, v) be the set

of neighbors. Where Φ is apparent we just write 𝜕v. Moreover, 𝜕𝓁(Φ, v) or briefly 𝜕𝓁v stands for the set

of vertices at distance exactly 𝓁 from v. Additionally, ∇𝓁(Φ, v) denotes the sub-formula obtained from

Φ by deleting all clauses and variables at distance greater than 𝓁 from v. This subformula may contain

clauses of length less than two. Furthermore, for a clause a and a variable x of Φ we let sign(x, a) =
signΦ(x, a) ∈ {±1} be the sign with which x appears in a. In addition, we let S(Φ) be the set of all satis-

fying assignments of Φ, Z(Φ) = |S(Φ)| and, assuming Z(Φ) > 0, we let 𝜇Φ be the probability distribu-

tion on {±1}V(Φ) that induces the uniform distribution on S(Φ) as in (1.8). Moreover, 𝝈Φ = (𝝈Φ,x)x∈V(Φ)
signifies a uniformly random satisfying assignment; we drop Φ where the reference is apparent.

For any Φ we set up Belief Propagation as in (1.5)–(1.7). It is well known that Belief Propagation

yields the correct marginals if G(Φ) is a tree. To be precise, the depth of x ∈ V(Φ) is the maximum

distance between x and a leaf of G(Φ).

Proposition 1.4 ([35, Theorem 14.1]). If G(Φ) is a tree and x ∈ V(Φ), then for any 𝓁 greater than
or equal to the depth of x we have 𝜇Φ(𝝈x = ±1) = 𝜈

(𝓁)
Φ,x(±1).

We will encounter the following functions repeatedly. For 𝜀 > 0 let

Λ𝜀(z) = log(z ∨ 𝜀) (1.14)

1That is, for any continuous function f ∶ [0, 1] → R we have limn→∞E
|||∫ 1

0
f (z)d𝜋𝑑 (z) − ∫ 1

0
f (z)d𝜋𝚽(z)

||| = 0.
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be the log function truncated at log 𝜀. Moreover, we need the continuous and mutually inverse functions

𝜓 ∶ R → (0, 1), z → (1 + tanh(z∕2)) ∕2, 𝜑 ∶ (0, 1) → R, p → log(p∕(1 − p)). (1.15)

Let 𝒫 (R) be the set of all Borel probability measures on R with the weak topology. Moreover,

for a real q≥ 1 let 𝒲q(R) be the set of all 𝜌 ∈ 𝒫 (R) such that ∫
R
|x|qd𝜌(x) < ∞. We equip this space

with the Wasserstein metric

Wq(𝜌, 𝜌′) = inf

{(
∫

R2

|x − y|qd𝛾(x, y)
)1∕q

∶ 𝛾 is a coupling of 𝜌, 𝜌′

}
, (1.16)

thereby turning 𝒲q(R) into a complete separable space [10].

For 𝜌 ∈ 𝒫 (R) we denote by 𝜼𝜌, 𝜼𝜌,1, 𝜼𝜌,2, … random variables with distribution 𝜌. Similarly,

for 𝜋 ∈ 𝒫 (0, 1) we let 𝝁𝜋,𝝁𝜋,1,𝝁𝜋,2, … be a sequence of random variables with distribution 𝜋. We

continue to let d+, d− Poisson variables with mean d/2 and also define d be a Poisson variable with

mean d. Moreover, s1, s′1, s2, s′2, … ∈ {±1} always denote uniformly distributed random variables.

All of these random variables are mutually independent as well as independent of any other sources

of randomness.

Finally, from here on we tacitly assume that 0< d< 2.

2 OVERVIEW

The proof of Theorem 1.1 proceeds in four steps. First we show that the limit 𝜋𝑑 from Theorem 1.1

exists. Subsequently we establish the fact (1.9) that Belief Propagation approximates the conditional

marginals well. This will easily imply the convergence of the empirical marginals (1.13) to 𝜋𝑑 . Third,

building upon these preparations, we will prove that the truncated mean n−1E[log(Z(𝚽)∨1)] converges

to the r.h.s. of (1.2). The truncation is necessary to deal with the unlikely event that Z(𝚽) = 0 which

occurs with probability tending to 0. Finally, we will show that log(Z(𝚽) ∨ 1) concentrates about its

mean to obtain convergence in probability, thus completing the proof of Theorem 1.1.

2.1 Step 1: Density evolution

We begin by verifying that the distribution 𝜋𝑑 from Theorem 1.1 is well-defined and that 𝜋𝑑 satisfies

a tail bound.

Proposition 2.1. The weak limit 𝜋𝑑 = lim𝓁→∞BP𝓁
𝑑 (𝛿1∕2) exists and

E

[
log2

𝝁𝜋𝑑
1 − 𝝁𝜋𝑑

]
< ∞. (2.1)

Moreover, 𝝁𝜋𝑑 and 1 − 𝝁𝜋𝑑 are identically distributed and

E

|||||||log

⎛⎜⎜⎝
d−∏
i=1

𝝁𝜋𝑑 ,i +
d+∏
i=1

𝝁𝜋𝑑 ,i+d−
⎞⎟⎟⎠
||||||| < ∞, E

|||log
(
1 − 𝝁𝜋𝑑 ,1𝝁𝜋𝑑 ,2

)||| < ∞. (2.2)
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The proof of Proposition 2.1, which we carry out in Section 4, is based on a contraction argument.

This argument implies that the fixed point iteration converges rapidly to 𝜋𝑑 , a fact that can be exploited

to obtain numerical estimates. The bounds (2.2) ensure that the expectation on the r.h.s. of (1.2) is

well-defined.

2.2 Step 2: Gibbs uniqueness

As a next step we verify the Gibbs uniqueness property (1.11). We proceed by way of analyzing a

multi-type Galton–Watson tree T that mimics the local structure of the graph G(𝚽) upon exploration

from variable x1. The Galton–Watson process has five types: variable nodes and four types of clause

nodes (+ 1,+ 1), (+ 1,− 1), (− 1,+ 1), (− 1,− 1). The root is a variable node o. Moreover, each variable

node spawns independent Po(d/4) numbers of clauses nodes of each of the four types. Additionally,

each clause has a single offspring, which is a variable. The semantics of the clause types is that the first

component indicates whether the parent variable appears in the clause positively or negatively. The

second component indicates whether the child variable appears as a positive or as a negative literal.

Clearly, for d ≤ 1 the tree T is finite with probability one, while infinite trees appear with positive

probability for d> 1.

Let T(𝓁) be the finite tree obtained from T by dropping all nodes at distance greater than 𝓁 from

the root. For even 𝓁 it will be convenient to view T(𝓁) interchangeably as a tree or as a 2-SAT formula.

In particular, we write 𝜕2𝓁o = 𝜕2𝓁(T, o) for the set of all variables at distance exactly 2𝓁 from o.

The following proposition, which is the linchpin of the entire proof strategy, establishes the Gibbs

uniqueness property for the tree formula T(2𝓁).

Proposition 2.2. We have

lim
𝓁→∞

E

[
max

𝜏∈S(T(2𝓁))
||𝜇T(2𝓁) (𝝈o = 1|𝝈𝜕2𝓁o = 𝜏𝜕2𝓁o) − 𝜇T(2𝓁) (𝝈o = 1)||] = 0. (2.3)

Thus, w.h.p. no conceivable boundary condition is apt to significantly shift the marginal of the root.

We prove Proposition 2.2 by a subtle contraction argument in combination with a construction of

extremal boundary conditions of the tree formula T(2𝓁). More specifically, we will construct boundary

conditions 𝝈± that maximize or minimize the conditional probability

𝜇T(2𝓁) (𝝈o = 1|𝝈𝜕2𝓁o = 𝝈±
𝜕2𝓁o), (2.4)

respectively. Then we will show that the difference of the conditional marginals induced by both these

extremal boundary conditions vanishes with probability tending to one as 𝓁→∞. The delicate point

is that the extremal boundary conditions 𝝈± depend on the tree T(2𝓁). Thus, at first glance it seems that

we need to pass the tree twice, once top–down to construct 𝝈± and then bottom–up to calculate the

conditional marginals (2.4). But such an analysis seems untenable because after the top–down pass the

tree is exposed and “no randomness remains” to facilitate the bottom–up phase. Fortunately, we will

see that a single stochastic fixed point equation captures both the top–down and the bottom–up phase.

This discovery reduces the proof of Proposition 2.2 to showing that the fixed point iteration contracts.

The details of this delicate argument can be found in Section 5.

Proposition 2.2 easily implies the Gibbs uniqueness condition (1.11) and thereby Theorem 1.2. A

further consequence is the asymptotic independence of the joint truth values of bounded numbers of

variables.
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Corollary 2.3. The statement (1.9) is true and for any integer k≥ 2 we have

lim
n→∞

∑
𝜎∈{±1}k

E

[||||||𝜇𝚽(𝝈x1
= 𝜎1, … ,𝝈xk = 𝜎k) −

k∏
i=1

𝜇𝚽(𝝈xi = 𝜎i)
|||||| |Z(𝚽) > 0

]
= 0.

2.3 Step 3: The Aizenman–Sims–Starr scheme

The aforementioned results pave the way for deriving an expression for the conditional expecta-

tion of log Z(𝚽) given that 𝚽 is satisfiable. Since 𝚽 is satisfiable w.h.p. for all d< 2, an equivalent

task is to calculate E[log(Z(𝚽) ∨ 1)]. To this end we seize upon a simple but powerful strategy

colloquially called the Aizenman-Sims-Starr scheme [6]. Originally proposed in the context of the

Sherrington-Kirkpatrick spin glass model, this proof strategy suggests to compute the asymptotic mean

of a random variable on a “system” of size n by carefully estimating the change of that mean upon

going to a “system” of size n+ 1. This difference is calculated by coupling the systems of size n and

n+ 1 such that the latter is obtained from the former by a small expected number of local changes.

We apply this idea to the random 2-SAT problem by coupling the random formula 𝚽n with n
variables and Po(dn/2) clauses and the random formula 𝚽n+1 with n+ 1 variables and Po(d(n+ 1)/2)

clauses. Roughly speaking, we obtain 𝚽n+1 from 𝚽n by adding a new variable xn+ 1 along with

a few random adjacent clauses that connect xn+ 1 with the variables x1, … , xn of 𝚽n. Then the

information about the joint distribution of the truth values of bounded numbers of variables fur-

nished by Corollaries 1.3 and 2.3 and the tail bound (2.1) will enable us to accurately estimate

E
[
log(Z(𝚽n+1) ∨ 1) − log(Z(𝚽n) ∨ 1)

]
.

Needless to say, upon closer inspection matters will emerge to be rather subtle. The main

source of complications is that, in contrast to other models in mathematical physics such as the

Sherrington-Kirkpatrick model or the Ising model, the 2-SAT problem has hard constraints. Thus, the

addition of a single clause could trigger a dramatic drop in the partition function. In fact, in the worst

case a single awkward clause could wipe out all satisfying assignments. In Section 6 we will iron out

all these difficulties and prove the following.

Proposition 2.4. We have

lim
n→∞

E[log(Z(𝚽n+1) ∨ 1)] − E[log(Z(𝚽n) ∨ 1)]

= E

⎡⎢⎢⎣log

⎛⎜⎜⎝
d−∏
i=1

𝝁𝜋𝑑 ,i +
d+∏
i=1

𝝁𝜋𝑑 ,i+d−
⎞⎟⎟⎠ − 𝑑

2
log

(
1 − 𝝁𝜋𝑑 ,1𝝁𝜋𝑑 ,2

)⎤⎥⎥⎦ . (2.5)

We notice that (2.2) guarantees that the r.h.s. of (2.5) is well-defined. As an immediate consequence

of Proposition 2.4 we obtain a formula for E[log(Z(𝚽) ∨ 1)].

Corollary 2.5. For any d< 2 we have

lim
n→∞

1

n
E[log(Z(𝚽) ∨ 1)] = E

⎡⎢⎢⎣log

⎛⎜⎜⎝
d−∏
i=1

𝝁𝜋𝑑 ,i +
d+∏
i=1

𝝁𝜋𝑑 ,i+d−
⎞⎟⎟⎠ − 𝑑

2
log

(
1 − 𝝁𝜋𝑑 ,1𝝁𝜋𝑑 ,2

)⎤⎥⎥⎦ .
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Proof. Writing E[log(Z(𝚽) ∨ 1)] as a telescoping sum and applying Proposition 2.4, we obtain

lim
n→∞

1

n
E[log(Z(𝚽n) ∨ 1)] = lim

n→∞

1

n

n−1∑
N=2

E[log(Z(𝚽N+1) ∨ 1)] − E[log(Z(𝚽N) ∨ 1)]

= E

⎡⎢⎢⎣log

⎛⎜⎜⎝
d−∏
i=1

𝝁𝜋𝑑 ,i +
d+∏
i=1

𝝁𝜋𝑑 ,i+d−
⎞⎟⎟⎠ − 𝑑

2
log

(
1 − 𝝁𝜋𝑑 ,1𝝁𝜋𝑑 ,2

)⎤⎥⎥⎦ ,
as desired. ▪

2.4 Step 4: Concentration

The final step towards Theorem 1.1 is to show that log(Z(𝚽) ∨ 1) concentrates about its mean.

Proposition 2.6. We have limn→∞n−1E |log(Z(𝚽) ∨ 1) − E[log(Z(𝚽) ∨ 1)]| = 0.

Proposition 2.6 does not easily follow from routine arguments such as the Azuma–Hoeffding

inequality. Once more the issue is that changing a single clause could alter log(Z(𝚽) ∨ 1) by as much

as Θ(n). Instead we will resort to another technique from mathematical physics called the interpolation

method. The details can be found in Section 7.

Proof of Theorem 1.1. The theorem follows from Proposition 2.1, Corollary 2.5 and

Proposition 2.6. ▪

3 DISCUSSION

The random 2-SAT satisfiability threshold was established mathematically shortly after the experimen-

tal work of Cheeseman, Kanefsky, and Taylor [14] that triggered the quest for satisfiability thresholds

appeared. The second successful example, nearly a decade later, was the random 1-in-k-SAT threshold

(to satisfy exactly one literal in each clause), which Achlioptas, Chtcherba, Istrate, and Moore pin-

pointed by analyzing the Unit Clause algorithm [2]. In a subsequent landmark contribution Dubois and

Mandler determined the 3-XORSAT threshold via the second moment method [28]. Subsequent work

extended this result to random k-XORSAT [24, 44]. Finally, the most notable success thus far has been

the verification of the “1RSB cavity method” prediction [36] of the random k-SAT threshold for large

k due to Ding, Sly and Sun [26], the culmination of a line of work that refined the use of the second

moment method [3, 4, 18].

Over the past two decades the general theme of estimating the partition functions of discrete

structures has received a great deal of attention; e.g., [9]. With respect to random 2-SAT (and, more

generally, k-SAT), Montanari and Shah [40], Panchenko [42] and Talagrand [49] investigated “soft”

versions of the partition function. To be precise, introducing a parameter 𝛽 > 0 called the “inverse

temperature”, these articles study the random variable

Z𝛽(𝚽) =
∑

𝜎∈{±1}n

m∏
i=1

exp (−𝛽1 {𝜎 violates clause ai}) . (3.1)
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Thus, instead of dismissing assignments that fail to satisfy all clauses outright, there is an exp(−𝛽)
penalty factor for each violated clause. Talagrand [49] computes limn→∞n−1E[log Z𝛽(𝚽)] for 𝛽 not

exceeding a small but unspecified 𝛽0 > 0. Panchenko [42] calculates this limit under the assumption

(4𝛽∧1)𝑑 < 1. Thus, for 𝛽 > 1∕4 the result is confined to d< 1, in which case the random graph G(𝚽) is

sub-critical and both Z𝛽(𝚽) and the actual number Z(𝚽) of satisfying assignments could be calculated

via elementary methods. Furthermore, Montanari and Shah [40] obtain limn→∞n−1E[log Z𝛽(𝚽)] for all

finite 𝛽 under the assumption d< 1.16… . Although for any fixed formula 𝚽 the limit lim𝛽→∞Z𝛽(𝚽)
is equal to the number of satisfying assignments, it is not possible to interchange the limits 𝛽 → ∞ and

n→∞. Thus, [40, 42] do not yield the number of actual satisfying assignments even for d< 1.16…
or d< 1, respectively. Apart from estimating E log Z𝛽(𝚽), Montanari and Shah [40] also show that the

Belief Propagation message passing scheme approximates the marginals of the Boltzmann distribution

that goes with Z𝛽(𝚽) well, that is, they obtain a “soft” version of Theorem 1.2 for d< 1.16… .

In terms of proof techniques, all three contributions [40, 42, 49] are based on establishing the Gibbs

uniqueness property. So is the present paper. But while [40, 42, 49] rely on relatively straightforward

contraction arguments, a key distinction is that here we develop a more accurate (and delicate) method

for verifying the Gibbs uniqueness property based on the explicit construction of an extremal boundary

condition. This is the key to pushing the range of d all the way up to the satisfiability threshold d = 2.

Specifically, in order to construct a boundary condition of the random tree T(2𝓁) for large 𝓁 that

maximizes the conditional probability of observing the truth value +1 at the root we will work our way

top–down from the root to level 2𝓁. Exposing the degrees and the signs with which the variables appear,

the construction assigns a “desired” truth value to each variable of the tree so as to nudge the parent

variable towards its desired value as much as possible. Subsequently, once this process reaches the

bottom level of the tree, we go into reverse gear and study the Belief Propagation messages bottom–up

to calculate the conditional marginal of the root. Clearly, analyzing this upwards process seems like a

tall order because the tree was already exposed during the top-down phase, a challenge that is exacer-

bated by the presence of hard constraints. Fortunately, in Section 5 we will see how this problem can

be transformed into the study of another stochastic fixed point equation that captures the effect of the

children’s “nudging” their parents. This fixed point problem is amenable to the contraction method. A

spatial mixing analysis from an extremal boundary condition was previously conducted in by Dembo

and Montanari [22] for the Ising model on random graphs. But of course a crucial difference is that in

the Ising model the extremal boundary conditions are constant (all-+1 and all-−1, respectively).

A second novelty of the present work is that we directly deal with the “hard” 2-SAT problem. Mon-

tanari and Shah [40] interpolate on the “inverse temperature” parameter 𝛽 > 0, effectively working

their way from smaller to larger 𝛽. Because the limits 𝛽 → ∞ and n→∞ do not commute, this approach

does not seem applicable to problems with hard constraints. Furthermore, while Panchenko [41, 42]

applies the Aizenman-Sims-Starr scheme to the soft constraint version, the hard problem of counting

actual satisfying assignments requires a far more careful analysis. Indeed, adding one clause can shift

log Z𝛽(𝚽) merely by ±𝛽. By contrast, a single additional clause could very well reduce the logarithm

log Z(𝚽) of the number of satisfying assignments by as much as Ω(n), or even render the formula

unsatisfiable. A few prior applications of the Aizenman–Sims–Starr scheme to problems with hard

constraints exist [8, 16, 17], but these hinge on peculiar symmetry properties that enable an indi-

rect approach via a “planted” version of the problem in question. The required symmetries for this

approach are absent in several important problems, with random satisfiability the most prominent

example. Thus, a significant technical contribution of the present work is that we show how to apply

the Aizenman–Sims–Starr scheme directly to problems with hard constraints. Among other things, this

requires a careful quantification of the probabilities of rare, potentially cataclysmic events in compari-

son to their impact on log Z(𝚽). That said, we should point out that [40, 42, 49] actually also deal with
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the (soft) k-SAT partition function for k> 2 for certain regimes of clause/variable densities, while the

technique that we develop here does not seem to extend beyond binary problems.

A mathematical physics technique called the interpolation method, first proposed by Guerra for the

study of the Sherrington–Kirkpatrick model [32], can be applied to the random k-SAT problem [30,

43] to bound the number of satisfying assignments from above. For k= 2 the interpolation method

yields the upper bound

1

n
log Z(𝚽) ≤ inf

𝜋∈𝒫 (0,1)
E

⎡⎢⎢⎣log

⎛⎜⎜⎝
d−∏
i=1

𝝁𝜋,i +
d+∏
i=1

𝝁𝜋,i+d−
⎞⎟⎟⎠ − 𝑑

2
log

(
1 − 𝝁𝜋,1𝝁𝜋,2

)⎤⎥⎥⎦ + o(1) w.h.p., (3.2)

for all 0< d< 2; we will revisit this bound in Section 7. Since the expression on the r.h.s. coincides

with (1.2) for 𝜋 = 𝜋𝑑 , the main contribution of Theorem 1.1 is the matching lower bound on log Z(𝚽).
We emphasize that Theorem 1.1 and (3.2) imply that 𝜋𝑑 from Theorem 1.1 minimizes the functional

on the r.h.s. of (3.2). Furthermore, Abbe and Montanari [1] used the interpolation method to establish

the existence of a function 𝜙 such that

lim
n→∞

n−1 log(Z(𝚽) ∨ 1) = 𝜙(𝑑) in probability (3.3)

for all but a countable number of d ∈ (0, 2). Theorem 1.1 actually determines 𝜙(𝑑) and shows that

convergence holds for all d ∈ (0, 2). Clearly, (3.3) implies the concentration bound from Proposition 2.6

for all d outside the countable set. But of course we need concentration for all d, and in Section 7 we will

use the upper bound (3.2) to prove this concentration result. As an aside, a conditional concentration

inequality for log Z(𝚽), quoted in [29], was obtained by Sharell [47] (unpublished). But the necessary

conditions appear to be difficult to check.

In addition, several prior contributions deal with the combinatorial problem of counting solutions to

random CSPs. For problems such as k-NAESAT, k-XORSAT or graph coloring where the first moment

provides the correct answer due to inherent symmetry properties, the second moment method and

small subgraph conditioning yield very precise information as to the number of solutions [16, 19, 45].

Verifying that the number of solutions is determined by the physicists” 1RSB formula [35], the con-

tribution of Sly, Sun and Zhang [48] on the random regular k-NAESAT problem near its satisfiability

threshold [25] deals with an even more intricate scenario.

Finally, returning to random 2-SAT, as an intriguing question for future work determining the pre-

cise limiting distribution of log Z(𝚽) stands out. This random variable has standard deviation Ω(
√

n)
for all 0< d< 2 even once we condition on m, as is easily seen by re-randomizing the signs of the

literals in small components. In effect, log Z(𝚽) is far less concentrated than the partition functions

of symmetric random constraint satisfaction problems [16]. May n−1∕2(log Z(𝚽) − E[log Z(𝚽)]) be

asymptotically normal?

4 PROOF OF PROPOSITION 2.1

We prove Proposition 2.1 by means of a contraction argument. The starting point is the following

observation. For 𝓁 ≥ 0 let 𝜋
(𝓁)
𝑑 = BP𝓁

𝑑 (𝛿1∕2) be the probability measure obtained after 𝓁 iterations of

the operator BPd(⋅).

Fact 4.1. For all 𝓁 ≥ 0 the random variables 𝝁𝜋(𝓁)
𝑑

and 1 − 𝝁𝜋(𝓁)
𝑑

are identically distributed.
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Proof. This is because d−, d+ and hence the random variables

⎛⎜⎜⎝
d−∏
i=1

𝝁𝜋(𝓁−1)
𝑑

,i,

d−∏
i=1

𝝁𝜋(𝓁−1)
𝑑

,i +
d+∏
i=1

𝝁𝜋(𝓁−1)
𝑑

,i+d−

⎞⎟⎟⎠ and

⎛⎜⎜⎝
d+∏
i=1

𝝁𝜋(𝓁−1)
𝑑

,i+d− ,

d−∏
i=1

𝝁𝜋(𝓁−1)
𝑑

,i +
d+∏
i=1

𝝁𝜋(𝓁−1)
𝑑

,i+d−

⎞⎟⎟⎠
from (1.1) are identically distributed. ▪

Due to Fact 4.1 we can rewrite the construction of the sequence 𝜋
(𝓁)
𝑑 in terms of another operator

that is easier to analyze. This operator describes the expression (1.1) in terms of log-likelihood ratios,

a simple reformulation that proved useful in the context of Belief Propagation for random satisfiability

before [39]. Thus, we define an operator LL𝑑 ∶ 𝒫 (R) → 𝒫 (R), 𝜌 → 𝜌̂ by letting 𝜌̂ be the distribution

of the random variable

d∑
i=1

si log
1 + s′i tanh(𝜼𝜌,i∕2)

2
. (4.1)

Furthermore, let 𝜌
(𝓁)
𝑑 = LL𝓁

𝑑 (𝛿0) ∈ 𝒫 (R) be the result of 𝓁 iterations of LLd launched from the atom at

zero. We recall the functions 𝜓,𝜑 from (1.15). For a measure 𝜌 ∈ 𝒫 (R) and a measurable f ∶ R → R

let f (𝜌) denote the pushforward measure of 𝜌 that assigns mass 𝜌(f −1(A)) to Borel sets A ⊆ R.

Lemma 4.2. For all 𝓁 ≥ 0 we have 𝜋(𝓁)
𝑑 = 𝜓(𝜌(𝓁)𝑑 ).

Proof. Since 𝜓(𝛿0) = 𝛿1∕2, the assertion is true for 𝓁 = 0. Proceeding by induction, we obtain

𝝁𝜋(𝓁+1)
𝑑

d
=

∏d+
i=1 𝝁𝜋(𝓁)

𝑑
,i∏d−

i=1 𝝁𝜋(𝓁)
𝑑
,i +

∏d+
i=1 𝝁𝜋(𝓁)

𝑑
,i+d−

= 𝜓

⎛⎜⎜⎝log

∏d−
i=1 𝝁𝜋(𝓁)

𝑑
,i∏d+

i=1 𝝁𝜋(𝓁)
𝑑
,i+d−

⎞⎟⎟⎠
= 𝜓

⎛⎜⎜⎝
d−∑
i=1

log
(
𝝁𝜋(𝓁)

𝑑
,i

)
−

d+∑
i=1

log
(
𝝁𝜋(𝓁)

𝑑
,i+d−

)⎞⎟⎟⎠
d
= 𝜓

( d∑
i=1

si log𝝁𝜋(𝓁)
𝑑
,i

)
d
= 𝜓

( d∑
i=1

si log
(
𝜓(𝜼𝜌(𝓁)

𝑑
,i)
))

. (4.2)

Moreover, since si ∈ {±1} is random, it is immediate from (4.1) that 𝜼𝜌(𝓁)
𝑑
,i

d
= −𝜼𝜌(𝓁)

𝑑
,i. Consequently,

(4.2) yields

𝝁𝜋(𝓁+1)
𝑑

d
= 𝜓

( d∑
i=1

si log
(
𝜓(s′i𝜼𝜌(𝓁)

𝑑
,i)
))

d
= 𝜓(𝜼𝜌(𝓁+1)

𝑑
),

which completes the induction. ▪

Due to the continuous mapping theorem, to establish convergence of (𝜋(𝓁)
𝑑 )𝓁≥0 it suffices to show

that (𝜌(𝓁)𝑑 )𝓁≥0 converges weakly. To this end, we will prove that the operator LLd(⋅) is a contraction.

Lemma 4.3. If d< 2, then LLd is a contraction on the space 𝒲2(R).
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Proof. The operator LLd maps the space 𝒲2(R) into itself because the derivative of x → log((1 +
tanh(x∕2))∕2) is bounded by one in absolute value for all x ∈ R. To show contraction let 𝜌, 𝜌′ ∈ 𝒲2(R)
and consider a sequence of independent random pairs (𝜼i, 𝜼

′
i)i≥1 such that the 𝜼i have distribution 𝜌 and

the 𝜼′i have distribution 𝜌′. Because the signs si are uniform and independent, we obtain

W2(LL(𝜌),LL(𝜌′))2 ≤ E

⎡⎢⎢⎣
( d∑

i=1

si log
1 + s′i tanh(𝜼i∕2)
1 + s′i tanh(𝜼′i∕2)

)2⎤⎥⎥⎦
= E

[ d∑
h,i=1

shsi log
1 + s′h tanh(𝜼h∕2)
1 + s′h tanh(𝜼′h∕2)

log
1 + s′i tanh(𝜼i∕2)
1 + s′i tanh(𝜼′i∕2)

]

= E

[ d∑
i=1

log2 1 + s′i tanh(𝜼i∕2)
1 + s′i tanh(𝜼′i∕2)

]
= 𝑑E

[
log2 1 + s1 tanh(𝜼1∕2)

1 + s1 tanh(𝜼′1∕2)

]
. (4.3)

Furthermore,

log2 1 + tanh(𝜼1∕2)
1 + tanh(𝜼′1∕2)

=

[
∫

𝜼1

𝜼′
1

𝜕 log(1 + tanh(z∕2))
𝜕z

dz

]2

=

[
∫

𝜼1∨𝜼′1

𝜼1∧𝜼′1

1 − tanh(z∕2)
2

dz

]2

, (4.4)

log2 1 − tanh(𝜼1∕2)
1 − tanh(𝜼′1∕2)

=

[
∫

𝜼1

𝜼′
1

𝜕 log(1 − tanh(z∕2))
𝜕z

dz

]2

=

[
∫

𝜼1∨𝜼′1

𝜼1∧𝜼′1

1 + tanh(z∕2)
2

dz

]2

. (4.5)

Combining (4.4)–(4.5) and applying the Cauchy-Schwarz inequality, we obtain

E

[
log2 1 + s1 tanh(𝜼1∕2)

1 + s1 tanh(𝜼′1∕2)

]
= 1

2
E

⎡⎢⎢⎣
[
∫

𝜼1∨𝜼′1

𝜼1∧𝜼′1

1 − tanh(z∕2)
2

dz

]2

+

[
∫

𝜼1∨𝜼′1

𝜼1∧𝜼′1

1 + tanh(z∕2)
2

dz

]2⎤⎥⎥⎦
≤ 1

2
E

[||𝜼1 − 𝜼′1
||∫ 𝜼1∨𝜼′1

𝜼1∧𝜼′1

(
1 − tanh(z∕2)

2

)2

+
(

1 + tanh(z∕2)
2

)2

dz

]
≤ 1

2
E

[(
𝜼1 − 𝜼′1

)2
]
. (4.6)

Finally, (4.3) and (4.6) yield W2(LL(𝜌),LL(𝜌′))2 ≤ 𝑑E[(𝜼1 − 𝜼′1)2]∕2, which implies contraction

because d< 2. ▪

Proof of Proposition 2.1. Together with the Banach fixed point theorem Lemma 4.3 ensures that

the W2-limit 𝜌𝑑 = lim𝓁→∞LL𝓁
𝑑 (𝛿0) exists. Therefore, Lemma 4.2 implies that the sequence (𝜋(𝓁)

𝑑 )𝓁≥0

converges weakly. In addition, since 𝜌𝑑 ∈ 𝒲2(R), Lemma 4.2 also implies the bound (2.1). Finally, to

prove (2.2) we apply (2.1) to obtain

E

|||||||log

⎛⎜⎜⎝
d−∏
i=1

𝝁𝜋𝑑 ,i +
d+∏
i=1

𝝁𝜋𝑑 ,i+d−
⎞⎟⎟⎠
||||||| ≤ log(2) − E log

d−∏
i=1

𝝁𝜋𝑑 ,i
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≤ log(2) − 𝑑

2
E log𝝁𝜋𝑑 ,1

≤ 2 log(2) + 𝑑E

|||||log
𝝁𝜋𝑑

1 − 𝝁𝜋𝑑

||||| < ∞,

E
|||log(1 − 𝝁𝜋𝑑 ,1𝝁𝜋𝑑 ,2)

||| ≤ E
|||log(1 − 𝝁𝜋𝑑 )

|||
≤ E

|||||log
𝝁𝜋𝑑

1 − 𝝁𝜋𝑑

||||| + log 2 < ∞,

thereby completing the proof. ▪

5 PROOF OF PROPOSITION 2.2

5.1 Outline

The goal is to prove that the marginal of the root variable o of T(2𝓁) remains asymptotically invariant

even upon imposition of an arbitrary (feasible) boundary condition on the variables at distance 2𝓁
from the root o. A priori, a proof of this statement seems challenging because of the very large number

of possible boundary conditions. Indeed, we expect about d𝓁 variables at distance 2𝓁. But a crucial

feature of the 2-SAT problem is that we can construct a pair of extremal boundary conditions. One of

these maximizes the probability that the root is set to one. The other one minimizes that probability.

As a consequence, instead of inspecting all possible boundary conditions, it suffices to show that the

marginals on the root o that these two extremal boundary induce asymptotically coincide with the

unconditional marginals. Of course, due to symmetry it actually suffices to consider the “positive”

extremal boundary condition that maximally nudges the root towards +1.

To construct this extremal boundary condition we define a satisfying assignment 𝝈+ by working

our way down the tree T(2𝓁). We begin by defining 𝝈+
o = 1. Furthermore, suppose for 𝓁 ≥ 1 the values

of the variables at distance 2(𝓁 − 1) from o have been defined already. Consider a variable v∈ 𝜕2𝓁o, its

parent clause a and the parent variable u of a. Our aim is to choose 𝝈+
v so as to “nudge” u towards 𝝈+

u

as much as possible. To this end we set 𝝈+
v so as to not satisfy a if setting u to 𝝈+

u satisfies a. Otherwise

we pick the value that satisfies a; see Figure 2. In formulas,

𝝈+
v = sign(a, v)1{sign(a, u) ≠ 𝝈+

u } − sign(a, v)1{sign(a, u) = 𝝈+
u }.

The following lemma verifies that 𝝈+ is extremal, that is, that imposing the values provided by 𝝈+

on the boundary variables 𝜕2𝓁o maximizes the probability of the truth value 1 at the root o. The proof

can be found in Section 5.2.

Lemma 5.1. For any integer 𝓁 ≥ 0 we have max𝜏∈S(T(2𝓁))𝜇T(2𝓁) (𝝈o = 1|𝝈𝜕2𝓁o = 𝜏𝜕2𝓁o) = 𝜇T(2𝓁) (𝝈o =
1|𝝈𝜕2𝓁o = 𝝈+

𝜕2𝓁o).

Lemma 5.1 reduces the task of proving Proposition 2.2 to establishing the following statement.

Proposition 5.2. We have lim𝓁→∞E ||𝜇T(2𝓁) (𝝈o = 1) − 𝜇T(2𝓁) (𝝈o = 1|𝝈𝜕2𝓁o = 𝝈+
𝜕2𝓁o)|| = 0.

In words, the root marginal given the extremal boundary condition 𝝈+ asymptotically coincides

with the unconditional marginal.
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FIGURE 2 The graph G(𝚽) together with extremal boundary condition 𝝈+. Variables are indicated by circles and clauses by

squares. The labels on the edges illustrate the sign with which variables appears in the clauses. To obtain the extremal

boundary condition 𝝈+ we proceed top-down. The truth values of the children are chosen so as to nudge the parent variables in

the direction provided by 𝝈+

The proof of Proposition 5.2 is delicate because the boundary condition 𝝈+ depends on the tree

T(2𝓁). Indeed, it seems hopeless to confront these dependencies head on by first passing down the tree

to construct 𝝈+ and to subsequently work up the tree to calculate marginals. To sidestep this problem

we devise a quantity that recovers the Markov property of the random tree. Specifically, with each

variable node x∈ 𝜕2ko, k> 0, of T(2𝓁) we will associate a carefully defined quantity 𝜼
(𝓁)
x ∈ R ∪ {±∞}

that gauges how strongly x can nudge its (grand-)parent variable y towards the truth value mandated by

𝝈+
y . This random variable 𝜼

(𝓁)
x will turn out to be essentially independent of the top 2k levels of the tree.

In effect, we will discover that the distribution of 𝜼
(𝓁)
o can be approximated by the k-fold application

of a suitable operator that will turn out to be a W1-contraction. Taking limits k,𝓁→∞ carefully will

then complete the proof.

To facilitate this construction we need to count satisfying assignments of sub-formulas of T(2𝓁)

subject to certain boundary conditions. Specifically, for a variable x we let T(2𝓁)
x be the sub-formula of

T(2𝓁) comprising x and its progeny. Moreover, for a satisfying assignment 𝜏 ∈ S(T(2𝓁)) we let

S(T(2𝓁)
x , 𝜏) =

{
𝜒 ∈ S(T(2𝓁)

x ) ∶ ∀y ∈ V(T(2𝓁)
x ) ∩ 𝜕2𝓁(T, o) ∶ 𝜒y = 𝜏y

}
,

Z(T(2𝓁)
x , 𝜏) = |||S(T(2𝓁)

x , 𝜏)||| .
In words, S(T(2𝓁)

x , 𝜏) contains all satisfying assignments of T(2𝓁)
x that comply with the boundary

condition induced by 𝜏. As a final twist, for t=±1 we also need the number

Z(T(2𝓁)
x , 𝜏, t) =

||||{𝜒 ∈ S(T(2𝓁)
x , 𝜏) ∶ 𝜒x = t

}||||
of satisfying assignments of T(2𝓁)

x that agree with 𝜏 on the boundary and assign value t to x.

The protagonist of the proof of Proposition 5.2 is the log-likelihood ratio

𝜼(𝓁)x = log
Z(T(2𝓁)

x ,𝝈+,𝝈+
x )

Z(T(2𝓁)
x ,𝝈+,−𝝈+

x )
∈ R ∪ {±∞} (x ∈ V(T(2𝓁))), (5.1)
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with the conventions log 0 = −∞, log∞ = ∞. Thus, 𝜼
(𝓁)
x gauges how likely a random satisfying

assignment 𝝈 of T(2𝓁)
x subject to the 𝝈+-boundary condition is to set x to its designated value 𝝈+

x .

To get a handle on the 𝜼
(𝓁)
x , we show that these quantities can be calculated by propagating the

extremal boundary condition 𝝈+ bottom–up toward the root of the tree. Specifically, we consider the

operator

LL+
T(2𝓁) ∶ (−∞,∞]V(T(2𝓁)) → (−∞,∞]V(T(2𝓁)), 𝜂 → 𝜂̂

defined as follows. For all x∈ 𝜕2𝓁o we set 𝜂̂x = ∞. Moreover, for a variable x∈ 𝜕2ko with k<𝓁 with

children a1, … , aj and grandchildren y1 ∈ 𝜕a1 ⧵ {x}, … , yj ∈ 𝜕aj ⧵ {x} we define

𝜂̂x = −
j∑

i=1

𝝈+
x sign(x, ai) log

1 − 𝝈+
x sign(x, ai) tanh(𝜂yi∕2)

2
. (5.2)

It may not be apparent that the above sum is well-defined as a−∞ summand might occur. However,

the next lemma rules this out and shows that 𝓁-fold iteration of LL+
T(2𝓁) from all-+∞ yields 𝜼(𝓁) =

(𝜼(𝓁)x )x∈V(T(2𝓁)).

Lemma 5.3. The operator LL+
T(2𝓁) is well-defined and LL

+(𝓁)
T(2𝓁) (∞, … ,∞) = 𝜼(𝓁).

We defer the proof of Lemma 5.3 to Section 5.3.

The next aim is to approximate the 𝓁-fold iteration of LL+
T(2𝓁) , and specifically the distribution of

the value 𝜼
(𝓁)
o associated with the root, via a nonrandom operator 𝒫 (R) → 𝒫 (R). To this end we

need to cope with the ±∞-entries of the vector 𝜼(𝓁), a task that we solve by bounding 𝜼
(𝓁)
x for variables

x near the top of the tree.

Lemma 5.4. There exist c= c(d)> 0 and a sequence (𝜀k)k≥1 with limk→∞𝜀k = 0 such that for any
k> 0, 𝓁 > ck we have P[maxx∈𝜕2ko|𝜼(𝓁)x | ≤ ck] > 1 − 𝜀k.

The proof of Lemma 5.4, based on a percolation argument, can be found in Section 5.4. We continue

to denote by c and (𝜀k)k the number and the sequence supplied by Lemma 5.4.

Guided by Lemma 5.4 we consider the vector 𝜼(𝓁,k) of truncated log-likelihood ratios

𝜼(𝓁,k)x =
⎧⎪⎨⎪⎩
−ck if x ∈ 𝜕2ko and 𝜼

(𝓁)
x < −ck,

ck if x ∈ 𝜕2ko and 𝜼
(𝓁)
x > ck,

𝜼
(𝓁)
x otherwise.

Furthermore, let

𝜼(𝓁,k) = LL
+(k)
T(2𝓁) (𝜼(𝓁,k))

be the result of k iterations of LL+
T(2𝓁) (⋅) starting from 𝜼(𝓁,k).

Corollary 5.5. For any 𝓁 > ck we have 𝑑TV(𝜼(𝓁,k)o , 𝜼
(𝓁)
o ) < 𝜀k.

Proof. This follows from Lemmas 5.3 and 5.4, which shows that the truncation is inconsequential

with probability at least 1 − 𝜀k. ▪
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We are ready to introduce the operator 𝒫 (R) → 𝒫 (R) that mimics LL+
T(2𝓁) . Specifically, LL+

𝑑 ∶
𝒫 (R) → 𝒫 (R) maps 𝜌 ∈ 𝒫 (R) to the distribution of

−
d∑

i=1

si log
1 − si tanh(𝜼𝜌,i∕2)

2
. (5.3)

We emphasize the subtle difference between (5.3) and (4.1), which involves two indepen-

dent signs si, s′i . The next lemma establishes the connection between the random operator LL+
T(2𝓁)

and the operator LL+
𝑑 . Namely, let 𝜌(𝓁,k) be the distribution of 𝜼

(𝓁,k)
o . Moreover, let 𝜌(𝓁−k) be the

distribution of

𝜼(𝓁−k)
o 1{−ck < 𝜼(𝓁−k)

o < ck} + ck1{ck < 𝜼(𝓁−k)
o } − ck1{𝜼(𝓁−k)

o < −ck},

i.e., the truncation of 𝜼
(𝓁−k)
o .

Lemma 5.6. For 𝓁 > ck we have 𝜌(𝓁,k) = LL
+(k)
𝑑 (𝜌(𝓁−k)).

We prove Lemma 5.6 in Section 5.5. Recalling 𝜑 from (1.15), as in the proof of Proposition 2.1

we let 𝜌𝑑 = 𝜑(𝜋𝑑) be the distribution of the log-likelihood ratio log(𝝁𝜋𝑑∕(1 − 𝝁𝜋𝑑 )).

Lemma 5.7. The operator LL+
𝑑 is a W1-contraction with unique fixed point 𝜌𝑑 .

The proof of Lemma 5.7 can be found in Section 5.6. Let (𝜌(𝓁))𝓁 be the sequence of distributions

of (𝜼(𝓁)o )𝓁 . As an immediate consequence we obtain the limit of the sequence (𝜌(𝓁))𝓁 . We recall 𝜓 from

(1.15).

Corollary 5.8. The sequence (𝜓(𝜌(𝓁)))𝓁≥0 converges weakly to 𝜋𝑑 .

Proof. This follows from Corollary 5.5, Lemma 5.6, Lemma 5.7 and the continuous mapping

theorem. ▪

Proof of Proposition 5.2. Set 𝝑
(𝓁)
o = (LL

+(𝓁)
T(2𝓁) (0, … , 0))o = log(𝜇T(2𝓁) (𝝈o = 1)∕𝜇T(2𝓁) (𝝈o = −1)).

Then

𝜇T(2𝓁) (𝝈o = 1) = 𝜓(𝝑(𝓁)
o ) and 𝜇T(2𝓁) (𝝈o = 1|𝝈𝜕2𝓁o = 𝝈+

𝜕2𝓁o) = 𝜓(𝜼(𝓁)o ).

Moreover, Lemma 5.1 shows that 0 ≤ 𝜓(𝝑(𝓁)
o ) ≤ 𝜓(𝜼(𝓁)o ) ≤ 1. Furthermore, Lemma 5.7 implies that

𝜓(𝝑(𝓁)
o ) converges weakly to 𝜋𝑑 . Finally, Corollary 5.8 implies that 𝜓(𝜼(𝓁)o ) also converges weakly to

𝜋𝑑 , whence

lim
𝓁→∞

E
|||𝜓(𝜼(𝓁)o ) − 𝜓(𝝑(𝓁)

o )||| = lim
𝓁→∞

|||E[𝜓(𝝑(𝓁)
o )] − E[𝜓(𝜼(𝓁)o )]||| = 0,

which directly implies the assertion. ▪

Proof of Proposition 2.2. The proposition follows immediately from Lemma 5.1 and

Proposition 5.2. ▪
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5.2 Proof of Lemma 5.1

The proof is by induction on the height of the tree. The following claim summarizes the main step of

the induction.

Claim 5.9. For all 𝓁 ≥ 0, all variables x of T(2𝓁) and all satisfying assignments 𝜏 ∈ S(T(2𝓁)) we have

Z(T(2𝓁)
x , 𝜏,𝝈+

x )
Z(T(2𝓁)

x , 𝜏)
≤ Z(T(2𝓁)

x ,𝝈+,𝝈+
x )

Z(T(2𝓁)
x ,𝝈+)

. (5.4)

Proof. For boundary variables x∈ 𝜕2𝓁o there is nothing to show because the r.h.s. of (5.4) equals

one. Hence, consider a variable x∈ 𝜕2ko for some k<𝓁. If Z(T(2𝓁)
x , 𝜏,𝝈+

x ) = 0, then (5.4) is trivially

satisfied. Hence, assume that Z(T(2𝓁)
x , 𝜏,𝝈+

x ) > 0. Let a+
1 , … , a+

g be the children (clauses) of x with

sign(x, a+
i ) = 𝝈+

x . Also let y1, … , yg be the children (variables) of a+
1 , … , a+

g . Similarly, let a−
1 , … , a−

h
be the children of x with sign(x, a−

i ) = −𝝈+
x and let z1, … , zh be their children. We claim that for all

𝜏 ∈ S(T(2𝓁)),

Z(T(2𝓁)
x , 𝜏,𝝈+

x ) =
g∏

i=1

Z(T(2𝓁)
yi , 𝜏)

h∏
i=1

Z(T(2𝓁)
zi , 𝜏,𝝈+

zi ),

Z(T(2𝓁)
x , 𝜏,−𝝈+

x ) =
g∏

i=1

Z(T(2𝓁)
yi , 𝜏,−𝝈+

yi )
h∏

i=1

Z(T(2𝓁)
zi , 𝜏). (5.5)

For setting x to 𝝈+
x satisfies a+

1 , … , a+
g ; hence, arbitrary satisfying assignments of the sub-trees

T(2𝓁)
yi can be combined, which explains the first product. By contrast, upon assigning x the value 𝝈+

x

we need to assign the variables zi the values 𝝈+
zi so that they satisfy the clauses a−

i . This leaves us with

Z(T(2𝓁)
zi , 𝜏,𝝈+

zi ) possible satisfying assignments of the sub-trees T(2𝓁)
zi ; hence the second product, and we

obtain the left equation. A similar argument yields the right one. Dividing the two expressions from

(5.5) and invoking the induction hypothesis (for k+ 1), we obtain

Z(T(2𝓁)
x , 𝜏,−𝝈+

x )
Z(T(2𝓁)

x , 𝜏,𝝈+
x )

=
g∏

i=1

Z(T(2𝓁)
yi , 𝜏,−𝝈+

yi)
Z(T(2𝓁)

yi , 𝜏)
⋅

h∏
i=1

Z(T(2𝓁)
zi , 𝜏)

Z(T(2𝓁)
zi , 𝜏,𝝈+

zi )

≥
g∏

i=1

Z(T(2𝓁)
yi ,𝝈+,−𝝈+

yi )
Z(T(2𝓁)

yi ,𝝈+)
⋅

h∏
i=1

Z(T(2𝓁)
zi ,𝝈+)

Z(T(2𝓁)
zi ,𝝈+,𝝈+

zi )

= Z(T(2𝓁)
x ,𝝈+,−𝝈+

x )
Z(T(2𝓁)

x ,𝝈+,𝝈+
x )

,

completing the induction. ▪

Proof of Lemma 5.1. The assertion follows by applying Claim 5.9 to x= o. ▪

5.3 Proof of Lemma 5.3

To show that LL+
T(2𝓁) is well defined we verify that, in the notation of (5.2), 𝜂̂x ∈ (−∞,∞] for all x.

Indeed, in the expression on the r.h.s. of (5.2) a ±∞ summand can arise only from variables yi with

𝜂yi = ∞. But the definition of 𝝈+ ensures that such yi either render a zero summand if 𝝈+
x sign(x, ai) =

−1, or a +∞ summand if 𝝈+
x sign(x, ai) = 1. Thus, the sum is well-defined and 𝜂̂x ∈ (−∞,∞].
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Furthermore, to verify the identity 𝜼(𝓁) = LL
+(𝓁)
T(2𝓁) (∞, … ,∞), consider a variable x of T(2𝓁). Let

a+
1 , … , a+

g be its children with sign(a+
i , x) = 𝝈+

x , let y1, … , yg be their children, let a−
1 , … , a−

h be the

children of x with sign(a−
i , x) = −𝝈+

x and let z1, … , zh be their children. Then (1.15) and (5.5) yield

𝜼(𝓁)x = −
g∑

i=1

log
Z(T(2𝓁)

yi ,𝝈+,−𝝈+
yi)

Z(T(2𝓁)
yi ,𝝈+)

+
h∑

i=1

log
Z(T(2𝓁)

zi ,𝝈+,𝝈+
zi )

Z(T(2𝓁)
zi ,𝝈+)

= −
g∑

i=1

log
1 − tanh(𝜼(𝓁)yi ∕2)

2
+

h∑
i=1

log
1 + tanh(𝜼(𝓁)zi ∕2)

2
. (5.6)

The assertion follows because sign(x, a+
i )𝝈+

x = 1 and sign(x, a−
i )𝝈+

x = −1.

5.4 Proof of Lemma 5.4

The goal is to prove that for variables some distance away from level 2𝓁 of T(2𝓁) the counts

Z(T(2𝓁)
x ,𝝈+,±1) are roughly of the same order of magnitude. Approaching this task somewhat indi-

rectly, we begin by tracing the logical implications of imposing a specific value s=±1 on a variable

x of the (possibly infinite) tree T. Clearly, upon setting x to the value s a child (clause) a of x will be

satisfied iff x appears in a with sign s. In effect, all clauses a with sign(a, x) ≠ s need to be satisfied by

their second variable y, a grandchild of x. Thus, we impose the value sign(a, y) on y and recurse down

the tree. Let Tx,s denote the sub-tree of T comprising x and all other variables on which this process

imposes specific values as well as all clauses that contain two such variables. Clearly, for every leaf

y of Tx,s the values imposed on y happens to satisfy all child clauses of y in T. Let Nx,s ∈ [1,∞] be

the number of variables in Tx,s. The next lemma shows that the impact of a boundary condition on the

marginal of x can be bounded in terms of Nx,s.

Claim 5.10. Let s∈ {± 1}. If x∈ 𝜕2ko satisfies Nx,s < 𝓁 − k then Z(T(2𝓁)
x , 𝜏) ≤ 2Nx,s Z(T(2𝓁)

x , 𝜏, s).

Proof. The construction of the implication tree Tx,s imposes a truth value 𝜎y on each variable y of

the tree that y must inevitably take if x gets assigned s. Thus, Tx,s comes with a satisfying assignment

𝜎 ∈ S(Tx,s) with 𝜎x = s. For any leaf y of Tx,s every child clause a of y in the super-tree T will

be automatically satisfied by setting y to 𝜎y (because otherwise a would have been included in Tx,s).

Hence, all the clauses of T that are children of the leaves of Tx,s are satisfied by 𝜎. Moreover, because

Nx,s < 𝓁− k, any leaf y of Tx,s has distance less than 2𝓁 from o. Thus, the assignment 𝜎 does not clash

with the boundary condition 𝜏. As a consequence, for any 𝜒 ∈ S(T(2𝓁)
x , 𝜏) we obtain another satisfying

assignment 𝜒 ′ ∈ S(T(2𝓁)
x , 𝜏) by letting

𝜒 ′
z =

{
𝜎z if z ∈ V(Tx,s),
𝜒z otherwise.

Moreover, under the map 𝜒 → 𝜒 ′ the number of inverse images of any assignment 𝜒 ′ is bounded by

the total number 2Nx,s of different truth assignments of the variables V(Tx,s). Therefore, Z(T(2𝓁)
x , 𝜏) ≤

2Nx,s Z(T(2𝓁)
x , 𝜏, s). ▪

As a next step we bound the random variable Nx,s.
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Claim 5.11. There exists a number 𝛼 = 𝛼(𝑑) > 0 such that P
[
No,s ≥ u

] ≤ exp (−u𝛼) ∕𝛼 for all u≥ 0,

s∈ {± 1}.

Proof. In the construction of To,s we only propagate along clauses in which the parent variable is

forced to take a value that fails to satisfy the clause. Since the signs are uniformly random, the number

of such child clauses has distribution Po(d/2). Therefore, No,s is bounded by the total progeny of a

Galton–Watson process with Po(d/2) offspring. The assertion therefore follows from the tail bound for

such processes (e.g., [[7], eq. (11.7)]). ▪

As a final preparation toward the proof of Lemma 5.4 we need a bound on the size of the 2k-th

level of T.

Claim 5.12. We have limk→∞P
[|𝜕2ko| > (2𝑑)k + k

]
= 0.

Proof. Since every clause of T has precisely one child, the size of level 2k of T coincides with the

size of the k-th level of a Po(d) Galton–Watson tree. Therefore, the assertion follows from standard

tail bounds for Galton–Watson processes (e.g., [[7], eq. (11.7)]). ▪

Proof of Lemma 5.4. Claim 5.11 ensures that for a large enough constant c= c(d)> 0 and all large

enough k,

P
(
No,±1 ≥ ck

) ≤ (2𝑑)−k. (5.7)

Combining (5.7) with Claim 5.12 and using the union bound, we obtain a sequence 𝜀k → 0 such that

P
(
∀x ∈ 𝜕2ko ∶ Nx,±1 < ck

) ≥ 1 − 𝜀k. (5.8)

Furthermore, if x∈ 𝜕2ko satisfies Nx,±1 < ck and 𝓁 > (1+ c)k, Claim 5.10 ensures that for all

x∈ 𝜕2ko, |||𝜼(𝓁)x
||| ≤ log

Z(T(2𝓁)
x ,𝝈+)

Z(T(2𝓁)
x ,𝝈+, 1)

+ log
Z(T(2𝓁)

x ,𝝈+)
Z(T(2𝓁)

x ,𝝈+,−1)
≤ Nx,1 + Nx,−1 < 2ck. (5.9)

Combining (5.8) and (5.9) completes the proof. ▪

5.5 Proof of Lemma 5.6

A straightforward induction shows that for any p ∈ 𝒫 (R) the result p(k) =LL+
𝑑 (k)(p) of the k-fold

application of LL+
𝑑 coincides with the distribution of the root value of the random operator LL

+(k)
T(2k)

applied to a vector (𝜼x)x∈V(T(2k)) of independent samples from p. Indeed, for k= 1 the claim is immediate

from the definitions. Moreover, for the inductive step we notice that the k-fold application of LL+
𝑑

comes down to applying LL+
𝑑 once to the outcome of the (k− 1)-fold application. By the induction

hypothesis,

p(k−1) =
(

LL
+(k−1)
T(2(k−1)) (𝜼x)x

)
o
.

Finally, applying LL+
𝑑 to p(k− 1) implies the assertion because the first layer of T(2k) is independent of

the subtrees rooted at the grandchildren 𝜕2o of the root, which are distributed as independent random

trees T(2(k−1)). The lemma follows from applying this identity to p = 𝜌(𝓁−k).
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5.6 Proof of Lemma 5.7

The operator LL+
𝑑 maps the space 𝒲1(R) into itself because the derivative of x → log((1 −

tanh(x∕2))∕2) is bounded by one in absolute value for all x ∈ R. We proceed to show that LL+
𝑑 ∶

𝒲1(R) → 𝒲1(R) is a contraction. Thus, consider a sequence of independent random pairs (𝜼i, 𝜼
′
i)i≥1

with 𝜼i
d
= 𝜌, 𝜼′i

d
= 𝜌′. Then

W1(LL+
𝑑 (𝜌),LL+

𝑑 (𝜌′)) ≤ E

||||||
d∑

i=1

si log
1 − si tanh(𝜼i∕2)
1 − si tanh(𝜼′i∕2)

|||||| ≤ 𝑑E

|||||log
1 − s1 tanh(𝜼1∕2)
1 − s1 tanh(𝜼′1∕2)

||||| .
Since the function z → log(1 + tanh(z∕2)) is monotonically increasing, we obtain

|||||log
1 + tanh(𝜼1∕2)
1 + tanh(𝜼′1∕2)

||||| =
|||||∫

𝜼1

𝜼′
1

𝜕 log(1 + tanh(z∕2))
𝜕z

dz
||||| = ∫

𝜼1∨𝜼′1

𝜼1∧𝜼′1

1 − tanh(z∕2)
2

dz,

|||||log
1 − tanh(𝜼1∕2)
1 − tanh(𝜼′1∕2)

||||| =
|||||∫

𝜼1

𝜼′
1

𝜕 log(1 − tanh(z∕2))
𝜕z

dz
||||| = ∫

𝜼1∨𝜼′1

𝜼1∧𝜼′1

1 + tanh(z∕2)
2

dz.

Hence, W1(LL+
𝑑 (𝜌),LL+

𝑑 (𝜌′)) ≤ 𝑑E ||𝜼1 − 𝜼′1
|| ∕2 and therefore W1(LL+

𝑑 (𝜌),LL+
𝑑 (𝜌′)) ≤ 𝑑W1(𝜌, 𝜌′)∕2.

Finally, we observe that 𝜌𝑑 is a fixed point of LL+
𝑑 . Indeed, Proposition 2.1 implies that 𝜼𝜌𝑑 and

−𝜼𝜌𝑑 are identically distributed. Therefore, if si, s′i ∈ {±1} are uniform and independent, we obtain

si log
((

1 − si tanh(𝜼𝜌𝑑 ,i∕2)
)
∕2

) d
= si log

((
1 + s′i tanh(𝜼𝜌𝑑 ,i∕2)

)
∕2

)
.

Hence, recalling the definitions (4.1) and (5.3) of the operators, we see that LL+
𝑑 (𝜌𝑑) = LL𝑑(𝜌𝑑) = 𝜌𝑑 .

5.7 Proof of Theorem 1.2

Consider the sub-formula ∇2𝓁(𝚽, x1) of 𝚽 obtained by deleting all clauses and variables at distance

greater than 2𝓁 from x1. By design, we can couple ∇2𝓁(𝚽, x1) and T(2𝓁) such that both coincide w.h.p.

Therefore, since any satisfying assignment of 𝚽 induces a satisfying assignment of T(2𝓁), Proposi-

tion 2.2 implies the Gibbs uniqueness property (1.11). Furthermore, because Proposition 1.4 shows

that Belief Propagation correctly computes the root marginal 𝜇T(2𝓁) (𝝈o = 1), (1.9) follows from (1.11).

5.8 Proof of Corollary 1.3

Let 𝜋
(𝓁)
𝑑 = BP(𝓁)(𝛿1∕2). Thanks to Proposition 2.1 it suffices to prove that

lim
𝓁→∞

lim sup
n→∞

E[W1(𝜋𝚽, 𝜋(𝓁)
𝑑 )] = 0. (5.10)

Hence, fix 𝜀 > 0, pick a large 𝓁 = 𝓁(𝜀) > 0 and a larger L= L(𝓁)> 0. A routine second moment

calculation shows that for any possible outcome T of T(2𝓁) the number XT of variables xi of 𝚽 such

that ∇2𝓁(𝚽, xi) = T satisfies XT = nP
[
T(2𝓁) = T

]
+ o(n) w.h.p. Hence, w.h.p. 𝚽 admits a coupling 𝛾𝚽

of T(2𝓁) and a uniform variable i on [n] such that 𝛾({∇2𝓁(𝚽, xi) = T(2𝓁)}) = 1 − o(1). Furthermore,

Theorem 1.2 implies that given ∇2𝓁(𝚽, xi) = T(2𝓁) we have

P
[||𝜇𝚽(𝝈xi = 1) − 𝜇T(2𝓁) (𝝉o = 1)|| > 𝜀] < 𝜀, (5.11)
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provided 𝓁 is large enough. Finally, Lemma 1.4 implies together with a straightforward induction on

𝓁 that 𝜋
(𝓁)
𝑑 is the distribution of 𝜇T(2𝓁) (𝝉o = 1). Therefore, (5.10) follows from (5.11).

5.9 Proof of Corollary 2.3

Fix 𝜀 > 0 and pick a small 𝜉 = 𝜉(𝜀) > 0 and large 𝓁 = 𝓁(𝜉) > 0. Since k is fixed independently of n,

Theorem 1.2 shows that w.h.p.

k∑
i=1

max
𝜏∈S(𝚽)

|||𝜇𝚽(𝝈xi = 1|𝝈𝜕2𝓁xi
= 𝜏𝜕2𝓁xi

) − 𝜇(𝓁)
𝚽,xi

(1)||| < 𝜉. (5.12)

Furthermore, the smallest pairwise distance between x1, … , xk exceeds 4𝓁 w.h.p. Therefore, we can

draw a sample 𝝈 from 𝜇𝚽 in two steps. First, draw 𝝈′ from 𝜇𝚽. Then, independently re-sample assign-

ments of all the variables in ∇2𝓁−2(𝚽, xi) from 𝜇𝚽( ⋅ |𝝈′
𝜕2𝓁xi

) for i= 1, … , k. The resulting assignment

𝝈′′ has distribution 𝜇𝚽 and the values 𝝈′′
xi , i∈ [k], are mutually independent given 𝝈′. Finally, since

(5.12) shows that conditioning on the boundary conditions 𝝈′
𝜕2𝓁xi

is inconsequential w.h.p., we obtain

the assertion by taking 𝜀→ 0 sufficiently slowly.

6 PROOF OF PROPOSITION 2.4

6.1 Outline

The proof is based on a natural coupling of the random formulas 𝚽n and 𝚽n+1 with n and n+ 1

variables, respectively. Specifically, let

m′ d
= Po(𝑑n∕2 − 𝑑∕2), 𝚫′′ d

= Po(𝑑∕2), 𝚫′′′ d
= Po(𝑑) (6.1)

be independent random variables. Moreover, let 𝚽′ be a random formula with n variables and m′

clauses, chosen independently and uniformly from the set of all 4n(n− 1) possible clauses. Then obtain

𝚽′′ from 𝚽′ by adding another 𝚫′′ uniformly random and independent clauses. Moreover, obtain 𝚽′′′

from 𝚽′ by adding one variable xn+ 1 along with 𝚫′′′ clauses, chosen uniformly and independently

from the set of all 8n possible clauses that contain xn+ 1 and another variable from the set {x1, … , xn}.

Fact 6.1. We have 𝚽′′ d
= 𝚽n and 𝚽′′′ d

= 𝚽n+1; therefore,

E[log(Z(𝚽n+1) ∨ 1)] − E[log(Z(𝚽n) ∨ 1)] = E

[
log

Z(𝚽′′′) ∨ 1

Z(𝚽′) ∨ 1

]
− E

[
log

Z(𝚽′′) ∨ 1

Z(𝚽′) ∨ 1

]
. (6.2)

Hence, the proof of Proposition 2.4 boils down to establishing the following two statements.

Proposition 6.2. We have limn→∞E log
Z(𝚽′′)∨1

Z(𝚽′)∨1
= 𝑑

2
E

[
log

(
1 − 𝝁𝜋𝑑 ,1𝝁𝜋𝑑 ,2

)]
.

Proposition 6.3. We have limn→∞E log
Z(𝚽′′′)∨1

Z(𝚽′)∨1
= E

[
log

(∑
𝜎∈{±1}

∏d
i=1

(
1 − 1 {𝜎 ≠ si}𝝁𝜋𝑑 ,i

))]
.

Furthermore, to prove Propositions 6.2 and 6.3 we “just” need to understand the impact of a

bounded expected number of “local” changes (such as adding a random clause) on the partition

function.
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The proof strategy sketched in the previous paragraph is known as the Aizenman-Sims-Starr

scheme. The technique was originally deployed to study the Sherrington-Kirkpatrick spin glass

model [6], but has since found various applications to models on sparse random graphs (e.g., [17,

41]). By comparison to prior applications, the difficulty here is that we apply this technique to a

model with hard constraints. In effect, while typically the addition of a single clause will only reduce

the number of satisfying assignments by a bounded factor, occasionally a much larger change might

ensue. For instance, for any 0< d< 2 there is a small but nonzero probability that a single addi-

tional clause might close a “bicycle’, that is, a sequence of clauses that induce an implication chain

xi → · · ·→¬xi → · · ·→ xi. Thus, a single unlucky clause might wipe out all satisfying assignments.

Suppose we wish to roughly estimate the change in the number of satisfying assignments upon

going from 𝚽′ to 𝚽′′′. Clearly Z(𝚽′′′) ≤ 2Z(𝚽′) because we only add one new variable. But of course

Z(𝚽′′′) might be much smaller than Z(𝚽′). To obtain a bound, consider the new clauses b1, … , b𝚫′′′

that were added along with xn+ 1 and let y1, … , y𝚫′′′ be the variables of 𝚽′ where the new clauses

attach. Define an assignment 𝜒 ∶ Y = {y1, … , y𝚫′′′ } → {±1} by letting 𝜒yi = sign(yi, bi); thus, 𝜒

satisfies the bi. Furthermore, let

S(𝚽′, 𝜒) =
{
𝜎 ∈ S(𝚽′) ∶ ∀y ∈ Y ∶ 𝜎y = 𝜒y

}
, Z(𝚽′, 𝜒) = |S(𝚽′, 𝜒)|

be the set and the number of satisfying assignments of 𝚽′ that coincide with 𝜒 on Y . Because each

𝜎 ∈ S(𝚽′, 𝜒) already satisfies all the new clauses regardless of the value assigned to xn+ 1, we obtain

Z(𝚽′′′) ≥ 2Z(𝚽′, 𝜒). Hence, it seems that we just need to lower bound Z(𝚽′, 𝜒).
To this end we could employ a process similar to the one that we applied in Section 5.4 to the

tree T. Generally, let Y ⊆ {x1, … , xn} be a set of variables and let 𝜒 ∈ {±1}Y be an assignment. The

following process, known as the Unit Clause Propagation algorithm [27], chases the implications of

imposing the assignment 𝜒 on Y:

while 𝚽′ possesses a clause a that has exactly one neighboring variable z∈ 𝜕a on which

the value −sign(z, a) has been imposed, impose the value sign(a, z′) on the second

variable z′ ∈ 𝜕a ∖ {z} of a.

Let ℐ𝜒 be the set of variables on which the process has imposed a value upon termination (includ-

ing the initial set Y). Unfortunately, it is possible that 𝚽′ contains a clause a on whose both variables

z, z′ the “wrong” values −sign(a, z),−sign(a, z′) got imposed. In other words, Unit Clause might be

left with contradictions. If such a clause exists we let I𝜒 = n. Otherwise we set I𝜒 = |ℐ𝜒 |. We obtain

the following lower bound on Z(𝚽′, 𝜒).

Fact 6.4. We have Z(𝚽′) ≤ 2I𝜒 (Z(𝚽′, 𝜒) ∨ 1).

Proof. The inequality is trivially satisfied if Z(𝚽′) = 0 or I𝜒 = n. Hence, we may assume that

Z(𝚽′) > 0 and that Unit Clause did not run into a contradiction. Consequently, Unit Clause produced

an assignment 𝜒∗ of the variables ℐ𝜒 that satisfies all clauses a of 𝚽′ with 𝜕a ∩ℐ𝜒 ≠ ∅. Hence, for

any satisfying assignment 𝜎 ∈ S(𝚽′) we obtain another satisfying assignment 𝜎̂ ∈ S(𝚽′, 𝜒) by letting

𝜎̂ = 𝜒∗
x 1{x ∈ ℐ𝜒} + 𝜎x1{x ∉ ℐ𝜒}, i.e., we overwrite the variables in ℐ𝜒 according to 𝜒∗. Clearly,

under the map 𝜎 → 𝜎̂ an assignment 𝜎̂ ∈ S(𝚽′, 𝜒) has at most 2I𝜒 inverse images. ▪

Hence, we need an upper bound on I𝜒 , which will be proven at the end of Section 6.2.
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Lemma 6.5. There exists C =C(d)> 0 such that for every set Y ⊆ {x1, … , xn} of size |Y| ≤ log2n
and any 𝜒 ∈ {±1}Y we have E[I𝜒 ] ≤ C|Y|2.

Unfortunately, this first moment bound does not quite suffice for our purposes. Indeed, Lemma 6.5

allows for the possibility that I𝜒 = n with probability Ω(1∕n). In combination with Fact 6.4 this rough

bound would lead to error terms that eclipse the “main” terms displayed in Propositions 6.2 and 6.3.

But we cannot hope for a much better bound on I𝜒 . Indeed, P
[
I𝜒 = n

]
= Ω(1∕n) because the graph

G(𝚽′) likely contains a few short cycles and if Y contains a variable on a short cycle, then there is a

Ω(1) probability that Unit Clause will cause a contradiction.

Hence, we need to be more circumspect. Previously we aimed for an assignment 𝜒 that satisfied

all the new clauses b1, … , b𝚫′′′ added upon going to 𝚽′′′. But we still have the new variable xn+ 1 at

our disposal to at least satisfy a single clause bi. Hence, we can afford to start Unit Clause from an

assignment 𝜒 ′ that differs from 𝜒 on a single variable. Thus, for a set Y of variables and 𝜒 ∈ {±1}Y

we define

A𝜒 = min

{
I𝜒 ′ ∶ 𝜒 ′ ∈ {±1}Y ,

∑
y∈Y

1{𝜒y ≠ 𝜒 ′
y} ≤ 1

}
. (6.3)

Lemma 6.6. There exists C′ =C′(d)> 0 such that for every set Y ⊆ {x1, … , xn} of size |Y| ≤ log2n
and any 𝜒 ∈ {±1}Y we have E[A2

𝜒 ] ≤ C′|Y|4.

This second moment bound significantly improves over Lemma 6.5. For instance, Lemma 6.6

implies that the probability of an enormous drop Z(𝚽′′′) ≤ exp(−Ω(n))Z(𝚽′) is bounded by O(n−2).

Once more this estimate is about tight because there is an Ω(n−2) probability that a single new clause

closes a bicycle. As we shall see, with a bit of care the bound from Lemma 6.6 suffices to prove

Propositions 6.2 and 6.3. Yet Lemma 6.5 has its uses, too, as it implies the following vital tail bound.

Corollary 6.7. We have limsupn→∞E

[
n ∧

||||log
𝜇𝚽′ (𝝈x1

=1)
𝜇𝚽′ (𝝈x1

=−1)

|||| |Z(𝚽′) > 0

]
<∞.

We proceed to study Unit Clause Propagation in order to prove Lemmas 6.5,6.6 and Corollary 6.7.

Then we will prove Propositions 6.2 and 6.3, which imply Proposition 2.4.

6.2 Unit clause propagation

To avoid dependencies we consider a binomial model 𝚽† of a random 2-SAT formula with variables

x1, … , xn, where each of the 4
(

n
2

)
possible (unordered) 2-clauses is present with probability

p = 𝑑∕(4n) + n−4∕3 (6.4)

independently. We define a random variable A†
𝜒 on 𝚽† in perfect analogy to A𝜒 . Since the choice

(6.4) of p ensures that 𝚽† and 𝚽′ can be coupled so that the former has more clauses than the latter

with probability 1− o(n−2), it suffices to analyze A†
𝜒 . Moreover, thanks to symmetry it suffices to

prove Lemmas 6.5 and 6.6 under the assumption that the initial set of variables is Y = {x1, … , x𝓁},

𝓁 ≤ log2n.

At first glance investigating A†
𝜒 appears to be complicated by the fact that (6.3) takes the minimum

over all possible 𝜒 ′. To sidestep this issue we will investigate a “comprehensive” propagation process
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whose progeny encompasses all the unit clauses that may result from any 𝜒 ′. In its first round this

process pursues for each variable xi, i≤𝓁, the Unit Clauses created by imposing either of the two pos-

sible truth values on xi. The effect will be the imposition of truth values on all variables at distance two

from Y . Subsequently we trace Unit Clause Propagation from the values imposed on the variables in

𝜕2Y . Hence, the difficulty of considering all𝜒 ′ as in (6.3) disappears because the first step disregards𝜒 .

To deal with possible contradictions the process will actually operate on literals rather than vari-

ables. Throughout each literal will belong to one of three possible categories: unexplored, explored, or

finished. Initially the 2𝓁 literals x1,¬ x1, … , x𝓁 ,¬ x𝓁 qualify as explored and all others as unexplored.

Formally, we let ℰ0 = {x1,¬x1, … , x𝓁 ,¬x𝓁}, 0 = {x𝓁+1,¬x𝓁+1, … , xn,¬xn} and ℱ0 = ∅. Further-

more, for t≥ 0 we construct ℰt+1,t+1,ℱt+1 as follows. If ℰt = ∅, the process has terminated and we

set ℰt+1 = ℰt,t+1 = t,ℱt+1 = ℱt. Otherwise, pick a literal lt+1 ∈ ℰt and let ℰ ′
t+1 be the set of all

literals l′ ∈ t such that 𝚽† features the clause ¬lt+ 1 ∨ l′. Furthermore, let

t+1 = t ∖ℰ ′
t+1, ℰt+1 = (ℰt ∪ℰ ′

t+1) ∖ {lt+1}, ℱt+1 = ℱt ∪ {lt+1} .

Finally, the set ℱ∞=
⋃

t≥1ℱt contains all literals upon which Unit Clause could impose the value

“true” from any initial assignment 𝜒 . A contradiction might result only if xi,¬xi ∈ ℱ∞ for some i>𝓁.

Claim 6.8. For any 0< d< 2 there exists 𝜁 > 0 such that for all T > 8𝓁/(2− d) we have

P [|ℱ∞| > T] ≤ exp(−𝜁T).

Proof. Let t≥ 0. Given |t| and |ℰt| we have

Xt+1 = |ℰt+1| − |ℰt| + 1
{
ℰt ≠ ∅

} d
= Bin (|t|1 {|ℰt| ≥ 0} , p) .

Moreover, given |t| and |ℰt| let Yt+1

d
= Bin (2n − |t|1 {|ℰt| ≥ 0} , p) be independent of Xt+1

and everything else, and set X≥
t+1 = Xt+1+Yt+1. Then (X≥

t )t≥1 is an i.i.d. sequence of Bin(2n, p) random

variables such that X≥
t ≥ Xt for all t. Hence, for any T ≥ 1,

P [|ℱ∞| > T] = P [|ℰT | > 0] ≤ P

[ T∑
t=1

Xt > T − 2𝓁

]
≤ P

[ T∑
t=1

X≥
t > T − 2𝓁

]
= P

[
Bin(2nT , p) > T − 2𝓁

]
. (6.5)

Furthermore, because T > 8𝓁/(2− d), (6.4) shows that for large enough n,

T − 2𝓁
2npT

≥ (1 − (2 − 𝑑)∕4)T
2T(𝑑∕4 + o(1))

= 𝑑 + 2

2𝑑
+ o(1) > 1.

Hence, the Chernoff bound shows that there exists 𝜁 = 𝜁(𝑑) > 0 (which approaches 0 as d → 2)

such that

P
[
Bin(2Tn, p) > T − 2𝓁

] ≤ exp (−𝜁T) for T > 8𝓁∕(2 − 𝑑). (6.6)

Combining (6.5) and (6.6) completes the proof. ▪

Let 𝚽∗ be the sub-formula of 𝚽† comprising all variables x such that x ∈ ℱ∞ or ¬x ∈ ℱ∞ along

with all clauses a that contain two such variables. Let n∗ be the number of variables of 𝚽∗ and let m∗

be the number of clauses.
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Claim 6.9. We have P [m∗ ≥ n∗ − 𝓁 + 1] ≤ O(𝓁2∕n) and P [m∗ > n∗ − 𝓁 + 1] ≤ O(𝓁4∕n2).

Proof. We set up a graph representing the literals involved in the exploration process and the clauses

that contain such literals. Specifically, let ¬ℱ∞ = {¬l ∶ l ∈ ℱ∞} contain all negations of liter-

als in ℱ∞. Moreover, let  be the graph whose vertices are the literals ℱ∞ ∪ ¬ℱ∞ as well as all

clauses a of 𝚽† that consist of two literals from ℱ∞ ∪ ¬ℱ∞. Let ∞ be the set of such clauses a.

For each clause a ∈ ∞ the graph  contains two edges joining a and its two constituent literals. The

graph G(𝚽∗) that we are ultimately interested in results from  by contracting pairs of inverse literals

l,¬l ∈ ℱ∞ ∪ ¬ℱ∞.

A large excess m∗−n∗ can either caused by the presence of atypically many clauses in or by excess

pairs of inverse litetals that get contracted. We first address the gain in clauses due to inclusion of ¬ℱ∞
and all induced clauses. The exploration process discovers each literal 𝜆 ∈ ℱ∞∖{x1,¬x1, … , x𝓁 ,¬x𝓁}
via a clause¬lt∨𝜆, where¬lt ∈ ℰt−1. Thus, |∞| ≥ |ℱ∞|−2𝓁. Hence, the random variable X = |∞|−|ℱ∞| + 2𝓁 accounts for the number of excess clauses that are present among the literals ℱ∞ ∪ ¬ℱ∞
but that were not probed by the process. We highlight that X also counts clauses that contain two

literals from the seed set {x1,¬ x1, … , x𝓁 ,¬ x𝓁}. Because clauses appear in 𝚽† independently with

probability p=O(d/n), we obtain the bounds

P[X ≥ 1||ℱ∞|] ≤ O(|ℱ∞|2∕n), P[X ≥ 2||ℱ∞|] ≤ O(|ℱ∞|4∕n2). (6.7)

Secondly, we investigate the loss in nodes due to contraction. Hence, n∗ = |ℱ∞ ∪ ¬ℱ∞|∕2. By

construction, the seeds x1,¬ x1, … , x𝓁 ,¬ x𝓁 come in pairs. Let X′ = 1

2
|ℱ∞ ∩ ¬ℱ∞| − 𝓁 count the

number of excess inverse literal pairs that we need to contract. Since the process is oblivious to the

identities of the variables underlying the literals, given its size the set ℱ∞ ∖ {x1,¬x1, … , x𝓁 ,¬x𝓁}
is a uniformly random subset of the set {xi,¬ xi :𝓁 < i≤ n} of nonseed literals. Therefore, a routine

balls-into-bins argument shows that

P[X′ ≥ 1||ℱ∞|] ≤ O(|ℱ∞|2∕n), P[X′ ≥ 2||ℱ∞|] ≤ O(|ℱ∞|4∕n2). (6.8)

Finally, in order to estimate m∗ − n∗ we consider four separate cases.

Case 1: X = X′ = 0 Since X = 0 the graph  is a forest with 2𝓁 components rooted at

x1,¬ x1, … , x𝓁 ,¬ x𝓁 . Moreover, since X′ = 0 we haveℱ∞∩¬ℱ∞ = {x1,¬x1, … , x𝓁 ,¬x𝓁}.

Therefore, G(𝚽∗) is obtained from  by identifying the pairs xi,¬ xi for i= 1, … ,𝓁. Hence,

G(𝚽∗) is a forest with 𝓁 components, and thus

m∗ = n∗ − 𝓁. (6.9)

Case 2: X = 1, X′ = 0 Obtain ̂ from  by adding one new vertex r whose neighbors are

x1,¬ x1, … , x𝓁 ,¬ x𝓁 . Then ̂ is unicyclic because X = 1. Let ̃ be the graph obtained from

̂ by deleting the vertex r along with one (arbitrary) clause a from the cycle of ̂. Then ̃ is

a forest with 2𝓁 components. Therefore, by the same token as in Case 1, G(𝚽∗ − a) is a for-

est with 𝓁 components. Hence, G(𝚽∗), obtained by inserting clause a into G(𝚽∗ − a), either

contains a single cycle or consists of exactly 𝓁 − 1 components. Thus, by (6.7)

m∗ ≤ n∗ − 𝓁 + 1, P
[
X = 1, X′ = 0||ℱ∞|] = O(|ℱ∞|2∕n). (6.10)
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Case 3: X = 0, X′ = 1 The graph ̂, defined as in Case 2, is a tree because X = 0. Suppose

(ℱ∞ ∩ ¬ℱ∞) ∖ {x1,¬x1, … , x𝓁 ,¬x𝓁} = {y,¬y}. Let a be a clause on the unique path

from y to ¬y in ̂. Then the same argument as in Case 1 shows that G(𝚽∗ − a) is a forest

with 𝓁 components. Therefore, G(𝚽∗) either contains a unique cycle or has precisely 𝓁 − 1

components. Consequently, (6.8) yields

m∗ ≤ n∗ − 𝓁 + 1, P
[
X = 0, X′ = 1||ℱ∞|] = O(|ℱ∞|2∕n). (6.11)

Case 4: X + X′ ≥ 2 In this case we do not have a bound on m∗ − n∗, but we claim that

P
[
X + X′ ≥ 2||ℱ∞|] = O(|ℱ∞|4∕n2). (6.12)

Indeed, (6.7) and (6.8) readily imply that P
[
X ∨ X′ ≥ 2||ℱ∞|] = O(|ℱ∞|4∕n2). Fur-

thermore, since X is independent of X′ given ℱ∞, (6.7) and (6.8) also yield the bound

P
[
X = X′ = 1||ℱ∞|] = O(|ℱ∞|4∕n2).

The assertion follows by combining (6.9)–(6.12) with Claim 6.8. ▪

Claim 6.10. For all 𝜒 ∈ {±1}{x1,… ,x𝓁} we have A†
𝜒 ≤ |ℱ∞|1 {m∗ ≤ n∗ − 𝓁 + 1} +

n1 {m∗ > n∗ − 𝓁 + 1}.

Proof. The graph G(𝚽∗) consists of at most 𝓁 components (one for each of the initial variables

x1, … , x𝓁). Hence, m∗ ≥ n∗ − 𝓁 and G(𝚽∗) is acyclic if m∗ = n∗ − 𝓁. Moreover, if G(𝚽∗) is acyclic

then A†
𝜒 ≤ |ℱ∞| by construction.

Thus, we are left to consider the case m∗ = n∗ − 𝓁 + 1. Then 𝚽∗ contains a clause a such that

G(𝚽∗ − a) is a forest with 𝓁 components rooted at x1, … , x𝓁 . Assume without loss that a= xn− 1 ∨ xn.

Then by construction we have {xn−1,¬xn−1} ∩ℱ∞ ≠ ∅ and {xn,¬xn} ∩ℱ∞ ≠ ∅. Furthermore, unless

¬xn−1,¬xn ∈ ℱ∞ we have A𝜒 ≤ I𝜒 ≤ |ℱ∞| as in the first case. Hence, assume that ¬xn−1,¬xn ∈ ℱ∞.

Let i∈ [𝓁] be such that xn belongs to the connected component of xi in G(𝚽∗ − a) and obtain 𝜒 ′ from

𝜒 by flipping the value assigned to xi. Because G(𝚽∗ −a) is a forest, we conclude that A†
𝜒 ≤ I𝜒 ∧ I𝜒 ′ ≤|ℱ∞|. ▪

Proof of Lemma 6.6. The choice of the clause probability p ensures that A†
𝜒 stochastically dominates

A𝜒 . Therefore, the assertion follows from Claims 6.8–6.10. ▪

Proof of Lemma 6.5. The choice of the clause probability p and the construction of the set

ℱ∞ guarantee that I𝜒 is stochastically dominated by the random variable |ℱ∞|1 {m∗ ≤ n∗ − 𝓁} +
n1 {m∗ > n∗ − 𝓁}. Hence, Claims 6.8–6.10 imply the desired bound. ▪

Proof of Corollary 6.7. Let Y = {x1} and 𝜒+
x1

= 1, 𝜒−
x1

= −1. Assume that 𝚽′ is satisfiable. Then

Fact 6.4 implies that

n ∧
|||||log

𝜇𝚽′ (𝝈x1
= 1)

𝜇𝚽′ (𝝈x1
= −1)

||||| ≤ I𝜒− + I𝜒+ .

Therefore, the assertion follows from Lemma 6.5. ▪
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6.3 Proof of Proposition 6.2

Let c1, … , c𝚫′′ be the new clauses added to𝚽′′ and let Y = {y1, z1, … , y𝚫′′ , z𝚫′′ } be the set of variables

that occur in these clauses. We begin by deriving the following rough bound.

Lemma 6.11. We have E

[
log2 Z(𝚽′′)∨1

Z(𝚽′)∨1

]
= O(1).

Proof. If 𝚽′ is unsatisfiable then so is 𝚽′′ and thus (Z(𝚽′′) ∨ 1)∕(Z(𝚽′) ∨ 1) = 1. Hence, we may

assume that Z(𝚽′) ≥ 1. If |Y| = 2𝚫′′, the new clauses attach to disjoint sets of variables. Consider

the truth value assignment 𝝌 ∈ {±1}Y that satisfies both literals in each of the clauses c1, … , c𝚫′′ .

Fact 6.4 shows that

Z(𝚽′′) ∨ 1 ≥ Z(𝚽′,𝝌) ∨ 1 ≥ 2−A𝝌 Z(𝚽′). (6.13)

Combining (6.13) with Lemma 6.6 and recalling that 𝚫′′ d
= Po(𝑑∕2), we obtain

E

[
1
{

Z(𝚽′) ≥ 1, |Y| = 2𝚫′′} log2 Z(𝚽′′) ∨ 1

Z(𝚽′) ∨ 1

]
≤ E

[
1
{

Z(𝚽′) ≥ 1, |Y| = 2𝚫′′} A2
𝝌

]
= O(1).

(6.14)

Next, consider the event |Y| = 2𝚫′′ − 1. Because c1, … , c𝚫′′ are drawn independently, we have

P
[|Y| = 2𝚫′′ − 1|𝚫′′] ≤ O((𝚫′′)2∕n). (6.15)

Moreover, because the signs of the clauses c1, … , c𝚫′′ are independent of 𝚽′, given |Y| = 2𝚫− 1

there exists an assignment 𝝌 ∈ {±1}Y, stochastically independent of 𝚽′, that satisfies c1, … , c𝚫′′ .

Fact 6.4 yields Z(𝚽′′)∨1 ≥ Z(𝚽′,𝝌) ≥ 2−I𝝌 Z(𝚽′). Therefore, since log((Z(𝚽′′)∨1)∕(Z(𝚽′)∨1)) ≤ n,

Lemma 6.5 and (6.15) imply

E

[
1
{

Z(𝚽′) ≥ 1, |Y| = 2𝚫′′ − 1
}

log2 Z(𝚽′′) ∨ 1

Z(𝚽′) ∨ 1

]
≤ nE

[
1
{|Y| = 2𝚫′′ − 1

}
I𝝌

]
= O(1). (6.16)

Finally, consider the event |Y| < 2𝚫′′−1. Due to the independence of c1, … , c𝚫′′ , this event occurs

with probability O(n−2). Hence, the deterministic bound (Z(𝚽′′) ∨ 1)∕(Z(𝚽′) ∨ 1) ≥ 2−n implies

E

[
1
{

Z(𝚽′) ≥ 1, |Y| < 2𝚫′′ − 1
}

log2 Z(𝚽′′) ∨ 1

Z(𝚽′) ∨ 1

]
= O(1). (6.17)

The assertion follows from (6.14), (6.16) and (6.17). ▪

Lemma 6.12. There exists a number K > 0 such that for every 𝜀 > 0 we have

lim sup
n→∞

E

⎡⎢⎢⎣
( 𝚫′′∑

i=1

Λ𝜀(1 − 𝜇𝚽′ (𝝈yi = −sign(ci, yi))𝜇𝚽′ (𝝈zi = −sign(ci, zi))

)2|Z(𝚽′) > 0

⎤⎥⎥⎦ ≤ K.
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Proof. We recall the function Λ𝜀 from (1.14). Since 𝚫′′ d
= Po(𝑑∕2) and

the pair (y1, z1) is uniformly random, due to Cauchy-Schwarz it suffices to prove

lim supn→∞E
[
Λ𝜀(1 − 𝜇𝚽′ (𝝈x1

= 1)𝜇𝚽′ (𝝈x2
= 1))2|Z(𝚽′) > 0

] ≤ K for every 𝜀 > 0. We observe that

lim sup
n→∞

E
[
Λ𝜀(1 − 𝜇𝚽′ (𝝈x1

= 1)𝜇𝚽′ (𝝈x2
= 1))2|Z(𝚽′) > 0

]
≤ lim sup

n→∞
E

[
Λ𝜀(1 − 𝜇𝚽′ (𝝈x1

= 1))2|Z(𝚽′) > 0
]

= lim sup
n→∞

E

[
1

n

n∑
i=1

Λ𝜀(1 − 𝜇𝚽′ (𝝈xi = 1))2|Z(𝚽′) > 0

]
. (6.18)

Moreover, 𝚽′ has m′ d
= Po(𝑑n∕2 − 𝑑∕2) clauses, while 𝚽 = 𝚽n has m

d
= Po(𝑑n∕2) clauses.

Since 𝑑TV(m′,m) = o(1), the formulas 𝚽′, 𝚽 can be coupled such that both coincide w.h.p. Hence, for

any fixed 𝜀 > 0 we have

E

[
1

n

n∑
i=1

Λ𝜀(1 − 𝜇𝚽′ (𝝈xi = 1))2|Z(𝚽′)

]

= E

[
1

n

n∑
i=1

Λ𝜀(1 − 𝜇𝚽(𝝈xi = 1))2|Z(𝚽′)

]
+ o(1). (6.19)

Furthermore, since for every 𝜀 > 0 the function u ∈ [0, 1] → Λ𝜀(1 − u)2 is continuous,

Corollary 1.3 implies that

1

n

n∑
i=1

Λ𝜀(1 − 𝜇𝚽(𝝈xi = 1))2 n → ∞
⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃗

E
[
Λ𝜀(1 − 𝝁𝜋𝑑 )

2
]

in probability. (6.20)

Since (2.1) shows that E
[
Λ𝜀(1 − 𝝁𝜋𝑑 )

2
] ≤ E

[
log2(1 − 𝝁𝜋𝑑 )

]
< ∞, the assertion follows from

(6.18)–(6.20). ▪

Lemma 6.13. For any 𝛿 > 0 there exists 𝜀 > 0 such that

limsup
n→∞

|||||E
[

log
Z(𝚽′′) ∨ 1

Z(𝚽′) ∨ 1

]
− 𝑑

2
E

[
Λ𝜀

(
1 − 𝜇𝚽′,x1

(s1)𝜇𝚽′,x2
(s2)

) |Z(𝚽′)
]||||| < 𝛿.

Proof. Choose small enough 𝜉 = 𝜉(𝛿) > 𝜂 = 𝜂(𝜉) > 𝜀 = 𝜀(𝜂) > 0, assume that n > n0(𝜀) is

sufficiently large and let (𝛾n)n be a sequence of positive reals, depending on 𝜉 and 𝜂, that tends to zero

sufficiently slowly. Let ℰ = ℰn be the event that the following five statements hold.

E1 Z(𝚽′) > 0.

E2 |Y| = 2𝚫′′.

E3 𝚫′′ < 𝜉−1∕4.

E4 for all y ∈ Y and all s∈ {±1} we have 𝜇𝚽′ (𝝈y = s) < 1 − 2𝜂.

E5
∑
𝜎∈{±1}Y

|||𝜇𝚽(∀y ∈ Y ∶ 𝝈y = 𝜎y) −
∏

y∈Y𝜇𝚽(𝝈y = 𝜎y)
||| < 𝛾n.

The first two events E1, E2 occur with probability 1− o(1) as n→∞. Moreover, P[E3] > 1 −
𝜉 if 𝜉 is small enough. Furthermore, since Corollary 1.3 shows that 𝜋𝚽 converges to 𝜋𝑑 weakly in
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probability, the tail bound (2.1) implies that P
[
E4|𝚫′′ < 𝜉−1∕4

]
> 1 − 𝜉, provided that 𝜂 is small

enough. Additionally, Corollary 2.3 implies P [E5|E1–E4] = 1 − o(1) if 𝛾n → 0 slowly enough.

Consequently,

P [ℰ ] > 1 − 4𝜉. (6.21)

Combining Lemma 6.11, (6.21) and the Cauchy-Schwarz inequality, we obtain

|||||E
[
(1 − 1ℰ ) log

Z(𝚽′′)
Z(𝚽′)

]||||| ≤ 𝛿∕3 + o(1). (6.22)

Similarly, by Lemma 6.12, (6.21) and Cauchy-Schwarz,

||||||E
[
(1 − 1ℰ )

𝚫′′∑
i=1

Λ𝜀
(
1 − 𝜇𝚽′ (𝝈yi = −sign(yi, ci))𝜇𝚽′ (𝝈zi = −sign(zi, ci))

)]|||||| ≤ 𝛿∕3 + o(1). (6.23)

Furthermore, because the distribution of 𝚽′ is invariant under permutations of the variables

x1, … , xn and E[𝚫′′] = 𝑑∕2,

E

[ 𝚫′′∑
i=1

Λ𝜀
(
1 − 𝜇𝚽′ (𝝈yi = −sign(yi, ci))𝜇𝚽′ (𝝈zi = −sign(zi, ci))

) |Z(𝚽′) > 0

]
= 𝑑

2
E

[
Λ𝜀

(
1 − 𝜇𝚽′ (𝝈x1

= s1)𝜇𝚽′ (𝝈x2
= s2)

) |Z(𝚽′) > 0
]
. (6.24)

Moreover, on the event ℰ we have

Z(𝚽′′)
Z(𝚽′)

=
∑

𝜎∈{±1}Y

1 {𝜎 satisfies c1, … , c𝚫′′ }𝜇𝚽′
(
∀y ∈ Y ∶ 𝝈y = 𝜎y

)
=

∑
𝜎∈{±1}Y

1 {𝜎 satisfies c1, … , c𝚫′′ }
∏
y∈Y
𝜇𝚽′

(
𝝈y = 𝜎y

)
+ o(1) [due to E3,E5]

=
𝚫′′∏
i=1

(
1 − 𝜇𝚽′

(
𝝈yi = −sign(yi, ci)

)
𝜇𝚽′

(
𝝈zi = −sign(zi, ci)

))
+ o(1).

Therefore, by E4

E

[
1ℰ log

Z(𝚽′′)
Z(𝚽′)

]
= E

[
1ℰ

𝚫′′∑
i=1

log
(
1 − 𝜇𝚽′

(
𝝈yi = −sign(yi, ci)

)
𝜇𝚽′

(
𝝈zi = −sign(zi, ci)

))]
+ o(1)

= E

[
1ℰ

𝚫′′∑
i=1

Λ𝜀
(
1 − 𝜇𝚽′

(
𝝈yi = −sign(yi, ci)

)
𝜇𝚽′

(
𝝈zi = −sign(zi, ci)

))]
+ o(1). (6.25)

Finally, the assertion follows from (6.22)–(6.25). ▪
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Proof of Proposition 6.2. Proposition 2.1 shows that 𝝁𝜋𝑑 ,1 and 1 − 𝝁𝜋𝑑 ,1 are identically distributed.

Since Λ𝜀 is continuous and bounded, Corollary 1.3 therefore implies that

lim
n→∞

E
[
Λ𝜀

(
1 − 𝜇𝚽′,x1

(s1)𝜇𝚽′,x2
(s2)

)]
= E

[
Λ𝜀

(
1 −

(
1 − s1

2
+ s1𝝁𝜋𝑑 ,1

)(
1 − s2

2
+ s2𝝁𝜋𝑑 ,2

))]
= E

[
Λ𝜀

(
1 − 𝝁𝜋𝑑 ,1𝝁𝜋𝑑 ,2

)]
. (6.26)

for every 𝜀 > 0. Furthermore, since Λ𝜀(1 − 𝝁𝜋𝑑 ,1𝝁𝜋𝑑 ,2) decreases monotonically to log(1 − 𝝁𝜋𝑑 ,1𝝁𝜋𝑑 ,2)
as 𝜀→ 0, the monotone convergence theorem and (2.2) yield

lim
𝜀→0

E
[
Λ𝜀

(
1 − 𝝁𝜋𝑑 ,1𝝁𝜋𝑑 ,2

)]
= E log

(
1 − 𝝁𝜋𝑑 ,1𝝁𝜋𝑑 ,2

)
. (6.27)

Combining (6.26) and (6.27) and Lemma 6.13 completes the proof. ▪

6.4 Proof of Proposition 6.3

The steps that we follow are analogous to the ones from the proof of Proposition 6.2. Recall that 𝚽′′′

is obtained from 𝚽′ by adding one variable xn+ 1 along with random adjacent clauses b1, … , b𝚫′′′ ,

where 𝚫′′′ is a Poisson variable with mean d. Let y1, … , y𝚫′′′ ∈ {x1, … , xn} be the variables

of 𝚽′ where the new clauses attach and let Y = {y1, … , y𝚫′′′ }. We begin with the following

L2-bound.

Lemma 6.14. We have limsupn→∞E

[
log2 Z(𝚽′′′)∨1

Z(𝚽′)∨1

]
< ∞.

Proof. If 𝚽′ is unsatisfiable, then so is 𝚽′′′ and thus (Z(𝚽′′′) ∨ 1)∕(Z(𝚽′) ∨ 1) = 1. Hence, we

may assume that Z(𝚽′) ≥ 1. We now consider three scenarios. First, suppose that |Y| = 𝚫′′′, i.e., the

new clauses attach to distinct variables of 𝚽′. Then define an assignment 𝝌 ∈ {±1}Y by setting each

y ∈ Y to the value that satisfies the unique clause among b1, … , b𝚫′′′ in which y occurs. We claim

that

Z(𝚽′′′) ∨ 1 ≥ 2−A𝝌 Z(𝚽′). (6.28)

Indeed, if 𝝌 ′ ∈ {±1}Y differs from 𝝌 on only one variable, then we can always satisfy all clauses

b1, … , b𝚫′′′ by setting xn+ 1 appropriately. Therefore, (6.28) follows from Fact 6.4 and the definition

(6.3) of A𝝌 . Combining (6.28) with Lemma 6.6, we obtain

E

[
1
{

Z(𝚽′) ≥ 1, |Y| = 𝚫′′′} log2 Z(𝚽′′′) ∨ 1

Z(𝚽′) ∨ 1

]
≤ E

[
1
{|Y| = 𝚫′′′} A2

𝝌

]
= O(1). (6.29)

Second, consider the case |Y| = 𝚫′′′ − 1. Because b1, … , b𝚫′′′ are drawn independently, we have

P
[|Y| = 𝚫′′′ − 1|𝚫′′] = O((𝚫′′′)2∕n). (6.30)

Furthermore, there exists an assignment 𝝌 ∈ {±1}Y under which all but one of the clauses

b1, … , b𝚫′′′ are satisfied. This assignment is independent of 𝚽′ because the signs of b1, … , b𝚫′′′ are.
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Since we can use the new variable xn+ 1 to satisfy the last clause as well, Fact 6.4 implies the bound

(Z(𝚽′′′) ∨ 1)∕Z(𝚽′) ≥ 2−I𝝌 . Therefore, Lemma 6.5 and (6.30) yield

E

[
1
{

Z(𝚽′) ≥ 1, |Y| = 𝚫′′′ − 1
}

log2 Z(𝚽′′) ∨ 1

Z(𝚽′) ∨ 1

]
≤ E

[
1
{

Z(𝚽′) ≥ 1, |Y| = 𝚫′′′ − 1
}

I2
𝝌

]
≤ nE

[
1
{|Y| = 𝚫′′′ − 1

}
I𝝌

]
= O(1). (6.31)

Finally, because b1, … , b𝚫′′′ are drawn independently, the event {|Y| < 𝚫′′′ − 1} has probability

O(n−2). Therefore, the deterministic bound (Z(𝚽′′′) ∨ 1)∕(Z(𝚽′) ∨ 1) ≥ 2−n ensures that

E

[
1
{

Z(𝚽′) ≥ 1, |Y| < 𝚫′′′ − 1
}

log2 Z(𝚽′′′) ∨ 1

Z(𝚽′) ∨ 1

]
= O(1). (6.32)

The assertion follows from (6.29), (6.31) and (6.32). ▪

Lemma 6.15. There exists K > 0 such that for every 𝜀 > 0 we have

limsup
n→∞

E

⎡⎢⎢⎣Λ𝜀
( ∑

s∈{±1}

𝚫′′′∏
i=1

(
1 − 1 {s ≠ sign(xn+1, bi)}𝜇𝚽′ (𝝈yi = −sign(yi, bi))

))2|Z(𝚽′) > 0

⎤⎥⎥⎦ ≤ K.

Proof. Since 𝚫′′′ d
= Po(𝑑∕2), y1, … , y𝚫′′′ and the signs sign(bi, yi) are uniformly random, we

obtain

E

⎡⎢⎢⎣Λ𝜀
( ∑

s∈{±1}

𝚫′′′∏
i=1

(
1 − 1 {s ≠ sign(xn+1, bi)}𝜇𝚽′ (𝝈yi = −sign(yi, bi))

))2|Z(𝚽′) > 0

⎤⎥⎥⎦
≤ 1 + E

⎡⎢⎢⎣Λ𝜀
( 𝚫′′∏

i=1

𝜇𝚽′ (𝝈yi = 1)

)2|Z(𝚽′) > 0

⎤⎥⎥⎦
≤ 1 + 𝑑E

[
Λ𝜀

(
𝜇𝚽′ (𝝈y1

= 1)
)2|Z(𝚽′) > 0

]
. (6.33)

Furthermore, the formulas 𝚽′, 𝚽 can be coupled such that both coincide w.h.p. (cf. the proof of

Lemma 6.12). Therefore, Corollary 1.3 implies that for every 𝜀 > 0,

E

[
Λ𝜀

(
𝜇𝚽′ (𝝈y1

= 1)
)2|Z(𝚽′) > 0

]
= E

[
Λ𝜀

(
𝝁𝜋𝚽

)2|Z(𝚽) > 0
]
+ o(1)

= E
[
Λ𝜀

(
𝝁2
𝜋𝑑

)]
+ o(1) ≤ E

[
log2𝝁𝜋𝑑

]
+ o(1). (6.34)

Since (2.1) implies that E
[
log2𝝁𝜋𝑑

]
< ∞, the assertion follows from (6.33)–(6.34). ▪

Lemma 6.16. For any 𝛿 > 0 there exists 𝜀0 > 0 such that for every 0 < 𝜀 < 𝜀0,

||||||E
[

log
Z(𝚽′′′) ∨ 1

Z(𝚽′) ∨ 1

]
− E

[
Λ𝜀

( ∑
s∈{±1}

d∏
i=1

(
1 − 1 {s ≠ si}𝜇𝚽′ (𝝈xi = s′i)

)) |Z(𝚽′) > 0

]||||||
< 𝛿 + o(1).
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Proof. Choose small enough 𝜉 = 𝜉(𝛿) > 𝜂 = 𝜂(𝜉) > 𝜀 = 𝜀(𝜂) > 0, assume that n > n0(𝜀) is

sufficiently large and let (𝛾n)n be a sequence of numbers 𝛾n > 0 that tends to zero slowly. Let ℰ = ℰn
be the event that the following five statements are satisfied.

E1 Z(𝚽′) > 0.

E2 |Y| = 𝚫′′′.

E3 𝚫′′′ < 𝜉−1∕4.

E4 for all y ∈ Y we have 𝜇𝚽′ (𝝈y = 1) ∨ 𝜇𝚽′ (𝝈y = −1) < 1 − 2𝜂.

E5
∑
𝜎∈{±1}Y

|||𝜇𝚽(∀y ∈ Y ∶ 𝝈y = 𝜎y) −
∏

y∈Y𝜇𝚽(𝝈y = 𝜎y)
||| < 𝛾n.

As in the proof of Lemma 6.13 we obtain P [ℰ ] > 1 − 4𝜉. Hence, Lemmas 6.14 and 6.15 and the

Cauchy-Schwarz inequality yield

|||||E
[
(1 − 1ℰ ) log

Z(𝚽′′′)
Z(𝚽′)

]||||| ≤ 𝛿∕3 + o(1), (6.35)

||||||E
[
(1 − 1ℰ )Λ𝜀

( ∑
s∈{±1}

𝚫′′′∏
i=1

(
1 − 1 {s≠sign(xn+1, bi)}𝜇𝚽′ (𝝈yi =−sign(yi, bi))

)) |Z(𝚽′)>0

]||||||
≤ 𝛿∕3 + o(1). (6.36)

Moreover, because the distribution of 𝚽′ is invariant under variable permutations,

E

[
Λ𝜀

( ∑
s∈{±1}

𝚫′′′∏
i=1

(
1 − 1 {s ≠ sign(xn+1, bi)}𝜇𝚽′ (𝝈yi = −sign(yi, bi))

)) |Z(𝚽′) > 0

]

= E

[
Λ𝜀

( ∑
s∈{±1}

d∏
i=1

(
1 − 1 {s ≠ si}𝜇𝚽′ (𝝈xi = s′i)

)) |Z(𝚽′) > 0

]
+ o(1). (6.37)

Furthermore, on ℰ we obtain

Z(𝚽′′′)
Z(𝚽′)

=
∑

𝜎∈{±1}Y∪{xn+1}

1 {𝜎 satisfies b1, … , b𝚫′′′ }𝜇𝚽′
(
∀y ∈ Y ∶ 𝝈y = 𝜎y

)
=

∑
𝜎∈{±1}Y∪{xn+1}

1 {𝜎 satisfies b1, … , b𝚫′′′ }
∏
y∈Y
𝜇𝚽′

(
𝝈y = 𝜎y

)
+ o(1) [due to E3,E5]

=
∑

s∈{±1}

∏
i ∈ [𝚫′′′]
sign(xn+1, bi) = −s

𝜇𝚽′ (𝝈yi = sign(yi, bi)); (6.38)

to elaborate, in the last step s represents the value assigned to xn+ 1 and the product ensures that the

clauses bi in which xn+ 1 occurs with sign −s are satisfied by assigning their second variable yi the

value sign(yi, bi). Furthermore, (6.38), E3 and E4 yield

E

[
1ℰ log

Z(𝚽′′′)
Z(𝚽′)

]
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= E

[
1ℰ log

( ∑
s∈{±1}

𝚫′′′∏
i=1

(
1 − 1 {sign(xn+1, bi) = −s}𝜇𝚽′ (𝝈yi = −sign(yi, bi))

))]
+ o(1)

= E

[
1ℰΛ𝜀

( ∑
s∈{±1}

𝚫′′′∏
i=1

(
1 − 1 {sign(xn+1, bi) = −s}𝜇𝚽′ (𝝈yi = −sign(yi, bi))

))]
+ o(1) (6.39)

Finally, the assertion follows from (6.35), (6.36), (6.37) and (6.39). ▪

Proof of Proposition 6.3. Because 𝝁𝜋𝑑 ,1
d
= 1 − 𝝁𝜋𝑑 ,1 by Proposition 2.1, Corollary 1.3 shows that

for every 𝜀 > 0,

lim
n→∞

E

[
Λ𝜀

( ∑
s∈{±1}

d∏
i=1

(
1 − 1 {s ≠ si}𝜇𝚽′ (𝝈xi = s′i)

) |Z(𝚽′) > 0

)]

= E

[
Λ𝜀

( ∑
s∈{±1}

d∏
i=1

(
1 − 1 {s ≠ si}𝝁𝜋𝑑 ,i

))]
. (6.40)

Furthermore, the dominated convergence theorem and (2.2) yield

lim
𝜀→0

E

[
Λ𝜀

( ∑
s∈{±1}

d∏
i=1

(
1 − 1 {s ≠ si}𝝁𝜋𝑑 ,i

))]

= E log

( ∑
s∈{±1}

d∏
i=1

(
1 − 1 {s ≠ si}𝝁𝜋𝑑 ,i

))
. (6.41)

To complete the proof we combine (6.40), (6.41) and Lemma 6.13. ▪

7 PROOF OF PROPOSITION 2.6

Tools such as Azuma’s inequality do not apply to the number Z(𝚽) of satisfying assignments because

adding or removing even a single clause could change Z(𝚽) by an exponential factor. Therefore, we

prove Proposition 2.6 by way of a “soft” version of the random 2-SAT problem. Specifically, for a

real 𝛽 > 0 we define Z𝛽(𝚽) via (3.1). Thus, instead of dismissing assignments 𝜎 ∉ S(𝚽) outright, we

charge an exp(−𝛽) penalty factor for each violated clause. Because the constraints are soft, showing

that log Z𝛽(𝚽) concentrates is a cinch.

Lemma 7.1. For all t, 𝛽 > 0 we have P
[||log Z𝛽(𝚽) − E[log Z𝛽(𝚽)]|| > t|m] ≤ 2 exp

(
− t2

2m𝛽2

)
.

Proof. Since adding or removing a single clause can alter Z𝛽(𝚽) by at most a factor exp(±𝛽), the

assertion follows from Azuma’s inequality. ▪

The following statement, whose proof relies on the interpolation method from mathematical

physics, will enable us to link the random variables log Z𝛽(𝚽) and log Z(𝚽). For a probability measure

p ∈ 𝒫 (0, 1) and 𝛽 > 0 let

𝔅𝛽(p) = E

[
log

∑
s=±1

d∏
i=1

(
1 − 1{si ≠ s}1 − exp(−𝛽)

2

(
1 − s′i + 2s′i𝝁p,i

))]
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− 𝑑

2
E

[
log

(
1 − 1 − exp(−𝛽)

4

(
1 − s1 + 2s1𝝁p,1

) (
1 − s2 + 2s2𝝁p,2

))]
. (7.1)

These two expectations exist and are finite because 0 ≤ 𝛽 <∞. (More precisely, their absolute values

are bounded by log 2 + 𝛽𝑑 and 𝛽, respectively.)

Lemma 7.2 ([43, Theorem 1]). For any p ∈ 𝒫 (0, 1), any 0 ≤ 𝛽 < ∞ and every n≥ 1 we have
E log Z𝛽(𝚽) ≤ n𝔅𝛽(p).

Combining Lemmas 7.1 and 7.2, we obtain the following bound for “hard” 2-SAT.

Corollary 7.3. For any 𝛽 > 0 we have limn→∞P
[
log Z(𝚽) > n𝔅𝛽(𝜋𝑑) + n2∕3

]
= 0.

Proof. We have Z𝛽(𝚽) ≥ Z(𝚽) and Lemmas 7.1 and 7.2 imply

limn→∞P
[
log Z𝛽(𝚽) > n𝔅𝛽(𝜋𝑑) + n2∕3

]
= 0. ▪

Proof of Proposition 2.6. We begin by observing that the limit lim𝛽→∞𝔅𝛽(𝜋𝑑) exists and is finite.

First, there is the pointwise and monotone convergence of the integrands:

log
∑
s=±1

d∏
i=1

(
1 − 1{si ≠ s}1 − exp(−𝛽)

2

(
1 − s′i + 2s′i𝝁𝜋𝑑 ,i

))
𝛽 → ∞
⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃗

log
∑
s=±1

d∏
i=1

(
1 − 1{si ≠ s}

2

(
1 − s′i + 2s′i𝝁𝜋𝑑 ,i

))
, (7.2)

log

(
1 − 1 − exp(−𝛽)

4

(
1 − s1 + 2s1𝝁𝜋𝑑 ,1

) (
1 − s2 + 2s2𝝁𝜋𝑑 ,2

))
𝛽 → ∞
⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃗

log
(

1 − 1

4

(
1 − s1 + 2s1𝝁𝜋𝑑 ,1

) (
1 − s2 + 2s2𝝁𝜋𝑑 ,2

))
. (7.3)

Furthermore, since 𝝁𝜋𝑑
d
= 1 − 𝝁𝜋𝑑 by Proposition 2.1 and because 1 − s + 2s𝝁𝜋𝑑 equals either

2𝝁𝜋𝑑 or 2(1 − 𝝁𝜋𝑑 ), we obtain

log
∑
s=±1

d∏
i=1

(
1 − 1{si ≠ s}

2

(
1 − s′i + 2s′i𝝁𝜋𝑑 ,i

)) 𝑑
= log

⎛⎜⎜⎝
d−∏
i=1

𝝁𝜋𝑑 ,i +
d+∏
i=1

𝝁𝜋𝑑 ,i+d−
⎞⎟⎟⎠ , (7.4)

𝑑

2
log

(
1 − 1

4

(
1 − s1 + 2s1𝝁𝜋𝑑 ,1

) (
1 − s2 + 2s2𝝁𝜋𝑑 ,2

)) 𝑑
= 𝑑

2
log

(
1 − 𝝁𝜋𝑑 ,1𝝁𝜋𝑑 ,2

)
. (7.5)

Moreover, Proposition 2.1 shows that the monotone limits are integrable and therefore an application

of the monotone convergence theorem to (7.2) and (7.3), followed by the simplifications (7.4), (7.4),

yields the identity

lim
𝛽→∞

𝔅𝛽(𝜋𝑑) = E

⎡⎢⎢⎣log

⎛⎜⎜⎝
d−∏
i=1

𝝁𝜋𝑑 ,i +
d+∏
i=1

𝝁𝜋𝑑 ,i+d−
⎞⎟⎟⎠ − 𝑑

2
log

(
1 − 𝝁𝜋𝑑 ,1𝝁𝜋𝑑 ,2

)⎤⎥⎥⎦ = 𝔅∞(𝜋𝑑) < ∞.
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Furthermore, Corollary 2.5 shows that 𝔅∞(𝜋𝑑) = limn→∞n−1E[log(Z(𝚽) ∨ 1)]. Therefore, Corol-

lary 7.3 implies that

P
[
n−1 log(Z(𝚽) ∨ 1) > 𝔅∞(𝜋𝑑) + 𝜀

]
= o(1) for any 𝜀 > 0. (7.6)

To complete the proof, we upper bound

n−1
E |log(Z(𝚽) ∨ 1) − E[log(Z(𝚽) ∨ 1)]|
≤ E

|||n−1 log(Z(𝚽) ∨ 1) −𝔅∞(𝜋𝑑)
||| + |𝔅∞(𝜋𝑑) − E[log(Z(𝚽) ∨ 1)]| . (7.7)

Due to Corollary 2.5, the second term on the r.h.s. of (7.7) tends to zero. On the other hand, (7.6)

and Corollary 2.5 yield that for any 𝜀 > 0,

E
|||n−1 log(Z(𝚽) ∨ 1) −𝔅∞(𝜋𝑑)

||| ≤ E
[
𝔅∞(𝜋𝑑) − n−1 log(Z(𝚽) ∨ 1)

]
+ 2𝜀 + o(1) = 2𝜀 + o(1),

as desired. ▪
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