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Chapter 1

Introduction

Recursive structures and self-similar objects arise in many areas of science: In the form
of snow flakes, sunflowers, Romanesco broccoli and fern leaves, the phenomenon of self-
similarity occurs numerously in nature. Simultaneously, it plays an important role in
mathematics and computer science. In mathematics, for instance, popular objects exhibit-
ing the phenomenon of self-similarity are the Koch snowflake or the Sierpiński triangle as
well as various stochastic processes—just consider the Brownian motion and its scaling
invariance or Galton–Watson trees, where the subtrees of the root are themselves inde-
pendent Galton–Watson trees. In the field of computer science, a common technique is
to divide a problem into several smaller problems of the same nature and to solve the
original problem by combining the solutions of the smaller problems (divide-and-conquer
method). An approach of this kind naturally involves recursive procedures and data struc-
tures. Examples range from popular sorting algorithms such as Quicksort and Mergesort
to associated data structures such as binary search trees and related objects.

Over the last half century, the analysis of such recursive algorithms and data structures has
received increasing attention. Generally speaking, the aim is to precisely analyze a certain
quantity of interest (for the moment, just think of the number of key comparisons used by
the sorting algorithm Quicksort, for instance). Apart from the analysis of the best-case
and worst-case performance of algorithms, it is reasonable to investigate their performance
on “typical inputs” of a given size. For this, a common approach is to think of the input
as being randomly selected according to some specified probability distribution on the set
of all possible inputs. By doing so, the quantity we are interested in becomes a random
variable and will henceforth be denoted by Yn (with n indicating the size of the input). As
a concrete example, one can still think of Quicksort and consider Yn to be the number of
key comparisons used by this sorting algorithm, now with the additional assumption that
the input consists of n randomly permuted distinct items. Instead of assuming a random
input, it is also possible to randomize the algorithm itself, e.g., in the case of Quicksort,
we can choose the pivot uniformly at random at each step. Either way, one can then use
different analytic and stochastic methods to analyze the (random) quantity Yn based on
the chosen probabilistic model. In this context, the following four questions might be of
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interest:

(1) What is the expected value E[Yn] of the quantity of interest? [average-case analysis]

(2) Can we determine the variance Var(Yn)? [dispersion analysis]

(3) How can we quantify the probability that Yn deviates substantially from its mean?
[tail estimates, large deviations]

(4) Can we normalize the sequence (Yn)n≥0 appropriately such that it converges (in
distribution) to some limiting random variable? [distributional convergence analysis]

Of course, there is no universal approach to treat these issues, but there are several meth-
ods that can be useful to answer these questions. The approaches to address question (4)
include, to name only a few, analytic methods using technical tools such as generating func-
tions (see, e.g., Drmota [19], Flajolet and Sedgewick [29], Knuth [56] and Szpankowski [90]),
martingale methods (see, e.g., Chauvin, Klein, Marckert and Rouault [8] and Régnier [77])
and the method of moments (see, e.g., Chern and Hwang [12]).

Another approach to determine the asymptotic behavior of a given sequence (Yn)n≥0 of
recursive random variables is the so-called contraction method which was introduced by
Rösler [80] in 1991 for the analysis of Quicksort and then further developed by Rösler [81]
and Rachev and Rüschendorf [76], see also Rösler and Rüschendorf [83]. The name of the
method refers to the fact that the limiting distribution is characterized as the fixed-point
of a contracting map of measures. A general limit theorem for recursive algorithms and
combinatorial structures based on the contraction method as well as numerous applications
can be found in Neininger and Rüschendorf [70].

A further step in the analysis of the asymptotic behavior of Yn is to determine the speed
of convergence towards its limiting distribution. This enables us to use the limit theorems
for approximations with quantitative error bounds. Hence, another interesting issue going
beyond question (4) is:

(5) Can we bound the distance between the distribution of the normalized quantities and
their limiting distribution in some appropriate metric? [rate of convergence]

Convergence rates can be bounded in various metrics and by various techniques. Promi-
nent examples are the use of Fourier transforms or generating functions in combination
with Berry–Esseen type inequalities formalizing the fact that two probability distributions
are close if their transforms are (see, e.g., Feller [23, Chapter XVI], Petrov [74, Chapter
V] and Flajolet and Sedgewick [29, Chapter IX]). This typically yields bounds measured
by the Kolmogorov (also called uniform) metric. A related approach to obtain bounds
in the Kolmogorov metric is based on the calculation of moments. In the context of the
probabilistic analysis of algorithms, the systematic use of the method of moments to de-
termine the speed of convergence was developed by Hwang [43] to study the convergence
rate for the space requirement of random m-ary search trees. The strategy uses a refined
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method of moments in combination with some inductive arguments, Fourier analysis and
the Berry–Esseen smoothing inequality and can be seen as an extension of the method
of moments used in Chern and Hwang [12] to show asymptotic normality. This refined
method of moments is also applicable to other recursive random variables and was, for
instance, used by Bai, Hwang and Tsai [4] to obtain a Berry–Esseen bound for the number
of maxima in right triangles. Another powerful tool to prove asymptotic normality includ-
ing convergence rates for a certain class of random combinatorial structures is Hwang’s
quasi power theorem, see Hwang [41, 42] for the formulation of this theorem as well as
many applications and Flajolet and Sedgewick [29, Section IX.5] for further applications.
Although originally formulated for the one-dimensional case, Hwang’s quasi power theorem
can be generalized to higher dimensions, still including a result on the speed of convergence
(see Heuberger [35] for the two-dimensional case and Heuberger and Kropf [36] for higher
dimensions).

Another common (but technically different) approach to obtain bounds on the distance
between probability distributions is Stein’s method. Introduced by Charles Stein in the
seminal paper [88], this method was originally formulated for normal limits, but can be
modified to also obtain approximation results for non-normal distributions such as the
Poisson distribution, see Chen [9]. For an overview of Stein’s method, we refer to Barbour,
Holst and Janson [5], Chen, Goldstein and Shao [10] and Ross [84]. Since the bounds are
expressed within metrics defined by using a set of test functions, typical metrics include
the Kolmogorov metric, the Wasserstein metric or the total variation metric. Concrete
examples of how to apply Stein’s method in the probabilistic analysis of random combi-
natorial structures can be found, e.g., in Janson,  Luczak and Ruciński [50] for random
graphs, in Devroye [17] for random binary search trees and in Bai, Devroye, Hwang and
Tsai [2], where a rate of convergence for the number of maxima in hypercubes is derived.

Although the contraction method was originally developed to show weak convergence, it
is additionally possible to use ideas of this method to derive concrete bounds on the speed
of convergence in some appropriate metric. An example of this procedure is given by Fill
and Janson [24] who showed that the rate of convergence for the normalized number of key
comparisons used by Quicksort is of order O(n−1/2) in the Wasserstein `p metrics (p ≥ 1)
and of order O(n−1/2+ε) in the Kolmogorov metric. In the Zolotarev metric ζ3, the rate of
convergence for the number of key comparisons was identified to be of order Θ(log n/n) by
Neininger and Rüschendorf [69]. Further examples where ideas of the contraction method
are used to obtain results on the rate of convergence in the Zolotarev metrics are given in
Neininger and Rüschendorf [71] and Fuchs, Hwang and Neininger [30].

Against this background, the subject of this thesis is to use ideas of the contraction method
to develop general convergence theorems quantifying the convergence of appropriately nor-
malized quantities towards their limiting distributions. The combinatorial structures con-
sidered are all of a recursive nature and cover various models of random trees, decomposable
structures from stochastic geometry, sampling methods and complexities of recursive al-
gorithms under either a random input or some randomization within the algorithm. As
varied as the applications may be, they all have one thing in common: Their recursive
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nature—which can also be seen as a self-similarity of the structures—provides a recurrence
relation for the distributions of the quantities of interest. Such a recurrence is the start-
ing point of our analysis. More specifically, from now on, we always consider a sequence
(Yn)n≥0 of random vectors in Rd (d ∈ N) satisfying the distributional recursion

Yn
d
=

K∑
r=1

Ar(n)Y
(r)

I
(n)
r

+ bn, n ≥ n0, (1.1)

where
d
= denotes equality in distribution, n0 ∈ N, the coefficients A1(n), . . . , AK(n) are

random (d×d)-matrices and bn is a d-dimensional random vector (the so-called toll term).
The underlying idea of this recursion is that the original problem of size n can be split
into K smaller subproblems of sizes I

(n)
1 , . . . , I

(n)
K , the toll term bn indicating the “cost” of

this division and the merger. Concerning the number of subproblems and the subproblem
sizes, we will always make the following assumptions:

� The number K of subproblems is a fixed integer K ≥ 1. However, extensions to K
being random and depending on n are possible.

� The vector I(n) = (I
(n)
1 , . . . , I

(n)
K ) of the subproblem sizes is a random vector in

{0, . . . , n}K .

Another integral part of our model is the assumption that the subproblems are of the same
nature as the original problem, or formally:

(Y (r)
n )n≥0

d
= (Yn)n≥0 for r = 1, . . . , K. (1.2)

Since this assumption guarantees the self-similarity between the initial structure and the
parts into which the structure is decomposed, we will use the term self-similarity condition
when referring to condition (1.2). Furthermore, we need some conditional independence
condition ensuring that given the subproblem sizes, the subproblems behave independently.
To be more precise, we assume that

(A1(n), . . . , AK(n), bn, I
(n)), (Y (1)

n )n≥0, . . . , (Y
(K)
n )n≥0 are independent. (1.3)

Note, however, that dependencies between the coefficients A1(n), . . . , AK(n), bn and the

subproblem sizes I
(n)
1 , . . . , I

(n)
K are allowed. Whenever we say that a sequence (Yn)n≥0

satisfies recursion (1.1), this includes all above-mentioned assumptions, from the recursion
(1.1) itself to the self-similarity and conditional independence conditions (1.2) and (1.3).

As already mentioned, recurrences of this form come up in various fields, see Rösler and
Rüschendorf [83] and Neininger and Rüschendorf [70] for many concrete examples. Just
to name a few, possible applications range from complexity measures of recursive algo-
rithms (e.g., the number of key comparisons used by Quicksort, Mergesort or Quickselect)
to parameters of random trees (e.g., the size of tries and m-ary search trees, path lengths
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in digital search trees, (PATRICIA) tries and m-ary search trees or the number of leaves
in quadtrees) to quantities of stochastic geometry (e.g., the number of maxima in right
triangles). For all these examples, the contraction method can be used to derive distribu-
tional limit laws. However, it turns out that in some special cases of normal limits, the
contraction method can be applied although the conditional independence condition (1.3)
is not satisfied, see Neininger [68] and Müller and Neininger [66]. In order to also cover
similar applications, we formulate a slightly weakened independence condition:

(A1(n), . . . , AK(n), I(n)), (Y (1)
n )n≥0, . . . , (Y

(K)
n )n≥0 are independent. (1.4)

Note that, in contrast to the conditional independence condition (1.3), we allow dependen-

cies between bn and (Y
(1)
n )n≥0, . . . , (Y

(K)
n )n≥0 here. Thus, condition (1.4) is slightly weaker

than condition (1.3) and will be referred to as partial conditional independence condition
in the following.

Up to the relaxed independence assumption (1.4), this is the framework of Neininger and
Rüschendorf [70], where some general convergence results are shown for appropriate nor-
malizations of the Yn. The content of this thesis is to additionally study the rates of
convergence in such general limit theorems. For this, we define the normalized sequence
(Xn)n≥0 by

Xn := C−1/2n (Yn −Mn), n ≥ 0, (1.5)

where Mn is a d-dimensional vector and Cn a positive definite (d× d)-matrix. Essentially,
we choose Mn as the mean vector and Cn as the covariance matrix of Yn if they exist or
as the leading order terms in expansions of these moments as n → ∞. The normalized
quantities satisfy the following modified recursion:

Xn
d
=

K∑
r=1

A(n)
r X

(r)

I
(n)
r

+ b(n), n ≥ n0, (1.6)

with

A(n)
r := C−1/2n Ar(n)C

1/2

I
(n)
r

, b(n) := C−1/2n

(
bn −Mn +

K∑
r=1

Ar(n)M
I
(n)
r

)
(1.7)

and self-similarity and independence conditions as above.

In the context of the contraction method, the aim is to establish theorems that allow us to
transfer the convergence of the coefficients to convergence in distribution of the quantities
Xn to a limit X. In a nutshell, the procedure is as follows: First, one verifies that the
coefficients given in (1.7) converge in an appropriate sense:

A(n)
r → A∗r, r = 1, . . . , K and b(n) → b∗, n→∞.
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If with n → ∞, also the subproblem sizes I
(n)
r become large, then we expect a potential

limit X of Xn to satisfy the following distributional fixed-point equation which is obtained
from (1.6) by letting formally n→∞:

X
d
=

K∑
r=1

A∗rX
(r) + b∗. (1.8)

Here, (A∗1, . . . , A
∗
K , b

∗), X(1), . . . , X(K) are independent and X(r) has the same distribution
as X for r = 1, . . . , K. The idea then is to use the distributional fixed-point equation (1.8)
to characterize the limiting distribution L(X) and to show convergence of Xn to this fixed-
point, see Rösler and Rüschendorf [83] and Neininger and Rüschendorf [70] for details.

The aim of this thesis is to endow such general transfer theorems with bounds on the rates
of convergence and to give specific bounds on rates of convergences for many concrete
examples. Simply put, we are interested in statements of the following form: Given that
the rate of convergence of the coefficients is of order O(R(n)), i.e.,

K∑
r=1

∥∥A(n)
r − A∗r

∥∥
s

+
∥∥b(n) − b∗∥∥

s
= O(R(n)),

where ‖ · ‖s denotes the usual Ls norm and (R(n))n≥0 is a sequence tending to zero, can
we find conditions that allow us to transfer this rate to a rate of convergence for the
quantities Xn?

As a distance measure between the distribution of Xn and the limiting distribution L(X),
different probability metrics are possible. The approach we are following here is the use
of probability metrics which are useful to show convergence within the framework of the
contraction method. One class of metrics, the Zolotarev metrics, has proven to be partic-
ularly suitable and flexible in this context. Compared to, say, the Kolmogorov metric, the
Zolotarev metrics have a sort of smoothing effect which becomes stronger as the index of
the metric increases and which may smooth out certain phenomena resulting in a less sharp
distance measure. However, the Zolotarev metrics can be considered as a universal tool to
show weak convergence and enable us to provide bounds on the rate of convergence on a
quite general level which are easy to apply and which cover a broad range of applications
at once.

The organization of this thesis is as follows: In Chapter 2, the technical foundations for
the general transfer theorems are laid by introducing some notation and by giving a brief
overview of the different probability metrics we work with as well as the main ideas of the
contraction method.

The following Chapter 3 deals with the derivation of general convergence theorems to
transfer the convergence rates of the coefficients to a bound on the rate of the convergence
Xn → X in the Zolotarev metrics. We start with a general transfer theorem (Theorem 3.1)
and then present a refined version of this theorem (Theorem 3.4) which can be applied for
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a large class of quantities with normal limits. Numerous examples of how to use those
theorems in concrete applications are given in Chapter 4.

In the last part, Chapter 5, we derive a theorem similar to the refined transfer theorem
in Chapter 3, with the difference that the conditional independence condition (1.3) is
replaced by the (weaker) partial conditional independence condition (1.4) there and give
further examples.

In the concluding remarks, we summarize the benefits and difficulties of the methodology
developed in the present thesis and give some directions for further research.
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Chapter 2

Notation and Technical Preliminaries

In this chapter, we introduce the notation and give a short overview of the technical basics
and concepts of the contraction method. First, we present some basic notions and recall
some essential facts on matrices and on random variables in Section 2.1. In the subsequent
section, we introduce the spaces of distributions and the different probability metrics we
work with (Section 2.2) and, lastly, describe the main ideas of the contraction method in
Section 2.3.

2.1 Notation and basic properties

The following notation and conventions are used throughout this thesis:

� We denote by N the set {1, 2, . . .} of positive integers, by N0 the set {0, 1, 2, . . .} of
non-negative integers and by R the set of real numbers.

� Unless otherwise specified, we use the convention 0 · ∞ = 0 and c/0 = ∞ for any
c > 0.

� As is common, we write

1{expression} =

{
1, if expression is true,

0, if expression is false.

� With x ∧ y := min{x, y} and x ∨ y := max{x, y}, we denote the minimum and the
maximum of two real numbers x and y.

� Furthermore, the floor and ceiling functions are denoted by b · c and d · e and the
absolute value function by | · |.
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We use the common asymptotic notation, i.e., for functions f, g : N0 → R, we write

� f(n) = O(g(n)) if there exist C > 0 and n0 ∈ N such that |f(n)| ≤ C|g(n)| for all
n ≥ n0,

� f(n) = Ω(g(n)) if g(n) = O(f(n)),

� f(n) = Θ(g(n)) if f(n) = O(g(n)) and f(n) = Ω(g(n)).

If g(n) 6= 0 for n large enough, we further write

� f(n) = o(g(n)) if f(n)/g(n)→ 0 as n→∞,

� f(n) ∼ g(n) if f(n)/g(n)→ 1 as n→∞.

We always denote by “log” the natural logarithm to base e and set

Hn =
n∑
k=1

1

k
= log(n) + γ + O

(
1

n

)
,

where γ = 0.5772156649 . . . is the Euler–Mascheroni constant.

Since we only consider matrices with real-valued components in this thesis, the following
definitions and properties refer to matrices in Rd×d′ (d, d′ ∈ N). We will use the following
common notation:

� The identity matrix of size d is denoted by Idd.

� For a matrix A ∈ Rd×d′ , we denote by AT ∈ Rd′×d its transpose and say that A is
symmetric if AT = A.

� We call a square matrix A regular (also: invertible) if its determinant is non-zero
and denote by A−1 its inverse.

� A square matrix is called diagonal if its off-diagonal elements are zero. Moreover, we
denote by diag(a1, . . . , ad) the diagonal matrix with diagonal elements a1, . . . , ad ∈ R.

Concerning vector and matrix norms, we denote by ‖ · ‖ the Euclidean norm on Rd and by
‖ · ‖op the corresponding operator norm (spectral norm) given by

‖A‖op := sup
x∈Rd, x 6=0

‖Ax‖
‖x‖

= sup
‖x‖=1

‖Ax‖

for any (d×d)-matrix A. It follows directly from this definition that for any square matrix
A ∈ Rd×d and x ∈ Rd, we have ‖Ax‖ ≤ ‖A‖op‖x‖. Furthermore, the spectral norm
is submultiplicative, i.e., ‖AB‖op ≤ ‖A‖op‖B‖op for any (d × d)-matrices A and B and
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invariant under unitary (orthogonal) transformations. Apart from these properties, we
will make use of the fact that for a symmetric matrix A, we have

‖A‖op = max{|λ| : λ eigenvalue of A}.

Another matrix norm we will use is the Frobenius norm given by

‖A‖F :=

( d∑
i,j=1

A2
ij

)1/2

for every A = (Aij)i,j=1,...,d ∈ Rd×d. Just as the spectral norm, the Frobenius norm is
submultiplicative and unitarily invariant.

We say that a symmetric matrix A is positive definite (positive semidefinite, respectively)
if xTAx > 0 (xTAx ≥ 0, respectively) for any x 6= 0. Note that this definition includes
the symmetry of A, i.e., when talking about a positive (semi)definite matrix, symmetry is
always implied. We now summarize some important properties of positive (semi)definite
matrices. One well-known fact is that positive (semi)definiteness can be characterized in
terms of the eigenvalues: A symmetric matrix A is positive (semi)definite if and only if its
eigenvalues are positive (non-negative). From this, it follows immediately that

(1) a positive definite matrix is invertible and

(2) we can declare the square root of a positive (semi)definite matrix. For this, let A
be a positive (semi)definite matrix with eigenvalues λ1 ≥ · · · ≥ λd ≥ 0 and spectral
decomposition A = O diag(λ1, . . . , λd)O

T. Then, the matrix

A1/2 = O diag
(√

λ1, . . . ,
√
λd
)
OT

is positive (semi)definite and satisfies A1/2A1/2 = A. Indeed, it can be shown that
this is the unique positive (semi)definite matrix with this property which is why A1/2

is called the (principal) square root of A.

Both the matrix inversion and the matrix square root are continuous functions on the space
of positive definite matrices, i.e., sufficiently small perturbations in the input matrix result
in small changes in the output matrix. In the course of this thesis, the following question
arises at several points: Given a positive definite matrix A and a “small” matrix Mn with
entries of order O(R(n)), what is the distance between (A+Mn)−1/2 and A−1/2 (measured
in some arbitrary matrix norm, e.g., in the Frobenius norm)? This question is addressed
by the following two lemmas.

Lemma 2.1 ([89, Corollary 4.19]). Let A be a regular (d × d)-matrix and Mn a (d × d)-
matrix with Frobenius norm ‖Mn‖F = O(R(n)) for some sequence R(n) → 0 as n → ∞.
Then we have, as n→∞, ∥∥(A+Mn)−1 − A−1

∥∥
F

= O(R(n)).
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Remark 2.2. Since any two matrix norms are equivalent, the Frobenius norm can be
replaced by any other matrix norm. Furthermore, if finer approximations to (A + Mn)−1

are needed, we can use a generalization of the geometric series called the Neumann series
(see, e.g., Stewart [89, Theorem 4.20]), which implies for n large enough

(A+Mn)−1 = A−1
(
Idd +MnA

−1)−1 = A−1
∞∑
j=0

(−MnA
−1)j.

From this representation, we can deduce more precise expansions than stated in Lemma 2.1,
e.g., we have, as n→∞,

(A+Mn)−1 = A−1 − A−1MnA
−1 + O(R2(n)),

where the O(R2(n))-term can be read componentwise (or in any matrix norm).

We now formulate a similar result for the matrix square root.

Lemma 2.3. Let A be a positive definite (d×d)-matrix and Mn a symmetric (d×d)-matrix
with Frobenius norm ‖Mn‖F = O(R(n)) for some sequence R(n)→ 0 as n→∞. Then we
have, as n→∞, ∥∥(A+Mn)1/2 − A1/2

∥∥
F

= O(R(n)).

Proof. As A is positive definite, we can choose n large enough such that also A + Mn is
positive definite and thus has a unique principal (positive definite) square root (A+Mn)1/2.
We now use a bound for the difference between the principal square roots of two positive
definite matrices which can be found in Higham [37, Theorem 6.2] (a special case of a result
of van Hemmen and Ando [91, Proposition 3.2]). This theorem states for any positive
definite real matrices B and C that∥∥B1/2 − C1/2

∥∥ ≤ (λmin(B)1/2 + λmin(C)1/2
)−1‖B − C‖

for any unitarily invariant norm, where we denote by λmin the smallest eigenvalue. Since
the Frobenius norm is invariant under unitary operations, we have∥∥(A+Mn)1/2 − A1/2

∥∥
F
≤
(
λmin(A)1/2 + λmin(A+Mn)1/2

)−1‖Mn‖F
≤ λmin(A)−1/2‖Mn‖F = O(R(n)),

which is the assertion.

Remark 2.4. Combining Lemmas 2.1 and 2.3, we conclude: Let (R(n))n≥0 be an arbitrary
sequence converging to zero, A a positive definite matrix and Mn a symmetric matrix with
entries of order O(R(n)). Then we have, as n→∞,

(A+Mn)−1/2 = A−1/2 + O(R(n)),

where the O(R(n))-term can be read componentwise (or in any matrix norm).
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In the remainder of this section, we fix some probability notation:

� For any random variable X, we denote by L(X) its distribution and write X
d
= Y if

L(X) = L(Y ).

� Convergence in distribution is denoted by
d−→.

� For a random vector X in Rd, we denote by E[X] its mean vector, by Cov(X) its
covariance matrix and for d = 1 by Var(X) its variance.

Furthermore, the following notation is used: For a random vector X and some 0 < p <∞,
we set

‖X‖p := E
[
‖X‖p

](1/p)∧1
and for a random (d× d)-matrix A and 0 < p <∞, we define

‖A‖p := E
[
‖A‖pop

](1/p)∧1
.

With this in mind, we call a random vector X (a random matrix A, respectively) Lp-
integrable if ‖X‖p < ∞ (‖A‖p < ∞, respectively). For 0 < p < ∞, a sequence (Xn)n≥0
of random vectors is said to converge in Lp to a random vector X if ‖Xn −X‖p → 0 as
n→∞. Similarly, Lp-convergence for random matrices is defined.

The following univariate distributions are needed in the course of this thesis:

� unif{m1, . . . ,mn}: the discrete uniform distribution on the finite set {m1, . . . ,mn},

� unif[a, b]: the continuous uniform distribution on the interval [a, b] (a < b),

� Bin(n, p): the binomial distribution with n trials and success probability p ∈ [0, 1],

� Mult(n, p1, . . . , pk): the multinomial distribution with n trials and (non-negative)
success probabilities p1, . . . , pk (with p1 + · · ·+ pk = 1),

� Hyp(N, n,K): the hypergeometric distribution with n trials, population size N and
K elements in the population that are classified as successes.

Furthermore, we will need the following well-known facts about the multivariate normal
distribution:

� For some d-dimensional vector µ and a positive semidefinite (d × d)-matrix Σ, we
denote by N (µ,Σ) the d-dimensional normal distribution with mean vector µ and
covariance matrix Σ, i.e., the probability distribution on Rd with characteristic func-
tion

ϕ(t) = exp
(
itTµ− 1

2
tT Σ t

)
. (2.1)

The normal distributionN (0, Idd) with mean vector 0 ∈ Rd and covariance matrix Idd
is called the d-dimensional standard normal distribution.
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� Let µ be an arbitrary d-dimensional vector and Σ a positive semidefinite (d × d)-
matrix. If N has the d-dimensional standard normal distribution and if A is a
(d× d)-matrix with AAT = Σ (this is, for instance, true if A is chosen as the square
root of Σ), then the random vector AN + µ has the N (µ,Σ)-distribution.

� We have the following convolution property of the multivariate normal distribution:
Let X and Y be independent random vectors with distributions N (µX ,ΣX) and
N (µY ,ΣY ). Then, it follows directly from (2.1) that X +Y has the normal distribu-
tion N (µX + µY ,ΣX + ΣY ).

2.2 Probability metrics

When studying rates of convergence for different random quantities towards their limits,
an essential issue is the choice of the probability metric. One common probability metric
on R is the Kolmogorov metric (also: uniform metric) given by

ρ(µ, ν) := sup
x∈R

∣∣Fµ(x)− Fν(x)
∣∣

for probability measures µ and ν on R with distribution functions Fµ and Fν . In the course
of this thesis, two further probability metrics will be used, namely, the Wasserstein metrics
and the Zolotarev metrics. The former metrics will be introduced in Section 2.2.1, the
latter in Section 2.2.2. Since our theorems are formulated for random vectors in Rd, the
definitions in these sections are given for probability measures on Rd (endowed with the
usual Euclidean norm and the Borel σ-field), although the Wasserstein distance and the
Zolotarev distance can be defined on more general spaces. For additional information on
the metrics, we refer to Ambrosio, Gigli and Savaré [1], Dudley [22] and Villani [93] for the
Wasserstein metrics and to Janson and Kaijser [49] for the Zolotarev metrics.

Before coming to the definition of the metrics, we introduce the spaces of probability
measures we work with: Throughout this thesis, we denote by Pd the space of all probability
measures on Rd and, for 0 < s <∞, by

Pds := {L(X) ∈ Pd : ‖X‖s <∞}

the subspace consisting of those probability measures with a finite moment of order s.
Furthermore, we will need the following subspaces of Pds :

Pds (0) := {L(X) ∈ Pds : E[X] = 0}, s > 1,

Pds (0, Idd) := {L(X) ∈ Pds : E[X] = 0,Cov(X) = Idd}, s > 2.

For reasons of simplicity, we will also use the notation Pds (0, Idd) for s ≤ 2. For this, we
use the convention

Pds (0, Idd) :=

{
Pds , 0 < s ≤ 1,
Pds (0), 1 < s ≤ 2.
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2.2.1 The Wasserstein metrics

In this section, we provide a brief overview of the Wasserstein distances on Rd, having in
mind that the presented results can be extended to more general metric spaces.

Definition 2.5. For all 0 < s <∞ and µ, ν ∈ Pds , the Wasserstein distance `s between µ
and ν is defined by

`s(µ, ν) := inf
{
‖W − Z‖s : L(W ) = µ,L(Z) = ν

}
.

For Ls-integrable random variables X and Y in Rd, we set

`s(X, Y ) := `s(L(X),L(Y )).

Furthermore, we call a pair (X, Y ) of Ls-integrable random variables an optimal `s-coupling
of µ and ν if L(X) = µ, L(Y ) = ν and `s(µ, ν) = ‖X − Y ‖s.

We now summarize some well-known facts about the Wasserstein distance which will be
useful later:

� It can be shown that the infimum in Definition 2.5 is a minimum, which means that
for all µ, ν ∈ Pds , there exists an optimal `s-coupling of µ and ν (see, e.g., Bickel and
Freedman [6, Lemma 8.1]). If additionally d = 1 and s ≥ 1, optimal `s-couplings
can easily be constructed with the help of the associated quantile functions and a
uniform random variable U on the unit interval: If F−1µ and F−1ν are the quantile
functions of µ and ν, then the pair (F−1µ (U), F−1ν (U)) is an optimal `s-coupling of µ
and ν (see Dall’Aglio [15] and Major [65, Theorem 8.1]).

� For any 0 < s <∞, the pair (Pds , `s) is a complete metric space and convergence in
`s is equivalent to weak convergence plus convergence of the s-th absolute moments
(see, e.g., Bickel and Freedman [6] and Rachev [75]).

� For µ, (µn)n≥1 in Pds , there exist random variables W and Wn such that L(W ) = µ,
L(Wn) = µn and (Wn,W ) is an optimal `s-coupling of µn and µ for all n ≥ 1, see,
e.g., Ambrosio, Gigli and Savaré [1, Lemma 5.3.4]. Hence, we have `s convergence
Xn → X if and only if there exist random variables Wn and W on a common
probability space with L(Wn) = L(Xn), L(W ) = L(X) and Wn → W in Ls.

� Furthermore, from the monotonicity of the Ls norms, we obtain a corresponding
monotonicity statement for the Wasserstein metrics. To be more precise, for any
1 ≤ p ≤ s <∞ and an Ls-integrable random variable X, Jensen’s inequality implies

‖X‖p = E
[
‖X‖p

]1/p
= E

[
(‖X‖s)p/s

]1/p ≤ E
[
‖X‖s

]1/s
= ‖X‖s.

Thus, for 1 ≤ p ≤ s <∞ and µ, ν ∈ Pds , we have

`p(µ, ν) ≤ `s(µ, ν).

Further information on the `s metrics can be found in Ambrosio, Gigli and Savaré [1],
Dudley [22] and Villani [93].
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2.2.2 The Zolotarev metrics

The Zolotarev metrics for probability measures in a Banach space were introduced by
Zolotarev in [96]. In this section, we define the Zolotarev metrics for probability measures
on Rd and summarize some of their properties.

First of all, it should be noted that the Zolotarev distance ζs can be defined for any real
number s > 0, but only the values 0 < s ≤ 3 are relevant for our purposes. Hence,
the following definitions and properties mostly refer to the general case s > 0, but some
explanations focus on the values s ≤ 3.

For some s > 0, we write s = m + α, where m := dse − 1 ∈ N0 and α := s −m ∈ (0, 1].
Based on this decomposition of s, we define a class Fs of test functions by

Fs :=
{
f ∈ Cm(Rd,R) : ‖Dmf(x)−Dmf(y)‖◦ ≤ ‖x− y‖α, x, y ∈ Rd

}
,

where Cm(Rd,R) denotes the set of all m times continuously differentiable functions
f : Rd → R and Dmf the m-th derivative of such f . In particular, we have

� Dmf = f and ‖ · ‖◦ = | · | for m = 0,

� Dmf = ∇Tf (the transpose of the gradient of f , i.e., the Jacobian matrix of f) and
‖ · ‖◦ = ‖ · ‖ for m = 1 and

� Dmf = Hf (the Hessian matrix of f) and ‖ · ‖◦ = ‖ · ‖op for m = 2.

Now, for a random vector X = (X1, . . . , Xd) in Rd, some k ∈ N0 and non-negative integers
k1 + · · ·+ kd = k, the expectation

E
[
Xk1

1 · . . . ·X
kd
d

]
is called a mixed moment of order k, i.e., the mixed moments of orders 1 and 2 are E[Xi],
i = 1, . . . , d and E[XiXj], i, j = 1, . . . , d.

Furthermore, for s > 0 and m chosen as above, we call a pair (X, Y ) of Ls-integrable
random vectors ζs-compatible if X and Y have the same mixed moments up to order m. In
other words, for 2 < s ≤ 3, a pair (X, Y ) of random vectors is ζs-compatible if both X and
Y are Ls-integrable and if X and Y have identical mean vectors and identical covariance
matrices. For 1 < s ≤ 2, the assumption of identical covariance matrices can be dropped
and for 0 < s ≤ 1, we only need the Ls-integrability of X and Y to ensure ζs-compatibility.
With this in mind, we can now define the Zolotarev distance. Unlike Zolotarev, we only
define the Zolotarev distance ζs between ζs-compatible random vectors to a priori ensure
that it is well-defined and finite.

Definition 2.6. The Zolotarev distance ζs between two ζs-compatible random vectors X
and Y in Rd (between L(X) and L(Y ), respectively) is defined by

ζs(X, Y ) := ζs(L(X),L(Y )) := sup
f∈Fs

∣∣E[f(X)− f(Y )]
∣∣. (2.2)
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First of all, note that the term on the right hand side of (2.2) is finite and does not
depend on the joint distribution of (X, Y ), but only on the marginal distributions L(X)
and L(Y ) if X and Y are ζs-compatible. This can be shown by a Taylor expansion of
f (see Lemma 2 in Zolotarev [96]). Hence, the Zolotarev distance is a distance between
probability distributions. However, just as in the definition of the Wasserstein metrics, it
is convenient to also consider it as a distance of random variables, keeping in mind that
only the marginal distributions of the random variables matter.

We now summarize some basic and well-known facts concerning the Zolotarev distance ζs:

� For 0 < s ≤ 3, the pair (Pds (0, Idd), ζs) is a complete metric space and, furthermore,
ζs-convergence implies weak convergence (see, e.g., Drmota, Janson and Neininger [20,
Theorem 5.1] for a more general version of this statement).

� The Zolotarev metric ζs is (s,+)-ideal (see Zolotarev [96]), i.e., for a ζs-compatible
pair (X, Y ), an independent and Ls-integrable random variable Z and some real
number c 6= 0, we have

ζs(X + Z, Y + Z) ≤ ζs(X, Y ), ζs(cX, cY ) = |c|s ζs(X, Y ).

� From the (s,+)-ideality, it follows directly (e.g., by induction on n) that for indepen-
dent X1, . . . , Xn and independent Y1, . . . , Yn such that (Xi, Yi) is ζs-compatible for
i = 1, . . . , n, we have

ζs

( n∑
i=1

Xi,
n∑
i=1

Yi

)
≤

n∑
i=1

ζs(Xi, Yi). (2.3)

� Finally, we will need the following bound (see Zolotarev [97]): Let (X, Y ) be a pair of
ζs-compatible d-dimensional random vectors and A a (d× d)-matrix. Then we have

ζs(AX,AY ) ≤ ‖A‖sop ζs(X, Y ). (2.4)

The following theorem by Drmota, Janson and Neininger [20, Lemma 5.7] provides an
upper bound of the Zolotarev distance ζs by the Wasserstein metric `s.

Theorem 2.7 ([20, Lemma 5.7]). Let (X, Y ) be a pair of ζs-compatible random vectors.
For s > 1, we have

ζs(X, Y ) ≤
((

E[‖X‖s]
)1−1/s

+
(
E[‖Y ‖s]

)1−1/s)
`s(X, Y ).

For 0 < s ≤ 1, we have

ζs(X, Y ) ≤ `s(X, Y ). (2.5)

Note that for 0 < s ≤ 1, it follows from the Kantorovich–Rubinstein theorem that the
‘≤’ in (2.5) can be replaced by ‘=’, see Kantorovich and Rubinstein [51] (for compact
metric spaces) and Dudley [21, 22] (for the generalization to separable metric spaces).
Further properties and results concerning the Zolotarev distances can be found in Janson
and Kaijser [49], Rachev [75] and Zolotarev [96, 97].
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2.3 The contraction method

In this section, we give a brief overview of the contraction method as a tool to show weak
convergence of random recursive structures. As already described in the introduction, the
starting point when working with the contraction method is a sequence (Yn)n≥0 (here: in
Rd) satisfying the distributional recursion (1.1). With the scaling

Xn := C−1/2n (Yn −Mn), n ≥ 0,

with some d-dimensional vector Mn and some positive definite (d × d)-matrix Cn, the
recursive decomposition (1.1) of Yn leads to a similar distributional recursion for the scaled
quantities:

Xn
d
=

K∑
r=1

A(n)
r X

(r)

I
(n)
r

+ b(n), n ≥ n0, (2.6)

with modified coefficients

A(n)
r := C−1/2n Ar(n)C

1/2

I
(n)
r

, b(n) := C−1/2n

(
bn −Mn +

K∑
r=1

Ar(n)M
I
(n)
r

)
(2.7)

and independence relations and self-similarity conditions as in (1.1). Building on this
recursive decomposition of Xn, the further strategy consists of the following key steps:

(1) Derivation of a distributional fixed-point equation for the limit:
First, one verifies that the coefficients given in (2.7) converge in an appropriate sense
to some limiting coefficients:

A(n)
r → A∗r, b(n) → b∗.

If with n → ∞, also the subproblem sizes I
(n)
r become large, then we expect a

potential limit X of Xn to satisfy the following distributional fixed-point equation
which is obtained from (2.6) by replacing all appearing quantities by their limits
(n→∞):

X
d
=

K∑
r=1

A∗rX
(r) + b∗, (2.8)

where X(1), . . . , X(K), (A∗1, . . . , A
∗
K , b

∗) are independent and X(1), . . . , X(K) are iden-
tically distributed as X.

(2) Existence and uniqueness of the solution of the fixed-point equation (2.8):
To this end, the solutions of (2.8) can be considered as the fixed-points of the following
map from the space Pd of probability distributions on Rd to itself:

T : Pd → Pd, µ 7→ L
( K∑
r=1

A∗rZ
(r) + b∗

)
, (2.9)
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where Z(1), . . . , Z(K), (A∗1, . . . , A
∗
K , b

∗) are independent and Z(1), . . . , Z(K) are identi-
cally distributed with distribution µ. Subsequently, we choose an appropriate sub-
space of Pd and a complete metric on this subspace such that the map T (restricted
to the subspace) has contraction properties. Then, Banach’s fixed-point theorem
implies the existence and uniqueness of the solution of the distributional equation
(2.8) in this subspace.

(3) Convergence of the scaled quantities Xn to this unique solution:
After having shown the existence of a unique solution X of equation (2.8) in a suitable
subspace, we show convergence of the scaled quantities Xn to this unique solution
X in the chosen metric. From this convergence, depending on the chosen metric,
further statements (such as weak convergence and convergence of moments) can be
derived.

In the light of this procedure, there are several possible choices for the probability metric
mentioned in steps (2) and (3), see, e.g., Rachev and Rüschendorf [76]. Early work on the
contraction method (see, e.g., Rösler [80, 82] and Neininger [67]) makes use of the Wasser-
stein `s distances, mainly the `2 metric. However, the `s setting has several limitations.
One problem is that it typically cannot be used for an important class of problems that
lead to normal limit laws. For instance, assume that the limiting equation (2.8) is of the
form

X
d
=

K∑
r=1

A∗rX
(r), (2.10)

with d = 1 and (A∗1)
2+ · · ·+(A∗K)2 = 1 almost surely (this holds true for many applications

with normal limits). Then, by the convolution property of the normal distribution, every
centered normal distribution solves equation (2.10) and the `s setting does not apply.
Instead, recurrences leading to fixed-point equations of the form (2.10) can be studied by
use of the ζs metrics with 2 < s ≤ 3 (see, e.g., Neininger and Rüschendorf [70] and Rösler
and Rüschendorf [83]).

As described above, when working with the contraction method, we have to find conditions
under which T has a unique fixed-point in a suitable subspace of Pd (see step (2) above).
The following theorem provides such conditions.

Theorem 2.8 ([70, Corollary 3.4]). Let T be given as in (2.9) with Ls-integrable coefficients
A∗1, . . . , A

∗
K , b

∗ satisfying
∑K

r=1 E[‖A∗r‖sop] < 1 for some 0 < s ≤ 3. Further assume that

E[b∗] = 0 if s > 1 and additionally E[b∗(b∗)T +
∑K

r=1A
∗
r(A

∗
r)
T ] = Idd for s > 2. Then, T

has a unique fixed-point in Pds (0, Idd).

The proof of this theorem can be accomplished by Banach’s fixed-point theorem in the fol-
lowing way: First, note that the restriction of the map T to Pds (0, Idd) maps into Pds (0, Idd)
by the assumptions that E[b∗] = 0 if s > 1 and additionally E[b∗(b∗)T+

∑K
r=1A

∗
r(A

∗
r)
T ] = Idd
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for s > 2. Now, for arbitrary µ, ν ∈ Pds (0, Idd), we find

ζs(T (µ), T (ν)) ≤
( K∑

r=1

E
[
‖A∗r‖sop

])
ζs(µ, ν).

Together with
∑K

r=1 E[‖A∗r‖sop] < 1, this implies that the restriction of T to Pds (0, Idd) is
a ζs-contraction. Since (Pds (0, Idd), ζs) is a complete metric space, Banach’s fixed-point
theorem implies the assertion.

Once having established the existence of a unique solution X of equation (2.8) in a suitable
subspace, it remains to study the distance between the sequence Xn and X in the chosen
metric (step (3) above). In this context, it is possible to not only show convergence
but also to obtain (upper) bounds on the rate of convergence, see Fill and Janson [24],
Neininger and Rüschendorf [69, 71], Fuchs, Hwang and Neininger [30] as well as Neininger
and Sulzbach [73, Corollary 21] for some examples where ideas of the contraction method
are used to obtain rates of convergence in the Wasserstein metrics or in the Zolotarev
metrics.

The aim of this thesis is to make use of related ideas in a general framework in order to
provide general convergence theorems with upper bounds on the rate of convergence in the
Zolotarev metrics ζs, 0 < s ≤ 3. This is part of the subsequent chapter.



Chapter 3

General Theorems for Convergence
Rates

In this chapter, we develop a general framework to bound convergence rates for sequences
of recursive random variables in the Zolotarev distances based on ideas of the contraction
method. The chapter is organized as follows: The main theorems are worked out in
Section 3.1, whereby we start with a general version in Section 3.1.1 and then give a refined
version for normal limits in Section 3.1.2. After having presented these general transfer
theorems, we provide an additional lemma which will be useful in many applications where
only asymptotic expansions of the moments are known (Section 3.2). The presented results
were announced in the extended abstract [72].

3.1 Results

We return to the situation outlined in the introduction and in the previous chapter, where
our starting point was a sequence (Yn)n≥0 of random vectors in Rd satisfying the distribu-
tional recursion

Yn
d
=

K∑
r=1

Ar(n)Y
(r)

I
(n)
r

+ bn, n ≥ n0, (3.1)

with n0 ∈ N, K ∈ N, random (d× d)-matrices A1(n), . . . , AK(n), a d-dimensional random

vector bn, random subproblem sizes I
(n)
r ∈ {0, . . . , n} for r = 1, . . . , K, the self-similarity

condition (1.2) and the conditional independence condition (1.3). Since we will work in
the space Pds , we further assume that all appearing random variables are Ls-integrable. As
already indicated, we normalize the quantities Yn in the following way:

Xn := C−1/2n (Yn −Mn), n ≥ 0, (3.2)

where Mn is a d-dimensional vector and Cn a positive definite (d× d)-matrix. As recalled
in Chapter 2, when working with the Zolotarev distances, it might be necessary to fix
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the mean and the covariance matrix of the quantities we work with to guarantee their
ζs-compatibility. In concrete terms, this means that:

� For 2 < s ≤ 3, we have to control the mean and the covariances of Xn. For this, we
assume that there exists an n1 ∈ N0 such that Cov(Yn) is positive definite for n ≥ n1

and choose Mn = E[Yn] for n ≥ 0, Cn = Cov(Yn) for n ≥ n1 and Cn = Idd for n < n1.
With this choice, we have E[Xn] = 0 and Cov(Xn) = Idd for any n ≥ n1.

� For 1 < s ≤ 2, we just have to control the first moments. Hence, we choose Mn =
E[Yn] for n ≥ 0, such that E[Xn] = 0 for any n ≥ 0. Concerning the matrix Cn, we
just assume that it is positive definite and set n1 = 0.

� For 0 < s ≤ 1, we just assume that Mn ∈ Rd, Cn is positive definite and set n1 = 0.

The normalized quantities satisfy the modified recursion

Xn
d
=

K∑
r=1

A(n)
r X

(r)

I
(n)
r

+ b(n), n ≥ n0, (3.3)

with

A(n)
r := C−1/2n Ar(n)C

1/2

I
(n)
r

, b(n) := C−1/2n

(
bn −Mn +

K∑
r=1

Ar(n)M
I
(n)
r

)
, (3.4)

(A
(n)
1 , . . . , A

(n)
K , b(n), I(n)), (X

(1)
n )n≥0, . . . , (X

(K)
n )n≥0 independent and X

(r)
j

d
= Xj for all j ≥ 0

and r = 1, . . . , K.

Starting with this recursive decomposition of Xn, the idea now is to find general conditions
that allow us to transfer the convergence rates of the coefficients A

(n)
r and b(n) to bounds on

the convergence rates for the sequence (Xn)n≥0. We start with a general transfer theorem
in Section 3.1.1 and then present an improved version of this theorem for normal limits in
Section 3.1.2.

3.1.1 A general transfer theorem for rates of convergence

The following theorem provides a general framework to bound convergence rates for the
sequence (Xn)n≥0. For the proof, we need some technical conditions which guarantee that

the sizes I
(n)
r of the subproblems grow with n. More precisely, we will assume that there

exists some monotonically decreasing sequence R(n) > 0 with R(n)→ 0 such that∥∥1{I(n)
r <`}A

(n)
r

∥∥
s

= O(R(n)), n→∞, (3.5)

for all ` ∈ N and r = 1, . . . , K and that∥∥1{I(n)
r =n}A

(n)
r

∥∥
s
→ 0, n→∞, (3.6)

for all r = 1, . . . , K.
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Our first result is a direct extension of the main Theorem 4.1 in Neininger and Rüschen-
dorf [70].

Theorem 3.1. Let (Xn)n≥0 be given as in (3.2) with the choices for Mn and Cn specified
there and with (Yn)n≥0 satisfying the distributional recurrence (3.1), where all appearing
quantities are assumed to be Ls-integrable for some 0 < s ≤ 3. We further assume that
there exist Ls-integrable random variables A∗1, . . . , A

∗
K , b

∗ and some monotonically decreas-
ing sequence R(n) > 0 with R(n)→ 0 such that, as n→∞,

∥∥b(n) − b∗∥∥
s

+
K∑
r=1

∥∥A(n)
r − A∗r

∥∥
s

= O(R(n)). (3.7)

If conditions (3.5) and (3.6) are satisfied and if

lim sup
n→∞

K∑
r=1

E
[
R(I

(n)
r )

R(n)

∥∥A(n)
r

∥∥s
op

]
< 1, (3.8)

then we have, as n→∞,

ζs(Xn, X) = O(R(n)),

where L(X) is given as the unique solution in Pds (0, Idd) of the equation

X
d
=

K∑
r=1

A∗rX
(r) + b∗, (3.9)

with (A∗1, . . . , A
∗
K , b

∗), X(1), . . . , X(K) independent and X(r) d
= X for r = 1, . . . , K.

Remark 3.2. Note that recurrence (3.1) is only a distributional recursion, i.e., the appear-
ing coefficients are not necessarily defined on a common probability space for different n.
Hence, strictly speaking, we should talk about convergence in `s of (A

(n)
1 , . . . , A

(n)
K , b(n))

to (A∗1, . . . , A
∗
K , b

∗) instead of convergence in Ls. However, provided that we have `s-
convergence of the coefficients, we can find versions of these coefficients on a common
probability space which converge in Ls, see Section 2.2.1. Thus, when talking about Ls-
convergence of the coefficients and when estimating the orders in (3.7), we always assume
that the quantities are appropriately embedded into a common probability space.

Proof of Theorem 3.1. As a first step, we show that there is indeed a unique solution of
equation (3.9) in Pds (0, Idd): Using condition (3.7), the assumption that R is monotonically
decreasing and condition (3.8), we have

E

[
K∑
r=1

‖A∗r‖sop

]
= lim

n→∞
E

[
K∑
r=1

∥∥A(n)
r

∥∥s
op

]
≤ lim sup

n→∞
E

[
K∑
r=1

R(I
(n)
r )

R(n)

∥∥A(n)
r

∥∥s
op

]
< 1.
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Furthermore, condition (3.7) implies E[b∗] = lim
n→∞

E[b(n)] = 0 if s > 1 and additionally

E
[
b∗(b∗)T

]
+ E

[ K∑
r=1

A∗r(A
∗
r)

T
]

= Idd

if s > 2. Thus, Theorem 2.8 states that equation (3.9) (or rather the associated map
T defined in (2.9)) has a unique fixed-point L(X) in Pds (0, Idd). To establish a rate of
convergence to this fixed-point, we introduce the accompanying sequence

Z∗n :=
K∑
r=1

A(n)
r T

I
(n)
r
X(r) + b(n),

where (A
(n)
1 , . . . , A

(n)
K , I(n), b(n)), X(1), . . . , X(K) are independent and X(r) is identically dis-

tributed as X for r = 1, . . . , K. Here, for 2 < s ≤ 3, the sequence (Tn)n≥0 is chosen such
that Z∗n has the same covariance structure as Xn. To be more precise, for 2 < s ≤ 3, we
choose Tn := (Cov(Xn))1/2 (i.e., Tn = Idd for n ≥ n1 and Tn = (Cov(Yn))1/2 for n < n1).
For s ≤ 2, we do not need to control the covariance of Z∗n and set Tn := Idd for n ≥ 0.

Then, Z∗n is Ls-integrable, we have E[Z∗n] = 0 for s > 1 and in the case s > 2 additionally
Cov(Z∗n) = Cov(Xn) = Idd for n ≥ n1. Hence, Xn, Z∗n and X are ζs-compatible for n ≥ n1.
Applying the triangle inequality, we have for n ≥ n1

ζs(Xn, X) ≤ ζs(Xn, Z
∗
n) + ζs(Z

∗
n, X). (3.10)

The idea now is to treat the two terms of the right-hand side of (3.10) separately, starting
with the second summand ζs(Z

∗
n, X). For this purpose, we switch to the Wasserstein

metric `s: From

‖Z∗n‖s ≤
K∑
r=1

∥∥A(n)
r T

I
(n)
r

∥∥
s
‖X‖s +

∥∥b(n)∥∥
s

and condition (3.7), it follows directly that supn≥0 ‖Z∗n‖s <∞. Thus, Theorem 2.7 implies
that ζs(Z

∗
n, X) ≤ Cs`s(Z

∗
n, X) for some constant Cs > 0 and it suffices to bound the

Wasserstein distance `s(Z
∗
n, X). For this distance, we have by definition of the Wasserstein

metric `s

`s(Z
∗
n, X) ≤

∥∥∥∥∥
(

K∑
r=1

A(n)
r T

I
(n)
r
X(r) + b(n)

)
−

(
K∑
r=1

A∗rX
(r) + b∗

)∥∥∥∥∥
s

≤
K∑
r=1

∥∥A(n)
r T

I
(n)
r
− A∗r

∥∥
s

∥∥X(r)
∥∥
s

+
∥∥b(n) − b∗∥∥

s

≤
K∑
r=1

(∥∥A(n)
r T

I
(n)
r
− A(n)

r

∥∥
s

+
∥∥A(n)

r − A∗r
∥∥
s

)
‖X‖s +

∥∥b(n) − b∗∥∥
s

=
K∑
r=1

(∥∥1{I(n)
r <n1}

A(n)
r (T

I
(n)
r
− Idd)

∥∥
s

+
∥∥A(n)

r − A∗r
∥∥
s

)
‖X‖s +

∥∥b(n) − b∗∥∥
s
.
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From this, using conditions (3.5) and (3.7), we obtain `s(Z
∗
n, X) = O(R(n)).

To bound the first summand ζs(Xn, Z
∗
n) in (3.10), we use some standard estimates for the

Zolotarev distances presented in Section 2.2.2. Denoting by Υn the joint distribution of
(A

(n)
1 , . . . , A

(n)
K , b(n), I(n)), α = (α1, . . . , αK), j = (j1, . . . , jK) and ∆(n) := ζs(Xn, X), we

obtain by conditioning on the coefficients, by using the s-ideality of ζs and the bounds
(2.3) and (2.4) that, for n ≥ n1,

ζs(Xn, Z
∗
n) = ζs

(
K∑
r=1

A(n)
r X

(r)

I
(n)
r

+ b(n),

K∑
r=1

A(n)
r T

I
(n)
r
X(r) + b(n)

)

= sup
f∈Fs

∣∣∣∣∣
∫

E
[
f
( K∑
r=1

αrX
(r)
jr

+ β
)]
− E

[
f
( K∑
r=1

αrTjrX
(r) + β

)]
dΥn(α, β, j)

∣∣∣∣∣
≤
∫
ζs

(
K∑
r=1

αrX
(r)
jr

+ β,
K∑
r=1

αrTjrX
(r) + β

)
dΥn(α, β, j)

≤
∫ K∑

r=1

‖αr‖sop ζs
(
X

(r)
jr
, TjrX

(r)
)

dΥn(α, β, j)

≤

(
E

K∑
r=1

1{I(n)
r =n}‖A

(n)
r ‖sop

)
∆(n) + E

[
K∑
r=1

1{n1≤I(n)
r <n}‖A

(n)
r ‖sop∆(I(n)r )

]

+ E

[
K∑
r=1

1{I(n)
r <n1}

‖A(n)
r ‖sop sup

k<n1

ζs(Xk, TkX)

]
. (3.11)

Note that the last summand is of order O(R(n)) by condition (3.5). Hence, putting every-
thing together and introducing the notation

pn := E

[
K∑
r=1

1{I(n)
r =n}

∥∥A(n)
r

∥∥s
op

]
,

we obtain from (3.10) and (3.11) that

∆(n) ≤ pn ∆(n) + E

[
K∑
r=1

1{n1≤I(n)
r <n}

∥∥A(n)
r

∥∥s
op

∆(I(n)r )

]
+ O(R(n)). (3.12)

From (3.8), there exists a δ > 0 such that

E

[
K∑
r=1

R(I
(n)
r )

R(n)

∥∥A(n)
r

∥∥s
op

]
≤ 1− δ

for all n sufficiently large and from (3.6) we have pn < δ/2 for n large. We now choose
some C > 0 and n2 ≥ n1 sufficiently large such that for n ≥ n2 all these inequalities are
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satisfied and the O(R(n)) term in (3.12) is bounded by CR(n). By setting

L :=
2C

δ
∨max

{∆(n)

R(n)
: n ≤ n2

}
,

we now obtain ∆(n) ≤ LR(n) by induction: For n ≤ n2, by definition of L, the assertion
is true. For n > n2, solving for ∆(n) in (3.12), we find

∆(n) ≤ 1

1− pn

(
E

[
K∑
r=1

1{n1≤I(n)
r <n}

∥∥A(n)
r

∥∥s
op

∆(I(n)r )

]
+ CR(n)

)

≤ 1

1− δ/2

(
E

[
K∑
r=1

∥∥A(n)
r

∥∥s
op
LR(I(n)r )

]
+ CR(n)

)

=
1

1− δ/2

(
LE

[
K∑
r=1

∥∥A(n)
r

∥∥s
op

R(I
(n)
r )

R(n)

]
R(n) + CR(n)

)
≤ 1

1− δ/2
(
L(1− δ) + C

)
R(n)

≤ LR(n),

which completes the proof.

Remark 3.3. In applications, the convergence rate of the coefficients (conditions (3.5) and
(3.7)) is often faster than the convergence rate of the quantities Xn, see Section 4.4 for an
example. In these cases, it is often possible to perform the induction step in the proof of
Theorem 3.1 although condition (3.8) does not hold. To be more precise, we may assume
that E[

∑K
r=1 ‖A∗r‖sop] < 1 (this is to ensure the existence of a unique fixed-point) and that∥∥1{I(n)

r <`}A
(n)
r

∥∥
s

+
∥∥b(n) − b∗∥∥

s
+
∥∥A(n)

r − A∗r
∥∥
s

= O(R̃(n))

for every ` ∈ N, r = 1, . . . , K and as n → ∞. Then, instead of condition (3.8), it is
sufficient to find some C > 0 such that

E
[ K∑
r=1

1{n1≤I(n)
r <n}

R(I
(n)
r )

R(n)

∥∥A(n)
r

∥∥s
op

]
≤ 1− pn −

R̃(n)

CR(n)

for all large n with pn := E
[∑K

r=1 1{I(n)
r =n}‖A

(n)
r ‖sop

]
as above. In other words, it is enough

to show

E
[ K∑
r=1

1{n1≤I(n)
r <n}

R(I
(n)
r )

R(n)
‖A(n)

r ‖sop
]
≤ 1− pn − εn

for all large n with some positive εn = Ω(R̃(n)/R(n)). We will make use of this observation
in several applications, for instance, when analyzing the number of key comparisons of the
Quickselect algorithm in Section 4.4.
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3.1.2 An improved transfer theorem for normal limit distribu-
tions

We now consider the special case where the sequence (Xn)n≥0 is L3-integrable and satis-

fies recursion (3.3) with (A
(n)
1 , . . . , A

(n)
K , b(n))

L3−→ (A∗1, . . . , A
∗
K , b

∗) for some L3-integrable
coefficients A∗1, . . . , A

∗
K , b

∗ with

b∗ = 0,
K∑
r=1

A∗r(A
∗
r)

T = Idd (3.13)

almost surely. Theorem 2.8 implies that, if E[
∑K

r=1 ‖A∗r‖3op] < 1, equation (3.9) has a unique
solution in the space Pd3 (0, Idd). Furthermore, e.g., by using characteristic functions, it is
easily checked that this unique solution is the standard normal distribution N (0, Idd).

In this special case of normal limits, it is possible to derive a refined version of Theorem 3.1.
Instead of the technical condition (3.5), we now need the weaker condition∥∥1{I(n)

r <`}A
(n)
r

∥∥3
3

= O(R(n)), n→∞, (3.14)

for all ` ∈ N and r = 1, . . . , K. Moreover, condition (3.7) concerning the convergence rates
of the coefficients can be weakened, which is formulated in the following theorem.

Theorem 3.4. Let (Xn)n≥0 be given as in (3.2) with Mn and Cn denoting the mean vector
and the covariance matrix of Yn for n ≥ n1 and with (Yn)n≥0 satisfying the distributional
recurrence (3.1), where all appearing quantities are assumed to be L3-integrable. We further

assume that the coefficients (A
(n)
1 , . . . , A

(n)
K , b(n)) converge in L3 to some limiting coefficients

(A∗1, . . . , A
∗
K , b

∗) satisfying (3.13) and that for some R(n) > 0 monotonically decreasing with
R(n)→ 0 we have, as n→∞,

∥∥∥ K∑
r=1

A(n)
r (A(n)

r )T − Idd

∥∥∥3/2
3/2

+
∥∥b(n)∥∥3

3
= O(R(n)). (3.15)

If the technical conditions (3.6) and (3.14) are satisfied for s = 3 and if

lim sup
n→∞

K∑
r=1

E
[
R(I

(n)
r )

R(n)

∥∥A(n)
r

∥∥3
op

]
< 1, (3.16)

then we have, as n→∞,
ζ3(Xn,N (0, Idd)) = O(R(n)).

Theorem 3.4, when applicable, often improves over Theorem 3.1 by a factor 3 in the
exponent, see Remark 4.7 for an example. This is caused by the additional exponents in
(3.15) in comparison to (3.7).
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Remark 3.5. Similarly to Remark 3.3, in some applications, it is possible to perform the
induction step in the proof of Theorem 3.4 although condition (3.16) is not satisfied, see
Section 4.1.2 and Section 4.3 for examples. To this end, we assume that∥∥∥ K∑

r=1

A(n)
r (A(n)

r )T − Idd

∥∥∥3/2
3/2

+
∥∥b(n)∥∥3

3
+

K∑
r=1

∥∥1{I(n)
r <`}A

(n)
r

∥∥3
3

= O(R̃(n))

for every ` ∈ N and as n → ∞. Then, instead of condition (3.16), it is sufficient to check
that E[

∑K
r=1 ‖A∗r‖3op] < 1 and to show

E
[ K∑
r=1

1{n1≤I(n)
r <n}

R(I
(n)
r )

R(n)
‖A(n)

r ‖3op
]
≤ 1− pn − εn

for all large n with pn := E
[∑K

r=1 1{I(n)
r =n}‖A

(n)
r ‖sop

]
and some positive εn = Ω(R̃(n)/R(n)).

We will make use of this modified condition in several applications, for instance, when
analyzing the number of maxima in right triangles (Section 4.1.2).

Proof of Theorem 3.4. Similarly as in the proof of Theorem 3.1, we start with an accom-
panying sequence (Z∗n)n≥0 defined by

Z∗n :=
K∑
r=1

A(n)
r T

I
(n)
r
N (r) + b(n), n ≥ 0,

where (A
(n)
1 , . . . , A

(n)
K , I(n), b(n)), N (1), . . . , N (K) are independent, L(N (r)) = N (0, Idd) for

r = 1, . . . , K and Tn = (Cov(Xn))1/2 for n ≥ 0. Thus, Z∗n is L3-integrable, E[Z∗n] = 0 and
Cov(Z∗n) = Idd for all n ≥ n1, implying that Xn, Z∗n and N (0, Idd) are ζ3-compatible for
n ≥ n1. By the triangle inequality, we have

ζ3(Xn,N (0, Idd)) ≤ ζ3(Xn, Z
∗
n) + ζ3(Z

∗
n,N (0, Idd)).

In the remaining part of this proof, we will show that the second summand ζ3(Z
∗
n,N (0, Idd))

is of order O(R(n)). With this bound, after having handeled the first summand ζ3(Xn, Z
∗
n)

just as in the proof of Theorem 3.1, the same inductive argument as used there finally
implies the assertion.

Hence, it remains to show the bound ζ3(Z
∗
n,N (0, Idd)) = O(R(n)): Using the convolution

property of the multivariate normal distribution, we obtain the representation

Z∗n =
K∑
r=1

A(n)
r T

I
(n)
r
N (r) + b(n)

d
= GnN + b(n), (3.17)

where Gn is a (d× d)-matrix satisfying

GnG
T
n =

K∑
r=1

A(n)
r T

I
(n)
r
TT

I
(n)
r

(A(n)
r )T,
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L(N) = N (0, Idd) and N is independent of (Gn, b
(n)). Furthermore, we have E[Z∗n] = 0,

Cov(Z∗n) = Idd for n ≥ n1,
∥∥b(n)∥∥3

3
= O(R(n)) and

∥∥GnG
T
n − Idd

∥∥3/2
3/2

=
∥∥∥ K∑
r=1

A(n)
r T

I
(n)
r
TT

I
(n)
r

(A(n)
r )T − Idd

∥∥∥3/2
3/2

= O

(∥∥∥ K∑
r=1

1{I(n)
r <n1}

A(n)
r (T

I
(n)
r
TT

I
(n)
r
− Idd)(A

(n)
r )T

∥∥∥3/2
3/2

+
∥∥∥ K∑
r=1

A(n)
r (A(n)

r )T − Idd

∥∥∥3/2
3/2

)

= O

(
K∑
r=1

∥∥1{I(n)
r <n1}

A(n)
r

∥∥3
3

+
∥∥∥ K∑
r=1

A(n)
r (A(n)

r )T − Idd

∥∥∥3/2
3/2

)
= O(R(n))

by conditions (3.14) and (3.15). As a consequence, the subsequent Lemma 3.6 implies
ζ3(Z

∗
n,N (0, Idd)) = O(R(n)), which finishes the proof.

The following lemma served as the main component of the preceding proof.

Lemma 3.6. Let (Z∗n)n≥0 be a sequence of L3-integrable d-dimensional random vectors
satisfying

Z∗n
d
= GnN + b(n),

with some random (d × d)-matrix Gn and some d-dimensional random vector b(n) such
that E[Z∗n] = 0, Cov(Z∗n) = Idd, L(N) = N (0, Idd) and N being independent of (Gn, b

(n)).
Furthermore, we assume that, as n→∞,∥∥GnG

T
n − Idd

∥∥3/2
3/2

+
∥∥b(n)∥∥3

3
= O(R(n))

for appropriate R(n). Then we have, as n→∞,

ζ3(Z
∗
n,N (0, Idd)) = O(R(n)).

The proof of Lemma 3.6 builds upon ideas of Neininger and Rüschendorf [71].

Proof of Lemma 3.6. As the matrix GnG
T
n is positive semidefinite, we can decompose it in

the following way (to simplify notation, we do not explicitly indicate the dependence on n
in this decomposition): Let λ1 ≥ . . . ≥ λm ≥ 1 > λm+1 ≥ . . . ≥ λd ≥ 0 be the (random)
eigenvalues of GnG

T
n . Then, with a suitable (random) orthogonal matrix O, we have

GnG
T
n = O diag(λ1, . . . , λd)O

T

= O diag(1, . . . , 1, λm+1, . . . , λd)O
T +O diag(λ1 − 1, . . . , λm − 1, 0, . . . , 0)OT

= BnB
T
n + CnC

T
n ,
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where we define the random (d × d)-matrices Bn := O diag(1, . . . , 1,
√
λm+1, . . . ,

√
λd)O

T

and Cn := O diag(
√
λ1 − 1, . . . ,

√
λm − 1, 0, . . . , 0)OT. Hence, we can decompose Z∗n in the

following way:

Z∗n
d
= GnN + b(n)

d
= BnN + CnN

′ + b(n) =: Ẑ∗n,

where (Bn, Cn, b
(n)), N and N ′ are independent with L(N) = L(N ′) = N (0, Idd). Anal-

ogously, we decompose the multivariate standard normal distribution: With the same
random variables N and N ′ as in the definition of Ẑ∗n, we write

N
d
= BnN +DnN

′ =: N̂ ,

where the matrix Dn := O diag(0, . . . , 0,
√

1− λm+1, . . . ,
√

1− λd)OT is chosen such that

BnB
T
n + DnD

T
n = Idd. The idea behind this decomposition is to construct Ẑ∗n and N̂ on

a common probability space such that they both contain the summand BnN (main part)
and only differ in the (small) terms CnN

′, DnN
′ and b(n).

By definition of the Zolotarev metric ζ3, we have

ζ3(Z
∗
n,N (0, Idd)) = ζ3(Ẑ

∗
n, N̂) = sup

f∈F3

∣∣∣E[f(Ẑ∗n)− f(N̂)
]∣∣∣,

where the set F3 contains all functions f : Rd → R whose second derivative is Lipschitz
continuous with Lipschitz constant 1. In view of this, our goal is to bound |E[f(Ẑ∗n)−f(N̂)]|
uniformly in f . To this end, for arbitrary f ∈ F3, we use Taylor expansion around N and
obtain for x ∈ Rd that

f(x) = f(N) + (x−N)T∇f(N) +
1

2
(x−N)THf (N)(x−N) +R(x,N),

where ∇f and Hf denote the gradient and the Hessian matrix of f and the remainder term
satisfies |R(x,N)| ≤ 1

2
‖x−N‖3. Thus, we have

f(Ẑ∗n)− f(N̂) = (Ẑ∗n − N̂)T∇f(N) +
1

2
(Ẑ∗n −N)THf (N)(Ẑ∗n −N)

− 1

2
(N̂ −N)THf (N)(N̂ −N) +R(Ẑ∗n, N)−R(N̂ ,N). (3.18)

We now study the expectations of these summands: For the first summand, we have

E
[
(Ẑ∗n − N̂)T∇f(N)

]
= E

[(
(Cn −Dn)N ′ + b(n)

)T∇f(N)
]

= E
[
(Cn −Dn)N ′ + b(n)

]T E[∇f(N)] = 0,

since N is independent of the other quantities, N ′ is independent of (Cn, Dn) and E[N ′] =
E[b(n)] = 0. For the second summand in (3.18), we define Fn := Bn − Idd and obtain

E
[
(Ẑ∗n −N)THf (N)(Ẑ∗n −N)

]
= E

[
(FnN + CnN

′ + b(n))THf (N)(FnN + CnN
′ + b(n))

]
= E

[
(FnN)THf (N)(FnN)

]
+ E

[
(FnN)THf (N)(CnN

′)
]

+ E
[
(FnN)THf (N) b(n)

]
+ E

[
(CnN

′)THf (N)(FnN)
]

+ E
[
(CnN

′)THf (N)(CnN
′)
]

+ E
[
(CnN

′)THf (N) b(n)
]

+ E
[
(b(n))THf (N)(FnN)

]
+ E

[
(b(n))THf (N)(CnN

′)
]

+ E
[
(b(n))THf (N) b(n)

]
.
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Since N , N ′ and (Fn, Cn, b
(n)) are independent with E[N ′] = 0, we have

E
[
(FnN)THf (N)(CnN

′)
]

= 0.

The same argument applies to the terms E[(CnN
′)THf (N)(FnN)], E[(CnN

′)THf (N)b(n)]
and E[(b(n))THf (N)(CnN

′)]. Analogously, we obtain for the third summand in (3.18)

E
[
(N̂ −N)THf (N)(N̂ −N)

]
= E

[
(FnN +DnN

′)THf (N)(FnN +DnN
′)
]

= E
[
(FnN)THf (N)(FnN)

]
+ E

[
(DnN

′)THf (N)(DnN
′)
]
.

This implies, together with E[(FnN)THf (N) b(n)] = E[(b(n))THf (N)(FnN)],

E
[
(Ẑ∗n −N)THf (N)(Ẑ∗n −N)− (N̂ −N)THf (N)(N̂ −N)

]
= E

[
(CnN

′)THf (N)(CnN
′)
]
− E

[
(DnN

′)THf (N)(DnN
′)
]

+ E
[
(b(n))THf (N) b(n)

]
+ 2 E

[
(FnN)THf (N) b(n)

]
.

Note that we have CnC
T
n −DnD

T
n = GnG

T
n − Idd by definition of Cn and Dn. Furthermore,

the assumption that Z∗n has covariance matrix Idd implies that E[GnG
T
n + b(n)(b(n))T] =

Idd. Thus, with the independence of N , N ′ and (Cn, Dn, b
(n)) and E[N ′iN

′
j] = 1{i=j} for

i, j = 1, . . . , d, we have

E
[
(CnN

′)THf (N)(CnN
′)
]
− E

[
(DnN

′)THf (N)(DnN
′)
]

+ E
[
(b(n))THf (N) b(n)

]
=

d∑
i,j=1

E[Hf (N)ij]E
[
(CnN

′)i(CnN
′)j − (DnN

′)i(DnN
′)j + b

(n)
i b

(n)
j

]
=

d∑
i,j=1

E[Hf (N)ij]E
[
(CnC

T
n −DnD

T
n )ij + (b(n)(b(n))T)ij

]
=

d∑
i,j=1

E[Hf (N)ij]E
[
(GnG

T
n + b(n)(b(n))T − Idd)ij

]
= 0.

Bringing together the previous results, we find that∣∣∣E[f(Ẑ∗n)− f(N̂)
]∣∣∣ =

∣∣∣E[(FnN)THf (N) b(n)
]

+ E[R(Ẑ∗n, N)]− E[R(N̂ ,N)]
∣∣∣

≤ E
[∣∣(FnN)THf (N) b(n)

∣∣]+ E
[
|R(Ẑ∗n, N)|

]
+ E

[
|R(N̂ ,N)|

]
.

We now bound these three terms. For this, without loss of generality, we may assume
that Hf (0) = 0: If this is not the case, we consider the function g : Rd → R defined by
g(x) := f(x) − 1

2
xTHf (0)x for x ∈ Rd. Then, by definition of g, we have Hg(0) = 0 and
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E[g(Ẑ∗n)−g(N̂)] = E[f(Ẑ∗n)−f(N̂)], since Ẑ∗n and N̂ both have mean vector 0 and covariance
matrix Idd. The assumption Hf (0) = 0 implies, together with the Lipschitz property of the
second derivative of f , ‖Hf (N)‖op ≤ ‖N‖. Hence, using the Cauchy–Schwarz inequality,
the independence of (Fn, b

(n)) and N and Hölder’s inequality, we have

E
[∣∣(FnN)THf (N) b(n)

∣∣] ≤ E
[
‖Fn‖op ‖N‖ ‖Hf (N)‖op

∥∥b(n)∥∥]
≤ E

[
‖N‖2

]
E
[
‖Fn‖op‖b(n)‖

]
≤ d ‖Fn‖3/2

∥∥b(n)∥∥
3

≤ d
∥∥GnG

T
n − Idd

∥∥
3/2

∥∥b(n)∥∥
3
,

where the last step follows by ‖GnG
T
n − Idd‖op = max{|λ1 − 1|, |λd − 1|}, ‖Fn‖op =

1{λd<1}|
√
λd − 1| and the identity |

√
a − 1| ≤ |a − 1| for any real number a ≥ 0. The

first remainder term is bounded by

E
[
|R(Ẑ∗n, N)|

]
≤ 1

2
E
[
‖Ẑ∗n −N‖3

]
=

1

2
E
[
‖FnN + CnN

′ + b(n)‖3
]

= O
(
E
[
‖Fn‖3op

]
+ E

[
‖Cn‖3op

]
+ E

[
‖b(n)‖3

])
= O

(∥∥GnG
T
n − Idd

∥∥3/2
3/2

+
∥∥b(n)∥∥3

3

)
,

since ‖Cn‖op = 1{λ1>1}
√
|λ1 − 1| ≤ ‖GnG

T
n − Idd‖1/2op and ‖Fn‖op = 1{λd<1}|

√
λd − 1| ≤

‖GnG
T
n − Idd‖1/2op (note that we have |

√
a− 1| ≤

√
|a− 1| for any a ≥ 0). With the same

arguments, we obtain for the second remainder term

E
[
|R(N̂ ,N)|

]
≤ 1

2
E
[
‖FnN +DnN

′‖3
]

= O
(
‖Fn‖33 + ‖Dn‖33

)
= O

(
‖GnG

T
n − Idd‖3/23/2

)
,

as ‖Dn‖op = 1{λd<1}
√
|λd − 1| ≤ ‖GnG

T
n − Idd‖1/2op . This implies∣∣∣E[f(Ẑ∗n)− f(N̂)

]∣∣∣ ≤ E
[∣∣(FnN)THf (N) b(n)

∣∣]+ E
[
|R(Ẑ∗n, N)|

]
+ E

[
|R(N̂ ,N)|

]
= O

(∥∥GnG
T
n − Idd

∥∥
3/2

∥∥b(n)∥∥
3

+
∥∥GnG

T
n − Idd

∥∥3/2
3/2

+
∥∥b(n)∥∥3

3

)
= O(R(n)).

Note that the constants in the O-notation do not depend on the function f , i.e., we have

ζ3(Z
∗
n,N (0, Idd)) = sup

f∈F3

∣∣∣E[f(Ẑ∗n)− f(N̂)
]∣∣∣ = O(R(n)),

which is the assertion.
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3.2 Expansions of moments

In applications to problems arising in theoretical computer science or in other fields, where
the recurrence (3.1) is explicitly given, one usually has no direct means to identify the orders

of the terms ‖b(n)− b∗‖s and ‖A(n)
r −A∗r‖s. This is due to the fact that the mean vector Mn

and the covariance matrix Cn, for the cases 1 < s ≤ 2 and 2 < s ≤ 3, respectively, which
are used for the normalization (3.2) are typically not exactly known or too involved to be
amenable to explicit calculations. As a substitute, one usually has asymptotic expansions
of these sequences as n→∞.

With this in mind, the goal of the present section is to provide a theorem which allows
us to also handle examples where only asymptotic expansions of the moments are known.
Thereby, we focus on the univariate case with Ar(n) = 1 for all r = 1, . . . , K and provide
tools to apply the general Theorems 3.1 and 3.4 on the basis of expansions of the mean
and variance. We assume that

E[Yn] = µ(n) = f(n) + O(e(n)), Var(Yn) = σ2(n) = g(n) + O(h(n)), (3.19)

with e(n) = o(f(n)), h(n) = o(g(n)) and a non-negative function g. The scaling introduced
in (3.2) with the special choices Ar(n) = 1 for all r = 1, . . . , K leads to the scaled recurrence
for Xn given in (3.3) with coefficients

A(n)
r =

σ(I
(n)
r )

σ(n)
, b(n) =

1

σ(n)

(
bn − µ(n) +

K∑
r=1

µ(I(n)r )
)

(3.20)

for n ≥ n1. Additionally, we consider the corresponding quantities

A
(n)

r =
g1/2(I

(n)
r )

g1/2(n)
, b

(n)
=

1

g1/2(n)

(
bn − f(n) +

K∑
r=1

f(I(n)r )
)
. (3.21)

To connect Theorems 3.1 and 3.4 to recurrences with known expansions, we use the fol-
lowing notion.

Definition 3.7. A sequence (a(n))n≥0 of non-negative real numbers is called essentially
non-decreasing if there exists a c > 0 such that a(m) ≤ c a(n) for all 0 ≤ m < n.

To apply Theorems 3.1 and 3.4, we have to identify the orders of ‖A(n)
r −A∗r‖s, ‖b(n)− b∗‖s,

‖(A(n)
1 )2 + · · · + (A

(n)
K )2 − 1‖3/2 and handle the terms appearing in (3.8) and (3.16). The

following lemma can be useful for this.

Lemma 3.8. In the situation of Theorem 3.1 ( Theorem 3.4, respectively), with A
(n)
r , b(n)

given in (3.20), A
(n)

r , b
(n)

given in (3.21), and the expansions for µ(n), σ2(n) given in
(3.19), the following holds for s ≥ 1 and as n→∞.
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If the sequence h/g1/2 is essentially non-decreasing and P(I
(n)
r < `)1/s = O(h(n)/g1/2(n))

for any ` ∈ N, then we have for r = 1, . . . , K∥∥A(n)
r − A∗r

∥∥
s
≤
∥∥A(n)

r − A∗r
∥∥
s

+ O
(h(n)

g(n)

)
. (3.22)

If the sequence h is essentially non-decreasing and P(I
(n)
r < `)2/3 = O(h(n)) for any ` ∈ N

and r = 1, . . . , K, then we have∥∥∥ K∑
r=1

(A(n)
r )2 − 1

∥∥∥
3/2
≤
∥∥∥ K∑
r=1

(A
(n)

r )2 − 1
∥∥∥
3/2

+ O
(h(n)

g(n)

)
. (3.23)

If the sequence e is essentially non-decreasing and P(I
(n)
r < `)1/s = O(e(n)) for any ` ∈ N

and r = 1, . . . , K, then we have∥∥b(n) − b∗∥∥
s
≤
∥∥b(n) − b∗∥∥

s
+ O

(h(n)

g(n)
+

e(n)

g1/2(n)

)
. (3.24)

If the sequence g/h is essentially non-decreasing, (r(n))n≥0 is a non-negative sequence

satisfying P(I
(n)
r < `) = O(r(n)) for any ` ∈ N, r = 1, . . . , K and

T (n) :=
K∑
r=1

E
[
gs/2−1(I

(n)
r )h(I

(n)
r )R(I

(n)
r )

gs/2(n)R(n)

]
+

r(n)

gs/2(n)R(n)
,

then we have

K∑
r=1

E
[
σs(I

(n)
r )R(I

(n)
r )

σs(n)R(n)

]
≤

K∑
r=1

E
[
gs/2(I

(n)
r )R(I

(n)
r )

gs/2(n)R(n)

]
+ O(T (n)). (3.25)

Proof. We only show (3.22), since the other bounds can be shown similarly. First, with
the triangle inequality, we obtain∥∥A(n)

r − A∗r
∥∥
s
≤
∥∥A(n)

r − A∗r
∥∥
s

+
∥∥A(n)

r − A
(n)

r

∥∥
s
,

thus it suffices to show that ∥∥A(n)
r − A

(n)

r

∥∥
s

= O
(h(n)

g(n)

)
.

To this end, note that σ2(n) = g(n) + O(h(n)) implies σ(n) = g1/2(n) + O(h(n)/g1/2(n)),
i.e., we can find a sequence (d(n))n≥0 with d(n) = O(h(n)/g1/2(n)) such that σ(n) =
g1/2(n) + d(n) for any n ≥ 0. With this in mind, we write

A(n)
r =

σ(I
(n)
r )

σ(n)
=
g1/2(I

(n)
r )

g1/2(n)
· g

1/2(n)

σ(n)
+
d(I

(n)
r )

σ(n)
= A

(n)

r

(
1− d(n)

σ(n)

)
+
d(I

(n)
r )

σ(n)
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and obtain ∥∥A(n)
r − A

(n)

r

∥∥
s
≤ |d(n)|

σ(n)

∥∥A(n)

r

∥∥
s

+
1

σ(n)

∥∥d(I(n)r )
∥∥
s
.

Since A
(n)

r → A∗r in Ls, we have ‖A(n)

r ‖s = O(1), hence the first summand in the latter
display is of order O(g(n)/h(n)). To bound the second summand, we use that d(n) =
O(h(n)/g1/2(n)), i.e., we can find some c > 0 and some n2 ∈ N such that |d(n)| ≤
c h(n)/g1/2(n) for n ≥ n2. This implies∥∥d(I(n)r )

∥∥
s
≤
∥∥1{I(n)

r <n2}
d(I(n)r )

∥∥
s

+
∥∥1{I(n)

r ≥n2}
d(I(n)r )

∥∥
s

≤ O
(
‖1{I(n)

r <n2}
‖s
)

+ O

(∥∥∥ h(I
(n)
r )

g1/2(I
(n)
r )

∥∥∥
s

)
= O

( h(n)

g1/2(n)

)
,

where the last step follows from the assumptions that h/g1/2 is essentially non-decreasing

and that P(I
(n)
r < `)1/s = O(h(n)/g1/2(n)) for any ` ∈ N.

Note that in applications, the terms on the right hand side in the estimates (3.22)–(3.25)
can easily be bounded when expansions as in (3.19) with explicit functions e, f, g, h are
available. Numerous examples of this procedure are given in the following chapter.
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Chapter 4

Applications

This chapter provides some examples of typical applications of Theorems 3.1 and 3.4. We
start by deriving some known results in Section 4.1 to illustrate in detail how to apply
our framework of the previous sections. Subsequently, we use the presented theorems to
analyze certain quantities in binomial splitting processes in Section 4.2, local counters in
binary search trees in Section 4.3 and different cost measures of the Quickselect algorithm
in Section 4.4.

4.1 Some known results

In this section, we consider some recursive quantities for which the rate of convergence has
already been identified (either in the Zolotarev metric or in the Kolmogorov metric). In
all examples, we can apply the theorems from Chapter 3 to rederive those results without
much effort.

4.1.1 The number of key comparisons used by Quicksort

As a first example, we analyze the number Yn of key comparisons used by the divide-and-
conquer sorting algorithm Quicksort (see Hoare [39]) on a list of n randomly permuted
(distinct) numbers. In short, Quicksort works as follows: After having selected an arbitrary
element p of the list—the so-called pivot—the main idea of Quicksort is to classify the
remaining elements into elements smaller than p and elements larger than p. While doing
so, the list is successively reordered in a way such that, in the end, all small elements come
before p and all large elements after p. After this partitioning step, the pivot p is at its final
position and the strategy is recursively repeated on both parts. In practice, there are lots
of concrete implementations of Quicksort, but for our purposes, we just assume that the
partitioning strategy preserves the randomness and the independence between the subfiles
and uses exactly n− 1 key comparisons in the first partitioning step.
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Under these assumptions, the number Yn of key comparisons needed by the Quicksort
algorithm to sort n randomly permuted (distinct) numbers satisfies Y0 = 0 and the distri-
butional recursion

Yn
d
= Y

(1)
In

+ Y
(2)
n−1−In + n− 1, n ≥ 1, (4.1)

where (Y
(1)
n )n≥0, (Y

(2)
n )n≥0, In are independent, In is uniformly distributed on {0, . . . , n−1}

and Y
(r)
j has the same distribution as Yj for j ≥ 0 and r = 1, 2. Hence, equation (4.1)

is covered by our general recurrence (3.1) with n0 = 1, K = 2, Ar(n) = 1 for r = 1, 2,

I
(n)
1 = In, I

(n)
2 = n − 1 − In, and bn = n − 1. For the expectation and variance of Yn,

exact expressions are known which imply the asymptotic expansions (see Hoare [39] and
Knuth [55])

E[Yn] = 2n log n+ (2γ − 4)n+ O(log n), (4.2)

Var(Yn) = σ2n2 − 2n log n+ O(n), (4.3)

where γ = 0.57721 . . . denotes the Euler–Mascheroni constant and σ2 := 7 − 2π2/3 > 0.
Since Var(Yn) is positive for n ≥ 3, we introduce the normalized quantities X0 := X1 :=
X2 := 0 and

Xn :=
Yn − E[Yn]√

Var(Yn)
, n ≥ 3. (4.4)

Limit theorems Xn → X for these standardized quantities have been derived by different
methods by Régnier [77] and Rösler [80]. Rösler [80] also found that the scaled limit
C := σX satisfies the distributional fixed-point equation

C
d
= UC(1) + (1− U)C(2) + ϕ(U) (4.5)

with U , C(1), C(2) independent, U uniform on the unit interval, C(1) and C(2) having the
same distribution as C and ϕ(u) := 2u log u+ 2(1− u) log(1− u) + 1 for u ∈ [0, 1]. Lower
and upper bounds for the rate of convergence in Xn → X have been studied for various
metrics in Fill and Janson [24] and Neininger and Rüschendorf [69].

We can now apply our framework to partly rederive these results on the convergence rates.
Note that the quantities Yn are bounded, thus Ls-integrable for any s > 0. Furthermore,
with the recursive decomposition (4.1) of Yn and the normalization (4.4), we are exactly in
the situation of Theorem 3.1. To apply this theorem, we need to find an 0 < s ≤ 3 and a
sequence R(n)→ 0 with (3.5)–(3.8). To bound the Ls norms ‖A(n)

r −A∗r‖s and ‖b(n)− b∗‖s
appearing in (3.7), we use Lemma 3.8 and, in view of (4.2) and (4.3), choose

f(n) = 2n log n+ (2γ − 4)n, e(n) = log n,

g(n) = σ2n2, h(n) = n log n.
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With these functions, we obtain for the quantities defined in (3.21) that

A
(n)

1 =
In
n
, A

(n)

2 =
n− 1− In

n
,

b
(n)

=
1

σ

(
2
In
n

log
In
n

+ 2
n− 1− In

n
log

n− 1− In
n

+
n− 1

n
+ O

( log n

n

))
.

With the embedding In = bnUc with U uniformly distributed on the unit interval [0, 1],
we have

A∗1 = U, A∗2 = 1− U, b∗ =
1

σ
(2U logU + 2(1− U) log(1− U) + 1) =

1

σ
ϕ(U)

with ϕ given in (4.5). We now apply Lemma 3.8 which allows us to bound the Ls norms

‖A(n)
r − A∗r‖s and ‖b(n) − b∗‖s by the corresponding Ls norms ‖A(n)

r − A∗r‖s, ‖b
(n) − b∗‖s

and some additional error terms. Inserting the values of A
(n)

r , A∗r, b
(n)

and b∗, we find for
r = 1, 2 and any s ≥ 1 that ∥∥A(n)

r − A∗r
∥∥
s

= O
( 1

n

)
and, together with Proposition 3.2 of Rösler [80],∥∥b(n) − b∗∥∥

s
= O

( log n

n

)
.

Moreover, with R(n) := log n/n, we have

h(n)

g(n)
= O(R(n)) and

e(n)

g1/2(n)
= O(R(n)),

thus Lemma 3.8 implies that condition (3.7) is satisfied for our choice of the sequence R.
Also the technical conditions (3.5) and (3.6) are clearly satisfied, since In is uniform on
{0, . . . , n−1}. To verify condition (3.8), we use Lemma 3.8 again: For the term T (n) given
there, we find T (n) = O(log(n)/n) → 0 and for the first term on the right hand side of
(3.25), we obtain

2∑
r=1

E
[
gs/2(I

(n)
r )R(I

(n)
r )

gs/2(n)R(n)

]
=

2∑
r=1

E
[(I(n)r

n

)s−1 log I
(n)
r

log n

]
.

Note that the latter expression has a limit superior of less than 1 if and only if s > 2.
Hence, Theorem 3.1 is applicable for 2 < s ≤ 3 and yields that, as n→∞,

ζs(Xn, X) = O

(
log n

n

)
. (4.6)

The bound (4.6) had previously been shown for s = 3 by Neininger and Rüschendorf [69],
where also the optimality of the order was shown, i.e., that ζ3(Xn, X) = Θ (log(n)/n).

In Section 4.4, we additionally discuss bounds on rates of convergence for various cost
measures of the related Quickselect algorithm under different models for the rank to be
selected.



40 4. Applications

4.1.2 Maxima in right triangles

As a second example, we consider the number Yn of maxima of n independent, uniform
samples in a right triangle in R2 with corners (0, 0), (1, 0) and (0, 1), see Bai, Hwang, Liang
and Tsai [3]. For a set S of points in R2, we say that a point (x1, x2) ∈ S is maximal in
S if there is no other point (y1, y2) ∈ S with y1 ≥ x1 and y2 ≥ x2, and refer to the set of
maximal points in S as maxima of S, see Figure 4.1 for an example.

(0, 1)

(0, 0) (1, 0)

x

y

(0, 1)

(0, 0) (1, 0)

Figure 4.1: On the left: x is a maximal point, y is not (since its upper right quadrant is non-
empty). On the right: the maxima of the sample set, marked by squares.

To apply our framework, the first step is to find a recursive decomposition of the form (3.1)
for the number Yn of maxima. To this end, we denote by (Un, Vn) the point that maximizes
the sum of the components in the sample of the n points and follow the strategy of Bai
et al. [3, Proposition 1] who divided the original triangle into smaller parts as shown in
Figure 4.2.

(0, 1)

(0, 0) (1, 0)

(Un, Vn)

I
(n)
2

points

I
(n)
1

points

I
(n)
3

points

Figure 4.2: Division of the original triangle into smaller regions at the point (Un, Vn) maximiz-
ing the sum of the components.
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Denoting by I
(n)
1 , I

(n)
2 and I

(n)
3 the numbers of points in the respective regions (see Figure

4.2), the number of maxima satisfies Y0 = 0 and the recursion

Yn
d
= Y

(1)

I
(n)
1

+ Y
(2)

I
(n)
2

+ 1, n ≥ 1,

with independence and self-similarity conditions as in (3.1). The sizes I
(n)
1 and I

(n)
2 of the

two subproblems can be described as the first two components of a mixed multinomial
distribution: Given (Un, Vn) = (u, v), the vector (I

(n)
1 , I

(n)
2 , I

(n)
3 ) of the subproblem sizes is

multinomially

Mult
(
n− 1,

u2

(u+ v)2
,

v2

(u+ v)2
,

2uv

(u+ v)2

)
distributed. Note that the fraction Un

Un+Vn
is uniformly distributed on the unit interval.

Hence, the vector of the subproblem sizes has a mixed multinomial distribution

L
(
(I

(n)
1 , I

(n)
2 , I

(n)
3 )
)

= Mult
(
n− 1, U2, (1− U)2, 2U(1− U)

)
with U uniformly on [0, 1].

It is known that the mean and variance of Yn satisfy (see Bai et al. [3, Theorem 3])

E[Yn] =
√
πn+ O(1),

Var(Yn) = σ2
√
n− π

4
+ O(n−1/2),

where σ2 = (2 log 2−1)
√
π > 0. Furthermore, they have shown by the method of moments

that the distribution of the normalized quantities Yn−
√
πn

σn1/4 is asymptotically normal, see
also Neininger and Rüschendorf [70] for a different argument via contraction method. Bai,
Hwang and Tsai [4, Theorem 1] improved this result by deriving the convergence rate
O(n−1/4) for the Kolmogorov metric in the central limit theorem for the number of maxima.
We rederive this result for the Zolotarev metric ζ3 by applying our refined Theorem 3.4
and obtain the following result.

Theorem 4.1. The number Yn of maxima of n independent, uniform samples in a right
triangle with corners (0, 0), (1, 0) and (0, 1) satisfies, as n→∞,

ζ3

(Yn − E[Yn]√
Var(Yn)

,N (0, 1)
)

= O
(
n−1/4

)
.

Proof. As Var(Yn) is positive for n ≥ 2, we introduce the normalized quantities X0 :=
X1 := 0 and

Xn :=
Yn − E[Yn]√

Var(Yn)
, n ≥ 2,

which satisfy the modified recursion (3.3)

Xn
d
=

2∑
r=1

A(n)
r X

(r)

I
(n)
r

+ b(n), n ≥ 1,



42 4. Applications

with A
(n)
1 , A

(n)
2 and b(n) defined in (3.4). For these coefficients, we find A

(n)
1 → U1/2 =: A∗1,

A
(n)
2 → (1 − U)1/2 =: A∗2 and b(n) → 0 =: b∗ in `3 (see Neininger and Rüschendorf [70]),

thus we are in the situation of Theorem 3.4. To apply this theorem, we have to estimate
the orders of ‖(A(n)

1 )2 + (A
(n)
2 )2 − 1‖3/2 and ‖b(n)

∥∥
3
. For this, we use Lemma 3.8 with

f(n) =
√
πn, e(n) = 1,

g(n) = σ2
√
n, h(n) = 1.

With these functions, Lemma 3.8 yields

∥∥∥ 2∑
r=1

(A(n)
r )2 − 1

∥∥∥
3/2
≤
∥∥∥ 2∑
r=1

(A
(n)

r )2 − 1
∥∥∥
3/2

+ O
( 1

n1/2

)
and ∥∥b(n)∥∥

3
≤
∥∥b(n)∥∥

3
+ O

( 1

n1/2
+

1

n1/4

)
,

where the quantities A
(n)

1 , A
(n)

2 and b
(n)

are defined in (3.21):

A
(n)

r =
(I(n)r

n

)1/4
, b

(n)
=

1

σn1/4

(
1−
√
πn+

2∑
r=1

√
πI

(n)
r

)
.

Hence, we have

∥∥∥ 2∑
r=1

(A
(n)

r )2 − 1
∥∥∥
3/2

=
1

n1/2

∥∥∥(I(n)1

)1/2
+
(
I
(n)
2

)1/2 − n1/2
∥∥∥
3/2

= O
( 1

n1/2

)
and ∥∥b(n)∥∥

3
=

1

σn1/4

∥∥∥1 +
√
π
((
I
(n)
1

)1/2
+
(
I
(n)
2

)1/2 − n1/2
)∥∥∥

3
= O

( 1

n1/4

)
,

where the last step in each case follows from Lemma 4.2 below. Obviously, condition (3.6)
is satisfied and we have∥∥1{I(n)

r <`}A
(n)
r

∥∥3
3

= O
(

Var(Yn)−3/2 P(I(n)r < `)
)

= O(n−3/4)

for any ` ∈ N and r = 1, 2. To sum up, our findings so far are

∥∥∥ 2∑
r=1

(A(n)
r )2 − 1

∥∥∥3/2
3/2

+
∥∥b(n)∥∥3

3
+

2∑
r=1

∥∥1{I(n)
r <`}A

(n)
r

∥∥3
3

= O
( 1

n3/4

)
for any ` ∈ N and as n → ∞. Consequently, it remains to check condition (3.16)—which
is not satisfied for R(n) = n−1/4. However, we can use the weakened condition stated in
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Remark 3.5 with R(n) = n−1/4 and R̃(n) = n−3/4. As described there, it is sufficient to
show that

E
[ 2∑
r=1

R(I
(n)
r )

R(n)
(A(n)

r )3
]
≤ 1− ε(n) (4.7)

for all large n with some positive ε(n) = Ω(n−1/2). However, applying Lemma 3.8 with
g(n) = σ2

√
n and h(n) = 1 only results in showing

E
[ 2∑
r=1

R(I
(n)
r )

R(n)
(A(n)

r )3
]
≤ n−1/2 E

[ 2∑
r=1

(I(n)r )1/2
]

+ O(n−1/2) ≤ 1 + O(n−1/2).

Considering that, we choose g(n) = σ2
√
n − π

4
and h(n) = n−1/2. With this choice, we

obtain T (n) = O(1/n) for the quantity T (n) defined in Lemma 3.8 (note that we have

P(I
(n)
r < `) = O(n−1/2) for ` ∈ N and r = 1, 2). Consequently, the estimate (3.25),

together with Lemma 4.5 below, yields

E
[ 2∑
r=1

R(I
(n)
r )

R(n)
(A(n)

r )3
]
≤ E

[ 2∑
r=1

1{I(n)
r ≥2}

(
σ2(I

(n)
r )1/2 − π/4

)3/2(
σ2n1/2 − π/4

)3/2 (I(n)r

n

)−1/4]
+ O

( 1

n

)
≤ 1− 3π

8σ2
n−1/2 + o(n−1/2),

and the assertion follows.

The preceding proof shows that a straightforward application of our theorems only provides
the rate O(n−1/4+ε) for any ε > 0. However, by making use of the weaker condition stated
in Remark 3.5, we were able to avoid the ε in the exponent of the rate.

The rest of this section states some basic facts about mixed binomial/trinomial distribu-
tions which were used in the preceding proof. The following statement was applied to
determine the convergence rate of the coefficients.

Lemma 4.2. Let
(
I
(n)
1 , I

(n)
2 , I

(n)
3

)
be a random vector with mixed trinomial distribution

Mult
(
n − 1, U2, (1 − U)2, 2U(1 − U)

)
, where U is uniform on [0, 1]. Then, for any s > 0

and as n→∞, we have ∥∥∥(I(n)1

)1/2
+
(
I
(n)
2

)1/2 − n1/2
∥∥∥
s

= O(1).

Proof. Proposition 4 in Bai, Hwang and Tsai [4] states that for any non-negative integer r,

E
[∣∣∣(I(n)1

)1/2
+
(
I
(n)
2

)1/2 − n1/2
∣∣∣2r] ≤ (2r)! 4r e2r

(log(2r + 1))2r
.

The corresponding result for arbitrary exponents s > 0 follows from this by Jensen’s
inequality.
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The following two lemmas serve as a basis for the subsequent Lemma 4.5 which was used
in the final step of the proof of Theorem 4.1.

Lemma 4.3. For a random variable I
(n)
1 with mixed binomial distribution Bin

(
n− 1, U2

)
,

where U is uniform on [0, 1], we have that E
[
(I

(n)
1 )1/2

]
≤ 1

2
n1/2 for all n ≥ 1.

Proof. Denoting by B the Euler beta function, we obtain by conditioning on U

E
[
(I

(n)
1 )1/2

]
=

n−1∑
k=1

k1/2
(
n− 1

k

)∫ 1

0

u2k(1− u2)n−1−k du

=
1

2

n−1∑
k=1

k1/2
(
n− 1

k

)
B
(
k +

1

2
, n− k

)
=

4n

2n
(
2n
n

) n−1∑
k=1

k1/2 4−k
(

2k

k

)
.

The assertion now follows inductively. For this, note that the statement is obviously true
for n = 1 and that, for any n ≥ 1, we have

E
[
(I

(n+1)
1 )1/2

]
=

4n+1

2(n+ 1)
(
2(n+1)
n+1

) ( n−1∑
k=1

k1/2 4−k
(

2k

k

)
+ n1/2 4−n

(
2n

n

))

≤ 4n+1

2(n+ 1)
(
2(n+1)
n+1

) (n3/24−n
(

2n

n

)
+ n1/2 4−n

(
2n

n

))
=

n+ 1

2n+ 1
n1/2,

which is smaller than 1
2
(n+ 1)1/2 and finishes the proof.

Lemma 4.4. For a random variable I
(n)
1 with mixed binomial distribution Bin

(
n− 1, U2

)
,

where U is uniform on [0, 1], we have that E
[
1{I(n)

1 ≥1}(I
(n)
1 )−1/2

]
→ 0 as n→∞.

Proof. Similarly as in the proof of the previous lemma, we obtain the representation

E
[
1{I(n)

1 ≥1}(I
(n)
1 )−1/2

]
=

4n

2n
(
2n
n

) n−1∑
k=1

k−1/2 4−k
(

2k

k

)
.

We now use the bounds
√

2πn
(
n
e

)n ≤ n! ≤ 2
√

2πn
(
n
e

)n
to obtain

(
2n
n

)
≥ 4n−1(πn)−1/2 and(

2k
k

)
≤ 2 · 4k(πk)−1/2, and therefore

E
[
1{I(n)

1 ≥1}(I
(n)
1 )−1/2

]
≤ 4√

n

n−1∑
k=1

1

k
= O

( log n

n1/2

)
,

which is approaching 0 as n→∞.
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Lemma 4.5. Let I
(n)
1 denote some random variable with mixed binomial distribution

Bin
(
n− 1, U2

)
, where U is uniform on [0, 1]. As n→∞, we have

E
[
1{I(n)

1 ≥2}

(
σ2(I

(n)
1 )1/2 − π/4

)3/2(
σ2n1/2 − π/4

)3/2 (I(n)1

n

)−1/4]
≤ 1

2
− 3π

16σ2
n−1/2 + o(n−1/2).

Proof. We start with a lower bound for the denominator: For n ≥ 2, e.g., by the mean
value theorem, we have

(
σ2n1/2 − π/4

)3/2
n−1/4 ≥

((
σ2n1/2

)3/2 − 3π

8

(
σ2n1/2

)1/2)
n−1/4 = σ3n1/2 − 3πσ

8
.

Similarly, we continue by upper bounding the nominator: On the event {I(n)1 ≥ 2}, the

term σ2(I
(n)
1 )1/2 − π/4 is positive and we find that

(
σ2(I

(n)
1 )1/2 − π/4

)3/2 ≤ (σ2(I
(n)
1 )1/2

)3/2 − 3π

8

(
σ2(I

(n)
1 )1/2 − π/4

)1/2
= σ3(I

(n)
1 )3/4 − 3π

8

(
σ2(I

(n)
1 )1/2 − π/4

)1/2
≤ σ3(I

(n)
1 )3/4 − 3πσ

8
(I

(n)
1 )1/4 +

3π2

64

(
σ2(I

(n)
1 )1/2 − π/4

)−1/2
.

Thus, we obtain with Lemma 4.3 and Lemma 4.4

E
[
1{I(n)

1 ≥2}

(
σ2(I

(n)
1 )1/2 − π/4

)3/2
(I

(n)
1 )−1/4

]
≤ E

[
σ3(I

(n)
1 )1/2 − 3πσ

8
+ 1{I(n)

1 ≥2}
3π2

64

(
σ2(I

(n)
1 )1/2 − π/4

)−1/2
(I

(n)
1 )−1/4

]
≤ 1

2
σ3n1/2 − 3πσ

8
+ o(1).

Putting these estimates together, we find

E
[
1{I(n)

1 ≥2}

(
σ2(I

(n)
1 )1/2 − π/4

)3/2(
σ2n1/2 − π/4

)3/2 (I(n)1

n

)−1/4]
≤

1
2
σ3n1/2 − 3πσ

8
+ o(1)

σ3n1/2 − 3πσ
8

=
1

2
− 3π

16σ2
n−1/2 + o(n−1/2),

which is the assertion.
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4.1.3 The size of m-ary search trees

In this section, we consider m-ary search trees, a class of data structures generalizing the
concept of binary search trees. In short, an m-ary search tree is constructed similarly to
a binary search tree, with the difference that each node in the m-ary search tree has the
capacity to contain m− 1 keys. More specifically, for m ≥ 2 and a given input sequence of
n distinct keys, an m-ary search tree is constructed as follows (see, e.g., Mahmoud [59]):
If n < m, then the tree consists of a single node containing the keys in increasing order.
Otherwise, the first m−1 keys are inserted into the root (in increasing order) and are used
to split the remaining keys up into m different groups:

� Those keys with values smaller than the smallest key in the root go to the first subtree
of the root.

� Those keys with values between the (k − 1)-th smallest and k-th smallest key in the
root go to the k-th subtree of the root (k = 2, . . . ,m− 1).

� Those keys with values larger than the largest key in the root go to the m-th subtree
of the root.

With this procedure, we obtain m subtrees of the root which are, by definition, themselves
m-ary search trees. To illustrate the construction of m-ary search trees, Figure 4.3 shows
an example for m = 4 and n = 11. We call the total number of nodes of an m-ary search
tree the size (also: space requirement) of this tree. The size of the tree in Figure 4.3 is 6.

2 7 9

1 3 4 6

5

8 10 11

Figure 4.3: An m-ary search tree for m = 4, constructed from the input sequence
(9, 2, 7, 4, 3, 10, 8, 6, 11, 1, 5) of length n = 11.

We now denote by Yn the size of an m-ary search tree constructed from an input sequence
consisting of n randomly permuted distinct numbers. Since Yn = n is deterministic in
the binary search tree case (m = 2), we restrict our analysis to m ≥ 3. In this case,
Y0 = 0, Y1 = . . . = Ym−1 = 1 and Yn satisfies the recursion (see, e.g., Neininger and
Rüschendorf [70])

Yn
d
=

m∑
r=1

Y
(r)

I
(n)
r

+ 1, n ≥ m,
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with independence and self-similarity conditions as in (3.1). Thus, the sequence (Yn)n≥0
is an instance of recurrence (3.1) with K = m, A1(n) = · · · = Am(n) = 1, n0 = m and

bn = 1. For a representation of I(n) = (I
(n)
1 , . . . , I

(n)
m ), we define for independent, identically

unif[0, 1] distributed random variables U1, . . . , Um−1 their spacings in [0, 1] by

S1 = U(1), S2 = U(2) − U(1), . . . , Sm = 1− U(m−1),

where U(1), . . . , U(m−1) denote the order statistics of U1, . . . , Um−1. Then, I(n) has the mixed
multinomial distribution:

L
(
I(n)
)

= Mult(n−m+ 1, S1, . . . , Sm).

By this we mean that given (S1, . . . , Sm) = (s1, . . . , sm), the vector I(n) is multinomially
Mult(n − m + 1, s1, . . . , sm) distributed. Expectations and variances for Yn have been
studied by, among others, Knuth [56, § 6.2.4], Mahmoud and Pittel [63], Mahmoud [59]
and Chern and Hwang [12]. We have

E[Yn] = µn+ O(1 + nα−1), m ≥ 3, (4.8)

Var(Yn) = σ2n+ O(1 + n2α−2), 3 ≤ m ≤ 26. (4.9)

Here, the constants µ, σ2 > 0 and α depend on m with α < 1 for m ≤ 13, 1 < α < 4/3 for
14 ≤ m ≤ 19, and 4/3 < α < 3/2 for 20 ≤ m ≤ 26, see Table 4.1.

m 3 . . . 13 14 . . . 19 20 . . . 26 27 . . .
α −3 . . . 0.95 1.04 . . . 1.31 1.34 . . . 1.49 1.51 . . .

Table 4.1: Approximate values of α = αm depending on m (see, e.g., Mahmoud [59, Table 3.1]).

It is known that Yn normalized by mean and standard deviation converges in distribution
to the standard normal distribution for 3 ≤ m ≤ 26 (this was shown by an inductive
approximation approach in Mahmoud and Pittel [63] and Lew and Mahmoud [58], by the
method of moments in Chern and Hwang [12] and by the contraction method in Neininger
and Rüschendorf [70]), whereas the standardized sequence has no weak limit for m > 26 due
to dominant periodicities, see Chern and Hwang [12]. Moreover, the rate of convergence
in the central limit law for 3 ≤ m ≤ 26 for the Kolmogorov metric was identified by
Hwang [43]: By a refinement to the method of moments, he derived the rate O(n−1/2)
for 3 ≤ m ≤ 19 and O(n−3(3/2−α)) for 20 ≤ m ≤ 26. The following result shows that
the application of our Theorem 3.4 yields the same rates of convergence for the Zolotarev
metric ζ3 (up to an ε for 3 ≤ m ≤ 19).

Theorem 4.6. The size Yn of an m-ary search tree constructed from n uniformly permuted
distinct numbers satisfies, for any ε > 0 and as n→∞,

ζ3

(Yn − E[Yn]√
Var(Yn)

,N (0, 1)
)

=

{
O
(
n−1/2+ε

)
, 3 ≤ m ≤ 19,

O
(
n−3(3/2−α)

)
, 20 ≤ m ≤ 26.
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Proof. To apply Theorem 3.4, we have to estimate the orders of ‖
∑m

r=1(A
(n)
r )2− 1‖3/2 and

‖b(n)
∥∥
3

with A
(n)
r and b(n) defined in (3.4). For this, we apply Lemma 3.8. From (4.8) and

(4.9), we obtain that we can choose

f(n) = µn, e(n) = 1 ∨ nα−1,
g(n) = σ2n, h(n) = 1 ∨ n2(α−1),

for the quantities appearing in Lemma 3.8. Hence, with A
(n)

r given in (3.21), we obtain

∥∥∥ m∑
r=1

(A
(n)

r )2 − 1
∥∥∥
3/2

=
∥∥∥ m∑
r=1

I
(n)
r

n
− 1
∥∥∥
3/2

=
m− 1

n
= O

( 1

n

)
and O(h(n)/g(n)) = O(n−(1∧(3−2α))). Consequently, Lemma 3.8 implies

∥∥∥ m∑
r=1

(A(n)
r )2 − 1

∥∥∥3/2
3/2

= O
(
n−((3/2)∧(3(3/2−α)))

)
.

Similarly, we obtain for b
(n)

given in (3.21)

∥∥b(n)∥∥
3

=
1

σ
√
n

∥∥∥1− µn+
m∑
r=1

µI(n)r

∥∥∥
3

=
1

σ
√
n

∥∥1− µ(m− 1)
∥∥
3

= O
(
n−1/2

)
and O(e(n)/g1/2(n)) = O(n−((1/2)∧(3/2−α))). From this, it follows by Lemma 3.8 that∥∥b(n)∥∥3

3
= O

(
n−((3/2)∧(3(3/2−α)))

)
.

Hence, the rate of convergence in condition (3.15) is of order O(n−((3/2)∧(3(3/2−α)))) and it
remains to check condition (3.16): For 3 ≤ m ≤ 19 and R(n) = n−1/2+ε, Lemma 3.8 (in

combination with the convergence I
(n)
r /n → Sr and dominated convergence) implies, as

n→∞,

m∑
r=1

E
[R(I

(n)
r )

R(n)

∣∣A(n)
r

∣∣3] ≤ m∑
r=1

E
[
R(I

(n)
r )

R(n)

(I(n)r

n

)3/2]
+ o(1)→

m∑
r=1

E
[
(Sr)

1+ε
]
< 1.

Analogously, for 20 ≤ m ≤ 26 and R(n) = n−3(3/2−α), condition (3.16) is satisfied and the
assertion follows.

Remark 4.7. Using Theorem 3.1 instead of Theorem 3.4 in the latter proof is also possible
but leads to a bound O(n−(3/2−α)) for 20 ≤ m ≤ 26, missing the factor 3 appearing in
Theorem 4.6.
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4.1.4 The number of leaves in d-dimensional quadtrees

As a last example in this section, we now discuss rates of convergence for the number of
leaves in d-dimensional random point quadtrees, where a similar behavior as in Theorem 4.6
appears.

The quadtree structure is due to Finkel and Bentley [25] and can be considered as a gen-
eralization of the binary search tree to multidimensional data. Given a set x1, . . . , xn of
points in the unit hypercube [0, 1]d, the corresponding quadtree is constructed as follows
(see, e.g., Mahmoud [59] or Chern, Fuchs and Hwang [11]): The first point x1 is placed
at the root and splits the unit hypercube into 2d smaller regions (quadrants), each corre-
sponding to one of the 2d subtrees of the root. Next, the remaining points x2, . . . , xn are
assigned to the respective quadrants (subtrees) and the 2d subtrees are then built recur-
sively by the same procedure. An example of this construction for 2-dimensional data is
given in Figure 4.4. If the points are uniformly and independently chosen from [0, 1]d, the
associated quadtree is called a d-dimensional random point quadtree.

x1
x2

x3

x4

x1

x3 x2

x4

Figure 4.4: A 2-dimensional quadtree of size n = 4, constructed from the points x1, x2, x3, x4.
Each box (external node) in the tree corresponds to one of the regions on the left.

We now denote by Yn the number of leaves (i.e., the number of nodes without children) in
a d-dimensional random point quadtree with n nodes. The tree in Figure 4.4, for example,
has two leaves (x3 and x4). The quantity Yn satisfies Y0 = 0, Y1 = 1 and

Yn
d
=

2d∑
r=1

Y
(r)

I
(n)
r

, n ≥ 2,

with the usual independence and self-similarity assumptions, i.e., Yn satisfies recurrence (3.1)
with n0 = 2, K = 2d, A1(n) = · · · = AK(n) = 1 and bn = 0. The vector I(n) has a mixed
multinomial distribution,

L
(
I(n)
)

= Mult(n− 1, 〈U〉1, . . . , 〈U〉2d),

where U is uniformly distributed over the hypercube [0, 1]d and (〈U〉1, . . . , 〈U〉2d) is the
vector of the volumes of the 2d quadrants which are generated by cutting [0, 1]d with the
d hyperplanes through U perpendicular to the axes.
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Expectations, variances and limit laws for Yn have been studied by Flajolet, Labelle, Lafor-
est and Salvy [27] and Chern, Fuchs and Hwang [11] for general d ≥ 1. The case d = 1 is the
binary search tree case, see Devroye [16] and Flajolet, Gourdon and Mart́ınez [26]. Here,
we focus on the regime 1 ≤ d ≤ 8, where a central limit theorem holds. For d > 8, more
pronounced periodicities prevent asymptotic normality; see Chern, Fuchs and Hwang [11]
and Fuchs, Müller and Sulzbach [32] for asymptotic distributional results for d > 8. We
have, see [16, 27, 11],

E[Yn] = µn+

{
O
(
1), d = 1,

O(nα + nδ), d ≥ 2,
(4.10)

with a positive constant µ depending on d, α = 2 cos(2π/d)− 1 and arbitrary δ > 0. The
values of α are displayed in Table 4.2.

d 2 3 4 5 6 7 8
α −3 −2 −1 −0.38 0 0.24 0.41

Table 4.2: Approximate values of α = αd = 2 cos(2π/d)− 1 depending on d.

The variance satisfies, see Chern, Fuchs and Hwang [11],

Var(Yn) = σ2n+

{
O
(
n2/3

)
, 1 ≤ d ≤ 7,

O
(
n2(
√
2−1)), d = 8,

(4.11)

with σ2 > 0 depending on d. A rate of convergence in the central limit law for 1 ≤ d ≤ 8 for
the Kolmogorov metric has been identified by Chern, Fuchs and Hwang [11] showing the

order O(n−1/2) when 1 ≤ d ≤ 7 and the order O(n−3(3/2−
√
2)) ≈ O(n−0.257) when d = 8. By

applying Theorem 3.4, we rederive this result for the Zolotarev metric ζ3 with an additional
ε in the exponent for 2 ≤ d ≤ 7.

Theorem 4.8. The number Yn of leaves in a d-dimensional random point quadtree with n
points inserted satisfies, as n→∞,

ζ3

(Yn − E[Yn]√
Var(Yn)

,N (0, 1)
)

=


O
(
n−1/2

)
, d = 1,

O
(
n−1/2+ε

)
, 2 ≤ d ≤ 7,

O
(
n−3(3/2−

√
2)
)
, d = 8,

Proof. For 2 ≤ d ≤ 8, the proof follows along the same lines as the proof of Theorem 4.6,
and is omitted here. For the binary search tree case d = 1, we can use the exact mean and
variance of Yn given in Devroye [16] in combination with Remark 3.5 to avoid the ε in the
exponent of the rate.
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4.2 Periodic functions in mean and variance

We now discuss some examples where the asymptotic expansions of the mean and the
variance include periodic functions instead of fixed constants. This is the case for several
quantities in binomial splitting processes such as tries, PATRICIA tries and digital search
trees (see, e.g., Drmota [19], Knuth [56] and Mahmoud [59] for an overview of those struc-
tures). Throughout this section, let (Yn)n≥0 be an L3-integrable sequence satisfying the
recursion

Yn
d
= Y

(1)

I
(n)
1

+ Y
(2)

I
(n)
2

+ bn, n ≥ n0, (4.12)

with (I(n), bn), (Y
(1)
n )n≥0 and (Y

(2)
n )n≥0 independent and (Y

(r)
n )n≥0

d
= (Yn)n≥0 for r = 1, 2.

Apart from that, we assume that I
(n)
1 has essentially the binomial distribution Bin(n,1/2)

and that I
(n)
1 + I

(n)
2 is essentially n. In concrete terms, this means that I

(n)
1 is binomially

Bin(n − k,1/2) distributed and I
(n)
2 = n − k − I(n)1 for some fixed k ∈ N0. Extensions to

the asymmetric case with success probability p 6= 1/2 are possible. Mostly, these binomial
recurrences are asymptotically normally distributed, see Hwang, Fuchs and Zacharovas [44],
Jacquet and Szpankowski [47, 48], Neininger and Rüschendorf [70] and Schachinger [85]
for some examples.

Our first theorem covers the case of linear mean and variance, i.e., we assume that, as
n→∞,

E[Yn] = nP1(log2 n) + O(1), (4.13)

Var(Yn) = nP2(log2 n) + O(1), (4.14)

for some differentiable and 1-periodic functions P1, P2 with Lipschitz continuous derivatives
and P2 > 0. Possible applications would start with the analysis of the number of internal
nodes of a trie for n keys in the symmetric Bernoulli model (see, e.g., Fuchs, Hwang
and Zacharovas [31], Jacquet and Régnier [46], Neininger and Rüschendorf [70] and the
references therein for the mean, variance and limit laws) or the number of leaves in a
random digital search tree of n keys (see, e.g., Flajolet and Sedgewick [28], Hwang, Fuchs
and Zacharovas [44] and Kirschenhofer and Prodinger [52] for the mean and variance of the
number of leaves). For a sequence (Yn)n≥0 satisfying the above assumptions, the following
theorem provides a bound on the rate of convergence in the Zolotarev ζ3 metric.

Theorem 4.9. Let (Yn)n≥0 be L3-integrable and satisfy recursion (4.12) with ‖bn‖3 = O(1),
(4.13) and (4.14). Then, for any ε > 0 and as n→∞, we have

ζ3

(Yn − E[Yn]√
Var(Yn)

,N (0, 1)
)

= O(n−1/2+ε).

Proof. Since P2 is positive, continuous and 1-periodic, there exists some n1 ∈ N0 such that
Var(Yn) > 0 for n ≥ n1. As in (3.2), we define the normalized quantities Xn := Yn−E[Yn]
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for n < n1 and

Xn :=
Yn − E[Yn]√

Var(Yn)
, n ≥ n1.

With A
(n)
r and b(n) given in (3.4), we have the L3-convergences

A
(n)
1 →

1√
2
, A

(n)
2 →

1√
2
, b(n) → 0,

thus we are in the situation of Theorem 3.4. To apply this theorem, we have to estimate
the orders of ‖

∑2
r=1(A

(n)
r )2 − 1‖3/2 and ‖b(n)

∥∥
3
. For this purpose, we use Lemma 3.8 with

f(n) = nP1(log2 n), e(n) = 1,

g(n) = nP2(log2 n), h(n) = 1,

where we use the convention 0 · Pi(log2(0)) := 0 for i = 1, 2. With these functions, we
obtain ∥∥∥ 2∑

r=1

(A(n)
r )2 − 1

∥∥∥
3/2
≤
∥∥∥ 2∑
r=1

(A
(n)

r )2 − 1
∥∥∥
3/2

+ O
( 1

n

)
and ∥∥b(n)∥∥

3
≤
∥∥b(n)∥∥

3
+ O

( 1

n
+

1

n1/2

)
,

where the quantities A
(n)

r , r = 1, 2, and b
(n)

are defined in (3.21):

A
(n)

r =

√
I
(n)
r P2(log2 I

(n)
r )

nP2(log2 n)
,

b
(n)

=
1√

nP2(log2 n)

(
bn − nP1(log2 n) +

2∑
r=1

I(n)r P1(log2 I
(n)
r )
)
.

Hence, we have∥∥∥ 2∑
r=1

(A
(n)

r )2 − 1
∥∥∥
3/2

=
1

nP2(log2 n)

∥∥∥ 2∑
r=1

I(n)r P2(log2 I
(n)
r )− nP2(log2 n)

∥∥∥
3/2

= O
( 1

n

)
and

∥∥b(n)∥∥
3

=
1√

nP2(log2 n)

∥∥∥bn +
2∑
r=1

I(n)r P1(log2 I
(n)
r )− nP1(log2 n)

∥∥∥
3

= O
( 1

n1/2

)
,

where we used the assumption ‖bn‖3 = O(1) and Lemma 4.11 below. It is easily seen that
the technical condition (3.6) is satisfied and that∥∥1{I(n)

r <`}A
(n)
r

∥∥3
3

= O
(

Var(Yn)−3/2 P(I(n)r < `)
)

= O(n−3/2)
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for any ` ∈ N and r = 1, 2. Hence, it remains to check condition (3.16): With Lemma 3.8
and R(n) = n−1/2+ε, we have as n→∞

2∑
r=1

E
[R(I

(n)
r )

R(n)

∣∣A(n)
r

∣∣3] ≤ 2∑
r=1

E
[
R(I

(n)
r )

R(n)

(I(n)r P2(log2 I
(n)
r )

nP2(log2 n)

)3/2]
+ O

(
1

n

)
→ 2

(1

2

)1+ε
< 1,

and the assertion follows.

Remark 4.10. From the proof of Theorem 4.9, it follows that

∥∥∥ 2∑
r=1

(A(n)
r )2 − 1

∥∥∥3/2
3/2

+
∥∥b(n)∥∥3

3
+

2∑
r=1

∥∥1{I(n)
r <`}A

(n)
r

∥∥3
3

= O
( 1

n3/2

)
for any ` ∈ N and as n → ∞. Thus, with Remark 3.5 (see also Section 4.1.2), it might
be possible to remove the ε in the exponent of the rate in Theorem 4.9 in some concrete
applications.

The following lemma was used to bound the convergence rates of the coefficients in the proof
of Theorem 4.9. Note that a related bound can be found in Neininger and Rüschendorf [70,
Proof of Corollary 5.7], there however without a rate of convergence.

Lemma 4.11. Let P be a differentiable, 1-periodic function with Lipschitz continuous
derivative P ′ and Bn binomially Bin(n,1/2) distributed. Then we have, for any s ≥ 1 and
as n→∞, ∥∥BnP (log2Bn) + (n−Bn)P (log2(n−Bn))− nP (log2 n)

∥∥
s

= O(1).

Proof. Note that for Bn ∈ {0, n}, the integrand has value 0, which is why the following
estimates are carried out on the event {0 < Bn < n}. We set Rn = Bn − n

2
. By the mean

value theorem, there exists some (random) ξn between n
2

and Bn = n
2

+Rn such that

log2Bn = log2

( n
2

+Rn

)
= log2

(n
2

)
+

Rn

log 2 ξn
.

Using the 1-periodicity of P and once again the mean value theorem, there exists some
(random) χn between log2 n and log2 n+ Rn

log 2 ξn
such that

P (log2Bn) = P

(
log2

(n
2

)
+

Rn

log 2 ξn

)
= P

(
log2 n+

Rn

log 2 ξn

)
= P (log2 n) +

Rn

log 2 ξn
P ′(χn).
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Analogously, there exists some ξ̃n between n
2

and n− Bn = n
2
− Rn and some χ̃n between

log2 n and log2 n− Rn

log 2 ξ̃n
such that

P
(

log2(n−Bn)
)

= P
(

log2

(n
2
−Rn

))
= P (log2 n)− Rn

log 2 ξ̃n
P ′(χ̃n).

Hence, we obtain (with the convention 1
ξn

= 1

ξ̃n
= 0 on the event {Bn ∈ {0, n}})∥∥BnP (log2Bn) + (n−Bn)P (log2(n−Bn))− nP (log2 n)

∥∥
s

=
∥∥∥(n

2
+Rn

) Rn

log 2 ξn
P ′(χn)−

(n
2
−Rn

) Rn

log 2 ξ̃n
P ′(χ̃n)

∥∥∥
s

≤
∥∥∥∥ nRn

2 log 2

( 1

ξn
P ′(χn)− 1

ξ̃n
P ′(χ̃n)

)∥∥∥∥
s

+

∥∥∥∥ R2
n

log 2

( 1

ξn
P ′(χn) +

1

ξ̃n
P ′(χ̃n)

)∥∥∥∥
s

. (4.15)

For the first summand in (4.15), we obtain by the Cauchy–Schwarz inequality∥∥∥∥ nRn

2 log 2

( 1

ξn
P ′(χn)− 1

ξ̃n
P ′(χ̃n)

)∥∥∥∥
s

≤ n

2 log 2

∥∥Rn

∥∥
2s

∥∥∥ 1

ξn
P ′(χn)− 1

ξ̃n
P ′(χ̃n)

∥∥∥
2s
,

which is of order O(1) since
∥∥Rn

∥∥
2s

= 1
2
n1/2

∥∥∥Bn−n
2√

n/2

∥∥∥
2s

= O(n1/2) and∥∥∥ 1

ξn
P ′(χn)− 1

ξ̃n
P ′(χ̃n)

∥∥∥
2s
≤
∥∥∥ 1

ξn

(
P ′(χn)− P ′(χ̃n)

)∥∥∥
2s

+
∥∥∥P ′(χ̃n)

( 1

ξn
− 1

ξ̃n

)∥∥∥
2s

is of order O(n−3/2). This can be seen, e.g., by applying once again the Cauchy–Schwarz
inequality and by using the following facts valid for any r ≥ 1:

� Since ξn is between n
2

and Bn, we obtain∥∥∥ 1

ξn

∥∥∥r
r
≤
∥∥∥1{Bn>0}

1

min{n/2, Bn}

∥∥∥r
r
≤ P

(
Bn ≤

n

3

)
+
( 3

n

)r
.

By some standard Chernoff bound, we find that P(Bn ≤ n/3) is exponentially small,
which implies that

∥∥ 1
ξn

∥∥
r

= O(1/n). Analogously, we also find
∥∥ 1

ξ̃n

∥∥
r

= O(1/n).

� Furthermore, by the Lipschitz property of P ′ (with Lipschitz constant L, say), we
obtain∥∥P ′(χn)− P ′(χ̃n)

∥∥
r
≤ L

∥∥χn − χ̃n∥∥r ≤ L
∥∥∥ Rn

log 2

( 1

ξn
+

1

ξ̃n

)∥∥∥
r

= O(n−1/2).

� To bound the term
∥∥P ′(χ̃n)

(
1
ξn
− 1

ξ̃n

)∥∥
2s

, we make use of the boundedness of P ′ and

the observation that, on {0 < Bn < n}, we have (recall that ξn is between n
2

and Bn

and ξ̃n between n
2

and n−Bn)∣∣∣ 1

ξn
− 1

ξ̃n

∣∣∣ ≤ ∣∣∣ 1

Bn

− 1

n−Bn

∣∣∣ =
2|Rn|

Bn(n−Bn)
.
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Since the quadratic function x 7→ x(n − x) is monotonically increasing for x ≤ n/2
and monotonically decreasing for x ≥ n/2, we obtain, by splitting into the events
{n
3
≤ Bn ≤ 2n

3
} and {0 < Bn <

n
3
} ∪ {2n

3
< Bn < n},∥∥∥1{0<Bn<n}

1

Bn(n−Bn)

∥∥∥r
r
≤
( 9

2n2

)r
+ P

(
Bn <

n

3

)
+ P

(
Bn >

2n

3

)
= O(n−2r),

which implies
∥∥ 1
ξn
− 1

ξ̃n

∥∥
2s

= O(n−3/2).

In a similar manner, we bound the second summand in (4.15):∥∥∥∥ R2
n

log 2

( 1

ξn
P ′(χn) +

1

ξ̃n
P ′(χ̃n)

)∥∥∥∥
s

≤ 1

log 2

∥∥R2
n

∥∥
2s

∥∥∥ 1

ξn
P ′(χn) +

1

ξ̃n
P ′(χ̃n)

∥∥∥
2s
,

and the latter term is bounded since
∥∥R2

n

∥∥
2s

= O(n) and
∥∥ 1
ξn
P ′(χn)

∥∥
2s

= O(1/n). This
completes the proof.

We now consider the case where our quantities Yn satisfy recursion (4.12) with bn being
essentially n. We assume that, as n→∞, we have

E[Yn] = n log2(n) + nP1(log2 n) + O(1), (4.16)

Var(Yn) = nP2(log2 n) + O(1), (4.17)

for some differentiable and 1-periodic functions P1, P2 with Lipschitz continuous derivatives
and P2 > 0. With minor adjustments in the proof, the error terms O(1) appearing in (4.16)
and (4.17) can be replaced by O(logα n) with arbitrary α > 0. This covers, for example, the
external path length of random tries and related digital tree structures constructed from
n random binary strings under appropriate independence assumptions (see, e.g., Fuchs,
Hwang and Zacharovas [31, 44], Kirschenhofer, Prodinger and Szpankowski [53] and the
references therein).

Theorem 4.12. Let (Yn)n≥0 be L3-integrable and satisfy (4.12) with ‖bn − n‖3 = O(1),
(4.16) and (4.17). Then, for any ε > 0 and as n→∞, we have

ζ3

(Yn − E[Yn]√
Var(Yn)

,N (0, 1)
)

= O(n−1/2+ε).

Proof. The proof works along the same lines as the proof of Theorem 4.9, except that we
use Lemma 3.8 with

f(n) = n log2(n) + nP1(log2 n), e(n) = 1,

g(n) = nP2(log2 n), h(n) = 1,

with the conventions 0 · log2(0) := 0 and 0 · Pi(log2(0)) := 0 for i = 1, 2. Here again, we
obtain ∥∥∥ 2∑

r=1

(A(n)
r )2 − 1

∥∥∥
3/2
≤
∥∥∥ 2∑
r=1

(A
(n)

r )2 − 1
∥∥∥
3/2

+ O
( 1

n

)
= O

( 1

n

)
,
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where A
(n)

r is defined as in the proof of Theorem 4.9 for r = 1, 2. For the toll term b(n), we
find ∥∥b(n)∥∥

3
≤
∥∥b(n)∥∥

3
+ O

(
n−1/2

)
,

where b
(n)

is now given by

1√
nP2(log2 n)

(
bn − n log2(n)− nP1(log2 n) +

2∑
r=1

I(n)r log2(I
(n)
r ) + I(n)r P1(log2 I

(n)
r )
)
.

Considering the following Lemma 4.13 and the assumption ‖bn − n‖3 = O(1), we have∥∥bn − n log2(n) + I
(n)
1 log2(I

(n)
1 ) + I

(n)
2 log2(I

(n)
2 )
∥∥
3

= O(1),

which implies, together with Lemma 4.11, ‖b(n)‖3 = O(n−1/2). The assertion follows just
as in Theorem 4.9.

Lemma 4.13. Let Bn be binomially Bin(n,1/2) distributed. Then we have, for any s ≥ 1
and as n→∞,∥∥n− n log2(n) +Bn log2(Bn) + (n−Bn) log2(n−Bn)

∥∥
s

= O(1).

Proof. We use the same notation as in the proof of Lemma 4.11 to obtain∥∥n− n log2(n) +Bn log2(Bn) + (n−Bn) log2(n−Bn)
∥∥
s

=
∥∥∥n− n log2(n) +

(n
2

+Rn

)(
log2

(n
2

)
+

Rn

log 2ξn

)
+
(n

2
−Rn

)(
log2

(n
2

)
− Rn

log 2ξ̃n

)∥∥∥
s

=
∥∥∥(n

2
+Rn

) Rn

log 2 ξn
−
(n

2
−Rn

) Rn

log 2 ξ̃n

∥∥∥
s
,

which is of order O(1) by the same arguments as in the proof of Lemma 4.11.

4.3 Local counters in binary search trees

In this section, we analyze different quantities in a binary search tree built from a random
permutation of {1, . . . , n}. As in Devroye [16], we consider a slightly modified construction
of the binary search tree: We assign a random time stamp Ui to each key i ∈ {1, . . . , n},
where the time stamps U1, . . . , Un are assumed to be independent and uniformly distributed
on [0, 1] (and distinct). We think of the data in terms of pairs (1, U1), . . . , (n, Un) and
insert key i before key j if and only if the corresponding time stamps satisfy Ui < Uj
(i, j = 1, . . . , n). We now introduce and analyze a class of parameters defined on such
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a random binary search tree, the so-called local counters. Local counters of order k are
quantities Yn which can be written in the form, see Devroye [16],

Yn =
n∑
i=1

f(Ui−k, . . . , Ui, . . . , Ui+k) (4.18)

for some fixed constant k ≥ 0 and a function f : [0, 1]2k+1 → {0, 1} only depending on the
relative order of the input values (meaning that f is invariant under changes in the input
values that preserve their relative order). For simplicity of notation, we use the convention
Ui = 0 for i ≤ 0 or i ≥ n+ 1. The random variable Yn can be interpreted as the number of
nodes in the binary search tree with some given property only depending on the insertion
order of “environing” keys. More precisely, we say that the node storing key i has the
given property if and only if f(Ui−k, . . . , Ui, . . . , Ui+k) = 1. To decide whether this is true,
it suffices to know the relative order of the time stamps of the keys i− k, . . . , i, . . . , i+ k.
One example of a local counter of order 1 would be the number of leaves since the node
storing key i is a leaf if and only if the keys i − 1 and i + 1 are inserted before i (i.e.,
Ui−1 < Ui and Ui+1 < Ui). Further examples of local counters include the number of nodes
with one child, the number of nodes with two children, the number of 2-protected nodes
(nodes which are neither leaves nor parents of leaves), the number of nodes with exactly
k (left) descendants and the number of fringe trees that are copies of a fixed binary tree
with k nodes, see Devroye [16], Holmgren and Janson [40] and Mahmoud and Ward [64],
where also moments and asymptotic normality are derived.

The definition (4.18) naturally allows a recursive decomposition of local counters: As
explained above, Yn can be understood as the total number of nodes in the binary search
tree with some given property. This number can be decomposed recursively by adding the
numbers of nodes with the given property in the two subtrees of the root to the indicator
that the root itself has the given property. To apply our theorems, we need the additional
assumption that the event that the root has the property does not influence the occurence
of the property in the subtrees of the root, in the sense that we have

Yn
d
= Y

(1)
In

+ Y
(2)
n−1−In + bn, n ≥ n0,

with (Y
(1)
n )n≥0, (Y

(2)
n )n≥0 and (In, bn) independent, Y

(r)
n

d
= Yn for n ≥ 0 and r = 1, 2, In

uniformly distributed on {0, . . . , n− 1} and bn ∈ {0, 1}. As we want to study various local
counters multivariately, we analyze the expectation, variance and covariances of different
local counters before stating the main theorem.

Lemma 4.14. Let Yn and Y ′n be local counters of orders k and k′, respectively. Then, there
exists some n2 ∈ N such that we have

E[Yn] = µn+ cµ,

Var(Yn) = σ2n+ cσ,

Cov(Yn, Y
′
n) = ςn+ cς ,

for n ≥ n2 with some explicitly computable constants µ ∈ [0, 1], σ2 ≥ 0 and ς, cµ, cσ, cς ∈ R.
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Proof. By definition (4.18), Yn can be written as Yn =
∑n

i=1 f(Ui−k, . . . , Ui, . . . , Ui+k) with
some function f as specified above. In the following, for i = 1, . . . , n, we use the notation
Zi := f(Ui−k, . . . , Ui, . . . , Ui+k). Then, for i = k + 1, . . . , n − k, the random variables Zi
are identically distributed, which implies for n ≥ 2k

E[Yn] =
n−k∑
i=k+1

E[Zi] +
k∑
i=1

E[Zi] +
n∑

i=n−k+1

E[Zi]

= E[Zk+1] · n− 2k · E[Zk+1] +
k∑
i=1

E[Zi] +
k∑
i=1

E[Zn−i+1].

Note that for i = 1, . . . , k, the term E[Zn−i+1] is a fixed constant independent of n since
Zn−i+1 = f(Un−i+1−k, . . . , Un, 0, . . . , 0) has the same distribution as f(U1, . . . , Ui+k, 0, . . . , 0).
Thus, the statement for the mean is satisfied with

µ = E[Zk+1], cµ = −2k · E[Zk+1] +
k∑
i=1

E[Zi] +
k∑
i=1

E[Zn−i+1].

For the variance of Yn, we additionally use that Zi and Zj are independent whenever |i−j| >
2k and that the pair (Zi, Zi+j) has the same joint distribution as the pair (Zk+1, Zk+1+j)
for i = k + 1 . . . , n− 3k and j = 1, . . . , 2k. Thus, we have for n ≥ 4k

Var(Yn) =
n∑
i=1

Var(Zi) + 2
∑
i<j

Cov(Zi, Zj)

= (n− 2k)Var(Zk+1) +
k∑
i=1

Var(Zi) +
n∑

i=n−k+1

Var(Zi) + 2
n−3k∑
i=k+1

2k∑
j=1

Cov(Zi, Zi+j)

+ 2
k∑
i=1

i+2k∑
j=i+1

Cov(Zi, Zj) + 2
n∑

i=n−3k+1

(i+2k)∧n∑
j=i+1

Cov(Zi, Zj)

=
(

Var(Zk+1) + 2
2k∑
j=1

Cov(Zk+1, Zk+1+j)
)
n+ cσ,

where the symbol cσ is defined as

cσ = −2k · Var(Zk+1)− 8k
2k∑
j=1

Cov(Zk+1, Zk+1+j) +
k∑
i=1

Var(Zi) +
k∑
i=1

Var(Zn−i+1)

+ 2
k∑
i=1

i+2k∑
j=i+1

Cov(Zi, Zj) + 2
n∑

i=n−3k+1

(i+2k)∧n∑
j=i+1

Cov(Zi, Zj).

Arguments similar to those for the mean show that the terms combined in cσ are in-
deed fixed constants independent of n for n ≥ 4k. In a similar manner, we derive the
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covariance Cov(Yn, Y
′
n). Since Y ′n is a local counter of order k′, we find some function

f ′ as specified in definition (4.18) such that we can write Y ′n =
∑n

i=1 Z
′
i with Z ′i :=

f ′(Ui−k′ , . . . , Ui, . . . , Ui+k′). As Zi and Z ′j are independent for |i − j| > k + k′ and as
the pair (Zi, Z

′
j) has the same distribution as (Zk+2k′+1, Z

′
k+2k′+1+j−i) for i = k + 2k′ +

1, . . . , n− k − 2k′ and j = i− k − k′, . . . , i+ k + k′, we obtain for n ≥ 2k + 4k′

Cov(Yn, Y
′
n) =

n∑
i,j=1

Cov(Zi, Z
′
j)

=
k+2k′∑
i=1

i+k+k′∑
j=(i−k−k′)∨1

Cov(Zi, Z
′
j) +

n−k−2k′∑
i=k+2k′+1

i+k+k′∑
j=i−k−k′

Cov(Zi, Z
′
j)

+
n∑

i=n−k−2k′+1

(i+k+k′)∧n∑
j=i−k−k′

Cov(Zi, Z
′
j)

=
( 2k+3k′+1∑

j=k′+1

Cov(Zk+2k′+1, Z
′
j)
)
n+ cς ,

with cς defined by

cς = −(2k + 4k′)
2k+3k′+1∑
j=k′+1

Cov(Zk+2k′+1, Z
′
j) +

k+2k′∑
i=1

i+k+k′∑
j=(i−k−k′)∨1

Cov(Zi, Z
′
j)

+
n∑

i=n−k−2k′+1

(i+k+k′)∧n∑
j=i−k−k′

Cov(Zi, Z
′
j).

Here again, all appearing sums are independent of n for n ≥ 2k+ 4k′, which completes the
proof.

Now that we have determined the covariance structure, we can analyze any number of local
counters multivariately. For this, we assume Yn = (Y1,n, . . . , Yd,n) to be a d-dimensional
vector of local counters of orders k1, . . . , kd satisfying the recursion

Yn
d
= Y

(1)
In

+ Y
(2)
n−1−In + bn, n ≥ n0, (4.19)

with (Y
(1)
n )n≥0, (Y

(2)
n )n≥0 and (In, bn) independent, Y

(r)
n

d
= Yn for n ≥ 0 and r = 1, 2,

In uniformly distributed on {0, . . . , n − 1} and some random vector bn in {0, 1}d. By
Lemma 4.14, there exists a (d× d)-matrix A such that the covariance matrix of Yn has the
form

Cov(Yn) = An+ O(1), (4.20)

where the O(1)-term can be read componentwise. The following theorem provides a bound
on the rate of convergence in the Zolotarev distance ζ3 for the multivariate quantities Yn.
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Theorem 4.15. Let Yn = (Y1,n, . . . , Yd,n) be a vector of local counters of orders k1, . . . , kd
satisfying the distributional recursion (4.19). Furthermore, assume that the matrix A de-
fined by (4.20) is positive definite. Then we have, for any ε > 0 and as n→∞,

ζ3
(
Cov(Yn)−1/2(Yn − E[Yn]),N (0, Idd)

)
= O(n−1/2+ε).

Proof. Since Cov(Yn) = An + O(1) with some positive definite matrix A, we have that
Cov(Yn) is positive definite for large n, say for n ≥ n1. Thus, we set Cn = Cov(Yn) for
n ≥ n1, Cn = Idd for n < n1, Mn = E[Yn] for n ≥ 0 and introduce the normalized quantities

Xn := C−1/2n (Yn −Mn), n ≥ 0.

The normalized sequence satisfies the modified recursion

Xn
d
= A

(n)
1 X

(1)

I
(n)
1

+ A
(n)
2 X

(2)

I
(n)
2

+ b(n), n ≥ n0,

with I
(n)
1 = In, I

(n)
2 = n− 1− In,

A(n)
r := C−1/2n C

1/2

I
(n)
r

, b(n) := C−1/2n

(
bn −Mn +M

I
(n)
1

+M
I
(n)
2

)
and independence and self-similarity relations as before. By Lemma 2.3, we obtain

C1/2
n =

(
An+ O(1)

)1/2
= A1/2n1/2 + O(n−1/2)

and, by Lemma 2.1,

C−1/2n = n−1/2
(
A1/2 + O(n−1)

)−1
= A−1/2n−1/2 + O(n−3/2).

Modeling all quantities on a common probability space such that I
(n)
1 /n converges almost

surely to a uniformly distributed random variable U in [0, 1], we have the L3-convergences

A
(n)
1 →

√
U Idd, A

(n)
2 →

√
1− U Idd and b(n) → 0 as n→∞. Thus, we are in the situation

of Section 3.1.2 and obtain the limiting equation

X
d
=
√
UX(1) +

√
1− UX(2),

with U uniformly distributed on [0, 1] and X(1), X(2) and U independent. To apply The-

orem 3.4, we need to determine the orders of
∥∥A(n)

1 (A
(n)
1 )T + A

(n)
2 (A

(n)
2 )T − Idd

∥∥3/2
3/2

and∥∥b(n)∥∥3
3
. For r = 1, 2, we find

A(n)
r (A(n)

r )T = C−1/2n C
I
(n)
r
C−1/2n

=
(
A−1/2n−1/2 + O(n−3/2)

)(
AI(n)r + O(1)

)(
A−1/2n−1/2 + O(n−3/2)

)
=
I
(n)
r

n
Idd + O(n−1)
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and hence ∥∥A(n)
1 (A

(n)
1 )T + A

(n)
2 (A

(n)
2 )T − Idd

∥∥3/2
3/2

= O(n−3/2).

Furthermore, denoting by µ the d-dimensional vector such that Mn = µn+O(1), we obtain

b(n) = C−1/2n

(
bn − µn+ µI

(n)
1 + µI

(n)
2 + O(1)

)
= C−1/2n (bn + O(1)).

Thus, we have ∥∥b(n)∥∥3
3
≤ ‖C−1/2n ‖3op ·

∥∥bn + O(1)
∥∥3
3

= O(n−3/2).

As the technical conditions (3.6) and (3.14) are satisfied, it remains to check condition
(3.16): With R(n) = n−1/2+ε and as n→∞, we have

E
[R(I

(n)
1 )

R(n)

∥∥A(n)
1

∥∥3
op

]
= E

[(I(n)1

n

)−1/2+ε ∥∥A(n)
1

∥∥3
op

]
→ E[U1+ε] < 0.5,

which finishes the proof.

In numerous applications, the ε in the convergence rate of Theorem 4.15 can be removed.
Note that we only needed Cov(Yn) = An + O(1) in the proof of Theorem 4.15, but we
could use the representation Cov(Yn) = An + B for some matrices A,B in combination
with Remark 3.5 to avoid the ε in certain applications. This is particularly true, see
Theorem 4.16 below, if the covariance matrix of Yn is of the form A(n + 1) for large n
and some positive definite matrix A—which is true for a large class of examples (see, e.g.,
Holmgren and Janson [40] and the references therein). The following theorem considers
this special case. In particular, it covers applications such as the number Yn of 2-protected
nodes in a random binary search tree of size n, for which Mahmoud and Ward [64] have
shown that E[Yn] = 11/30n− 19/30 for n ≥ 4, Var(Yn) = 29/225(n+ 1) for n ≥ 8 and that the
standardized Yn converge in distribution to a normal limit.

Theorem 4.16. Let Yn = (Y1,n, . . . , Yd,n) be a vector of local counters of orders k1, . . . , kd
satisfying the distributional recursion (4.19). Furthermore, assume that there exist d-
dimensional vectors µ and ν, a positive definite (d × d)-matrix A and some n1 ∈ N0

such that the mean and the covariance matrix of Yn are of the form E[Yn] = µn + ν and
Cov(Yn) = A(n+ 1) for n ≥ n1. If additionally ‖bn − µ+ ν‖33 = O(1/n), then we have, as
n→∞,

ζ3
(
Cov(Yn)−1/2(Yn − E[Yn]),N (0, Idd)

)
= O(n−1/2).

Proof. Just as in the previous proof, we use the normalization

Xn := C−1/2n (Yn −Mn), n ≥ 0,



62 4. Applications

with Cn = Cov(Yn) for n ≥ n1, Cn = Idd for n < n1, Mn = E[Yn] for n ≥ 0 and

check the conditions of Theorem 3.4. Since A
(n)
1 (A

(n)
1 )T + A

(n)
2 (A

(n)
2 )T = Idd on the event

{I(n)1 , I
(n)
2 ≥ n1}, we obtain, as n→∞,

∥∥∥ 2∑
r=1

A(n)
r (A(n)

r )T − Idd

∥∥∥3/2
3/2

= O

(∥∥∥1{I(n)
1 <n1}

( 1

n+ 1
A−1 +

I
(n)
2 + 1

n+ 1
Idd − Idd

)∥∥∥3/2
3/2

)

= O

(
E
[
1{I(n)

1 <n1}

∥∥∥ 1

n+ 1
A−1 − I

(n)
1 + 1

n+ 1
Idd

∥∥∥3/2
op

])
= O

(
n−5/2

)
.

Similarly, using the representation Mn = µn+ ν for n ≥ n1 and the assumption ‖bn − µ+
ν‖33 = O(n−1), we obtain∥∥b(n)∥∥3

3
≤ ‖C−1/2n ‖3op ·

∥∥bn −Mn +M
I
(n)
1

+M
I
(n)
2

∥∥3
3

= O(n−5/2).

We now use Theorem 3.4 with R(n) = n−1/2. Note that condition (3.16) is not satisfied
for R(n) = n−1/2, but we can use the weakened condition stated in Remark 3.5.

To conclude this section, we now give a multivariate example. For this, we consider a
random binary search tree with n nodes constructed as described at the beginning of this
section and denote by L0n the number of nodes with no left descendant and by L1n the
number of nodes with exactly one left descendant, n ≥ 0. Following Devroye [16], we have
the local counter representations

L0n =
n∑
i=1

1{Ui−1<Ui}, L1n =
n∑
i=1

1{Ui−2<Ui<Ui−1},

since the node storing key i has no left descendant if and only if the key i − 1 is inserted
before i (i.e., Ui−1 < Ui) and it has exactly one left descendant (namely the node with key
i − 1) if the key i is inserted before i − 1, but after i − 2 (i.e., Ui−2 < Ui < Ui−1). Note
that we use the convention Ui = 0 for i ≤ 0 again to simplify notation. In Devroye [16], it
is shown that, for n ≥ 2,

E[L0n] =
1

2
(n+ 1), E[L1n] =

1

6
(n+ 1),

and that the standardized quantities have a limiting normal distribution. In order to
study the quantities multivariately, we additionally derive their covariance structure with
Lemma 4.14 and find that we have Cov((L0n, L1n)) = (n+ 1) Γ for n ≥ 4 with

Γ =
1

360

(
30 −15
−15 28

)
.
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Furthermore, defining Yn := (L0n, L1n) for n ≥ 0, we have Y0 = (0, 0) and we directly
obtain the following distributional recurrence:

Yn
d
= Y

(1)
In

+ Y
(2)
n−1−In + bn, n ≥ 1,

where (Y
(1)
j )j≥0, (Y

(2)
j )j≥0 and In are independent, Y

(r)
j has the same distribution as Yj for

j ≥ 0 and r = 1, 2, L(In) = unif{0, . . . , n−1} and bn = (1{In=0},1{In=1}). Since the matrix
Γ is positive definite, we can apply Theorem 4.16 to obtain the following result.

Theorem 4.17. Denoting by Yn := (L0n, L1n) the vector of the numbers of nodes with
no left descendant and with exactly one left descendant, respectively, in a random binary
search tree with n nodes, we have, as n→∞,

ζ3
(
Cov(Yn)−1/2(Yn − E[Yn]),N (0, Id2)

)
= O(n−1/2).

4.4 Convergence rates for Quickselect

In this section, we study the number of key comparisons and the number of key exchanges
used by Hoare’s Quickselect algorithm [38] for finding the m-th smallest element in a
uniformly distributed random permutation of {1, . . . , n}. Briefly summarized, Quickselect
works as follows: First, we choose an arbitrary (here, the rightmost) element p of the list,
the so-called pivot, which is used to partition the remaining elements into elements smaller
than p (left sublist) and elements larger than p (right sublist). After this partitioning step,
the procedure continues on the sublist which contains the m-th smallest element or stops if
the pivot itself has the desired rank. To be concrete, the following algorithm (Algorithm 1)
shows pseudocode for this method.

Algorithm 1 Quickselect (finds the m-th smallest element among the elements
A[left], . . . , A[right])

1: procedure Quickselect(A, left, right, m)
2: if left = right then
3: return A[right]
4: else
5: p← A[right]
6: r ← Partition(A, left, right− 1, p)

// the procedure Partition returns the rank r of the pivot p among the elements

// A[left], . . . , A[right] and moves the keys such that the keys A[left], . . . , A[left+r−2]
// are smaller than p and A[left + r − 1], . . . , A[right− 1] are larger than p

7: if m = r then return p
8: else if m < r then return Quickselect(A, left, left + r − 2, m)
9: else if m > r then return Quickselect(A, left + r − 1, right− 1, m− r)
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Note that there exist various versions of Hoare’s Quickselect algorithm which differ in
the concrete partitioning strategy used. In this section, we assume that our partition-
ing procedure preserves the randomness and the independence between the subfiles and
uses exactly n − 1 key comparisons and a mixed hypergeometrically distributed number
of exchanges. This is true, e.g., for the procedure presented in Wild [94, Algorithm 9].
Based on Hoare’s “crossing pointers” technique, this partitioning procedure makes use of
two pointers scanning the list from left and right until misplaced elements are found. For
the sake of completeness, Algorithm 2 shows the concrete structure of the partitioning
procedure. However, our asymptotic results (Theorems 4.18 and 4.19 below) also hold for
slightly different partitioning procedures (e.g., for the versions presented in Sedgewick [86,
Program 1], Cormen, Leiserson and Rivest [13, Section 8.1] or Wild and Nebel [95, Algo-
rithm 1]).

Algorithm 2 Partitioning Procedure (compares the keys A[lower], . . . , A[upper] with the
pivot p, moves the keys that are smaller than p to the lower positions and those that are
larger than p to the higher positions and returns the rank of the pivot p among the elements
A[lower], . . . , A[upper], p).

1: procedure Partition(A, lower, upper, p)
2: k ← lower; g ← upper
3: while k ≤ g do
4: while true do
5: if A[k] ≤ p then
6: k ← k + 1
7: if k > g then break outer while

8: else break inner while
9: while true do
10: if k == g then g ← g − 1; break outer while

11: if A[g] > p then g ← g − 1
12: else break inner while
13: swap A[k] and A[g]
14: k ← k + 1; g ← g − 1

15: return k − lower + 1

The limiting distribution of the number Yn,m of key comparisons used by Quickselect for
finding the m-th smallest element in a randomly permuted input of length n (with m ∼ cn
for some 0 ≤ c ≤ 1) was studied independently by Grübel and Rösler [34] and Kodaj and
Móri [57], the latter showing (among other things) that the rate of convergence for the
normalized number Yn,bncc/n of comparisons measured in the Wasserstein `1 distance is
Θ(log n/n). Hwang and Tsai [45] have shown that for m = o(n), the limiting distribution
of the normalized number (Yn,m − n)/n of comparisons is the Dickman distribution D
satisfying the distributional recursion (L(U) = unif[0, 1], U and D independent)

D
d
= UD + U.
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This result was further quantified by Goldstein [33] who derived concrete non-asymptotic
upper and lower bounds of order log n/n for the Wasserstein `1 distance between the
normalized number (Yn,m−n)/n of key comparisons and its limiting (Dickman) distribution.
From the definition of the Zolotarev ζ1 distance (which coincides with the Wasserstein `1
metric, see Section 2.2.2), it follows immediately that the rate log n/n cannot be improved
(see Theorem 1.3 in Goldstein [33]). This is because the function x 7→ x is in F1, i.e., we
have

ζ1

(Yn,m − n
n

,D
)
≥
∣∣∣E[Yn,m]

n
− 1− E[D]

∣∣∣ = Ω
( log n

n

)
for any fixed m 6= 2 (the last step follows by using E[D] = 1 and the exact expression
for the expected number E[Yn,m] of comparisons given in Knuth [54]). This raises the
question whether the rate log n/n can be improved if we consider the centered quantities
(Yn,m − E[Yn,m])/n instead.

For the number Wn,m of key exchanges made by Quickselect for finding the m-th smallest
element in a randomly permuted input of length n (with Hoare’s partitioning method),
Hwang and Tsai [45] showed that for m = o(n), the normalized number Wn,m/n of ex-
changes converges in distribution to a limit W satisfying the distributional recursion

W
d
= UW + U(1− U)

with U uniformly on [0, 1] and independent of W . Mahmoud [61] analyzed the limiting
distribution of the number of exchanges made by Quickselect to find an element with
a randomly selected rank (using Lomuto’s partition algorithm) and showed that different
partition algorithms lead to different results. Furthermore, for the number of key exchanges
when selecting a uniform rank with Hoare’s “crossing pointers” technique, Dadoun and
Neininger [14] have provided a rate of convergence in the Wasserstein `p metrics and in the
Kolmogorov metric.

In what follows, we will use our general Theorem 3.1 in order to derive convergence rates
in the Zolotarev ζs distances for both the number of key comparisons and the number of
key exchanges. We first consider the case m = 1 where we always recurse on the left sublist
and then the case where an independent and uniformly distributed rank is selected.

4.4.1 Quickselect for finding the smallest element

Throughout this section, let Y
[c]
n and Y

[e]
n denote the numbers of key comparisons and key

exchanges used by Quickselect (with the partitioning strategy given in Algorithm 2) for
finding the smallest element in a list of n uniformly permuted distinct data. Denoting by
In the size of the left sublist and by bc(n) and be(n) the numbers of key comparisons and

key exchanges during the first partitioning step, we have Y
[ι]
0 = 0 and Y

[ι]
n satisfies the

following distributional recursion for ι = c, e:

Y [ι]
n

d
= Y

[ι]
In

+ bι(n), n ≥ 1,
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where (In, bι(n)) and (Y
[ι]
n )n≥0 are independent and In is uniformly distributed on the

set {0, . . . , n − 1}. Using the partitioning procedure described in Algorithm 2, we have
n − 1 key comparisons during the first step, i.e., bc(n) = n − 1 for n ≥ 1. To count the
number of exchanges, we notice that we need one exchange for each misplaced pair of
keys. More precisely, given In = j, the number of exchanges coincides with the number
of large elements among the first j elements of the permutation. Thus, for the number
of exchanges, we obtain be(n) = Zn for n ≥ 1, where, conditional on In = j, the random
variable Zn is hypergeometrically Hyp(n− 1, j, n− 1− j) distributed. In Knuth [54], it is
shown that

µc(n) := E
[
Y [c]
n

]
= 2n− 2Hn, n ≥ 1.

Furthermore, using Lemma 5.3 in Hwang and Tsai [45] together with the fact that we have
E[be(n)] = (n− 2)/6 for n ≥ 2, we obtain

µe(n) := E
[
Y [e]
n

]
=

1

3
n− 1

2
Hn +

1

12
, n ≥ 2.

For ι = c, e, we define the normalized quantities X
[ι]
0 := 0 and

X [ι]
n :=

1

n

(
Y [ι]
n − µι(n)

)
, n ≥ 1.

Then we have

X [ι]
n

d
= A

(n)
1 X

[ι]
In

+ b(n)ι , n ≥ 1,

where (A
(n)
1 , b

(n)
ι , In) and (X

[ι]
n )n≥0 are independent,

A
(n)
1 =

In
n

and b(n)ι =
1

n
(bι(n)− µι(n) + µι(In)).

Writing In = bnUc for some uniformly distributed U on [0, 1], we have the joint Ls-
convergence (In

n
,
Zn
n

)
→ (U,U(1− U))

as n → ∞, 1 ≤ s < ∞ (see, e.g., Dadoun and Neininger [14]). Thus, this leads to the
limiting equation

X [ι] d
= A∗1X

[ι] + b∗ι (4.21)

with A∗1 = U uniformly distributed on [0, 1], b∗c := 2U−1, b∗e := U(1−U)+ 1
3
U− 1

3
and X [ι]

independent of U . Note that a criterion of Vervaat [92] states that there exists a unique
solution of equation (4.21) among all probability distributions on the real line. Applying
Theorem 3.1, we now derive the following convergence rates.
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Theorem 4.18. The number Y
[c]
n of key comparisons and the number Y

[e]
n of key exchanges

used by Quickselect for finding the smallest element in a random permutation of n distinct
elements satisfy, as n→∞,

ζs

( 1

n

(
Y [c]
n − E[Y [c]

n ]
)
, X [c]

)
=


O
(
logn/n

)
, s = 1,

O
(
1/n
)
, s ∈ (1, 2),

Θ
(
1/n
)
, s = 2,

and, for s ∈ [1, 2],

ζs

( 1

n

(
Y [e]
n − E[Y [e]

n ]
)
, X [e]

)
= O

( 1

n1/2

)
,

where the distribution of X [c] (X [e], respectively) is the unique solution of equation (4.21)
among all probability distributions on the real line.

Proof. We start with the number Y
[c]
n of key comparisons by proving the easier lower bound

for s = 2: By definition of the Zolotarev metric, we have for square integrable V and W
with identical first moments

ζ2(V,W ) ≥ 1

2

∣∣E[V 2]− E[W 2]
∣∣,

since f : R→ R, x 7→ 1
2
x2 is in F2. Thus, we only need information on the second moments

of X
[c]
n and X [c] to obtain a lower bound for the quantity ζ2(X

[c]
n , X [c]). Using the limiting

equation (4.21), we find

E
[
(X [c])2

]
= E[U2]E

[
(X [c])2

]
+ E[(2U − 1)2] =

1

3
E
[
(X [c])2

]
+

1

3
.

Solving for E[(X [c])2], we obtain E[(X [c])2] = 1
2
. Furthermore, by Theorem 1 in Mahmoud,

Modarres and Smythe [62], we have as n→∞,

E
[
(X [c]

n )2
]

=
1

n2
Var(Y [c]

n ) =
1

2
− 9

2n
+ O

( log n

n2

)
.

Altogether, we obtain

ζ2
(
X [c]
n , X

[c]
)
≥ 1

2

∣∣∣E[(X [c]
n )2

]
− E

[
(X [c])2

]∣∣∣ = Θ
( 1

n

)
.

We now prove the upper bound for s ∈ [1, 2] by applying Theorem 3.1. With the embedding
In = bnUc, we have ∥∥A(n)

1 − A∗1
∥∥
s

=
∥∥∥bnUc

n
− U

∥∥∥
s
≤ 1

n
.

Furthermore, applying Lemma 3.8 with f(n) = 2n − 2 log(n), e(n) = 1, g(n) = n2 and
h(n) = 0, we obtain ∥∥b(n)c − b∗c

∥∥
s
≤
∥∥b̄(n)c − b∗c

∥∥
s

+ O
( 1

n

)
,
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where for the first summand, we have∥∥b̄(n)c − b∗c
∥∥
s

=
∥∥∥ 1

n

(
n− 1− (2n− 2 log(n)) + (2In − 2 log(In ∨ 1))

)
− (2U − 1)

∥∥∥
s

≤
∥∥∥ 1

n

∥∥∥
s

+ 2
∥∥∥In
n
− U

∥∥∥
s

+
2

n

∥∥∥ log
( n

In ∨ 1

)∥∥∥
s

= O
( 1

n

)
.

For the last estimate, observe that n/(In∨1) converges almost surely to U−1 as n→∞ and
that we can use the bound bnUc∨1 ≥ 1

2
nU to see that log

(
n

In∨1

)
is bounded by log(2U−1)

for any n ≥ 1. Thus, by dominated convergence, we obtain that E
[

logs
(

n
In∨1

)]
is bounded

in n.

Moreover, the technical conditions (3.5) and (3.6) are satisfied for R(n) = 1/n and by
dominated convergence, we have for s > 1 and as n→∞

E
[
R(In)

R(n)

∣∣A(n)
1

∣∣s] = E
[(In

n

)s−1]
→ E[U s−1] =

1

s
< 1.

However, for s = 1, condition (3.8) is not satisfied—neither for R(n) = 1/n nor for R(n) =
logn/n—but we can use the weaker condition in Remark 3.3 with R(n) = logn/n and R̃(n) =
1/n: From the inequality

∑n−1
i=2 log i ≤ n log n− n, it follows that

E
[
1{In≥1}

R(In)

R(n)
A

(n)
1

]
= E

[
log(In ∨ 1)

log n

]
≤ 1− 1

log n
,

which completes the proof for the number Y
[c]
n of key comparisons.

Similarly, for the number Y
[e]
n of key exchanges, we apply Lemma 3.8 with f(n) = 1

3
n,

e(n) = log(n), g(n) = n2 and h(n) = 0 and obtain∥∥b(n)e − b∗e
∥∥
s
≤
∥∥b̄(n)e − b∗e

∥∥
s

+ O
( log(n)

n

)
,

with ∥∥b̄(n)e − b∗e
∥∥
s

=

∥∥∥∥ 1

n

(
Zn −

1

3
n+

1

3
In

)
−
(
U(1− U) +

1

3
U − 1

3

)∥∥∥∥
s

≤
∥∥∥Zn
n
− U(1− U)

∥∥∥
s

+
1

3

∥∥∥In
n
− U

∥∥∥
s

= O
( 1

n1/2

)
,

since we have ‖Zn/n − U(1 − U)‖s = O(n−1/2) for s ≥ 1 (see Dadoun and Neininger [14,
Lemma 3.2] with small changes in the proof, since their partitioning procedure slightly
differs from ours). Furthermore, with R(n) = n−1/2 and as n→∞,

E
[
R(In)

R(n)

∣∣A(n)
1

∣∣s] = E
[(In

n

)s−1/2]
→ E[U s−1/2] =

1

s+ 1/2
< 1.

Thus, for the number Y
[e]
n of key exchanges, the conditions of Theorem 3.1 are satisfied for

R(n) = n−1/2 and s ∈ [1, 2].
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4.4.2 Quickselect for finding a uniformly chosen element

In this section, we consider the case where the rank Rn to be selected is uniformly dis-
tributed on {1, . . . , n} and independent of the permutation of the data. Again, we denote

by Y
[c]
n (Y

[e]
n , respectively) the number of key comparisons (key exchanges, respectively),

by In the size of the left sublist and by bc(n) and be(n) the numbers of key comparisons
and key exchanges during the first partitioning step. Furthermore, we denote by Jn the
size of the sublist containing the element we are looking for (with the convention Jn = 0
if the chosen pivot itself has the desired rank Rn). Then, Jn is a size-biased version of In
with distribution

P(Jn = 0) =
1

n
, P(Jn = j) =

2j

n2
, j = 1, . . . , n− 1. (4.22)

For ι = c, e, we have Y
[ι]
0 = 0 and the recursive relation

Y [ι]
n

d
= Y

[ι]
Jn

+ bι(n), n ≥ 1,

where (Jn, bι(n)) and (Y
[ι]
n )n≥0 are independent, Jn has the distribution given in (4.22),

bc(n) = n−1 and be(n) has a mixed hypergeometric Hyp(n−1, In, n−1− In) distribution.
However, the number be(n) of key exchanges during the first partitioning step coincides
not only with the number of large elements among the first In elements of the permutation
but also with the number of misplaced elements in the sublist the algorithm recurses on
(at least if the element to be selected is not the pivot itself). Thus, we can and will make
use of the fact that conditional on {Jn = j}, j = 1, . . . , n − 1, we have that be(n) is
hypergeometrically Hyp(n− 1, j, n− 1− j) distributed. Mahmoud, Modarres and Smythe
[62, Theorem 2] have shown that, as n→∞,

µc(n) := E
[
Y [c]
n

]
= 3n− 8 log n+ O(1).

Furthermore, similarly as in Mahmoud [60] (where he analyzed the number of data moves
which is essentially twice the number of key exchanges), we obtain

µe(n) := E
[
Y [e]
n

]
=

1

2
n− 5

3
Hn +

49

18
− 5Hn

3n
+

1

18n
=

1

2
n+ O(log n).

Just as in the previous section, for ι = c, e, we define the centered quantities X
[ι]
0 := 0 and

X [ι]
n :=

1

n

(
Y [ι]
n − µι(n)

)
, n ≥ 1.

Then we have
X [ι]
n

d
= A

(n)
1 X

[ι]
Jn

+ b(n)ι , n ≥ 1,

where (A
(n)
1 , b

(n)
ι , Jn) and (X

[ι]
n )n≥0 are independent,

A
(n)
1 =

Jn
n

and b(n)ι =
1

n

(
bι(n)− µι(n) + µι(Jn)

)
.
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Since Jn/n converges to
√
U (a size-biased version of a uniform random variable U on

[0, 1]) and be(n)/n to
√
U(1−

√
U), this suggests the limiting equation

X [ι] d
= A∗1X

[ι] + b∗ι , (4.23)

where A∗1 =
√
U with U uniformly distributed on [0, 1], b∗c := 3

√
U − 2, b∗e := 1

2

√
U +√

U(1−
√
U)− 1

2
and X [ι] is independent of U . Applying Theorem 3.1, we now derive the

corresponding convergence rates for the Zolotarev metrics.

Theorem 4.19. The number Y
[c]
n of key comparisons and the number Y

[e]
n of key exchanges

used by Quickselect for finding a uniformly chosen element in a random permutation of n
distinct elements satisfy, as n→∞,

ζs

( 1

n

(
Y [c]
n − E[Y [c]

n ]
)
, X [c]

)
=


O
(
logn/n

)
, s = 1,

O
(
1/n
)
, s ∈ (1, 2),

O
(√

logn/n
)
, s = 2,

and for s ∈ [1, 2]

ζs

( 1

n

(
Y [e]
n − E[Y [e]

n ]
)
, X [e]

)
= O

( 1

n1/2

)
,

where the distribution of X [c] (X [e], respectively) is the unique solution of equation (4.23)
in the space of all probability distributions on the real line.

Proof. We start by determining the order of ‖A(n)
1 −A∗1‖s. For this, we use the embedding

Jn = 1{U ≥ 1/n}
⌈√

n2U − n+ 1/4− 1/2
⌉

and A∗1 =
√
U

with a uniform random variable U on [0, 1]. Note that the quantile function of A∗1 is given
by u 7→

√
u and the quantile function of Jn by u 7→ 1{u≥ 1/n}

⌈√
n2u− n+ 1/4 − 1/2

⌉
for

0 < u < 1, which justifies this embedding (see the construction of optimal `s-couplings in
Section 2.2.1). Thus, we find∥∥A(n)

1 − A∗1
∥∥s
s

=

∫ 1

0

∣∣∣1{u≥ 1/n}
1

n

⌈√
n2u− n+ 1/4− 1/2

⌉
−
√
u
∣∣∣s du

=

∫ 1

1/n

(√
u− 1

n

⌈√
n2u− n+ 1/4− 1/2

⌉)s
du+ O(n−s/2−1)

=
n−1∑
k=1

∫ vk

vk−1

(√
u− 1

n

⌈√
n2u− n+ 1/4− 1/2

⌉)s
du+ O(n−s/2−1),

where vk := (k2 + k + n)/n2 for k = 0, . . . , n − 1. Since
⌈√

n2u− n+ 1/4 − 1/2
⌉

= k for
vk−1 < u ≤ vk, we have (k = 1, . . . , n− 1)∫ vk

vk−1

(√
u− 1

n

⌈√
n2u− n+ 1/4− 1/2

⌉)s
du =

∫ vk

vk−1

(√
u− k

n

)s
du

≤ (vk − vk−1)
(√

vk −
k

n

)s
=

2k

n2+s

(√
k2 + k + n− k

)s ≤ 2k

n2+s

(n
k

)s
= 2

k1−s

n2
.
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This implies, for 1 ≤ s < 2,

∥∥A(n)
1 − A∗1

∥∥s
s
≤ 2

n2

n−1∑
k=1

k1−s + O(n−s/2−1) = O(n−s), (4.24)

i.e., ‖A(n)
1 − A∗1‖s = O(n−1) for 1 ≤ s < 2. For s = 2, similarly to (4.24), we find

∥∥A(n)
1 − A∗1

∥∥2
2
≤ 2

n2

n−1∑
k=1

1

k
+ O(n−2) = O

( log n

n2

)
.

Note that the order logn/n2 is already the true rate for s = 2 with the above embedding
since we have

∥∥A(n)
1 − A∗1

∥∥2
2
≥

n−1∑
k=1

(vk − vk−1)
(√

vk−1 −
k

n

)2
+ O(n−2) = Θ

( log n

n2

)
.

Furthermore, applying Lemma 3.8 with f(n) = 3n − 8 log(n), e(n) = 1, g(n) = n2 and
h(n) = 0, we obtain ∥∥b(n)c − b∗c

∥∥
s
≤
∥∥b̄(n)c − b∗c

∥∥
s

+ O(n−1),

where for the first summand, we have (similarly as in the proof of Theorem 4.18)∥∥b̄(n)c − b∗c
∥∥
s

=
∥∥∥ 1

n

(
n− 1− (3n− 8 log(n)) + (3Jn − 8 log(Jn ∨ 1))

)
−
(
3
√
U − 2

)∥∥∥
s

≤
∥∥∥ 1

n

∥∥∥
s

+ 3
∥∥∥Jn
n
−
√
U
∥∥∥
s

+
8

n

∥∥∥ log
( n

Jn ∨ 1

)∥∥∥
s

=

{
O
(
1/n
)
, s ∈ [1, 2),

O
(√

logn/n
)
, s = 2.

For s > 1, condition (3.8) is satisfied for R(n) = n−1 since as n→∞

E
[
R(Jn)

R(n)

∣∣A(n)
1

∣∣s] = E
[(Jn

n

)s−1]
→ E

[(√
U
)s−1]

=
2

s+ 1
< 1.

For s = 1, we proceed in the same way as in the proof of Theorem 4.18 and use the
inequality

∑n−1
k=2 k log k ≤ 1

2
n2 log n− 1

4
n2 to show that the condition stated in Remark 3.3

is satisfied with R(n) = logn/n and R̃(n) = 1/n:

E
[
1{Jn≥1}

R(Jn)

R(n)
A

(n)
1

]
= E

[
log(Jn ∨ 1)

log n

]
≤ 1− 1

2 log n
.

Similarly as in the proof of Theorem 4.18, the result for the number of key exchanges
follows immediately from the previous observations and Theorem 3.1 if we show that∥∥∥be(n)

n
−
√
U
(
1−
√
U
)∥∥∥

s
= O(n−1/2)
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for s ≥ 1. For this, recall that on the event {Jn = j}, j = 1, . . . , n− 1, be(n) is hypergeo-
metrically Hyp(n−1, j, n−1− j) distributed. We can now proceed in very much the same
way as it was done in Dadoun and Neininger [14, Lemmas 3.1 and 3.2]. For this, we denote

by Z
(j)
n , j = 1, . . . , n−1, a random variable with hypergeometric Hyp(n−1, j, n−1−j) dis-

tribution and use Theorem 3.1 in Serfling [87] to obtain the following moment inequalities
for the hypergeometric distribution: For j = 1, . . . , n− 1 and s > 0, we have

E
[∣∣∣Z(j)

n

n
− j(n− 1− j)

n(n− 1)

∣∣∣s] ≤ Γ(s/2 + 1)

2s/2+1
n−

s/2, (4.25)

where Γ denotes Euler’s gamma function. Hence, we find for s ∈ [1, 2]∥∥∥be(n)

n
−
√
U
(
1−
√
U
)∥∥∥

s

≤
∥∥∥be(n)

n
− Jn(n− 1− Jn)

n(n− 1)

∥∥∥
s

+
∥∥∥Jn(n− 1− Jn)

n(n− 1)
−
√
U
(
1−
√
U
)∥∥∥

s
= O(n−1/2)

by the uniform bound (4.25) and the estimates∥∥∥Jn(n− 1− Jn)

n(n− 1)
−
√
U
(
1−
√
U
)∥∥∥

s
≤
∥∥∥Jn
n
−
√
U
∥∥∥
s

+
∥∥∥ J2

n

n(n− 1)
− U

∥∥∥
s

≤
∥∥∥Jn
n
−
√
U
∥∥∥
s

+
∥∥∥J2

n

n2
− U

∥∥∥
s

+ O
( 1

n

)
and (with the same notation and arguments as before)∥∥∥J2

n

n2
− U

∥∥∥s
s

=
n−1∑
k=1

∫ vk

vk−1

(
u− k2

n2

)s
du+ O

(
n−(s+1)

)
≤

n−1∑
k=1

(vk − vk−1)
(
vk −

k2

n2

)s
+ O

(
n−(s+1)

)
≤

n−1∑
k=1

2k

n2

( 2

n

)s
+ O

(
n−(s+1)

)
= O(n−s).

This completes the proof.

Remark 4.20. The same argument as in the proof of Theorem 4.18 together with Theo-
rem 2 in Mahmoud, Modarres and Smythe [62] shows that we have ζ2(X

[c]
n , X [c]) = Ω(1/n).

4.4.3 Quickselect for finding the smallest element—a further ap-
proach

In Section 4.4.1, we showed that the rate of convergence for the normalized number of key
comparisons used by Quickselect for finding the smallest element in a list of n randomly
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permuted distinct elements is of order O(1/n) in the Zolotarev metric ζs (1 < s ≤ 2) and
of order O(log n/n) in the Zolotarev metric ζ1 (coinciding with the Wasserstein metric `1).
So far, however, it is not clear whether the latter rate is optimal or whether it might be
possible to obtain the rate O(1/n) also for s = 1. Throughout this section, let Yn denote
the number of key comparisons used by Quickselect for finding the smallest element in a
list of n uniformly permuted distinct data.

The following approach uses an inequality by Rio [79, Theorem 3.1] (see also Rio [78,
Theorem 1] for a similar version with different constants) which allows us to transfer the
ζs rates (1 < s ≤ 2) from Theorem 4.18 to `1 rates. Rio’s result states the following: For
any s > 1, there exists a constant cs > 0 such that

`s(X, Y ) ≤
(
csζs(X, Y )

)1/s
(4.26)

for all Ls-integrable random variables X and Y . For 1 < s ≤ 2, we can choose cs = 2s.
Our aim now is to use this inequality to transfer the ζs rates to `s rates and then, by the
monotonicity of the Wasserstein `s metrics, to `1 rates. For this, we need to make the
bounds in Theorem 4.18 explicit.

Theorem 4.21. The number Yn of key comparisons used by Quickselect for finding the
smallest element in a random permutation of n distinct elements satisfies, for 1 < s ≤ 2
and n ≥ 1,

ζs

( 1

n

(
Yn − E[Yn]

)
, X
)
≤ Cs

(s− 1)n
,

where, e.g., the constant C can be chosen as C = 5 and the distribution of X is the unique

solution of the equation X
d
= UX + 2U − 1 with X and U independent and U uniformly

distributed on [0, 1].

Proof. The proof follows along the same lines as the proof of Theorem 3.1, except that
we use concrete non-asymptotic bounds here. However, note that our goal is to show the
existence of such a constant C rather than choosing it as small as possible. Just as in the
previous sections, we define the normalized quantities X0 := 0 and

Xn :=
1

n

(
Yn − µ(n)

)
, n ≥ 1,

with µ(n) = E[Yn] = 2n− 2Hn. Then we have

Xn
d
=
In
n
XIn + b(n),

with independent In and (Xn)n≥0 and b(n) := 1
n
(n − 1 − µ(n) + µ(In)). For n ≥ 1, we

introduce the accompanying sequence

Z∗n :=
In
n
X + b(n),
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where In and X are independent. Note that Z∗n is Ls-integrable and centered. Hence, the
quantities Xn, Z∗n and X are ζs-compatible for n ≥ 1. Applying the triangle inequality, we
have

ζs(Xn, X) ≤ ζs(Xn, Z
∗
n) + ζs(Z

∗
n, X). (4.27)

Defining ∆s(n) := ζs(Xn, X) and bn(k) := 1
n
(n−1−µ(n)+µ(k)), we obtain by conditioning

on In that, for n ≥ 1,

ζs(Xn, Z
∗
n) = ζs

(
In
n
XIn + b(n),

In
n
X + b(n)

)
= sup

f∈Fs

∣∣∣∣∣ 1n
n−1∑
k=0

(
E
[
f
(k
n
Xk + bn(k)

)]
− E

[
f
(k
n
X + bn(k)

)])∣∣∣∣∣
≤ 1

n

n−1∑
k=0

ζs

(
k

n
Xk + bn(k),

k

n
X + bn(k)

)

≤ 1

n

n−1∑
k=1

(k
n

)s
∆s(k). (4.28)

To bound the second summand in (4.27), we use Theorem 2.7 to show that ζs(Z
∗
n, X) ≤

2`s(Z
∗
n, X) for n ≥ 1 (note that E[|X|s] ≤ 1 by definition of X and E[|Z∗n|s] ≤ 1 by

Lemma 4.24 at the end of this section). With the embedding In = bnUc, the notation
b∗ = 2U − 1 and Lemma 4.23 below, we have

`s(Z
∗
n, X) ≤

∥∥∥∥(Inn X + b(n)
)
− (UX + b∗)

∥∥∥∥
s

≤
∥∥∥In
n
− U

∥∥∥
s

∥∥X∥∥
s

+
∥∥b(n) − b∗∥∥

s

≤ 1√
3n

1√
2

+

√
13

3
· 1

n

=
1 +
√

26√
6n

≤ 5

2n
.

We now choose

Ks :=
5s

s− 1

and obtain ∆s(n) ≤ Ks

n
by induction: For n = 1, we have ∆s(1) = ζs(0, X) ≤ E[|X|s] ≤ Ks.
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For n > 1, using the induction hypothesis, we obtain from (4.27) and (4.28) that

∆s(n) ≤ ζs(Xn, Z
∗
n) + ζs(Z

∗
n, X)

≤ 1

n

n−1∑
k=1

(k
n

)s
∆s(k) +

5

n

≤ Ks

n1+s

n−1∑
k=1

ks−1 +
5

n

≤ Ks

n1+s
· 1

s
· ns +

5

n

=
Ks

n
,

which finishes the proof.

Remark 4.22. Note that the bounds of the just presented proof (except for the induction
step at the end) also apply to the case s = 1, where we obtain the bound

ζ1

( 1

n

(
Yn − E[Yn]

)
, X
)
≤ 5Hn

n
, n ≥ 1.

We now want to transfer the ζs rates ζs(Xn, X) ≤ 5s
(s−1)n from Theorem 4.21 to `1 rates.

By the monotonicity of the `s metrics and Rio’s inequality (4.26), we obtain for 1 < s ≤ 2
and n ≥ 1

`1(Xn, X) ≤ `s(Xn, X) ≤
(
2s · ζs(Xn, X)

)1/s
,

which—in combination with Theorem 4.21—gives the bound

`1(Xn, X) ≤
( 10s2

(s− 1)n

)1/s
≤ 10

( 1

(s− 1)n

)1/s
=: 10fn(s).

We now minimize fn on (1, 2] and find that fn is minimal for s∗ = 1 + (W (n/e))−1 with
minimal value fn(s∗) = e−W (n/e) = e

n
W (n/e) for n ≥ 8, where W denotes the Lambert

W function (the inverse relation of the function x 7→ xex). Note that we have W (x) ≥
log x− log log x for x ≥ e, which gives for n ≥ 8

`1(Xn, X) ≤ 10fn(s∗) = 10e−W (n/e) ≤ 10e
log n

n
.

However, with this approach, we cannot improve the rate log n/n since we have, on the
other hand,

fn(s∗) =
e

n
W
(n

e

)
≥ e

n

(
log(n/e)− log log(n/e)

)
∼ e

log n

n
.

Thus, in conclusion, it can be said that we derived concrete non-asymptotic upper bounds
for the rate of convergence in the Wasserstein `1 metric in this section, but it remains
unclear whether the rate log n/n is optimal.
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To conclude this section, we present the two technical lemmas which were used in the
proof of Theorem 4.21. The first one gives concrete non-asymptotic upper bounds for the
convergence rates of the coefficients.

Lemma 4.23. Let In = bnUc for some uniform random variable U on [0, 1], b(n) =
1
n
(n− 1− 2n+ 2Hn + 2In − 2HIn) and b∗ = 2U − 1. Then we have, for s ∈ [1, 2],∥∥∥In

n
− U

∥∥∥
s
≤ 1√

3n

and ∥∥b(n) − b∗∥∥2
2

=
13

3n2
− 4

n3
Hn.

Proof. To show the first assertion, we calculate

∥∥∥In
n
− U

∥∥∥s
s

=
n−1∑
k=0

∫ (k+1)/n

k/n

(u− k/n)s du =
1

s+ 1
n−s

and use the fact that (s + 1)−1/s ≤ 1/
√

3 for s ∈ [1, 2]. For the second part, we obtain
(with the convention H0 = 0)

∥∥b(n) − b∗∥∥2
2

=
1

n2
E
[(
− 1 + 2(In − nU) + 2(Hn −HIn)

)2]
=

1

n2

n−1∑
k=0

∫ (k+1)/n

k/n

(
− 1 + 2(k − nu) + 2(Hn −Hk)

)2
du

=
13

3n2
− 8

n3

n−1∑
k=0

(Hn −Hk) +
4

n3

n−1∑
k=0

(Hn −Hk)
2.

Using the identities
∑n−1

k=0(Hn −Hk) = n and
∑n−1

k=0(Hn −Hk)
2 = 2n−Hn (which can be

proved by induction, e.g.), we find

∥∥b(n) − b∗∥∥2
2

=
13

3n2
− 4

n3
Hn,

which is the second assertion.

In the proof of Theorem 4.21, we further used that E[|Z∗n|s] ≤ 1 which is addressed by the
following lemma.

Lemma 4.24. Let X be the unique solution of the equation X
d
= UX + 2U − 1 with U

uniform on [0, 1] and independent of X, In = bnUc, b(n) = 1
n
(n−1−2n+2Hn+2In−2HIn)

and Z∗n = In
n
X + b(n). Then we have E[|Z∗n|s] ≤ 1 for any n ≥ 1 and s ∈ [1, 2].
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Proof. By the monotonicity of the Ls norms, it is enough to show ‖Z∗n‖2 ≤ 1 for any n ≥ 1.
Since X is centered and independent of (In, b

(n)), we obtain

∥∥Z∗n∥∥22 = E
[(In

n
X + b(n)

)2]
=

1

n2
E
[
I2n
]
E[X2] + E

[
(b(n))2

]
.

Using the elementary identities
∑n−1

k=0(Hn−Hk) = n,
∑n−1

k=0 k(Hn−Hk) = n(n− 1)/4 and∑n−1
k=0(Hn −Hk)

2 = 2n−Hn, the second summand can be explicitly computed:

E
[
(b(n))2

]
=

1

n3

n−1∑
k=0

(2k − (n+ 1) + 2Hn − 2Hk)
2 =

1

3
− 2

n
+

17

3n2
− 4Hn

n3
≤ 1

3
.

This, together with E[X2] = 0.5 and E[I2n] = (n− 1)(2n− 1)/6 ≤ n2/3, implies∥∥Z∗n∥∥22 ≤ 1

6
+

1

3
=

1

2
,

which finishes the proof.
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Chapter 5

A General Theorem with Relaxed
Independence Conditions

In the previous sections, we always analyzed quantities (Yn)n≥0 satisfying the recurrence
relation

Yn
d
=

K∑
r=1

Ar(n)Y
(r)

I
(n)
r

+ bn, n ≥ n0.

Apart from various other conditions, we always assumed the conditional independence
condition (1.3), i.e., that

(A1(n), . . . , AK(n), bn, I
(n)), (Y (1)

n )n≥0, . . . , (Y
(K)
n )n≥0 are independent.

However, recent work shows that in some special cases with normal limits, it is possible
to use ideas of the contraction method even though the random variables (Y

(r)
n )n≥0 and

the toll term bn show dependencies (see Neininger [68] for refined Quicksort asymptotics
or Müller and Neininger [66] for the composition of cyclic urns). Therefore, the aim of
this chapter is to derive a general convergence theorem similar to Theorem 3.4, with the
difference that we replace the conditional independence condition (1.3) by the (weaker)
partial conditional independence condition (1.4), i.e., by the assumption that

(A1(n), . . . , AK(n), I(n)), (Y (1)
n )n≥0, . . . , (Y

(K)
n )n≥0 are independent.

Note that this weakened independence condition allows additional dependencies between
the toll function bn and the quantities (Y

(1)
n )n≥0, . . . , (Y

(K)
n )n≥0. We start with a general

(multivariate) convergence theorem in Section 5.1 and then state a more convenient form
for univariate applications in Section 5.2. Several examples of how these theorems can be
used are given in Section 5.3.
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5.1 A general theorem for convergence rates

In this section, we consider a sequence (Yn)n≥0 of d-dimensional random vectors satisfying
the distributional recursion

Yn
d
=

K∑
r=1

Ar(n)Y
(r)

I
(n)
r

+ bn, n ≥ n0, (5.1)

where n0 ∈ N, the coefficients A1(n), . . . , AK(n) are random (d × d)-matrices, bn is a d-

dimensional random vector, I(n) = (I
(n)
1 , . . . , I

(n)
K ) is a random vector in {0, . . . , n}K and all

appearing quantities have finite third absolute moments. Furthermore, we assume that the
self-similarity condition (1.2) and the partial conditional independence condition (1.4) are
satisfied. Apart from the fact that the conditional independence condition (1.3) is replaced
by the weaker partial conditional independence condition (1.4) now, this is exactly the
framework of the previous sections.

As before, we assume that there exists some n1 ∈ N0 such that the covariance matrix of
Yn is positive definite for n ≥ n1 and define the normalized sequence (Xn)n≥0 by

Xn := C−1/2n (Yn −Mn), n ≥ 0, (5.2)

where Mn is chosen as the mean vector of Yn and Cn as the covariance matrix of Yn for
n ≥ n1 (and Cn = Idd for n < n1). The normalized quantities satisfy the following modified
recursion:

Xn
d
=

K∑
r=1

A(n)
r X

(r)

I
(n)
r

+ b(n), n ≥ n0, (5.3)

with

A(n)
r := C−1/2n Ar(n)C

1/2

I
(n)
r

, b(n) := C−1/2n

(
bn −Mn +

K∑
r=1

Ar(n)M
I
(n)
r

)
(5.4)

and self-similarity and independence relations as in (5.1).

To obtain a convergence result Xn → N (0, Idd), we assume that the coefficients appear-
ing in (5.4) converge appropriately, i.e., that there exist L3-integrable random variables
A∗1, . . . , A

∗
K such that, as n→∞,

(A
(n)
1 , . . . , A

(n)
K , b(n))

L3−→ (A∗1, . . . , A
∗
K , 0),

with A∗1(A
∗
1)

T + · · · + A∗K(A∗K)T = Idd almost surely. Then, from (5.3), we expect a limit
X of Xn to satisfy the distributional fixed-point equation

X
d
=

K∑
r=1

A∗rX
(r), (5.5)
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where (A∗1, . . . , A
∗
K), X(1), . . . , X(K) are independent and X(r) d

= X for r = 1, . . . , K. As ex-
plained earlier, under the additional assumption

∑K
r=1 E[‖A∗r‖3op] < 1, the standard normal

distribution is the unique solution of equation (5.5) in the space Pd3 (0, Idd) of L3-integrable
probability distributions with mean vector 0 and covariance matrix Idd.

The subject of this section is to derive a general convergence result corresponding to The-
orem 3.4 for normal limits, except that the independence condition (1.3) required there
is replaced by the weaker condition (1.4) allowing dependence on bn now. In return, to
bound the Zolotarev distance ζ3(Xn,N (0, Idd)), we need slightly amended conditions on
the convergence rates of the coefficients here, namely that∥∥∥∥ K∑

r=1

E[A(n)
r (A(n)

r )T]− Idd

∥∥∥∥
op

+
∥∥∥ K∑
r=1

A(n)
r (A(n)

r )T − Idd

∥∥∥3/2
3/2

+
∥∥b(n)∥∥

3
= O(R(n)) (5.6)

for some monotonically decreasing sequence R(n) > 0 with R(n) → 0. Furthermore, we
now need the technical conditions∥∥1{I(n)

r <`}A
(n)
r

∥∥2
2

+
∥∥1{I(n)

r <`}A
(n)
r

∥∥3
3

= O(R(n)), n→∞, (5.7)

for all ` ∈ N and r = 1, . . . , K and∥∥1{I(n)
r =n}A

(n)
r

∥∥
3
→ 0, n→∞, (5.8)

for all r = 1, . . . , K. Under these assumptions, we can deduce the following result which,
in the main, corresponds to Theorem 3.4, the difference being only the somewhat stronger
conditions (5.6) and (5.7) as compensation for the relaxed independence assumption.

Theorem 5.1. Let (Xn)n≥0 be given as in (5.2) with (Yn)n≥0 satisfying the distributional

recurrence (5.1). Furthermore, assume that the coefficients (A
(n)
1 , . . . , A

(n)
K , b(n)) defined in

(5.4) converge to (A∗1, . . . , A
∗
K , 0) in the L3 norm as n→∞ with

∑
A∗r(A

∗
r)

T = Idd almost
surely. If conditions (5.6), (5.7) and (5.8) are satisfied and if

lim sup
n→∞

K∑
r=1

E
[
R(I

(n)
r )

R(n)

∥∥A(n)
r

∥∥3
op

]
< 1, (5.9)

then we have, as n→∞,

ζ3(Xn,N (0, Idd)) = O(R(n)).

Remark 5.2. Before giving the proof of this theorem, we make two short comments:

(1) Looking at condition (5.6) in Theorem 5.1, we find the assumption ‖b(n)‖3 = O(R(n)),
i.e., compared to the corresponding condition (3.15) for the toll function in Theorem
3.4 (‖b(n)‖33 = O(R(n))), there is no additional factor 3 in the exponent here—which
is due to the fact that we allow additional dependencies. It is, however, not clear
whether the proof of Theorem 5.1 might be modified to “regain” the factor 3.
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(2) In some applications, we are only interested in showing (weak) convergence rather
than estimating the rate of convergence. In this case, the formulation of Theorem 5.1
is more complex than necessary. More specifically, if no rates are needed, we can
replace condition (5.9) by the assumption that

K∑
r=1

E[‖A∗r‖3op] < 1.

Furthermore, condition (5.6) can be dropped and instead of condition (5.7), it is
enough to assume that ∥∥1{I(n)

r <`}A
(n)
r

∥∥
3
→ 0

as n → ∞ for any ` ∈ N and r = 1, . . . , K. With these modified conditions, similar
arguments as in the proof of Theorem 5.1 can be used to show that ζ3(Xn,N (0, Idd))
converges to zero as n → ∞ (and hence, Xn converges in distribution to the d-
dimensional standard normal distribution).

In the rest of this section, we give the proof of Theorem 5.1 which follows along the same
lines as the proof of Theorems 3.1 and 3.4. To handle the additional dependencies, we
adopt and generalize the main ideas used in the proof of Theorem 1.1 in Neininger [68] for
refined Quicksort asymptotics. Recall the bound

ζ3(V1 +W1, V2 +W2) ≤ ζ3(V1, V2) + ζ3(W1,W2)

for independent pairs (V1, V2) and (W1,W2) both being ζ3-compatible. For the proof of
Theorem 5.1, we need a slightly stronger version of this bound which also applies if the
appearing quantities are dependent. The following statement can be found in Müller and
Neininger [66, Lemma 3.4] (see also Neininger [68, Lemma 2.1] for a similar statement for
the univariate case).

Lemma 5.3. Let V1, V2, W1 and W2 be random vectors in Rd such that the pairs (V1, V2)
and (V1 +W1, V2 +W2) are ζ3-compatible. Then we have

ζ3(V1 +W1, V2 +W2) ≤ ζ3(V1, V2) +
2∑
i=1

(
‖Vi‖23‖Wi‖3 +

‖Vi‖3‖Wi‖23
2

+
‖Wi‖33

2

)
.

With the help of this statement, we can now give the proof of Theorem 5.1.

Proof of Theorem 5.1. To establish a rate of convergence, we set

Zn :=
K∑
r=1

A(n)
r T

I
(n)
r
N (r),

where (A
(n)
1 , . . . , A

(n)
K , I(n)), N (1), . . . , N (K) are independent, N (r) has the d-dimensional

standard normal distribution for r = 1, . . . , K and the deterministic sequence (Tn)n≥0
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of positive semidefinite matrices is defined by Tn = (Cov(Xn))1/2 for n ≥ 0 (i.e., Tn = Idd
for n ≥ n1). Note that Xn and Zn are not necessarily ζ3-compatible. In fact, we have

Cov(Zn) =
K∑
r=1

E
[
A(n)
r T

I
(n)
r
TT

I
(n)
r

(A(n)
r )T

]
=

K∑
r=1

E
[
A(n)
r (A(n)

r )T
]

+
K∑
r=1

E
[
1{I(n)

r <n1}
A(n)
r

(
T
I
(n)
r
TT

I
(n)
r
− Idd

)
(A(n)

r )T
]

= Idd + O(R(n)) (5.10)

by (5.6) and (5.7), where the O(R(n))-term can be read componentwise (or in operator
norm). Hence, Zn does not necessarily have covariance matrix Idd, but we can choose a
deterministic sequence (Mn)n≥0 of matrices converging to Idd (componentwise or in op-
erator norm) such that Cov(MnZn) = Idd for all large enough n. To be more precise,
since Cov(Zn) is positive definite for large n (say for n ≥ n1, where n1 may need to be
enlarged), we can choose Mn = (Cov(Zn))−1/2 for n ≥ n1. With this choice, we have
Mn = (Idd + O(R(n)))−1/2 = Idd + O(R(n)) by (5.10) and Remark 2.4. As a result, we
have ‖Mn − Idd‖op = O(R(n)). In the following, we will use the notation Kn := Mn − Idd,
such that the quantity

Z∗n := (Idd +Kn)Zn

has covariance matrix Idd for n ≥ n1. Hence, the quantities Xn, Z∗n and N (0, Idd) are
ζ3-compatible for n ≥ n1. Applying the triangle inequality, we have, for n ≥ n1,

ζ3(Xn,N (0, Idd)) ≤ ζ3(Xn, Z
∗
n) + ζ3(Z

∗
n,N (0, Idd)). (5.11)

We start by estimating the first summand in (5.11). For this, we introduce the notation

Qn = A
(n)
1 X

(1)

I
(n)
1

+ · · ·+ A
(n)
K X

(K)

I
(n)
K

and use Lemma 5.3 to obtain

ζ3(Xn, Z
∗
n) = ζ3

(
Qn + b(n), Zn +KnZn

)
≤ ζ3(Qn, Zn) + ‖Qn‖23‖b(n)‖3 +

1

2
‖Qn‖3‖b(n)‖23 +

1

2
‖b(n)‖33

+
(
‖Kn‖op +

1

2
‖Kn‖2op +

1

2
‖Kn‖3op

)
‖Zn‖33. (5.12)

Using the triangle inequality together with ‖Xn‖3 = O(1) (see Lemma 5.4 below) and the

fact that A
(n)
r converges in L3 for r = 1, . . . , K (from which follows that ‖A(n)

r ‖3 is bounded
in n for any r = 1, . . . , K), we find

‖Qn‖3 ≤
K∑
r=1

∥∥A(n)
r X

(r)

I
(n)
r

∥∥
3

= O(1).

In a similar manner, we find ‖Zn‖3 = O(1), which implies, together with inequality (5.12)
and ‖b(n)‖3 + ‖Kn‖op = O(R(n)),

ζ3(Xn, Z
∗
n) ≤ ζ3(Qn, Zn) + O(R(n)).
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Similarly as in the proof of Theorem 3.1, we condition on (A
(n)
1 , . . . , A

(n)
K , I(n)) and use the

notation ∆(n) := ζ3(Xn,N (0, Idd)) to obtain, for n ≥ n1,

ζ3(Qn, Zn) ≤

(
E

K∑
r=1

1{I(n)
r =n}‖A

(n)
r ‖3op

)
∆(n) + E

[
K∑
r=1

1{n1≤I(n)
r <n}‖A

(n)
r ‖3op∆(I(n)r )

]

+ E

[
K∑
r=1

1{I(n)
r <n1}

‖A(n)
r ‖3op sup

k<n1

ζ3(Xk, TkN
(r))

]
. (5.13)

Note that the last summand is of order O(R(n)) by condition (5.7). To bound the second
summand ζ3(Z

∗
n,N (0, Idd)) in (5.11), we use Lemma 3.6: By the convolution property of

the normal distribution, we have Z∗n
d
= GnN with

Gn :=
( K∑
r=1

(Idd +Kn)A(n)
r T

I
(n)
r
TT

I
(n)
r

(A(n)
r )T(Idd +Kn)T

)1/2
,

N having the d-dimensional standard normal distribution and being independent of Gn.
By definition of Kn, we have Cov(Z∗n) = Idd for n ≥ n1. In addition, conditions (5.6)

and (5.7) imply that ‖GnG
T
n − Idd‖3/23/2 = O(R(n)). Thus, by Lemma 3.6, we obtain

ζ3(Z
∗
n,N (0, Idd)) = O(R(n)). Hence, putting everything together and introducing the

notation pn := E
[∑K

r=1 1{I(n)
r =n}‖A

(n)
r ‖3op

]
, we have

∆(n) ≤ pn∆(n) + E

[
K∑
r=1

1{n1≤I(n)
r <n}‖A

(n)
r ‖3op∆(I(n)r )

]
+ O(R(n)). (5.14)

Using the assumptions pn → 0 (condition (5.8)) and (5.9), we can now proceed in exactly
the same way as in the proof of Theorem 3.1 and complete the proof inductively.

To bound the right hand side of (5.12) in the proof of Theorem 5.1, we used the assump-
tion that ‖Xn‖3 is bounded in n. The following lemma shows that this assumption is
indeed satisfied under the conditions of Theorem 5.1 (note that condition (5.9) implies
that

∑
E[‖A∗r‖3op] < 1).

Lemma 5.4. Let (Xn)n≥0 be given as in (5.2) with (Yn)n≥0 satisfying the distributional

recurrence (5.1). Furthermore, assume that the coefficients (A
(n)
1 , . . . , A

(n)
K , b(n)) defined in

(5.4) converge to (A∗1, . . . , A
∗
K , 0) in the L3 norm as n→∞ with

∑
A∗r(A

∗
r)

T = Idd almost
surely and

∑
E[‖A∗r‖3op] < 1 and that the technical condition (5.8) is satisfied. Then we

have, as n→∞, ‖Xn‖3 = O(1).

Proof. The proof follows along the same lines as the proof of Lemma 2.3 in Neininger [68],
except that we consider a more general setting with multivariate quantities and an arbitrary
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number K of subproblems here. Clearly, by the triangle inequality and the fact that Xn

satisfies recursion (5.3) for n ≥ n0, we have for n ≥ n0

‖Xn‖ ≤
K∑
r=1

‖A(n)
r ‖op

∥∥X(r)

I
(n)
r

∥∥+ ‖b(n)‖ =
K∑
r=1

Λr,n + ‖b(n)‖,

where we use the notation Λr,n = ‖A(n)
r ‖op

∥∥X(r)

I
(n)
r

∥∥ for n ≥ n0 and r = 1, . . . , K. Thus, we

obtain for n ≥ n0

‖Xn‖3 ≤
( K∑
r=1

Λr,n

)3
+ 3
( K∑
r=1

Λr,n

)2
‖b(n)‖+ 3

( K∑
r=1

Λr,n

)
‖b(n)‖2 + ‖b(n)‖3. (5.15)

We now analyze the expectations of these summands separately. For the last summand, we
have E[‖b(n)‖3] = o(1) since b(n) converges to zero in L3. The second and third summand
in (5.15) can be estimated by Hölder’s inequality. Just as in [68], we define the quantities

βn := 1 ∨ max
0≤j≤n

E[‖Xj‖3]

for n ≥ 0. Recall that the coefficients A
(n)
r are L3-convergent for r = 1, . . . , K, which is

why their L3 norms are uniformly bounded by some constant D. Hence, conditioning on
(A

(n)
1 , . . . , A

(n)
K , I(n)) gives the bound

‖Λr,n‖3 ≤
(
E
[
‖A(n)

r ‖3op βn
])1/3

≤ Dβ1/3
n .

In combination with Hölder’s inequality, the L3-convergence of b(n) to zero and the fact
that βn ≥ 1, we obtain

E
[
Λr,n‖b(n)‖2

]
≤ ‖Λr,n‖3 ‖b(n)‖23 = o(1)βn = o(1)

(
βn−1 + E[‖Xn‖3]

)
for r = 1, . . . , K. Similarly, we have for r, s = 1, . . . , K

E
[
Λr,nΛs,n‖b(n)‖

]
≤ ‖Λr,n‖3 ‖Λs,n‖3 ‖b(n)‖3 = o(1)

(
βn−1 + E[‖Xn‖3]

)
.

For the first summand in (5.15), we write

E
[( K∑

r=1

Λr,n

)3]
=

K∑
r=1

E[Λ3
r,n] + 3

K∑
r=1

∑
s 6=r

E[Λ2
r,nΛs,n] +

K∑
r=1

∑
s 6=r

∑
t6=r,s

E[Λr,nΛs,nΛt,n].

For r = 1, . . . , K, again by conditioning on (A
(n)
1 , . . . , A

(n)
K , I(n)) and assumption (5.8), we

obtain

E[Λ3
r,n] = E

[
‖A(n)

r ‖3op
∥∥X(r)

I
(n)
r

∥∥3] ≤ E
[
‖A(n)

r ‖3op
]
βn−1 + o(1)E[‖Xn‖3].
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Similarly, for r, s = 1, . . . , K, r 6= s, by conditioning on (A
(n)
1 , . . . , A

(n)
K , I(n)) and using the

fact that (X
(r)
n )n≥0 and (X

(s)
n )n≥0 are independent as well as Hölder’s inequality and the

boundedness of ‖A(n)
r ‖3 by D, we have

E[Λ2
r,nΛs,n] = E

[
‖A(n)

r ‖2op
∥∥X(r)

I
(n)
r

∥∥2‖A(n)
s ‖op

∥∥X(s)

I
(n)
s

∥∥]
≤ D3 max

0≤j≤n
E[‖Xj‖2] max

0≤j≤n
E[‖Xj‖] = O(1),

since E[‖Xj‖2] = d for j large enough (recall that Xj has mean vector 0 and covariance

matrix Idd for j ≥ n1) and, by Jensen’s inequality, E[‖Xj‖] ≤
√
d for j ≥ n1. Finally, the

same arguments imply

E[Λr,nΛs,nΛt,n] ≤ D3
(

max
0≤j≤n

E[‖Xj‖]
)3

= O(1)

for any pairwise different indices r, s, t = 1, . . . , K. Putting all estimates together, we have

E[‖Xn‖3] ≤
( K∑

r=1

E
[
‖A(n)

r ‖3op
]

+ o(1)

)
βn−1 + O(1) + o(1)E[‖Xn‖3].

We now solve this inequality for E[‖Xn‖3] and use the fact that the vector (A
(n)
1 , . . . , A

(n)
K )

converges in L3 to (A∗1, . . . , A
∗
K) to find

E[‖Xn‖3] ≤
1

1 + o(1)

( K∑
r=1

E
[
‖A∗r‖3op

]
+ o(1)

)
βn−1 + O(1). (5.16)

Note that we assumed that the sum E[‖A∗1‖3op + · · · + ‖A∗K‖3op] is smaller than 1. Thus,
based on (5.16), we can find some constants C > 0, δ ∈ (0, 1) and n2 ∈ N such that for
n ≥ n2, we have

E[‖Xn‖3] ≤ (1− δ)βn−1 + C. (5.17)

To show that E[‖Xn‖3] = O(1), we now check that E[‖Xn‖3] ≤ βn2 ∨ (C/δ) by induction
on n: For n < n2, the assertion is clearly true. For n ≥ n2, using (5.17) and the induction
hypothesis, we have

E[‖Xn‖3] ≤ (1− δ)βn−1 + C ≤ (1− δ)
(
βn2 ∨

C

δ

)
+ C ≤ βn2 ∨

C

δ
,

which finishes the proof.

5.2 A more convenient version of the general theorem

As mentioned in Remark 5.2 (2), Theorem 5.1 is more complex than necessary if no bounds
on the convergence rate are needed or, moreover, if the quantities are one-dimensional.
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Therefore, this section contains an additional theorem for the univariate case which is a
more convenient version of Theorem 5.1 if no rates of convergence are needed. In fact, the
following theorem is a generalization of the central limit theorem given in Corollary 5.2
in Neininger and Rüschendorf [70], with the difference that it applies even if we allow

dependencies between the toll term bn and (Y
(1)
n )n≥0, . . . , (Y

(K)
n )n≥0.

From now on, we focus on the univariate case d = 1 and consider the special situation
where Yn satisfies the distributional recursion

Yn
d
=

K∑
r=1

Y
(r)

I
(n)
r

+ bn, n ≥ n0, (5.18)

where I(n), (Y
(1)
n )n≥0, . . . , (Y

(K)
n )n≥0 are independent, Y

(r)
j has the same distribution as Yj

for j ≥ 0 and r = 1, . . . , K, the subproblem sizes I
(n)
r are in {0, 1, . . . , n} and satisfy

P(I
(n)
r = n)→ 0 as n→∞ and all appearing quantities are L3-integrable. With the same

arguments as in the proof of Theorem 5.1, we derive the following theorem.

Theorem 5.5. Let (Yn)n≥0 be a sequence of random variables in R that satisfies recursion
(5.18). Suppose that, for some positive functions f and g and as n→∞,

E[Yn] = f(n) + o(g1/2(n)), Var(Yn) = g(n) + o(g(n)). (5.19)

Further assume that for all r = 1, . . . , K and as n→∞, we have the L3-convergences

g1/2(I
(n)
r )

g1/2(n)
→ A∗r,

1

g1/2(n)

(
bn − f(n) +

K∑
r=1

f(I(n)r )
)
→ 0 (5.20)

with (A∗1)
2 + · · · + (A∗K)2 = 1 almost surely and P(∃ r : A∗r = 1) < 1. If the technical

condition

P(I
(n)
r < `)

g3/2(n)
→ 0 (5.21)

is satisfied for any ` ∈ N, r = 1, . . . , K and as n→∞, then we have, as n→∞,

Yn − f(n)

g1/2(n)

d−→ N (0, 1).

Remark 5.6. This theorem generalizes the central limit theorem in Neininger and Rüschen-
dorf [70, Corollary 5.2], where the toll function bn is assumed to be independent of the

quantities (Y
(1)
n )n≥0, . . . , (Y

(K)
n )n≥0. Surprisingly, we do not need any extra conditions as

compensation for the weakened independence assumption.

Proof. Since we have Var(Yn) = g(n) + o(g(n)) for some positive function g, we can find
some constant n1 ∈ N0 such that Var(Yn) is positive for n ≥ n1. As before, we define the
standardized quantities by

Xn :=
Yn − µ(n)

σ(n)
, n ≥ 0,
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where µ(n) := E[Yn], σ2(n) := Var(Yn) for n ≥ n1 and σ(n) = 1 for n < n1. The
statement of the theorem follows directly from the asymptotic expansions in (5.19) and
Slutsky’s theorem if we show that the normalized quantities Xn converge in distribution to
the standard normal distribution. Thus, it is sufficient to show that the Zolotarev distance
∆(n) := ζ3(Xn,N (0, 1)) converges to zero as n → ∞. Since we will proceed in the same
way as in the proof of Theorem 5.1, we just point out the main arguments. Here, the
sequence (Xn)n≥0 satisfies the modified recursion

Xn
d
=

K∑
r=1

A(n)
r X

(r)

I
(n)
r

+ b(n), n ≥ n0, (5.22)

with I(n), (X
(1)
n )n≥0, . . . , (X

(K)
n )n≥0 independent, X

(r)
j identically distributed as Xj for j ≥ 0

and r = 1, . . . , K and

A(n)
r =

σ(I
(n)
r )

σ(n)
, b(n) =

1

σ(n)

(
bn − µ(n) +

K∑
r=1

µ(I(n)r )
)
.

By conditions (5.19), (5.20) and (5.21), we have A
(n)
r → A∗r and b(n) → 0 in L3 for r =

1, . . . , K. Similarly as in the proof of Theorem 5.1, we now define

Zn :=
K∑
r=1

A(n)
r τ

I
(n)
r
N (r),

where I(n), N (1), . . . , N (K) are independent, the deterministic non-negative sequence (τn)n≥0
is defined by τ 2n = Var(Xn) for n ≥ 0 and N (r) has the standard normal distribution for
r = 1, . . . , K. Then, Zn is centered and has variance

Var(Zn) =
K∑
r=1

E
[
(A(n)

r )2τ 2
I
(n)
r

]
=

K∑
r=1

(
E
[
(A(n)

r )2
]

+ E
[
1{I(n)

r <n1}
(A(n)

r )2
(
τ 2
I
(n)
r
− 1
)])

.

We now observe that for any r = 1, . . . , K, the latter summand in the above sum con-
verges to zero by condition (5.21), since this condition and Jensen’s inequality imply that

E
[
1{I(n)

r <n1}
(A

(n)
r )2]→ 0. Together with the fact that A

(n)
r converges in the L3 norm (and

thus also in L2) to A∗r with (A∗1)
2 + · · ·+ (A∗K)2 = 1 almost surely, we obtain that Var(Zn)

converges to 1. Hence, we can choose a deterministic sequence (κn)n≥0 with κn → 0 such
that

Z∗n := (1 + κn)Zn

has variance 1 for n ≥ n1 (where n1 may need to be enlarged). As a consequence, Xn,
Z∗n and N (0, 1) are ζ3-compatible for n ≥ n1 and we can apply the triangle inequality to
obtain

∆(n) = ζ3(Xn,N (0, 1)) ≤ ζ3(Xn, Z
∗
n) + ζ3(Z

∗
n,N (0, 1)), n ≥ n1.
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We use the same notation Qn := A
(n)
1 X

(1)

I
(n)
1

+ · · · + A
(n)
K X

(K)

I
(n)
K

as before and Lemma 5.3 to

find

ζ3(Xn, Z
∗
n) ≤ ζ3(Qn, Zn) + ‖Qn‖23‖b(n)‖3 +

1

2
‖Qn‖3‖b(n)‖23 +

1

2
‖b(n)‖33

+
(
|κn|+

1

2
|κn|2 +

1

2
|κn|3

)
‖Zn‖33

= ζ3(Qn, Zn) + o(1),

since b(n) converges to zero in the L3 norm, κn converges to zero and ‖Zn‖3 and ‖Qn‖3 are
bounded in n, the latter by Lemma 5.4, again (note that we have

∑
E[(A∗r)

3] < 1 by the
assumptions

∑
(A∗r)

2 = 1 almost surely and P(∃ r : A∗r = 1) < 1 and that the technical

condition (5.8) is satisfied since we assumed P(I
(n)
r = n)→ 0 for r = 1, . . . , K, thus Lemma

5.4 is applicable). Conditioning on I(n) implies that, for n ≥ n1,

ζ3(Qn, Zn) ≤

(
K∑
r=1

P(I(n)r = n)

)
∆(n) + E

[
K∑
r=1

1{n1≤I(n)
r <n}(A

(n)
r )3∆(I(n)r )

]

+ E

[
K∑
r=1

1{I(n)
r <n1}

(A(n)
r )3 sup

k<n1

ζ3(Xk, τkN
(r))

]

= o(1)∆(n) + E

[
K∑
r=1

1{n1≤I(n)
r <n}(A

(n)
r )3∆(I(n)r )

]
+ o(1),

where we used the assumption P(I
(n)
r = n) → 0 for r = 1, . . . , K and the technical

condition (5.21) in the last step. Furthermore, we have ζ3(Z
∗
n,N (0, 1)) → 0. This can

be shown similarly as in the proof of Theorem 3.1 by showing that `3(Z
∗
n,N (0, 1)) → 0

and using Theorem 2.7 together with the fact that ‖Z∗n‖3 is bounded in n. Collecting all
estimates, we obtain that

∆(n) ≤ o(1)∆(n) + E

[
K∑
r=1

1{n1≤I(n)
r <n}(A

(n)
r )3∆(I(n)r )

]
+ o(1). (5.23)

From this, the statement follows by a standard argument (see, e.g., Neininger and Rüschen-
dorf [70, pp. 390–391]).

5.3 Applications

As already mentioned, possible examples of distributional recurrences with dependent toll
function start with the refined convergence results for Quicksort in Neininger [68] and
for cyclic urns in Müller and Neininger [66], see also Fuchs, Müller and Sulzbach [32].
Since [68] only contains a convergence result for the Zolotarev metric without a rate of
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convergence, we take up this example in Section 5.3.1 and use Theorem 5.1 to estimate
the rate of convergence. Furthermore, in Section 5.3.2, we present another application of
Theorems 5.1 and 5.5 concerning recent work of Diaconis and Kolesnik [18] on Fibonacci
permutations.

5.3.1 Refined Quicksort asymptotics

In this section, we come back to the Quicksort algorithm already analyzed in Section 4.1.1.
We set K0 = 0 and denote by Kn, n ≥ 1, the number of key comparisons needed by
Quicksort to sort the list (U1, . . . , Un), where (Ui)i≥1 is a sequence of independent and
uniformly on the unit interval distributed random variables. With the normalization

Cn :=
Kn − E[Kn]

n+ 1
, n ≥ 0,

Régnier [77] showed that the sequence (Cn)n≥0 is a martingale converging almost surely
(and in Lp) to some non-degenerate limit C which satisfies the distributional fixed-point
equation (see Rösler [80])

C
d
= UC(1) + (1− U)C(2) + ϕ(U)

with U , C(1), C(2) independent, U uniform on the unit interval, C(1) and C(2) having the
same distribution as C and ϕ(u) := 2u log u+ 2(1− u) log(1− u) + 1 for u ∈ [0, 1] .

The aim of this section is to further quantify the almost sure convergence Cn → C by
analyzing the error term Cn − C. It is known that this error term satisfies (see Bindjeme
and Fill [7, Theorem 1.4]) ∥∥Cn − C∥∥22 = 2

log n

n
+ O

( 1

n

)
(5.24)

and (see Neininger [68, Theorem 1.1])√
n

2 log n
(Cn − C)

d−→ N (0, 1)

as n→∞. We now show that the application of Theorem 5.1 provides a rate of convergence
in the Zolotarev metric ζ3 for the latter convergence without much effort. For this, we need
some of the results deduced in [7] and [68]. First of all, we use the notation Yn := Cn−C,
n ≥ 0, for the error terms. Note that we chose this notation, although differing from the
notation used in [7] and [68], to guarantee that the notation is in accordance with the
formulation of our theorems. We then observe that the error term Yn can be decomposed
recursively. Equation (12) in [68] states a sample-pointwise recurrence for the error term
Yn (see also equation (2.6) in [7]), from which we obtain that Yn satisfies the distributional
recursion

Yn
d
=
In + 1

n+ 1
Y

(1)
In

+
n− In
n+ 1

Y
(2)
n−1−In + bn, n ≥ 1, (5.25)
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with In, (Y
(1)
n )n≥0, (Y

(2)
n )n≥0 independent, In uniformly distributed on {0, . . . , n− 1}, Y (r)

j

distributed as Yj for j ≥ 0 and r = 1, 2 and some toll function bn which is not independent

of (Y
(1)
n )n≥0 and (Y

(2)
n )n≥0. Since the concrete representation of bn is not needed in the

following, we omit the details here and refer to [7] and [68]. Certainly, recurrence (5.25)

is an instance of recursion (5.1) with n0 = 1, K = 2, I
(n)
1 = In, I

(n)
2 = n − 1 − In and

Ar(n) = (I
(n)
r + 1)/(n+ 1) for r = 1, 2.

We then define the standardized error terms by

Xn :=
Yn
σ(n)

, n ≥ 0,

where σ2(n) := Var(Yn) > 0 for n ≥ 0. Note that σ2(n) = 2 log n/n+O(1/n) by (5.24) and
the fact that both components Cn and C of Yn are centered. The normalized quantities
satisfy recursion (5.3) with the same parameters as above and

A
(n)
1 =

(In + 1)σ(In)

(n+ 1)σ(n)
, A

(n)
2 =

(n− In)σ(n− 1− In)

(n+ 1)σ(n)
, b(n) =

bn
σ(n)

.

For these coefficients, we obtain the L3-convergences (see [68])

A
(n)
1 →

√
U1 =: A∗1, A

(n)
2 →

√
1− U1 =: A∗2, b(n) → 0.

Thus, we are in the situation of Section 5.1 and now check the conditions of Theorem 5.1
with R(n) = log−1/2(n). First of all, Lemma 2.2 in [68] states that, as n→∞,

‖b(n)‖3 = O
( 1√

log n

)
= O(R(n)).

To estimate the order of ‖(A(n)
1 )2 + (A

(n)
2 )2 − 1‖3/2, we use the arguments of Lemma 3.8

with g(n) = 2n log n and h(n) = n to obtain∥∥∥∥ 2∑
r=1

(A(n)
r )2 − 1

∥∥∥∥
3/2

≤ 1

n log n

∥∥∥In log
(In
n

)
+ (n− 1− In) log

(n− 1− In
n

)∥∥∥
3/2

+ O
( 1

log n

)
= O

( 1

log n

)
.

From this, we also obtain∣∣∣∣ 2∑
r=1

E[(A(n)
r )2]− 1

∣∣∣∣ ≤ ∥∥∥∥ 2∑
r=1

(A(n)
r )2 − 1

∥∥∥∥
1

≤
∥∥∥∥ 2∑
r=1

(A(n)
r )2 − 1

∥∥∥∥
3/2

= O
( 1

log n

)
.

Thus, condition (5.6) is satisfied. Since A
(n)
1 and A

(n)
2 are uniformly bounded and In is

uniform on {0, . . . , n − 1}, the technical conditions (5.7) and (5.8) are clearly satisfied.
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Furthermore, we can use the arguments of Lemma 3.8, the fact that In/n converges almost
surely to U1 and the dominated convergence theorem to show that

lim sup
n→∞

2∑
r=1

E
[
R(I

(n)
r )

R(n)

(
A(n)
r

)3]
= 2E[U

3/2
1 ] =

4

5
< 1,

such that all assumptions of Theorem 5.1 are satisfied and we obtain the following result.

Theorem 5.7. For the number Kn of key comparisons used by Quicksort to sort the list
(U1, . . . , Un) with (Ui)i≥1 independent and uniformly distributed on the unit interval and
the almost sure limit C of Cn = (Kn − E[Kn])/(n+ 1), we have, as n→∞,

ζ3

( Cn − C√
Var(Cn − C)

,N (0, 1)
)

= O
( 1√

log n

)
.

5.3.2 Importance sampling for estimating the number of Fibonacci
matchings

The basis of this application is the paper [18] by Diaconis and Kolesnik from which we
adopt the notation and some of their results. The set Fn of Fibonacci matchings of size n
is defined by

Fn = {π ∈ Sn : |π(i)− i| ≤ 1 for 1 ≤ i ≤ n},
where Sn denotes the set of permutations of {1, . . . , n} (note that Diaconis and Kolesnik
use the notation Fn,1 instead of Fn). The set F4 of Fibonacci matchings of size n = 4 is
displayed in Figure 5.1.

Figure 5.1: The 5 Fibonacci matchings of size n = 4.

One can observe that the cardinality of the set Fn is easily computed by considering
whether π(1) = 1 or π(1) = 2 and coincides with the (n+ 1)-th Fibonacci number (which
explains the name). Although the number of Fibonacci matchings is known, Diaconis and
Kolesnik [18] present different importance sampling algorithms for estimating the size of Fn.
These algorithms in each step match the current index with an index chosen uniformly at
random among the remaining allowable indices. To be more precise, Diaconis and Kolesnik
present three such algorithms differing in the order the indices are matched (see Diaconis
and Kolesnik [18] for details):

� The random algorithm Ar matches the indices in uniformly random order,

� the fixed-order algorithm Af matches them in fixed order from top to bottom and
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� the greedy algorithm Ag matches them in a certain greedy order. More precisely, Ag

always matches the smallest unmatched index among those indices with the maxi-
mal number of remaining choices. This means that algorithm Ag always starts by
matching index 2 uniformly at random with one of 1, 2, 3. If π(2) ∈ {1, 2} (i.e.,
either π(2) = 1 and consequently π(1) = 2 or vice versa), then the next index to be
matched is index 4 (uniformly among 3, 4, 5), since this is the smallest index with
3 remaining choices. Otherwise, i.e., if π(2) = 3, then the assignments π(1) = 1 and
π(3) = 2 are forced and the next index to be matched is index 5 (uniformly among
4, 5, 6).

Having introduced the different algorithms, we now summarize some of the results given
in [18]. For any Fibonacci matching π ∈ Fn, we denote by Pr(π), Pf(π) and Pg(π) the
probability of π under the algorithm Ar, Af and Ag, respectively. For Πn chosen uniformly
at random from the set Fn of Fibonacci matchings, we have

E[− log(Pι(Πn))] = µιn+ O(1), Var(− log(Pι(Πn))) = σ2
ι n+ O(1), (5.26)

for ι = r, f, g, where µι ∈ (0.49, 0.51) and σ2
ι > 0 can be computed exactly (we refer to [18]

for the concrete values). Furthermore, for ι = r, f, g and as n → ∞, we have the central
limit theorem [18, Theorem 1.1]

− log(Pι(Πn))− µιn
σι
√
n

d−→ N (0, 1). (5.27)

While the proof of this statement can be accomplished with Corollary 5.2 in Neininger and
Rüschendorf [70] for the former two algorithms (see [18, Theorems 3.2 and 3.4]), there is
no obvious way of applying this corollary in the greedy case due to arising dependencies.
Instead, Diaconis and Kolesnik use arguments from renewal theory to show (5.27) for the
greedy algorithm Ag. However, using the theorems of this chapter, we can also handle the
additional dependencies arising in the greedy case.

This is why we focus on algorithm Ag from now on and define the random variable

Yn = − log(Pg(Πn)),

where, as before, Πn is uniformly distributed on Fn and Pg(π) denotes the probability of
π under the greedy algorithm Ag for any π ∈ Fn. Recall that algorithm Ag always starts
by matching index 2 uniformly at random with one of 1, 2, 3. Consequently, for a fixed
Fibonacci permutation π, the probability that index 2 is matched correctly with π(2) by
Ag equals 1/3. Depending on the value of π(2), the resulting number of indices that are
neither matched nor forced is n− 2 or n− 3 afterwards. Thus, we obtain that

Yn
d
= Y

I
(n)
1

+ log 3,

where I
(n)
1 takes the values n−2 and n−3 with probabilities 2|Fn−2|/|Fn| and |Fn−3|/|Fn|,

respectively, and is independent of (Yj)j≥0. However, using this recursion, our theorems
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do not apply, since there is only one subproblem of almost the same size as the original
problem (i.e., A∗1 = 1).

Instead, to obtain a recursion to which our framework applies, we now divide the permu-
tation at the middle, more precisely at index kn = bn/2c, instead of dividing it at the
top. To guarantee that the two resulting subproblems are still of the same nature and
independent, we make use of the same trick as Diaconis and Kolesnik for the fixed-order
case and consider a slightly modified algorithm A′g: This modified algorithm A′g proceeds
in exactly the same way as algorithm Ag, with the difference that if there are exactly two
unmatched indices left at the end (indices n−1 and n), then A′g matches index n uniformly
at random with one of n− 1, n, ε, where ε can be interpreted as an error message. Thus,
algorithm A′g either returns a Fibonacci matching or an error message. However, denoting
by P ′g(π) the probability of π under the modified algorithm A′g, the probabilities P ′g(π) and
Pg(π) differ, if at all, by a factor 1.5 for any π ∈ Fn. Hence, we obtain assertion (5.27) for
the greedy case if we prove the corresponding central limit theorem for

Yn = − log(P ′g(Πn)),

where Πn is again uniform on Fn. The advantage of this modified random variable is that
we can now decompose Yn in a way which is compatible with our theorems. For this, recall
that kn = bn/2c and consider whether π(kn) = kn − 1, π(kn) = kn or π(kn) = kn + 1. In
the first case, the resulting subproblem sizes are kn−2 and n−kn, whereas they are kn−1
and n−kn in the second case and kn−1 and n−kn−1 in the third case. Hence, we obtain
the recursive decomposition

Yn
d
= Y

(1)

I
(n)
1

+ Y
(2)

I
(n)
2

+ bn,

where the vector I(n) = (I
(n)
1 , I

(n)
2 ) contains the subproblem sizes and has distribution

P(I
(n)
1 = i1, I

(n)
2 = i2) =

1

|Fn|


|Fkn−2| · |Fn−kn|, i1 = kn − 2, i2 = n− kn,
|Fkn−1| · |Fn−kn|, i1 = kn − 1, i2 = n− kn,
|Fkn−1| · |Fn−kn−1|, i1 = kn − 1, i2 = n− kn − 1,

I(n), (Y
(1)
j )j≥0 and (Y

(2)
j )j≥0 are independent, Y

(r)
j has the same distribution as Yj for j ≥ 0

and r = 1, 2 and bn is a random variable taking the values 0 and log 3. However, note that
bn is not independent of (Y

(2)
j )j≥0, which is the reason why Corollary 5.2 of [70] does not

apply, but we can use Theorem 5.5 instead: The sequence (Yn)n≥0 satisfies recursion (5.18)
as well as condition (5.19) with f(n) = µgn and g(n) = σ2

gn. Furthermore, conditions

(5.20) and (5.21) are obviously satisfied with A∗1 = A∗2 = 1/
√

2. Thus, Theorem 5.5 implies

Yn − µgn

σg
√
n

d−→ N (0, 1),

giving another proof of (5.27) for the greedy case. Note that we can also apply Theorems
3.4 and 5.1, respectively, if we are further interested in the convergence rate for the limit
theorems (5.27) in the Zolotarev ζ3 metric. This is done in the following theorem for
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the random algorithm Ar, but corresponding results can also be derived for the other
algorithms.

Theorem 5.8. Let P (π) be the probability of π under the random algorithm Ar for any
Fibonacci permutation π. Further set Yn = − log(P (Πn)), where Πn is uniformly distributed
on the set Fn of Fibonacci matchings of length n. Then we have, for any ε > 0 and as
n→∞,

ζ3

(Yn − E[Yn]√
Var(Yn)

,N (0, 1)
)

= O(n−1/2+ε).

Proof. The quantity Yn satisfies Y0 = Y1 = 0 and the distributional recursion (see [18,
Proof of Theorem 3.2])

Yn
d
= Y

(1)

I
(n)
1

+ Y
(2)

I
(n)
2

+ bn, n ≥ 2,

where the vector I(n) = (I
(n)
1 , I

(n)
2 ) contains the subproblem sizes, I(n), bn, (Y

(1)
j )j≥0 and

(Y
(2)
j )j≥0 are independent, Y

(r)
j has the same distribution as Yj for j ≥ 0 and r = 1, 2 and

bn is a random variable taking the values log 2 and log 3. We now observe that Var(Yn) is
positive for n ≥ 3 and define the standardized quantities Xn as in (3.2). These normalized

quantities satisfy the modified recursion (3.3) with coefficients A
(n)
1 , A

(n)
2 and b(n) given in

(3.4). From this and from the expansions of the mean and variance of Yn in (5.26), it is
easily seen that we are in the situation of Theorem 3.4 and that

∥∥∥ 2∑
r=1

(A(n)
r )2 − 1

∥∥∥3/2
3/2

+
∥∥b(n)∥∥3

3
= O(n−3/2).

Furthermore, for R(n) = n−1/2+ε, the technical conditions are clearly satisfied and we have
(with L(U) = unif[0, 1])

lim sup
n→∞

2∑
r=1

E
[
R(I

(n)
r )

R(n)
(A(n)

r )3
]

= 2E[U1+ε] < 1,

thus the assertion follows from Theorem 3.4.
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Concluding Remarks

In Chapter 3 of this thesis, we derived a general convergence theorem (Theorem 3.1) to
bound the rates of convergence for recursive quantities in the Zolotarev distances. The main
ingredients for this theorem are the recursive decomposition (3.1), the identification of a
rate of convergence for the coefficients (3.7) and condition (3.8) which allows it to transfer
the rate of the coefficients to a rate for the normalized quantities Xn. In the special case
of normal limits, we were able to give a refined version of this result (Theorem 3.4), often
improving over the general theorem by an additional factor 3 in the exponent of the rate.

In Chapter 4, we gave various examples of how to apply the general theorems. The ap-
plications presented in this chapter have shown that our theorems cover a wide range of
recursive quantities and can be used to provide first, sometimes rough, bounds on the rate
of convergence in the Zolotarev metrics in many concrete examples. For the number of
maxima in right triangles, for instance, a straightforward application of Theorem 3.4 leads
to the rate O(n−1/4+ε) (with arbitrary ε > 0), see Section 4.1.2, where we also show that
it is possible to obtain the rate O(n−1/4) with a little more effort. The reason for this is
that condition (3.8) (condition (3.16), respectively) is sometimes stronger than necessary,
since it does not take into account that the convergence rates of the coefficients might be
faster than those of the quantities Xn. An alternative (weaker) condition is formulated
in Remark 3.3 (Remark 3.5, respectively) and is applied in several situations to improve
the rate of convergence, in some instances avoiding the additional ε in the exponent of the
rate.

In Chapter 5, we derived a convergence result similar to the refined version for the normal
case (Theorem 3.4), with the difference that we assumed a relaxed conditional indepen-
dence condition there allowing additional dependencies between the toll term and the
subproblems (see Theorem 5.1). As compensation for the relaxed independence condition,
we need slightly stronger assumptions on the convergence rates of the coefficients, missing
the additional factor 3 in the exponent of ‖b(n)‖3 compared to Theorem 3.4. It remains an
open question whether this factor 3 might be “regained” by appropriately adjusting the
proof of Theorem 5.1.

Finally, recall that the application of our general framework requires that the normalized
quantities Xn given in (3.2) have mean vector E[Xn] = 0 for s > 1 and additionally
covariance matrix Cov(Xn) = Idd for s > 2 and n large enough. Hence, in these cases, the
mean vector (and the covariance matrix, respectively) appear in the definition of Xn—and
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thus also in the definition of the coefficients (3.4). As a result, to determine the order of
the convergence rate of these coefficients, it is necessary that either the exact expressions
of the mean and covariance matrix or at least asymptotic expansions with second order
error terms are amenable (see Section 3.2). In the applications presented in this thesis and
in numerous further examples, we have sufficiently precise control of these moments.
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Deutsche Zusammenfassung

Die Kontraktionsmethode ist eine Technik, mit der Verteilungskonvergenz passend skalier-
ter rekursiver Zufallsgrößen gezeigt werden kann. Seit ihrer Einführung vor 30 Jahren durch
Uwe Rösler [80] zur Analyse der Anzahl an Schlüsselvergleichen des Sortieralgorithmus
Quicksort wurde die Kontraktionsmethode sukzessive weiterentwickelt, sodass mittlerweile
eine große Klasse von rekursiven Zufallsgrößen mit dieser Methode untersucht werden kann.
Üblicherweise wird die Kontraktionsmethode angewandt, um Verteilungskonvergenz zu
zeigen. Es ist jedoch auch möglich, Ideen der Kontraktionsmethode zu verwenden, um
darüber hinaus Konvergenzraten in einer passenden Metrik zu bestimmen. Als konkretes
Beispiel ist in diesem Zusammenhang die Anzahl der Schlüsselvergleiche von Quicksort zu
nennen, für welche Fill und Janson [24] die Rate O(n−1/2) in den Wasserstein-`p-Metriken
(p ≥ 1) und Neininger und Rüschendorf [69] die Rate Θ(log n/n) in der Zolotarev-Metrik ζ3
zeigten.

Thema dieser Dissertation ist es, das Grundprinzip der Kontraktionsmethode zu verwen-
den, um universelle Konvergenztheoreme zum Bestimmen von Konvergenzraten passend
normalisierter rekursiver Größen herzuleiten. Ausgangspunkt unserer Analyse ist die An-
nahme, dass die zu untersuchenden Größen Yn eine gewisse Selbstähnlichkeit aufweisen.
Genauer gesagt nehmen wir an, dass (Yn)n≥0 eine Folge zufälliger Vektoren in Rd ist, welche
folgendermaßen rekursiv zerlegt werden kann:

Yn
d
=

K∑
r=1

Ar(n)Y
(r)

I
(n)
r

+ bn, n ≥ n0, (A.1)

wobei
d
= Verteilungsgleichheit bezeichne, n0 ∈ N eine beliebige natürliche Zahl sei, die Ko-

effizienten A1(n), . . . , AK(n) zufällige (d×d)-Matrizen seien und bn ein d-dimensionaler Zu-
fallsvektor sei. Die dieser Verteilungsrekursion zugrundeliegende Vorstellung ist, dass das
ursprüngliche Problem der Größe n in K (kleinere) Teilprobleme mit Größen I

(n)
1 , . . . , I

(n)
K

zerlegt werden kann, wobei der Toll-Term bn die
”
Kosten“ des Aufteilens und des an-

schließenden Zusammensetzens bezeichnet. Weitere grundlegende Annahmen unseres Mo-
dells sind, dass die Anzahl K der Teilprobleme eine feste natürliche Zahl und der Vektor
I(n) = (I

(n)
1 , . . . , I

(n)
K ) der Teilproblemgrößen ein zufälliger Vektor in {0, . . . , n}K ist. Abge-

sehen davon stellt die schon angesprochene Selbstähnlichkeit der Größen Yn eine zentrale
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Voraussetzung unseres Modells dar. Formal bedeutet dies, dass

(Y (r)
n )n≥0

d
= (Yn)n≥0 für r = 1, . . . , K (A.2)

gilt. Schließlich fordern wir noch die folgende Unabhängigkeitsbedingung:

(A1(n), . . . , AK(n), bn, I
(n)), (Y (1)

n )n≥0, . . . , (Y
(K)
n )n≥0 sind unabhängig. (A.3)

Abhängigkeiten zwischen den Koeffizienten A1(n), . . . , AK(n), bn und den Teilproblem-

größen I
(n)
1 , . . . , I

(n)
K sind hingegen zulässig – und treten auch in vielen Anwendungen

auf. Unter gewissen Voraussetzungen ist es außerdem möglich, die Unabhängigkeitsbedin-
gung (A.3) leicht abzuschwächen. Wir betrachten deshalb neben (A.3) noch eine ähnliche
Bedingung, und zwar:

(A1(n), . . . , AK(n), I(n)), (Y (1)
n )n≥0, . . . , (Y

(K)
n )n≥0 sind unabhängig. (A.4)

Der Unterschied zwischen (A.3) und (A.4) liegt darin, dass bei letzterer Abhängigkeiten

zwischen dem Toll-Term bn und den Größen (Y
(1)
n )n≥0, . . . , (Y

(K)
n )n≥0 erlaubt sind.

Rekursionen der Form (A.1) treten in verschiedenen Gebieten auf, siehe zum Beispiel Rösler
und Rüschendorf [83] sowie Neininger und Rüschendorf [70] für zahlreiche konkrete Anwen-
dungen. Beispiele reichen von Komplexitätsmaßen rekursiver Algorithmen (etwa die An-
zahl an Schlüsselvergleichen von Quicksort, Mergesort oder Quickselect) über verschiedene
Parameter zufälliger Bäume (etwa die Größe von Tries oder m-nären Suchbäumen) bis
hin zu geometrischen Problemen (zum Beispiel die Anzahl an Maxima in rechtwinkligen
Dreiecken). Für alle genannten Beispiele kann die Kontraktionsmethode verwendet werden,
um Verteilungskonvergenz der passend skalierten Größen zu zeigen. In der vorliegenden
Arbeit soll nun zusätzlich noch die Konvergenzgeschwindigkeit in einer passenden Metrik
betrachtet werden.

Dafür definieren wir die normalisierten Größen (Xn)n≥0 durch

Xn := C−1/2n (Yn −Mn), n ≥ 0, (A.5)

wobei Mn ein d-dimensionaler Vektor und Cn eine positiv definite (d × d)-Matrix ist. Im
Wesentlichen wählen wir Mn als den Erwartungswertvektor und Cn als die Kovarianzmatrix
von Yn, falls diese Momente existieren. Die rekursive Darstellung (A.1) der Größen Yn lässt
sich dann auf die normalisierten Größen Xn übertragen und wir erhalten

Xn
d
=

K∑
r=1

A(n)
r X

(r)

I
(n)
r

+ b(n), n ≥ n0, (A.6)

mit modifizierten Koeffizienten

A(n)
r := C−1/2n Ar(n)C

1/2

I
(n)
r

, b(n) := C−1/2n

(
bn −Mn +

K∑
r=1

Ar(n)M
I
(n)
r

)
(A.7)

und Selbstähnlichkeits- sowie Unabhängigkeitsvoraussetzungen wie oben.
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Ausgehend von dieser rekursiven Darstellung der Größen Xn besteht die Kontraktions-
methode grundsätzlich aus folgenden Schritten:

(1) Aufstellen einer stochastischen Fixpunktgleichung für den Grenzwert:
Zunächst einmal prüft man, dass die in (A.7) gegebenen Koeffizienten in einem
passenden Sinne konvergieren:

A(n)
r → A∗r, r = 1, . . . , K und b(n) → b∗, n→∞.

Wenn nun mit n → ∞ auch die Teilproblemgrößen I
(n)
r groß werden, dann würden

wir erwarten, dass ein potenzieller Grenzwert X von Xn folgende Fixpunktgleichung
erfüllt (welche sich aus (A.6) ergibt, wenn man alle auftretenden Terme durch ihre
Grenzwerte ersetzt):

X
d
=

K∑
r=1

A∗rX
(r) + b∗. (A.8)

Hierbei sind (A∗1, . . . , A
∗
K , b

∗), X(1), . . . , X(K) unabhängig und X(r) hat die gleiche
Verteilung wie X für r = 1, . . . , K.

(2) Existenz und Eindeutigkeit der Lösung von (A.8):
Hierfür betrachten wir die Lösungen von (A.8) als Fixpunkte der folgenden Abbil-
dung, wobei Pd den Raum aller Wahrscheinlichkeitsmaße auf Rd bezeichne:

T : Pd → Pd, µ 7→ L
( K∑
r=1

A∗rZ
(r) + b∗

)
, (A.9)

wobei Z(1), . . . , Z(K), (A∗1, . . . , A
∗
K , b

∗) unabhängig seien und Z(1), . . . , Z(K) Verteilung
µ haben. Wir wählen dann einen passenden Teilraum von Pd sowie eine vollständige
Metrik auf diesem Teilraum, sodass die Abbildung T eine Kontraktion darstellt und
wir mit dem Banach’schen Fixpunktsatz die Existenz und Eindeutigkeit der Lösung
von (A.8) in dem gewählten Teilraum erhalten.

(3) Konvergenz der normalisierten Größen gegen diesen Fixpunkt:
Nachdem die Existenz einer eindeutigen Lösung X von Gleichung (A.8) in einem
passenden Teilraum sichergestellt wurde, wird die Konvergenz der normalisierten
Größen Xn gegen diese eindeutige Lösung X in der in (2) gewählten Metrik gezeigt.
Daraus können dann – je nach Metrik – weitere Aussagen abgeleitet werden (zum
Beispiel schwache Konvergenz und Konvergenz der Momente).

Ziel dieser Arbeit ist es, in Schritt (3) nicht nur Konvergenz in der gewählten Metrik zu
zeigen, sondern auch eine Konvergenzrate zu bestimmen. Grob gesagt sind wir interessiert
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an Aussagen folgender Art: Angenommen, die Konvergenzrate der Koeffizienten (gemessen
mithilfe der üblichen Ls-Norm ‖ · ‖s) ist von der Ordnung O(R(n)), d.h.

K∑
r=1

∥∥A(n)
r − A∗r

∥∥
s

+
∥∥b(n) − b∗∥∥

s
= O(R(n))

mit einer Nullfolge (R(n))n≥0, können wir Bedingungen angeben, sodass wir die Rate
O(R(n)) auch für die Größen Xn erhalten? Als Maß des Abstands zwischen der Verteilung
von Xn und der Grenzverteilung L(X) sind prinzipiell verschiedene Metriken denkbar.
Wir verwenden hier die sogenannten Zolotarev-Metriken ζs, welche sich im Zusammenhang
mit der Kontraktionsmethode als sehr nützlich erwiesen haben. Insbesondere erlaubt die
Verwendung der Zolotarev-Metriken es, sehr allgemeine Konvergenzresultate aufzustellen,
welche viele Beispiele gleichzeitig abdecken.

Bevor wir zu den Konvergenzresultaten kommen, führen wir nun verschiedene Räume
von Wahrscheinlichkeitsmaßen sowie die Zolotarev-Metriken kurz ein. Wie schon erwähnt
bezeichnen wir mit Pd den Raum aller Wahrscheinlichkeitsmaße auf Rd und für 0 < s <∞
mit

Pds := {L(X) ∈ Pd : ‖X‖s <∞}
den Teilraum der Wahrscheinlichkeitsmaße mit endlichem s-ten Moment. Außerdem defi-
nieren wir

Pds (0, Idd) :=


Pds , 0 < s ≤ 1,
{L(X) ∈ Pds : E[X] = 0}, 1 < s ≤ 2,
{L(X) ∈ Pds : E[X] = 0,Cov(X) = Idd}, 2 < s ≤ 3.

Die Zolotarev-Metrik ζs auf Pds (0, Idd) wird dann folgendermaßen definiert (0 < s ≤ 3):
Zunächst schreiben wir s = m + α mit m := dse − 1 ∈ {0, 1, 2} und α := s −m ∈ (0, 1].
Damit definieren wir eine Klasse Fs von Test-Funktionen durch

Fs :=
{
f ∈ Cm(Rd,R) : ‖Dmf(x)−Dmf(y)‖ ≤ ‖x− y‖α, x, y ∈ Rd

}
,

wobei Cm(Rd,R) die Menge aller m-fach stetig differenzierbaren Funktionen f : Rd → R
und Dmf die m-te Ableitung einer solchen Funktion f bezeichne. Der Zolotarev-Abstand ζs
zwischen zwei ZufallsvariablenX und Y mit Wahrscheinlichkeitsverteilungen L(X),L(Y ) ∈
Pds (0, Idd) ist dann gegeben durch

ζs(X, Y ) := ζs(L(X),L(Y )) := sup
f∈Fs

∣∣E[f(X)− f(Y )]
∣∣.

Darauf aufbauend können wir nun die Hauptresultate formulieren. Unser erstes Resultat
bezieht sich auf ein allgemeines Konvergenztheorem aus Neininger und Rüschendorf [70,
Theorem 4.1], welches zahlreiche Anwendungen hat. Das folgende Resultat entspricht im
Wesentlichen diesem Theorem, liefert aber zusätzlich noch eine Konvergenzrate in der
Zolotarev-Metrik.
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Theorem A.1. Sei (Xn)n≥0 definiert wie in (A.5), wobei (Yn)n≥0 die Rekursion (A.1)
erfülle, alle dort auftretenden Größen Ls-integrierbar seien (für ein 0 < s ≤ 3) und Mn und
Cn so gewählt seien, dass L(Xn) ∈ Pds (0, Idd) für n groß genug gilt. Außerdem nehmen wir
an, dass Ls-integrierbare Zufallsvariable A∗1, . . . , A

∗
K , b

∗ und eine monoton fallende Folge
R(n) > 0 mit R(n)→ 0 existieren mit

∥∥b(n) − b∗∥∥
s

+
K∑
r=1

∥∥A(n)
r − A∗r

∥∥
s

+
K∑
r=1

∥∥1{I(n)
r <`}A

(n)
r

∥∥
s

= O(R(n)) (A.10)

für alle ` ∈ N und n→∞. Ist außerdem ‖1{I(n)
r =n}A

(n)
r ‖s → 0 für r = 1, . . . , K sowie

lim sup
n→∞

K∑
r=1

E
[
R(I

(n)
r )

R(n)

∥∥A(n)
r

∥∥s
op

]
< 1, (A.11)

dann gilt für n→∞

ζs(Xn, X) = O(R(n)),

wobei L(X) als die eindeutige Lösung der Gleichung (A.8) in Pds (0, Idd) gegeben ist.

Neben dem Bestimmen einer Konvergenzrate für die Konvergenzen A
(n)
r → A∗r sowie

b(n) → b∗ (jeweils in der Ls-Norm) müssen wir also noch die folgenden zwei technischen
Bedingungen sicherstellen:∥∥1{I(n)

r <`}A
(n)
r

∥∥
s

= O(R(n)) und
∥∥1{I(n)

r =n}A
(n)
r

∥∥
s
→ 0

für alle ` ∈ N und r = 1, . . . , K. Diese Bedingungen stellen sicher, dass die Teilprob-
lemgrößen I

(n)
r mit n wachsen und sind in Anwendungen meist erfüllt. Die Annahme

(A.11) sichert uns einerseits die Existenz einer eindeutigen Lösung der Gleichung (A.8) in
Pds (0, Idd) und dient andererseits dazu, die Rate O(R(n)) der Koeffizienten auf die Kon-
vergenz Xn → X zu übertragen.

In der vorliegenden Arbeit wird das soeben vorgestellte Resultat etwa zur Bestimmung
von Konvergenzraten für verschiedene Komplexitätsmaße (Schlüsselvergleiche, Schlüssel-
austausche) von Quicksort und Quickselect verwendet. Darüber hinaus deckt Theorem A.1
viele Anwendungen mit normalverteilten Grenzwerten ab – ein konkretes Beispiel in diesem
Kontext ist etwa die Analyse der Größe von zufälligen m-nären Suchbäumen. Hier stellt
sich jedoch heraus, dass die von Theorem A.1 gelieferte Konvergenzrate nicht optimal
ist. Vor diesem Hintergrund geben wir neben dem allgemeinen Theorem A.1 noch eine
weitere, verbesserte Version dieses Theorems an, welche eine große Klasse von Größen
mit normalverteiltem Grenzwert X abdeckt und im Vergleich zum allgemeinen Theorem
teilweise bessere Raten liefert.

Dafür nehmen wir wieder an, dass Yn die Rekursion (A.1) erfüllt (wobei nun alle auftre-
tenden Größen L3-integrierbar seien) und dass ein n1 ∈ N0 existiert mit der Eigenschaft,
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dass die Kovarianzmatrix von Yn für n ≥ n1 positiv definit ist. Darauf aufbauend definieren
wir die normalisierten Größen wie in (A.5), wobei Mn den Erwartungswertvektor und Cn
für n ≥ n1 die Kovarianzmatrix von Yn bezeichne. Unser zweites Theorem bezieht sich
nun auf den Spezialfall, dass die in (A.7) gegebenen Koeffizienten (A

(n)
1 , . . . , A

(n)
K , b(n)) in

L3 gegen (A∗1, . . . , A
∗
K , b

∗) konvergieren, wobei

b∗ = 0,
K∑
r=1

A∗r(A
∗
r)

T = Idd (A.12)

fast sicher gilt. Gilt zusätzlich E[
∑K

r=1 ‖A∗r‖3op] < 1, dann hat Gleichung (A.8) eine ein-
deutige Lösung im Raum Pd3 (0, Idd) – und zwar die d-dimensionale Standardnormalvertei-
lung N (0, Idd). Für diesen Spezialfall lässt sich folgende verfeinerte Version von Theorem
A.1 angeben.

Theorem A.2. Sei (Xn)n≥0 definiert wie in (A.5), wobei (Yn)n≥0 die rekursive Darstellung
(A.1) erfülle, alle dort auftretenden Größen L3-integrierbar seien und Mn und Cn den
Erwartungswertvektor bzw. die Kovarianzmatrix von Yn bezeichnen (n ≥ n1). Wir nehmen

außerdem an, dass die Koeffizienten (A
(n)
1 , . . . , A

(n)
K , b(n)) in L3 gegen (A∗1, . . . , A

∗
K , b

∗) mit
(A.12) konvergieren und dass für ein monoton fallendes R(n) > 0 mit R(n)→ 0

∥∥∥ K∑
r=1

A(n)
r (A(n)

r )T − Idd

∥∥∥3/2
3/2

+
∥∥b(n)∥∥3

3
+

K∑
r=1

∥∥1{I(n)
r <`}A

(n)
r

∥∥3
3

= O(R(n)) (A.13)

für alle ` ∈ N und n→∞ gilt. Ist außerdem ‖1{I(n)
r =n}A

(n)
r ‖3 → 0 für r = 1, . . . , K sowie

lim sup
n→∞

K∑
r=1

E
[
R(I

(n)
r )

R(n)

∥∥A(n)
r

∥∥3
op

]
< 1,

dann gilt für n→∞
ζ3(Xn,N (0, Idd)) = O(R(n)).

Vergleichen wir die Bedingungen (A.10) und (A.13) der beiden Theoreme A.1 und A.2, so
fällt auf, dass in (A.13) noch ein zusätzlicher Faktor 3 im Exponenten auftritt. Dies führt
dazu, dass in den Normalverteilungsfällen mit der Zusatzbedingung (A.12) zwar prinzipiell
beide Theoreme anwendbar sind, Theorem A.2 aber teilweise eine um den Faktor 3 im
Exponenten bessere Rate liefert.

Der Hauptbestandteil des Beweises von Theorem A.2 ist folgendes Lemma.

Lemma A.3. Sei (Z∗n)n≥0 eine Folge mit L(Z∗n) ∈ Pd3 (0, Idd) und

Z∗n
d
= GnN + b(n),
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wobei Gn eine zufällige (d × d)-Matrix, b(n) ein zufälliger d-dimensionaler Vektor und N
multivariat standardnormalverteilt sowie unabhängig von (Gn, b

(n)) sei. Gilt∥∥GnG
T
n − Idd

∥∥3/2
3/2

+
∥∥b(n)∥∥3

3
= O(R(n))

für n→∞, dann folgt
ζ3(Z

∗
n,N (0, Idd)) = O(R(n)).

Schließlich befasst sich die Arbeit noch mit dem Fall, dass die Unabhängigkeitsbedingung
(A.3) ersetzt wird durch die schwächere Forderung (A.4). Mit dieser abgeschwächten Un-
abhängigkeitsannahme erhalten wir folgendes Resultat.

Theorem A.4. Sei (Xn)n≥0 definiert wie in (A.5), wobei Mn und Cn für n ≥ n1 den Er-
wartungswertvektor bzw. die Kovarianzmatrix von Yn bezeichnen und (Yn)n≥0 die rekursive
Darstellung (A.1) mit der abgeschwächten Unabhängigkeitsbedingung (A.4) erfüllt, wobei
alle auftretenden Größen L3-integrierbar seien. Wir nehmen außerdem an, dass die Ko-
effizienten (A

(n)
1 , . . . , A

(n)
K , b(n)) in L3 gegen (A∗1, . . . , A

∗
K , b

∗) mit (A.12) konvergieren, und
dass für ein monoton fallendes R(n) > 0 mit R(n)→ 0∥∥∥∥ K∑

r=1

E[A(n)
r (A(n)

r )T]− Idd

∥∥∥∥
op

+
∥∥∥ K∑
r=1

A(n)
r (A(n)

r )T − Idd

∥∥∥3/2
3/2

+
∥∥b(n)∥∥

3
= O(R(n)) (A.14)

sowie ∥∥1{I(n)
r <`}A

(n)
r

∥∥2
2

+
∥∥1{I(n)

r <`}A
(n)
r

∥∥3
3

= O(R(n)), n→∞, (A.15)

für alle ` ∈ N und r = 1, . . . , K gilt. Ist außerdem ‖1{I(n)
r =n}A

(n)
r ‖3 → 0 für r = 1, . . . , K

sowie

lim sup
n→∞

K∑
r=1

E
[
R(I

(n)
r )

R(n)

∥∥A(n)
r

∥∥3
op

]
< 1,

dann gilt für n→∞
ζ3(Xn,N (0, Idd)) = O(R(n)).

Dieses Theorem entspricht im Wesentlichen Theorem A.2, mit dem Unterschied, dass die
zusätzlich erlaubten Abhängigkeiten zwischen Toll-Term und (Y

(1)
n )n≥0, . . . , (Y

(K)
n )n≥0 zu

leicht verschärften Bedingungen (A.14) und (A.15) im Vergleich zu (A.13) führen.
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