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2. INTRODUCTION

2.1. Motivation. Many fundamental questions in mathematics and computer science can
be cast as statistical inference problems on random factor graphs. Consider the well-known
problem of sparse high-dimensional linear regression where we observe m noisy measure-
ments of the form

y = Xβ+w(2.1)

with y ∈ Rm , X ∈ Rmxn having iid N (0,1) entries, a k-sparse parameter vector β ∈ {0,1}n and
a noise vector w ∈ Rm with iid N (0,σ2) entries [62]. This setup can readily be envisioned as
a bipartite graph where on the one side, we have n variables nodes representing the entries
of the parameter vector β and m factor nodes representing the noisy observations y . Edges
between variable and factor nodes encode the values of the input matrix X . Due to the
randomness of the graph structure, we call such a construction a random factor graph [57].
Given knowledge of the graph structure and the noisy measurements residing on the factor
nodes, the goal is to approximately recover the k-sparse parameter vector β with as few
measurements m as possible.

Graph clustering serves as a second fundamental example. The problem can be best in-
troduced using the instructive and intensely-studied stochastic block model [1, 43]. In its
most basic form, we have a vertex set Vn = {x1, . . . , xn} and pick a label ±1 for each vertex
uniformly at random giving rise to a planted partition of the vertex set into two clusters en-
coded by σ ∈ {±1}Vn . Next, we connect any two vertices by an edge with probability p, if the
two vertices have the same label, and with probability q otherwise. If p > q , edges between
vertices of the same label are preferred - the assortative stochastic block model. The case
p < q is called the disassortative stochastic block model. Upon insertion of the edges, we
remove the original labelling on the vertices. The key question is whether it is possible to
recover a non-trivial approximation of the original clusters from only observing the graph
structure. Put differently, what is the minimum difference between p and q such that re-
covery is possible. Again, this problem can be readily understood as an inference problem
on a random factor graph where the vertex set Vn serves as the variable nodes and the set
of edges as factor nodes. There is an edge between a factor node and a variable node if the
relevant vertex is adjacent to the edge that the factor node represents.

Other prominent examples that can be described in terms of statistical inference prob-
lems on random factor graphs include principal component analysis [11], the planted clique
problem [36] or constraint satisfaction [13, 26]. This list can be continued indefinitely. In this
dissertation, we explore techniques for determining information-theoretic and algorithmic
thresholds for such inference problems on the example of three prime inference problems:
binary group testing, quantitative group testing and the Ising antiferromagnet and max cut
on random regular graphs. Before we proceed to our results, let us first lay the foundation.

2.2. Random factor graphs. We introduced random factor graphs above for sparse high-
dimensional linear regression and graph clustering. Let us abstract from these specific ex-
amples and discuss a general framework for factor graphs that is quite powerful and can ex-
press many fundamental problems in combinatorics, computer science and physics [57, 73].
A factor graph G is a bipartite graph consisting of a set of variables nodes Vn and factor nodes
Fm . We assume the variables to range over a finite setΩ of size q = |Ω| ≥ 2. In the following,
an assignment of labels to vertices will be denoted a configurationσ ∈ΩVn which is sampled
from some prior distribution. While the variable nodes represent the variables of the infer-
ence problem such as the parameter vector β in high-dimensional regression or the labels
of the vertices in graph clustering, the factor nodes describe the interaction of the variable
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nodes. This interaction can take the form of a linear combination as for high-dimensional
regression or simply describe the edges between vertices in graph clustering. Each factor
node a ∈ Fm is associated with a function ψa : Ω∂a → (0,∞) that assigns a positive weight
to each factor from the adjacent variables’ value combinations. The factor graph induces a
probability distribution over the label configurations via

µG (σ) = ψG (σ)

ZG
with ψG (σ) =

∏
a∈Fm

ψa(σ∂a) and ZG =
∑

τ∈ΩVn

ψG (τ)(2.2)

for eachσ ∈ΩVn . The normalizing term ZG is the partition function. It is intimately related to
the information-theoretic threshold of many inference problems and thus of fundamental
importance. We will discuss this aspect in further depth below.

Given information on the interaction between variable and factor nodes, we can now eas-
ily construct a factor graph from the variable nodes Vn and factor nodes Fm . In many inter-
esting cases, this graph construction will exhibit some kind of randomness such as a random
sequence of variable and factor degrees or an edge probability between any variable and fac-
tor node. We will denote such a random factor graph model G as the null model. Note that
the construction of G in this definition is independent of the weights of the factor nodes.
At the same time, G induces a reweighted graph distribution Ĝ and given σ ∈ΩVn a planted
model G∗ [14, 73] which for any event A are defined by

P
[
Ĝ ∈A

]= E [ZG1 {G ∈A }]

E [ZG]
and P

[
G∗(σ) ∈A

]= E
[
ψG(σ)1 {G ∈A }

]

E
[
ψG(σ)

] .(2.3)

Along the same lines, we can define a distribution σ̂ ∈ΩVn on label configurations by

P [σ̂=σ] = E
[
ψG(σ)

]
∑
τ∈ΩVn E

[
ψG(τ)

] .(2.4)

Finally, let σ ∈ ΩVn be a label configuration sampled uniformly at random. Ĝ,G∗,σ̂,σ and
the distribution from (2.2) are connected with the well-known Nishimori property.

Fact 2.1 (Proposition 3.2 in [22]). For any graph G and spin configuration σ ∈ΩVn we have

P
[
Ĝ=G

]
µG (σ) =P (σ̂=σ)P

(
G∗ =G |σ=σ)

.

Let us put these definitions into perspective by considering the concrete example of the
disassortative stochastic block model. For some real parameter β > 0 and d ≥ 3, we assign
a label {±1} to each vertex uniformly at random and assume the probabilities of intra- and
inter-community edges to be

p = 2de−β

n
(
1+e−β) and q = 2d

n
(
1+e−β)

such that the resulting graph is sparse and vertices asymptotically have average degree d
as n →∞ [14]. In the terminology of above, the resulting graph is the planted model. The
corresponding null model G is a graph with p = q = d/n, i.e. a plain Erdős-Rényi graph
where two vertices are connected by an edge with some fixed probability irrespective of their
label. Let E(G) denote the set of edges in a graph G . Along the lines of (2.2) we can define a
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distribution over label configurations σ ∈ {±1}Vn for any graph G given by

µG ,β(σ) = ψG (σ)

ZG ,β
= exp

(−βHG (σ)
)

ZG ,β
(2.5)

where HG (σ) =
∑

(v,w)∈E(G)
1 {σv =σw }

and ZG ,β =
∑

τ∈{±1}Vn

exp
(−βHG (τ)

)
.

The term HG (σ) counting the number of monochromatic edges in G is typically referred to
as the Hamiltonian and µG ,β the Boltzmann distribution for this problem. We can equiv-
alently define Ĝ and σ̂. Note that the real parameter β governs the graph structure in the
planted model and the probability of observing a configuration under distribution µG ,β. For
β= 0, no penalty term is imposed for monochromatic edges and the planted model G∗ co-
incides with the plain Erdős-Rényi model G. In this case, µG ,β is simply the uniform distri-
bution over all configurations σ ∈ {±1}Vn . As β increases, fewer and fewer edges between
vertices of the same label will be observed under G∗ and the distribution µG ,β concentrates
on configurations with few monochromatic edges.

2.3. Teacher-student model. With the definition of a random factor graph at hand, the
teacher-student model provides an instructive analogy to understand statistical inference
on random factor graphs [73]. Suppose we have a teacher who selects a configuration σ ∈
ΩVn from some prior distribution. We will refer to this planted configuration as the ground
truth. For high-dimensional linear regression, the ground truth is the parameter vector β,
while for graph clustering it is the partition of the vertex set into two classes. Thereafter,
the planted model G∗ is constructed given the ground truth according to (2.3), i.e., noisy
measurements are calculated according to (2.1) for high-dimensional linear regression and
vertices are connected with intra- and inter-cluster probabilities for graph clustering. There-
after, the teacher handsG∗ to the student without providing the ground truthσ. The student
might have access to the prior distribution of σ and the distribution of G∗ given σ which is
called the Bayes optimal case [73]. In other problems, there even might be a mismatching
prior and/or model [73]. Now the key question is how much of a mark does σ leave on G∗?
Put differently, can the student (approximately) recover the ground truth σ just using the
planted model G∗ and information on the prior of σ and the distribution of G∗ given σ?

It should be clear that the answer depends on the signal-to-noise ratio in the underly-
ing problem. For high-dimensional linear regression, the variance σ2 of the noise vector
clearly impedes the ability of the student to recover β. Similarly, the number of measure-
ment m can be seen as the signal - the more noisy measurements are conveyed, the easier
the inference task [62]. For graph clustering, we can think of exp(−β) as the noise parameter.
Similarly, the larger the average degree d , the more is revealed about the ground truthσ [14].
Thus, the fundamental task in statistical inference problems is to determine signal-to-noise
thresholds from which (approximate) recovery of the ground truth is possible.

2.4. Presumed computational hardness. So far, we avoided the question of what we mean
when we say that (approximate) recovery is possible. Let us now close this gap. To get
started, note that how we measure recovery is often problem-specific. For graph clustering,
it might be a configuration estimate that has a non-trivial overlap with the ground truth. For
other problems such as group testing which we discuss below we need to infer the correct
configuration with high probability over the randomness of the graph 1.

1We say that a sequence of events En holds with high probability (w.h.p.), if limn→∞P [En] = 1.
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While how we measure recovery is often problem-specific, the question of finding thresh-
olds from which recovery is possible typically comes in two instalments [73]. First, there is
the information-theoretic view which asks for the minimum signal-to-noise ratio such that
recovery is in principle possible. Put differently, the information-theoretic perspective is
interested in the threshold from which sufficient information is contained in G∗ to recover
σ irrespective of computational resources. Second, the algorithmic threshold is concerned
with the threshold from which efficient recovery is possible, i.e., a polynomial-time algo-
rithm is able to recoverσ from G∗. One might be tempted to think that the ability to recover
σ increases continuously with the signal-to-noise ratio, such as with the number of mea-
surements for high-dimensional linear regression. Indeed, many statistical inference prob-
lems exhibit phase transitions where all the way up to a threshold inference is impossible
just to become possible once we cross the threshold [57]. Moreover, one might be tempted
to think that the information-theoretic and algorithmic thresholds for inference problems
always coincide. Interestingly, many statistical inference problems appear to undergo an
impossible-hard-easy transition where below some threshold minf the problem cannot even
be solved information-theoretically (impossible regime). Conversely, above some threshold
malg efficient algorithms are known to solve the problem (easy regime). When these two
bounds do not coincide, one is faced with a regime where the problem in principle contains
sufficient information to recover the ground truth, but no efficient algorithms are known to
succeed (hard regime). Prominent examples are the planted clique problem [36], code divi-
sion multiple access (CDMA) [73], the pooled data problem [3], sparse principal component
analysis (PCA) [11] or sparse high-dimensional regression [37]. In recent years, increasing
evidence has been put forward that such computational gaps might indeed be due to gen-
uine computational hardness in the underlying problem. In other inference problems such
as the stochastic block model [1] or compressed sensing [29], we do not find such a gap. The
phenomenon of computational hardness is still far from being understood and continues
to be a field of active research of fundamental importance in mathematics and computer
science. A key building block towards this end is to derive sharp information-theoretic and
algorithmic thresholds in inference problems.

Based on the celebrated, yet non-rigorous cavity method, physicists have put forward a
number of striking predictions for such phase transitions [57]. In recent years, mathemati-
cians made progress to turn heuristic arguments into proofs and develop techniques that
allow the rigorous vindications of some of these predictions (see i.e., [2, 8, 34, 35, 42, 70] -
to name a few). While many gaps still remain, the versatility of these novel techniques al-
lows the application to a wide range of problems. A significant body of this dissertation is
devoted to adapt techniques from mathematical physics and put them to use in classical
problems in combinatorics and information theory. Let us dive into these techniques that
mathematicians today have at their disposal to derive information-theoretic and algorith-
mic thresholds in inference problems.

2.5. Information-theoretic techniques. In the teacher-student analogy, the information-
theoretic view is concerned with the imprint that the ground truth σ leaves on the factor
graph G∗ that is conveyed to the student. The key quantity in this regard is the mutual infor-
mation between σ and G∗

I (σ,G∗) =
∑

σ∈ΩVn ,G

P
[
σ=σ,G∗ =G

]
log

P [σ=σ,G∗ =G]

P [σ=σ]P [G∗ =G]
.

A easy-to-derive, yet striking insight is that the mutual information is intimately related to
the partition function ofG∗. Assuming a fixed factor node degree k and a fluctuating variable
node degree d and lettingΛ(x) = x log(x) we obtain the following relationship.
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Lemma 2.2 (Proposition 3.1 in [22]). Under certain symmetry conditions we have w.h.p.

I (σ,G∗)/n = log q + E [d ]

k
q−k

∑
τ∈Ωk

Λ(ψ(τ))−E[
log ZG∗

]
/n +o(1).

Thus, calculating the mutual information between σ and G∗ boils down to calculating
E
[
log ZG∗

]
- the free energy in physics jargon. However, since the expectation is outside

the logarithm, this task is far from trivial and turns out to be a considerable challenge. By
Jensen’s inequality and standard results [57] we know that

logE [ZG] ≤ E
[
log ZG∗

]≤ logE [ZG∗](2.6)

In comparison with the free energy, calculating the logarithm of the expectation of the par-
tition function is much more amenable. For certain regimes in many inference problems,
we encounter the fortunate situation where (2.6) holds with equality and puts us in the
convenient position that we can calculate the first moment and derive sharp information-
theoretic results. Both the binary and the quantitative group testing problem that we con-
sider in this dissertation fall into this category. In those situations, we calculate the first
moment of the partition function in the planted model, i.e., the number of alternative con-
figurations σ ∈ΩVn that are consistent with the factor graph generated by the ground truth.
To facilitate this calculation, the first moment is typically calculated in two steps. First, we
consider configurations exhibiting a small overlap with the ground truth and show that their
number is vanishing above the information-theoretic threshold (see also [4]). Second, local
stability arguments are employed to rule out any alternative configurations with a large over-
lap with the true configuration. We will dive further into this point in subsequent sections.

Unfortunately, we often do not have the luxury that for the interesting regime (2.6) holds
with equality. The maximum cut on random regular graphs that we also consider in this dis-
sertation is a case in point. In the relevant regime, the bounds from (2.6) are not tight and
we need to resort to different methods. Two techniques have emerged in recent years that
allow tackling the free energy. While quite elaborate and challenging, both essentially boil
down to local calculations that trace the impact on the partition function from a small num-
ber of local changes. The first is a coupling technique known as the Aizenman-Sims-Starr
scheme which provides an upper bound on the free energy [2]. The second is known as the
interpolation method which provides a lower bound [34, 42]. In many inference problems,
the bounds derived from both techniques coincide and thus provide a tight expression for
the free energy. It should be noted that the resulting expression typically comes as a varia-
tional formula that requires optimisation over a functional called the Bethe functional. We
will encounter this exact situation when deriving a bound on the maximum cut size on ran-
dom regular graphs. Fortunately, in our case we can throw a bridge between the specific
functional and random walks to derive an explicit bound. However, in most situations one
cannot hope for a simpler formulation than the general optimisation problem which pre-
cisely describes the intricate dependencies between variable and factor nodes.

2.6. Algorithmic techniques. Having established the information-theoretic thresholds of
a problem, the key question is whether efficient algorithms exist that attain these bounds
resulting in a simple impossible-easy phase transition with no regime of presumed com-
putational hardness. Algorithmic approaches to inference problems are numerous and of-
ten problem-specific, so we will focus here on a powerful message-passing algorithm called
belief propagation that is well compatible with the notion of factor graphs [57]. The sig-
nificance of belief propagation reveals itself in the fact that for many inference problems it
works all the way down to the information-theoretic threshold (see i.e., [29] in the case of
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compressed sensing). Even if it falls short of the information-theoretic bound, there are typ-
ically no other efficient algorithms known that improve beyond the algorithmic threshold of
belief propagation.

Following along the lines of [57], let P (Ω) denote the set of all probability distributions
over Ω. We take a factor graph G and define a message space M (G) consisting of all sets
of messages ν = (νx→a ,νa→x)x∈V ,a∈F,x∈∂a where νx→a ,νa→x ∈ P (Ω). The belief propagation
operator now maps some ν ∈M (G) to ν̂ ∈M (G) according to

ν̂x→a(σ) =
∏

b∈∂x\a ν̂b→x(σ)∑
τ∈Ω

∏
b∈∂x\a ν̂b→x(τ)

and

ν̂a→x(σ) =
∑
τ∈Ω∂a 1 {τx =σ}ψa(τ)

∏
y∈∂a\x νy→a(τy )

∑
τ∈Ω∂a ψa(τ)

∏
y∈∂a\x νy→a(τy )

for σ ∈Ω. The belief propagation algorithm consists of iteratively applying the above opera-
tor. The hope is that upon convergence, the messages from factor to variable nodes defined
on the probability distribution over Ω are reminiscent of the ground truth. To this end, we
define the marginal

νx(σ) =
∏

b∈∂x ν̂b→x(σ)∑
τ∈Ω

∏
b∈∂x ν̂b→x(τ)

(σ ∈Ω).

It is straightforward to prove that belief propagation converges on factors graphs without cy-
cles [57]. Remarkably, it seems to also perform well on factor graphs that do contain cycles
but are locally tree-like. While we still lack a comprehensive general understanding of belief
propagation on cyclic factor graphs, for some specific models with a locally tree-like struc-
ture it could be shown that belief propagation converges - see [19] for an example. For other
problems, it is possible to retract to problem-specific algorithms that are inspired by belief
propagation, but are easier to analyse. In fact, we will present such an algorithm for the bi-
nary group testing problem that essentially performs the first update round of belief prop-
agation. With an additional clean-up step, we thereby find a combinatorially meaningful
algorithm that solves the binary group testing problem down to the information-theoretic
threshold. In certain situations when the inference problem is dense rather than sparse,
physics intuition suggests that we can meaningfully enhance the efficiency of belief prop-
agation while maintaining its reliability [9]. The crucial insight which is far from being rig-
orously established is that for some dense inference problems including the recipient node
in the message update only adds a negligible error term. Thus, we merely need to calculate
|Vn | + |Fm | messages in each round rather than |Vn | × |Fm |. The resulting algorithm trades
under the name of approximate message passing and has been, among others, applied to
the quantitative group testing problem which we will discuss in due course [3].

An important question that we have left out in the above section is the starting point of
belief propagation. The default approach is to initialise belief propagation with uniform
messages or messages incorporating information about the prior distribution. However, it
turns out that in many inference problems, we do not just have one fix point to which be-
lief propagation converges, but two - a trivial one which does not contain any meaningful
information about the ground truth and a non-trivial one that is close to the desired ground
truth [57]. If we initialise belief propagation with uniform messages, we often find ourselves
trapped in this trivial fix point without any hope of getting to the non-trivial desirable fix
point. Conversely, if we had some means to initialise the messages with the ground truth,
belief propagation would take us to the non-trivial fix point. However, for inference prob-
lems we do not have access to the ground truth - that would defy the entire point. Fortu-
nately, it turns out that belief propagation often already takes us to the non-trivial fix point
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if we have some clue about the ground truth. If we have control over the graph structure like
in compressed sensing or group testing, the notion of spatial coupling provides redemption.
Pioneered in the field of coding theory [48, 49, 50], spatial coupling is concerned with enforc-
ing a geometric structure on the graph G∗. Instead of trying to infer the entire ground truth
in one attempt, we proceed step-wise and divide the vertex and factor nodes up into com-
partments where we only allow edges between variables and factor nodes in nearby com-
partments. In effect, if we describe the factor graph by means of an adjacency matrix, this
geometric structure gives rise to a band matrix. For the first couple of compartments we pro-
vide extra measurements that are negligible in the grand scheme of things, but which allow
us to easily recover the ground truth for these variable nodes. Then, we proceed from com-
partment to compartment inferring the ground truth with knowledge of the ground truth of
previous compartments. The (approximate) knowledge of the ground truth in prior depart-
ments provides us with a starting point that is reminiscent of the overall ground truth and
thus facilitates inference. In groundbreaking work, this idea in conjunction with belief prop-
agation has been put to use to show that the compressed sensing problem can be efficiently
solved above the information-theoretic threshold [29]. In this dissertation, we provide a
second example where the notion of spatial coupling allows us to close the gap between
the information-theoretic and algorithmic thresholds, thereby solving a long-standing open
problem.

2.7. Contribution and outlook. As laid out above, we will consider three classical inference
problems and provide novel results on their information-theoretic and algorithmic thresh-
olds. Section 3 will be devoted to the binary group testing problem where the goal is to
recover a small set of infected individuals in a large population by a pooled testing scheme.
In the first paper

Information-theoretic and algorithmic threshold for group testing

by Amin Coja-Oghlan, Oliver Gebhard, Max Hahn-Klimroth and Philipp Loick, we establish
a matching information-theoretic lower and upper bound for the test design prevailing in
the literature and analyse two prominent non-adaptive algorithms. In the second paper

Optimal group testing

by Amin Coja-Oghlan, Oliver Gebhard, Max Hahn-Klimroth and Philipp Loick, we derive an
information-theoretic lower bound for any non-adaptive test design. Moreover, we present
a novel test design inspired by the idea of spatial coupling and an efficient non-adaptive
algorithm that attains this information-theoretic lower bound. As a corollary, we find a two-
stage algorithm that attains the universal information-theoretic lower bound. Thereby, we
show that group testing undergoes a plain impossible-easy transition. Finally, in the paper

Improved bounds for noisy group testing with constant tests per item

by Oliver Gebhard, Oliver Johnson, Philipp Loick and Maurice Rolvien, we consider the
problem of binary group testing with noisy measurements and adapt popular non-adaptive
algorithms from the noiseless setting to derive algorithmic upper bounds. Finally, we con-
sider the practical implications of group testing in the empirical work

Efficient and accurate group testing via Belief Propagation: an empirical study

by Amin Coja-Oghlan, Max Hahn-Klimroth, Philipp Loick and Manuel Penschuck, where we
run the belief propagation algorithm on moderately small instances for the noiseless and
noisy setting. Thereafter, we will discuss the problem of quantitative group testing based on
the paper

Quantitative group testing in the sublinear regime
8



by Oliver Gebhard, Max Hahn-Klimroth, Dominik Kaaser and Philipp Loick in which we
derive an information-theoretic upper bound matching the known lower bound and analyse
a greedy algorithm inspired by the first stage of belief propagation. Finally, we will deal with
the Ising antiferromagnet in the paper

The Ising antiferromagnet and max cut on random regular graphs

by Amin Coja-Oghlan, Philipp Loick, Balazs Mezei and Gregory Sorkin. First, we pinpoint
the replica symmetry breaking phase transition of the Ising antiferromagnet at the combi-
natorially meaningful Kesten-Stigum bound. Second, we use the interpolation method to
establish an upper bound on the maximum cut size in a random regular graph, thereby vin-
dicating a prediction from statistical physics. In the follow-up work

The Ising antiferromagnet in the replica symmetric phase

by Christian Fabian and Philipp Loick we characterize the limiting distribution of the parti-
tion function in the replica symmetric regime. The proof is based on a combination of the
method of moments, spatial mixing arguments and small subgraph conditioning.

3. BINARY GROUP TESTING

3.1. Setting & notation. Binary group testing is a prime example of a statistical inference
problem. Suppose we have a large population of n individuals, out of which k suffer from
some rare disease with k being small in comparison to n. We employ the common assump-
tion in the literature that k ∼ nθ for some θ ∈ (0,1). Rather than testing every individual
separately, we have access to a pooled binary test scheme that can test groups of individu-
als. A test result is positive if and only if there is at least one infected individual included in
the tested group and negative otherwise. The key insight is that the sparsity of the problem
allows us to get by with significantly fewer tests than individual testing. To see why, consider
the original two-stage test scheme proposed by Dorfman in 1943 to test soldiers in the US
army for Syphilis [30]. In pioneering work, Dorfman proposed to test groups of individuals
with a potential follow-up round of individual tests. To be precise, if a pool test returned
positive, the individuals would be tested individually and the original pool test would have
been wasted. However, if a test returned negative, we can be sure that every individual in
the group is healthy and thus save a considerable number of individual tests. While a good
starting point, this design is clearly not optimal. A considerable body of mathematical re-
search has been devoted to group testing since then. Particularly, since the early 2000s the
group testing problem has regained attention and today is used for DNA sequencing [51, 61],
protein interaction experiments [59, 71] or the current COVID-19 pandemic [68].

Binary group testing can be readily described as an inference problem on random factor
graphs. On the one side, we have a set Vn = {x1, . . . , xn} of variable nodes representing the in-
dividuals and a set of Fm = {a1, . . . , am} factor nodes for the pooled tests. The edges between
variable and factor nodes in the graphG encode the assignment of individuals to tests. In the
following, let (∆x)x∈Vn denote the variable degrees, i.e. the number of tests that an individual
is assigned to. Similarly, let (Γa)a∈Γm be the sequence of test degrees. In line with standard
graph notation, we write ∂x and ∂a to denote the neighbouring tests and individuals for an
individual x and a test a, respectively. Note that in Dorfman’s original two-stage test scheme,
we have ∆x = 1 for all x ∈ Vn in the first stage. In due course, we will see alternative test de-
signs with different values of∆x . To proceed in the teacher-student analogy, we assume that
a ground truth σ ∈ {0,1}Vn is sampled uniformly at random among all configurations with
Hamming weight k. Note that the construction of the factor graph G is independent of σ.
One peculiarity of the group testing problem is that we have control over the construction of
G which we will exercise deliberately to best facilitate inference of the ground truth. Given
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FIGURE 1. Illustration of a random regular test design for non-adaptive group
testing. The figure is adopted from [17].

the ground truth σ and the graph G, we can calculate the (noiseless) test result σ̂a for any
test a ∈ Fm as

σ̂a = σ̂a(G,σ) = 1

{ ∑
x∈∂a

σx > 0

}
.

Now the teacher hands the graph G together with the test results σ̂ = (σ̂a)a∈Fm to the stu-
dents whose task it is to recover σ with high probability. As for most inference problems,
this inference task comes with two guiding questions. First, what is the minimum number
of tests minf(n,θ) regardless of computational resources to inferσw.h.p. from G and σ̂? Sec-
ond, what is the minimum number of tests malg(n,θ) such that a polynomial-time algorithm
can infer σw.h.p.?

There are two settings for binary group testing that are worth mentioning at this point.
On the one hand, we might consider adaptive group testing settings where testing is per-
formed over several stages and the design of later stages might depend on the results of ear-
lier stages. Dorfman’s original two-stage design is a case in point where the decision for indi-
vidual testing in the second stage depends on the pooled test result of the first stage. On the
other hand, there are non-adaptive group testing settings where all tests must be specified
upfront and inference of σ is only admissible based on these tests. A classical non-adaptive
test design prevalent in the literature would be a random regular factor graph where we fix
either the variable degrees or both the variable and factor degrees. An illustration of the
latter approach is provided in Figure 1 While both approaches are important, research in re-
cent years has predominantly focused on non-adaptive test designs in the interest of speed
and the possibility for automation.

3.2. Prior research. Let us review the state of research prior to our work on binary group
testing and start with a simple counting argument that reveals the universal information-
theoretic lower bound for any group testing design - adaptive or non-adaptive. A necessary
condition for us to infer σ is that the number of possible test outcomes 2m must exceed
the number of possible configuration

(n
k

)
. A straightforward application of Stirling’s formula

thus yields

mad = 1

log2
k log(n/k)

(
k ∼ nθ

)
(3.1)

For the random regular factor graph model described above as an example of a non-adaptive
setting, [45] derived the non-adaptive information-theoretic lower bound

minf = max

{
1

log2
,

θ

(1−θ) log2 2

}
k log(n/k)

When it comes to efficient non-adaptive algorithms, the so-called COMP and DD algorithm
have emerged as plain, yet prominent algorithms. Despite their simplicity, they perform
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FIGURE 2. Phase diagram for binary group testing prior to our work Opti-
mal group testing. In the red area, inference is information-theoretically im-
possible for a random regular design. It remained open whether there exists
a different non-adaptive design that could attain the universal information-
theoretic lower bound. The green area marks the regime for which inference
is information-theoretically possible but where all previously known algo-
rithms failed.

reasonably well. All that the COMP algorithm does is to classify any individual included in at
least one negative test as healthy. All other individuals are classified as infected. Clearly, this
algorithm only succeeds if every healthy individual is included in at least one negative test.
The DD algorithm moves one step beyond COMP. As the COMP algorithm, it first classifies any
individuals in negative tests as healthy and removes them from the test design. Thereafter,
it searches for positive tests only featuring one remaining individual (after the removal of
definitely healthy individuals) and classifies those individuals as infected. All other individ-
uals are deemed to be healthy. While the COMP algorithm produces an estimate ofσ that is at
least consistent with the test results, it is important to note that the DD algorithm might yield
an estimate that is not even consistent with the test results. Clearly, the algorithmic upper
bound of DD algorithm is at least as good as the bound of COMP and reads as follows

malg = max

{
1

log2 2
,

θ

(1−θ) log2 2

}
k log(n/k).

For adaptive designs, [65] proposed an adaptive three-stage algorithm attaining the uni-
versal information-theoretic lower-bound mad. These bounds are visualised in the phase
diagram in Figure 2.

Significant research effort was devoted to resolving the open questions (see i.e. [10, 56,
58, 7]) in the phase diagram which can be summarized as follows

• Is the algorithmic threshold malg tight for the DD algorithm? In other words, does DD
fail to succeed once we have m < malg?

• Is the non-adaptive information-theoretic lower bound minf information-theoretically
achievable by a random regular design?

• Is the non-adaptive information-theoretic lower bound minf achievable by an effi-
cient algorithm?

• Are there alternative non-adaptive test designs that attain the universal information-
theoretic lower bound mad?

• If no such non-adaptive test designs exist, does there exist an efficient two-stage
(rather than three-stage) algorithm attaining the information-theoretic lower bound?

11



In the first two papers on binary group testing, we will address the above questions and
entirely resolve the phase diagram in Figure 2.

3.3. Results. The information-theoretic and algorithmic results in the preceding section
evince that for all relevant questions the number of tests is of order Θ(k log(n/k)), so we
will write m = ck log(n/k) for some constant c > 0. Throughout the papers, we employ a
model where each individual is assigned to ∆= cd log(n/k) tests uniformly at random with-
out replacement 2 for some constant d > 0. This design gives rise to fluctuating test degrees
(Γa)a∈Fm . However, we readily find that the test degrees are tightly concentrated in the sense
that w.h.p.

dn/k −p
n log(n/k) logn ≤ min

a∈Fm
Γa ≤ max

a∈Fm
Γa ≤ dn/k +p

n log(n/k) logn.

Moreover, some standard techniques reveal that w.h.p. the number of negative tests m0 is
concentrated at

m0 = exp(−d)m +O
(p

m log2 m
)

.(3.2)

Thus, in order to maximize the test entropy, it seems suitable to set d = log(2). Indeed, in
[17] we show that c,d = Θ(1) and this specific choice of d best facilitate inference in our
model. Before we get to the results, we should introduce some types of individuals that are
of fundamental importance for the analysis of algorithms in subsequent sections. To be
precise, we split the set of healthy individuals V0 into two subsets V +

0 and V −
0 . An individual

is defined to be in V −
0 , if it shows up in at least one negative test. Formally,

V −
0 = {x ∈V0 : ∃a ∈ ∂x : σ̂a = 0} and V +

0 =V0 \V −
0 .

Similarly, we divide the set of infected individuals V1 into three subsets V −−
1 , V +

1 and a re-
maining set V1 \ (V −−

1 ∪V +
1 ). The set V −−

1 contains those infected individuals that are in-
cluded in at least one test where all other individuals are from the set V −

0 . Conversely, the
set V +

1 contains all individuals that are only included in tests with at least one other infected
individual. Formally,

V −−
1 = {

x ∈V1 : ∃a ∈ ∂x : ∀y ∈ ∂a \ x : y ∈V −
0

}
and V +

1 = {
x ∈V1 : ∀a ∈ ∂x : ∃y ∈ ∂a : y ∈V1

}
.

To throw the bridge to the DD algorithm, note that the first step of DD identifies all individu-
als from V −

0 , i.e. the definitely healthy individuals. Correspondingly, the second step of DD
classifies the individuals from V −−

1 as infected, i.e. the definitely infected individuals. We
can now state our first result regarding the information-theoretic threshold of the random
regular design.

Theorem 3.1 (Theorem 1.1 in [17]). Suppose that 0 < θ < 1, k ∼ nθ and ε> 0 and let

minf = minf(n,θ) = max

{
1

log2
,

θ

(1−θ) log2 2

}
k log(n/k).

(1) If m > (1+ε)minf, then there exists an algorithm that given G,σ̂ outputs σ with high
probability.

(2) If m < (1+ε)minf, then there does not exist any algorithm that given G,σ̂,k outputs σ
with a non-vanishing probability.

2Note that in the paper "Information-theoretic and algorithmic thresholds for group testing" we assume
that individuals are assigned to tests uniformly at random with replacement. Despite this small difference in
the replacement rule, the models are almost identical and all results carry over to the model where we sample
without replacement.
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We stress here that the terminology from the theorem refers to any algorithm, not neces-
sarily an efficient one. Let us shed light on the proof strategy of this information-theoretic
result, starting with the first statement. To this end, we will employ a technique presented
earlier. It turns out that in order to derive the statement of the theorem it suffices to cal-
culate the planted first moment, i.e. count the number of alternative configurations other
than the ground truth σ that yield the same test result. If we find that for a certain value of
m, there does not exist another configuration consistent with the test result, we know that
it is information-theoretically possible to recover σ by using a brute-force approach. Con-
versely, when there are other configurations next to the ground truth yielding the test results
and featuring k infected individuals, the Nishimori property informs us that we have no way
to distinguish the true configuration from the alternatives. Our best guess is a random pick.
The proof of the first statement of the theorem proceeds in two steps. First, we show that for
m < minf there does not exist a second configuration consistent with the test results w.h.p.
that has a small overlap with the true configuration. Second, we consider configurations
that have a large overlap with the true configuration and rule out any other consistent con-
figuration for m < minf.

For the first step, let

Sk (G,σ̂) = {
σ ∈ {0,1}Vn \σ : ∀a ∈ Fm : σ̂a(G,σ) = σ̂a

}
(3.3)

be the the set of all alternative configurations σ that are consistent with the test results.
Along those lines, we let

Zk,` = Zk,`(G,σ̂) = |{σ ∈ Sk (G,σ̂) : 〈σ,σ〉 = `}|(3.4)

be the number of consistent configurations that have an overlap of ` in the number of in-
fected individuals withσ. In the following, we will call ` simply the overlap betweenσ andσ.
The notation of Z is no coincidence here, since the partition function of the planted model
for the group testing problem indeed simply counts the number of alternative configura-
tions consistent with the test results. With Γ being the σ-algebra generated by the random
test degrees (Γa)a∈Fm we find

E
[

Zk,`(G,σ̂) | Γ]≤O
(
(∆k)3/2) ·

(
k

`

)(
n −k

k −`

)
m∏

i=1

(
1−2(1−k/n)Γi +2(1−2k/n +`/n)Γi

)

The proof of this expression requires a careful application of the balls-into-bins principle
due to the regularities of the underlying graph model. Here, let us briefly explain the com-
binatorial meaning. The two binomial coefficients count the number of all possible config-
urations that have overlap ` with the true configuration. The latter expression describes
the probability that such a configuration σ yields the same test results as σ. Thus, for
each test it calculates the joint probability of both tests being negative and both being pos-
itive. Note that with the definition of `, we have ` individuals that are infected under σ
and σ, k −` individuals that are infected under σ, but healthy under σ and vice versa and
n −2k +` individuals that are healthy under both configurations. Neglecting the intricate
regularities of the model, the joint probability of a negative test under both σ and σ is
thus given by (1−2k/n +`/n)Γi . The joint probability of a positive test follows from the
inclusion-exclusion principle. To be precise, we will not have a positive test under σ and σ
if there are only individuals that are healthy under σ and infected under σ or healthy un-
der both σ and σ. The same goes for individuals that are infected under σ and healthy
under σ. This insight yields a joint probability for a positive test under σ and σ as 1 −
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2(1−k/n)Γi + (1−2k/n +`/n)Γi . Putting these findings together yields the above expres-
sion. Standard simplifications using Stirling’s formula then show that Zk,`(G,σ) = 0 w.h.p.
for all `< (1−1/logn)k as long as c > 1/log2.

We proceed with large overlaps. As before, we will calculate Zk,`(G,σ̂). However, this time
we will consider the local changes introduced by flipping infected individuals under σ to
healthy under σ. A crucial insight is that in the model laid out above w.h.p. every infected
individual shows up in at least δ∆ of its tests as the only infected individual for some con-
stant δ> 0 as long as c > θ/((1−θ) log2 2). Let us denote this event by R and recall m0 from
(3.2). We readily find

E
[

Zk,`(G,σ̂) | Γ,R,m0
]≤O

(
(∆k)3/2)

(
k

`

)(
n −k

k −`

)

·
(
1−

(
1− k −`

n −k

)maxa Γa
)δ∆(k−`) (

n −2k +`
n −k

)(1+n−Ω(1))m0 mina Γa

.

Again, it turns out that E
[

Zk,`(G,σ̂) | Γ,R,m0
] = 0 w.h.p. for (1− 1/logn)k ≤ ` < k for any

constant c > 0. In combination with the bound for the event R and the bound for ruling out
small-overlap configurations yields the first statement of Theorem 3.1.

The careful reader will notice that the first statement of Theorem 3.1 does not make any
reference to knowing the specific value of k. Indeed, we show that if there does not exist a
second configuration of Hamming weight k consistent with the test results there will also not
be a second configuration of Hamming weight less than k that yields the same test results as
σ̂w.h.p. Thus, findingσ for m > minf boils down to finding the configuration with the lowest
Hamming weight that is still consistent with the test results.

The second statement follows from two separate arguments. First, the universal count-
ing bound ensures m > mad also for the regular non-adaptive test design. The crucial next
step relates to the individual types we described above. To be precise, we find that for
c < θ/((1−θ) log2 2), we have V +

0 ,V +
1 = nΩ(1) with high probability. This result entails that

we can easily construct many configurations satisfying the test results by simply flipping
healthy individuals in V +

0 under σ to infected and flipping an equal number of infected
individuals in V +

1 to healthy. Such a configuration clearly satisfies the test results and the
Nishimori property guarantees that there is no hidden information on which configuration
is the correct one. Since we can easily construct nΩ(1) many alternative configurations that
yield the same test results as σ, we do not have any means to detect the true configuration
σwith non-vanishing probability.

Having established an information-theoretic phase transition for the regular test design,
we are interested in how close efficient algorithms can get to this bound. In earlier work, [45]
already showed that the DD algorithm will succeed to recover σ if m > malg. But a converse
result was still missing. At the same time, [5] had proposed an extension of the DD algorithm
called SCOMP that was widely believed to improve upon the algorithmic bound of DD. SCOMP
performs the same first two steps as DD. Being left with the sets V +

0 and V1\V −−
1 , a greedy ver-

tex cover algorithm is employed by iteratively classifying the remaining individual with the
largest degree (breaking ties uniformly at random) as infected, removing it and all adjacent
tests from the design. The following result establishes that the algorithmic upper bound for
DD is tight and that, surprisingly, SCOMP fails at exactly the same bound.

Theorem 3.2 (Theorem 1.2 in [17]). Suppose that 0 < θ < 1 and ε> 0 and let

malg = malg(n,θ) = max

{
1

log2 2
,

θ

(1−θ) log2 2

}
k log(n/k).
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FIGURE 3. Size of different types of healthy (left figure) and infected individ-
uals (right figure) with respect to the number of tests

If m < (1−ε)malg(n,θ), then given G,σ̂w.h.p. both SCOMP and DD fail to output σ.

To discuss the proof idea of Theorem 3.2, we will focus on the SCOMP algorithm since if
SCOMP fails in some regime for m, so does DD. The key stepping stone towards the proof of
Theorem 3.2 is to determine the size of individual types V +

0 and V −−
1 . W.h.p. we have

∣∣V +
0

∣∣= (
1+n−Ω(1))n2−∆.(3.5)

Moreover, it turns out that for m < malg we have w.h.p.

V −−
1 =;.

Even though not necessary for the proof of the theorem, let us visualise the size of the sets
V +

0 , V −−
1 and V +

1 for various values of c and θ in Figure 3. It becomes immediately clear
from this figure why DD succeeds for m > malg since all infected individuals will show up in
at least one test with only individuals from V −

0 and thus are easily identified as definitely
infected by the second step of DD. Let us now consider the regime m < malg. In this case,
the second step of DD which underlies SCOMP proceeds without identifying any infected in-
dividuals as definitively infected, since no such individual shows up in at least one test with
only individuals from V −

0 . Thus, DD terminates with leaving the sets V +
0 and V1 unclassi-

fied. Now, SCOMP selects the individual out of these sets with the largest degree. However,
by the former argument, no infected individual was classified and thus, all positive tests are
still intact. Therefore, all individuals both from V +

0 and V1 will have degree ∆. Furthermore,
(3.5) informs us that for c < 1/log2 2, we have V +

0 = knΩ(1) with high probability. So breaking
ties arbitrarily, SCOMP will select a healthy individual already in the first step of the greedy
vertex cover algorithm w.h.p. and thus be unable to recover σ. With some minor technical
additions, the theorem follows from this reasoning.

Theorems 3.1 and 3.2 leave three interesting questions open that we will tackle in the fol-
lowing work. First, does there exist a non-adaptive test design that is superior to the regular
model we employed and that allows inference of σ for mad < m < minf? Second, does there
exist an efficient algorithm (and potentially an alternative test design) that also succeeds for
minf < m < malg? Put differently, is the regime minf < m < malg computationally hard? Third,
does there exist an efficient two-stage algorithm that succeeds for m > mad?

Our next result sheds light on the first question showing that there exists an adaptivity gap
in binary group testing.

Theorem 3.3 (Theorem 1.1 in [21]). For any 0 < θ < 1, ε> 0 there exists n0 = n0(θ,ε) such that
for all n > n0, all test designs G with m ≤ (1−ε)minf tests and for every function AG : {0,1}m →
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{0,1}n we have

P [AG (σ̂) =σ] < ε.

The function AG can be understood as any algorithm trying to infer σ from σ̂ and G with
the algorithm not necessarily being efficient. What Theorem 3.3 tells us is that for m < minf

no non-adaptive test design and algorithm exist that can recover σ w.h.p. The proof of The-
orem 3.3 is technically quite involved, so let us focus on the highlights here. The proof pro-
ceeds in two steps. First, we show that for θ = 1−δ for some small δ> 0 and m < (1−ε)minf

and any test design, we have

V +
0 ,V +

1 = nΩ(1).

This result entails that we can easily construct nΩ(1) alternative configurations consistent
with the test results. By the Nishimori property, we know that there is no hidden information
in the ground truth σ that would make it distinguishable from these alternative configura-
tions. So our best pick is a uniform sample from all satisfying configurations leading to an
error w.h.p. Second, we show that if we cannot solve the group testing problem for θ = 1−δ,
we cannot solve it for smaller θ. In conjunction with the universal information-theoretic
lower bound mad, we will thus yield the theorem. Let us look at each of the two steps in
more detail.

For the first step, we aim to characterise individuals in V +
0 and V +

1 since the joint presence
of such individuals allows us to construct alternative configurations that are indistinguish-
able from the ground truth. To this end, the concept of a disguised individual is central.
An individual is said to be disguised if it features at least one (other) infected individual in
all of its neighbouring tests. Clearly, the challenge in proving a general statement as The-
orem 3.3 is to evince for every possible graph that there exists a large number of disguised
infected and healthy individuals. To do so, we start off with two simple tricks. First, in order
to avoid stochastic dependencies, we employ a slightly different approach to constructing
the ground truth, i.e. we let each individual be infected with a certain probability indepen-
dently of each other. Our choice of this probability ensures that if we have a large number
of disguised individuals under this ground truth, it will also be true for our original model.
Second, we rule out any tests of size n1−θ logn since all such tests are positive w.h.p. so it is
pointless to carry them out in the first place. An important observation at this point is that
almost all individuals in such a graph have a relatively moderate degree.

In what follows, we construct a sequence of graphs where we iteratively remove the in-
dividual with the largest probability of being disguised as well as its neighbourhood up to
depth four to establish independence between the probability of being disguised between
these iteratively removed individuals. Now, the key is to get a handle on the probability of
being disguised. Observe that an individual is only disguised if it is disguised in every test
it is assigned to. With D(x) denoting the event that x is disguised and D(x, a) denoting the
event that x is disguised in test a, we have

P [D(x)] =P [∩a∈∂xD(x, a)] .

Since D(x, a) is increasing with respect to σ (and also the ground truth where individuals
infected independently of each other), we can employ the FKG inequality to find

P [D(x)] ≥
∏

a∈∂x
P [D(x, a)] .

With some calculations, we find that this lower bound can be readily evaluated by finding
the minimum of the function

z ∈ (0,∞) → z log
(
1− (1−p)z−1)
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where p denotes the prior probability of being infected. Solving this optimization problem,
we obtain a probability for an individual to be disguised. From this result, some calculations
in which we carefully control the error terms suffice to show that for θ = 1−δ for some small
δ> 0 and m < (1−ε)minf we have V +

0 ,V +
1 = nΩ(1).

For the second step, we will extend this result from θ = 1−δ to the entire range of θ. To
this end, we start off with a test design featuring n individuals and k = dnθe for θ = 1−δ.
Next, for any smaller θ′ < θ we increase the number of individuals to n′ in such a way that

k = dnθe = dn′θ′e.

It turns out that if a test design exists for θ′ < θ that succeeds for m < minf(n,θ), there also
exists a test design for density θ′ that outperforms minf(n,θ). Since we have demonstrated
that no such test design exists for θ = 1−δ for δ arbitrarily close to 0, it follows that it also
does not exist for m < minf(n,θ′) for any θ′ < θ. The theorem follows from these two steps.

Having established the information-theoretic lower bound for non-adaptive designs, the
interesting remaining question is whether there exists a test design and inference algorithm
that jointly allow inference all the way down to this lower bound. The next result provides a
positive answer to this question.

Theorem 3.4. For any 0 < θ < 1, ε > 0, there is n0 = n0(θ,ε) such that for every n > n0 there
exist a randomised test design G comprising m ≤ (1+ε)minf tests and a polynomial time algo-
rithm SPIV that given G and the test results σ̂ outputs σw.h.p.

To understand the intuition behind the test design and the algorithm, let us go back one
step and consider the simple DD algorithm in the regime malg < m < minf again. By Figure 3
we know that in this regime V −−

1 ,V +
1 =; and V +

0 = knΩ(1) w.h.p. Thus, DD performs equally
well as COMP by only classifying definitively healthy individuals from the set V −

0 , i.e. indi-
viduals that are included in at least one test. However, in this regime there does not exist
any individual from V −−

1 w.h.p. Thus, after performing the DD algorithm we are left with the
sets V1 and V +

0 . The key question is how we can set those two sets apart from each other.
Fundamentally, there is clearly a difference between the two. To be precise, every individual
from V +

0 - we will call these individuals disguised healthy hereafter - must feature at least
one infected individual in each test since otherwise this test would be negative. Conversely,
the event R from above informs us that for m < minf every infected individual shows up in
at least a constant fraction of its tests as the only infected individual. Thus, if we had the
pleasant situation that we have already identified all but one individuals and need to de-
termine whether this remaining individual is disguised healthy or infected, our job would
be straightforward: simply consider each test and check whether it features at least one in-
fected individual. If it does, the individual is disguised healthy; otherwise, it is infected.
Unfortunately, we do not know the infection status of all other individuals or at least most
other individuals that would facilitate this inference. Even worse, in the absence of any in-
formation on the ground truth (other than identifying definitively healthy individuals) we
are not aware of any approach that could distinguish V +

0 and V1 in the plain random reg-
ular design. Thus, we appear to be in a situation that is predisposed for the application of
spatial coupling that we have described in Section 2.6. What spatial coupling does is to iter-
atively identify individuals using information from previously classified individuals. It turns
out that this head start towards the ground truth that we have at our disposal for previous
compartments is precisely the right amount of information that allows us to infer σ w.h.p.
for m < minf.
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FIGURE 4. Visualization of spatially coupled test design. The figure is
adopted from [21].

The crucial idea behind spatial coupling is to carefully exercise our discretion of select-
ing the test design and enforce a certain geometric structure upon the random regular de-
sign from before. Take two parameters s,` such that s ¿ ` ¿ k 3. We now divide the
individuals into ` compartments which we arrange along a ring structure (see Figure 4).
The same goes for the tests. We denote the set of individuals in compartment 0,1, . . . ,` by
V [0],V [1], . . . ,V [`] and the set of tests accordingly by F [0],F [1], . . . ,F [`]. Now, any individual
x ∈V [i ] joins∆/s tests in each of its neighbouring compartments F [i ],F [i +1], . . . ,F [i +s−1]
uniformly at random without replacement. This assignment of individuals to tests gives rise
to the test design in Figure 4. Finally, the first s compartments will act as our starting point of
inference and thus be called seed compartments. For these compartments, we will conduct
more tests such that a simple algorithm such as DD can infer the infection status of individ-
uals in the seed compartments w.h.p. Let us denote this set of additional tests by F [0].

So how does this test design help us to set the sets V +
0 and V1 apart? To this end, we

developed a combinatorial algorithm called SPIV that proceeds in three steps. While the
first and third are relatively straightforward, the key idea lies in the second step.

In the first step, we classify the individuals in the seed compartments. Since malg =Θ(minf)
and the number of individuals in the seed compartments is sn/`= o(n), we immediately see
that o(minf) tests suffice to infer the infection status of the individuals in the seed compart-
ments w.h.p. using a simple algorithm such as DD.

With the seed compartments identified we move on to the next unidentified compart-
ment s + 1 on the right. We next aim to classify the individuals V [s + 1] that are included
in test compartments F [s + 1], . . . ,F [2s]. Note that individual V −

0 can be readily found as
healthy, so our focus is on the sets V +

0 and V1. Let us first consider test compartment F [s+1].
This compartment features a few individuals from V [s+1], but the vast majority comes from
the seed compartments we already classified. It should become clear now how spatial cou-
pling can help us in distinguishing V +

0 and V1. To be precise, what we do is to consider
the adjacent tests of an individual x ∈ V [s +1] and count the number of unexplained tests.
Clearly, every adjacent test is positive since otherwise, this individual would not be in V +

0 or
V1. We call such a positive test unexplained if it does not contain an individual from previ-
ous compartments that we have identified as infected. There are two possibilities for such
an unexplained test. Either the infected individual rendering this test positive has not been
identified yet or the individual under consideration is itself infected. Thus, the number of
unexplained tests in adjacent tests provides a way to distinguish V +

0 and V1 since individ-
uals from V +

0 should have meaningfully fewer unexplained tests than individuals from V1.

3Note that the proof requires specific choices of s and `, which we, however, neglect here for purposes of a
high-level summary.
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The key question is whether this approach suffices to discriminate between V +
0 and V1 all

the way down to minf. If we count all unexplained tests equally, it does not. However, if we
take into account that an unexplained test in an earlier test compartment such as F [s +1]
is a much stronger indication that we are dealing with an infected individual than an un-
explained test in later test compartments where we have classified fewer individuals yet,
we can close the gap to the information-theoretic lower bound by weighting the tests from
different compartments using

w j = log
(1−δ)2 j /s−1(2−2 j /s)

(1− (1−δ)2 j /s−1)(2 j /s −1

(
j ∈ [s]

)

where δ= 2/s2. With V1[i ] =V1∩V [i ] and V0+[i ] =V +
0 ∩V [i ] and W x denoting the weighted

sum of unexplained tests for an individual x we find

∑
s≤i<`

∑
x∈V1[i ]

1

{
W x < (1−δ/4)

∆

s

s−1∑
j=1

2 j /s−1w j

}
≤ k exp

(
− Ω(logn)

(loglogn)4

)
(3.6)

∑
s≤i<`

∑
x∈V0+[i ]

1

{
W x > (1−δ)

∆

s

s−1∑
j=1

2 j /s−1w j

}
≤ k1−Ω(1)(3.7)

whenever (1+ε)mad ≤ m = O
(
nθ logn

)
. The proof of (3.6) is based on a careful large devi-

ation analysis using Lagrangian optimization and the Chernoff bound for hypergeometric
distributions. By (3.6) we find that we will make at most kn−Ω(1) mistakes in each compart-
ment when classifying individuals according to the weighted neighbourhood sum using a
suitable threshold. Fortunately, it turns out that (3.6) not only holds when the individuals in
preceding compartments have been perfectly classified such as for the first non-seed com-
partment, but even if the misclassifications in previous compartments are of order kn−Ω(1).
Thus, after iteratively thresholding the weighted sum of unexplained tests we are left with
an estimate of the ground truth σ where we have made at most kn−Ω(1) mistakes. With this
estimate, we can move to a third clean-up step.

To tidy up things and eventually get to an estimate of the ground truth that is correct w.h.p.
we perform a clean-up step in which we iteratively loop through the ring, count the number
of unexplained tests in the neighbourhood of an individual and (re-)classify an individual as
healthy if fewer than log1/4 n tests contain an infected individual and are thus unexplained.
It turns out that as long as

m > (1+ε)
θ

(1−θ) log2 2
k log(n/k)(3.8)

logn rounds suffice until we have recovered the ground truth σ w.h.p. Combining (3.6) and
(3.8) yields the theorem and thus evinces that the SPIV algorithm applied on a spatially cou-
pled test design attains the information-theoretic lower bound for non-adaptive group test-
ing.

In terms of our initial questions, these results leave us with one open end, namely the
question of whether there exists an efficient two-stage algorithm that attains the universal
information-theoretic lower bound mad. It turns out that there is a natural adaptation of the
SPIV algorithm to adaptive settings that gives us the desired result.

Theorem 3.5 (Theorem 1.3 in [21]). For any 0 < θ < 1, ε> 0 there is n0 = n0(θ,ε) such that for
every n > n0 there exist a two-stage test design with no more than (1+ε)mad tests in total and
a polynomial time inference algorithm that outputs σwith high probability.

This algorithm which we will denote by ASPIV is based on the crucial observation that
(1+ ε)mad tests suffice such that we misclassify kn−Ω(1) in the first stage using a spatially
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coupled test design and the first two steps of SPIV - see (3.6) for reference. However, in con-
trast to SPIV we do not perform a clean-up step but enter a second group testing stage. In
this stage, all individuals that were deemed infected in the first stage are tested individu-
ally requiring k +kn−Ω(1) = o(mad) tests. Moreover, we construct a simple random regular
test design for the individuals deemed healthy in the first stage and apply the DD algorithm.
Since we have kn−Ω(1) infected individuals in this test design we requireΘ(kn−Ω log(n/k)) =
o(mad) tests to recover the correct infection status for all such individuals w.h.p. Combining
these findings, it is clear that the two-stage ASPIV algorithm can recover σ with (1+ε)mad

tests for an arbitrarily small constant ε> 0.
These results completely resolve open questions that have been studied for almost two

decades. In particular, we demonstrated that group testing undergoes a plain impossible-
easy transition with no computationally hard regime and that there indeed exists an adap-
tivity gap for certain values of θ that disappears as soon as we allow two stages of group
testing. With the phase diagram for noiseless sublinear group testing completely resolved,
we next relax the assumption of perfect test results and consider a general p−q-noise model
where every truly negative test is flipped to positive with probability p and every truly posi-
tive test is flipped to negative with probability q . We will consider a noisy variant of the COMP
and DD algorithm.

The following result will first exhibit performance guarantees for a noisy version of the
COMP algorithm. In the noiseless setting, a single negative test sufficed to definitely declare
every member of such a test as healthy. For the noisy setting, things are not as straight-
forward since a negative test might also result from a truly positive test that was flipped to
negative. Therefore, we will define a thresholdα∆ for the number of displayed negative tests
such that we classify an individual as healthy if it exhibits more than α∆ displayed negative
tests in its neighbourhood and infected otherwise. In the following, let H(·) and DKL (·‖·) de-
note the entropy and Kullback-Leibler divergence, respectively. We find the following per-
formance guarantees for this noisy version of COMP.

Theorem 3.6 (Theorem 2.1 in [39]). Let p, q ≥ 0, p + q < 1,d ∈ (0,∞),α ∈ (q,e−d (1− p)+(
1−e−d

)
q). Suppose that 0 < θ < 1 and let

mCOMP = mCOMP(n,θ, p, q) = min
α,d

max{b1(α,d),b2(α,d)}k log(n/k)

where b1(α,d) = θ

1−θ
1

dDKL
(
α‖q

)

and b2(α,d) = 1

1−θ
1

dDKL
(
α‖e−d (1−p)+ (

1−e−d
)

q
)

If m ≥ (1+ε)mCOMP for some ε > 0, noisy COMP will recover σ w.h.p. given test design G and
test results σ̂.

Similarly, the noisy DD algorithm will in addition only classify an individual as infected in
the second step if it shows up in at least β∆ displayed positive tests as the only unclassified
individual giving rise to the following result.

Theorem 3.7 (Theorem 2.1 in [39]). Let p, q ≥ 0, p + q < 1,d ∈ (0,∞),α ∈ (q,e−d (1− p)+(
1−e−d

)
q) and β ∈ (0,e−d (1− q)) and define w = e−d p + (1− e−d )(1− q). Suppose that 0 <
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θ < 1 and let

mDD = mDD(n,θ, p, q) = min
α,β,d

max
{
c1(α,d),c2(α,d),c3(β,d),c4(α,β,d)

}
k log(n/k)

where c1(α,d) = θ

1−θ
1

dDKL
(
α‖q

)

and c2(α,d) = 1

dDKL (α‖1−w)

and c3(β,d) = θ

1−θ
1

dDKL
(
β‖(1−q)e−d

)

and c4(α,β,d) = max
1−α≤z≤1





1

1−θ
1

d
(
DKL (z‖w)+1

{
β> ze−d p

w

}
zDKL

(
β
z ‖

e−d p
w

))





If m ≥ (1+ε)mDD for some ε > 0, then noisy DD will recover σ w.h.p. given test design G and
test results σ̂.

The proofs of both theorems are based on similar techniques that we will jointly discuss
hereafter. The starting point is the derivation of concentration bounds on the different types
of tests (displayed positive, but truly negative etc.). Since tests are flipped independently of
each other, a straightforward application of the Chernoff bound does the job. In the next
step, we derive the distribution of displayed negative tests for infected and healthy individ-
uals for COMP and the first step of DD as well as the distribution of displayed positive tests
in which an individual shows up as the only yet unclassified individual for the second step
of DD. Unsurprisingly given the model, these distributions turn out to be hypergeometric.
What directly springs to mind is that the expectation of the distributions are well separated
between healthy and infected individuals since a healthy individual shows up in more dis-
played negative tests in expectation. Similarly, an infected individual will show up in more
displayed positive tests in expectation as the only yet unclassified individual after we have
identified healthy individuals. Therefore, we define thresholds α∆ and β∆ and perform a
large-deviations analysis using the Chernoff bound for hypergeometric distributions on the
distributions we derived before. In conjunction with a union bound, we yield the bounds
stated in Theorem 3.6 and 3.7.

While the bounds in Theorem 3.6 and 3.7 appear unwieldy at first glance, the optimiza-
tions can be efficiently solved for every value of θ, p and q up to arbitrary precision. The
generality of these statements has the significant benefit that many common noise models
can be derived from the theorems as special cases. The specific noise models we present in
our work are the Z-channel (p = 0, q > 0), the reverse Z-channel (p > 0, q = 0) and the binary
symmetric channel (p = q > 0). As a corollary, we recover the bounds for the noiseless case.
The interested reader is referred to Corollaries 2.5-2.12 in [39].

Given the algorithmic achievability results, it remains to be seen how close the noisy vari-
ant of COMP and DD get to the information-theoretic lower bound. A bound for the latter is
our next result.

Theorem 3.8 (Theorem 2.3 in [39]). Let p, q ≥ 0, p +q < 1 and ε> 0, write H(·) for the binary
entropy in nats (logarithms taken to base e) and φ=φ(p, q) = (H(p)−H(q))/(1−p−q). If we
define

mCOUNT =
(

1

DKL
(
q‖1/(1+eφ)

)
)

k log(n/k),

then for m ≤ (1−ε)mCOUNT no algorithm can recover σw.h.p. for any matrix design.
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The proof of the theorem is based on deriving the capacity of the p −q-noise channel. To
this end, we maximise the mutual information between the input signal (the true test result,
denoted by X ) and the output signal (the displayed test result denoted by Y ) with respect to
the probability of a truly negative test. The mutual information can be formulated using the
standard equality

I (X ,Y ) = H(Y )−H(Y | X )

which can be readily evaluated to find that the optimal probability of a truly negative test is
(T ∗−q)/(1−p −q) where T ∗ = 1/(1+eφ) with φ defined as above.

While Theorem 3.8 provides an explicit information-theoretic lower bound, we remain
agnostic as to whether this bound is actually information-theoretically achievable. More-
over, in the light of the results for the noiseless setting it is not surprising that - even though
we improve on prior research results - the noisy variant of the DD algorithm does not achieve
the information-theoretic lower bound and there is likely a more sophisticated test design
and algorithm that outperforms DD.
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FIGURE 5. Illustration of the posterior distribution from running belief prop-
agation on a random biregular test design for with 0.15 (top left), 0.25 (top
right) and 0.6 (bottom left) tests/n and remaining entropy (bottom right) for
λ= 0.05 and the noiseless setting. The figure is adopted from [23].

Considering the asymptotic results from above, a tempting next question is whether the
presented algorithms hold merit for practical instances of group testing where the number
of individuals is moderately small. In a follow-up empirical work, we tackle this question.
In the light of our asymptotic algorithmic results and the success of message-passing algo-
rithms in related problems, it seems natural to run the belief propagation algorithm on a
test design where we fix both the degree of individuals and tests. This deliberation is the
starting point for our empirical work. Figure 5 shows the posterior distribution of running
belief propagation on an instance with 1000 individuals and a prior infection probability
of 5% for varying number of tests in the noiseless setting. The graphic evinces that as we
increase the number of tests, the posterior distribution becomes more polarised 4 and for

4We say that the marginal of an individual from running belief propagation is polarised if it is either 1 or 0,
i.e. if the posterior infection probability is either 1 or 0.
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FIGURE 6. Number of tests required (left) and savings potential versus two-
stage Dorfman (right) in noiseless setting. The figure is adopted from [23].

sufficiently large tests even allows perfect discrimination between healthy and infected in-
dividuals. But is such a one-stage approach optimal? If it was, we would expect the entropy
of the factor graph messages to be reduced by one bit per test until the posterior distribution
is completely polarised. However, it turns out this information-theoretically optimal reduc-
tion only holds up to a number of tests much below the point of polarised posterior distribu-
tions. Thus, we considered two- and three-stage algorithms that take advantage of the pos-
terior distribution obtained by running belief propagation. To be precise, we analysed three
such algorithms in addition to the traditional two- and three-stage Dorfman procedure. The
first algorithm consists of running belief propagation and subsequently testing individuals
with non-polarised posterior individually. It should be noted that for the noiseless case, this
algorithm boils down to running the well-known DD algorithm presented above with indi-
vidual follow-up testing for healthy individuals not in V −

0 and infected individuals not in
V −−

1 . For the second algorithm, rather than performing individual testing on non-polarised
individuals in the second stage, we employ a procedure called informative Dorfman that
is reminiscent of the conventional two-stage Dorfman approach but takes into account the
posterior distribution from belief propagation. Third, we split the non-polarised individuals
into two groups - one consisting of individuals with small posteriors on which we perform
another round of belief propagation on a regular graph design and one consisting of individ-
uals with larger posteriors for which we employ the informative Dorfman procedure. Here,
the difference between practical group testing and asymptotic settings becomes most pro-
nounced. If we had n →∞, each (arbitrarily small) interval of posteriors would feature an
unbounded number of individuals and we could perform a more advanced and likely more
efficient second-stage algorithm. However, since n is moderately small and thus also the
number of individuals with non-polarised marginals, we resort to heuristics that exploit the
posterior distribution but are likely not information-theoretically optimal.

Figure 6 shows the number of tests needed for each of these algorithms to succeed in the
noiseless case for varying prior infection probabilities. It turns out that particularly for small
priors, running belief propagation in the first stage leads to meaningful reductions in the
number of tests compared to both two- and three stage Dorfman as well as the conventional
DD scheme and comes close to the information-theoretic lower bound.

When it comes to the noisy setting, we find that the more complicated constructions of
the second and third algorithm hold their merit. To be precise, with a similar number of tests
as belief propagation plus individual testing or the traditional Dorfman procedure, the third
algorithm achieves a significantly lower false positive and false negative rate. This algorithm
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FIGURE 7. Number of tests (left), false positive rate (mid) and false negative
rate (right) in noisy setting. The figure is adopted from [23].

also lends itself well if we desire to minimise the number of false positives and false nega-
tives rather than minimising the number of tests with reasonable false positives and nega-
tives. Since most false positives and false negatives originate from the informative Dorfman
procedure performed on individuals with large marginals, we can simply perform this step
twice or three times. Figure 7 evinces that the false positive and false negative rate can be
drastically reduced if we are willing to accept moderately more tests. Thus, the bottom line
of the empirical work is that belief propagation allows us to meaningfully enhance the reli-
ability of group testing.

3.4. Outlook. While our work on group testing was able to completely resolve the phase di-
agram for the sublinear noiseless regime, some interesting questions remain. First, it would
be interesting to see whether the notion of spatial coupling was truly needed to solve the
group testing problem all the way down to the information-theoretic bound or whether an
alternative algorithm might also succeed on a plain random regular graph. A suitable candi-
date might be the belief propagation algorithm. A closer look at the SPIV algorithm actually
reveals that the crucial second step is indeed the first iteration of belief propagation on a
spatially coupled test design. So can belief propagation (possibly with many iterations) also
succeed on a plain random regular design? Initial heuristic arguments indicate that without
the head start towards the ground truth that spatial coupling provides belief propagation
gets trapped in a trivial fix point where the sets V +

0 and V1 remain indistinguishable. Further
work is warranted to either verify or refute this conjecture.

Moreover, the noisy case for sublinear group testing remains wide open. It is well imag-
inable that some form of spatially coupled test design with a noisy variant of SPIV or be-
lief propagation solves the group testing problem down to the information-theoretic lower
bound. For the special case of the binary symmetric channel, we have some indication that
it might indeed be the case, but further work is needed to generalise this finding to the p−q-
noise model.

Finally, and maybe most importantly, the linear regime for group testing where k/n is
a small constant remains wide open from a mathematical perspective. For some applica-
tions, this regime appears to be more suitable than the sublinear regime. We know from
[6] that no non-adaptive algorithm can succeed in the linear regime with high probability.
But what about two-stage algorithms or even non-adaptive algorithms where we allow some
mistakes? Unfortunately, many of the amenable mathematical properties of the sublinear
regime cease to hold in the linear regime, complicating the analysis. A promising route
might be to analyse belief propagation on a random regular version for the linear regime,
but this task is far from trivial. In a note [40] we already analysed the offspring distribution
for the linear regime, which in conjunction with the population dynamics algorithms allows
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us to simulate the posterior distributions of the marginal distribution resulting from run-
ning belief propagation on a random regular graph. But this starting point is nowhere near
a complete analysis of belief propagation and significant work is left. Given the numerous
applications of group testing, it seems like an important route for future research.

4. QUANTITATIVE GROUP TESTING

4.1. Setting & notation. Let us next consider a variant of the binary group testing problem,
namely quantitative group testing. In the literature, this problem has alternatively been la-
belled as the coin weighing problem or as a special case of the pooled data problem. As for
binary group testing, we have a large population n out of which k individuals suffer from a
rare disease. We will again consider the sublinear regime where k ∼ nθ for some θ ∈ (0,1).
Again, we have a testing scheme at our disposal by which we can test groups of individuals.
However, in contrast to binary group testing where each test only returns positive or neg-
ative, we are provided with the exact number of infected individuals in a test. Clearly, the
incremental information that we are provided better facilitates inference than binary group
testing and we should achieve lower information-theoretic and algorithmic bounds. Quan-
titative group testing has a long tradition in mathematics and information theory. Some no-
table contributions come from Erdős and Rényi [31], Djackov [27], Shapiro [67] and Soder-
berg and Shapiro [69]. Applications range from DNA screening [66] over identifying genetic
carriers in a population [12] to machine learning [53].

Before we get to our results, let us get the notation and model straight. As for the bi-
nary group testing problem, quantitative group testing can be understood as an inference
problem on random factor graphs. We have a set Vn = {x1, . . . , xn} of individuals on the one
side and a set Fm = {a1, . . . , am} of tests on the other side. In contrast to binary group test-
ing, we employ a model where each test selects Γ = n/2 individuals uniformly at random
with replacement. The resulting fluctuating variable degrees will be denoted by (∆x)x∈Vn .
Thus, our resulting graph G is much denser than the relatively sparse graph we used for
binary group testing. The counting bound in the next section will exhibit why this choice
is likely optimal. While individuals will be assigned to m/2 tests on average, standard argu-
ments reveal that the expected number of distinct tests∆∗ for an individual is much smaller,
i.e.

(
1−exp(−1/2)

)
m. The inference problem starts off as usual with a uniformly sampled

ground truth σ ∈ {0,1}Vn of Hamming weight k encoding the infection status of the individ-
uals. The ground truth together with the graph G which is generated independently of the
ground truth gives rise to the test results (σ̂a)a∈Fm according to the rule

σ̂a =
∑

x∈∂a
σx (a ∈ Fm),

Note that ∂a denotes the neighbourhood of test a including potential multi-edges. Put dif-
ferently, an individual might contribute to the test result of test a more than once. If we refer
to the distinct neighbourhood of test a or individual x we will write ∂∗a and ∂∗x, respec-
tively. The inference task now comes down to the question of whether given σ̂ and Gwe can
completely infer the ground truth σ w.h.p.? Again, we have the information-theoretic and
algorithmic perspective to this question. Let us start by revisiting some prior research.

4.2. Prior research. A similar counting bound argument as for binary group testing pro-
vides a natural information-theoretic lower bound. Since each test result can in principle
exhibit k + 1 different values, we need to ensure that the number of possible test results
(k + 1)m exceeds the number of possible configurations

(n
k

)
. Using Stirling’s formula, we
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yield

m ≥ k
log(n/k)

log(k)
(4.1)

However, heuristically speaking it is not feasible that a test result exhibits all k +1 possible
results. Instead, for each test we should see test results fluctuating by the standard deviation
around the expectation. This restriction leads to an additional factor of 2 in (4.1). Indeed,
Djackov [27] proved that all test designs require at least

minf = 2k
log(n/k)

log(k)

tests. Using separating matrices, Grebinski and Kucherov [41] provide a (non-constructive)
non-adaptive design with an exponential-time algorithm which achieves reliable recovery
using (2+ε)minf tests. For the linear regime k =Θ(n), [4] and [64] evinced the lower bound
minf is information-theoretically achievable. Thus, for the sublinear regime a (constant) gap
remains that we close in our work.

When it comes to efficient non-adaptive algorithms, [3] applied the approximate mes-
sage passing algorithm to quantitative group testing in the linear regime. Approximate mes-
sage passing can be understood as a computationally efficient version of the belief prop-
agation algorithm for dense graphs. However, the shortcuts taken to make the algorithm
more efficient also make the algorithm less analysable from a rigorous standpoint. In any
regards, heuristic arguments used by [3] evince that approximate message passing succeeds
for quantitative group testing only with Θ(log(n)minf) tests. The state of the art for the sub-
linear regime is similar. Donoho and Tanner [28] and Foucart and Rauhut [33] presented
two efficient algorithms based on `1-minimisation and the basis pursuit algorithm that get
by with

2k log(n/k) and
2

1−θk log(n/k)

tests, thus also being off from the information-theoretic bound by a multiplicative factor of
log(n). Recently, Karimi et al. [46, 47] presented two algorithms based on graph codes for
relatively sparse test designs requiring approximately

1.72k log(n/k) and 1.515k log(n/k)

These results are astonishing in the sense that despite the wealth of additional information
provided by quantitative group testing tests, no efficient algorithm is known that can get
to a better order than efficient algorithms for binary group testing. Indeed, most known
algorithm even play in the same league in terms of constants as the algorithms we analysed
for binary group testing. These results raise the question of whether there might exist a
computationally hard regime in non-adaptive quantitative group testing. In our work, we
study a natural greedy neighbourhood algorithm. However, we also only find that it needs
Θ(k log(n/k) tests to succeed.

4.3. Results. Let us start with the non-adaptive information-theoretic upper bound that
matches minf for the sublinear regime.

Theorem 4.1 (Theorem 1.1 in [38]). Suppose that 0 < θ < 1, k = nθ and ε> 0 and let

minf = minf(n,θ) = 2k
log(n/k)

log(k)
.

If m > (1+ε)minf(n,θ), there exists an (exponential time) algorithm that given G and σ̂ out-
puts σw.h.p.
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The proof of Theorem 4.1 is based on the same technique we used in the first work on
binary group testing. To be precise, we calculate the planted first moment and show that for
m > (1+ε)minf there does not exist a second configuration that yields consistent test results
to the ground truth. Our proof is again split into two parts - one argument for configurations
with small overlaps and one for large overlaps.

We start with small overlaps, i.e. 0 ≤ ` < k − (1− exp(−1/2)) logk. Recall the definition
of Sk (G,σ̂) and Zk,` from (3.3) and (3.4) with the overlap parameter `. The crucial step to-
wards establishing the absence of alternative configurations for small overlaps lies in the
derivation of the following expression.

E[Zk,`(G,σ̂)] ≤
(

k

`

)(
n −k

k −`

) ∏
a∈Fm

σ̂a∑
j=1

(
Γ

j , j ,Γ−2 j

)(
(1−`/k)

k

n

)2 j (
1−2(1−`/k)

k

n

)Γ−2 j

(4.2)

We shed light on its combinatorial meaning. The binomial coefficients simply count the
number of configurations that have overlap ` with σ. The second expression provides an
upper bound on the probability that such an alternative configuration yields the same test
results. To this end, the sum ranging over the test result considers the probability that we
yield the same test result if we flip j infected individuals underσ to healthy in the alternative
configurations and vice versa. While the binomial coefficient captures the number of such
possibilities, the following terms account for the probability that we observe j individuals
infected under σ̂, but healthy under the alternative configuration and vice versa, as well
as the probability that Γ−2 j individuals remain unflipped. Using standard results on one-
dimensional random walks, the expression (4.2) can be readily reformulated to obtain

E[Zk,`(G,σ̂)] ≤ (1+O(1))

(
k

`

)(
n −k

k −`

)(
1p
2π
E

[
1p
X

])m

where X is a random variable with distribution Bin≥1 (Γ,2(1−`/k)k/n). Next, we find that
we can move the expectation inside the square root since the Jensen gap vanishes. Some
further manipulations finally evince that for sufficiently small ` and m ≥ (1+ε)minf we have

log
(
E[Zk,`(G,σ̂)]

)
/n < 0.

Ruling out alternative configurations with a large overlap with σ relies on the application
of the classical coupon collector argument. While again some technical care is needed, the
general strategy is as follows. In any alternative configuration, there must be at least one in-
fected individual underσ that was flipped to healthy - otherwise, we would simply consider
σ. Now using standard coupon collector arguments, we can show that in order to compen-
sate for the effect on test results of flipping this one individual at least (1−exp(−1/2)) logk
formerly healthy individuals need to be flipped from healthy to infected. While these addi-
tional changes likely lead to further inconsistencies of the test results, the argument suffices
to rule out configurations with a large overlap. Combining the large and small overlap argu-
ment readily yields the desired statement of the theorem.

Having established a sharp information-theoretic bound, we can move on to efficient
algorithms. In our work, we consider a simple greedy algorithm called Maximum Neigh-
bourhood (MN) and analyse how it fares in comparison to other more complicated efficient
algorithms. The algorithm is based on calculating the adjusted neighbourhood sum for in-
dividuals. To be precise, let

Ψx =
∑

a∈∂∗x
σ̂a

be the sum of all test results from the distinct tests that individual x ∈ Vn is assigned to. We
will refer to Ψx as the neighbourhood sum of x. Also, recall the definition of the number

27



of distinct tests ∆∗
x for an individual x ∈ Vn . Since each infected individual contributes ∆x

to its neighbourhood sum, the expected sum should be larger for infected than for healthy
individuals. Indeed, if we calculate Ψx −∆∗

x k/2 for each individual x ∈ Vn and classify the
largest k individuals as infected, we can recover σwith sufficient tests.

Theorem 4.2 (Theorem 1.2 in [38]). Suppose that 0 < θ < 1, k = nθ and ε> 0. Further, let

mM N (n,θ) = 4

(
1− 1p

e

)
1+

p
θ

1−
p
θ

k log(n/k).

If m > (1+ε)mM N , then the MN algorithm outputs σw.h.p. given G,σ̂,k.

The proof of the theorem is based on a careful large deviation analysis of the distribu-
tions of the neighbourhood sums for infected and healthy individuals. The first item on the
agenda is to derive the distributions of the neighbourhood sum if we neglect the impact of
individual x in these tests. Let us denote this reduced sum byΦx . It turns out that the distri-
bution of this random variableΦx is almost independent of the infection status of individual
x. We find

Φx ∼ Bin

(
∆∗

xΓ−∆x ,
k −1 {x ∈V1}

n −1

)
.

Thus, we haveΨx =Φx +1 {x ∈V1}∆x . Clearly, the expectation of the observable neighbour-
hood sumΨx depends on the infection status of individual x and is thus a natural candidate
for thresholding infected and healthy individuals. However, it turns out that the standard
deviation of the (unadjusted) variableΨx is too large to attain mM N (n,θ) due to the fluctua-
tions in ∆∗

x . To account for these fluctuations, we instead consider the variableΨx −∆∗k/2,
i.e. the neighbourhood sum adjusted for the conditional expectation given the number of
distinct tests∆∗

x . With this modification we can define a thresholdαm/2 and employ a stan-
dard Chernoff bound for the binomial distribution to show that when m > (1+ ε)mM N we
have

Ψx ≥∆∗k/2+αm/2 ∀x ∈V1

Ψx <∆∗k/2+αm/2 ∀x ∈V0.

Above mM N , we can thus recoverσw.h.p. Admittedly, the MN algorithm is a simple greedy al-
gorithm and we should not have reasonably hoped for it to attain the information-theoretic
lower bound we identified above. Nevertheless, it is interesting to see that despite its sim-
plicity it is on par with significantly more complicated quantitative group testing algorithms
for low sparsity regimes.

4.4. Outlook. The quantitative group testing problem gives rise to similar open questions
as the binary group testing problem, namely considering noisy variants of the problem or
adaptive algorithms. However, the central open question pertains to the gap between the
information-theoretic bound and the best known algorithmic bounds. For the sparse graph
algorithms developed by Karimi et al. [46, 47], it is not surprising that their bound does not
coincide with the information-theoretic lower bound since the sparsity of the graph is not
information-theoretically optimal. However, the fact that even a sophisticated algorithm
such as approximate message passing fails to improve upon the test order Θ(k log(n/k)
raises the question of whether we face a computationally hard regime for m being larger
than minf, but o(k log(n/k)). In some follow-up work, we applied the notion of spatial cou-
pling with a slightly modified version of the MN algorithm to the quantitative group testing
problem. But other than an improvement in the constant of mM N , we did not see major
improvements from this approach. This finding is insofar interesting, as the MN algorithm
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is reminiscent of a one-iteration message-passing algorithm. To be precise, it is the first
iteration that approximate message passing performs when applied to the group testing
problem. Clearly, the large number of update iterations that approximate message passing
performs might paint a completely different picture, but the fact that approximate message
passing without spatial coupling and our first-iteration spatially coupled message-passing
algorithm fail in the same order provide some indication that even approximate message
passing applied to a spatially coupled test design does not lead to improvements beyond
Θ(k log(n/k)) tests. Thus, it is of fundamental interest to understand whether quantitative
group testing indeed exhibits a computationally hard regime.

5. ISING ANTIFERROMAGNET AND MAX CUT

5.1. Setting & notation. Our next two works take us to Ising antiferromagnet which is a
cornerstone model in combinatorics and statistical physics. Take a graph G with Vn vertices
each of which has one of two possible spins ±1. The interactions of the vertices are encoded
by a vertex set E . For any spin configuration σ ∈ {±1}Vn , let us define the Hamiltonian

HG (σ) =
∑

(v,w)∈E

1+σvσw

2
.

In addition, we introduce a real parameter β> 0 - the inverse temperature in physics jargon.
Together with β, the Hamiltonian gives rise to the well-known Boltzmann distribution on a
configuration σ ∈ {±1}Vn defined by

µG ,β(σ) = exp
(−βHG (σ)

)

ZG ,β
where ZG ,β =

∑
τ∈{±1}Vn

exp
(−βHG (τ)

)
.(5.1)

The normalising term ZG ,β is our well-known partition function which will turn out to be
of central importance. The distribution µG ,β favours configurations with few monochro-
matic edges, i.e. edges between vertices of the same spin. This model is known as the Ising
antiferromagnet. In the following, we will study the Ising antiferromagnet on random reg-
ular graphs G= G(n,d). There are a number of interesting research questions that the Ising
antiferromagnet raises in its own right. To be precise, it is easy to see that the distribution
µG ,β gives rise to short-range interactions between vertices in the sense that under µG ,β the
spins of two close vertices are correlated. The strength of these correlations is determined by
the choice of β with large values of β yielding configurations with relatively few monochro-
matic edges. A key question pertains to the degree of correlation between two distant ver-
tices in the graph. According to physics predictions, there should exist a threshold value
such that for smaller values of β we should observe a rapid decay of correlations and thus
no long-range correlations between vertices. This regime is known as the replica symmet-
ric phase. The defining characteristic of this phase is that w.h.p. two independent samples
σ1,σ2 from the Boltzmann distribution µG,β exhibit an almost flat overlap in the sense that
|σ1 ·σ2| = o(n). Conversely, for larger values ofβ correlations should persist between distant
vertices giving rise to what physicists call replica-symmetry breaking. This threshold for the
emergence of long-range correlations is predicted to be at the combinatorially meaningful
Kesten-Stigum bound

βKS = log

(p
d −1+1p
d −1−1

)
.

The Ising antiferromagnet is also intimately related to the MAXCUT problem - a promi-
nent example of an inference problem. Given a graph G , the MAXCUT problem asks for a
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partition of the vertex set into two classes such that the maximum number of edges are be-
tween vertices of different classes. This problem can be readily formulated as an inference
problem on random factor graphs. The vertices in the graph G form the set of variable nodes
in this factor graph. Similarly, for each edge in the original graph we create a factor node in
the factor graph and connect it to the respective variable nodes. Given the resulting fac-
tor graph, the goal is to infer a configuration σ ∈ {±1}Vn such that the maximum number
of factor nodes are connected to variables nodes of different spins. Here, we are interested
in the information-theoretic thresholds of the problems rather than efficient algorithms. As
for other inference problems, we find that this problem is tightly connected to the partition
function of the Boltzmann distribution (5.1). To be precise, for a random d-regular graph G
on n vertices we find

2E [MAXCUT(G)]

dn
= 1−

2E
[
minσ∈{±1}Vn HG(σ)

]

dn
≤ 1+ 2

βdn
E
[
log ZG,β

]
.(5.2)

While the above inequality holds for any β > 0, it seems natural to take β → ∞ to derive
a tighter bound on the maximum cut size. Indeed, note that for small values of β, the
Boltzmann distribution from (5.1) is close to a uniform distribution over all configurations
σ ∈ {±1} irrespective of the number of monochromatic edges. However, whenβ→∞ the dis-
tribution becomes a point mass on the maximum cut configuration. Therefore, in order to
bound the maximum cut size we need to get a handle on limβ→∞ limn→∞E

[
log ZG,β

]
/(nβ).

To this end, we will employ the interpolation method from mathematical physics already
touched upon in the introduction.

5.2. Prior research. The Ising model has a long tradition in statistical physics. Invented by
Lenz in 1920 [52] to explain magnetism, it is suggested to be one of the simplest models
where replica-symmetry breaking occurs. Mézard and Parisi [54, 55] were the first to inves-
tigate replica-symmetry breaking in the Ising model using the non-rigorous cavity method.
For the Ising ferromagnet, where vertices of identical spin are attracted to each other, these
predictions were verified by Dembo and Montanari [24] by analysing the belief propagation
recurrences on a random tree.

Since the disassortative stochastic block model with two communities that we touched
upon in the introduction is nothing but the planted version of the Ising antiferromagnet,
the result by Mossel, Neeman and Sly [60] shows the existence and threshold for replica-
symmetry breaking in the Ising antiferromagnet for the Erdős-Rényi model. Moreover, a
result by [15] evinces replica-symmetry breaking to occur for the Ising antiferromagnet on
random regular graphs. However, this result only comes as an infinite-dimensional varia-
tional problem. The contribution of our work is to provide an explicit formula for the replica
symmetry breaking phase transition. Moreover, we will derive the limiting distribution of
ZG,β in the replica symmetric phase.

When it comes to the MAXCUT problem on random graphs, several attempts have been
made to derive lower and upper bounds. The derivation of upper bounds has thus far been
mostly based on the classical first moment method, while the analysis of greedy algorithms
yielded lower bounds. Table 1 provides the best known rigorous bounds for random regular
graphs.

Prior techniques and algorithms mostly relied on local arguments. Thus, it is not surpris-
ing that up to now lower and upper bounds lie apart by quite a margin. The first non-local
and more advanced approach to resolve the bounds for the MAXCUT problem was taken
by Dembo, Montanari and Sen [25] using the interpolation method and an inherent con-
nection between Erdős-Rényi graphs and the Sherrington-Kirkpatrick model. Their results
pertain to the case that d →∞, but do not carry any information about finite d regimes and
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d 3 4 5 6 7 8 9 10
best previous upper bound 0.9320 0.8900 0.8539 0.8260 0.8038 0.7855 0.7701 0.7570

new upper bound 0.9241 0.8683 0.8350 0.8049 0.7851 0.7659 0.7523 0.7388
best lower bound 0.9067 0.8333 0.7989 0.7775 0.7571 0.7404 0.7263 0.7144

expected cut size at βKS 0.8536 0.7887 0.7500 0.7236 0.7041 0.6890 0.6768 0.6667

TABLE 1. Bounds on the fraction of edges in a maximum cut of G(n,d). The
table is adopted from [18].

random regular graphs. For that, we need to look at works by Panchenko [63] and Coja-
Oghlan and Perkins [15] from which bounds on the MAXCUT problem come as the solution
to an infinite-dimensional optimisation problem. Getting any specific bounds out of these
results is far from trivial, if at all possible. At the same time, Zdeborová and Boettcher [72]
put forward a beautiful conjecture on the maximum cut and min bisection size on random
regular graphs based on non-rigorous statistical physics techniques. In our work, we will
derive explicit upper bounds on the maximum cut size on random regular graphs that pre-
cisely match the prediction by Zdeborová and Boettcher [72].

5.3. Results. As the first key result, we pinpoint the replica-symmetry breaking phase tran-
sition of the Ising antiferromagnet on random regular graphs. To this end, let

Φd :β ∈ (0,∞) → lim
n→∞E

[
log ZG,β

]
/n.

Theorem 5.1 (Theorem 1.1 in [18]). For any d ≥ 3 let

βKS =βKS(d) = log

(p
d −1+1p
d −1−1

)
.(5.3)

(i) If β<βKS(d), then

Φd (β) = log2+ d

2
log

1+e−β

2
.

(ii) If β>βKS(d), then

Φd (β) < log2+ d

2
log

1+e−β

2
.

The proof of the first statement is based on the method of moments. In its classical ap-

plication, we would derive expressions for E
[

ZG,β
]

and E
[

Z 2
G,β

]
and show that E

[
Z 2
G,β

]
=

O
(
E
[

ZG,β
]2

)
for β<βKS. Then, standard concentration arguments imply the first statement

of the theorem. However, in the case of the Ising antiferromagnet things turn out be mildly
more complicated and we have to resort to different methods. To be precise, we first exhibit
an event O as

O = {
E
[∣∣σG ·σ′

G

∣∣ |G]< εnn
}

for a sequence εn = o(1) and two independent samplesσG,σ′
G

from the Boltzmann distribu-
tion. Put differently, O is the event that two typical samples from the Boltzmann distribution
are almost orthogonal. For the proof of the first statement, we will apply the methods of mo-
ments to the partition function restricted on event O . To this end, we will first show that for

β < βKS we have E
[

ZG,β1 {O }
] = Θ(

E
[

ZG,β
])

. Second, we will calculate E
[

Z 2
G,β1 {O }

]
which

turns out to be a more amenable opponent than E
[

Z 2
G,β

]
. The proof of the first component

is based on the insight that if P [G∗ ∈O ] ∼ 1, then indeed E
[

ZG,β1 {O }
] = Θ(

E
[

ZG,β
])

where
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G∗ denotes the planted model of the Ising antiferromagnet. With this result at hand, we cou-
ple the planted model G∗ with a broadcasting process on the infinite (d −1)-ary tree. The
key idea is that such a (d −1)-ary tree suitably models the local neighbourhood of a sparse
planted model. At the root of the tree, we select a spin uniformly at random. Then, we con-
struct the tree downwards by sampling a spin for the children of a given parent as follows.
With probability e−β/(1+ e−β) we select the same spin as for the parent, while with proba-
bility 1/(1+ e−β) we select a different spin. Let F` denote the σ-algebra generated by the
spins of vertices at distance larger than ` from the root. For β<βKS, it turns out that the tree
exhibits a rapid correlation decay and quickly ’forgets’ the spin of the root - a phenomenon
known as non-reconstruction. Formally, with τv0 denoting the spin at the root of the tree we
have

lim
`→∞

E

[
P

[
τv0 = 1 |F`

]− 1

2

]
= 0.(5.4)

With (5.4) at hand, we readily find that

E
[

ZG,β1 {O }
]=Θ(E

[
ZG,β

]
) =Θ

(
2n

(
1+e−β

2

)dn/2)

For the second moment, we have to consider

E
[

Z 2
G,β1 {O }

]
=

∑
σ,σ′∈{±1}Vn

1
{|σ1| ,

∣∣σ′1
∣∣ ,

∣∣σ,σ′∣∣≤ δn
}
E
[
exp

(−βHG(σ)−βHG(σ′)
)]

.

The event O thus allows us to focus our attention to spin configurations σ,σ′ that have an
almost flat overlap. Starting off with combinatorial arguments and bounding the second
moment of random regular graphs by the second moment of the Erdős-Rényi graph we find

E
[

Z 2
G,β

]
≤ exp

(
n max
α∈[−1,1]

fd (α,β)

)
where

fd (α,β) = (1−d) log(2)+H((1+α)/2)+ d

2
log

((
1+e−β

)2
+α2

(
1−e−β

)2
)

.

Since we can calculate Z 2
G,β conditioned on event O , we finally obtain

E
[

Z 2
G,β1 {O }

]
≤ exp

(
n fd (0,β)+o(1)

)= E[
ZG,β

]2 exp(o(n)).

For the second part of the theorem, we strike a chord to the free energy in the planted
model and leverage a result from [22]. To state the result, let P∗([−1,1]) be the space of
all probability measures on the interval [−1,1] with mean 0. Moreover, for a probability
measure π, let (µπ,i )i≥1 be a family of independent samples from π. Finally, we let Λ(x) =
x log x. The key towards the proof lies in the so-called Bethe free energy defined as

BIsing(π,β,d) = E
[
Λ

(∑
σ∈±1

∏d
i=1 1− (1−e−β)(1+σµπ,i )/2

)

21−d (1+e−β)d
−

dΛ
(
1− (1−e−β)(1+µπ,1µπ,2)/2

)

1+e−β

](5.5)

From [22] we know that the second statement of our theorem holds if

sup
π∈P∗([−1,1])

BIsing(π,β,d) > lim
n→∞ log

(
E
[

ZG,β
])

/n.(5.6)

In order to establish (5.6), it suffices to show the inequality for any probability measure
π ∈ P∗([−1,1]). To this end, we consider a slightly perturbed probability distribution and
perform a Taylor expansion of BIsing(π,β,d) around a zero perturbation to the fourth order.
While the first order precisely matches the first moment, the second and third order turn out
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to be zero. But for the fourth order, we eventually find that as long asβ>βKS we indeed have
a positive value thereby establishing the second statement of the theorem and pinpointing
the replica-symmetry breaking phase transition.

As an immediate corollary of Theorem 5.1 and the fact that the disassortative stochastic
block model with two communities is the planted Ising antiferromagnet, we can describe
the Kullback-Leibler divergence between the planted and the null model.

Theorem 5.2 (Theorem 1.4 in [18]). For any d ≥ 3 the following are true.

(i) If β<βKS(d), then limn→∞ DKL (G∗‖G)/n = 0 and limn→∞ DKL (G‖G∗)/n = 0.
(ii) If β>βKS(d), then limn→∞ DKL (G∗‖G)/n > 0 and limn→∞ DKL (G‖G∗)/n > 0.

Arguably, the approximation of the partition function in Theorem 5.1 is relatively crude
with an error term of exp(o(n)) for β<βKS. As the following result evinces, we can do better
than that and derive the limiting distribution of ZG,β in the replica symmetric phase.

Theorem 5.3 (Theorem 1.1 in [32]). Assume that 0 < β < βKS and d ≥ 3. Let (Λi )i be a

sequence of independent Poisson variables with E [Λi ] = λi where λi = (d−1)i

2i . Further, let

δi =
(

e−β−1
e−β+1

)i
. Then as n →∞ we have

log
(
ZG,β

)− 1

2
log

(
1+eβ

2+deβ−d

)
−n

((
1− d

2

)
log(2)+ d

2
log

(
1+e−β

))

d−→ log(W ) where W := exp(−λ1δ1 −λ2δ2)
∞∏

i=3
(1+δi )Λi exp(−λiδi ) .

The infinite product defining W converges a.s. and in L2.

To derive the limiting distribution for ZG,β in the replica symmetric regime, we need to
identify the sources of fluctuations in ZG,β. One obvious such source are the number of short
cycles in G. Indeed, it turns out that once we condition on the number of short cycles, the
variance of ZG,β vanishes. More formally, let Ci (G) be the number of short cycles of length
i in a graph G and F` the σ-algebra generated by the random variables Ci (G) for i ≤ `. By
standard decomposition of the variance we have

E
[

Z 2
G,β

]
−E[

ZG,β
]2 = E

[
E
[

ZG,β |F`

]2 −E[
ZG,β

]2
]
+E

[
E
[

Z 2
G,β |F`

]
−E[

ZG,β |F`

]2
]

.

It turns out that whenβ<βKS the second term accounting for the conditional variance given
the number of short cycles vanishes. Thus, the entire variance of ZG,β is due to fluctuations
in the number of short cycles in G. Our proof of the limiting distribution relies on a com-
bination of the methods of moments and small subgraph conditioning enriched by similar
spatial mixing arguments as employed in our work to pinpoint the replica-symmetry break-
ing phase transition in the Ising model. To be precise, we leverage a result by Janson [44]
that allows us to eventually state the limiting distribution of ZG,β. In order to apply this re-
sult, a few steps are needed. As a first step, we need to get a handle on the distribution of
short cycles in random regular graphs G and the planted model G∗, i.e. the disassortative
stochastic block model. While the former is a well-established result, the latter constitutes a
major contribution of our work. Let

δi =
(

e−β−1

e−β+1

)i

and λi =
(d −1)i

2i

and consider a sequence of independent Poisson random variables for i ≥ 3 defined by

Λi ∼ Po(λi ) and Ξi ∼ Po(λi (1+δi )).
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While it is well known that jointly for all i the number of short cycles of length i in G con-
verges in distribution to Λi , we show that the number of short cycles of length i in the
planted model G∗ converges in distribution to Ξi .

As a second step, we need to sharpen our pencil and derive a sharper approximation of
the first and second moment of ZG,β. As before, instead of considering ZG,β directly we will
analyse ZG,β1 {O }. As before, we use the fact that for β < βKS we have E

[
ZG,β1 {O }

] = (1+
o(1))E

[
ZG,β

]
. With some rather complicated and tedious calculations, we find for β<βKS

E
[

ZG,β
]= exp(−λ1δ1 −λ2δ2 +O (1/n))

√(
1+eβ

)
/
(
2+deβ−d

)

·exp
(
n

(
(1−d/2) log(2)+d log

(
1+e−β

)
/2

))

E
[

Z 2
G,βO

]
= exp

(
λ1 +λ2 −

4λ1(
1+eβ

)2 − 4λ2
(
1+e2β

)2

(
1+eβ

)4 +O

(
1

n

))

·
(
1+eβ

)2
exp

(
n

(
(2−d) log(2)+d log

(
1+e−β)))

(
deβ−d +2

)p
2e2β+2deβ−de2β−d +2

.

With this tighter expression of the first and second moment at hand, we can establish that

E
[

Z 2
G,β {O }

]

E
[

ZG,β {O }
]2 = (1+o(1))exp

(∑
i≥3

λiδ
2
i

)

which suffices to apply the result by Janson [44] and obtain the limiting distribution of
ZG,β1 {O }. A rather straightforward application of Markov’s inequality then allows us to trans-
fer this result to ZG,β and thus establish the theorem.

Having established the replica-symmetry breaking phase transition at the combinatori-
ally meaningful Kesten-Stigum bound and having derived the limiting distribution of ZG,β

in the replica symmetric phase, we turn our attention to the inference problem of MAXCUT.
Our following result establishes an upper bound on the maximum cut size of random regular
graphs. To this end, let M be a right stochastic block matrix of size (d +1)× (d +1)

M =




0 1 0 · · · · · · · · · 0
1
2 0 1

2
. . .

...

0 1
2 0 1

2
. . .

...
...

. . . . . . . . . . . . . . .
...

...
. . . . . . . . . . . . 0

...
. . . 1

2 0 1
2

0 · · · · · · · · · 0 1 0




.(5.7)

Moreover, we define

Fd (α, z) =− log
(
ζA dξ

)

log z
+ d log

(
1−2α2 +2α2z

)

2log z
, where(5.8)

A = (1−2α)id+2α
p

zM ,(5.9)

ζ= [
1, 0, 0, · · · ] ∈R1×(d+1),(5.10)

ξ= [
1, z−1/2, z−1, z−3/2, · · ·]T ∈R(d+1)×1.(5.11)
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Theorem 5.4 (Theorem 1.2 in [17]). For any d ≥ 3 we have

lim
β→∞

β−1Φd (β) ≤ inf
0<α≤1/2

0<z<1

Fd (α, z).

As a corollary to this theorem, we obtain the following bound on the max cut problem
that matches precisely the conjectured values by Zdeborová and Boettcher [72].

Corollary 5.5 (Corollary 1.3 in [18]). Let MAXCUT(G) be the number of edges cut by a maxi-
mum cut of G. Then, w.h.p.,

MAXCUT(G) ≤ dn

2
inf

0<α<1/2
0<z<1

(
1+ 2

d
Fd (α, z)

)
+o(n).

As described above, the key towards deriving an upper bound on the max cut problem is
to upper bound

lim
β→∞

lim
n→∞E

[
log ZG,β

]
/(nβ).

One of the techniques in our toolbox is the so-called interpolation method. The basic idea
of the interpolation method is to construct a sequence of graphs parametrised over t ∈ [0,1].
Figure 8 provides an illustration. At t = 1, the graph coincides with our original factor graph.
At time t = 0, we have decomposed the graph into independent variables nodes (white) and
a set of negative factor nodes (red). Each variable nodes is still connected to d factor nodes
(blue), but instead of the variables interacting with each other, they only interact through
a central node (orange) that models the interaction between variable nodes in the original
graph. As we move from the original graph G at t = 1 to the decomposed graph at t = 0 we
essentially remove the factor nodes connecting the variable nodes and replace them with
independent factor nodes only connected to the central orange node. Since in effect we are
adding twice the number of factor nodes that the original graph features, we obtain a set
of negative factor nodes. The crucial insight behind the interpolation method is that the
partition function only increases as we decrease t . Thus, the partition function of the orig-
inal graph G is upper bounded by the partition function of the decomposed graph. In our
work, we do not perform the interpolation method in full but leverage results on the Potts
model which constitutes a generalisation of the Ising model to more spins. Thus, we get an
upper bound on limn→∞E

[
log ZG,β

]
/n in terms of an expression over any probability distri-

bution on [−1,1]. While the general bound is cumbersome and does not lend itself well for
explicit bounds, we are free to choose the probability distribution in order to get an explicit,
yet ideally tight bound. To this end, we follow physics intuition and consider a candidate
distribution that should recover the bound by Zdeborová and Boettcher [72]. While the ex-
pression pertaining to the set of negative factor nodes in the interpolation method can be
readily evaluated under this distribution, matters are more complicated for the independent
variable nodes. Fortunately, we find a connection between the candidate distribution and a
certain random walk that allows us to derive the expression in Theorem 5.4. While the ex-
pression looks unwieldy at first glance, it can be numerically evaluated and we indeed find
that the upper bound on the maximum cut size matches the conjecture by [72].

5.4. Outlook. While our results provide a meaningful step to understand the Ising antiferro-
magnet on random regular graphs, they leave a few questions open. First, the upper bound
on the maximum cut size must not need to be tight. Indeed, in the light of the result of Coja-
Oghlan & Perkins [15] we should not expect it to be tight and it would be interesting to see
whether we can derive tighter lower and upper bounds. Second, having derived the limiting
distribution of ZG,β in the replica symmetric phase, one might wonder if something similar is
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t = 1t = 0

FIGURE 8. Illustration of the interpolation method adopted from [17] show-
ing the decomposed factor graph at t = 0 and the original factor graph at t = 1.

also possible for β>βKS. We should not be too optimistic in this regard, since for β>βKS we
should expect long-range correlations to emerge in G giving rise to far more intricate fluctu-
ations in ZG,β. These fluctuations likely result in a far more complicated distribution of ZG,β.
Deriving this distribution seems out of reach with today’s techniques. However, what seems
to be in reach is vindicating the absence and presence of long-range correlations inG. While
it should be a stone’s throw from Theorem 5.3 to the absence of long-range correlations in
G, establishing the presence of long-range correlations in G above the Kesten-Stigum bound
is a far more challenging, yet important undertaking.
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6. ZUSAMMENFASSUNG

6.1. Einleitung. Viele Fragestellungen der Mathematik und Informatik können als Inferen-
zprobleme auf zufälligen Faktorgraphen formuliert werden. Nehmen wir das Beispiel einer
hoch-dimensionalen linearen Regression der Form

y = Xβ+w

mit y ∈Rm , X ∈Rmxn mit unabhängigen, identisch verteilten (u.i.v.) N (0,1) Einträgen, einem
Parametervektor β ∈ {0,1}n und einem Rauschen w ∈ Rm mit u.i.v. N (0,σ2) Einträgen [62].
Das Ziel in diesem Inferenzproblem ist es, aus m verrauschten Beobachtungen (der Vektor
y) und der ursprünglichen Eingabe X den Parametervektor β zu ermitteln. Dieses Problem
kann man sich als einen bipartiten Graphen vorstellen, bei der wir auf der einen Seite n
Variablenknoten haben, die die Einträge im Parametervektor β repräsentieren und auf der
anderen Seite m Faktorknoten, die die verrauschten Beobachtungen darstellen. Die Interak-
tion der Parameter β, um die Beobachtungen y zu erhalten, sind in der Matrix X abgebildet,
die somit die Graphenstruktur des Faktorgraphen enkodiert.

Hoch-dimensionale lineare Regression is nur eines von vielen Problemen, die man sich
als Inferenzproblem auf (zufälligen) Faktorgraphen vorstellen kann [57, 73]. Andere promi-
nente Probleme, die an dieser Stelle genannt werden sollten, sind Graph Clustering [1, 43],
Hauptkomponentenanalyse [11] oder Bedingungserfüllungsprobleme [13, 26]. Dieses Ge-
biet ist ein aktives Forschungsfeld und in den vergangenen Jahren sind verschiedene Tech-
niken entwickelt worden, um Inferenzprobleme auf (zufälligen) Faktorgraphen informa-
tionstheoretisch und algorithmisch zu analysieren. Die meisten dieser Probleme lassen sich
mit der Analogie des Lehrer-Schüler-Modells verdeutlichen [73]. Nehmen Sie an, dass ein
Lehrer eine Anfangsbelegung aus einer bestimmten, meist bekannten Verteilung zufällig
auswählt. Im Fall der Regression wäre dies der Parametervektor β. Im Anschluss erzeugt er
einen zufälligen Faktorgraphen auf der Grundlage dieser Anfangsbelegung. Dieser Faktor-
graph enthält neben den Kanten zwischen Variablen und Faktoren auch Informationen auf
den Faktoren, die sich aus der Anfangsbelegung ableiten. Im Falle der linearen Regression ist
die Matrix X unabhängig von dem Parametervektor β, aber die verrauschten Beobachtun-
gen y , die auf den Faktorknoten gespeichert werden, enthalten Informationen über β. Nun
übergibt der Lehrer den Faktorgraphen mit den auf den Faktorknoten gespeicherten Infor-
mationen an einen Schüler, allerdings ohne die Anfangsbelegungβ zu verraten. Die Aufgabe
des Schülers ist es nun, aus der Graphenstruktur und den auf den Faktoren gespeicherten
Informationen die Anfangsbelegung zu rekonstruieren. Natürlich hängt die Möglichkeit,
die Anfangsbelegung zu rekonstruieren, vom Signal-Rausch-Verhältnis ab, das dem Prob-
lem zugrunde liegt. Für die linear Regression ist das Signal die Anzahl der Messungen y ,
das Rauschen hingegen die Varianz σ2 im Vektor w . Die zentrale Frage ist, ab welchem
Verhältnis von Signal zu Rauschen eine Rekonstruktion der Anfangsbelegung möglich ist.
Es gibt zwei Perspektiven auf diese Frage. Die informationshteoretische Perspektive inter-
essiert sich für das minimale Verhältnis von Signal zu Rauschen, sodass der Graph mit dem
auf ihm gespeicherten Informationen genug Informationen enthält, um Rückschlüsse auf
die Anfangsbelegung zu ziehen - ungeachtet der Rechenleistung, die dafür notwendig wäre.
Die algorithmische Perspektive hingegen beschäftigt sich mit der Frage, ab welchem Ver-
hältnis effiziente Algorithmen existieren, die das Problem lösen. Man mag vermuten, dass
die Fähigkeit der Rekonstruktion kontinuierlich mit einem steigenden Verhältnis von Sig-
nal zu Rauschen zunimmt. Tatsächlich zeigen viele Inferenzprobleme sogenannte Phasen-
übergänge, bei denen sogar eine teilweise Approximation der Anfangsbelegung unterhalb
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des Überganges nicht möglich ist und bei denen ab dem Übergang eine volle Rekonstruk-
tion erreicht werden kann [73]. Viele Inferenzprobleme scheinen dabei einen unmöglich-
schwer-einfach Übergang zu durchlaufen. Konkret lässt sich für viele Probleme zeigen, dass
unter einer Schwelle minf Inferenz nicht möglich ist - ungeachtet der Rechenleistung, die
man bereit ist auf das Problem zu verwenden. Der Graph zusammen mit den auf ihm
gespeicherten Informationen enthält einfach nicht genug Informationen über die Anfangs-
belegung. Auf der anderen Seite gibt es eine Schwelle malg, über der effiziente Algorith-
men bekannt sind, die das Problem lösen. Oft stimmen minf und malg nicht überein. Der
Grund dafür mag natürlich darin liegen, dass ein effizienter Algorithmus einfach noch nicht
bekannt ist, der oberhalb der informationstheoretischen, aber unter der bekannten algo-
rithmischen Schranke funktioniert. Allerdings mehren sich in den letzten Jahren die Anze-
ichen, dass wir es häufig mit einem schweren Regime zu tun haben, in dem das Inferen-
zproblem zwar prinzipiell lösbar ist, aber kein effizienter Algorithmus existiert, der es in
diesem Bereich tatsächlich in Polynomialzeit löst [73].

In dieser Dissertation betrachten wir drei klassische Inferenzprobleme und untersuchen
deren informationstheoretische und algorithmische Schwellen. Für das erste Problem des
binären Group Testing zeigen wir in einer Reihe von Arbeiten, dass kein schweres Regime
vorliegt und das Problem einen simplen unmöglich-einfach-Übergang durchläuft und lösen
dabei teils 20 Jahre offene Fragestellungen. Im quantitativen Group Testing leiten wir die
ausstehende obere informationstheoretische Schranke her und untersuchen einen gängi-
gen Algorithmus, der allerdings deutlich über der informationstheoretischen Schwelle ver-
sagt. Vor dem Hintergrund verschiedener anderer Algorithmen, die in der gleichen Größen-
ordnung wie unserer spielen, stellt sich bei diesem Problem die Frage, ob es ein schweres
Regime gibt. Schlussendlich untersuchen wir den Ising Antiferromagneten - ein klassis-
ches Modell der statistischen Physik. Zum einen zeigen wir für dieses Modell auf regulären
zufälligen Graphen den replica-symmetry breaking (RSB)-Phasenübergang auf. Zum an-
deren nutzen wir die inherente Verbindung zum MAXCUT-Problem, einem gängigen In-
ferenzproblem der Kombinatorik, um eine schärfere obere Schranke für dasselbe herzuleiten
und damit eine lang bestehende Vermutung der Physik zu bestätigen. Im folgenden werden
wir diese drei Probleme sowie unsere Kernergebnisse beleuchten.

6.2. Binäres Group Testing . Binäres Group Testing ist ein Musterbeispiel für ein statistis-
ches Inferenzproblem auf zufälligen Faktorengraphen. In dem Problem betrachten wir eine
große Menge von n Individuen, von denen eine kleine Gruppe k an einer seltenen Krankheit
leidet. Wer an der Krankheit leidet wird in einer Belegungσ ∈ {0,1}n mit Hamming-Gewicht
k enkodiert. Im Einklang mit der Literatur nehmen wir an, dass k ∼ nθ skaliert für eine
Konstante θ ∈ (0,1). Statt jede Person einzeln auf die Krankheit zu testen steht uns ein
Testschema zur Verfügung, in dem wir Gruppen von Individuen testen können. Ein Tester-
gebnis ist genau dann positiv, wenn mindestens eine Person in der Gruppe infiziert ist,
ansonsten erhalten wir ein negatives Ergebnis. Die wesentliche Erkenntnis hinter Group
Testing ist, dass wir uns durch geschickte Gruppenbildung viele Tests gegenüber individu-
ellem Testen sparen können. Betrachten wir dazu eine zweistufige Variante, die auf Dorf-
man [30] zurückgeht, der Group Testing erstmalig im zweiten Weltkrieg anwandte, um Sol-
daten auf Syphilis zu testen. Statt einzeln zu testen schloss Dorfman Gruppen von Indi-
viduen zusammen und führte einen Gruppentest durch. Wenn das Ergebnis desselben pos-
itiv war, war ein Test vergeudet und jede Person wurde im Anschluss einzeln getestet. Wenn
hingegen das Ergebnis negativ war, konnte man sich sicher sein, dass keine infizierte Per-
son in der Gruppe war. Somit genügte ein Test gegenüber einzelnen Tests für jede Person
in der Gruppe. Auch wenn Dorfmans Group Testing-Variante einen Fortschritt im Vergleich
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FIGURE 9. Darstellung eines zufälligen regulären Testdesign für nicht-
adaptives Group Testing, übernommen aus [17]

zu individuellem Testen darstellt, ist es weit entfernt davon, optimal zu sein. Aus dieser
Initialzündung entwickelte sich seitdem ein breiter Forschungsstrang, der sich zum Ziel
gemacht hat, die informationstheoretischen und algorithmischen Aspekte des Group Test-
ing-Problems zu beleuchten. Gerade in den vergangenen zwanzig Jahren gewann das sub-
lineare Regime, das wir hier mit k ∼ nθ betrachten, an Relevanz.

Zwei Varianten des binären Group Testings seien an dieser Stelle unterschieden. So gibt es
adaptive Testdesigns und Algorithmen wie den oben erwähnten zweistufigen Algorithmus
von Dorfman, bei dem das Design der zweiten Runde von den Ergebnissen der ersten Runde
abhängt. Aus Automatisierungs- und Zeitgründen hat sich die Forschung der vergangenen
Jahre jedoch auch für den nicht-adaptiven Fall interessiert, bei dem der Infektionsstatus
aller Individuen in einer Stufe ermittelt wird. Zu diesem Zweck eignet sich besonders ein
zufälliges reguläres Design, bei dem jedes Individuen nicht nur in einen Gruppentest, son-
dern eine fixe Anzahl von Tests ∆ aufgenommen wird. Dieses Design kann man sich wie in
Graphik 9 vorstellen.

Für beide Fälle - den adaptiven und nicht-adaptiven - ergibt ein klassisches Zählargument
eine universelle informationstheoretische untere Schranke

mad = 1

log2
k log(n/k)

(
k ∼ nθ

)

Für das nicht-adaptive reguläre Testdesign, das wir oben kurz vorgestellt haben, ergibt sich
eine untere informationstheoretische Schranke der Größenordnung

minf = max

{
1

log2
,

θ

(1−θ) log2 2

}
k log(n/k).

In Bezug auf effiziente nicht-adaptive Algorithmen haben sich zwei Algorithmen namens
COMP and DD hervorgetan. Deren Vorgehensweise ist schnell erklärt. Der COMP-Algorithmus
klassifiziert alle Individuen, die in mindestens einem negativen Test vorkommen, als gesund
und alle anderen als krank. Der DD Algorithmus geht einen Schritt weiter. Nach der Klassi-
fizierung der Individuen in negativen Tests als gesund sucht er nach positiven Tests, die nun-
mehr nur noch ein nicht klassifiziertes Individuum enthalten, das nun notwendigerweise
infiziert sein muss. Alle Individuen, die nicht in diese Kategorie fallen, werden als gesund
eingestuft. Vor unseren Arbeiten am Group Testing lag die algorithmische obere Schranke
für den DD Algorithmus bei

malg = max

{
1

log2 2
,

θ

(1−θ) log2 2

}
k log(n/k).

In Bezug auf effiziente adaptive Algorihtmen entwarf Scarlett [65] einen dreistufigen Algo-
rithmus, der die universelle informationstheoretische Schranke mad erreicht. Diese vorheri-
gen Ergebnisse sind in dem Phasendiagram in Graphik 10 visualisiert.

In unserer ersten Arbeit zum binären Group Testing
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FIGURE 10. Das Phasendiagram für binäres Group Testing. Im roten Bere-
ich ist Inferenz informationstheoretisch für das zufällige reguläre Design
nicht möglich. Vor unseren Arbeiten war es unklar, ob es ein bessers nicht-
adaptives Testdesign gäbe, das in diesem Bereich Inferenz erlauben würde.
Der grüne Bereich markiert das Regime, in dem Inferenz informationstheo-
retisch möglich ist, aber für das kein effizienter Algorithmus bekannt war.

Information-theoretic and algorithmic threshold for group testing

von Amin Coja-Oghlan, Oliver Gebhard, Max Hahn-Klimroth und Philipp Loick konnten wir
die voherigen Ergebnisse um die folgendenden Erkenntnisse erweitern.

• Für m > (1+ε)minf ist es in der Tat informationstheoretisch möglich, den Infektion-
sstatus von jedem Individuum mit einem regulären nicht-adaptiven Testdeisgn mit
hoher Wahrscheinlichkeit 5 zu bestimmen. Damit stellen wir eine passende obere
Schranke zu der bestehenden unteren informationstheoretischen Schranke auf

• Für m < (1−ε)malg scheitern sowohl der DD als auch ein leicht ausgefeilterer Algorith-
mus names SCOMP, den Infektionsstatus jedes Individuums mit hoher Wahrschein-
lichkeit zu bestimmen

Der Beweis des ersten Ergebnisses basiert auf einer Anwendung von Techniken aus Be-
dingungserfüllungsprobleme auf das Group Testing Problem. Konkret berechnen wir die er-
wartete Anzahl von alternativen Belegungenσ ∈ {0,1}n , die zu den gleichen Testergebnissen
führen, und zeigen, dass für m > (1+ε)minf mit hoher Wahrscheinlichkeit keine solche Bele-
gung existiert. Für das zweite Ergebnis zeigen wir, dass für m < (1− ε)malg kein infiziertes
Individuum im zweiten Schritt von DD identifiziert wird.

Während diese erste Arbeit bestehende Ergebnisse erweitert, stellt unsere zweite Arbeit

Optimal group testing

von Amin Coja-Oghlan, Oliver Gebhard, Max Hahn-Klimroth und Philipp Loick den großen
Wurf für das binäre Group Testing dar. Konkret zeigen wir folgende drei Ergebnisse und
lösen damit die wesentlichen offenen Punkte des Phasendiagramms.

• Es existiert kein nicht-adaptives Testdesign, sodass das Group Testing-Problem für
m < (1− ε)minf gelöst werden kann. Die vorherigen Ergebnisse bezogen sich auss-
chließlich auf den spezifischen Fall des zufälligen regulären Graphens als nicht-adaptives
Testdesign. Unser Beitrag ist somit, dass es keine Graphkonstruktion gibt, die besser
abschneidet als das zufällige reguläre Testdesign. Unser Ergebnis impliziert damit,
dass es im Group Testing eine Adaptivitätslücke gibt

• Für m > (1+ε)minf existiert ein nicht-adaptives Testdesign und ein effizienter Algo-
rithmus, der das Group Testing-Problem löst. Dieses Ergebnis beantwortet eine der

5Eine Folge von Ereignissen En tritt mit hoher Wahrscheinlichkeit ein, wenn limn→∞P [En] = 1
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wesentlichen offenen Fragen im binären Group Testing, nämlich die Frage, ob es im
nicht-adaptiven Fall ein schweres Regime gibt, in dem das Group Testing-Problem
zwar informationstheoretisch, aber nicht algorithmisch lösbar ist. Der Kerngedanke
hinter unserem Testdesign ist die Anwendung der Idee des Spatial Coupling aus
der Codierungstheorie. Wir verbinden dieses Testdesign mit einem neuen kombi-
natorischen Algorithmus, der es uns erlaubt, den Infektionsstatus aller Individuen
mit hoher Wahrscheinlichkeit zu bestimmen

• Für m > (1+ ε)mad gibt es einen zweistufiges Testdesign und einen effizienten Al-
gorithmus, der das Group Testing-Problem löst. Zu diesem Zweck verbinden wir
Teilergebnisse des vorherigen Resultates und einer geschickt konstruierten zweiten
Stufe des Group Testings. Dieses Result zeigt, dass bereits ein zweistufiges (statt
dreistufiges) Design genügt, um das Group Testing-Problem bis zur universellen in-
formationstheoretischen unteren Schranke zu lösen

Der Beweis der ersten Aussage beruht im wesentlichen auf einer Anwendung der FKG-
Ungleichung, um die Wahrscheinlichkeit abzuschätzen, das in einem beliebigen Testde-
sign ein Individuum nur in Tests mit mindestens einem (weiteren) infizierten Individuum
auftritt. Wie oben angedeutet, nutzen wir für den Beweis der zweiten Aussage die Idee des
Spatial Coupling, die es uns erlaubt, anhand einer Messgröße die infizierten und gesunden
Individuen zu unterscheiden. Der eigentliche Beweis der Aussage fusst auf einer präzisen
Abweichungsanalyse der Verteilung dieser Messgröße für infizierte und gesunde Individuen
gepaart mit einer Lagrange-Optimierung. Auf der Grundlage dieses Ergebnisses ist es ein le-
ichtes, ein entsprechendes zweistufiges Design zu erstellen, das mit einem geeigneten Algo-
rithmus das Group Testing-Problem bis zur universellen informationstheoretischen Schranke
löst. Somit zeigen wir, dass es im binären Group Testing eine informationstheoretische
Adaptivitätslücke gibt, aber sowohl für den adaptiven und nicht-adaptiven Fall effiziente
Algorithmen existieren, die bis zur informationstheoretischen unteren Schranke erfoglreich
den Infektionsstatus rekonstruieren können.

In einer Erweiterungsarbeit

Improved bounds for noisy group testing with constant tests per item

von Oliver Gebhard, Oliver Johnson, Philipp Loick und Maurice Rolvien betrachten wir den
verrauschten Fall, in dem jeder tatsächlich negativer Test mit einer konstanten Wahrschein-
lichkeit p als positiv angezeigt wird und ein tatsächlich positiver Test mit Wahrscheinlichkeit
q als negativ angezeigt wird. Für dieses Setting analysieren wir eine verrauschte Variante des
bekannten COMP und DD Algorithmus. Im Gegensatz zum nicht verrauschten Fall, in dem
ein einzelner negativer Test genügt, um ein Individuum als gesund einzustufen, ist die Sit-
uation im verrauschten Fall komplizierter, sodass mehrere negative Tests notwendig sind,
um relativ sicher darauf zu schließen, dass ein Individuum gesund ist. Zu diesem Zweck
definieren wir eine Schwelle α∆ für die Anzahl von negativen Tests in der Nachbarschaft
eines Individuums, über der ein Individuum als gesund und unter der ein Individuum als
infiziert eingestuft wird. Ähnlich verfahren wir mit der zweiten Stufe der DD Algorithmus
mit einer korrespondierenden Schwelle β∆. Unsere Ergebnisse leiten obere algorithmische
Schranken für diese verrauschte Variante des COMP und DD Algorithmus wie folgt her. Für
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p, q > 0 und α ∈ (q,e−d (1−p)+ (
1−e−d

)
q) definieren wir

mCOMP = mCOMP(n,θ, p, q) = min
α,d

max{b1(α,d),b2(α,d)}k log(n/k)

mit b1(α,d) = θ

1−θ
1

dDKL
(
α‖q

)

und b2(α,d) = 1

1−θ
1

dDKL
(
α‖e−d (1−p)+ (

1−e−d
)

q
)

wobei DKL
(
µ‖ν)

the Kullback-Leibler-Divergenz zwischen µ und ν ist. Als erstes Ergebnis
zeigen wir, dass für m > (1+ε)mCOMP diese verrauschte Version des COMPAlgorithmus zuver-
lässig den Infektionsstatus jedes Individuums bestimmen kann. Als zweites Ergebnis leiten
wir eine entsprechende Schranke für den DD Algorithmus her. Zu diesem Zweck definieren
wir

mDD = mDD(n,θ, p, q) = min
α,β,d

max
{
c1(α,d),c2(α,d),c3(β,d),c4(α,β,d)

}
k log(n/k)

mit c1(α,d) = θ

1−θ
1

dDKL
(
α‖q

)

und c2(α,d) = 1

dDKL (α‖1−w)

und c3(β,d) = θ

1−θ
1

dDKL
(
β‖(1−q)e−d

)

und c4(α,β,d) = max
1−α≤z≤1





1

1−θ
1

d
(
DKL (z‖w)+1

{
β> ze−d p

w

}
zDKL

(
β
z ‖

e−d p
w

))





.

Es stellt sich heraus, dass für m > (1 + ε)mDD die verrauschte Variante des DD Algorith-
mus zuverlässig den Infektionsstatus jedes Individuums mit hoher Wahrscheinlich ermit-
telt. Der Beweis der beiden Ergebnisse erfordert die Herleitung der Verteilung der nega-
tiv angezeigten Tests für infizierte und gesunde Individuen sowie die Verteilung der posi-
tiven Tests, die die Bedingung des zweiten Schrittes von DD erfüllen. Nachfolgend nutzen
wir die Chernoff-Schranke für die hypergeometrische Verteilung, um die obigen Ergebnisse
herzuleiten. Auch wenn die Ergebnisse auf den ersten Blick unhandlich erscheinen, lassen
sich für jedes p, q und θ die entsprechende Schranke beliebig genau berechnen.

Die obigen Ergebnisse beziehen sich ausschließlich auf den asymptotischen Fall n →∞.
In der empirischen Arbeit

Efficient and accurate group testing via Belief Propagation: an empirical study

von Amin Coja-Oghlan, Max Hahn-Klimroth, Philipp Loick und Manuel Penschuck betra-
chten wir praktische Instanzen des Group Testing mit 100 bis 10000 Individuen und wenden
den Belief Propagation-Algorithmus auf ein reguläres Graphendesign an. Auf dieser Grund-
lage entwickeln wir effiziente zwei- und dreistufige Algorithmen, die die sich ergebende
Posterior-Verteilung der ersten Stufe ausnutzen. Zwar können wir mit diesen Algorithmen
nur mäßige Verbesserungen in der Anzahl der Tests im nicht verrauschten Fall erzielen.
Allerdings schneiden unsere neuen Algorithmen deutlich besser im verrauschten Fall ab,
was die Anzahl der falsche klassifizierten Individuen bei vergleichbaren Tests angeht. Auch
können unsere Algorithmen natürlich erweitert werden, wenn man darauf bedacht ist, die
Anzahl der falsch klassifizierten Individuen bedeutend zu reduzieren und dafür eine über-
schaubare Anzahl an zusätzlichen Tests in Kauf nimmt.
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6.3. Quantitatives Group Testing . Als zweites Inferenzproblem betrachten wir quantita-
tives Group Testing, das in der Literatur alternativ auch unter dem Namen Münzwägung
und Pooled Data-Problem untersucht wird. Der Aufbau des Problems unterscheidet sich
zum binären Group Testing nur insofern, als dass jedes Testergebnis die (genaue) Anzahl
der infizierten Individuuen in einem Test angibt. Wie vorher betrachten wir den sublin-
earen Fall einer Gruppe von n Individuen, von den k ∼ nθ für θ ∈ (0,1) an einer seltenen
Krankheit erkrankt sind. Wieder stellen sich die Fragen der informationstheoretischen und
algorithmischen Schranke. Ein analoges, aber ausgefeilteres Zählargument zu oben zeigt,
dass mindestens

minf = 2k
log(n/k)

log(k)
(6.1)

Tests informationstheoretisch notwendig sind, um das quantitative Group Testing-Problem
zu lösen. Interessanterweise liegt die algorithmische Schranke für alle bekannten effizienten
Algorithmen in der Größenordnung Θ(k log(n/k)) und somit einen Faktor log(n) von der
unteren Schranke entfernt. In unserer Arbeit

Quantitative group testing in the sublinear regime

von Oliver Gebhard, Max Hahn-Klimroth, Dominik Kaaser und Philipp Loick tragen wir fol-
gende Ergebnisse zum Verständnis des quantitativen Group Testings bei.

• Die informationstheoretische untere Schranke aus (6.1) is scharf, d.h. für m > (1+
ε)minf ist es informationstheoretisch möglich, die Belegungσ aus dem Graphen und
den Testergebnissen zu rekonstruieren

• Wir untersuchen einen effizienten Algorithmus namens Maximum Neighbourhood,
der Individuen entsprechend der (angepassten) Summe ihrer Testergebnisse klassi-
fiziert. Zu diesem Zweck definieren wir

mM N (n,θ) = 4

(
1− 1p

e

)
1+

p
θ

1−
p
θ

k log(n/k).

und zeigen, dass für m > (1+ε)mM N unser Algorithmus den tatsächlichen Infektion-
sstatus jedes Individuums mit hoher Wahrscheinlichkeit rekonstruiert.

Der Beweis der ersten Aussage basiert auf der gleichen Methode, die wir schon für das
binäre Group Testing verwendet haben. Konkret zeigen wir mittels einer Berechnung des er-
sten Moments und des klassischen Couponsammler-Arguments, dass es für m > (1+ε)minf

keine alternative Belegung zur tatsächlichen Belegung gibt, die die gleichen Testergebnisse
erzeugt. Der Beweis des effizienten Algorithmus basiert auf der Herleitung der Verteilung
der (angepassten) Nachbarschaftssumme für infizierte und gesunde Individuen. Dabei ist
die Kernidee, dass infizierte Individuen zu den Testergebnissen in ihrer Umgebung jew-
eils 1 beisteuern. Somit ist die Erwartung der Nachbarschaftssumme höher für infizierte
als für gesunde Individuen. Mit den entsprechenden Verteilungen, der Chernoff-Schranke
für die Binomialverteilung und einer austarierten Klassifikationsschwelle sind wir in der
Lage zu zeigen, dass wir σ rekonstruieren können, wenn wir die k größten Individuen als
infiziert einstufen. Obwohl dieses Ergebnis in einer Liga mit bereits bekannten, deutlich
komplizierteren Algorithmen spielt, ist es natürlich insofern unzufriedenstellend, als dass
wir weiterhin um einen Faktor log(n) von der informationstheoretischen Schranke entfernt
sind. Die Frage liegt daher nahe, ob das quantitative Group Testing-Problem anders als sein
binäres Pendant tatsächlich einen unmöglich-schwer-einfach Übergang durchläuft, der für
viele andere Inferenzprobleme vermutet wird.

43



6.4. Ising Antiferromagnet und Max Cut. Als drittes Problem betrachten wir den Ising Anti-
ferromagneten und das eng verwandte Max Cut-Problem auf zufälligen regulären Graphen.
Der Ising Antiferromagnet ist ein klassisches Model der statistischen Physik und lässt sich
wie folgt beschreiben. Wir betrachten einen Graphen G mit einer Knotenmenge Vn und
einer Kantenmenge E . Jeder Knoten kann einen von zwei möglichen Zuständen ±1 haben.
Für eine Zustandsbelegung σ ∈ {±1}Vn können wir den sogenannten Hamiltonian HG (σ)
definieren als

HG (σ) =
∑

(v,w)∈E

1+σvσw

2
.

Zusammen mit einem reellen Parameterβ> 0, lässt sich eine Wahrscheinlichkeitsverteilung
auf Zustandsbelegungen σ ∈ {±1}Vn entsprechend

µG ,β(σ) = exp
(−βHG (σ)

)

ZG ,β
mit ZG ,β =

∑
τ∈{±1}Vn

exp
(−βHG (τ)

)
.

definieren. Die Verteilung µG ,β wird als Boltzmann-Verteilung bezeichnet und ZG ,β als die
Zustandssumme. Aus dieser Formulierung wird klar, dass µG ,β Belegungen bevorzugt, bei
denen wenige Kanten zwischen Knoten des gleichen Zustandes verlaufen. Dieses Modell ist
als der Ising Antiferromagnet bekannt und wirft eine Reihe von interessanten Fragen auf,
die wir in den beiden Arbeiten

The Ising antiferromagnet and max cut on random regular graphs

von Amin Coja-Oghlan, Philipp Loick, Balazs Mezei und Gregory Sorkin sowie

The Ising antiferromagnet in the replica symmetric phase

von Christian Fabian und Philipp Loick für den zufälligen d-regulären Graph G = G(n,d)
beleuchten. Eine Kernfrage des Ising Antiferromagneten betrifft die Korrelation zwischen
den Zuständen zweier weit entfernter Knoten bei einem Sample aus der Boltzmann-Vertei-
lung. Vor dem Hintergrund der obigen Erklärung ist es offenkundig, dass die Zustände von
nah beieinander liegenden Knoten miteinander korrelieren. Der Grad dieser Korrelationen
wird von dem Parameter β gesteuert. Die Frage ist, ob diese Korrelationen auch für zwei
Knoten bestehen, die weit voneinander entfernt liegen. Es wird vermutet, dass es einen
bestimmten Wert von β gibt, bis zu dem es einen rapiden Korrelationsabfall gibt, sodass die
Zustände von zwei weit entfernten Knoten nicht miteinander korrelieren. Dieses Regime
wird als replica-symmetrische Phase bezeichnet. Ab diesem Punkt jedoch sollen solche Ko-
rrelationen über weite Strecken auftreten - ein Phänomen, das sich replica-symmetry break-
ing (RSB) nennt. Die Schwelle für β wird an der kombinatorisch bedeutsamen Kesten-
Stigum-Schranke

βKS = log

(p
d −1+1p
d −1−1

)

vermutet. In unserer Arbeit weisen wir den RSB-Phasenübergang an der Kesten-Stigum-
Schranke nach. Der Zustandssumme ZG,β kommt dabei eine zentrale Rolle zu. Wir definieren
die freie Energie

Φd :β ∈ (0,∞) → lim
n→∞E

[
log ZG,β

]
/n.

Unser erstes Resultat liest sich wie folgt

• Wenn β<βKS, giltΦd (β) = log2+ d
2 log 1+e−β

2

• Wenn β>βKS, giltΦd (β) < log2+ d
2 log 1+e−β

2
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Der Beweis der ersten Aussage basiert auf einer Berechnung des ersten und zweiten Mo-
ments des Zustandssumme. Wir erweitern diesen klassischen Ansatz um Spatial Mixing-
Argumente, die den Bogen zu einem Verzweigungsprozess auf einem (d−1)-regulären Baum
schlagen und uns erlauben die Aussage bis zur Kesten-Stigum-Schranke zu formulieren. Für
die zweite Aussage nutzen wir den Zusammenhang zwischen dem Ising Antiferromagneten
und dem disassortativen Stochastischem Block Modell. Für letzteres haben wurde in [22]
ein Ausdruck für die freie Energie hergeleitet, der ein kompliziertes Optimierungsproblem
über Wahrscheinlichkeitsverteilung ist. Wir nutzen diesen Ausdruck, um zu zeigen, dass für
β>βKS tatsächlichΦd (β) < limn→∞E

[
ZG,β

]
/n gilt.

Durch den Zusammenhang zwischen the Ising Antiferromagneten und dem disassorta-
tiven Stochastischen Block Modell impliziert dieses erste Ergebnis auch unmittelbar, dass

• wenn β<βKS(d), limn→∞ DKL (G∗‖G)/n = 0 und limn→∞ DKL (G‖G∗)/n = 0 und
• wenn β>βKS(d), limn→∞ DKL (G∗‖G)/n > 0 and limn→∞ DKL (G‖G∗)/n > 0.

Zugegebenermaßen ist die Approximation der Zustandssumme in unserem ersten Ergeb-
nis relativ krude mit einem Fehlerterm der Ordnung exp(o(n)). Wenn wir genauer rechnen,
stellt sich heraus, dass wir die Grenzverteilung der Zustandssumme im replica-symmetri-
schen Bereich, also für β < βKS, bestimmen können. Zu diesem Zweck definieren wird mit

(Λi )i eine Folge unabhängiger Poisson-Variablen mit E [Λi ] = λi für λi = (d−1)i

2i . Weiterhin

sei δi =
(

e−β−1
e−β+1

)i
. Dann gilt für n →∞

log
(
ZG,β

)− 1

2
log

(
1+eβ

2+deβ−d

)
−n

((
1− d

2

)
log(2)+ d

2
log

(
1+e−β

))

d−→ log(W ) where W := exp(−λ1δ1 −λ2δ2)
∞∏

i=3
(1+δi )Λi exp(−λiδi ) .

Damit zeigt sich, dass die Varianz in der Zustandssumme im replica-symmetrischen Bereich
sich gänzlich den Fluktuationen in der Anzahl von kurzen Kreisen im GraphenG zuschreiben
lässt. Für den Beweis verwenden wir ein Result von Janson [44], das eine Reihe von Bedin-
gungen formuliert, um die Grenzverteilung einer Zufallsvariablen herzuleiten. Zu diesen
Bedingungen gehört die Herleitung der Verteilung von kurzen Kreisen im d-regulären Gra-
phen sowie im regulären disassortativen Stochastischen Block Modell. Während ersteres
wohl-bekannt ist, ist die Herleitung zweiteres ein wesentlicher Beitrag unserer Arbeit. Ferner
müssen wir genauere Ausdrücke für das erste und zweite Moment der Zustandssumme er-
arbeiten als für die vorherigen Ergebnisse notwendig. Um diese Genauigkeit zu erreichen,
verwenden wir analoge Spatial Mixing-Argumente zu oben. Die Rückführung der Fluktu-
ationen in der Zustandssumme auf die kurzen Kreise wie hier für den Ising Antiferromag-
neten durchgeführt ist unter dem Namen Small Subgraph Conditioning bekannt.

Neben dem disassortativen Stochastischen Block Modell gibt es auch einen direkten Zu-
sammenhang zwischen dem Ising Antiferromagneten und dem MAXCUT-Problem - einem
klassischen Inferenzproblem der Kombinatorik. Gegegeben ein Graph G besteht das Ziel
darin, die Knotenmenge in zwei Gruppen zu partitionieren, sodass möglichst viele Kanten
zwischen den Gruppen verlaufen. Es stellt sich heraus, dass die Größe des MAXCUT direkt
mit der Zustandssumme zusammenhängt.

2E [MAXCUT(G)]

dn
= 1−

2E
[
minσ∈{±1}Vn HG(σ)

]

dn
≤ 1+ 2

βdn
E
[
log ZG,β

]
.

Wenn wir den Erwartungswert vom Logarithmus der Zustandssumme - die freie Energie
im Physik-Jargon - also nach oben abschätzen können, erhalten wir gleichzeitig eine obere
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Schranke an die Größe des MAXCUT. Wir erhalten diese Abschätzung, in dem wir die In-
terpolationsmethode der mathematischen Physik auf den zufälligen regulären Graphen an-
wenden. Wir befinden uns dabei in der glücklichen Position, dass die obere Schranke durch
eine Verbindung zu einem bestimmten Random Walk explizit gemacht werden kann. So
können wir eine explizite obere Schranke des MAXCUT herleiten und damit eine lange beste-
hende Vermutung von Zdeborová and Boettcher [72] bestätigen.

6.5. Diskussion. Die erörterten Probleme stellen klassische Probleme der Mathematik und
Informatik dar, die man als Inferenzprobleme auf zufälligen Faktorgraphen auffassen kann.
Die Liste solcher Probleme lässt sich dabei beliebig fortsetzen. Auch wenn wir für das binäre
Group Testing nachweisen konnten, dass die informationstheoretische und algorithmische
Schranke zusammenfallen, bleibt für das quantitative Group Testing weiterhin ein Faktor
log(n) zwischen beiden Schranken bestehen. Gleiches gilt für eine Reihe anderer Prob-
leme, bei denen informationstheoretische Schranken und die best bekannte algorithmische
Schranke um Konstanten entfernt sind oder sogar in verschiedenen Ordnungen liegen. Die
Ergründung, ob es sich in diesen Fällen um rechnerisch schwere Regime handelt oder ob
doch effiziente Algorithmen existieren, stellt eine herausfordernde, aber wichtige Richtung
für zukünftige Forschung dar.
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APPENDIX A. CONTAINED PUBLICATIONS AND THE AUTHOR’S CONTRIBUTIONS

All subsequent publications are included in their current arXiv version. In the following, I
will detail the contributions of the author of this dissertation, Philipp Loick, abbreviated by
PL. For the sake of brevity, all other authors are also refered to by their initials.

A.1. Information-theoretic and algorithmic thresholds for group testing. This work by
A. Coja-Oghlan, O. Gebhard, M. Hahn-Klimorth and P. Loick appeared in the journal IEEE
Transactions on Information Theory [17]. An extended abstract was published in the Pro-
ceedings of the 46th ICALP [16].

The basic idea of the paper originated during the master thesis of OG (supervised by MHK
and PL). The main contribution of the author is the idea and formalisation of Theorem 1.1
jointly with MHK. The main idea of Theorem 1.2 came from the author. The constituting
lemmas were split between MHK and PL with PL working particularly on the proof that the
number of individuals in V −−

1 vanishes below malg and that many healthy individuals have
maximum degree.

A.2. Optimal Group Testing . This work by A. Coja-Oghlan, O. Gebhard, M. Hahn-Klimorth
and P. Loick appeared in the journal Combinatorics, Probability and Computing [21]. An ex-
tended abstract was published in the Proceedings of the 33rd Conference on Learning Theory
(COLT) [20].

As described above, Theorem 1.1 is based on an adaptation of an argument by Aldridge
put forward in earlier work [6]. The idea of this adaptation came from MHK and PL. The
formal derivation is due to ACO, MHK and PL. Theorem 1.2 constitutes the joint work of all
authors. The particular contribution by PL was the idea behind the combinatorial algorithm
and the clean-up step after receiving input from ACO on the notion of spatial coupling. The
idea for the adaptive variant of the SPIV algorithm is due to PL. The formalisation was done
jointly by MHK and PL.

A.3. Improved bounds for noisy group testing with constant tests per item. This work by
O. Gebhard, O. Johnson, P. Loick and M. Rolvien is under review at the journal IEEE Transac-
tions on Information Theory.

The idea behind Theorem 2.1 and 2.2 was developed jointly by OJ, PL and OG. The proof
of the theorems including groundwork and the special cases of the Z channel, reverse Z
channel and Binary Symmetric Channel was done by PL. The information-theoretic lower
bound (Theorem 2.3) was contributed by OJ. MR contributed the simulations. Proposition
2.13 was proved by PL, Proposition 2.15 is due to OG.

A.4. Efficient and accurate group testing via Belief Propagation: an empirical study. This
work by A. Coja-Oghlan, M. Hahn-Klimroth, P. Loick and M. Penschuck is under review at
the journal SIAM Journal on Mathematics of Data Science.

The ideas behind the algorithms were jointly developed by ACO, MHK and PL. The source
code for generating graph designs and running different algorithms was written by ACO. PL
performed the simulations and created the graphics describing the simulation outcome.

A.5. Quantitative group testing in the sublinear regime. This work by O. Gebhard, M. Hahn-
Klimroth, D. Kaaser and P. Loick is under review at the International Symposium on Mathe-
matical Foundations of Computer Science (MFCS).

The combinatorial ideas underlying the proof of the information-theoretic upper bound
and the idea for the MN algorithm are due to MHK, PL and DK with support by Amin Coja-
Oghlan. These ideas were formalised jointly by OG, PL and MHK. The specific contributions
of PL are the derivation of the distribution of the neighbourhood sum and the optimisation

49



of the threshold for the MN algorithm as well as deriving the information-theoretic bound
from an expression simplified by MHK.

A.6. The Ising antiferromagnet and max cut on random regular graphs. This work by A.
Coja-Oghlan, P. Loick, B. Mezei and G. Sorkin is under review at the SIAM Journal on Discrete
Mathematics.

Theorem 1.1 is due to ACO and PL with the main ideas coming from ACO. For the first
statement, ACO contributed the coupling with a branching process on the tree and PL worked
out the first and second moment including the optimisation over the distribution µ(α). For
the second statement, while the idea came from ACO, PL performed the Taylor expansion to
the fourth order showing that the Bethe functional is larger than the first moment precisely
starting at the Kesten-Stigum bound. Theorem 1.2 is due to ACO. Theorem 1.3 is the joint
work of all authors.

A.7. The Ising antiferromagnet in the replica symmetric phase. An extended abstract of
this work by C. Fabian and P. Loick is accepted for publication in the Proceedings of the 2021
European Conference on Combinatorics, Graph Theory and Applications (EUROCOMB).

The proof idea for the distribution of short cycles in the planted model G∗ is due to PL.
It was technically worked out by CF with support by PL. The precise calculation of the first
moment is due to CF. The calculation of the second moment in terms of an optimisation
problem is mainly due to CF with some input by PL. The idea for solving the optimisation
problem in terms of µ and α is mainly due to PL with CF having worked out the technical
details.
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INFORMATION-THEORETIC AND ALGORITHMIC THRESHOLDS FOR GROUP TESTING

AMIN COJA-OGHLAN, OLIVER GEBHARD, MAX HAHN-KLIMROTH, PHILIPP LOICK

ABSTRACT. In the group testing problem we aim to identify a small number of infected individuals within a large popula-
tion. We avail ourselves to a procedure that can test a group of multiple individuals, with the test result coming out posi-
tive iff at least one individual in the group is infected. With all tests conducted in parallel, what is the least number of tests
required to identify the status of all individuals? In a recent test design [Aldridge et al. 2016] the individuals are assigned
to test groups randomly with replacement, with every individual joining an almost equal number of groups. We pinpoint
the sharp threshold for the number of tests required in this randomised design so that it is information-theoretically
possible to infer the infection status of every individual. Moreover, we analyse two efficient inference algorithms. These
results settle conjectures from [Aldridge et al. 2014, Johnson et al. 2019].

1. INTRODUCTION

1.1. Background and motivation. The group testing problem goes back to the work of Dorfman from the 1940s [24].
Among a large population a few individuals are infected with a rare disease. The objective is to identify the infected
individuals effectively. At our disposal we have a testing procedure capable of not merely testing one individual, but
several. The test result will be positive if at least one individual in the test group is infected, and negative otherwise;
all tests are conducted in parallel. We are at liberty to assign a single individual to several test groups. The aim is to
devise a test design that identifies the status of every single individual correctly while requiring as small a number
of tests as possible. A recently proposed test design allocates the individuals to tests randomly [10, 12, 13, 30, 33].
To be precise, given integers n,m,∆ > 0 we create a random bipartite multi-graph by choosing independently for
each of the n vertices x1, . . . , xn ‘at the top’ ∆ neighbours among the m vertices a1, . . . , am ‘at the bottom’ uniformly
at random with replacement. The vertices x1, . . . , xn represent the individuals, the a1, . . . , am represent the test
groups and an individual joins a test group iff the corresponding vertices are adjacent (see Figure 1). The wisdom
behind this construction is that the expansion properties of the random bipartite graph precipitate virtuous corre-
lations, facilitating inference. Given n and (an estimate of) the number k of infected individuals, what is the least
m for which, with a suitable choice of∆, the status of every individual can be inferred correctly from the test results
with high probability?Like in many other inference problems the answer comes in two instalments. First, we might
ask for what m it is information-theoretically possible to detect the infected individuals. In other words, regardless
of computational resources, do the test results contain enough information in principle to identify the infection
status of every individual? Second, for what m does this problem admit efficient algorithms? The first main result
of this paper resolves the information-theoretic question completely. Specifically, Aldridge, Johnson and Scar-
lett [13] obtained a function minf = minf(n,k) such that for any fixed ε > 0 the inference problem is information-
theoretically infeasible if m < (1−ε)minf. They conjectured that this bound is tight, i.e., that for m > (1+ε)minf(n,k)
there is an (exponential) algorithm that correctly identifies the infected individuals with high probability. We prove
this conjecture. Furthermore, concerning the algorithmic question, Johnson, Aldridge and Scarlett [30] obtained
a function malg = malg(n,k) that exceeds minf by a constant factor for small k such that for m > (1+ ε)malg cer-
tain efficient algorithms successfully identify the infected individuals with high probability. They conjectured that
SCOMP, their most sophisticated algorithm, actually succeeds for smaller values of m. We refute this conjecture
and show that SCOMP asymptotically fails to outperform a much simpler algorithm called DD. A technical novelty
of the present work is that we investigate the group testing problem from a new perspective. While most prior
contributions rely either on elementary calculations and/or information-theoretic arguments [12, 13, 30, 39], here
we bring to bear techniques from the theory of random constraint satisfaction problems [5, 32].

Supported by DFG CO 646/3 and Stiftung Polytechnische Gesellschaft. An extended abstract of this work appeared in the 2019 ICALP pro-
ceedings. A revised version is to appear in IEEE Transactions on Information Theory (Copyright (c) 2017 IEEE DOI: 10.1109/TIT.2020.3023377).
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x1 x2 x3 x4 x5 x6 x7

a1 a2 a3 a4 a5

FIGURE 1. The graph illustrates a small example of a group testing instance, with the individuals x1, . . . , x7

at the top and the tests a1, . . . , a5 at the bottom. Infected individuals and positive tests are coloured in grey.

Indeed, group testing can be viewed naturally as a constraint satisfaction problem: the tests provide the con-
straints and the task is to find all possible ways of assigning a status (‘infected’ or ‘not infected’) to the n individuals
in a way consistent with the given test results. Since the allocation of individuals to tests is random, this question
is similar in nature to, e.g., the random k-SAT problem that asks for a Boolean assignment that satisfies a random
collection of clauses [4, 6, 20, 23]. It also puts the group testing problem in the same framework as the consid-
erable body of recent work on other inference problems on random graphs such as the stochastic block model
(e.g., [1, 18, 22, 35, 37, 43]) or decoding from pooled data [7, 8].

We proceed to state the main results of the paper precisely, followed by a detailed discussion of the prior litera-
ture on group testing. The proofs of the information-theoretic and algorithmic bounds follow in 3, Section 4, and
5. The technical details can be found in the appendix.

1.2. The information-theoretic threshold. Throughout the paper we labour under the assumptions commonly
made in the context of group testing; we will revisit their merit in Section 1.4. Specifically, we assume that the
number k of infected individuals satisfies k ∼ nθ for a fixed 0 < θ < 1 1. Moreover, let σ ∈ {0,1}{x1 ,...,xn } be a vector
of Hamming weight k chosen uniformly at random. The (one-)entries of σ indicate which of the n individuals are
infected. Moreover, let G =G(n,m,∆) signify the aforementioned random bipartite graph with multi-edges. Then
σ induces a vector σ̂ ∈ {0,1}{a1 ,...,am } that indicates which of the m tests come out positive. To be precise, σ̂i = 1 iff
test ai is adjacent to an individual x j with σx j = 1. For what m is it possible to recover σ from G,σ̂? (Throughout
the paper all logarithms are base e.)

Theorem 1.1. Suppose that 0 < θ < 1, k ∼ nθ and ε> 0 and let

minf = minf(n,θ) = k log (n/k)

min
{

1, 1−θ
θ log2

}
log2

.

(i) If m > (1+ε)minf(n,θ), then there exists an algorithm that given G,σ̂ outputs σwith high probability.
(ii) If m < (1 − ε)minf(n,θ), then there does not exist any algorithm that given G,σ̂,k outputs σ with a non-

vanishing probability.

Since for θ ≤ log(2)/(1+ log(2)) the first part of Theorem 1.1 readily follows from a folklore argument [25], the
interesting regime is θ > log(2)/(1+ log(2)) ≈ 0.41. The negative part of Theorem 1.1 strengthens a result from [13],
who showed that for m < (1−ε)minf any inference algorithm has a strictly positive error probability. By comparison,
Theorem 1.1 shows that any algorithm fails with high probability.

But the main contribution of Theorem 1.1 is the first, positive statement. While the problem was solved for
θ < 1/3 for a different test design [39, 40] and the case θ > 1/2 is easy because a plain greedy algorithm suc-
ceeds [30], the case 1/3 < θ < 1/2 proved more challenging. Only heuristic arguments predicting the result of
Theorem 1.1 have been put forward for this regime so far [33]. Indeed, Aldridge et al. [12] conjectured that in
this case inferring σ from G ,σ̂ is equivalent to solving a hypergraph minimum vertex cover problem. The proof
of Theorem 1.1 vindicates this conjecture. Specifically, the vertex set of the hypergraph comprises all ‘potentially
infected’ individuals, i.e., those that do not appear in any negative test. The hyperedges are the neighbourhoods

1While we write that k ∼nθ for the sake of brevity, our results immediately extend to the case k ∼Cnθ for some constant C .
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∂ai of the positive tests ai in G . Exhaustive search solves this vertex cover problem in time exp(O(nθ logn)). But
how about efficient algorithms for general θ?

0 1
2

1

log2(2)

log(2)

Density parameter θ

k
lo

g(
n

/k
)/

m

k log(n/k)/minf

k log(n/k)/malg

FIGURE 2. The red line shows the information theoretic
threshold minf, the dashed black line signifies the bound
malg which is achieved by the both the SCOMP and the DD
algorithm.

1.3. Efficient algorithms for group testing. Several
polynomial time group testing algorithms have been
proposed. A very simple greedy strategy called DD (for
‘definitive defectives’) first labels all individuals that
are members of negative test groups as uninfected.
Subsequently it checks for positive tests in which all in-
dividuals but one have been identified as uninfected in
the first step. Clearly, the single as yet unlabelled indi-
vidual in such a test group must be infected. Up to this
point all decisions made by DD are correct. But in the
final step DD marks all as yet unclassified individuals
as uninfected, possibly causing false negatives. In fact,
the output of DD may be inconsistent with the test re-
sults as possibly some positive tests may fail to include
an individual classified as ’infected’. While an achiev-
ability result is known for the DD algorithm, a corollary
of the work in this paper is a matching converse.

The more sophisticated SCOMP algorithm is roughly
equivalent to the well-known greedy algorithm for the
hypergraph vertex cover problem applied to the hyper-
graph from the previous paragraph. Specifically, in its
first step SCOMP proceeds just like DD, classifying all individuals that occur in negative tests as uninfected. Then
SCOMP identifies as infected all unmarked individuals that appear in at least one test whose other participants are
already known to be uninfected. Subsequently the algorithm keeps picking an individual that appears in the largest
number of as yet ‘unexplained’ (viz. uncovered) positive tests and marks that individual as infected, with ties bro-
ken randomly, until every positive test contains an individual classified as infected. Clearly, SCOMP may produce
false positives as well as false negatives. But at least the output is consistent with the test results. Algorithm 1
summarises the procedure of SCOMP.

Input: G , σ̂, k
Output: estimate of σ

1 Classify all individuals in negative tests as healthy & remove such individuals and tests from G ;
2 Classify all individuals that appear in at least one positive test as the only yet unclassified individuals as

infected & remove such individuals and tests from G;
3 while there exists at least one test in G do
4 Classify the individual appearing in the largest number of remaining tests as infected & remove this

individual and all adjacent tests from G
5 Classify all remaining individuals as healthy;

Algorithm 1: Description of the SCOMP algorithm

Analysing SCOMP has been prominently posed as an open problem in the group testing literature [9, 12, 30].
Indeed, Aldridge et al. [12] opined that “the complicated sequential nature of SCOMP makes it difficult to analyse
mathematically”. On the positive side, [12] proved that SCOMP succeeds in recovering σ correctly given (G ,σ̂) if
m > (1+ε)malg(n,θ) w.h.p.2, where

malg = malg(n,θ) = k log (n/k)

min
{

1, 1−θ
θ

}
log2 2

. (1)

2W.h.p.refers to a probability of 1−o(1) as n →∞.

3

54



However, the algorithm succeeds for a trivial reason; namely, for m > (1+ ε)malg even DD suffices to recover σ
w.h.p. Yet based on experimental evidence [12, 30] conjectured that SCOMP strictly outperforms DD. The following
theorem refutes this conjecture.

Theorem 1.2. Suppose that 0 < θ < 1 and ε > 0. If m < (1−ε)malg(n,θ), then given G,σ̂ w.h.p. both SCOMP and DD
fail to output σ.

For θ < 1/2 the information-theoretic bound provided by Theorem 1.1 and the algorithmic bound malg supplied
by Theorem 1.2 remain a modest constant factor apart; see Figure 2. Whether there exists an efficient algorithm for
group testing that can close the gap to the information-theoretic bound has long been an open research question.
A recent result by Coja-Oghlan et al. [19] shows that such a polynomial-time algorithm indeed exists. The proposed
algorithm which is inspired by the notion of spatial coupling from coding theory is able to recover σ whenever
m > (1+ε)minf. Moreover, the authors prove that below the information-theoretic threshold from Theorem 1.1 no
non-adaptive algorithm can succeed under any test design (not only the random regular test design considered
here) thereby establishing the presence of an adaptivity gap in the group testing problem. An exciting avenue for
future research is to investigate the merits of the results and techniques of this paper and [19, 28] for the noisy
variant of group testing.

1.4. Discussion and related work. Dorfman’s original group testing scheme, intended to test the American army
for syphilis, was adaptive. In a first round of tests each soldier would be allocated to precisely one test group. If
the test result came out negative, none of the soldiers in the group were infected. In a second round the soldiers
whose group was tested positively would be tested individually. Of course, Dorfman’s scheme was not information-
theoretically optimal. A first-order optimal adaptive scheme that involves several test stages, with the tests con-
ducted in the present stage governed by the results from the previous stages, is known [15, 25]. In the adaptive
scenario the information-theoretic threshold works out to be

madapt
inf (n,θ) = k log (n/k)

log2
.

The lower bound, i.e., that no adaptive design gets by with (1− ε)madapt
inf (n,θ) tests, follows from a very simple

information-theoretic consideration. Namely, with a total of m tests at our disposal there are merely 2m possible
test outcomes, and we need this number to exceed the count

(n
k

)
of possible vectors σ, i.e., [14].

More recently there has been a great deal of interest in non-adaptive group testing, where the infection status of
each individual is to be determined after just one round of tests [14, 17, 27, 33]. This is the version of the problem
that we deal with in the present paper. An important advantage of the non-adaptive scenario is that tests, which
may be time-consuming, can be conducted in parallel. Indeed, some of today’s most popular applications of
group testing are non-adaptive such as DNA screening [17, 31, 38] or protein interaction experiments [36, 42] in
computational molecular biology. The randomised test design that we deal with here is the best currently known
non-adaptive design (in terms of the number of tests required).

The most interesting regime for the group testing problem is when the number k of infected individuals scales
as a power nθ of the entire population. Mathematically this is because in the linear regime k =Ω(n) the optimal
strategy is to perform n individual tests [11] in order to achieve a vanishing error probability. Similarly, the case
of constant k has been solved for some time [41]. Thus, for k linear in n and k constant the theory is already well
established. But the sublinear case is also of practical relevance, as witnessed by Heap’s law in epidemiology [16]
or biological applications [27].

Apart from the randomised test design G where each individual chooses precisely ∆ tests (with replacement),
the so-called Bernoulli design assigns each individual to every test with a certain probability independently. A
considerable amount of attention has been devoted to this model, and its information-theoretic threshold as well
as the thresholds for various algorithms have been determined [9, 10, 12, 39]. However, the Bernoulli test design,
while easier to analyse, for θ > 1/3 is provably inferior to the test design G that we study here. This is because
in the Bernoulli design there are likely quite a few individuals that participate in far fewer tests than expected
due to degree fluctuations. We note that our proofs can easily be adapted to reprove the known results for the
Bernoulli design. In fact, many technical parts of the proofs become significantly easier and shorter, since we can
assume independence between tests, whereas for the constant-column design under consideration here gives rise
to subtle dependencies between the tests. A significant portion of the tests is devoted to getting a handle o these
dependencies.
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1.5. Notation. Throughout the paper G = G(n,m,∆) denotes the random bipartite graph that describes which
individuals take part in which test groups, the vector σ ∈ {0,1}{x1 ,...,xn } encodes which individuals are infected, and
σ̂ ∈ {0,1}{a1,...,am } indicates the test results. Clearly, G is independent ofσ. Moreover, k ∼ nθ signifies the number of
infected individuals. Additionally, we write

V =Vn = {x1, . . . , xn } , V0 =
{

xi ∈V :σxi = 0
}

and V1 =V \V0

for the set of all individuals, the set of uninfected and infected individuals, respectively. For an individual x ∈ V
we write ∂x for the multi-set of tests ai adjacent to x with |∂x| =∆. Analogously, for a test ai we denote by ∂ai the
multi-set of individuals that take part in the test and Γi = |∂ai |. These are multi-sets since individuals are assigned
to tests uniformly at random with replacement and therefore G features multi-edges w.h.p.. Let Γ be the vector
(Γi )i∈[m]. Furthermore, all asymptotic notation refers to the limit n →∞. Thus, o(1) denotes a term that vanishes
in the limit of large n, while ω(1) stands for a function that diverges to ∞ as n →∞. We also let c,d > 0 denote reals
such that

m = ck log(n/k) ∆= d log(n/k).

Later, we will prove that c,d = Θ(1) as n → ∞ is optimal for inference. Finally, let Γmin = mini∈[m] Γi , Γmax =
maxi∈[m]Γi . The following sections will outline the proofs of the information-theoretic bounds and the analysis of
the SCOMP algorithm and feature the important proofs. The technical details are left to the appendix

2. GETTING STARTED

The very first item on the agenda is to get a handle on the posterior distribution ofσ given G and σ̂. To this end,
let Sk (G,σ̂) be the set of all vectors σ ∈ {0,1}V of Hamming weight k such that

σ̂ai = 1{∃x ∈ ∂ai :σx = 1} for all i ∈ [m].

In words, Sk (G,σ̂) contains the set of all vectors σ with k ones that label the individuals infected/uninfected in a
way consistent with the test results, i.e. that are "satisfying sets" [12, 14]. Let Zk(G ,σ̂) = |Sk (G,σ̂)|. The following
proposition shows that the posterior of σ given G ,σ̂ is uniform on Sk (G,σ̂).

Proposition 2.1 ([10]). For all τ ∈ {0,1}{x1 ,...,xn } we have P [σ= τ |G,σ̂]= 1 {τ ∈ Sk (G,σ̂)}

Zk (G,σ̂)
.

Adopting the jargon of the recent literature on inference problems on random graphs, we refer to Proposition 2.1
as the Nishimori identity [18, 43]. The proposition shows that apart from the actual test results, there is no further
‘hidden information’ aboutσ encoded in G ,σ̂. In particular, the information-theoretically optimal inference algo-
rithm just outputs a uniform sample from Sk (G,σ̂). In effect, we obtain the following.

Corollary 2.2. (1) If Zk (G,σ̂) =ω(1) w.h.p., then for any algorithm A we have

P [A (G,σ̂,k) =σ]= o(1).

(2) If Zk(G ,σ̂) = 1 w.h.p., then there is an algorithm A such that

P [A (G,σ̂,k) =σ]= 1−o(1).

Both the positive and the negative part of Corollary 2.2 assume that the precise number k of infected individuals is
known to the algorithm. This assumption makes the negative part stronger, but weakens the positive part. Yet we
will see in due course how in the positive scenario the assumption that k be known can be removed.

For the information-theoretic bound, the proof hinges on analysing the number of individuals that can be
flipped without affecting the test results. We encounter two kinds of such individuals. The first kind consists of
healthy individuals that only appear in positive tests and which we will denote by V +

0 . In symbols,

V +
0 = {

xi ∈V0 : ∀a ∈ ∂xi∃y ∈ ∂a :σy = 1
}

. (2)

Similarly, let V +
1 be the set of all infected individuals xi such that every test in which xi occurs features another

infected individual; in symbols,

V +
1 = {

xi ∈V1 :∀a ∈ ∂xi∃y ∈ ∂a \ {xi } :σy = 1
}

.
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We think of the individuals in V +
0 as the ‘potential false positives’. Indeed, if for any xi ∈V +

0 we obtainσ′ fromσ by
setting xi to one, then σ′ will render the same test results as σ. Similarly, the individuals in V +

1 are potential false
negatives. For completeness, we also define V −

0 and V −
1 as

V −
0 =V0 \V +

0 and V −
1 =V1 \V +

1 (3)

In the following, let us get a handle on the size of sets V +
0 and V +

1 . Specifically, we prove the following five state-
ments.

Proposition 2.3. Let c,d =Θ(1). Then, the following statements hold w.h.p.

(1)
∣∣V +

0

∣∣= (1+n−Ω(1))n
(
1−exp(−d/c)

)∆ .
(2) If k(1−exp(−d/c))∆ ≥ nΩ(1), then

∣∣V +
1

∣∣= nΩ(1).
(3) If k(1−exp(−d/c))∆ = o(1), then

∣∣V +
1

∣∣= o(1).

(4) If c < θ
1−θ

1
log2 2

, then
∣∣V +

1

∣∣ ,
∣∣V +

0

∣∣ = nΩ(1).

(5) If c > θ
1−θ

1
log2 2

, then
∣∣V +

1

∣∣ = o(1).

The proof of Proposition 2.3, while not fundamentally difficult, requires a bit of care because we are dealing with
a random bipartite multi-graph whose (test-)degrees scale as a power of n. In effect, the diameter of the bipartite
graph is quite small and the neighbourhoods of different tests may have a sizeable intersection. The technical
workout follows in Section B.6. In the next step, let us get a handle on the size of the test degrees.

Lemma 2.4. With probability at least 1−o(n−2) we have

∆n/m −
p
∆n/m logn ≤ Γmin ≤ Γmax ≤∆n/m +

p
∆n/m logn.

The proof of this and the subsequent elementary lemmas are included in Section B. Next, we calculate the
number of positive and negative tests. Let m1 be the number of positive tests and let m0 be the number of negative
tests. Clearly m0 +m1 = m.

Lemma 2.5. With probability at least 1−o(n−2) we have

m0 = exp(−d/c)m +O(
p

m log2 n).

Finally, we justify that setting c,d =Θ(1) as n →∞ is optimal for inference. The fact that c =Θ(1) immediately
follows from the information-theoretic counting bound, i.e., [14].

Lemma 2.6. (1) If ∆= o(log(n/k)) and m =Θ(k log(n/k)), then Zk(G,σ̂) =ω(1) w.h.p.
(2) If ∆=ω(log(n/k)) and m =Θ(k log(n/k)), then Zk (G,σ̂) =ω(1) w.h.p.

3. THE INFORMATION-THEORETIC UPPER BOUND

We proceed to discuss the proof of Theorem 1.1. The proof of the first, positive statement and of the second,
negative statement hinge on two separate arguments. We begin with the proof of the information-theoretic upper
bound which is the principal achievement of the present work. The proof rests upon techniques that have come
to play an important role in the theory of random constraint satisfaction problems. Specifically, we need to show
that Zk (G,σ̂) = 1 w.h.p., i.e., that σ is the only assignment compatible with the test results w.h.p. We establish this
result by combining two separate arguments. First, we use a moment calculation to show that w.h.p. there are no
other solutions that have a small ‘overlap’ with σ. Then we use an expansion argument to show that w.h.p. there
are no alternative solutions with a big overlap. Both these arguments are variants of the arguments that have been
used to study the solution space geometry of random constraint satisfaction problems such as random k-SAT or
random k-XORSAT [3, 4, 26], as well as the freezing thresholds of random constraint satisfaction problems [2, 34].
Yet to our knowledge these methods have thus far not been applied to the group testing problem. In this section
we choose ∆= ⌈m

k log2⌉ which maximises the entropy of the test results. Formally, we define

Zk ,ℓ(G,σ̂) = |{σ ∈ Sk (G ,σ̂) : 〈σ,σ〉 = ℓ}|
as the number of assignments σ ∈ Sk (G,σ̂) different from the true configuration σwhose overlap

〈σ,σ〉 =
n∑

i=1
1{σxi =σxi = 1}
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with σ is equal to ℓ. The following two propositions rule out assignments with a small and a big overlap, respec-
tively. In either case we choose ∆= ⌈m

k log2⌉ to take its optimal value.

Proposition 3.1. Let ε> 0 and 0 < θ < 1 and assume that m > (1+ε)minf(k,θ). W.h.p. we have Zk ,ℓ(G ,σ̂) = 0 for all
ℓ< (1−1/log n)k.

Proof. For i ∈ [m] let Γi be the degree of ai in G, i.e., the number of edges incident with ai ; this number may
exceed the number of different individuals that participate in test ai as G may feature multi-edges. Let Γ be the
σ-algebra generated by the random variables (Γi )i∈[m]. Whenever we condition on Γ, we assume that the bounds
from Lemma 2.4 and 2.5 hold. Given Γ we can generate G from the well-known pairing model [29]. Specifically,
we create a set {xi }× [∆] of ∆ clones of each individual as well as sets {ai }× [Γi ] of clones of the tests. Then we
draw a perfect matching of the complete bipartite graph on the vertex sets

⋃n
i=1 {xi }×[∆],

⋃m
i=1 {ai }×[Γi ] uniformly

at random. For each matching edge linking a clone of xi with a clone of a j we insert an i - j -edge. The resulting
bipartite random multi-graph has the same distribution as G given Γ. As an application of this observation we
obtain for every integer 0 ≤ ℓ< k

E[Zk ,ℓ(G,σ̂) |Γ]≤O
(
(∆k)3/2) ·

(
k

ℓ

)(
n−k

k −ℓ

)
m∏

i=1

(
1−2(1−k/n)Γi +2(1−2k/n+ℓ/n)Γi

)
(4)

To see why (4) holds we use the linearity of expectation. The product of the two binomial coefficients simply
accounts for the number of assignments σ that have overlap ℓ with σ. Hence, with S the event that one specific
σ ∈ {0,1}V that has overlap ℓ with σ belongs to Sk ,ℓ(G,σ̂), we need to show that

P [S | Γ]≤O
(
(∆k)3/2) m∏

i=1
1−2(1−k/n)Γi +2(1−2k/n+ℓ/n)Γi . (5)

By symmetry we may assume that σxi = 1{i ≤ k} and that σxi = 1{i ≤ ℓ}+1{k < i ≤ 2k −ℓ}.
To establish (5) we harness the pairing model. Namely, given Γ we can think of each test ai as a bin of capacity

Γi . Moreover, we think of each clone (xi ,h), h ∈ [∆], of an individual as a ball. The ball is labelled (σxi ,σxi ) ∈ {0,1}2 .
The random matching that creates G effectively tosses the ∆n balls randomly into the bins. Hence, for i ∈ [m] and
for j ∈ [Γi ] let us write Ai , j = (Ai , j ,1 , Ai , j ,2) ∈ {0,1}2 for the label of the j th ball that ends up in bin number i . Then
we are left to calculate the probability that for every test ai either Ai , j ,1 = Ai , j ,2 = 0 for every j ∈ [Γi ] or there is at
least one pair ( j ,k) ∈ [Γi ]2 such that Ai , j ,1 = Ai ,k ,2 = 1

P [S |Γ] =P
[
∀i ∈ [m] : max

j∈[Γi ]
Ai , j ,1 = max

j∈[Γi ]
Ai , j ,2

∣∣Γ
]

, (6)

To calculate this probability we borrow a trick from the analysis of the random k-SAT model [20]. Namely, we
consider a new set of {0,1}2-valued random variables A′

i , j = (A′
i , j ,1, A′

i , j ,2) such that (A′
i , j )i∈[m], j∈[Γi ] are mutually

independent and such that

P
[

A′
i , j = (1,1)

]
= ℓ/n, P

[
A′

i , j = (0,1)
]
=P

[
A′

i , j = (1,0)
]
= (k −ℓ)/n,

P
[

A′
i , j = (0,0)

]
= (n−2k +ℓ)/n

for all i , j . Due to their independence, these multinomially distributed random variables are much easier to handle
than Ai , j . It will turn out, that given a (not too unlikely) event, it suffices to analyse these independent variables
instead of Ai , j . Now, let T be the event that

m∑
i=1

Γi∑
j=1

1
{

A′
i , j = (1,1)

}
= ℓ∆,

m∑
i=1

Γi∑
j=1

1
{

A′
i , j = (0,0)

}
= (n−2k +ℓ)∆, (7)

m∑
i=1

Γi∑
j=1

1
{

A′
i , j = (1,0)

}
=

m∑
i=1

Γi∑
j=1

1
{

A′
i , j = (0,1)

}
= (k −ℓ)∆, (8)

i..e, that all of the sums on the l.h.s. are precisely equal to their expected values. Then A′ = (A′
i , j )i , j given T is

distributed precisely as A = (Ai , j )i , j . Hence, (6) yields

P [S | Γ] =P
[
∀i ∈ [m] : max

j∈[Γi ]
A′

i , j ,1 = max
j∈[Γi ]

A′
i , j ,2 |Γ,T

]
. (9)
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Thus, let

A =
{
∀i ∈ [m] : max

j∈[Γi ]
A′

i , j ,1 = max
j∈[Γi ]

A′
i , j ,2

}
.

The grand idea is now to calculate the probability P [A | Γ]. Subsequently, we employ Bayes’ Theorem to derive a
bound for the conditional probability P [A |T ,Γ] for which we know by the above application of the balls-into-
bins principle

P [S |Γ]=P [A |T ,Γ] .

Because the (A′
i , j )i , j are mutually independent, we can easily compute the unconditional probability P [A |Γ]: by

inclusion/exclusion,

P [A |Γ]=
m∏

i=1

(
1−2(1−k/n)Γi +2(1−2k/n+ℓ/n)Γi

)
(10)

(the probability that max j∈[Γi ] A′
i , j ,1 = max j∈[Γi ] A′

i , j ,2 = 1, i.e., both tests positive, equals one minus the probability

that max j∈[Γi ] A′
i , j ,1 = 0 minus the probability that max j∈[Γi ] A′

i , j ,2 = 0 plus the probability that max j∈[Γi ] A′
i , j ,1 =

max j∈[Γi ] A′
i , j ,2 = 0; then add the probability that max j∈[Γi ] A′

i , j ,1 = max j∈[Γi ] A′
i , j ,2 = 0, i.e., both tests negative).

Finally, to deal with the conditioning we use Bayes’ rule:

P [A |T ,Γ] = P [A |Γ]P [T |A ,Γ]

P [T |Γ]
. (11)

Since the (A′
i , j )i , j are independent, Stirling’s formula yields

P [T |Γ]=Ω
(
(∆k)−3/2) .

A short justification can be found in Section B.1. Moreover, by definition we have P [T |A ,Γ] ≤ 1. Hence, (5)
follows from (9)–(11). To complete the proof of the proposition, we claim that

∑
0≤ℓ≤⌈(1−1/logn)k⌉

O
(
(∆k)3/2)

(
k

ℓ

)(
n−k

k −ℓ

)
m∏

i=1

(
1−2(1−k/n)Γi +2(1−2k/n+ℓ/n)Γi

)
= o(1). (12)

To prove Equation (12), let α= ℓ/k. Using Lemma 2.4 and recalling m = ck log(n/k) and ∆= d log(n/k), we find

E[Zk ,l (G,σ)]≤O
(
(∆k)3/2)

(
k

(1−α)k

)(
n−k

(1−α)k

)
m∏

i=1

(
1−2

(
1− k

n

)Γi

+2

(
1− 2k

n
+ αk

n

)Γi
)

≤O
(
(∆k)3/2)

(
e

(1−α)

en

(1−α)k

)(1−α)k
(

1−2

(
1− k

n

)Γmax

+2

(
1− 2k

n
+ αk

n

)Γmin
)m

≤O
(
(∆k)3/2)

(
e

(1−α)

en

(1−α)k

)(1−α)k (
1−2

(
1− k

n

) n log 2
k

(
1+n−Ω(1))

(13)

+2

(
1− 2k

n
+ αk

n

) n log 2
k

(
1+n−Ω(1)) )m

≤O
(
(∆k)3/2)

(
e

(1−α)

en

(1−α)k

)(1−α)k (
1− (

1−2−(1−α))exp
(
n−Ω(1)))m

=O
(
(∆k)3/2)

(
e

(1−α)

en

(1−α)k
(k/n)c log(2)+n−Ω(1)

(1+o(1))

)(1−α)k

=O
(
(∆k)3/2)

(
e2(k/n)c log(2)−1+n−Ω(1)

(1−α)2

)(1−α)k

. (14)

By the definition of m > (1+ε)minf and ℓ< ⌈
k(1− log−1 n)

⌉
, we have

c log2 = 1+ε and (1−α)2 ≥ 1/log2 n (15)

Moreover, as ℓ < ⌈
k(1− log−1 n)

⌉
we have (1−α)k = ω(1). Thus (15) implies that (14) tends to zero with n → ∞.

Therefore, the proposition follows from Equations (14), (15) and Markov’s inequality.
�
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The argument from Proposition 3.1 does not extend to large overlaps (close to k) because the expression on the
r.h.s. of (4) gets too large. In other words, merely computing the expected number of solutions with a given overlap
does not do the trick. This ‘lottery phenomenon’ is ubiquitous in random constraint satisfaction problems: for big
overlap values rare solution-rich instances drive up the expected number of solutions [4, 5]. Fortunately, we can
find a remedy.

Proposition 3.2. Let ε> 0 and 0 < θ < 1 and assume that m > (1+ε)minf(k,θ). W.h.p. we have Zk ,ℓ(G ,σ̂) = 0 for all
(1−1/log n)k ≤ ℓ< k.

In order to cope with this issue we take another leaf out of the random CSP literature [2, 34]. Namely, we show
that the solution σ is locally rigid. That is, the expansion properties of the random bipartite graph G preclude the
existence of other solutions that have a big overlap with σ. The following lemma holds the key to this effect.

Lemma 3.3. For any ε> 0 there exists δ= δ(ε) > 0 such that for all m > (1+ε)minf the following is true. Let R be the
event that for every xi withσxi = 1 there are at least δ∆ tests a ∈ ∂xi such that ∂a \ {xi } ⊆V0. Then P [R] = 1−o(1).

Proof. Let (X i )i∈[m] be a sequence of independent Bin(Γi ,k/n)-variables as in Section 2. Also let W =∑m
i=1 1 {Y i = 1}

as in Section 2. Proceeding along the lines of the proof of Lemma 2.3 (see (35) in Section B.6), we obtain

P
[
W = (

1+n−Ω(1))k∆/2 | Γ]= 1−o(n−7). (16)

Let T be the number of infected individuals which only show up less than δ∆ of their tests as the only infected
individual, i.e.

T =
∣∣∣∣∣x ∈V1 :

∑
a∈∂x

1{∂a \ {x} ⊆V0} < δ∆

∣∣∣∣∣ .

Moreover, let H = H (N ,K ,n′) be a hypergeometric random variable with parameters N = k∆ (total eligible assign-
ments for infected individuals), K = W (tests with only one infected individual) and n′ = ∆ (number of tests per
individuals). Then the union bound over k infected individuals yields

E [T | Γ,W ] ≤ kP [H < δ∆] . (17)

Further, the Chernoff bound for the hypergeometric distribution implies

P [H < δ∆]≤ exp(−∆DKL (δ‖W /(k∆))) (18)

Recall∆= d log(n/k). Since DKL (δ‖1/2+o(1)) = δ logδ+(1−δ) log(1−δ)+log 2+o(1) andδ logδ+(1−δ) log(1−δ) ր 0
as δ→ 0 and c > θ

(1−θ) log2 2
, we can choose δ> 0 small enough so that

∆(δ logδ+ (1−δ) log(1−δ)+ log2+o(1)) > logk (19)

Finally, the assertion follows from (16)–(19). �

Hence, w.h.p. any infected individual appears in plenty of tests where all the other individuals are uninfected.
This property causes σ to be locally rigid. To see why, consider the repercussions of just changing the status of a
single individual xi from infected to uninfected. Because given R the individual xi appears as the only infected
individual in at least δ∆ tests, in order to maintain the same tests results we will also need to flip at least one
individual in each of these tests from ‘uninfected’ to ‘infected’. Since tests typically have relatively few individuals
in common, the necessary number of flips from 0 to 1 will be Ω(∆) =Ω(logn). But then in order to keep the total
number of infected individuals constant k, we will need to perform another Ω(∆) flips from 1 to 0. Yet given R

each of these ‘second generation’ individuals that we flip from infected to uninfected is itself the only infected
individual in many tests. Thus, the single flip that we started from triggers a veritable avalanche of flips, which will
stop only after the overlap has dropped significantly. The next lemma formalises this intuition. The lemma shows
that while the unconditional expectation of Zk ,ℓ(G ,σ̂) is ‘too big’, the conditional expectation of Zk ,ℓ(G,σ̂) given
R (as defined in Lemma 3.3) is much smaller. Let m0 = m0(G ,σ̂) be the total number of negative tests.

Lemma 3.4. Suppose that (1−1/log n)k ≤ ℓ< k and let Γmin = mini∈[m] Γi , Γmax = maxi∈[m] Γi . Then

E[Zk ,ℓ(G,σ̂) | Γ,R,m0]≤O
(
(∆k)3/2)

(
k

ℓ

)(
n−k

k −ℓ

)(
1−

(
1− k −ℓ

n−k

)Γmax
)δ∆(k−ℓ) (

n−2k +ℓ
n−k

)(
1+n−Ω(1))Γmin m0

. (20)
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The proof of Lemma 3.4 is somehow subtle as we need to get a handle on the dependencies in G and is included
in Section C.1. To convey the intuition behind the expression in Lemma 3.4, the term

(k
ℓ

)(n−k
k−ℓ

)
accounts for the

number of assignments τ ∈ {0,1}V of Hamming weight k whose overlap with σ is equal to ℓ. The terms thereafter
capture the probability that such an assignment τ exhibits the same test results as the true configuration σ. The
first term provides a necessary condition for a positive test under σ to stay positive under τ. By Lemma 3.3, we
know that every infected individual shows up in at least δ∆ tests as the only infected individual. Now, there are
k−ℓ infected underσ, but healthy under τ. For any of these δ∆(k−ℓ) tests, we need to have at least one individual
that is healthy under σ, but infected under τ included in this test. Next, we need to ensure that any negative test
under σ stay negative under τ. To this end, every individual included in a negative test under σ of which we have
at least Γminm0 must be healthy under τ. The second term captures this probability.

Proof of Proposition 3.2. In order to establish the proposition it suffices to show that there is ε′ ≤ (1−1/log(n))k
such that

∑
ε′≤ℓ≤k

E[Zk ,ℓ(G ,σ̂)|Γ,R,m0]= o(1). (21)

Starting from the expression in Lemma 3.4, setting α = ℓ/k and recalling m = ck log(n/k) and ∆ = d log(n/k), we
obtain

E[Zk ,ℓ(G,σ̂)|Γ,R,m0]

≤O
(
(∆k)3/2)

(
k

k −ℓ

)(
n−k

k −ℓ

)(
n−2k +ℓ

n−k

)(
1+n−Ω(1))Γmin m0

(
1−

(
1− k −ℓ

n−k

)Γmax
)δ∆(k−ℓ)

≤O
(
(∆k)3/2)( e

1−α
)(1−α)k

(
e(n−k)

(1−α)k

)(1−α)k (
1− (1−α)k

n−k

) mn log 2
2k

(
1+n−Ω(1)) (

1−2−(1−α)
(
1+n−Ω(1)))δ∆(1−α)k

(22)

≤O
(
(∆k)3/2)

(
e2n

(1−α)2k

)(1−α)k

exp

(
(1−α)k

c log 2

2

(
1+n−Ω(1)) log(k/n)

)

·exp
(
−cδ log(2) log

(
1−2−(1−α)

(
1+n−Ω(1)))

log(k/n)(1−α)k
)

≤O
(
(∆k)3/2)

(
e2n

(1−α)2k
exp

(
log(k/n)

(
1+n−Ω(1))

(
c log2

2
−cδ log(2) log

(
1−2−(1−α)

(
1+n−Ω(1))))))(1−α)k

. (23)

As long as 1−α= o(1), we find

(k/n)− log
(
1−2−(1−α))

(1−α)−2 → 0 as n →∞.

Moreover, (1−α)k ≥ 1. Thus, the expression (23) is of order

O
(
(∆k)3/2)(k/n)ω(1) = n−ω(1). (24)

Since (24) holds for any constant c > 0 and any value of α s.t. 1−α= o(1), it also holds for α≥ 1−1/log n. Conse-
quently (21) is established w.h.p. �

Propositions 3.1 and 3.2 readily imply that Zk (G,σ̂) = 1 w.h.p. if m > (1 + ε)minf(k,θ). Hence, Corollary 2.2
shows that there exists an inference algorithm that given G,σ̂ and k outputs σ w.h.p. Up to now, the algorithm
relies on exactly knowing the number of infected individuals k, which in practice could be rather difficult to learn.
Fortunately, this assumption can be removed. Namely, the following proposition shows that w.h.p. there is no
assignment σ that is compatible with the test results and that has Hamming weight less than k.

Proposition 3.5. Let ε> 0 and 0< θ < 1 and assume that m > (1+ε)minf(k,θ). W.h.p. we have
∑

k ′<k Zk ′(G,σ̂) = 0.

Proof. To get started, suppose that 0 < θ < 1 and c < log−2 2. We claim that for any value of d > 0,
∣∣V +

0

∣∣ ≥ k log n
w.h.p.. Indeed, from Proposition 2.3(1), we know that

∣∣V +
0

∣∣= (
1+n−Ω(1))n

(
1−exp(−d/c)

)∆ .

Recalling ∆= d log(n/k), the expression takes the minimum at d = c log2. It follows that
∣∣V +

0

∣∣≥ (
1+n−Ω(1))n(k/n)c log2 2.
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If c = (1−ε) log−2 2 for ǫ> 0, then
∣∣V +

0

∣∣≥ (
1+n−Ω(1))n(k/n)1−ǫ = (

1+n−Ω(1))kn(1−θ)ǫ ≥ k log n w.h.p. (25)

Now, the following two statements establish that if there does not exist a second satisfying set of Hamming weight
k, there does also not exist a satisfying set with smaller Hamming weight w.h.p..

First, we claim that if m > (1+ ǫ)minf(k,θ), w.h.p. there does not exist a satisfying configuration with Hamming
weight smaller than the correct configuration, where the set of infected individuals is not a subset of the true set of
infected individuals. To see why, suppose there existed a satisfying configuration with a smaller Hamming weight,
whose infected individuals are not a subset of the true infected individuals. By (25), we know that

∣∣V +
0

∣∣ ≫ k for
m < (1−ǫ)malg w.h.p. Therefore, we could construct a satisfying configuration of identical Hamming weight as the
true configuration by flipping individuals in V +

0 from healthy to infected. Observe that by the definition of V +
0 ,

flipping individuals in V +
0 does not change the test result. Therefore, we would be left with a second satisfying

configuration of identical Hamming weight as the true configuration, a contradiction to Propositions 3.1 and 3.2.
Second, we argue that if m > (1+ ǫ)minf(k,θ), w.h.p. there does not exist a satisfying configuration with Ham-

ming weight smaller than the correct configuration, where the set of infected individuals is a subset of the true set
of infected individuals. Suppose there existed a satisfying configuration with a smaller Hamming weight, whose
infected individuals are a subset of the true infected individuals. Then, the true configuration would need to con-
tain individuals in V +

1 , which can be flipped from infected to healthy without affecting the test result. However,
Proposition 2.3(5) shows that for m > (1+ǫ)minf, V +

1 =; w.h.p. �

As an immediate consequence of Proposition 3.5 we conclude that for m > (1+ ε)minf(k,θ) the problem of
inferring σ boils down to a minimum vertex cover problem, as previously conjectured by Aldridge, Baldassini and
Johnson [12]. Namely, let P be the set of all positive tests, i.e., all tests ai , i ∈ [m], with σ̂ai = 1. Moreover, let V + be
the set of all variables xi ∈V such that ∂xi ⊆P ; in words, xi takes part in positive tests only. We set up a hypergraph
H with vertex set V + and hyperedges ∂ai ∩V +, ai ∈ P . Clearly, the set of all individuals xi with σxi = 1 provides
a valid vertex cover of H (as any positive test must feature an infected individual). Conversely, Propositions 3.1
and 3.2 show that w.h.p. this is the unique vertex cover of size k, and Proposition 3.5 shows that there is no strictly
smaller vertex cover w.h.p. Therefore, w.h.p. we can infer σ even without prior knowledge of k by way of solving
this minimum vertex cover instance.

4. THE INFORMATION-THEORETIC LOWER BOUND

We proceed with the negative statement that w.h.p. σ cannot be inferred if m < (1− ε)minf. In light of Corol-
lary 2.2 in order to prove the first part of Theorem 1.1 we need to show that the number Zk(G,σ̂) of assignments
consistent with the test results σ̂ is unbounded w.h.p. The proof of this fact is based on a very simple idea: we just
identify a moderately large number of individuals whose infection status could be flipped without affecting the
test results. The following lemma yields a bound on m below which the number of such potential false positives
(
∣∣V +

0

∣∣) and negatives (
∣∣V +

1

∣∣) abound.

Proposition 4.1. Let ε> 0 and 0< θ < 1 and assume that

m < (1−ε)θ

(1−θ) log2 2
nθ(1−θ) log n.

Then for any choice of ∆we have |V +
0 |, |V +

1 | = nΩ(1) w.h.p.

Proof. Thanks to Lemma 2.6 we may assume that ∆ = d(log(n/k)), for a constant d as this choice minimizes
the number of individuals in V +

1 . Then Proposition 2.3(4) guarantees that for every such constant as long as

c < θ
1−θ

1
log2 2

, there are nΩ(1) individuals in both V +
1 and V +

0 , which yields to Proposition 4.1. �

As an immediate application we obtain the following information-theoretic lower bound.

Corollary 4.2. Let ε> 0 and 0 < θ < 1 and assume that

m < (1−ε)θ

(1−θ) log2 2
nθ(1−θ) log n. (26)

Then Zk(G ,σ̂) =ω(1) w.h.p.
11
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Proof. We need to exhibit alternative vectors σ′ ∈ {0,1}V with Hamming weight k that render the same test results
asσ. Thus, pick any xi ∈V +

0 and any x j ∈V +
1 and obtainσ′ fromσ by setting σ′

xi
= 1 andσ′

x j
= 0. By construction,

σ′ has Hamming weight k and renders the same test results. Hence, Proposition 4.1 shows that Zk(G,σ̂) ≥ |V +
0 ×

V +
1 | =Ω(n2θ) ≫ 1 w.h.p. �

The bound (26) matches minf for θ' 0.41. A simpler, purely information-theoretic argument covers the remain-
ing θ.

Proposition 4.3. Let ε> 0, 0 < θ < 1. If m < 1−ε
log 2 nθ(1−θ) log n, then Zk(G,σ̂) =ω(1) w.h.p.

Proof. This Lemma follows from the classical information-theoretic lower bound for the group testing problem.
Namely, m tests allow for 2m possible test results. Hence, if

m < (1−ε)

log 2
nθ(1−θ) log n,

then the number of possible test results is far smaller than the number of vectorsσ ∈ {0,1}V with Hamming weight
k. Therefore, w.h.p. there exists an unbounded number of vectors of Hamming weight k that render the same test
results as σ. �

We thus conclude that for all 0 < θ < 1, w.h.p. Zk (G,σ̂) =ω(1) if m < (1−ε)minf. Therefore, the desired information-
theoretic lower bound follows from Corollary 2.2.

5. THE SCOMP ALGORITHM

For θ ≥ 1/2 we have malg = minf and thus Theorem 1.1 implies that SCOMP as described in Section 1.3 w.h.p. fails
to infer σ for m < (1−ε)malg. Therefore, we are left to establish Theorem 1.2 for θ < 1/2, in which case

malg =
k log(n/k)

log2 2
. (27)

The proof of Theorem 1.2 for θ < 1/2 hinges on two propositions. First we show that below malg, the set V −−
1 of

infected individuals that the second step of SCOMP identifies correctly is empty. Formally, with V −
0 from (3), let

V −−
1 = {

x ∈V1 : ∃a ∈ ∂x : ∂a \ {x} ⊆V −
0

}
.

Proposition 5.1. Suppose that 0 < θ < 1/2 and ε > 0. If m < (1−ε)malg, then for all ∆ > 0 we have V −−
1 (G ,σ̂∗) =;

w.h.p.

The proofs of Propositions 5.1 and 5.2 are based on moment calculations that turn out to be mildly subtle due
to the potentially very large degrees of the underlying graph G . The technical workout in included in Section D.1
and D.2.

With the second step of SCOMP failing to ‘explain’ (viz. cover) any positive tests, the greedy vertex cover algorithm
takes over. This algorithm is applied to the hypergraph whose vertices are the as yet unclassified individuals and
whose edges are the neighbourhoods of the positive tests. Our second lemma shows that the set V +,∆ of poten-
tentially false positive individuals x ∈V +

0 that participate in the maximum number∆ of different tests is far greater
than the actual number k of infected individuals. Formally, let

V +,∆
0 = {

x ∈V +
0 : |∂x| =∆}

.

Proposition 5.2. Suppose that 0 < θ < 1/2 and ε> 0. If m < (1−ε)malg, then for∆= d log (n/k) for all constant d we

have
∣∣∣V +,∆

0

∣∣∣≥ k log n w.h.p.

We complete the proof of Theorem 1.2 as follows.

Proof of Theorem 1.2. The first step ofSCOMP (correctly) marks all individuals that appear in negative tests as healthy.
Moreover, Proposition 5.1 implies that the second step of SCOMP is void w.h.p., because there is no single infected
individual that appears in a test whose other individuals have already been identified as healthy by the first step.
Consequently, SCOMP simply applies the greedy vertex cover algorithm. Now, thanks to Proposition 5.2 it suffices

to prove that SCOMP will fail w.h.p. if
∣∣∣V +,∆

0

∣∣∣=ω(k). Because they belong to positive tests only, all the individuals of

V +,∆
0 are present in the vertex cover instance that SCOMP attempts to solve. Moreover, in the hypergraph no vertex
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has degree greater than ∆, because the degrees of x1, . . . , xn in G are equal to ∆. (Some of the hypergraph degrees
may be strictly smaller than ∆ because G is a multi-graph.) Therefore, since |V +,∆

0 | ≥ k log n while the actual set of
infected individuals only has size k, w.h.p. the individual classified as infected by the very first step of the greedy
set cover algorithm belongs to V +

0 . Hence, this individual is not actually infected, i.e., SCOMP errs w.h.p. �
Since the success probability of the SCOMP algorithm is at least as high as of the DD algorithm, we can prove the

conjecture of [30] regarding the upper bound of the DD algorithm.

Corollary 5.3. If m < (1−ε)malg, the DD algorithm will fail to retrieve the correct set of infected individuals w.h.p..

Acknowledgment. We thank Arya Mazumdar for bringing the group testing problem to our attention.
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A. NOTATION

Notation Definition & Properties Description

n population size
k k ∼ nθ for θ ∈ (0,1) number of infected individuals
m m = ck log(n/k) number of tests
x1, . . . , xn variable nodes
V =Vn {xi , . . . , xn } set of all individuals
a1, . . . , an factor nodes
F = Fm {ai , . . . , am} set of all tests
∆ ∆= d log(n/k) tests per individual, variable node degree
Γ1, . . . ,Γm

(∑m
i=1Γi

)
/m = dn/(ck) individuals per test, factor node degree

Γ (Γi )i∈[m] σ-algebra generated by the random vari-
ables (Γi )i∈[m]

σ ∈ {0,1}V ∑n
i=1σi = k n-dimensional vector of Hamming

weight k indicating the individuals’
infection status

G =G(n,m,∆) random bipartite graph on n variable
nodes, m factor nodes and variable de-
gree ∆

∂xi = ∂G xi

for i ∈ [n]
∂xi ⊆ F, |∂xi | =∆ set of tests that individual xi participates

in under G
∂ai = ∂G ai

for i ∈ [m]
∂ai ⊆V , |∂ai | = Γi set of individuals in test ai under G

σ̂ ∈ {0,1}F σ̂i = 1 {∃x ∈ ∂ai :σx = 1} m-dimensional vector indicating the test
outcomes

m1,m0 m1 = |{a ∈ F : σ̂a = 1}| ,m0 = m −m1 number of positive and negative tests
V0 V0 = {x ∈V :σx = 0} set of healthy individuals
V1 V1 =V \V0, |V | = k set of infected individuals
V +

0 {x ∈V0 :∀a ∈ ∂x : σ̂a = 1} set of healthy individuals only included in
positive tests

V −
0 V −

0 =V0 \V +
0 set of healthy individuals included in at

least one negative test
V +

1

{
x ∈V1 : ∀a ∈ ∂x : ∃y ∈ ∂a \ {x} :σy = 1

}
set of infected individuals that have an-
other infected individual in all their tests

V −−
1

{
x ∈V1 : ∃a ∈ ∂x : ∂a \ {x} ⊆V −

0

}
Set of infected individuals that occur in at
least one test with only healthy individu-
als

Γmin,Γmax Γmin = mini∈[m] Γi ,Γmax = maxi∈[m] Γi minimum and maximum test degree
Sk (G,σ̂) Sk (G,σ̂) =

{
σ ∈ {0,1}V :

∀ai ∈ [m] : σ̂ai = 1 {∃x ∈ ∂ai :σx = 1}
} set of configurations consistent with the

test results under G
Zk(G ,σ̂) Zk (G,σ̂) = |Sk (G ,σ̂)| number of configurations consistent with

the test results
Zk ,ℓ(G,σ̂) Zk ,ℓ(G,σ̂) = |{σ ∈ Sk (G,σ̂) : 〈σ,σ〉 = ℓ}| number of configuration consistent with

the test results and with overlap ℓ withσ
Y i for i ∈ [m] Y i = |{x ∈ ∂ai :σx = 1}| number of edges that connect test ai with

an infected individual
X i for i ∈ [m] X i ∼ Bin (Γi ,k/n) binomially-distributed random variable

with parameters Γi and k/n
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W,W ′ W =∑m
i=1 1{Y i = 1} ,W ′ =∑m

i=1 1 {X i = 1} W is the number of tests containing a sin-
gle infected individual, W ′ is a random
variable depending on (X i )i∈[m]

U U = |{x ∈V1 : ∀ai ∈ ∂x : Y i > 1}| number of infected individuals not adja-
cent not any test with precisely one in-
fected individual

T
∣∣{x ∈V1 :

∑
a∈∂x 1 {∂a \ {x} ⊆V0} < δ∆

}∣∣ number of infected individuals who ap-
pear in less than δ∆ tests as the only in-
fected individual for some constant δ> 0

R R = |{x ∈ V1 : ∃ai ∈ ∂x :
Y i > 1 and ∂a \ {x} ⊆V0

}|
number of infected individual adjacent to
some test multiple times with no other
infected individual besides themselves

A′
i , j , A′

i , j ,k auxiliary random variables, defined in
proof of Proposition 3.1

A A = {∀i ∈ [m] :
max j∈[Γi ] A′

i , j ,1 = max j∈[Γi ] A′
i , j ,2

} event that every test under the balls-and-
bins experiment features the same test
result

E E = {∑
i∈[m] X i = k∆

}
event that the sum of X i is exactly k∆

M set of all indices i ∈ [m] for which there
exists precisely one gi ∈ [Γi ] such that
A′

i ,gi ,1 = 1

N set of indices i ∈ [m] such that
max j∈[Γi ] A′

i , j ,1 = 0

R R = {∀x ∈V1 : |{a ∈ ∂x : ∂a \ {x} ⊆V0}| ≥ δ∆} event that for every x ∈ V1 there are at
least δ∆ tests a ∈ ∂x for some δ > 0 such
that ∂a \ {x} ⊆V0.

S event that one specific σ that has overlap
ℓ with σ belongs to Sk (G,σ̂)

T event that sum of independent random
variable is equal to specific value, defined
in (7)

V V =
{

m1 = m
2 (1+o(1))

}
event that around half of the tests are pos-
itive

W W ={|V +
0 | = (1+o(1))(n−k)(1−exp(−d/c))∆

} event that the size of V +
0 is concentrated

around its mean
o(1),ω(1) o(1) [ω(1)] denotes a term that vanishes

[diverges] in the limit of large n
w.h.p. probability of 1−o(1) as n →∞

The following sections contain the proofs of the lemmas omitted so far.

B. PRELIMINARIES

B.1. Preliminaries. We start by stating the Chernoff bound as applied in this paper.

Lemma B.1 (Chernoff bound, [29] (Section 2.1)). Let X ∼ Bin(n, p) be a binomially-distributed random variable
with λ= E[X ]. Further, let

ϕ : (−1,∞) →R≥0, x 7→ (1+ x) log(1+ x)− x

Then for some t ≥ 0,

P (|X −λ| ≥ t) ≤ exp
(
−λϕ (t/λ)− (n−λ)ϕ (−t/(n−λ))

)
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As an application, we readily find

P
(|X −λ| ≥p

n logn
)
≤ n−ω(1)

Next, we justify that the Stirling approximation of Section 3 is accurate. Namely, let A′
i , j = (A′

i , j ,1 , A′
i , j ,2) be

{0,1}2-valued random variables such that (A′
i , j )i∈[m], j∈[Γi ] are mutually independent and such that

P
[

A′
i , j = (1,1)

]
= ℓ/n, P

[
A′

i , j = (0,1)
]
=P

[
A′

i , j = (1,0)
]
= (k −ℓ)/n,

P
[

A′
i , j = (0,0)

]
= (n−2k +ℓ)/n

for all i , j . As before, we denote by T the event that

m∑
i=1

Γi∑
j=1

1
{

A′
i , j = (1,1)

}
= ℓ∆,

m∑
i=1

Γi∑
j=1

1
{

A′
i , j = (0,0)

}
= (n−2k +ℓ)∆,

m∑
i=1

Γi∑
j=1

1
{

A′
i , j = (1,0)

}
=

m∑
i=1

Γi∑
j=1

1
{

A′
i , j = (0,1)

}
= (k −ℓ)∆,

i..e, that all of the sums on the l.h.s. are precisely equal to their expected values. Since the (A′
i , j )i , j are independent,

Stirling’s formula yields

P [T ]=Ω((∆k))−3/2 . (28)

This can be seen as follows. For the sake of brevity, define

p00 = (n−2k +ℓ)/n, p11 = ℓ/n, and p10 = p01 = (k −ℓ)/n.

As A′
i , j is a family of independent multinomial variables

A′
i , j ∼ Mult

(
1,(p11, p00, p10, p01)

)
,

we find

X ∼
m∑

i=1

Γi∑
j=1

A′
i , j ∼ Mult

(
n∆, (p11, p00, p10, p01)

)
.

Hence, the probability of event T occurring is the probability, that X hits its expectation. Thus, using the very
basic approximation n! =Θ

(p
n

)
(n/e)n we find

P (T ) = (n∆)!(ℓ/n)ℓ∆((n−2k +ℓ)/n)(n−2k+ℓ)∆((k −ℓ)/n)2(k−ℓ)∆

(ℓ∆)!((n−2k +ℓ)∆)!((k −ℓ)∆)!((k −ℓ)∆)!

=Θ
( p

n∆√
ℓ(n−2kℓ)(k −ℓ)2∆4

)(
(n∆)n (ℓ/n)ℓ((n−2k +ℓ)/n)n−2k+ℓ((k −ℓ)/n)2(k−ℓ)

ℓℓ(n−2k +ℓ)n−2k+ℓ(k −ℓ)2(k−ℓ)

)∆

= (1+O(1/n))Θ




p
n

p
n

√
ℓk2 −2ℓ2k +ℓ3 −k

(
2ℓk2/n−2kℓ2/n

)+ℓ4/n




=Ω
(√
∆−3(ℓk2 +ℓ2k +ℓ3)−1

)
=Ω(

(∆k)−3/2) , (29)

where (29) follows immediately from ℓ≤ k = o(n) and directly implies (28). In due course we apply similar calcu-
lations often, some calculations involve conditional probabilities. These conditions are only restricting Γi to take
specific (common) values and clearly the above argument is totally invariant under different values of Γi , as long
as

∑m
i Γi = n∆.
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B.2. Getting started. In the next step, recall that neighbourhoods of different tests in the random multi-graph
seizably intersect. To cope with the ensuing correlations, we introduce a new family of random variables that, as
we will see, are closely related to the statistics of the appearances of infected/uninfected individuals in the various
tests. Specifically, recalling that Γi signifies the degree of test ai and that

∑m
i=1Γi = n∆, let (X i )i∈[m] be a sequence

of independent Bin(Γi ,k/n)-variables. Moreover, let

E =
{ ∑

i∈[m]
X i = k∆

}
.

Because the X i are mutually independent, Stirling’s formula shows that

P [E ] =Ω(1/
p
∆k), (30)

which follows along the lines of Section B.1. Additionally, let Y i be the number of edges that connect test ai with
an infected individual. (Since G is a multi-graph, it is possible that an infected individual contributes more than
one to Y i .) Further, let Γ be the σ-algebra generated by the random variables (Γi )i∈[m]. Whenever we condition on
Γ, we assume that the bounds from Lemma 2.4 and 2.5 hold.

Lemma B.2. Given Γ, the vectors (Y 1, . . . ,Y m) and (X 1, . . . , X m) given E are identically distributed.

Proof. For any integer sequence (yi )i∈[m] with yi ≥ 0 and
∑

i∈[m] yi = k∆we have

P
[∀i ∈ [m] : Y i = yi | Γ

]=
( k∆

y1,...,ym

)( (n−k)∆
Γ1−y1,...,Γm−ym

)
( n∆
Γ1 ,...,Γm

) =
∏m

i=1
Γi !

yi !(Γi −yi )!

(n∆)!
(k∆)!((n−k)∆)!

=
(

n∆

k∆

)−1 m∏
i=1

(
Γi

yi

)
.

Hence, for any sequences (yi ), (y ′
i ) we obtain

P
[∀i ∈ [m] : Y i = yi |Γ

]

P
[∀i ∈ [m] : Y i = y ′

i |Γ
] =

m∏
i=1

(Γi
yi

)
(Γi

y ′
i

) =
P

[∀i ∈ [m] : X i = yi |Γ,E
]

P
[∀i ∈ [m] : X i = y ′

i |Γ,E
] ,

as claimed. �

B.3. Proof of Lemma 2.4. Since each variable draws a sequence of ∆ tests uniformly at random, for every i ∈ [m]
the degree Γi has distribution Bin(n∆,1/m). Therefore, the assertion follows from the Chernoff bound.

B.4. Proof of Lemma 2.5. Let m′
0 = ∑m

i=1 1 {X i = 0}. Then E[m′
0] = ∑m

i=1P [Bin(Γi ,k/n)) = 0] = ∑m
i=1(1 − k/n)Γi .

Hence, Lemma 2.4 shows that with probability 1−o(n−2),

E[m′
0 | Γ]≥ m(1−k/n)Γmax = m exp

(
(∆n/m +O(

p
∆n/m logn)) log(1−k/n)

)
(31)

= m
(
exp(−d/c)+O(

p
k/n logn)

)
, (32)

E[m′
0 | Γ]≤ m(1−k/n)Γmin = m

(
exp(−d/c)+O(

p
k/n logn)

)
. (33)

Because the X i are mutually independent, m′
0 is a binomial variable. Therefore, the Chernoff bound (e.g. Lemma B.1)

shows that

P
[∣∣m′

0 −E[m ′
0 |Γ]

∣∣>p
m log n | Γ

]
= o(n−10). (34)

Finally, the assertion follows from (30), (31)–(34) and Lemma B.2.

B.5. Proof of Lemma 2.6. The expected degree of a test ai equals ∆n/m. Therefore, if ∆ = o(log(n/k)), then by
Lemma 2.5, m1 = o(m) w.h.p. To exploit this fact, call σ ∈ {0,1}V of Hamming weight k bad for G if given σ=σ we
indeed have m1 = o(m). Let B(G) be the set of all such bad σ. Then w.h.p. G has the property that |B(G)| ∼ (n

k

)
,

i.e. asymptotically most configurations will have few positive tests. Now, condition on the event that |B(G)| ∼ (n
k

)

and let B be the set of all subsets of [m] of size o(m). Further, let fG : B(G) →B map σ ∈ {0,1}V to the correspond-
ing set of positive tests. Finally, let B ′(G) be the set of all σ ∈ B(G) such that | f −1

G ( fG (σ))| < n, i.e. the set of all
configurations for which there are less than n other configurations rendering the same test results. Then

|B ′(G)| ≤ n|B| ≤ n

(
m

o(m)

)
= exp(o(m))= o

((
n

k

))
.
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Consequently, w.h.p. over the choice of G and σ we have Zk (G,σ̂) ≥ n. The same argument applies for log(n/k) =
o(∆) with the term ‘positive test’ replaced by ‘negative test’.

B.6. Proof of Proposition 2.3. We start by proving part (1) using a straightforward second-moment calculation.
Recall∆= d log(n/k) and m = ck log(n/k). Lemma 2.4 and Lemma 2.5 show that with probability at least 1−o(n−2)
the total degree of the negative tests comes to

m∑
i=1

1 {∂ai ⊆V0}Γi =∆n exp(−d/c)+O
(p

m log2(n)∆n/m +m
p
∆n/m log n

)

=∆n exp(−d/c)+O
((p

nk +n/
p

k
)

log3 n
)
=∆n

(
exp(−d/c)+n−Ω(1)) .

Consequently, with probability at least 1− o(n−2) the total number of edges between V0 and the set of positive
tests is ∆n

(
1−exp(−d/c)+n−Ω(1)

)
. Moreover, the total number of edges between V0 and all tests comes down to

∆(n−k). Given these events and since each individual is assigned to tests uniformly at random with replacement,
the probability that a given x ∈V0 belongs to V +

0 comes out as
(
∆n

(
1−exp(−d/c)+n−Ω(1)

)

∆

)(
∆(n−k)

∆

)−1

=
(
1+n−Ω(1))(1−exp(−d/c)

)∆ .

Next, we estimate the probability that x, x′ ∈V0 both belong to V +
0 :

(
∆n

(
1−exp(−d/c)+n−Ω(1)

)

2∆

)(
∆(n−k)

2∆

)−1

= (
1+n−Ω(1))(1−exp(−d/c)

)2∆ ,

Hence, E[|V +
0 |2 |Γ]−E[|V +

0 | |Γ]2 =O(n2−Ω(1)). Therefore, the assertion follows from Chebyshev’s inequality.
Proceeding with part (2), let the number of tests containing a single infected individual be

W =
m∑

i=1
1 {Y i = 1} , W ′ =

m∑
i=1

1 {X i = 1} .

Then Lemma 2.4 shows that w.h.p.

E[W ′] =
m∑

i=1

Γi k

n
(1−k/n)Γi−1 ≤ Γmaxkm

n
(1−k/n)Γmin−1

=
(
1+n−Ω(1))k∆(1−k/n)∆n/m =

(
1+n−Ω(1))k∆exp(−d/c)

Analogously,

E[W ′]≥ Γminkm

n
(1−k/n)Γmax = (

1+n−Ω(1))k∆exp(−d/c).

Hence, because W ′ is a binomial random variable, the Chernoff bound (e.g. Lemma B.1) shows that

P
[
W ′ = (

1+n−Ω(1))k∆exp(−d/c) |Γ]= 1−o(n−9).

Therefore, (30) yields

P
[
W =

(
1+n−Ω(1))k∆exp(−d/c) |Γ

]
= 1−o(n−7). (35)

Now, let U be the number of x ∈ V1 that are not adjacent to any test with precisely one positive individual. An
individual x ∈ V1 counts towards U , if out of all possible assignment k∆, it is only assigned to those tests where
it is not the only infected individual (there are a total of k∆−W such assignments). Using the notation nk =
n(n−1) . . . (n−k +1) and recalling ∆=Θ(logn), the bound on W yields

E[U | Γ,W ] = k

(
k∆−W

∆

)(
k∆

∆

)−1

= k
(k∆−W )∆

(k∆)∆
= (

1+n−Ω(1))k

(
k∆−W

k∆

)∆

= (
1+n−Ω(1))k(1−W /k∆)∆ = (

1+n−Ω(1))k(1−exp(−d/c))∆.

By a similar token we obtain

E[U 2 | Γ,W ] = k2

(
k∆−W

2∆

)(
k∆

2∆

)−1

= (
1+n−Ω(1))E[U | Γ,W ]2.
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Therefore, Chebyshev’s inequality shows that w.h.p.

U = (
1+n−Ω(1))k(1−exp(−d/c))∆. (36)

To complete the proof we need to compare U and
∣∣V +

1

∣∣ . Clearly, U ≥
∣∣V +

1

∣∣ . But the inequality may be strict because
U includes positive individuals that appear twice in the same test. To be precise, an individual might be assigned
to one test twice as the only infected individual. Such an individual should not be in V +

1 , but it shows up in U .
Indeed, letting R be the number of such individuals, we obtain

∣∣V +
1

∣∣ ≥ U −R. Hence, we are left to estimate R.
To this end, we observe that the probability that an individual appears in a specific test twice is upper-bounded
by (∆/m)2. Recall m = ck log(n/k) and ∆ = d log(n/k). Consequently, taking the union bound over all tests and
infected individuals we yield

E[R |Γ]≤ km

(
∆

m

)2

=O(logn).

Since by assumption the r.h.s. of (36) is nΩ(1), we conclude that
∣∣V +

1

∣∣ ≥U −R = nΩ(1) w.h.p., as claimed.
Next, we consider (3). Define U as in the proof of Proposition 2.3(2). Then we know that U ≥

∣∣V +
1

∣∣ . Hence, if
k(1−exp(−d/c))∆ = o(1) then

∣∣V +
1

∣∣= o(1) due to (36).
For part (4), we observe for a given c that mind (1−exp(−d/c))∆ is attained at d = c log2. To see this, consider

the function f (d) = (1−exp(−d/c))∆ = n(1−θ)d log(1−exp(−d/c)) and observe that the minimum of f (d) coincides with
the minimum of g (d) = d log(1−exp(−d/c)). Letting x = d/c, the derivatives read as

g (x) = cx log(1−exp(−x))

g ′(x) = c

(
log(1−exp(−x))+ x exp(−x)

1−exp(−x)

)

g ′′(x) = c

(
− (x −2)exp(x)+2

(exp(x)−1)2

)

For d > 0, the unique maximum is attained at x = log2 and accordingly, d = c log2. Furthermore, it is the case
that k(1−exp(− log2))c log2log(n/k) ≥ nΩ(1) and therefore by Proposition 2.3(2),

∣∣V +
1

∣∣ = nΩ(1). By a similar token by
Proposition 2.3(1),

∣∣V +
0

∣∣ = nΩ(1).

Finally, for part (5), setting d = c log2, we see that k(1−exp(− log2))c log 2log(n/k) = o(1) and therefore by Proposi-
tion 2.3(3),

∣∣V +
1

∣∣ = o(1).

C. THE INFORMATION-THEORETIC UPPER BOUND

C.1. Proof of Lemma 3.4. The term
(k
ℓ

)(n−k
k−ℓ

)
accounts for the number of assignments σ ∈ {0,1}V of Hamming

weight k whose overlap with σ is equal to ℓ. Hence, with S being the event that one specific σ ∈ {0,1}V that has
overlap ℓ withσ belongs to Sk ,ℓ(G ,σ̂), we need to show that

P [S |Γ,R,m0]≤O
(
(∆k)3/2) ·

(
1−

(
1− k −ℓ

n−k

)Γmax
)δ∆(k−ℓ) (

n−2k +ℓ
n−k

)Γmin m0

(37)

Due to symmetry we may assume that σxi = 1{i ≤ k} and that σxi = 1{i ≤ ℓ}+1{k < i ≤ 2k −ℓ}.
Proceeding as in the proof of Proposition 3.1, we think of each test ai as a bin of capacity Γi and of each clone

(xi ,h), h ∈ [∆], of an individual as a ball labelled (σxi ,σxi ) ∈ {0,1}2 . We toss the∆n balls randomly into the bins. For
i ∈ [m] and for j ∈ [Γi ] we let Ai , j = (Ai , j ,1, Ai , j ,2) ∈ {0,1}2 be the label of the j th ball that ends up in bin number i .
To cope with this experiment we introduce a new set {0,1}2-valued random variables A′

i , j = (A′
i , j ,1 , A′

i , j ,2) such that

(A′
i , j )i∈[m], j∈[Γi ] are mutually independent and

P
[

A′
i , j = (1,1)

]
= ℓ/n, P

[
A′

i , j = (0,1)
]
=P

[
A′

i , j = (1,0)
]
= (k −ℓ)/n,

P
[

A′
i , j = (0,0)

]
= (n−2k +ℓ)/n
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for all i , j . With T being the event that

m∑
i=1

Γi∑
j=1

1
{

A′
i , j = (1,1)

}
= ℓ∆,

m∑
i=1

Γi∑
j=1

1
{

A′
i , j = (0,0)

}
= (n−2k +ℓ)∆, (38)

m∑
i=1

Γi∑
j=1

1
{

A′
i , j = (1,0)

}
=

m∑
i=1

Γi∑
j=1

1
{

A′
i , j = (0,1)

}
= (k −ℓ)∆, (39)

the vector A′ = (A′
i , j )i , j given T is distributed as A = (Ai , j )i , j given Γ. Moreover, with similar arguments as in

Section B.1, Stirling’s formula yields

P [T ]=Ω((∆k)−3/2). (40)

Let N be the set of indices i ∈ [m] such that max j∈[Γi ] A′
i , j ,1 = 0. Moreover, let M be the set of all indices i ∈ [m]

for which there exists precisely one gi ∈ [Γi ] such that A′
i ,gi ,1 = 1 and such that for this index we have A′

i ,gi ,2 = 0.

Further, let

S ′ =
{
∀i ∈N : max

j∈[Γi ]
A′

i , j ,2 = 0

}
, S ′′ =

{
∀i ∈M : max

j∈[Γi ]
A′

i , j ,2 = 1

}
.

Then

A =
{
∀i ∈ [m] : max

j∈[k]
A′

i , j ,1 = max
j∈[k]

A′
i , j ,2

}
⊆S ′∩S ′′.

Furthermore, given N ,M the events S ′,S ′′ are independent and

P
[
S ′ |N ]=

∏
i∈N

(
n−2k +ℓ

n−k

)Γi

≤
(

n−2k +ℓ
n−k

)Γmin |N |
,

P
[
S ′′ |M

]
=

∏
i∈M

(
1−

(
1− k −ℓ

n−k

)Γi−1
)
≤

(
1−

(
1− k −ℓ

n−k

)Γmax
)|M |

.

For an intuitive explanation of the above expressions, please refer to the section immediately following the
statement of the Lemma 3.4. Given |N | ≥

(
1−n−Ω(1)

)
m0 and |M | ≥ δ∆(k −ℓ), we obtain

P
[
A | |N | ≥ (

1−n−Ω(1))m0, |M | ≥ δ∆(k −ℓ)
]≤

(
n−2k +ℓ

n−k

)Γmin m0
(

1−
(

1− k −ℓ
n−k

)Γmax
)δ∆(k−ℓ)

. (41)

Moreover, we find by 3.3, the concentration of |N | and the fact that E [|N |]= E [m0]= m/2

P
(|N | ≥ (

1−n−Ω(1))m0, |M | ≥ δ∆(k −ℓ)
)= 1−o(1)

and thus

P
[
T | |N | ≥

(
1−n−Ω(1))m0, |M | ≥ δ∆(k −ℓ)

]
=Ω((∆k)−3/2).

Combining (40)–(41) and using the trivial bound

P
[
T |S ,S ′, |N | ≥ (

1−n−Ω(1))m0, |M | ≥ δ∆(k −ℓ)
]≤ 1, (42)

we obtain by Bayes Theorem

P
[
A |T , |N | ≥ (

1−n−Ω(1))m0, |M | ≥ δ∆(k −ℓ)
]≤O

(
(∆k)3/2)

(
n−2k +ℓ

n−k

)(
1−n−Ω(1))Γmin m0

(
1−

(
1− k −ℓ

n−k

)Γmax
)δ∆(k−ℓ)

.

(43)

Because A′ = (A′
i , j )i , j given T is distributed as A = (Ai , j )i , j given Γ, (37) follows from (43).
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D. THE SCOMP ALGORITHM

D.1. Proof of Proposition 5.1. The proof of Proposition 5.1 proceeds in three steps. First, we show that
∣∣V +

0

∣∣ is
concentrated around its expectation. W denotes the corresponding event. Second, we need to get a handle on the
subtle dependencies in G. To this end, we introduce a set of independent multinomial random variables indexed
over the tests. Whereas Y i

1,Y i
0+,Y i

0− denotes the number of infected, potentially false positive and definitively
healthy individuals in test ai , respectively, the triple (X i

1, X i
0+, X i

0−) denote the corresponding multinomial random
variable. We will show that conditioned on the sum of X i

1, X i
0+, X i

0− hitting the total number of individuals of
the three types, (X i

1, X i
0+, X i

0−) is distributed like Y i
1,Y i

0+,Y i
0−. The technical workout is delicate, but is based on

standard results from balls-into-bins experiments. Third, we show that for m < (1−ε)malg, the number of tests W

for which X i
1 = 1 and X i

0+ = 0 decays exponentially in n, which implies that V −−
1 =; w.h.p.

Proof. Lemma 2.6 implies that the optimal choice for the variable degree is∆= d log(n/k) for a constant d . Let m1

be the amount of positive tests and, w.l.o.g. assume that a1...am1 are the positive tests and define

W =
{
|V +

0 | = (1+o(1))(n−k)(1−exp(−d/c))∆
}

.

as the event that the number of ‘potential false positives’
∣∣V +

0

∣∣ is highly concentrated around its mean. Then by
Proposition 2.3(1), we find

P[W ] ≥ 1−o(1) (44)

Similarly as before, we introduce a family of independent random variables corresponding to the tests.
Let Y 1

1, . . . ,Y m1
1 be the number of ones in the tests corresponding to a1, . . . , am1 respectively. Let Y 1

0+, . . . ,Y m1
0+

count the V +
0 occurrences in a1, . . . , am1 . Let Y 1

0−, . . . ,Y m1
0− count the V −

0 occurrences in a1, . . . , am1 . By definition
we find Y i

0− = Γi −Y i
0+−Y i

1. We introduce auxiliary variables X 1
1, . . . , X m1

1 , X 1
0+, . . . , X m1

0+ , X 1
0−, . . . , X m1

0− such that
(X i

1, X i
0+, X i

0−) have distribution
Mult≥(1,0,0)(Γi , p, q,1−p −q),

a multinomial distribution conditioned on the first variable being at least one. The triples
(
(X i

1 , X i
0+ , X i

0−)
)

i∈m1
are

mutually independent. We seek a choice of p satisfying the equation

p := k∆
∑m1

i=1
Γi

1−(1−p)Γi

and q :=
∣∣V +

0

∣∣∆
∑m1

i=1
Γi

1−(1−p)Γi

.

and will show following equation (48) that such a choice exists. Define

E =
{

m1∑
i=1

X i
1 = k∆,

m1∑
i=1

X i
0+ = |V +

0 |∆
}

.

Along the lines of Section B.1 , Stirling’s formula implies

P [E ] =Ω(1/n). (45)

Moreover, (Y 1
1,Y 1

0+,Y 1
0−, . . . ,Y m1

1 ,Y m1
0+ ,Y m1

0− ) and (X 1
1, X 1

0+, X 1
0−, . . . , X m1

1 , X m1
0+ , X m1

0− ) given E are identically distributed.
This can be seen as follows:

P
[
∀i ∈ [m1] : (Y i

1,Y i
0+,Y i

0−) = (yi , y ′
i , y ′′

i ) | Γ, |V +
0 |,m1

]

=

( k∆
y1 ...ym1

)( |V +
0 |∆

y ′
1...y ′

m1

)( ∑m1
i=1Γi −

(
k+|V +

0 |)∆
Γ1−y1−y ′

1,...,Γm1−ym1−y ′
m1

)

( ∑m1
i=1Γi

Γ1 ,...,Γm1

) 111{∀i ∈ [m1] : y ′′
i = Γi − yi − y ′

i }

=
( ∑m1

i=1Γi

k∆, |V +
0 |∆,

∑m1
i=1Γi −

(
k +|V +

0 |)∆

)
m1∏
i=1

(
Γi

yi , y ′
i ,Γ− yi − y ′

i

)
111{∀i ∈ [m1] : y ′′

i = Γi − yi − y ′
i }.

Thus, given y ′′
i = Γi − yi − y ′

i and ỹ ′′
i = Γi − ỹi − ỹ ′

i for all i ∈ [m1], we find

P
[∀i ∈ [m1] : (Y 1

1,Y 1
0+,Y 1

0−) = (yi , y ′
i , y ′′) |Γ, |V0|+,m1

]

P
[∀i ∈ [m1] : (Y 1

1,Y 1
0+,Y 1

0−) = (ỹi , ỹ ′
i , ỹ ′′

i ) |Γ, |V0|+,m1
] =

m1∏
i=1

( Γi
yi ,y ′

i ,Γ−yi −y ′
i

)

( Γi
ỹi ,ỹ ′

i ,Γ−ỹi −ỹ ′
i

) . (46)
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Given x′′
i = Γi − xi − x′

i , we find:

P
[
∀i ∈ [m1] : (X 1

1, X 1
0+, X 1

0−) = (xi , x′
i , x′′

i ) | E ,Γ, |V0|+,m1
]

=
m1∏
i=1

(
Γi

xi , x′
i , x′′

i

)
pxi qx′

i (1−p −q)x′′
i

1

1− (1−p)Γi

= pk∆q |V +
0 |∆(1−p −q)

∑m1
i=1Γi −∆(k+|V +

0 |)
m1∏
i=1

1

1− (1−p)Γi

(
Γi

xi , x′
i , x′′

i

)

where the last equality follows from the fact that we conditioned on E . Since the first terms are independent of
xi , x′

i , x′′
i , we find

P
[
∀i ∈ [m1] : (X i

1, X i
0+, X i

0−) = (xi , x′
i , x′′

i ) | E ,Γ, |V0|+,m1
]

P
[∀i ∈ [m1] : (X i

1, X i
0+, X i

0−) = (x̃i , x̃′
i , x̃′′

i ) | E ,Γ, |V0|+,m1
] =

m1∏
i=1

( Γi
xi ,x′

i ,Γ−xi −x′
i

)

( Γi
x̃i ,x̃′

i ,Γ−x̃i −x̃′
i

) .

Therefore, given Γi = xi + x′
i + x′′

i = x̃i + x̃′
i + x̃′′

i , we have by comparison with (46),

P
[∀i ∈ [m1] : (X i

1, X i
0+, X i

0−) = (xi , x′
i , x′′

i ) | E ,Γ, |V0|+,m1
]

P
[∀i ∈ [m1] : (X i

1, X i
0+, X i

0−) = (x̃i , x̃′
i , x̃′′

i ) | E ,Γ, |V0|+,m1
]

=
P

[∀i ∈ [m1] : (Y i
1,Y i

0+,Y i
0−) = (xi , x′

i , x′′
i ) | Γ,m1

]

P
[
∀i ∈ [m1] : (Y i

1,Y i
0+,Y i

0−) = (x̃i , x̃′
i , x̃′′

i ) | Γ,m1
] ,

which yields the claim. Let

W =
m1∑
i=1

1
{

X i
1 +X i

0+ = 1
}

.

be the number of positive tests that contain exactly one infected individual and no healthy individuals in V +
0 . Note

that this split is the only possibility for the test to be positive. Then

E[W |Γ,E ,
∣∣V +

0

∣∣ ,m1] =
m1∑
i=1

P[X i
1 = 1, X i

0+ = 0, X i
0− = Γi −1] =

m1∑
i=1

Γi p(1−p −q)Γi−1

1− (1−p)Γi
.

By Lemma 2.5 we readily find for any choice of c,d =Θ(1) that
m1∑
i=1

Γi p(1−p −q)Γi−1

1− (1−p)Γi
= (1+o(1))

m∑
i=1
Γi p(1−p −q)Γi−1 (47)

Hence,

mΓminp(1−p −q)Γmax ≤ E[W |Γ,E , |V +
0 |,m1] ≤ mΓmaxp(1−p −q)Γmin−1.

Moreover, since W is a binomial random variable, the Chernoff bound (e.g. Lemma B.1) shows that

P
[∣∣W −E[W | Γ,E , |V +

0 |]
∣∣>p

m logn
]≤O(n−2).

Further, Lemma 2.4 yields approximations for Γmin and Γmax. Now assume that c < log−2 2. Using a similar refor-
mulation as in (47), we find that p = (1+o(1))k/n. Thus, we have

E[W |Γ,E ,W ]

= (1+o(1))m
dn

ck

k

n
exp

(
(1+o(1))

dn

ck
log

(
(1−k/n)

(
1+n−Ω(1))(1− (1−exp(−d/c)))∆

))

= (1+o(1))m exp(−d/c)
d

c

(
1− (k/n)−d log(1−exp(−d/c))

)dn/(ck)
(48)

As Lemma 2.6 shows, the optimal value of d is a constant. For a fixed c the same d that maximizes −d/c log(1−
exp(−d/c)) in (48), also maximizes E[W |Γ,E ,

∣∣V +
0

∣∣]. This maximum is attained at d = c log2. Consequently p = o(q)
and

q ∼
(

k

n

)c log2 2

.
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Hence,

E[W |Γ,E ,W ] ∼ k∆

2
exp

(
−(log2)

(n

k

)1−c log2 2
)
= exp(−nΩ(1)).

As before, we find E[W ] → 0 w.h.p. since P(W ) = 1−o(1) and P(E ) = Ω(1/
p
∆k) and Markov’s inequality leads to

V −−
1 =;. Proposition 5.1 follows. �

D.2. Proof of Proposition 5.2. By Lemma 2.3, we have
∣∣V +

0

∣∣≥ k logn for m < (1−ε)malg. To prove Proposition 5.2,

we need to show that for such m, we also have
∣∣∣V +,∆

0

∣∣∣ ≥ k logn. We proceed in two steps. First, we show that

every individual x ∈ V is assigned to at least ∆−O(1) distinct tests. Second, we show that a constant fraction of
individuals x ∈V +

0 are assigned to exactly ∆ tests establishing Proposition 5.2.

Proof. Let d⋆(x) be the number of distinct neighbors of a vertex x. We claim that w.h.p. the following statements
are true.

min
x∈V

d⋆(x) ≥∆−2/θ2 .

The probability that a given x ∈V appears ℓ≥ 2 times in the same test is upper-bounded by
(
∆

ℓ

)
m1−ℓ ≤ m

ℓ!

(
d

ck

)ℓ
= ck log(n/k)

ℓ!

(
d

ck

)ℓ
≤ c(d/c)ℓ

ℓ!
n(1−ℓ)θ+o(1) = o(1/n),

provided that ℓ > 1+1/θ. Moreover, the probability that x appears in one test twice is upper-bounded by ∆∆̇/m.
Thus, the probability that x appears in at least ℓ tests at least twice is upper-bounded by

⌊∆/2⌋∑
i=ℓ

(
∆2

m

)i

= (1+o(1))

(
∆2

m

)ℓ
≤ (1+o(1))

(
O(log2 n)

ck log(n/k)

)ℓ
= n−θℓ+o(1) = o(1/n),

provided that ℓ> 1/θ and since m = ck log(n/k) and ∆= d log(n/k). The bound follows.
By Lemma 2.3, we know that for m < (1−ε)malg,

∣∣V +
0

∣∣≥ k logn w.h.p.. Since the SCOMP algorithm in its third stage

selects the individual with the highest number of adjacent unexplained tests, we are left to show that also
∣∣∣V +

0
,∆

∣∣∣≥
k log n, which implies that w.h.p. we erroneously classify a healthy individual as infected. The prior bounds ensure
that each individual is in at least ∆−O(1) tests. The question remains which fraction of individuals in V +

0 are in

V +
0

,∆. In principle, it could be the case that most potentially false positive individuals of V +
0 appear in less than ∆

different tests. Indeed, it is more likely for such an individual in V +
0 to be in fewer than ∆ different tests since each

additional test increases the probability for such an individual to be assigned to a negative test. However, we claim
that a constant fraction of all potentially false positive individuals in V +

0 will have degree∆, thus be in V +
0

,∆. To see

this, let p be the maximum proportion of
∣∣∣V +

0
,∆−i

∣∣∣ and
∣∣∣V +

0
,∆−i+1

∣∣∣ for i ∈ [2/θ2], i.e.

p = max
i∈[2/θ2]

∣∣∣V +
0

,∆−i
∣∣∣

∣∣∣V +
0

,∆−i+1
∣∣∣

By conditioning on a test degree sequence Γ1, . . . ,Γm , we find

p ≥ (1− (1− (k/n))Γmin ) =Θ(1),

as long as c,d =Θ(1), which by Lemma 2.6 we can safely assume. Since each individual in V +
0 is in at least ∆−O(1)

different tests and the probability of being in any number of different tests∆,∆−1. . . is constant, a constant fraction
of individuals in V +

0 will be in exactly ∆ tests. Since
∣∣V +

0

∣∣=Ω(k log n), the claim follows. �
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OPTIMAL GROUP TESTING

AMIN COJA-OGHLAN, OLIVER GEBHARD, MAX HAHN-KLIMROTH, PHILIPP LOICK

ABSTRACT. In the group testing problem the aim is to identify a small set of k ∼ nθ infected individuals out of a pop-
ulation size n, 0 < θ < 1. We avail ourselves of a test procedure capable of testing groups of individuals, with the test
returning a positive result iff at least one individual in the group is infected. The aim is to devise a test design with as
few tests as possible so that the set of infected individuals can be identified correctly with high probability. We establish
an explicit sharp information-theoretic/algorithmic phase transition minf for non-adaptive group testing, where all tests
are conducted in parallel. Thus, with more than minf tests the infected individuals can be identified in polynomial time
w.h.p., while learning the set of infected individuals is information-theoretically impossible with fewer tests. In addition,
we develop an optimal adaptive scheme where the tests are conducted in two stages. MSc: 05C80, 60B20, 68P30

1. INTRODUCTION

1.1. Background and motivation. Various intriguing combinatorial problems come as inference tasks where we
are to learn a hidden ground truth by means of indirect queries. The goal is to get by with as small a number of
queries as possible. The ultimate solution to such a problem should consist of a positive algorithmic result show-
ing that a certain number of queries suffice to learn the ground truth efficiently, complemented by a matching
information-theoretic lower bound showing that with fewer queries the problem is insoluble, regardless of com-
putational resources.

Group testing is a prime example of such an inference problem [6]. The objective is to identify within a large
population of size n a subset of k individuals infected with a rare disease. We presume that the number of infected
individuals scales as a power k = ⌈nθ⌉ of the population size with an exponent θ ∈ (0,1), a parametrisation suited
to modelling the pivotal early stages of an epidemic [36]. Indeed, since early on in an epidemic test kits might be
in short supply, it is vital to get the most diagnostic power out the least number of tests. To this end we assume
that the test gear is capable of not merely testing a single individual but an entire group. The test comes back
positive if any one individual in the group is infected and negative otherwise. While in non-adaptive group testing
all tests are conducted in parallel, in adaptive group testing test are conducted in several stages. In either case we
are free to allocate individuals to test groups as we please. Randomisation is allowed. What is the least number
of tests required so that the set of infected individuals can be inferred from the test results with high probability?
Furthermore, in adaptive group testing, what is the smallest depth of test stages required?

Closing the considerable gaps that the best prior bounds left, the main results of this paper furnish matching
algorithmic and information-theoretic bounds for both adaptive and non-adaptive group testing. Specifically,
the best prior information-theoretic lower bound derives from the following folklore observation. Suppose that
we conduct m tests that each return either ‘positive’ or ‘negative’. Then to correctly identify the set of infected
individuals we need the total number 2m of conceivable test results to asymptotically exceed the number

(n
k

)
of

possible sets of infected individuals. Hence, 2m ≥ (1+o(1))
(n

k

)
. Thus, Stirling’s formula yields the lower bound

mad = 1−θ
ln2

nθ ln n, (1.1)

which applies to both adaptive and non-adaptive testing. On the positive side, a randomised non-adaptive test
design with

mDD ∼
max {θ,1−θ}

ln2 2
nθ lnn (1.2)

Supported by DFG CO 646/3 and Stiftung Polytechnische Gesellschaft. An extended abstract version of this work has been submitted to the
COLT 2020 conference.
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tests exists from which a greedy algorithm called DD correctly infers the set of infected individuals w.h.p. [22].
Clearly, mad < mDD for all infection densities θ and mDD/mad → ∞ as θ → 1. In addition, there is an efficient
adaptive three-stage group testing scheme that asymptotically matches the lower bound mad [33].

We proceed to state the main results of the paper. First, improving both the information-theoretic and the algo-
rithmic bounds, we present optimal results for non-adaptive group testing. Subsequently we show how the non-
adaptive result can be harnessed to perform adaptive group testing with the least possible number (1+o(1))mad

of tests in only two stages.

1.2. Non-adaptive group testing. A non-adaptive test design is a bipartite graph G = (V ∪F,E ) with one vertex
class V =Vn = {x1, . . . , xn } representing individuals and the other class F = Fm = {a1, . . . , am } representing tests. For
a vertex v of G denote by ∂v = ∂G v the set of neighbours of v . Thus, an individual x j takes part in a test ai iff
x j ∈ ∂ai . Since we can shuffle the individuals randomly, we may safely assume that the vector σ ∈ {0,1}V whose
1-entries mark the infected individuals is a uniformly random vector of Hamming weight k. Furthermore, the test
results induced byσ read

σ̂ai = σ̂G ,ai = max
x∈∂ai

σx .

Hence, given σ̂ = σ̂G = (σ̂G ,a )a∈F and G we aim to infer σ. Thus, we can represent an inference procedure by a
function AG : {0,1}m → {0,1}n . The following theorem improves the lower bound on the number of tests required
for successful inference. Let

minf = minf(n,θ) = max

{
θ

ln2 2
,

1−θ
ln 2

}
nθ lnn. (1.3)

Theorem 1.1. For any 0 < θ < 1, ε > 0 there exists n0 = n0(θ,ε) such that for all n > n0, all test designs G with
m ≤ (1−ε)minf tests and for every function AG : {0,1}m → {0,1}n we have

P [AG (σ̂G ) =σ] < ε. (1.4)

Theorem 1.1 rules out both deterministic and randomised test designs and inference procedures because (1.4)
holds uniformly for all G and all AG . Thus, no test design, randomised or not, with fewer than minf tests allows
to infer the set of infected individuals with a non-vanishing probability. Since minf matches mDD from (1.2) for
θ ≥ 1/2, Theorem 1.1 shows that the positive result from [22] is optimal in this regime. The following theorem
closes the remaining gap by furnishing an optimal positive result for all θ.

Theorem 1.2. For any 0 < θ < 1, ε > 0 there is n0 = n0(θ,ε) such that for every n > n0 there exist a randomised test
design G comprising m ≤ (1+ ε)minf tests and a polynomial time algorithm SPIV that given G and the test results
σ̂G outputs σw.h.p.

An obvious candidate for an optimal test design appears be a plain random bipartite graph. In fact, prior to
the present work the best known test design consisted of a uniformly random bipartite graph where all vertices in
Vn have the same degree ∆. In other words, every individual independently joins ∆ random test groups. Applied
to this random ∆-out test design the DD algorithm correctly recovers the set of infected individuals in polynomial
time provided that the number of tests exceeds mDD from (1.2). However, mDD strictly exceeds minf for θ < 1/2.
While the random ∆-out test design with (1+o(1))minf tests is known to admit an exponential time algorithm that
successfully infers the set of infected individuals w.h.p. [11], we do not know of a polynomial time that solves this
inference problem. Instead, to facilitate the new efficient inference algorithm SPIV the test design for Theorem 1.2
relies on a blend of a geometric and a random construction that is inspired by recent advances in coding theory
known as spatially coupled low-density parity check codes [18, 26].

Finally, for

θ ≤ ln 2

1+ ln 2
≈ 0.41 (1.5)

the number minf of tests required by Theorem 1.2 matches the folklore lower bound mad from (1.2) that applies to
both adaptive and non-adaptive group testing. Hence, in this regime adaptivity confers no advantage. By contrast,
for θ > ln(2)/(1+ ln 2) the adaptive bound mad is strictly smaller than minf. Consequently, in this regime at least
two test stages are necessary to match the lower bound. Indeed, the next theorem shows that two stages suffice.
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FIGURE 1. The phase transitions in group testing. The best previously known algorithm DD suc-
ceeds in the blue but not in the green region. The new algorithm SPIV succeeds in both the blue
and the green region. The black line indicates the non-adaptive information-theoretic threshold
minf, below which non-adaptive group testing is impossible. In the red area even (multi-stage)
adaptive inference is impossible. Finally, the two-stage adaptive group testing algorithm from
Theorem 1.3 succeeds in the yellow region.

1.3. Adaptive group testing. A two-stage test design consists of a bipartite graph G = (V ,F ) along with a second
bipartite graph G ′ =G ′(G,σ̂G ) = (V ′,F ′) with V ′ ⊂V that may depend on the tests results σ̂G of the first test design
G. Hence, the task is to learnσ correctly w.h.p. from G,σ̂G ,G ′ and the test results σ̂G ′ from the second stage while
minimising the total number |F | + |F ′| of tests. The following theorem shows that a two-stage test design and an
efficient inference algorithm exist that meet the multi-stage adaptive lower bound (1.1).

Theorem 1.3. For any 0 < θ < 1, ε > 0 there is n0 = n0(θ,ε) such that for every n > n0 there exist a two-stage test
design with no more than (1+ ε)mad tests in total and a polynomial time inference algorithm that outputs σ with
high probability.

Theorem 1.3 improves over [33] by reducing the number of stages from three to two, thus potentially significantly
reducing the overall time required to complete the test procedure [10, 28]. The proof of Theorem 1.3 combines the
test design and efficient algorithm from Theorem 1.2 with ideas from [32].

The question of whether an ‘adaptivity gap’ exists for group testing, i.e., if the number of tests can be reduced
by allowing multiple stages, has been raised prominently [6]. Theorems 1.1–1.3 answer this question compre-
hensively. While for θ ≤ ln(2)/(1 + ln(2)) ≈ 0.41 adaptivity confers no advantage, Theorem 1.1 shows that for
θ > ln(2)/(1+ ln(2)) there is a widening gap between mad and the number minf of tests required by the optimal
non-adaptive test design. Further, Theorem 1.3 demonstrates that this gap can be closed by allowing merely two
stages. Figure 1 illustrates the thresholds from Theorems 1.1–1.3.

1.4. Discussion. The group testing problem was first raised in 1943, when Dorfman [15] proposed a two-stage
adaptive test design to test the US Army for syphilis: in a first stage disjoint groups of equal size are tested. All
members of negative test groups are definitely uninfected. Then, in the second stage the members of positive test
groups get tested individually. Of course, this test design is far from optimal, but Dorfman’s contribution triggered
attempts at devising improved test schemes.

At first combinatorial group testing, where the aim is to construct a test design that is guaranteed to succeed
on all vectors σ, attracted significant attention. This version of the problem was studied, among others, by Erdős
and Rényi [17], D’yachkov and Rykov [16] and Kautz and Singleton [23]. Hwang [20] was the first to propose an
adaptive test design that asymptotically meets the information-theoretic lower bound mad from (1.1) for all θ ∈
[0,1]. However, this test design requires an unbounded number of stages. Conversely, D’yachkov and Rykov [16]
showed that mad tests do not suffice for non-adaptive group testing. Indeed, m ≥ min

{
Ω(k2),n

}
tests are required

non-adaptively, making individual testing optimal for θ > 1/2. For an excellent survey of combinatorial group
testing see [6].

Since the early 2000s attention has shifted to probabilistic group testing, which we study here as well. Thus, in-
stead of asking for test designs and algorithms that are guaranteed to work for allσ, we are content with recovering
σ with high probability. Berger and Levenshtein [8] presented a two-stage probabilistic group testing design and
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algorithm requiring

mBL,ad ∼ 4nθ ln n

tests in expectation. Their test design, known as the Bernoulli design, is based on a random bipartite graph where
each individual joins every test independently with a carefully chosen edge probability. For a fixed θ the number
mBL,ad of tests is within a bounded factor of the information-theoretic lower bound mad from (1.1), although the
gap mad/mBL,ad diverges as θ→ 1. Unsurprisingly, the work of Berger and Levenshtein spurred efforts at closing
the gap. Mézard, Tarzia and Toninelli proposed a different two-stage test design whose first stage consists of a
random bipartite graph called the constant weight design [29]. Here each individual independently joins an equal
number of random tests. For their two-stage design they obtained an inference algorithm that gets by with about

mMTT,ad ∼ 1−θ
ln2 2

nθ ln n. (1.6)

tests, a factor of 1/ln 2 above the elementary bound mad. Conversely, Mézard, Tarzia and Toninelli showed by
means of the FKG inequality and positive correlation arguments that two-stage test algorithms from a certain
restricted class cannot beat the bound (1.6). Furthermore, Aldridge, Johnson and Scarlett analysed non-adaptive
test designs and inference algorithms [4, 22]. For the Bernoulli test design their best efficient algorithm DD requires

mDD,Be ∼ e ·max {θ,1−θ}nθ ln n.

tests. For the constant weight design they obtained the bound mDD from (1.2). In addition, in a previous arti-
cle [11] we showed that on the constant weight design an exponential time algorithm correctly identifies the set of
infected individuals w.h.p. if the number of tests exceeds minf from (1.3). Furthermore, Scarlett [33] discovered the
aforementioned three-stage test design and polynomial time algorithm that matches the universal lower bound
mad from (1.1). Finally, concerning lower bounds, in the case of a linear number k = Θ(n) infected individuals
Aldridge [5] showed via arguments similar to [29] that individual testing is optimal in the non-adaptive case, while
Ungar [35] proved that individual testing is optimal even adaptively once k ≥ (3−p

5)n/2.
A further variant of group testing is known as the quantitative group testing or the coin weighing problem. In

this problem tests are assumed to not merely indicate the presence of at least one infected individual but to return
the number of infected individuals. Thus, the tests are significantly more powerful. For quantitative group testing
with k infected individuals Alaoui, Ramdas, Krzakala, Zdeborová and Jordan [3] presented a test design with

mQGT ∼ 2

(
1+ (n−k) ln(1−k/n)

k ln(k/n)

)
k ln(n/k)

ln(k)
for k =Θ(n)

tests from which the set of infected individuals can be inferred in exponential time; the paper actually deals with
the slightly more general pooled data problem. However, no efficient algorithm is known to come within a constant
factor of mQGT. Indeed, the best efficient algorithm, due to the same authors [2], requiresΩ(k ln(n/k)) tests.

More broadly, the idea of harnessing random graphs to tackle inference problems has been gaining momen-
tum. One important success has been the development of capacity achieving linear codes called spatially coupled
low-density parity check (‘LDPC’) codes [26, 27]. The Tanner graphs of these codes, which represent their check
matrices, consist of a linear sequence of sparse random bipartite graphs with one class of vertices corresponding
to the bits of the codeword and the other class corresponding to the parity checks. The bits and the checks are
divided equitably into a number of compartments, which are arranged along a line. Each bit of the codeword takes
part in random checks in a small number of preceding and subsequent compartments of checks along the line.
This combination of a spatial arrangement and randomness facilitates efficient decoding by means of the Belief
Propagation message passing algorithm. Furthermore, the general design idea of combining a linear spatial struc-
ture with a random graph has been extended to other inference problems. Perhaps the most prominent example is
compressed sensing, i.e., solving an underdetermined linear system subject to a sparsity constraint [13, 14, 24, 25],
where a variant of Belief Propagation called Approximate Message Passing matches an information-theoretic lower
bound from [37].

While in some inference problems such as LDPC decoding or compressed sensing the number of queries re-
quired to enable an efficient inference algorithm matches the information-theoretic lower bound, in many other
problems gaps remain. A prominent example is the stochastic block model [1, 12, 30], an extreme case of which
is the notorious planted clique problem [7]. For both these models the existence of a genuine computationally
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intractable phase where the problem can be solved in exponential but not in polynomial time appears to be an in-
triguing possibility. Further examples include code division multiple access [34, 38], quantitative group testing [2],
sparse principal component analysis [9] and sparse high-dimensional regression [31]. The problem of solving the
group testing inference problem on the test design from [22] could be added to the list. Indeed, while an expo-
nential time algorithm (that reduces the problem to minimum hypergraph vertex cover) infers the set of infected
individuals w.h.p. with only (1+ε)minf tests, the best known polynomial algorithm requires (1+ε)mDD tests.

Instead of developing a better algorithm for the test design from [22], here we exercise the discretion of con-
structing a different test design that the group testing problem affords. The new design is tailored to enable
an efficient algorithm SPIV for Theorem 1.2 that gets by with (1+ ε)minf tests. While prior applications of the
idea of spatial coupling such as coding and compressed sensing required sophisticated message passing algo-
rithms [18, 26, 27], the SPIV algorithm is purely combinatorial and extremely transparent. The main step of the
algorithm merely computes a weighted sum to discriminate between infected individuals and ‘disguised’ healthy
individuals. Furthermore, the analysis of the algorithm is based on a technically subtle but conceptually clean
large deviations analysis. This technique of blending combinatorial ideas and large deviations methods with spa-
tial coupling promises to be an exciting route for future research. Applications might include noisy versions of
group testing, quantitative group testing or the coin weighing problem [2]. Beyond these immediate extensions, it
would be most interesting to see if the SPIV strategy extends to other inference problems for sparse data.

1.5. Organisation. After collecting some preliminaries and introducing notation in Section 2, we prove Theo-
rem 1.1 in Section 3. Section 4 then deals with the test design and the inference algorithm for Theorem 1.2. Finally,
in Section 5 we prove Theorem 1.3.

2. PRELIMINARIES

As we saw in Section 1.2 a non-adaptive test design can be represented by a bipartite graph G = (V ∪F,E ) with one
vertex class V representing the individuals and the other class F representing the tests. We refer to the number |V |
of individuals as the order of the test design and to the number |F | of tests as its size. For a vertex v of G we denote
by ∂G v the set of neighbours. Where G is apparent from the notation we just write ∂v . Furthermore, for an integer
k ≤ |V | we denote byσG ,k = (σG ,k ,x )x∈V ∈ {0,1}V a random vector of Hamming weight k. Additionally, we let

σ̂G ,k = (σ̂G ,k ,a)a∈F ∈ {0,1}F with σ̂G ,k ,a = max
x∈∂G a

σG ,k ,x (2.1)

be the associated vector of test results. Where G and/or k are apparent from the context, we drop them from
the notation. More generally, for a given vector τ ∈ {0,1}V we introduce a vector τ̂G = (τ̂G ,a)a∈F by letting τ̂G ,a =
maxx∈∂G a τx , just as in (2.1). Furthermore, for a given τ ∈ {0,1}V we let

V0(G,τ) = {x ∈V : τx = 0} , V1(G,τ) = {x ∈V : τx = 1} , F0(G,τ) = {
a ∈ F : τ̂G ,a = 0

}
, F1(G,τ) = {

a ∈ F : τ̂G ,a = 1
}

.

The Kullback-Leibler divergence of p, q ∈ (0,1) is denoted by

DKL
(
q‖p

)
= q ln

(
q

p

)
+ (1−q) ln

(
1−q

1−p

)
.

We will occasionally apply the following Chernoff bound.

Lemma 2.1 ([21]). Let X be a binomial random variable with parameters N , p. Then

P
[
X ≥ qN

]≤ exp
(−N DKL

(
q‖p

))
for p < q < 1, (2.2)

P
[
X ≤ qN

]≤ exp
(−N DKL

(
q‖p

))
for 0 < q < p. (2.3)

In addition, we recall that the hypergeometric distribution Hyp(L, M , N ) is defined by

P
[
Hyp(L, M , N ) = k

]=
(

M

k

)(
L−M

N −k

)(
L

N

)−1

. (k ∈ {0,1, . . . , M ∧N }).

Hence, out of a total of L items of which M are special we draw N items without replacement and count the number
of special items in the draw. The mean of the hypergeometric distribution equals M N /L. It is well known that the
Chernoff bound extends to the hypergeometric distribution.

Lemma 2.2 ([19]). For a hypergeometric variable X ∼ Hyp(L, M , N ) the bounds (2.2)–(2.3) hold with p = M/L.
5
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Throughout the paper we use asymptotic notation o( ·),ω( ·),O( ·),Ω( ·),Θ( ·) to refer to limit n →∞. It is under-
stood that the constants hidden in, e.g., a O( ·)-term may depend on the density parameter θ or other parameters.

3. THE INFORMATION THEORETIC LOWER BOUND

In this section we prove Theorem 1.1. The proof combines techniques based on the FKG inequality and positive
correlation that were developed in [6, 29] with new combinatorial ideas. Throughout this section we fix a number
θ ∈ (0,1) and we let k = ⌈nθ⌉.
3.1. Outline. The starting point is a simple and well known observation. Namely, for a test design G = Gn,m =
(Vn ,Fm) and a vector τ ∈ {0,1}Fm of test results let

Sk (G,τ) =
{
σ ∈ {0,1}Vn :

∑
x∈Vn

σx = k, σ̂G = τ

}

be the set of all possible vectors σ of Hamming weight k that give rise to the test results τ. Further, let Zk (G,τ) =
|Sk (G,τ)| be the number of such vectors σ. Also recall that σ = σG ,k ∈ {0,1}Vn is a random vector of Hamming
weight k and that σ̂= σ̂G ,k comprises the test results that σ renders under the test design G. We observe that the
posterior ofσ given σ̂ is the uniform distribution on Sk (G,σ̂).

Fact 3.1. For any G, σ ∈ {0,1}Vn we have P [σ=σ | σ̂] = 1 {σ ∈Sk (G,σ̂)}/Zk (G,σ̂).

As an immediate consequence of Fact 3.1, the success probability of any inference scheme AG : {0,1}Fm → {0,1}Vn

is bounded by 1/Zk (G,σ̂). Indeed, an optimal inference algorithm is to simply return a uniform sample from
Sk (G,σ̂).

Fact 3.2. For any test design G and for any AG : {0,1}Fm → {0,1}Vn we have P [AG (σ̂) =σ | σ̂]≤ 1/Zk (G,σ̂).

Hence, in order to prove Theorem 1.1 we just need to show that Zk(G,σ̂) is large for any test design G with m <
(1−ε)minf tests. In other words, we need to show that w.h.p. there are many vectors σ ∈ Sk (G,σ̂) that give rise to
the test results σ̂.

We obtain these σ by making diligent local changes to σ. More precisely, we identify two sets V0+ = V0+(G,σ),
V1+ = V1+(G,σ) of individuals whose infection status can be flipped without altering the test results. Specifically,
following [5] we call an individual x ∈ Vn disguised if every test a ∈ ∂G x contains another individual y ∈ ∂G a \ {x}
with σy = 1. Let V+ =V+(G,σ) be the set of all disguised individuals. Moreover, let

V0+ =V0+(G,σ) = {x ∈V+ :σx = 0} , V1+ =V1+(G,σ)= {x ∈V+ :σx = 1} . (3.1)

Hence, V0+ is the set of all healthy disguised individuals while V1+ contains all infected disguised individuals.

Fact 3.3. We have Zk (G,σ̂) ≥ |V0+(G,σ)| · |V1+(G,σ)|.
Proof. For a pair (x, y) ∈V0+(G,σ)×V1+(G,σ) obtain τ from σ by letting τx = 1,τy = 0 and τz =σz for all z 6= x, y .
Then τ has Hamming weight k and τ̂G = σ̂. Thus, τ ∈Sk (G,σ̂). �

Hence, an obvious proof strategy for Theorem 1.1 is to exhibit a large number of disguised individuals. A similar
strategy has been pursued in the proof of the conditional lower bound of Mézard, Tarzia and Toninelli [29] and
the proof of Aldridge’s lower bound for the linear case k = Θ(n) [5]. Both [5, 29] exhibit disguised individuals via
positive correlation and the FKG inequality. However, we do not see how to stretch such arguments to obtain
the desired lower bound for all θ ∈ (0,1). Yet for θ extremely close to one it is possible to combine the positive
correlation argument with new combinatorial ideas to obtain the following.

Proposition 3.4. For any ε> 0 there exists θ0 = θ0(ε) < 1 such that for every θ ∈ (θ0,1) there exists n0 = n0(θ,ε) such
that for all n > n0 and all test designs G =Gn,m with m ≤ (1−ε)minf we have

P [|V0+(G,σ)|∧ |V1+(G,σ)| ≥ ln n]> 1−ε.

The proof of Proposition 3.4 can be found in Section 3.2.
The second step towards Theorem 1.1 is a reduction from larger to smaller values of θ. Suppose we wish to apply

a test scheme designed for an infection density θ ∈ (0,1) to a larger infection density θ′ ∈ (θ,1). Then we could
dilute the larger infection density by adding a large number of healthy ‘dummy’ individuals. A careful analysis of
this dilution process yields the following result. Due to the elementary lower bound (1.1) we need not worry about
θ ≤ ln(2)/(1+ ln 2).
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Proposition 3.5. For any ln(2)/(1+ ln(2)) < θ < θ′ < 1, t > 0 there exists n0 = n0(θ,θ′, t) > 0 such that for every n > n0

and for every test design G of order n there exist an integer n′ such that

k = ⌈nθ⌉ = ⌈n′ θ′⌉
and a test design G ′ of order n′ with the same number of tests as G such that the following is true. Let τ ∈ {0,1}Vn′ be
a random vector of Hamming weight k and let τ̂a = maxx∈∂G′ a τx comprise the tests results of G ′. Then

P [Zk(G,σ̂) ≤ t ] ≤P
[
Zk (G ′, τ̂) ≤ t

]
.

Hence, if a test design exists for θ < θ′ that beats minf(n,θ), then there is a test design for infection density θ′ that
beats minf(n′,θ′). We prove Proposition 3.4 in Section 3.2. Theorem 1.1 is an easy consequence of Propositions 3.4
and 3.5.

Proof of Theorem 1.1. For θ ≤ ln(2)/(1+ ln(2)) the assertion follows from the elementary lower bound (1.1). Hence,
fix ε> 0 and assume for contradiction that some θ ∈ (ln(2)/(1+ln(2)),1) for infinitely many n admits a test design G
of order n and size m ≤ (1−ε)minf(n,θ) such that P [Zk(G,σ̂G ) ≤ t ] ≥ ε. Then Proposition 3.5 shows that for θ′ > θ

arbitrarily close to one for an integer n′ with k = ⌈n′ θ′⌉ a test design G ′ =Gn′,m exists such that

P
[

Zk(G ′, τ̂) ≤ 1/ε
]≥ ε. (3.2)

Furthermore, (1.3) shows that for large n,

minf(n′,θ′) = θ′

ln2 2
n′ θ′ ln n′ = θ+o(1)

ln2 2
nθ ln n = (1+o(1))minf(n,θ).

Hence, the number m of tests of G ′ satisfies m ≤ (1− ε+ o(1))minf(n′,θ′). Thus, (3.2) contradicts Fact 3.3 and
Proposition 3.4. �

3.2. Proof of Proposition 3.4. Given a small ε > 0 we choose θ0 = θ0(ε) ∈ (0,1) sufficiently close to one and fix
θ ∈ (θ0,1). Additionally, pick ξ= ξ(ε,θ) ∈ (0,1) such that

2(1−θ) < ξ< θε. (3.3)

We fix ε,θ,ξ throughout this section.
To avoid the (mild) stochastic dependencies that result from the total number of infected individuals being

fixed, instead of σ we will consider a vector χ ∈ {0,1}Vn whose entries are stochastically independent. Specifically,
every entry of χ equals one with probability

p = k −
p

k ln n

n

independently. Let χ̂G ∈ {0,1}Fm be the corresponding vector of test results. The following lemma shows that it
suffices to estimate |V0+(G,χ)|, |V1+(G,χ)|. Let G denote an arbitrary test design with individuals Vn = {x1, . . . , xn }
and tests Fm = {a1, . . . , am}.

Lemma 3.6. There is n0 = n0(θ,ε) such that for all n > n0 and for all G with m ≤ minf the following is true:

if P
[|V0+(G,χ)|∧ |V1+(G,χ)| ≥ 2ln n

]> 1−ε/4, then P [|V0+(G,σ)|∧ |V1+(G,σ)| ≥ ln n] > 1−ε.

Proof. Let X = {k −2
p

k ln n ≤∑
x∈Vn χx ≤ k}. The Chernoff bound shows for large enough n,

P [X ]> 1−η/4. (3.4)

Further, given X we can coupleχ,σ such that the latter is obtained by turning k−∑
x∈Vn χx random zero entries of

the former into ones. Since turning zero entries into ones can only increase the number of disguised individuals,
on X we have

V1+(G,σ) ≥V1+(G,χ). (3.5)

Of course, it is possible that |V0+(G,σ)| < |V0+(G,χ)|. But since on X the two vectors σ,χ differ in no more than
2
p

k lnn entries, we obtain the bound

E
[
|V0+(G,χ)|− |V0+(G,σ)| |X

]
≤ 2

p
k ln n

n−k
|V0+(G,χ)| < n−1/3|V0+(G,χ)|,
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provided n is sufficiently large. Hence, Markov’s inequality shows that for large enough n,

P
[|V0+(G,χ)|− |V0+(G,σ)| > |V0+(G,χ)|/2 |X ]< ε/4. (3.6)

Combining (3.4), (3.5) and (3.6) completes the proof. �

As a next step we show that there is no point in having very big tests a that contain more than, say, Γ= Γ(n,θ) =
n1−θ ln n individuals. This is because anyway all such tests are positive w.h.p., so there is little point in actually
conducting them. Indeed, the following lemma shows that w.h.p. all tests of very high degree contain at least two
infected individuals.

Lemma 3.7. There exists n0 = n0(θ,ε) > 0 such that for all n > n0 and all test designs G with m ≤ minf tests,

P
[
∃a ∈ Fm : |∂G a| > Γ∧|∂G a ∩V1(G,χ)| ≤ 1

]
< ε/8.

Proof. Consider a test a of degree γ= |∂G a| ≥ Γ. Because inχ each of the γ individuals that take part in a is infected
with probability p independently, we have

P [|∂G a ∩V1(G,σ)| ≤ 1]=P
[
Bin(γ, p)≤ 1

]= (1−p)γ+γp(1−p)γ−1 ≤ (1+γp/(1−p))exp(−γp)= no(1)−1. (3.7)

Since m ≤ minf =O(nθ) for a fixed θ < 1, the assertion follows from (3.7) and the union bound. �

Let G∗ be test design obtained from G =Gn,m by deleting all tests of degree larger than Γ. If indeed every test of
degree at least Γ contains at least two infected individuals, then V0+(G∗,χ) =V0+(G,χ) and V1+(G∗,χ) =V1+(G,χ).
Hence, Lemma 3.7 shows that it suffices to bound |V0+ (G∗,χ)|, |V1+(G∗,χ)|. To this end we observe that G∗ contains
few individuals of very high degree.

Lemma 3.8. There is n0 = n0(θ,ε) > 0 such that for all n > n0 and all test designs G with m ≤ minf we have

∣∣{x ∈Vn : |∂G∗x| > ln3 n
}∣∣≤ n ln lnn

lnn
.

Proof. Since maxa∈Fm |∂G∗ a| ≤ Γ= n1−θ ln n, double counting yields
∑

x∈Vn

|∂G∗ x| =
∑

a∈Fm

|∂G∗ a| ≤ minfΓ=O(n ln2 n).

Consequently, there are no more than O(n/ln n) individuals x ∈Vn with |∂G∗x| > ln3 n. �

Further, obtain G(0) from G∗ by deleting all individuals of degree greater than ln3 n (but keeping all tests). Then the
degrees of G(0) satisfy

max
a∈F (G (0))

|∂G (0) a| ≤ Γ, max
x∈V (G (0))

|∂G (0) x| ≤ ln3 n. (3.8)

Let χ(0) = (χx )x∈V (G (0)) signify the restriction of χ to the individuals that remain in G(0).
With these preparations in place we are ready to commence the main step of the proof of Proposition 3.4. Given

a test design G with m ≤ (1−ε)minf we are going to construct a sequence y1, y2, . . . , yN , N = ⌈n1−ξ⌉, of individuals
of G(0) such that each yi individually has a moderately high probability of being disguised. Of course, to conclude
that in the end a large number of disguised yi actually materialise, we need to cope with stochastic dependencies.
To this end we will pick individuals yi that have pairwise distance at least five in G(0). The degree bounds (3.8)
guarantee a sufficient supply of such far apart individuals.

To be precise, starting from G(0) we construct a sequence of test designs G(1),G(2), . . . ,G(N) inductively as follows.
For each i ≥ 1 select a variable yi−1 ∈V (G(i−1)) whose probability of being disguised is maximum; ties are broken
arbitrarily. In formulas,

P
[

yi−1 ∈V+(G(i−1),χ(i−1))
]
= max

y∈V (G (i−1))
P

[
y ∈V+(G(i−1),χ(i−1))

]
,

where, of course, χ(i−1) is the only random object. Then obtain G(i) from G(i−1) by removing yi−1 along with
all vertices (i.e., tests or individuals) at distance at most four from yi−1. Moreover, let χ(i) denote the restriction
(χx )x∈V (G (i )) of χ to G(i). The following lemma estimates the probability of yi being disguised. Let m∗ = |F (G∗)| be
the total number of tests of G of degree at most Γ.
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Lemma 3.9. There exists n0 = n0(ε,θ,ξ) such that for all n > n0 and all G with m ≤ (1−ε)minf we have

min
1≤i≤N

P
[

yi ∈V+(G(i))
]
≥ exp

(
−m ln2 2

nθ
−1

)
.

The proof of Lemma 3.9 requires three intermediate steps. First, we need a lower bound on number of individ-
uals in G(i). Recall that N = ⌈n1−ξ⌉.
Claim 3.10. We have min0≤i≤N |V (G(i))| ≥ n−NΓ2 ln6 n.

Proof. Since throughout the construction of the G(i) we only delete vertices, the degree bound (3.8) implies

max
a∈F (G (i ))

|∂G (i ) a| ≤ Γ= n1−θ ln n, max
x∈V (G (i ))

|∂G (i ) x| ≤ ln3 n for all i ≤ N . (3.9)

We now proceed by induction on i . For i = 0 there is nothing to show. Going from i to i +1 ≤ N , we notice that
because all individuals x ∈V (G(i)) \V (G(i+1)) have distance at most four from yi+1 , (3.9) ensures that

|V (G(i)) \V (G(i+1))| ≤ Γ2 ln6 n. (3.10)

Iterating (3.10), we obtain |V (G(0)) \V (G(i+1))| ≤ (i +1)Γ2 ln6 n, whence |V (G(i+1))| ≥ n− (i +1)Γ2 ln6 n. �
The following claim resembles the proof of [5, Theorem 1] (where the case k =Ω(n) is considered).

Claim 3.11. Let D(i)(x) = {x ∈V+(G(i))} and let

L(i) = 1

|V (G(i))|
∑

x∈V (G (i ))

lnP
[
D(i)(x)

]
. (3.11)

Then

L(i) ≥ |F (G(i))|
|V (G(i))| min

a∈F (G (i ))

∣∣∂G (i ) a
∣∣ ln

(
1− (1−p)|∂G(i ) a|−1

)
. (3.12)

Proof. For an individual x ∈V (G(i)) and a test a ∈ ∂G (i ) x let D(i)(x, a) be the event that there is another individual
z ∈ ∂G (i ) a \ {x} such that χz = 1. Then for every x ∈V (G(i)) we have

P
[
D(i) (x)

]
=P


 ⋂

a∈∂G(i ) x
D(i)(x, a)


 . (3.13)

Furthermore, the events D(i)(x, a) are increasing with respect to χ. Therefore, (3.13) and the FKG inequality imply

P
[
D(i) (x)

]
≥

∏
a∈∂G(i ) x

P
[
D(i)(x, a)

]
. (3.14)

Moreover, because each entry of χ is one with probability p independently, we obtain

P
[
D(i)(x, a)

]
= 1− (1−p)|∂G(i ) a|−1 (3.15)

Finally, combining (3.13)–(3.15), we obtain

|V (G(i))|L(i) ≥
∑

x∈V (G (i ))

∑
a∈F (G (i ))

1
{

a ∈ ∂G (i ) x
}

ln
(
1− (1−p)|∂G(i ) a|−1

)

=
∑

a∈F (G (i ))

∣∣∂G (i ) a
∣∣ ln

(
1− (1−p)|∂G(i ) a|−1

)
≥ |F (G(i))| min

a∈F (G (i ))

∣∣∂G (i ) a
∣∣ ln

(
1− (1−p)|∂G(i ) a|−1

)
,

as claimed. �
As a final preparation for the proof of Lemma 3.9 we need the following estimate.

Claim 3.12. The function z ∈ (0,∞) 7→ z ln(1− (1−p)z−1) attains its minimum at z = (
1+O(n−Ω(1))

)
ln(2)/p.

Proof. We consider three separate cases.

Case 1: z = o(1/p): we obtain

z ln
(
1− (1−p)z−1)= z ln

(
1−exp

(−pz +O(p2z)
))= z ln

(
1− (

1−pz +O(p2z2)
))

= z

ln
(zp +O(zp)2) = o(1/p). (3.16)
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Case 2: z =ω(1/p): we find

z ln
(
1− (1−p)z−1)= z ln

(
1−exp

(−pz +O(p2z)
))=−z

(
exp(−pz)+O

(
exp(−2pz)

))

=− 1

p
pz

(
exp

(
−pz

)
+exp

(
−2pz

))
= o(1/p). (3.17)

Case 3: z =Θ(1/p): letting d = zp, we obtain

z ln
(
1− (1−p)z−1)= d

p
ln

(
1−exp

(−d +O(p)
))= d

p
ln

(
1−exp (−d )

)+O(1). (3.18)

Since the strictly convex function d ∈ (0,∞) 7→ d ln(1−exp(−d)) attains its minimum at d = ln 2, (3.18) dominates
(3.16) and (3.17). Thus, the minimiser reads z = ln(2)/p +O(p−1/2). �

Proof of Lemma 3.9. Combining Claims 3.11 and 3.12, we see that for all test designs G with m ≤ (1−ε)minf and for
all i ≤ N ,

L(i) ≥−
(
1+O(n−Ω(1))

) |F (G(i))| ln2 2

|V (G(i))|p ≥−
(
1+O(n−Ω(1))

) m ln2 2

|V (G(i))|p .

Hence, Claim 3.10, (3.3) and the choice p = (k +
p

k ln n)/n imply that for all i ≤ N ,

L(i) ≥−(
1+O(n−Ω(1))

) m ln2 2

(n−N∆2 ln6 n)p
≥−(

1+O(n−Ω(1))
) m ln2 2

nθ
. (3.19)

Further, combining the definition (3.11) of L(i) with (3.19), we conclude that for every i ≤ N there exists an individ-
ual yi ∈V (G(i)) such that

P
[

yi ∈V+(G(i))
]
=P

[
D(i)(yi )

]
≥ exp

(
L(i)

)
≥ exp

(
−

(
1+O(n−Ω(1))

) m ln2(2)

nθ

)
,

which implies the assertion. �

Lemma 3.9 implies the following bound on |V0+(G∗,χ)|, |V1+(G∗,χ)|.

Corollary 3.13. There exists n0 = n0(ε,θ,ξ) such that for all n > n0 and all G =Gn,m with m ≤ (1−ε)minf we have

P
[∣∣V0+(G∗,χ)

∣∣∧
∣∣V1+(G∗,χ)

∣∣< ln4 n
]< ε/8.

Proof. We observe that V+(G(i),χ) ⊂ V+(G∗,χ) for all i ≤ N because by construction for any individual x ∈ V (G(i))
every test a ∈ ∂G∗ x of G∗ that x belongs to is still present in G(i). Consequently, we obtain the bound

P
[
x ∈V+(G∗)

]≥P
[

x ∈V (G(i))
]

for all i ∈ [N ], x ∈V (G∗). (3.20)

Combining (3.20) with Lemma 3.9 we obtain

P
[

y (i) ∈V+(G∗)
]
≥ exp

(
− ln2(2)n−θm −1

)
≥ exp

(
−(1−ε) ln2(2)n−θminf −1

)
for all i ∈ [N ].

Hence, recalling the definition of minf from (1.3), we obtain

P
[

y (i) ∈V+(G∗)
]
≥ exp(−(1−ε)θ ln(n)−1) = n(ε−1)θ/e. for all i ∈ [N ]. (3.21)

Since the entry χy (i ) is independent of the event {y (i) ∈ V+(G∗)}, the definitions (3.1) of V0+(G∗,χ) and V1+(G∗,χ)
and (3.21) yield

P
[

y (i) ∈V0+(G∗,χ)
]
≥ (1−p) · n(ε−1)θ

e
≥ nεθ−1

3
, P

[
y (i) ∈V1+(G∗,χ)

]
≥ p · n(ε−1)θ

e
≥ nεθ−1

3
for all i ∈ [N ],

provided n is sufficiently large. Therefore, recalling N = ⌈n1−ξ⌉ we obtain for large enough n,

E
∣∣{y (1), . . . , y (N)}∩V0+(G∗,χ)

∣∣≥ nεθ−ξ/3, E
∣∣{y (1), . . . , y (N)}∩V1+(G∗,χ)

∣∣≥ nεθ−ξ/3. (3.22)
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Further, because the pairwise distances of y (1), . . . , y (N) in G∗ exceed four, the events {y (i) ∈ V0+(G∗,χ)}i≤N are
mutually independent. So are the events {y (i) ∈ V1+(G∗,χ)}i≤N . Finally, since (3.3) ensures that εθ− ξ > 0, (3.22)
and the Chernoff bound yield

P
[∣∣{y (1), . . . , y (N)}∩V0+(G∗,χ)

∣∣≤ ln2 n
]
≤P

[
Bin(N ,nεθ−1/3) ≤ ln2 n

]
≤ exp(−nΩ(1)),

P
[∣∣{y (1), . . . , y (N)}∩V1+(G∗,χ)

∣∣≤ ln2 n
]≤P

[
Bin(N ,nεθ−1/3) ≤ ln2 n

]
≤ exp(−nΩ(1)),

whence the assertion is immediate. �

Proof of Proposition 3.4. Suppose that n > n0(ε,θ,ξ) is large enough and let G = Gn,m be a test design with m ≤
(1−ε)minf tests. If for every test a ∈ Fm of degree |∂G a| > Γwe have |∂G a∩V1(G,χ)| ≥ 2, then V0+(G,χ) =V0+(G∗,χ)
and V1+(G,χ) =V1+(G∗,χ). Therefore, the assertion is an immediate consequence of Lemma 3.6, Lemma 3.7 and
Corollary 3.13. �

3.3. Proof of Proposition 3.5. Given ε> 0 and ln(2)/(1+ln(2)) ≤ θ < θ′ < 1 we choose a large enough n0 = n0(ε,θ,θ′)
and assume that n > n0. Furthermore, let G be a test design with m ≤ (1−ε)minf(n,θ) for the purpose of identifying
k = ⌈nθ⌉ infected individuals. Starting from the test design G infection for density θ we are going to construct a
random test design G ′ for infection density θ′ with the same number m of tests as G. The following lemma fixes
the order of G ′.

Lemma 3.14. There exists an integer nθ/θ′/2 ≤ n′ ≤ 2nθ/θ′ ∧n such that k ′ = ⌈n′ θ′⌉ = k.

Proof. Let n′′ = ⌈nθ/θ′/2⌉. Then (4n′′)θ
′ > k but n′′ θ′ < k because the function z ∈ (1,∞) 7→ zθ

′
has derivative less

than one. For the same reason for any integer n′′ < N < 4n′′ we have (N +1)θ
′ −Nθ′ ≤ 1 and thus

⌈(N +1)θ
′ ⌉−⌈Nθ′⌉ ≤ 1.

Consequently, there exists an integer n′ ∈ (n′′,4n′′) such that ⌈n′ θ′⌉ = k. �

Given the test design G with individuals Vn = {x1, . . . , xn } and tests Fm = {a1, . . . , am } we now construct the test
design G ′ as follows. Choose a subset V (G ′) ⊂ Vn of n′ individuals uniformly at random. Then G ′ is the subgraph
that G induces on V (G ′)∪Fm . Thus, G ′ has the same tests as G but we simply leave out from every test the indi-
viduals that do not belong to the random subset V (G ′). Let τ ∈ {0,1}V (G ′) be a random vector of Hamming weight
k and let τ̂ ∈ {0,1}Fm be the induced vector of tests results

τ̂a = max
x∈∂G′ a

τx (a ∈ Fm ).

Lemma 3.15. For any integer t > 0 we have P [Zk (G,σ̂) ≥ t ]≥P
[

Zk (G ′, τ̂) ≥ t
]
.

Proof. The choice of n′ ensures that k ′ = ⌈n′ θ′⌉ = k. Therefore, the random sets {x ∈ V : σx = 1} and {x ∈ V (G ′) :
τx = 1} are identically distributed. Indeed, we obtain the latter by first choosing the random subset V (G ′) of Vn

and then choosing a random subset of V (G ′) size k. Clearly, this two-step procedure is equivalent to just choosing
a random subset of size k out of Vn . Hence, we can couple σ,τ such that the sets {x ∈ V :σx = 1}, {x ∈ V : τx = 1}
are identical. Then the construction of G ′ ensures that the vectors σ̂, τ̂ coincide as well.

Now consider a vector σ′ ∈ Sk (G ′, τ̂) that explains the test results. Extend σ′ to a vector σ ∈ {0,1}Vn by setting
σx = 0 for all x ∈Vn \V (G ′). Then σ ∈Sk (G ,σ̂). Hence, Zk (G,σ̂) ≥ Zk (G ′, τ̂). �

Proof of Proposition 3.5. Lemma 3.15 shows that for any t > 0,

P [Zk(G,σ̂) ≥ t ] ≥P
[
Zk (G ′, τ̂) ≥ t

]
= E

[
P

[
Zk (G ′, τ̂) ≥ t |G ′]] .

Consequently, there exists an outcome G ′ of G ′ such that P [Zk (G,σ̂) ≥ t ]≥P
[

Zk(G ′, τ̂) ≥ t
]
. �

4. THE NON-ADAPTIVE GROUP TESTING ALGORITHM SPIV

In this section we describe the new test design and the associated inference algorithm SPIV for Theorem 1.2.
Throughout we fix θ ∈ (0,1) and ε > 0 and we tacitly assume that n > n0(ε,θ) is large enough for the various es-
timates to hold.
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4.1. The random bipartite graph and the DD algorithm. To motivate the new test design we begin with a brief
discussion of the plain random design used in prior work and the best previously known inference algorithm
DD [11, 22]. At first glance a promising candidate test design appears to be a random bipartite graph with one vertex
class Vn = {x1, . . . , xn } representing individuals and the other class Fm = {a1, . . . , am} representing tests. Indeed, two
slightly different random graph models have been proposed [6]. First, in the Bernoulli model each Vn–Fm -edge is
present with a certain probability (the same for every pair) independently of all others. However, due to the rela-
tively heavy lower tail of the degrees of the individuals, this test design turns out to be inferior to a second model
where the degrees of the individuals are fixed. Specifically, in the∆-out model every individual independently joins
an equal number of ∆ tests drawn uniformly at random without replacement [29].

Clearly, in order to extract the maximum amount of information ∆ should be chosen so as to maximise the en-
tropy of the vector of test results. Specifically, since the average test degree equals∆n/m and a total of k individuals
are infected, the average number of infected individuals per test comes to ∆k/m. Indeed, since k ∼ nθ for a fixed
θ < 1, the number of infected individuals in test ai can be well approximated by a Poisson variable. Therefore,
setting

∆∼ m

k
ln 2 (4.1)

ensures that about half the tests are positive w.h.p.
With respect to the performance of the ∆-out model, [11, Theorem 1.1] implies together with Theorem 1.1 that

this simple construction is information-theoretically optimal. Indeed, m = (1+ ε+ o(1))minf test suffice so that
an exponential time algorithm correctly infers the set of infected individuals. Specifically, the algorithm solves
a minimum hypergraph vertex cover problem with the individuals as the vertex set and the positive test groups
as the hyperedges. For m = (1+ ε+o(1))minf the unique optimal solution is precisely the correct set of infected
individuals w.h.p. While the worst case NP-hardness of hypergraph vertex cover does not, of course, preclude the
existence of an algorithm that is efficient on random hypergraphs, despite considerable efforts no such algorithm
has been found. In fact, as we saw in Section 1.4 for a good number of broadly similar inference and optimisation
problems on random graphs no efficient information-theoretically optimal algorithms are known.

But for m exceeding the threshold mDD from (1.2) an efficient greedy algorithm DD correctly recovers σ w.h.p.
The algorithm proceeds in three steps.

DD1: declare every individual that appears in a negative test uninfected and subsequently remove all nega-
tive tests and all individuals that they contain.

DD2: for every remaining (positive) test of degree one declare the individual that appears in the test infected.
DD3: declare all other individuals as uninfected.

The decisions made by the first two steps DD1–DD2 are clearly correct but DD3 might produce false negatives.
Prior to the present work DD was the best known polynomial time group testing algorithm. While DD correctly
identifies the set of infected individuals w.h.p. if m > (1+ε)mDD [22], the algorithm fails if m < (1−ε)mDD w.h.p. [11].

4.2. Spatial coupling. The new efficient algorithm SPIV for Theorem 1.2 that gets by with the optimal number
(1+ε+o(1))minf of tests comes with a tailor-made test design that, inspired by spatially coupled codes [18, 26, 27],
combines randomisation with a superimposed geometric structure. Specifically, we divide both the individuals
and the tests into

ℓ= ⌈ln1/2 n⌉ (4.2)

compartments of equal size. The compartments are arranged along a ring and each individual joins an equal
number of random tests in the

s = ⌈ln ln n⌉ = o(ℓ) (4.3)

topologically subsequent compartments. Additionally, to get the algorithm started we equip the first s compart-
ments with extra tests so that they can be easily diagnosed via the DD algorithm. Then, having diagnosed the initial
compartments correctly, SPIV will work its way along the ring, diagnosing one compartment after the other.

To implement this idea precisely we partition the set V = Vn = {x1, . . . , xn } of individuals into pairwise disjoint
subsets V [1], . . . ,V [ℓ] of sizes |V [ j ]| ∈ {⌊n/ℓ⌋,⌈n/ℓ⌉}. With each compartment V [i ] of individuals we associate a
compartment F [i ] of tests of size |F [i ]| = m/ℓ for an integer m that is divisible by ℓ. Additionally, we introduce
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V [7] V [8] V [9] V [1] V [2] V [3] V [4] V [5] V [6]

F [7] F [8] F [9] F [1] F [2] F [3] F [4] F [5] F [6]

F [0] F [0] F [0]

· · · · · ·

FIGURE 2. The spatially coupled test design with n = 36,ℓ = 9, s = 3. The individuals in the seed
groups V [1]∪·· ·∪V [s] (blue) are equipped with additional test F [0] (blue rectangles). The black
rectangles represent the tests F [1]∪·· ·∪F [ℓ].

a set F [0] of 10⌈(ks/ℓ) ln n⌉ extra tests to facilitate the greedy algorithm for diagnosing the first s compartments.
Thus, the total number of tests comes to

|F [0]|+
ℓ∑

i=1
|F [i ]| = (1+O(s/ℓ))m = (1+o(1))m. (4.4)

Finally, for notational convenience we define V [ℓ+ i ]=V [i ] and F [ℓ+ i ]= F [i ] for i = 1, . . . , s.
The test groups are composed as follows: let

k = ⌈nθ⌉ and let ∆= m ln 2

k
+O(s) (4.5)

be an integer divisible by s; cf. (4.1). Then we construct a random bipartite graph as follows.

SC1: for i = 1, . . . ,ℓ and j = 1, . . . , s every individual x ∈V [i ] joins ∆/s tests from F [i + j −1] chosen uniformly
at random without replacement. The choices are mutually independent for all individuals x and all j .

SC2: additionally, each individual from V [1]∪·· ·∪V [s] independently joins ⌈10ln(2) ln n⌉ random tests from
F [0], drawn uniformly without replacement.

Thus, SC1 provides that the individuals in compartment V [i ] take part in the next s compartments F [i ], . . . ,F [i +
s −1] of tests along the ring. Furthermore, SC2 supplies the tests required by the DD algorithm to diagnose the first
s compartments. Figure 2 provides an illustration of the resulting random test design,

From here on the test design produced by SC1–SC2 is denoted by G. Furthermore σ ∈ {0,1}V denotes a uni-
formly random vector of Hamming weight k, drawn independently of G, and σ̂ = (σ̂a)a∈F [0]∪···∪F [ℓ] signifies the
vector of test results

σ̂a = max
x∈∂a

σx .

In addition, let V1 = {x ∈ V : σx = 1} be the set of infected individuals and let V0 = V \ V1 be the set of healthy
individuals. Moreover, let F = F [0]∪F [1]∪·· · ∪F [ℓ] be the set of all tests, let F1 = {a ∈ F : σ̂a = 1} be the set of all
positive tests and let F0 = F \ F1 be the set of all negative tests. Finally, let

V0[i ]=V [i ]∩V0, V1[i ]=V [i ]∩V1, F0[i ]= F [i ]∩F0, F1[i ] = F [i ]∩F1.

The following proposition summarises a few basic properties of the test design G.

Proposition 4.1. If m =Θ(nθ lnn) then G enjoys the following properties with probability 1−o(n−2).

(i) The infected individual counts in the various compartments satisfy

k

ℓ
−

√
k

ℓ
lnn ≤ min

i∈[ℓ]
|V1[i ]| ≤ max

i∈[ℓ]
|V1[i ]| ≤ k

ℓ
+

√
k

ℓ
ln n.

(ii) For all i ∈ [ℓ] and all j ∈ [s] the test degrees satisfy

∆n

ms
−

√
∆n

ms
ln n ≤ min

a∈F [i+ j−1]
|V [i ]∩∂a| ≤ max

a∈F [i+ j−1]
|V [i ]∩∂a| ≤ ∆n

ms
+

√
∆n

ms
lnn.
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(iii) For all i ∈ [ℓ] the number of negative tests in compartment F [i ] satisfies

m

2ℓ
−p

m ln3 n ≤ |F0[i ]| ≤ m

2ℓ
+p

m ln3 n.

We prove Proposition 4.1 in Section 4.4. Finally, as a preparation for things to come we point out that for any
specific individual x ∈V [i ] and any particular test a ∈ F [i + j ], j = 0, . . . , s −1, we have

P [x ∈ ∂a]= 1−P [x 6∈ ∂a]= 1−
(
|F [i + j ]|−1

∆/s

)(
|F [i + j ]|
∆/s

)−1

= ∆ℓ

ms
+O

((
∆ℓ

ms

)2)
. (4.6)

4.3. The Spatial Inference Vertex Cover (‘SPIV’) algorithm. TheSPIV algorithm for Theorem 1.2 proceeds in three
phases. The plan of attack is for the algorithm to work its way along the ring, diagnosing one compartment after the
other aided by what has been learned about the preceding compartments. Of course, we need to start somewhere.
Hence, in its first phase SPIV diagnoses the seed compartments V [1], . . . ,V [s].

4.3.1. Phase 1: the seed. Specifically, the first phase of SPIV applies the DD greedy algorithm from Section 4.1 to
the subgraph of G induced on the individuals V [1]∪ . . .∪V [s] and the tests F [0]. Throughout the vector τ ∈ {0,1}V

signifies the algorithm’s current estimate of the ground truth σ.

Input: G , σ̂
Output: an estimate ofσ

1 Let (τx )x∈V [1]∪···∪V [s] ∈ {0,1}V [1]∪···∪V [s] be the result of applying DD to the tests F [0];
2 Set τx = 0 for all individuals x ∈V \ (V [1]∪·· ·∪V [s]);

Algorithm 1: SPIV, phase 1

The following proposition, whose proof can be found in Section 4.5, summarises the analysis of phase 1.

Proposition 4.2. W.h.p. the output of DD satisfies τx =σx for all x ∈V [1]∪·· · ∪V [s].

4.3.2. Phase 2: enter the ring. This is the main phase of the algorithm. Thanks to Proposition 4.2 we may assume
that the seed has been diagnosed correctly. Now, the programme is to diagnose one compartment after the other,
based on what the algorithm learned previously. Hence, assume that we managed to diagnose compartments
V [1], . . . ,V [i ] correctly. How do we proceed to compartment V [i +1]?

For a start, we can safely mark as uninfected all individuals in V [i+1] that appear in a negative test. But a simple
calculation reveals that this will still leave us with many more than k undiagnosed individuals w.h.p. To be precise,
consider the set of uninfected disguised individuals

V0+[i +1] = {x ∈V0[i +1] : σ̂a = 1 for all a ∈ ∂x} ,

i.e., uninfected individuals that fail to appear in a negative test. In Section 4.6 we prove the following.

Lemma 4.3. Suppose that (1+ε)mad ≤ m =O(nθ ln n). Then w.h.p. for all s ≤ i < ℓ we have

|V0+[i +1]| = (
1+O

(
n−Ω(1))) n

ℓ2∆
.

Hence, by the definition (4.5) of ∆ for m close to minf the set V0+[i +1] has size k1+Ω(1) ≫ k w.h.p.
Thus, the challenge is to discriminate between V0+[i +1] and the set V1[i +1] of actual infected individuals in

compartment i +1. The key observation is that we can tell these sets apart by counting currently ‘unexplained’
positive tests. To be precise, for an individual x ∈ V [i +1] and 1 ≤ j ≤ s let W x, j be the number of tests in com-
partment F [i + j ] that contain x but that do not contain an infected individual from the preceding compartments
V [1]∪·· ·∪V [i ]. In formulas,

W x, j =
∣∣{a ∈ ∂x ∩F [i + j ] : ∂a ∩ (V1[1]∪·· · ∪V1[i ]) =;

}∣∣ . (4.7)

Crucially, the following back-of-the-envelope calculation shows that the mean of this random variable depends on
whether x is infected or healthy but disguised.
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Infected individuals (x ∈V1[i +1]): consider a test a ∈ ∂x ∩F [i + j ], j = 1, . . . , s. Because the individuals join
tests independently, conditioning on x being infected does not skew the distribution of the individuals
from the s − j prior compartments V [i + j − s +1], . . . ,V [i ] that appear in a. Furthermore, we chose ∆ so
that for each of these compartments V [h] the expected number of infected individuals that join a has
mean (ln 2)/s. Indeed, due to independence it is not difficult to see that |V1[h]∩ ∂a| is approximately a
Poisson variable. Consequently,

P
[
(V1[i + j − s +1]∪·· ·∪V1[i ])∩∂a =;]∼ 2−(s− j )/s . (4.8)

Hence, because x appears in ∆/s tests a ∈ F [i + j ], the linearity of expectation yields

E
[
W x, j | x ∈V1[i +1]

]
∼ 2 j /s−1∆

s
. (4.9)

Disguised healthy individuals (x ∈V0+[i +1]): similarly as above, for any individual x ∈V [i +1] and any a ∈
∂x ∩F [i + j ] the unconditional number of infected individuals in a is asymptotically Po(ln2). But given
x ∈V0+[i+1] we know that a is positive. Thus, ∂a\{x} contains at least one infected individual. In effect, the
number of positives in a approximately turns into a conditional Poisson Po≥1(ln 2). Consequently, for test
a not to include any infected individual from one of the known compartments V [h], h = i + j − s +1, . . . , i ,
every infected individual in test a must stem from the j yet undiagnosed compartments. Summing up the
conditional Poisson and recalling that x appears in ∆/s tests a ∈ F [ j ], we thus obtain

E
[
W x, j | x ∈V0+[i +1]

]
∼ ∆

s

∑
t≥1

P [Po≥1(ln2) = t] ( j /s)t = (2 j /s −1)
∆

s
. (4.10)

A first idea to tell V0+[i +1] and V1[i +1] apart might thus be to simply calculate

W x =
s−1∑
j=1

W x, j (x ∈V [i +1]). (4.11)

Indeed, (4.9) and (4.10) yield

E [W x | x ∈V1[i +1]]∼ ∆

2ln 2
= 0.721. . . ∆ whereas E [W x | x ∈V0+[i +1]]∼ ∆(1− ln 2)

ln 2
= 0.442. . . ∆.

But unfortunately a careful large deviations analysis reveals that W x is not sufficiently concentrated. More pre-
cisely, even for m = (1+ε+o(1))minf there are as many as k1+Ω(1) ‘outliers’ x ∈V0+[i +1] whose W x grows as large
as the mean ∆/(2ln 2) of actual infected individuals w.h.p.

At second thought the plain sum (4.11) does seem to leave something on the table. While W x counts all as yet
unexplained positive tests equally, not all of these tests reveal the same amount of information. In fact, we should
really be paying more attention to ‘early’ unexplained tests a ∈ F [i+1] than to ‘late’ ones b ∈ F [i+s]. For we already
diagnosed s−1 out of the s compartments of individuals that a draws on, whereas only one of the s compartments
that contribute to b has already been diagnosed. Thus, the unexplained test a is a much stronger indication that x
might be infected. Consequently, it seems promising to replace W x by a weighted sum

W ⋆
x =

s−1∑
j=1

w j W x, j (4.12)

with w1, . . . , ws−1 ≥ 0 chosen so as to gauge the amount of information carried by the different compartments.
To find the optimal weights w1, . . . , ws−1 we need to investigate the rate function of W ⋆

x given x ∈ V0+[i + 1].
More specifically, we should minimise the probability that W ⋆

x given x ∈ V0+[i +1] grows as large as the mean of
W ⋆

x given x ∈V1[i +1], which we read off (4.9) easily:

E
[
W ⋆

x | x ∈V1[i +1]
]∼ ∆

s

s−1∑
j=1

2 j /s−1w j . (4.13)

A careful large deviations analysis followed by a Lagrangian optimisation leads to the optimal choice

w j = ln
(1−2ζ)2 j /s−1(2−2 j /s )

(1− (1−2ζ)2 j /s−1)(2 j /s −1)
where ζ= 1/s2. (4.14)
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The following two lemmas show that with these weights the scores W ⋆
x discriminate well between the potential

false positives and the infected individuals. More precisely, thresholding W ⋆
x we end up misclassifying no more

than o(k) individuals x w.h.p.

Lemma 4.4. Suppose that (1+ε)mad ≤ m =O(nθ ln n). W.h.p. we have

∑
s≤i<ℓ

∑
x∈V1[i]

1

{
W ⋆

x < (1−ζ/2)
∆

s

s−1∑
j=1

2 j /s−1w j

}
≤ k exp

(
− Ω(ln n)

(lnln n)4

)
. (4.15)

Lemma 4.5. Suppose that (1+ε)mad ≤ m =O(nθ ln n). W.h.p. we have

∑
s≤i<ℓ

∑
x∈V0+[i]

1

{
W ⋆

x > (1−2ζ)
∆

s

s−1∑
j=1

2 j /s−1w j

}
≤ k1−Ω(1). (4.16)

We prove these two lemmas in Sections 4.7 and 4.8.
Lemmas 4.4–4.5 leave us with only one loose end. Namely, calculating the scores W ⋆

x requires knowledge of the
correct infection status σx of all the individuals x ∈ V [1]∪ ·· · ∪V [i ] from the previous compartments. But since
the r.h.s. expressions in (4.15) and (4.16) are non-zero, it is unrealistic to assume that the algorithm’s estimates τx

will consistently match the ground truth σx beyond the seed compartments. Hoping that the algorithm’s estimate
will not stray too far, we thus have to make do with the approximate scores

W ⋆
x (τ) =

s−1∑
j=1

w j Wx, j (τ), where Wx, j (τ)=
∣∣∣∣
{

a ∈ ∂x ∩F [i + j −1] : max
y∈∂a∩(V [1]∪···V [i])

τy = 0

}∣∣∣∣ . (4.17)

Hence, phase 2 of SPIV reads as follows.

3 for i = s, . . . ,ℓ−1 do
4 for x ∈V [i +1] do
5 if ∃a ∈ ∂x : σ̂a = 0 then
6 τx = 0 // classify as uninfected
7 else if W ⋆

x (τ)< (1−ζ)∆s
∑s−1

j=1 2 j /s−1w j then

8 τx = 0 // tentatively classify as uninfected
9 else

10 τx = 1 // tentatively classify as infected
Algorithm 2: SPIV, phase 2.

Since phase 2 of SPIV uses the approximations from (4.17), there seems to be a risk of errors amplifying as we
move along. Fortunately, it turns out that errors proliferate only moderately and the second phase of SPIV will
misclassify only o(k) individuals. The following proposition summarises the analysis of phase 2.

Proposition 4.6. Suppose that (1+ε)mad ≤ m =O(k ln n). W.h.p. the assignment τ obtained after steps 1–10 satisfies

∑
x∈V

1 {τx 6=σx } ≤ k exp

(
− ln n

(ln lnn)6

)
.

The proof of Proposition 4.6 can be found in Section 4.9.

4.3.3. Phase 3: cleaning up. The final phase of the algorithm rectifies the errors incurred during phase 2. The com-
binatorial insight that makes this possible is that for m ≥ (1+ ε)minf every infected individual has at least Ω(∆)
positive tests to itself w.h.p. Thus, these tests do not feature a second infected individual. Phase 3 of the algorithm
exploits this observation by simply thresholding the number Sx of tests where there is no other infected individual
besides potentially x. Thanks to the expansion properties of the graph G, each iteration of the thresholding pro-
cedure reduces the number of misclassified individuals by at least a factor of three. In effect, after ln n iterations
all individuals will be classified correctly w.h.p. Of course, due to Proposition 4.2 we do not need to reconsider the
seed V [1]∪·· · ∪V [s].
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11 Let τ(1) = τ;
12 for i = 1, . . . ,⌈ln n⌉ do
13 For all x ∈V [s +1]∪·· · ∪V [ℓ] calculate

14 Sx (τ(i)) =
∑

a∈∂x:σ̂a=1
1

{
∀y ∈ ∂a \ {x} : τ(i)

y = 0
}

;

15 Let τ(i+1)
x =

{
τ(i)

x if x ∈V [1]∪·· · ∪V [s],

1
{

Sx
(
τ(i)

)> ln1/4 n
}

otherwise
;

16 return τ(⌈lnn⌉)

Algorithm 3: SPIV, phase 3.

Proposition 4.7. Suppose that (1+ε)minf ≤ m =O(nθ ln n). W.h.p. for all 1≤ i ≤ ⌈ln n⌉ we have

∑
x∈V

1{τ(i+1)
x 6=σx } ≤ 1

3

∑
x∈V

1{τ(i)
x 6=σx }.

We prove Proposition 4.7 in Section 4.10.

Proof of Theorem 1.2. The theorem is an immediate consequence of Propositions 4.2, 4.6 and 4.7. �

4.4. Proof of Proposition 4.1. The number |V1[i ]| of infected individuals in compartment V [i ] has distribution
Hyp(n,k, |V [i ]|). Since ||V [i ]|−n/ℓ| ≤ 1, (i) is an immediate consequence of the Chernoff bound from Lemma 2.2.

With respect to (ii), we recall from (4.6) that P [x ∈ ∂a] = ∆ℓ
ms (1+O( ∆ℓms )). Hence, because the various individuals

x ∈V [i ] join tests independently, the number |V [i ]∩∂a| of test participants from V [i ] has distribution

|V [i ]∩∂a| ∼ Bin(|V [i ]|,∆ℓ/(ms)+O((∆ℓ/ms)2)).

Since |V [i ]| = n/ℓ+O(1), assertion (ii) follows from (4.5) and the Chernoff bound from Lemma 2.1.
Coming to (iii), due to part (i) we may condition on E = {∀i ∈ [ℓ] : |V1[i ]| = k/ℓ+O(

p
k/ℓ ln n)}. Hence, with h

ranging over the s compartments whose individuals join tests in F [i ], (4.6) implies that for every test a ∈ F [i ] the
number of infected individuals |V1 ∩∂a| is distributed as a sum of independent binomial variables

|V1 ∩∂a| ∼
∑
h

X h with X h ∼ Bin

(
V1[h],

∆ℓ

ms
+O

((
∆ℓ

ms

)2))
.

Consequently, (4.5) ensures that the event V1 ∩∂a =; has conditional probability

P [V1 ∩∂a =; | E ] =
∏
h
P [X h = 0 | E ] = exp


s


k

ℓ
+O



√

k

ℓ
ln n




 ln

(
1− ∆ℓ

ms
+O

((
∆ℓ

ms

)2))



= exp


− sk

ℓ
· ∆ℓ

ms
+O



√

k

ℓ
· ∆ℓ

m


+O

(
sk

ℓ
·
(
∆ℓ

ms

)2)

= 1

2
+O(

p
ℓ/k).

Therefore, we obtain the estimate

E [|F0[i ]| | E ] = m

2ℓ
+O(

p
m ln n). (4.18)

Finally, changing the set of tests that a specific infected individual x ∈V1[h] joins shifts |F0[i ]| by at most ∆ (while
tinkering with uninfected ones does not change |F0[i ]| at all). Therefore, the Azuma–Hoeffding inequality yields

P [||F0[i ]|−E [|F0[i ]| | E ]| ≥ t | E ]≤ 2exp

(
− t 2

2k∆2

)
for any t > 0. (4.19)

Thus, (iii) follows from (4.5), (4.18) and (4.19) with t =p
m ln3 n.
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4.5. Proof of Proposition 4.2. Let D = ⌈10ln(2) ln n⌉ and recall that |F [0]| = ⌈10ks ln(n)/ℓ⌉. Since by SC2 every
individual from ∈V [1]∪·· ·∪V [s] joins D random tests from F [0], in analogy to (4.6) for every x ∈V [1]∪·· ·∪V [s]
and every test a ∈ F [0] we obtain

P [x ∈ ∂a]= 1−P [x 6∈ ∂a]= 1−
(
|F [0]|−1

D

)(
|F [0]|

D

)−1

= D

|F [0]|

(
1+O

(
D

|F [0]|

))
= ℓ ln 2

ks

(
1+O(n−Ω(1))

)
. (4.20)

Let F1[0] be the set of tests a ∈ F [0] with σ̂a = 1.

Lemma 4.8. W.h.p. the number of positive tests a ∈ F [0] satisfies |F1[0]| = |F [0]|( 1
2 +O(n−Ω(1))).

Proof. By Proposition 4.1 we may condition on the event E that |V1[1]∪·· ·∪V1[s]| = ks
ℓ (1+O(n−Ω(1))). Hence, (4.20)

implies that given E the expected number of infected individuals in a test a ∈ F [0] comes to

E[|∂a ∩V1| | E ]= ln2+O(n−Ω(1)). (4.21)

Moreover, since individuals join tests independently, |∂a∩V1| is a binomial random variable. Hence, (4.21) implies
P[∂a ∩V1 =; | E ]= 1

2 +O(n−Ω(1)). Consequently, since P [E ]= 1−o(n−2) by Proposition 4.1,

E|F1 ∩F [0]| = E|F1[0]| = |F [0]|
2

(1+O(n−Ω(1))). (4.22)

Finally, changing the set ∂x of neighbours of an infected individual can shift |F1[0]| by at most D. Therefore, the
Azuma–Hoeffding inequality implies that

P [||F1[0]|−E|F1[0]|| > t ]≤ 2exp

(
− t 2

2D2k

)
for any t > 0. (4.23)

Since D =O(ln n), combining (4.22) and (4.23) and setting, say, t = k2/3 completes the proof. �

As an application of Lemma 4.8 we show that w.h.p. every seed individual x appears in a test a ∈ F [0] whose
other individuals are all healthy.

Corollary 4.9. W.h.p. every individual x ∈V [1]∪·· ·∪V [s] appears in a test a ∈ F [0]∩∂x such that ∂a \ {x} ⊂V0.

Proof. We expose the random bipartite graph induced on V [1]∪ ·· · ∪V [s] and F [0] in two rounds. In the first
round we expose σ and all neighbourhoods (∂y)y∈(V [1]∪···∪V [s])\{x}. In the second round we expose ∂x. Let X be
the number of negative tests a ∈ F [0] after the first round. Since x has degree D =O(ln n), Lemma 4.8 implies that
X = |F [0]|( 1

2 +O(n−Ω(1))) w.h.p. Furthermore, given X the number of tests a ∈ ∂x all of whose other individuals are
uninfected has distribution Hyp(|F [0]|, X ,D). Hence,

P [∀a ∈ ∂x : V1 ∩∂a \ {x} 6= ; | X ]=
(
|F [0]|−X

D

)(
|F [0]|

D

)−1

≤ exp(−D X /|F [0]|). (4.24)

Assuming X /|F [0]| = 1
2 +O(n−Ω(1)) and recalling that D = ⌈10ln(2) lnn⌉, we obtain exp(−D X /|F [0]|) = o(1/n). Thus,

the assertion follows from (4.24) and the union bound. �

Proof of Proposition 4.2. Due to Corollary 4.9 we may assume that for every x ∈ V [1] ∪ ·· · ∪V [s] there is a test
ax ∈ F [0] such that ∂ax \{x} ⊂V0. Hence, recalling the DD algorithm from Section 4.1, we see that the first step DD1
will correctly identify all healthy individuals x ∈ V0[1]∪ ·· · ∪V0[s]. Moreover, the second step DD2 will correctly
classify all remaining individuals V1[1]∪·· · ∪V1[s] as infected, and the last step DD3 will be void. �

4.6. Proof of Lemma 4.3. Let E be the event that properties (i) and (iii) from Proposition 4.1 hold; then P [E ] =
1− o(n−2). Moreover, let E be the σ-algebra generated by σ and the neighbourhoods (∂x)x∈V1 . Then the event
E is E-measurable while the neighbourhoods (∂x)x∈V0 of the healthy individuals are independent of E. Recalling
from SC1 that the individuals x ∈V0[i ] choose ∆/s random tests in each of the compartments F [i + j ], 0 ≤ j ≤ s−1
independently and remembering that x ∈V0+[i ] iff none of these tests is negative, on E we obtain

P [x ∈V0+[i ] |E] =
(

m/(2ℓ)+O(
p

m ln3 n)

∆/s

)s(
m/ℓ

∆/s

)−s

=
(

1+O(m−1/2ℓ ln3 n)

2

)∆

= 2−∆+O(m−1/2∆ℓ ln3 n) = 2−∆(1+O(n−θ/2 ln4 n)) [due to (4.2) and (4.5)]. (4.25)
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Because all x ∈ V0[i ] choose their neighbourhoods independently, (4.25) implies that the conditional random
variable |V0+[i ]| given E has distribution Bin(|V0[i ]|,2−∆(1+O(n−Ω(1)))). Therefore, since on E we have |V0[i ]| =
|V [i ]|+O(nθ) = n/ℓ+O(nθ), the assertion follows from the Chernoff bound from Lemma 2.1.

4.7. Proof of Lemma 4.4. The aim is to estimate the weighted sum W ⋆
x for infected individuals x ∈ V [i +1] with

s ≤ i < ℓ. These individuals join tests in the s compartments F [i + j ], j ∈ [s]. Conversely, for each such j the tests
a ∈ F [i + j ] recruit their individuals from the compartments V [i + j − s +1], . . . ,V [i + j ]. Thus, the compartments
preceding V [i +1] that the tests in F [i + j ] draw upon are V [h] with i + j − s < h ≤ i . We begin by investigating the
set Wi , j of tests a ∈ F [i + j ] without an infected individual from these compartments, i.e.,

Wi , j =
{

a ∈ F [i + j ] : (V1[1]∪·· · ∪V1[i ])∩∂a =;}=
{

a ∈ F [i + j ] :
⋃

i+ j−s+1<h≤i
V1[h]∩∂a =;

}
.

Claim 4.10. With probability 1−o(n−2) for all s ≤ i < ℓ, j ∈ [s] we have |Wi , j | = 2−(s− j )/s m
ℓ (1+O(n−Ω(1))).

Proof. We may condition on the event E that (i) from Proposition 4.1 occurs. To compute the mean of |Wi , j |fix a test
a ∈ F [i + j ] and an index i + j − s < h ≤ i . Then (4.6) shows that the probability that a fixed individual x ∈V [h] joins
a equals P [x ∈ ∂a]= ∆ℓ

ms (1+O( ∆ℓms )). Hence, the choices (4.2) and (4.5) of∆ and ℓ and the assumption m =Θ(k ln n)
ensure that

E
[∣∣(V1[i + j − s +1]∪·· · ∪V1[i ])∩∂a

∣∣ | E ]= (
s − j

)
(
∆ℓ

ms
· k

ℓ
+O

(
∆2k

m2s2

)
+O

(
∆ℓ

p
k ln n

ms

))

= s − j

s
ln2+O(n−Ω(1)). (4.26)

Since by SC1 the events {x ∈ ∂a}x are independent, |V1[h]∩∂a| is a binomial random variable for every h and all
these random variables (|V1[h]∩∂a|)h are mutually independent. Therefore, (4.26) implies that

P
[
(V1[i + j − s +1]∪·· ·V1[i ])∩∂a =; | E

]
= 2−(s− j )/s +O(n−Ω(1)). (4.27)

Hence,

E
[|Wi , j | | E

]=
∑

a∈F [i+ j ]
P

[
(V1[i + j − s +1]∪·· · ∪V1[i ])∩∂a =; | E ]= m

ℓ
2−(s− j )/s(1+O(n−Ω(1))). (4.28)

Finally, changing the neighbourhood ∂x of one infected individual x ∈ V1 can alter |Wi , j | by at most ∆. Therefore,
the Azuma–Hoeffing inequality shows that for any t > 0,

P
[∣∣|Wi , j |−E[|Wi , j | | E ]

∣∣> t | E
]
≤ 2exp

(
− t 2

2k∆2

)
. (4.29)

Combining (4.28) and (4.29), applied with t =p
m ln2 n, and taking a union bound on i , j completes the proof. �

As a next step we use Claim 4.10 to estimate the as yet unexplained tests counts W x, j from (4.7).

Claim 4.11. For all s ≤ i < ℓ, x ∈V1[i +1] and j ∈ [s] we have

P
[

W x, j < (1−ε/2)2 j /s−1∆/s
]
≤ exp

(
− Ω(ln n)

(lnln n)4

)
.

Proof. Fix a pair of indices i , j and an individual x ∈ V1[i + 1]. We also condition on the event E that (i) from
Proposition 4.1 occurs. Additionally, thanks to Claim 4.10 we may condition on the event

E ′ =
{
|Wi , j | = 2−(s− j )/s m

ℓ
(1+O(n−Ω(1)))

}
.

Further, let E be the σ-algebra generated by σ and by the neighbourhoods (∂y)y∈V [1]∪···∪V [i]. Recall from SC1 that
x simply joins ∆/s random tests in compartment F [i + j ], independently of all other individuals, and remember
from (4.7) that W x, j counts tests a ∈Wi+ j ∩∂x. Therefore, since the events E ,E ′ and the random variable |Wi , j | are
E-measurable while ∂x is independent of E, given E the random variable W x, j has a hypergeometric distribution
Hyp(m/ℓ, |Wi , j |,∆/s). Thus, the assertion follows from the hypergeometric Chernoff bound from Lemma 2.2 and
the choice (4.14) of ζ. �
Proof of Lemma 4.4. Since W ⋆

x = ∑s
j=1 w j W x, j , the lemma is an immediate consequence of Markov’s inequality

and Claim 4.11. �
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4.8. Proof of Lemma 4.5. We need to derive the rate functions of the random variable W x, j that count as yet
unexplained tests for x ∈ V0+[i +1]. To this end we first investigate the set of positive tests in compartment i + j
that do not contain any infected individuals from the first i compartments. In symbols,

P i+1, j =
{

a ∈ F1[i + j ] : ∂a ∩ (V1[1]∪·· ·∪V1[i ]) =;
}

(s ≤ i < ℓ, j ∈ [s]).

Claim 4.12. W.h.p. for all s ≤ i < ℓ, j ∈ [s] we have |P i+1, j | =
(
1+O(n−Ω(1))

)(
2 j /s −1

) m
2ℓ .

Proof. We may condition on the event E that (i) from Proposition 4.1 occurs. As a first step we calculate the prob-
ability that (V1[i + 1] ∪ ·· · ∪V1[i + j ]) ∩ ∂a 6= ; for a specific test a ∈ F [i + j ]. To this end we follow the steps
of the proof of Claim 4.10. Since by (4.6) a specific individual x ∈ V [h], i < h ≤ i + j , joins a with probability
P [x ∈ ∂a] = (∆ℓ/(ms))(1+O(∆ℓ/(ms))) and since given E each compartment V [h] contains k/ℓ+O(

p
k/ℓ ln n)

infected individuals, we obtain, in perfect analogy to (4.26),

E
[∣∣(V1[i +1]∪·· ·∪V1[i + j ])∩∂a

∣∣ | E ]= j

s
ln 2+O(n−Ω(1)). (4.30)

Since the individuals x ∈V [i +1]∪·· ·∪V [i + j ] join tests independently, (4.30) implies that

P
[
(V1[i +1]∪·· · ∪V1[i + j ])∩∂a 6= ; | E

]
= 1−2− j /s +O(n−Ω(1)). (4.31)

Furthermore, we already verified in (4.27) that

P
[
(V1[i + j − s +1]∪·· ·V1[i ])∩∂a =; | E ]= 2−(s− j )/s +O(n−Ω(1)). (4.32)

Because the choices for the compartments V [i + j − s +1]∪ ·· · ∪V [i + j ] from which a draws its individuals are
mutually independent, we can combine (4.31) with (4.32) to obtain

P

[
⋃

i+ j−s<h≤i
V1[h]∩∂a =; 6=

⋃
i<h≤i+ j

V1[h]∩∂a | E
]
= 2 j /s −1

2
+O(n−Ω(1)). (4.33)

Further, (4.33) implies

E
[|P i+1, j | | E

]= E

[∣∣∣∣∣

{
a ∈ F1[i + j ] :

⋃
h≤i

V1[h]∩∂a =; 6=
⋃
i<h

V1[h]∩∂a

}∣∣∣∣∣ | E
]
= (2 j /s −1)

m

2ℓ

(
1+O(n−Ω(1))

)
. (4.34)

Finally, altering the neighbourhood ∂x of any infected individual can shift |P i+1, j | by at most ∆. Therefore, the
Azuma–Hoeffding inequality implies that

P
[∣∣|P i+1, j |−E[|P i+1, j | | E ]

∣∣> t | E
]
≤ 2exp

(
− t 2

2k∆2

)
. (4.35)

Thus, the assertion follows from (4.5), (4.34) and (4.35) by setting t =p
m ln2 n. �

Thanks to Proposition 4.1 (iii) and Lemma 4.12 in the following we may condition on the event

U =
{
∀s < i ≤ ℓ, j ∈ [s] : |F1[i + j ]| = (

1+O(n−Ω(1))
) m

2ℓ
∧|P i+1, j | =

(
1+O(n−Ω(1))

)(
2 j /s −1

) m

2ℓ

}
. (4.36)

As a next step we will determine the conditional distribution of W x, j for x ∈V0+[i +1] given U .

Claim 4.13. Let s < i ≤ ℓ and j ∈ [s]. Given U for every x ∈V0+[i +1] we have

W x, j ∼ Hyp

((
1+O(n−Ω(1))

) m

2ℓ
,
(
1+O(n−Ω(1))

)(
2 j /s −1

) m

2ℓ
,
∆

s

)
. (4.37)

Proof. By SC1 each individual x ∈V0+[i +1] joins ∆/s positive test from F [i + j ], drawn uniformly without replace-
ment. Moreover, by (4.7) given x ∈V0+[i +1] the random variable W x, j counts the number of tests a ∈P i+1, j ∩∂x.
Therefore, W x, j ∼ Hyp(|F1[i + j ], |P i+1, j |,∆/s). Hence, given U we obtain (4.37). �

The estimate (4.37) enables us to bound the probability that W ⋆
x gets ‘too large’.
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Claim 4.14. Let

M =min
1

s

s−1∑
j=1

1
{

z j ≥ 2 j /s −1
}

DKL

(
z j‖2 j /s −1

)

s.t.
s−1∑
j=1

(
z j − (1−2ζ)2 j /s−1

)
w j = 0, z1, . . . , zs−1 ∈ [0,1].

Then for all s ≤ i < ℓ and all x ∈V [i +1] we have

P

[
W ⋆

x > (1−2ζ)
∆

s

s−1∑
j=1

2 j /s−1w j |U , x ∈V0+[i +1]

]
≤ exp(−(1+o(1))M∆).

Proof. Let s ≤ i < ℓ and x ∈ V0+[i +1]. Step SC1 of the construction of G ensures that the random variables
(W x, j ) j∈[s] are independent because the tests in the various compartments F [i + j ], j ∈ [s], that x joins are drawn
independently. Therefore, the definition (4.12) of W ⋆

x and Lemma 4.13 yield

P

[
W ⋆

x > (1−2ζ)
∆

s

s−1∑
j=1

2 j /s−1w j |U , x ∈V0+[i +1]

]
=P

[
s−1∑
j=1

w j W x, j ≥
1−2ζ

s

s−1∑
j=1

2 j /s−1w j |U , x ∈V0+[i +1]

]

≤
∆∑

y1 ,...,ys=0
1

{
s−1∑
j=1

w j y j ≥
1−2ζ

s

s−1∑
j=1

2 j /s−1w j

}
s−1∏
j=1

P[W x, j ≥ y j |U , x ∈V0+[i +1]]. (4.38)

Further, let

Z =
{

(z1, . . . , zs−1) ∈ [0,1]s−1 :
s−1∑
j=1

(
z j − (1−2ζ)2 j /s−1

)
w j = 0

}
.

Substituting y j =∆z j /s in (4.38) and bounding the total number of summands by (∆+1)s , we obtain

P

[
W ⋆

x > (1−2ζ)
∆

s

s−1∑
j=1

2 j /s−1w j |U , x ∈V0+[i +1]

]
≤ (∆+1)s max

(z1 ,...,zs )∈Z

s−1∏
j=1

P[W x, j ≥∆z j /s |U , x ∈V0+[i +1]].

(4.39)

Moreover, Claim 4.13 and the Chernoff bound from Lemma 2.2 yield

P[W x, j ≥∆z j /s |U , x ∈V0+[i +1]] ≤ exp

(
−1

{
z j ≥ p j

} ∆
s

DKL
(
z j ‖p j

))
where p j = 2 j /s −1+O(n−Ω(1)).

Consequently, since (4.5) and the assumption m =Θ(k ln n) ensure that ∆=Θ(lnn), we obtain

P[W x, j ≥∆z j /s |U , x ∈V0+[i +1]] ≤ exp

(
−1

{
z j ≥ 2 j /s −1

} ∆
s

DKL

(
z j ‖2 j /s −1

)
+O(n−Ω(1))

)
. (4.40)

Finally, the assertion follows from (4.39) and (4.40). �

As a next step we solve the optimisation problem M from Claim 4.14.

Claim 4.15. We have M = 1− ln 2+O(ln(s)/s).

Proof. Fixing an auxiliary parameter δ≥ 0 we set up the Lagrangian

Lδ(z1, . . . , zs ,λ) =
s−1∑
j=1

(
1

{
z j ≥ 2 j /s −1

}
+δ1

{
z j < 2 j /s −1

})
DKL

(
z j ‖2 j /s −1

)
+ λ

s

s−1∑
j=1

w j

(
z j − (1−2ζ)2 j /s−1

)
.

The partial derivatives come out as

∂Lδ

∂λ
=−1

s

s−1∑
j=1

((1−2ζ)2 j /s−1 − z j )w j ,
∂Lδ

∂z j
=−λw j +

(
1

{
z j ≥ 2 j /s −1

}
+δ1

{
z j < 2 j /s −1

})
ln

z j (2−2 j /s )

(1− z j )(2 j /s −1)
.

Set z∗
j = (1−2ζ)2 j /s−1 and λ∗ = 1. Then clearly

∂Lδ

∂λ

∣∣∣
λ∗,z∗1 ,...,z∗s−1

= 0. (4.41)
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Moreover, the choice (4.14) of ζ guarantees that z∗
j ≥ 2 j /s −1. Hence, by the choice (4.14) of the weights w j ,

∂Lδ

∂z j

∣∣∣
λ∗,z∗1 ,...,z∗s−1

= 0. (4.42)

Since Lδ(y1, . . . , ys ,λ) is strictly convex in z1, . . . , zs for every δ> 0, (4.41)–(4.42) imply that λ∗, z∗
1 , . . . , z∗

s−1 is a global
minimiser. Furthermore, since this is true for any δ> 0 and since z∗

j ≥ 2 j /s −1, we conclude that (z∗
1 , . . . , z∗

s−1) is an

optimal solution to the minimisation problem M . Hence,

M = 1

s

s−1∑
j=1

DKL

(
z∗

j ‖2 j /s −1
)
= 1

s

s−1∑
j=1

DKL

(
(1−2ζ)2 j /s−1‖2 j /s −1

)
. (4.43)

Since

∂

∂α
DKL

(
(1−2α)2z−1‖2z −1

)= 2z [−z ln(2)+ ln(1−2z−1 +α2z )− ln(1−2z−1)− ln(1−2α)+ ln(2z −1)
]

,

we obtain ∂
∂αDKL

(
(1−2α)2z−1‖2z −1

)
= O(ln s) for all z = 1/s, . . . , (s −1)/s and α ∈ [0,2ζ]. Combining this bound

with (4.43), we arrive at the estimate

M =O(ζ ln s)+ 1

s

s−1∑
j=1

DKL

(
2 j /s−1‖2 j /s −1

)
. (4.44)

Additionally, the function f : z ∈ [0,1] 7→ DKL
(
2z−1‖2z −1

)
is strictly decreasing and convex. Indeed,

f ′(z)= 2z−1 ln 2

2z −1

(
(2z −1) ln

(
2z

2z −1

)
−1

)
, f ′′(z) =

(
2z−1 ln2 2

)(
ln

(
2z

2z −1

)
+ 2−2z

(2z −1)2

)
.

The first derivative is negative because 2z−1/(2z −1) > 0 while (2z −1) ln (2z /(2z −1)) < 1 for all z ∈ (0,1). Moreover,
since evidently f ′′(z) > 0 for all z ∈ (0,1), we obtain convexity. Further, l’Hôpital’s rule yields

DKL
(
21/s−1‖21/s −1

)=O(ln s).

As a consequence, we can approximate the sum (4.44) by an integral and obtain

M =O(ln(s)/s)+
∫1

0
DKL

(
2z−1‖2z −1

)
dz

=O(ln(s)/s)+ 2(1− z) ln2(2)+2z ln2z + (1−2z ) ln(2z −1)

2ln 2

∣∣∣
z=1

z=0
= 1− ln(2)+O(ln(s)/s),

as claimed. �

Proof of Lemma 4.5. Fix s ≤ i < ℓ and let X i be the number of x ∈ V0+[i ] such that W ⋆
x > (1−2ζ)∆s

∑s−1
j=1 2 j /s−1w j .

Also recall that Proposition 4.1 (iii) and Claim 4.12 imply thatP [U ]= 1−o(1). Combining Lemma 4.3 with Claims 4.14
and 4.15, we conclude that

E[X i |U ]≤ (
1+O

(
n−Ω(1)))2−∆n exp(−(1− ln(2)+o(1))∆) = exp(ln n− (1+o(1))∆) . (4.45)

Recalling the definition (4.5) of ∆ and using the assumption that m ≥ (1+ ε)mad for a fixed ε > 0, we obtain ∆ ≥
(1−θ+Ω(1)) ln n. Combining this estimate with (4.45), we find

E[X i |U ]≤ nθ−Ω(1). (4.46)

Finally, the assertion follows from (4.46) and Markov’s inequality. �

4.9. Proof of Proposition 4.6. The following lemma establishes an expansion property of G. Specifically, if T is a
small set of individuals, then there are few individuals x that share many tests with another individual from T .

Lemma 4.16. Suppose that m =Θ(nθ ln n). W.h.p. for any set T ⊂V of size at most exp(− ln7/8 n)k we have
∣∣∣∣∣

{
x ∈V :

∑
a∈∂x\F [0]

1{T ∩∂a \ {x} 6= ;} ≥ ln1/4 n

}∣∣∣∣∣≤
|T |
3

.
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Proof. Fix a set T ⊂V of size t = |T | ≤ exp(− ln7/8 n)k, a set R ⊂V of size r = ⌈t/3⌉ and let γ= ⌈ln1/4 n⌉. Furthermore,
let U ⊂ F [1]∪·· · ∪F [ℓ] be a set of tests of size γr ≤ u ≤ ∆t . Additionally, let E (R,T,U ) be the event that every test
a ∈U contains two individuals from R ∪T . Then

P

[
R ⊂

{
x ∈V :

∑
a∈∂x\F [0]

1 {T ∩∂a \ {x} 6= ;} ≥ γ

}]
≤P [E (R,T,U )] . (4.47)

Hence, it suffices to estimate P [E (R,T,U )].
Given a test a ∈ U there are at most

(r+t
2

)
way to choose two individuals xa , x′

a ∈ R ∪T . Moreover, (4.6) shows
that the probability of the event {xa , x′

a ∈ ∂a} is bounded by (1+o(1))(∆ℓ/(ms))2. Therefore,

P [E (R,T,U )]≤
[(

r + t

2

)(
(1+o(1))∆ℓ

ms

)2
]u

.

Consequently, the event E (t ,u) that there exist sets R ,T,U of sizes |R| = r = ⌈t/3⌉, |T | = t , |U | = u such that E (R,T,U )
occurs has probability

P [E (t ,u)]≤
(

n

r

)(
n

t

)(
m

u

)[(
r + t

2

)(
(1+o(1))∆ℓ

ms

)2
]u

.

Hence, the bounds γt/3≤ γr ≤ u ≤∆t yield

P [E (t ,u)]≤
(

n

t

)2(
m

u

)[(
2t

2

)(
(1+o(1))∆ℓ

ms

)2
]u

≤
(en

t

)2t
(

2e∆2ℓ2t 2

ms2u

)u

≤
[(en

t

)3/γ 6e∆2ℓ2t

γms2

]u

≤
[(en

t

)3/γ
· t ln4 n

m

]u

[due to (4.2), (4.5)].

Further, since γ = Ω(ln1/4 n) and m = Ω(k ln n) while t ≤ exp(− ln7/8 n)k, we obtain P [E (t ,u)] ≤ exp(−u
p

ln n).
Thus,

∑
1≤t≤k1−α
γt/3≤u≤∆t

P [E (t ,u)] ≤
∑

1≤u≤∆t
u exp(−u

p
ln n) = o(1). (4.48)

Finally, the assertion follows from (4.47) and (4.48). �

Proof of Proposition 4.6. With τ the result of steps 1–10 of SPIV let M [i ]= {x ∈V [i ] : τx 6=σx } be the set of misclas-
sified individuals in compartment V [i ]. Proposition 4.2 shows that w.h.p. M [i ] =; for all i ≤ s. Further, we claim
that for every s ≤ i < ℓ and any individual x ∈M [i +1] one of the following three statements is true.

M1: x ∈V1[i +1] and W ⋆
x < (1−ζ/2)∆s

∑s−1
j=1 2 j /s−1w j ,

M2: x ∈V0+[i +1] and W ⋆
x > (1−2ζ)∆s

∑s−1
j=1 2 j /s−1w j , or

M3: x ∈V [i +1] and
∑

a∈∂x 1{∂a ∩ (M [1]∪·· ·∪M [i ]) 6= ;} ≥ ln1/4 n.

To see this, assume that x ∈M [i +1] while M3 does not hold. Then comparing (4.7) and (4.17) we obtain
∣∣Wx, j (τ)−W x, j

∣∣≤ ln1/4 n for all 1≤ j < s. (4.49)

Moreover, the definition (4.14) of the weights, the choice (4.3) of s, and the choices (4.14) of ζ and the weights w j

ensure that 0 ≤ w j ≤O(s) =O(lnln n). This bound implies together with the definition (4.12) of the scores W ⋆
x and

(4.49) that

|W ⋆
x −W ⋆

x (τ)| = o(ζ∆). (4.50)

Thus, combining (4.50) with the definition of τx in Steps 5–10 of SPIV, we conclude that either M1 or M2 occurs.
Finally, to bound M [i +1] let M1[i +1], M2[i +1], M3[i +1] be the sets of individuals x ∈V [i +1] for which M1,

M2 or M3 occurs, respectively. Then Lemmas 4.4 and 4.5 imply that w.h.p.

|M1[i +1]| , |M2[i +1]| ≤ k exp

(
− ln n

(lnln n)5

)
.
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Furthermore, Lemma 4.16 shows that |M3[i +1]| ≤∑i
h=1 |M [h]| w.h.p. Hence, we obtain the relation

|M [i +1]| ≤ k exp

(
− ln n

(lnln n)5

)
+

i∑
h=1

|M [h]| . (4.51)

Because (4.2) ensures that the total number of compartments is ℓ = O(ln1/2 n), the bound (4.51) implies that
|M [i +1]| ≤O(ℓ2k exp(−(lnn)/(lnln n)5) for all i ∈ [ℓ] w.h.p. Summing on i completes the proof. �

4.10. Proof of Proposition 4.7. For an infected individual x ∈V let

Sx [ j ]=
∣∣{a ∈ F [ j ]∩∂x : V1 ∩∂a = {x}

}∣∣ and Sx =
ℓ∑

j=1
Sx [ j ].

Thus, Sx [ j ] is the number of positive sets a ∈ F [ j ] that x has to itself, i.e., tests that do not contain a second infected
individual, and Sx is the total number of such tests.

Lemma 4.17. Assume that m ≥ (1+ε)minf. W.h.p. we have minx∈V1 Sx ≥
p
∆.

Proof. Due to Proposition 4.1 we may condition on the event

N =
{
∀i ∈ [ℓ] :

m

2ℓ
−p

m ln n ≤ |F0[i ]| ≤ m

2ℓ
+p

m ln n
}

.

We claim that given N for each x ∈V1[i ], i ∈ [ℓ], the random variable Sx has distribution

Sx [i + j −1] ∼ Hyp

(
m

ℓ
,

m

2ℓ
+O(

p
m lnn),

∆

s

)
. (4.52)

To see this, consider the set Fx [i + j −1] = {
a ∈ F [i + j −1] : ∂a ∩V1 \ {x} =;}

of all tests in compartment F [i + j −1]
without an infected individual besides possibly x. Since x joins ∆/s =O(lnn) tests in F [i + j −1], given N we have

∣∣F0,x [i + j ]
∣∣= |F0[i + j ]|+O(ln n) = m

2ℓ
+O(

p
m ln n). (4.53)

Furthermore, consider the experiment of first constructing the test design G and then re-sampling the set ∂x of
neighbours of x; i.e., independently of G we have x join ∆/s random tests in each compartment F [i + j ]. Then
the resulting test design G ′ has the same distribution as G and hence the random variable S ′

x [i + j −1] that counts
tests a ∈ F [i + j −1]∩∂x that do not contain another infected individual has the same distribution as Sx [i + j −1].
Moreover, the conditional distribution of S ′

x [i + j −1] given G reads

S ′
x [i + j −1] ∼ Hyp

(
m

ℓ
, |F0,x [i + j −1]|, ∆

s

)
. (4.54)

Combining (4.53) and (4.54), we obtain (4.52).
To complete the proof we combine (4.52) with Lemma 2.2, which implies that

P
[

Sx [i + j −1] ≤
p
∆ | x ∈V1

]
≤ exp

(
−∆

s
DKL

(
(1+o(1))s/

p
∆‖1/2+o(1)

))
= exp

(
−(1+o(1))

∆ ln 2

s

)
. (4.55)

Since SC1 ensures that the random variables (Sx [i + j −1]) j∈[s] are mutually independent, (4.55) yields

P
[

Sx ≤
p
∆ | x ∈V1

]
≤ 2−(1+o(1))∆. (4.56)

Finally, the assumption m ≥ (1+ε)minf for a fixed ε > 0 and the choice (4.5) of ∆ ensure that 2−(1+o(1))∆ = o(1/k).
Thus, the assertion follows from (4.56) by taking a union bound on x ∈V1. �

Proof of Proposition 4.7. For j = 1. . . ⌈ln n⌉, let

M j =
{

x ∈V : τ
( j )
x 6=σx

}

contain all individuals that remain misclassified at the j -th iteration of the clean-up step. Proposition 4.6 shows
that w.h.p.

|M1| ≤ k exp

(
− lnn

(ln lnn)6

)
. (4.57)

Furthermore, in light of Lemma 4.17 we may condition on the event A = {minx∈V1 Sx ≥
p
∆}.
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We now claim that given A for every j ≥ 1

M j+1 ⊂
{

x ∈V :
∑

a∈∂x\F [0]

∣∣∂a ∩M j \ {x}
∣∣≥ ⌈

ln1/4 n
⌉
}

. (4.58)

To see this, suppose that x ∈M j+1 and recall that the assumption m ≥ minf and (4.5) ensure that ∆=Ω(ln n). Also
recall that SPIV’s Step 15 thresholds the number

Sx (τ( j )) =
∑

a∈∂x:σ̂a=1
1

{
∀y ∈ ∂a \ {x} : τ( j )

y = 0
}

of positive tests containing x whose other individuals are deemed uninfected. There are two cases to consider.

Case 1: x ∈V0: in this case every positive tests a ∈ ∂x contains an individual that is actually infected. Hence, if

τ
( j )
y = 0 for all y ∈ ∂a \{x}, then ∂a∩M j \{x} 6= ;. Consequently, since Step 15 of SPIV applies the threshold

of Sx (τ( j )) ≥ ln1/4 n, there are at least ln1/4 n tests a ∈ ∂x such that ∂a ∩M j \ {x} 6= ;.

Case 2: x ∈V1: given A every infected x participates in at least Sx ≥
p
∆=Ω(ln1/2 n) tests that do not actually

contain another infected individual. Hence, if Sx (τ( j )) ≤ ln1/4 n, then at least
p
∆− ln1/4 n ≥ ln1/4 n tests

a ∈ ∂x contain an individual from M j \ {x}.

Thus, we obtain (4.58). Finally, (4.57), (4.58) and Lemma 4.16 show that w.h.p. |M j+1| ≤ |M j |/3 for all j ≥ 1. Con-
sequently, M⌈lnn⌉ =; w.h.p. �

5. OPTIMAL ADAPTIVE GROUP TESTING

In this final section we show how the test design G from Section 4 can be extended into an optimal two-stage
adaptive design. The key observation is that Proposition 4.6, which summarises the analysis of the first two phases
of SPIV (i.e., steps 1–10) only requires m ≥ (1+ε)mad tests. In other words, the excess number (1+ε)(minf −mad)
of tests required for non-adaptive group testing is necessary only to facilitate the clean-up step, namely phase 3 of
SPIV.

Replacing phase 3 of SPIV by a second test stage, we obtain an optimal adaptive test design. To this end we
follow Scarlett [32], who observed that a single-stage group testing scheme that correctly diagnoses all but o(k)
individuals with (1+o(1))mad tests could be turned into a two-stage design that diagnoses all individuals correctly
w.h.p. with (1+o(1))mad tests in total. (Of course, at the time no such optimal single-stage test design and algorithm
were known.) The second test stage works as follows. Let τ denote the outcome of phases 1 and 2 of SPIV applied
to G with m = (1+ε)mad.

T1: Test every individual from the set V1(τ) = {x ∈ V : τx = 1} of individuals that SPIV diagnosed as infected
separately.

T2: To the individuals V0(τ) = {x ∈ V : τx = 0} apply the random d-out design and the DD-algorithm from
Section 4.1 with a total of m = k tests and d = ⌈10ln n⌉.

Let τ′ ∈ {0,1}V be the result of T1–T2.

Proposition 5.1. W.h.p. we have τ′x =σx for all x ∈V .

As a matter of course T1 renders correct results, i.e., for all individuals x ∈ V1(τ) we have τ′x = σx . Further, to
analyse T2 we use a similar argument as in the analysis of the first phase of SPIV in Section 4.5; we include the
analysis for the sake of completeness. We begin by investigating the number of negative tests. Let G ′ denote the
test design set up by T2, let F ′ = {b1, . . . ,bk } denote its set of tests and let σ̂b1 , . . . ,σ̂bk signify the corresponding
test results. Further, let F ′

0 = {b ∈ F ′ : σ̂b = 0} and F ′
1 = {b ∈ F ′ : σ̂b = 1} be the set of negative and positive tests,

respectively.

Lemma 5.2. W.h.p. we have |F ′
1| ≤ k

2 .

Proof. Proposition 4.6 implies that w.h.p.

|V0(τ)∩V1| ≤
∑

x∈V
1{τx 6=σx } ≤ k exp

(
− ln n

(lnln n)6

)
. (5.1)
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Moreover, since every individual x ∈V0(τ) joins d random tests, for any specific test b ∈ F ′ we have

P
[
x ∈ ∂G ′b

]= 1−P[
x 6∈ ∂G ′b

]= 1−
(

k −1

d

)(
k

d

)−1

= d

k
(1+O(n−Ω(1))).

Hence, for every test b ∈ F ′,

E

[
|∂b ∩V1|

∣∣∣ |V0(τ)∩V1| ≤ k exp

(
− ln n

(ln lnn)6

)]
=O(1/ln n).

Consequently,

E
[
|F ′

1| | |V0(τ)∩V1| ≤ k/ln n
]
=O(k/ln n). (5.2)

Finally, combining (5.1) and (5.2) and applying Markov’s inequality, we conclude that |F ′
1| ≤ k

2 w.h.p. �
Corollary 5.3. W.h.p. for every x ∈V0(τ) there is a test b ∈ F ′ such that ∂b \ {x} ⊂V0.

Proof. We construct the random graph G ′ in two rounds. In the first round we first expose the neighbourhoods
(∂G ′ y)y∈V0(τ)\{x}. Lemma 5.2 implies that after the first round the number X of tests that do not contain an infected
individual y ∈ V0(τ)∩V1 exceeds k/2 w.h.p. In the second round we expose ∂G ′ x. Because ∂G ′x is chosen inde-
pendently of the neighbourhoods (∂G ′ y)y∈V0(τ)\{x}, the number of tests b ∈ ∂G ′ x that do not contain an infected
individual y ∈V0(τ)∩V1 has distribution Hyp(k, X ,d). Therefore, since d ≥ 10ln n we obtain

P [∀b ∈ ∂x : V1 ∩∂b \ {x} 6= ; | X ≤ k/2]≤P
[
Hyp(k,k/2,d) = 0

]≤ 2−d = o(1/n). (5.3)

Finally, the assertion follows (5.3) and the union bound. �
Proof of Proposition 5.1. Corollary 5.3 shows that we may assume that for every x ∈V0(τ) there is a test bx ∈ F ′ with
∂bx \ {x} ⊂V0. As a consequence, upon executing the first step DD1 of the DD algorithm, T2 will correctly diagnose
all individuals x ∈V0(τ)∩V0. Therefore, if x ∈V0(τ)∩V1, then DD2 will correctly identify x as infected because all
other individuals y ∈ ∂bx were already identified as healthy by DD1. Thus, τ′x =σx for all x ∈V . �
Proof of Theorem 1.3. Proposition 5.1 already establishes that the output of the two-stage adaptive test is correct
w.h.p. Hence, to complete the proof we just observe that the total number of tests comes to (1+ε)mad for the first
stage plus |V1(τ)|+k for the second stage. Furthermore, Proposition 4.6 implies that w.h.p.

|V1(τ)| ≤ |V1|+
∑

x∈V
1 {τx 6=σx } ≤ k

(
1+exp

(
− lnn

(ln lnn)6

))
= (1+o(1))k.

Thus, the second stage conducts O(k) = o(mad) tests. �
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ABSTRACT. The group testing problem is concerned with identifying a small set of infected individuals in a
large population. At our disposal is a testing procedure that allows us to test several individuals together. In
an idealized setting, a test is positive if and only if at least one infected individual is included and negative
otherwise. Significant progress was made in recent years towards understanding the information-theoretic
and algorithmic properties in this noiseless setting. In this paper, we consider a noisy variant of group test-
ing where test results are flipped with certain probability, including the realistic scenario where sensitivity
and specificity can take arbitrary values. Using a test design where each individual is assigned to a fixed
number of tests, we derive explicit algorithmic bounds for two commonly considered inference algorithms
and thereby improve on results by Scarlett & Cevher (SODA 2016) and Scarlett & Johnson (2020) and pro-
viding the strongest performance guarantees currently proved for efficient algorithms in these noisy group
testing models.
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1. INTRODUCTION

1.1. Motivation and background. Suppose we have a large collection of n people, a small number k of
whom are infected by some disease, and where only m ¿ n tests are available.

In a landmark paper [15] from 1943, Dorfman introduced the idea of group testing. The basic idea is
as follows: rather than screen one person using one test, we could mix samples from individuals in one
pool, and use a single test for this whole pool. The task is to recover the infection status of all individuals
using the pooled test results.

Dorfman’s original work was motivated by a biological application, namely identifying individuals
with syphilis. Subsequently, group testing has found a number of related applications, including detec-
tion of HIV [51], DNA sequencing [30, 37] and protein interaction experiments [35, 49]. More recently, it
has been recognised as an essential tool to moderate pandemic spread [12], where identifiying infected
individuals fast and at a low cost is indispensable [33]. In particular, group testing has been identified as
a testing scheme for the detection of COVID-19 [16, 19].

From a mathematical perspective, group testing is a prime example of an inference problem where
one wants to learn a ground truth from (possibly noisy) measurements [1, 2, 9, 21, 22, 28, 42]. Over the
last decade, it has regained popularity and today is a field of active research. Results on its information-
theoretic and algorithmic properties were recently presented by Scarlett et al. at SODA’16, ISIT’16, ISIT’19
[44, 46, 45], and Baldassini et al. at ISIT’13 [8] and Coja-Oghlan et al. at ICALP’19, COLT’20 [13, 14]. In this
paper, we provide improved upper bounds on the number of tests that guarantee successful inference
for the noisy variant of group testing.

1.2. Related Work. In the simplest version of group testing, we suppose that a test is positive if and only
if the pool contains at least one infected individual. We refer to this as the noiseless case. In this setting,
each negative test guarantees that every member of the corresponding pool is not infected, so they can
be removed from further consideration. However, a positive test only tells us that at least one item in the
test is defective (but not which one), and so requires further investigation.

Dorfman’s original work [15] proposed a simple adaptive strategy where a small pool of individuals is
tested, and where each positive test is followed up by testing every individual in the corresponding pool
individually. Since then it has been an important problem to find the optimal way to recover the popu-
lation’s infection status in the noiseless case. A simple counting argument (see for example [7, Section
1.4]) shows that to ensure recovery with zero error probability, since every possible defective set must
give different test outcomes, the following must hold in the noiseless setting:

2m ≥
(

n

k

)
⇒ m ≥ m0

inf := 1

log2
k log(n/k)(1.1)

Hwang [24] provided an algorithm based on repeated binary search, which is essentially optimal in terms
of the number of tests required in that it requires m0

inf +O(k) tests, but may require many stages of test-
ing. As described for example in pandemic plans developed by the EU, US and WHO [18, 38, 39], and in
COVID-specific work [36], adaptive strategies may not be suitable for pandemic prevention. For exam-
ple, if a test takes one day to prepare and for the results to be known, then each stage will require an extra
day to perform, meaning that adaptive group testing information can be received too late to be useful.

Hence the need to perform large-scale testing to identify infected individuals fast relative to the dou-
bling time [12, 33, 36] can make adaptive group testing unsuitable to prevent an infectious disease from
spreading. Furthermore the preservation of uncharted viruses in a large scale may be challenging due to
structural and chemical differences [20]. Due to its automation potential and the fact that tests can be
completed in parallel (for example by the use of 96-well PCR plates [17]), the main application of group
testing such as DNA screening [11, 30, 37], HIV testing [51] and protein interaction analysis [35, 49] are
non-adaptive where all tests are specified upfront and performed in parallel.
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The question of whether non-adaptive algorithms (or even adaptive algorithms with a limited num-
ber of stages) can attain the bound (1.1) remained open until recently. [4, 14] showed that the answer
depends on the prevalence of the disease, for example on the value of θ ∈ (0,1) in a parameterisation
where the number of infected individuals k ∼ nθ. Non-adaptive testing schemes can be represented
through a binary (m ×n)-matrix that represents which individual participates in which test. Significant
research was dedicated to see which design attains the optimal performance. Since deterministic de-
signs were shown to not attain the optimal order [7], research focused on randomized designs. Initial
research focused on the case where the matrix entries are iid [3, 5, 45]. Later work considered a constant
column design where each individual is assigned to a (near-)constant number of tests [6, 14, 13, 26]. In-
deed [14] showed that such a design is information-theoretically optimal in the noiseless setting and it is
to be expected that this remains true for the noisy case.

To recover the ground truth from the test results and the pooling scheme, this paper focuses on two
non-adaptive algorithms, COMP and DD, which are relatively simple to perform and interpret in the noise-
less case. We describe them in more detail below, but in brief COMP [10] simply builds a list of all the
individuals who ever appear in a negative test and are hence certainly healthy, and assumes that the
other individuals are infected. DD [5] uses COMP as a first stage and builds on it by looking for individuals
who appear in a positive test that only otherwise contains individuals known to be healthy.

While the noiseless case provides an interesting mathematical abstraction, it is clear that it may not be
realistic in practice [40]. In medical applications the two occurring types of noise in a testing procedure
are related to sensitivity (positive correct) and specificity (negative correct), and in that language we
cannot assume the gold standard of tests with unit specificity and sensitivity. Thus, research attention
in recent years has shifted towards the noisy version of group testing [10, 43, 44, 45, 47, 48]. On the
one hand, adaptive noisy case was considered in [43, 44]. On the other hand [10, 27, 29, 34, 45, 47, 48]
looked at the non-adaptive noise case from different angles (for instance linear programming, belief
propagation, Bernoulli-pooling, Markov-Chain Monte Carlo).

In this paper we focus on the COMP and DD algorithms, since it is possible to deduce explicit perfor-
mance guarantees for them. The deductions made by the original COMP and DD algorithms are designed
for the noiseless case and do not hold in general. However, recent work of Scarlett and Johnson [48]
has shown that noisy versions of these algorithms can perform well under certain noise models using
Bernoulli i.i.d. test designs, particularly focusing on Z channel and reverse Z channel noise.

As common medical tests have different values for sensitivity and specificity [32] the analysis of a gen-
eralized noise model beyond the Z and reverse Z channel is warranted. For example, while group testing
strategies appear to be useful to identify individuals infected with COVID-19 (see for example [16, 19]),
testing for the presence of the SARS-CoV-19 virus is not perfect [52], and so we need to understand the ef-
fect of both false positive and false negative errors in this context, with non-identical error probabilities.
For this reason, we consider a general p − q noise model in this paper. Under this model, a truly nega-
tive test is flipped with probability p to display a positive test result, while a truly positive test is flipped
to negative with probability q (Figure 1). Its formulation is sufficiently general to accommodate the re-
covery of the noiseless results (p = q = 0), Z channel (p = 0), reverse Z channel (q = 0) and the Binary
Symmetric Channel (p = q). However, our results include the case of non-zero p and q without having
to make the somewhat artificial assumption that false negative and false positive errors are equally likely.

1.3. Contribution. This paper provides a simultaneous extension of [13] and [26, 48], by analysing noisy
versions of COMP and DD under more general noise models for constant-column weight designs. We pro-
vide explicit bounds on the performance of these algorithms in a generalized noise model. For all typical
noise channels (Z, reverse Z and BSC) we compare the constant-column and Bernoulli design and find
for all such instances that the former meaningfully outperforms the latter thereby improving on results
from [26] and providing the strongest performance guarantees currently proved for efficient algorithms
in noisy group testing. As group testing offers an essential tool for pandemic prevention [33] and as the
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FIGURE 1. The p-q-noise model: the result of each standard noiseless group test is trans-
mitted independently through the given noisy communication channel.

the accuracy of medical testing is limited [32, 40] this paper provides the natural next step in the group
testing literature.

1.4. Test design and notation. To formalise our notation, we write n for the number of individuals in the
population, σ for a binary vector representing the infection status of each individual, k (the Hamming
weight ofσ) for the number of infected individuals and m for the number of tests performed. We assume
that k is known for purposes of matrix design, though in practice (see [7, Remark 2.3]) it is generally
enough to know k up to a constant factor to design a matrix with good properties. In this paper, in line
with other work such as [5], we consider a scaling k ∼ nθ for some fixed θ ∈ (0,1), referred to in [7, Remark
1.1] as the sparse regime. We believe a similar analysis should be possible in the very sparse regime (k =
O(1)) and linear regime (k ∼ βn for a fixed β). In addition to the interesting phase transitions observed
using this scaling, this sparse regime is particularly relevant as it is the parametrisation to model the early
state of a pandemic [50].

Let us next introduce the test design. With V = (xi )i∈[n]
1 denoting the set of n individuals and F =

(ai )i∈[m] the set of m tests, the test design can be envisioned as a bipartite factor graph with n variable
nodes "on the left" and m factor nodes "on the right". We draw a configuration σ ∈ {0,1}V , encoding the
infection status of each individual, uniformly at random from vectors of Hamming weight k. The set of
healthy individuals will be denoted by V0 and the set of infected individuals by V1. In symbols,

V0 = {x ∈V :σx = 0} and V1 =V \V0 = {x ∈V :σx = 1}

The lower bound from (1.1) suggests that in the noisy group testing setting it is natural to compare the
performance of algorithms and matrix designs in terms of the prefactor of k log(n/k) in the number of
tests required. To be precise, we carry out m tests, and each item is assigned to exactly ∆ tests chosen
uniformly at random without replacement. We parameterise m and ∆ as

m = ck log(n/k) and ∆= cd log(n/k)(1.2)

for some suitably chosen constants c,d ≥ 0.
Let ∂x denote the set of tests that individual x appears in and ∂a the set of individuals assigned to test

a. The resulting (non-constant) collection of test degrees will be denoted by the vector Γ = (Γa)a∈[m].
Further, let

Γmin = min
a∈[m]

Γa and Γmax = max
a∈[m]

Γa .(1.3)

Throughout, G =G(n,m,∆) describes the random bipartite factor graph from this construction.
Now consider the outcome of the tests. Recall from above that a standard noiseless group test a gives

a positive result if and only if there is at least one defective item contained in the pool, or equivalently if∑
x∈∂aσ(x) > 0. Even in the noisy case, this sum is a useful object to consider. Writing 1 for the indicator

1[n] will be used as an abbreviated notation for the set {1, . . . ,n}.
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function, we define

(1.4) σ∗(a) = 1

{ ∑
x∈∂a

σ(x) > 0

}

to be the outcome we would observe in the noiseless case using the test matrix corresponding to G . We
will say that test a is truly positive if σ∗(a) = 1 and truly negative otherwise.

However, we do not observe the values of σ∗(a) directly, but rather see what we will refer to as the
displayed test outcomes σ̂(a) – the outcomes of sending the true outcomesσ∗(a) independently through
the p − q channel of Figure 1. Since in this model a truly positive test remains positive with probability
1−q and a truly negative test is displayed as positive with probability p we can write

σ̂(a) = 1
{
Be(p) = 1

}(
1−σ∗(a)

)+1
{
Be(1−q) = 1

}
σ∗(a)(1.5)

where Be(r ) denotes a Bernoulli random variable with parameter r . For models with binary outputs, this
is the most general channel satisfying the noisy defective channel property of [7, Definition 3.3], though
more general models are possible under the only defects matter property [7, Definition 3.2], where the
probability of a test being positive depends on the number of contained infected individuals.

Note that if p +q > 1, we can preprocess the outputs from (1.5) by flipping them, i.e. setting p̃ = 1−p
and q̃ = 1−q , where p̃+ q̃ < 1. Hence without loss of generality we will assume throughout that p+q < 1.
In the case p + q = 1, the test outcomes are independent of the inputs, and we cannot hope to find the
infected individuals – see Theorem 2.3.

With m0 being the number of truly negative tests, let m f
0 be the number of truly negative tests that are

flipped to display a positive test result and mu
0 be the number of truly negative tests that are unflipped.

Similarly, define m1 as the number of truly positive tests, of which m f
1 are flipped to a negative test result

and of which mu
1 are unflipped. For reference, for t ∈ {0,1} we write

mt =
∣∣{a :σ∗(a) = t

}∣∣

m f
t =

∣∣{a :σ∗(a) = t ,σ̂(a) 6= t
}∣∣ and mu

t =
∣∣{a :σ∗(a) = t ,σ̂(a) = t

}∣∣

Throughout the paper, we use the standard Landau notation o(·),O(·),Θ(·),Ω(·),ω(·) and define 0log0 =
0. In order to quantify the performance of our algorithms, for any 0 < r 6= s < 1, we write

DKL (r‖s) := r log
(r

s

)
+ (1− r ) log

(
1− r

1− s

)
,

for the relative entropy of a Bernoulli random variable with parameter r to a Bernoulli random variable
with parameter s, commonly referred to as the Kullback–Leibler divergence. Here and throughout the
paper we use log to denote the natural logarithm. For r or s equal to 0 or 1 we define the value of DKL (·‖·)
(possibly infinite) on grounds of continuity, so for example DKL (0‖s) =− log(1− s).

2. MAIN RESULTS

With the test design and notation in place, we are now in a position to state our main results. The-
orems 2.1, 2.2 and 2.3 are the centerpiece of this paper featuring improved bounds for the noisy group
testing problem for the general p − q model. We follow up with a discussion of the combinatorics un-
derlying both algorithms. Subsequently, we show how the bounds simplify when we consider the special
cases of the Z, the reverse Z and Binary Symmetric Channel. Finally, we derive sufficient conditions un-
der which DDprovably outperforms the COMP algorithm and compare the bounds of our constant-column
design against the Bernoulli design employed in prior literature.
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2.1. Bounds for Noisy Group Testing. We will consider two well-known algorithms from the noiseless
setting to identify infected individuals in this paper. First, we study a noisy variant of the COMP algorithm,
originally introduced in [10].

1 Declare every individual that appears in α∆ or more displayed negative tests as healthy.
2 Declare all remaining individuals as infected.

Algorithm 1: The noisy COMP algorithm

Note that for α = 1/∆ we recover the standard COMP algorithm where an individual is classified as
healthy if it appears in at least one displayed negative test which constitutes a sufficient condition in the
noiseless case. We now state the first main result of this paper.

Theorem 2.1 (Noisy COMP). Let p, q ≥ 0, p+q < 1,d ∈ (0,∞),α ∈ (q,e−d (1−p)+(
1−e−d

)
q). Suppose that

0 < θ < 1 and let

mCOMP = mCOMP(n,θ, p, q) = min
α,d

max
{
b1(α,d),b2(β,d)

}
k log(n/k)

where b1(α,d) = θ

1−θ
1

dDKL
(
α‖q

)

and b2(α,d) = 1

1−θ
1

dDKL
(
α‖e−d (1−p)+ (

1−e−d
)

q
)

If m ≥ (1+ε)mCOMP for some ε> 0, noisy COMP will recover σw.h.p. given test design G and test results σ̂.

The noisy variant of the DD algorithm of [5] was introduced in [48] and reads as follows:

1 Declare every individual that appears in α∆ or more displayed negative tests as healthy and remove
such individual from every assigned test.

2 Declare every yet unclassified individual who is now the only unclassified individual in β∆ or more
displayed positive tests as infected.

3 Declare all remaining individuals as healthy.

Algorithm 2: The noisy DD algorithm [48]

This reduces to the noiseless version of DD introduced in [5] by taking α = β = 1/∆. We now state the
second main result of the paper.

Theorem 2.2 (Noisy DD). Let p, q ≥ 0, p+q < 1,d ∈ (0,∞),α ∈ (q,e−d (1−p)+(
1−e−d

)
q) andβ ∈ (0,e−d (1−

q)) and define w = e−d p + (1−e−d )(1−q). Suppose that 0 < θ < 1 and let

mDD = mDD(n,θ, p, q) = min
α,β,d

max
{
c1(α,d),c2(α,d),c3(β,d),c4(α,β,d)

}
k log(n/k)

where c1(α,d) = θ

1−θ
1

dDKL
(
α‖q

)

and c2(α,d) = 1

dDKL (α‖1−w)

and c3(β,d) = θ

1−θ
1

dDKL
(
β‖(1−q)e−d

)

and c4(α,β,d) = max
1−α≤z≤1





1

1−θ
1

d
(
DKL (z‖w)+1

{
β> ze−d p

w

}
zDKL

(
β
z ‖

e−d p
w

))




If m ≥ (1+ε)mDD for some ε> 0, then noisy DD will recover σw.h.p. given test design G and test results σ̂.
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While the bounds appear cumbersome at first glance due to the numerous optimizations, the opti-
mizations are of finite dimensions and for every specific value of p and q can be efficiently solved to
arbitrary precision yielding explicit values for mCOMP and mDD. For illustration purposes, we will cal-
culate those bounds for several values of p, q and θ. Motivated by (1.1), we can describe the bounds
in terms of rate, in a Shannon-theoretic sense. That is, we define the rate (bits learned per test) of an
algorithm in this setting to be

R :=
log

(n
k

)

m log2
∼ k log(n/k)

m log2
.

(Recall that we take logarithms to base e throughout this paper). For example the fact that Theorems 2.1
and 2.2 show that noisy COMP and DD respectively can succeed w.h.p. with m ≥ (1+ε)ck log(n/k) tests for
some c is equivalent to the fact that R = 1/(c log2) is an achievable rate in a Shannon-theoretic sense.

We now give a counterpart to these two theorems by stating a universal converse for the p−q channel
below, improving on the universal counting bound from (1.1). The starting observation (see [7, Theorem
3.1]) is that no group testing algorithm can succeed w.h.p. with rate greater than CChan – the Shannon
capacity of the corresponding noisy communication channel. Thus, we cannot hope to succeed w.h.p.
with m < (1−ε)ck log(n/k) tests where c = 1/(CChan log2). Hence as a direct consequence of the value of
the channel capacity of the p −q channel given in Lemma F.1 below, we deduce the following theorem.

Theorem 2.3. Let p, q ≥ 0, p +q < 1 and ε> 0, write h(·) for the binary entropy in nats (logarithms taken
to base e) and φ=φ(p, q) = (h(p)−h(q))/(1−p −q). If we define

mCOUNT =
(

1

DKL
(
q‖1/(1+eφ)

)
)

k log(n/k),

then for m ≤ (1−ε)mCOUNT no algorithm can recover σw.h.p. for any matrix design.

Remark 2.4. Note that the derivation of this result in Lemma 2.3 suggests a choice of density for the matrix:

d = d∗
ch = log(1−p −q)− log

(
1

1+eφ
−q

)
.

While this is not optimal, it may be regarded as a sensible heuristic that provides good rates for a range of
p and q values.

2.2. The combinatorics of the noisy group testing algorithms. In the following, we outline the combi-
natorial structures that Algorithm 1 and 2 take advantage of.

2.2.1. The noisy COMP algorithm. To get started, let us shed light on the combinatorics of noisy COMP
(Algorithm 1). For the noiseless case, the COMP algorithm classifies each individual that appears in at least
one negative test as healthy and all other individuals as infected, since the participation in a negative test
is a sufficient condition for the individual to be healthy.

For the noisy case, the situation is not as straightforward, since an infected individual might appear in
displayed negative tests that were flipped when sent through the noisy channel. Thus, a single negative
test is not definitive evidence that an individual is healthy. Yet, we can use the number of negative tests
to tell the infected individuals apart from the healthy individuals.

Clearly, noisy COMP (Algorithm 1) using a thresholdα∆ succeeds if no healthy individual appears in less
thanα∆ displayed negative tests and no infected individual appears in more thanα∆ displayed negative
tests. To this end, we define

N x = |{a ∈ ∂x : σ̂(a) = 0}|(2.1)

for the number of displayed negative tests that item x appears in. In terms of Figure 2, the algorithm
determines the infection status by counting the number of tests of type I.

7

112



xi
III

III

FIGURE 2. Rectangles represent tests (displayed positive in red, displayed negative in
blue). Blue circles represent individuals that have been classified as healthy in the first
step of DD (or by COMP). White circles represent individuals that are yet unclassified. On
the one hand (Type II and III) this can happen before the first round of DD (or by COMP).On
the other hand (Type I) it is the case before the algorithms start

2.2.2. The noisy DD algorithm. As in the prior section, let us first consider the noiseless DD algorithm. The
first step is identical to COMP classifying all individuals that are contained in at least one negative test as
healthy. In a second step, the algorithm checks each individual to see if they are contained in a positive
test as the only yet unclassified individual and thus must be infected.

Again, the situation is more intricate when we add noise, since neither a single negative test gives us
confidence that an individual is healthy nor does a positive test where the individual is the single yet
unclassified individual inform us that this individual must be infected. Instead we count and compare
the number of such tests. The first step of the noisy DD algorithm is identical to noisy COMP, but we are
not required to identify all healthy individuals in the first step. Thus, after the first step, we are left with
all infected individuals V1 and a set of yet unclassified healthy individuals which we will denote by V0,PD.
These are healthy individuals who did not appear in sufficiently many displayed negative tests to be
declared healthy with confidence in the first step. In symbols, for some α ∈ (0,1)

V0,PD = {x ∈V0 : N x <α∆}

To tell V1 and V0,PD apart, we consider the number of displayed positive tests P x where the individual x
appears on its own after removing the definitely healthy individuals V0 \V0,PD from the first step, i.e.

P x =
∣∣{a ∈ ∂x : σ̂(a) = 1 and ∂a \ {x} ⊂V0 \V0,PD

}∣∣(2.2)

Referring to Figure 2, the second step of the algorithm is based on counting tests of type II. Tests of type
III contain another yet unclassified individual from V0,PD ∪V1. The noisy DD algorithm takes advantage
of the fact that it is less likely for an individual x ∈V0,PD to appear as the only yet unclassified individual
in a displayed positive test than it is for an individual in x ∈ V1. For x ∈ V0,PD such a test would be truly
negative and would have been flipped (which occurs with probability p) to display a positive test result.
Conversely, an individual x ∈ V1 renders any of its tests truly positive and thus the only requirement is
that the test otherwise contains only definitely healthy individuals and is not flipped (which occurs with
probability 1− q). For this reason, we will see that the distribution of P x differs between x ∈ V1 and
x ∈V0,PD, and the difference (1−q)−p > 0 helps determine the size of this difference.

2.3. Applying the results to standard channels. With Theorem 2.1 and Theorem 2.2 we derived achiev-
able rates for the generalized p-q-model (see Figure 1). prior research considered the Z channel where
p = 0 and q > 0, the Reverse Z channel where p > 0 and q = 0 and the Binary Symmetric Channel with
p = q > 0. These channels are the common models in coding theory [41], but are also often considered in
medical applications [31, 32] concerned with taking sensitivity (q > 0), specificity (p > 0) or both (p > 0
and q > 0) into account. In the following section we will demonstrate how performance guarantees on
these channels can directly be obtained from our main theorems.
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2.3.1. Recovery of the noiseless model. First, we show the noiseless bounds can be simply recovered by
setting p = q = 0. In the noiseless setting, it is optimal to set both α and β to 1/∆. To see why, observe
that in the absence of noise a single negative test is sufficient evidence that an individual is healthy. Con-
versely, a single positive test where the individual only appears with definitely healthy individuals implies
that particular individual must surely be infected. As shown in [13] the optimal parameter choice for d
in the constant-column design in the noiseless setting is log(2). Applying these values to Theorem 2.1 we
recover the noiseless bound for COMP.

Corollary 2.5 (COMP in the noiseless setting). Let p = q = 0, 0 < θ < 1 and ε> 0. Further, let

mCOMP,noiseless =
1

(1−θ) log2 2
k log(n/k).

If m > (1+ε)mCOMP,noiseless, COMP will recover σw.h.p.given G ,σ̂.

We also recover the noiseless bounds for the DD algorithm as stated in [26].

Corollary 2.6 (DD in the noiseless setting). Let p = q = 0,0 < θ < 1 and ε> 0. Further, let

mDD,noiseless = max

{
1,

θ

1−θ

}
1

log2 2
k log(n/k).

If m > (1+ε)mDD,noiseless, DD will recover σw.h.p.given G ,σ̂.

2.3.2. The Z channel. In the Z channel, we have p = 0 and q > 0, i.e. no truly negative test displays a
positive test result. Thus, we set β= 1/∆ and remain agnostic about α and d . The bounds for COMP and
DD thus read.

Corollary 2.7 (Noisy COMP for the Z channel). Let p = 0,0 < q < 1,0 < θ < 1 and ε> 0. Further, let

mCOMP,Z = min
α,d

max{b1(α,d),b2(α,d)}k log(n/k)

with b1(α,d) = θ

1−θ
1

dDKL
(
α‖q

) and b2(α,d) = 1

1−θ
1

dDKL
(
α‖e−d + (

1−e−d
)

q
) .

If m > (1+ε)mCOMP,Z , noisy COMP will recover σw.h.p.given G ,σ̂.

Corollary 2.8 (Noisy DD for the Z channel). Let p = 0,0 < q < 1,0 < θ < 1 and ε> 0. Further, let

mDD,Z = min
α,d

max{c1(α,d),c2(α,d),c3(d)}k log(n/k)

with c1(α,d) = θ

1−θ
1

dDKL
(
α‖q

) and c2(α,d) = 1

dDKL
(
α‖e−d + (

1−e−d
)

q
)

and c3(d) = θ

1−θ
1

−d log
(
1−e−d (1−q)

) .

If m > (1+ε)mDD,Z , noisy DD will recover σw.h.p.given G ,σ̂.

Proof. The bounds c1 and c2 follow directly from Theorem 2.2 by setting p = 0. For c3 we use the fact that
DKL

(
1/∆‖e−d (1−q)

)=− log
(
1−e−d (1−q)

)+o(1). An immediate consequence of p = 0 is c4 = 0. �

An illustration of the bounds from Corollary 2.7 and 2.8 for sample values of q is shown in Figure 5.

2.3.3. Reverse Z channel. In the reverse Z channel, we have q = 0 and p > 0, i.e. no truly positive test
displays a negative test result. thus, we set α= 1/∆ and remain agnostic about β and d . The bounds for
the noisy COMP and DD thus read as follows.
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Corollary 2.9 (Noisy COMP for the Reverse Z channel). Let 0 < p < 1, q = 0,0 < θ < 1 and ε> 0. Further, let

mCOMP,rev Z = 1

1−θ min
d

{
1

−d log
(
1−e−d (1−p)

)
}

k log(n/k).

If m > (1+ε)mCOMP,rev Z, noisy COMP will recover σw.h.p.given G ,σ̂.

Proof. The corollary follows from Theorem 2.1 and the fact that DKL (1/∆‖0) diverges and DKL
(
1/∆‖e−d (1−p)

)=
− log

(
1−e−d (1−p)

)
. �

Note that the optimal d arising from Corollary 2.9 cannot be expressed in terms of standard functions.

Corollary 2.10 (Noisy DD in the Reverse Z channel). Let 0 < p < 1, q = 0,0 < θ < 1 and ε> 0. Further, let

mDD,rev Z = min
β,d

max
{
c2(d),c3(β,d),c4(β,d)

}
k log(n/k)

with c2(d) = 1

−d log
(
1−e−d (1−p)

) and c3(β,d) = θ

1−θ
1

dDKL
(
β‖e−d

)

and c4(β,d) = 1

1−θ
1

d
(
− log

(
1−e−d (1−p)

)+DKL

(
β‖ e−d p

e−d p+(1−e−d )

))

If m > (1+ε)mDD,rev Z, noisy DD will recover σw.h.p.given G ,σ̂.

Proof. The bounds c1 = 0,c2,c3 follow from Theorem 2.2 and the same manipulations as above. For c4,
note that z needs to take the value 1 since 1−α= 1−1/∆, whence the simplification follows immediately.

�
An illustration of the bounds of Corollary 2.9 and 2.10 for sample values of p is shown in Figure 6.

2.3.4. Binary Symmetric Channel. In the Binary Symmetric Channel (BSC), we set p = q > 0. Even
though information-theoretic arguments would suggest setting d = log2, we formulate the expression
below with general d . We also keep the threshold parameters α and β. The bounds for the noisy DD and
COMP only simplify slightly.

Corollary 2.11 (Noisy COMP in the Binary Symmetric Channel). Let 0 < p = q < 1/2,0 < θ < 1 and ε > 0.
Further, let

mCOMP,BSC = min
α,d

max{b1(α,d),b2(α,d)}k log(n/k)

with b1(α,d) = θ

1−θ
1

dDKL
(
α‖p

) and b2(α,d) = 1

1−θ
1

dDKL
(
α‖e−d +p −2e−d p

) .

If m > (1+ε)mCOMP,BSC, noisy COMP will recover σw.h.p.given G ,σ̂.

Corollary 2.12 (Noisy DD in the Binary Symmetric Channel). Let 0 < p = q < 1/2,0 < θ < 1 and ε> 0 and
define v = 1−e−d −p +2e−d p. Further, let

mDD,BSC = min
α,β,d

max
{
c1(α,d),c2(α,d),c3(β,d),c4(α,β,d)

}
k log(n/k)

with c1(α,d) = θ

1−θ
1

dDKL
(
α‖p

) and c2(α,d) = 1

dDKL
(
α‖e−d +p −2e−d p

)

and c3(β,d) = θ

1−θ
1

dDKL
(
β‖(1−p)e−d

)

and c4(α,β,d) = max
1−α≤z≤1





1

1−θ
1

d
(
DKL (z‖v)+1

{
β> ze−d p

v

}
zDKL

(
β
z ‖

e−d p
v

))


 .

If m > (1+ε)mDD,BSC, noisy DD will recover σw.h.p.given G ,σ̂.
10
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FIGURE 3. Comparison of the bound for noisy DD and noisy COMP in the Z-channel and
the Binary Symmetric Channel for different noise level.

An illustration of the bounds of Corollary 2.11 and 2.12 is shown in Figure 7.

2.4. Comparison of noisy COMP and DD. An obvious next question is to find conditions under which
the noisy DD algorithm outperforms noisy COMP. For the noiseless setting, it can be easily shown that DD
provably outperforms COMP for all θ ∈ (0,1). For the noisy case, matters are slightly more complicated.

Recall that noisy COMP classifies all individuals appearing in less than α∆ displayed negative tests as
infected while noisy DD additionally requires such individuals to appear in more than β∆ displayed pos-
itive tests as the only yet unclassified individual. Thus, it might well be that an infected individual is
classified correctly by noisy COMP, while it is missed by the noisy DD algorithm.

That being said, our simulations indicate that noisy DD generally outperforms noisy COMP, but for the
reason mentioned above we can only prove that noisy DD outperforms noisy COMP for the reverse Z chan-
nel while remaining agnostic about the Z channel and the Binary Symmetric Channel, as the next propo-
sition evinces.

Proposition 2.13. For all p, q ≥ 0 with p +q < 1 there exists a d∗ ∈ (0,∞) such that mCOMP ≥ mDD as long
as e−d∗

p ≥ q.

In terms of the common noise channels Proposition 2.13 gives the following corollary.

Corollary 2.14. In the reverse Z channel, mCOMP ≥ mDD.

Our simulations suggest that this superior performance of noisy DD holds as well for the Z channel and
Binary Symmetric Channel. Please refer to Figure 3 for an illustration.

2.5. Relation to Bernoulli testing. [26] derived sufficient bounds for noisy group testing and a Bernoulli
test design where each individual joins every test with some fixed probability. Thus, the variable degrees
fluctuate and we end up with some individuals assigned only to few tests. In contrast, we work under a
model in this paper where each individual joins an equal number of tests∆ chosen uniformly at random
without replacement. For the noiseless case, it is by now clear that the constant-column design better
facilitates inference than the Bernoulli test design [13, 26]. We find that the same holds true for the noisy
variant of the COMP algorithm. Let us denote by mBer

COMP the number of tests required for the noisy COMP
to succeed under a Bernoulli test design.

Proposition 2.15. For all p +q < 1, we have

mBer
COMP ≥ mCOMP

We see the same effect for the noisy variant of the DD algorithm for all simulations, but for technical
reasons only prove it for the Z channel.

11
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Proposition 2.16. For the Z channel where p = 0 and 0 < q < 1, we have

mBer
DD > mDD

For an illustration on the magnitude of the difference, we refer to Figure 4 and Figure 8.

0.0 0.2 0.4 0.6 0.8 1.0

Value θ such that k = Θ(nθ)

0.0

0.2

0.4

0.6

0.8

1.0

R
at

e
(b

it
s

/
te

st
)

Noisy DD bounds for reverse Z channel: CC vs. Bernoulli

p=0.1 CC

p=0.1 Bernoulli

p=0.001 CC

p=0.001 Bernoulli

p = 0.1 Converse

p = 0.001 Converse

0.0 0.2 0.4 0.6 0.8 1.0

Value θ such that k = Θ(nθ)

0.0

0.2

0.4

0.6

0.8

1.0

R
at

e
(b

it
s

/
te

st
)

Noisy DD bounds for the Binary Symmetric Channel: CC vs. Bernoulli

p=q=0.001 CC

p=q=0.001 Bernoulli

p=q=0.001 Converse

FIGURE 4. Comparison of DD bounds under a Bernoulli test design ([48]) and constant
column test design (present paper) for the reverse Z and Binary Symmetric Channel
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APPENDIX

The core of the technical sections is the proof of Theorems 2.1 and Theorem 2.2. Some groundwork
with standard concentration bounds and group testing properties can be found in Section A. We con-
tinue with the proof of Theorems 2.1 and 2.2 in Sections B and C, respectively. The structure of the
proofs follows a similar logic. First, we derive the distributions for the number of displayed positive and
negative tests for infected and healthy individuals. Second, we threshold these distributions using sharp
Chernoff concentration bounds to deduce the bounds stated in Theorem 2.1 and Theorem 2.2. There-
after, we proceed to the proof of Proposition 2.13 in Section D, while the proofs of Propositions 2.15 and
2.16 follow in Section E. We conclude with the proof of the converse result from Theorem 2.3 in Section F.

APPENDIX A. GROUNDWORK

For starters, let us recall the Chernoff bound for binomial and hypergeometric distributions.

Lemma A.1 (Chernoff bound for the binomial distribution [25]). Let p < q < r ∈ (0,1) and X ∼ Bin(n, q)
be a binomially distributed random variable. Then

P
(

X ≤ dpne)= exp
(−(

1+n−Ω(1))nDKL
(
p‖q

))

P (X ≥ dr ne) = exp
(−(

1+n−Ω(1))nDKL
(
r‖q

))

Lemma A.2 (Chernoff bound for the hypergeometric distribution [23]). Let p < q < r ∈ (0,1) and Y ∼
H(N ,Q,n) be a hypergeometrically distributed random variable. Further, let q =Q/N . Then

P
(
H(N ,Q,n) ≤ dpne)= exp

(−(
1+n−Ω(1))nDKL

(
p‖q

))

P (H(N ,Q,n) ≥ dr ne) = exp
(−(

1+n−Ω(1))nDKL
(
r‖q

))

The next lemma provides that the test degrees, as defined in (1.3) above, are tightly concentrated.
Recall from (1.2) that the number of tests m = ck log(n/k) and each item appears in ∆ = cd log(n/k)
tests.

Lemma A.3. With probability 1−o(n−2) we have

dn/k −
p

dn/k logn ≤ Γmin ≤ Γmax ≤ dn/k+
p

dn/k logn

Proof. The probability that an individual x is assigned to test a is given by

P (x ∈ ∂a) = 1−P (x ∉ ∂a) = 1−
(

m −1

∆

)(
m

∆

)−1

=∆/m = d/k(A.1)

Since each individual is assigned to tests independently, the total number of individuals in a given test
follows the binomial distribution Bin(n,d/k). The assertion now follows from the Chernoff bound for
binomial distributions (Lemma A.1). �

Next, we show that the number of truly negative tests m0 (and thus the number of truly positive tests
m1) are tightly concentrated.

Lemma A.4. With probability 1−o(n−2) we have m0 = e−d m +O(
p

m log3 n).

Proof. Recall from (A.1) that

P (x ∈ ∂a) = d/k

Since infected individuals are assigned to tests mutually independently, we find for a test a that

P (V1 ∩∂a =;) =P (Bin(k,d/k) = 0) = (1−d/k)k = (
1+n−Ω(1))e−d .
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Consequently, E [m0] =
(
1+n−Ω(1)

)
e−d m. Finally, changing the set of tests for a specific infected indi-

vidual shifts the total number of negative tests by at most ∆. Therefore, the Azuma-Hoeffding inequality
yields

P (|m0 −E [m0]| ≥ t ) ≤ 2exp

(
− t 2

4k∆2

)
.

The lemma follows from setting t =p
m log3 n. �

With the concentration of m0 and m1 at hand, we readily obtain estimates for m f
0 ,mu

0 ,m f
1 and mu

1 .

Corollary A.5. With probability 1−o(n−2) we have

(i) m f
0 = e−d pm +O

(p
m log4 n

)

(ii) mu
0 = e−d (1−p)m +O

(p
m log4 n

)

(iii) m f
1 = (1−e−d )qm +O

(p
m log4 n

)

(iv) mu
1 = (1−e−d )(1−q)m +O

(p
m log4 n

)

Proof. Since each test is flipped with probability p and q independently, the claims follow from Lemma A.4
and the Chernoff bound for the binomial distribution (Lemma A.1). �

In the following, let E be the event that the bounds from Lemma A.4 and A.5 hold.

APPENDIX B. PROOF OF COMP BOUND, THEOREM 2.1

Recall from (2.1) that we write N x for the number of displayed negative tests that item x appears in
(as illustrated by the right branch of Fig. 2). The proof of Theorem 2.1 is based on two pillars. First,
Lemmas B.1 and B.2 provide the distribution of N x for healthy and infected individuals, respectively.
We will see that these distributions differ according to the infection status of the individual. Second,
we will derive a suitable threshold α∆ via Lemma B.3 and B.4 to tell healthy and infected individuals
apart w.h.p. We start by analysing individuals in the infected set V1. Throughout the section, we assume
α ∈ (q,e−d (1−p)+ (

1−e−d
)

q).

Lemma B.1. Given x ∈V1, its number of displayed negative tests N x is distributed as Bin(∆, q).

Proof. Any test containing an infected individual is truly positive because of the presence of the infected
individual. Since an infected individual is assigned to ∆ different tests and each such test is flipped with
probability q independently, the lemma follows immediately. �

Next, we consider the distribution for healthy individuals. Recall that E denotes the event that the
bounds from Lemma A.4 and Corollary A.5 hold.

Lemma B.2. Given x ∈V0 and E , N x is distributed as H
(
m,m

(
e−d (1−p)+ (

1−e−d
)

q +n−Ω(1)
)

,∆
)
.

Proof. Since x is healthy, the outcome of all the tests remains the same if it is removed from consideration
(if we perform group testing with n −1 items and the corresponding reduced matrix).

Thus, given E , we find that with x removed the m f
0 ,mu

0 ,m f
1 ,mu

1 still satisfy the bounds from Corol-
lary A.5. As a result the number of displayed negative tests (which consist of unflipped truly negative
tests and flipped truly positive tests) is given by

(B.1) mu
0 +m f

1 =
(
e−d (1−p)+ (1−e−d )q

)
m +O

(p
m log4 n

)

Now, adding x back into consideration: x ∈ V0 chooses ∆ tests without replacement independently of

this. Hence the number of displayed negative tests it appears in N x is distributed as H(m,mu
0 +m f

1 ,∆)
and the lemma follows. �
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Moving to the second pillar of the proof, we need to demonstrate that no infected individual is as-
signed to more than α∆ displayed negative tests as shown by the following lemma.

Lemma B.3. If c > (1+η) θ
1−θ

1
dDKL(α‖q) for some small η> 0, N x <α∆ for all x ∈V1 w.h.p.

Proof. We have to ensure that P(∃x ∈V1 : N x ≥α∆) = o(1). By Lemma B.1 and the union bound, we thus
need to have

o(1) = k ·P (N x ≥α∆ : x ∈V1) = k ·P(
Bin(∆, q) ≥α∆)= k ·exp

(−(
1+∆−Ω(1))∆DKL

(
α‖q

))
,

by the Chernoff bound for the binomial distribution (Lemma A.1). Since k ∼ nθ and ∆ = cd(1−θ) logn
this implies

θ− cd(1−θ)DKL
(
α‖q

)< 0

The lemma follows from rearranging terms. �

We proceed to show that no healthy individual is assigned to less than α∆ displayed negative tests.

Lemma B.4. If c > (1+η) 1
1−θ

1
dDKL(α‖e−d (1−p)+(1−e−d )q) for some small η> 0, N x >α∆ for all x ∈V0 w.h.p.

Proof. We need to ensure that P(∃x ∈ V0 : N x < α∆) = o(1). Since E occurs w.h.p. by Lemma A.4 and
Corollary A.5, we need to have by Lemma B.2 and the union bound that

(n −k) ·P (N x ≤α∆|x ∈V0,E ) ≤ n ·P
(
H

(
m,m

(
e−d (1−p)+

(
1−e−d

)
q +n−Ω(1)

)
,∆

)
≤α∆

)
= o(1).(B.2)

Together with the Chernoff bound for the hypergeometric distribution (Lemma A.2) this implies

1− cd(1−θ)DKL

(
α‖(1−pe−d + (1−e−d )q

)
< 0

in a similar way to the proof of Lemma B.3. The lemma follows from rearranging terms. �

Proof of Theorem 2.1. The theorem is now an immediate consequence of Lemma B.3 and B.4 which guar-
antee that w.h.p. classifying individuals according to the thresholdα∆ for negative displayed tests recov-
ers σ, and the fact that the choice of α and d is at our disposal. �

APPENDIX C. PROOF OF DD BOUND, THEOREM 2.2

The proof of Theorem 2.2 follows a similar two-step approach as the proof of Theorem 2.1 by first
finding the distribution of P x (the number of displayed positive tests where individual x appears on its
own after removing the definitely healthy individuals V0 \ V0,PD, illustrated by the left branch of Fig. 2).
We then threshold the distributions for healthy and infected individuals. To get started, we revise the
second bound from Theorem 2.1 to allow kn−Ω(1) healthy individuals to not be classified yet after the
first step of DD. Throughout the section, we assume α ∈ (q,e−d (1−p)+(

1−e−d
)

q) and β ∈ (0,e−d (1−q)).

Lemma C.1. If

c > (1+η)
1

dDKL
(
α‖e−d (1−p)+ (

1−e−d
)

q
)

for some small η> 0, we have
∣∣V0,PD

∣∣= kn−Ω(1) w.h.p.

Proof. The lemma follows immediately by replacing the r.h.s. of (B.2) with kn−δ for some small δ= δ(η),
rearranging terms and applying Markov’s inequality. �

For the next lemmas, we need an auxiliary notation denoting the number of tests m0,nd that only
contain individuals from V0 \V0,PD. In symbols,

m0,nd =
∣∣{a ∈ F : ∂a ⊂V0 \V0,PD

}∣∣ .
15

120



Lemma C.2. If

c > (1+η)
1

dDKL
(
α‖e−d (1−p)+ (

1−e−d
)

q
)

for some small η> 0, we have m0,nd = (
1−n−Ω(1)

)
e−d m with probability 1−o(n−2).

Proof. As in the proof of Lemma B.2 above, we consider the graph in two rounds: first we consider the
tests containing infected individuals. Since each healthy individual x ∈ V0 does not impact the number
of positive and negative tests, we know by Lemma A.4 that with probability 1− o(n−2) we have m0 =
e−d m +O

(p
m log4 n

)
after the first round.

Now consider some particular negative test a. The probability that a healthy individual x is assigned
to this test is d/k by (A.1). By Lemma C.1, we know that

∣∣V0,PD
∣∣ = kn−Ω(1). Since each such individual is

assigned to tests mutually independently, we find for the truly negative test a that

P
(
V0,PD ∩∂a =;)=P(

Bin
(∣∣V0,PD

∣∣ ,d/k
)= 0

)= (1−d/k)kn−Ω(1) = 1−n−Ω(1)

We therefore have E
[
m0,nd

] = (
1−n−Ω(1)

)
e−d m. Finally, changing the set of tests for a specific individ-

ual x ∈ V1 ∪V0,PD shifts m0,nd by at most ∆. The lemma follows by a similar application of the Azuma-
Hoeffding inequality as used in the proof of Lemma A.4. �

Let F be the event that m0,nd = (
1−n−Ω(1)

)
e−d m indeed. By Lemma C.2, P (F ) = 1−o(n−2) if

c > (1+η)
1

dDKL
(
α‖e−d (1−p)+ (

1−e−d
)

q
)

for some small η> 0. With Lemma C.2 at hand, we are in a position to describe the distribution of P x for
healthy and infected individuals. Let us start with infected individuals.

Lemma C.3. Given an infected individual x ∈V1 and assuming F holds, P x is distributed as
H

(
m,m

(
e−d (1−q)+n−Ω(1)

)
,∆

)
.

Proof. Consider an infected individual x ∈V1. As before, if we remove x from tests, this will change m0,nd

by at most ∆.
Thus, by Lemma C.2 the number of tests that x is assigned to that contain neither infected individuals

nor individuals from V0,PD is distributed as H
(
m,m

(
e−d +n−Ω(1)

)
,∆

)
given F . Since each test featuring

x will truly be positive and will be displayed positive with probability 1− q independently, the lemma
follows immediately. �

To describe the distribution of P x for healthy individuals, let us introduce the random variable P x (P ),
which is P x conditioned on the individual appearing in P displayed positive tests, as follows:

P (P x (P ) = t ) =P (P x = t |N x =∆−P )

Then, we find for healthy individuals the following conditional distribution.

Lemma C.4. Given x ∈V0 and F , P x (P ) is distributed as

H
(
m

(
e−d p + (1−e−d )(1−q)+n−Ω(1)

)
,m

(
e−d p +n−Ω(1)

)
,P

)
.

Proof. We proceed with the same exposition as in the proof of Lemma C.3. Since individual x ∈V0 is as-

signed to exactly P displayed positive, P x (P ) is distributed as H
(
m f

0 +mu
1 ,m0,nd,P

)
. The lemma follows

from Corollary A.5 and Lemma C.2. �
Having derived the distributions for P x for x ∈ V1 and P x (P ) for x ∈ V0 we can now determine a

threshold β∆ of displayed positive tests where the individual appears only with individuals from the
set V0 \ V0,PD such that we can tell V1 and V0,PD apart and thus recover σ. Let us start with infected indi-
viduals.
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Lemma C.5. As long as

c > (1+η)max

{
1

dDKL
(
α‖e−d (1−p)+ (

1−e−d
)

q
) ,

θ

1−θ
1

dDKL
(
β‖(1−q)e−d

)
}

for some small η> 0, we have P x >β∆ for all x ∈V1 w.h.p.

Proof. We need to ensure that P(∃x ∈V1 : P x <β∆) = o(1). For the bound on c from the lemma, we know
that F occurs w.h.p. by Lemma C.2. In combination with Lemma C.3 and the union bound we need to
ensure

k ·P(
P x ≤β∆|x ∈V1,F

)= k ·P
(
H

(
m,m

(
e−d (1−q)+n−Ω(1)

)
,∆

)
≤β∆

)
= o(1)(C.1)

Using the Chernoff bound for the hypergeometric distribution (Lemma A.2), (C.1) holds if

θ− cd(1−θ)DKL

(
β‖(1−q)e−d

)
< 0(C.2)

The lemma follows from rearranging terms in (C.2).
�

We proceed with the set of individuals V0,PD.

Lemma C.6. As long as

c > (1+η)max

{
1

dDKL
(
α‖e−d (1−p)+ (

1−e−d
)

q
) ,

max
1−α≤z≤1





1

1−θ
1

d
(
DKL

(
z‖e−d p + (1−e−d )(1−q)

)+ zDKL

(
β
z ‖

e−d p
e−d p+(1−e−d )(1−q)

))




}

for some small η> 0, we have P x <β∆ for all x ∈V0,PD w.h.p.

Proof. We need to ensure that P(∃x ∈ V0,PD : P x > β∆) = o(1). For the bound on c from the lemma, we
know that F occurs w.h.p. by Lemma C.2. Moreover, E occurs w.h.p. by Lemma A.4 and Corollary A.5.
We write w = e−d p +(

1−e−d (1−q)
)

for brevity. Combining this fact with Lemma B.2 and C.4 we need to
ensure

(n −k)
∆∑

P=(1−α)∆
P (N x =∆−P |x ∈V0,E )P

(
P x (P ) ≥β∆|x ∈V0,F

)
(C.3)

= (
1−n−Ω(1))n

∆∑
P=(1−α)∆

P
(
H

(
m,m

(
w +n−Ω(1)) ,∆

)= P
)

P
(
H

(
m

(
w +n−Ω(1)) ,m

(
e−d p +n−Ω(1)

)
,P

)
≥β∆

)
= o(1)(C.4)

By the Chernoff bound for the hypergeometric distribution (Lemma A.2) and setting z = P/∆, we refor-
mulate the left-hand-side of (C.4) to

n
∆∑

P=(1−α)∆
exp

(
−(1+o(1))∆

(
DKL (z‖w)+1

{
β> ze−d p

w

}
zDKL

(
β

z
‖e−d p

w

)))

= (
1+n−Ω(1))n max

1−α≤z≤1

{
exp

(
− (1+o(1))∆

(
DKL (z‖w)+1

{
β> ze−d p

w

}
zDKL

(
β

z
‖e−d p

w

)))}

where the second equality follows since the sum consists of Θ(∆) = Θ(logn) many summands. Since
P (F ) = 1−n−Ω(1) for our choice of c by Lemma C.2 rearranging terms readily yields that the expression
in (C.3) is indeed of order o(1). �
Proof of Theorem 2.2. The theorem is now immediate from Lemma B.3, C.1, C.5 and C.6 and the fact that
the choice of α,β and d is at our disposal. �
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APPENDIX D. COMPARISON OF THE NOISY DD AND COMP BOUNDS

The following section is intended to prove sufficient conditions under which the DD algorithm is guar-
anteed to outperform COMP. However, these conditions are not necessary and DD might (and for all per-
formed simulations does) outperform COMP for even wider settings.

Proof of Proposition 2.13. In order to prove the proposition, we need to find conditions under which

min
α,d

max{b1(α,d),b2(α,d)} ≥ min
α,β,d

max
{
c1(α,d),c2(α,d),c3(β,d),c4(α,β,d)

}

We write α∗ and d∗ for the values that minimise the maximum of the two terms at the LHS, at which
point we know that b1(α∗,d∗) = b2(α∗,d∗). Then it is sufficient to show that there exists β∗ such that

b1(α∗,d∗) = b2(α∗,d∗) ≥ max
{
c1(α∗,d∗),c2(α∗,d∗),c3(β∗,d∗),c4(α∗,β∗,d∗)

}

By inspection for any α and d b1(α,d) = c1(α,d) and b2(α,d) ≥ c2(α,d) since θ ∈ (0,1).
Next, we will show that b2(α,d) ≥ c4(α,β,d) for any α,β in the respective bounds and d ∈ (0,∞). Writ-

ing w = e−d p + (1−e−d )(1−q), and recalling that by assumption that α≤ 1−w (or w ≤ 1−α) we readily
find that

(D.1) DKL (α‖1−w) = min
1−α≤z≤1

(DKL (z‖w)) ≤ min
1−α≤z≤1

(
DKL (z‖w)+ z1

{
β> ze−d p

w

}
DKL

(
β

z
‖e−d p

w

))

where the first equality follows since DKL (α‖1−w) = DKL (1−α‖w) and DKL (z‖w) > DKL (1−a‖w) for
any z > 1 −α. The bound follows. Note that (D.1) indeed holds for any choice of α,β and d in the
respective bounds stated in the theorem.

Finally, we need to demonstrate that c3(β∗,d∗) ≤ b2(α∗,d∗). Since β is not an optimisation parame-
ter in b2(α∗,d∗) and the bound in (D.1) holds for any value of β, we can simply set it to the value that
minimizes c3(β∗,d∗) which is β= 1/∆ and for which we find

c3(β∗,d∗) = θ

1−θ
1

d∗ log
(
1−e−d∗(1−q

) .

Thus, to obtain the desired inequality we need to ensure that for the optimal choice α∗ from COMP

θDKL

(
α∗‖e−d∗

(1−p)+
(
1−e−d∗)

q
)
≤− log

(
1−e−d∗

(1−q)
)

Using the bound

θDKL

(
α‖e−d (1−p)+

(
1−e−d

)
q
)
≤−θ log

(
1−

(
e−d (1−p)+

(
1−e−d

)
q
))

≤− log
(
1−

(
e−d (1−p)+

(
1−e−d

)
q
))

which is obtained by setting α= 1/∆, we find that c3(β∗,d∗) ≤ b2(α∗,d∗) if

− log
(
1−e−d∗

(1−q)
)
≥− log

(
1−e−d∗

(1−p)+
(
1−e−d∗)

q
)
⇔ e−d∗

p ≥ q

�

As mentioned before, due to bounding b2(α∗,d∗) the result is not sharp. However, one immediate
consequence of Proposition 2.13 is that DD is guaranteed to outperform COMP for the reverse Z channel.

APPENDIX E. RELATION TO BERNOULLI TESTING

In the noiseless case [26] shows that the constant column weight design (where each individual joins
exactly ∆ different tests) requires fewer tests to recover σ than the Bernoulli design (where each indi-
vidual is included in each test with a certain probability independently). In this section we show that
in the noisy case, the COMP algorithm requires fewer tests for the constant column weight design than
for the Bernoulli design, and derive sufficient conditions under which the same is true for the noisy DD
algorithm.
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To get started, let us state the relevant bounds for the Bernoulli design. [48] derived these bounds
for the Z channel, reverse Z channel and Binary Symmetric Channel. Building on this work, let us ex-
tend these bounds for the general p −q-model. The test design and notation is identical to the constant
column design employed so far with the key difference that individuals are not assigned to ∆ tests uni-
formly at random without replacement, but that each individual is included in each test with probability

∆/m = d/k independently. Our first observation is the size of m0,m f
0 ,mu

0 ,m f
1 and mu

1 carry over without
further ado.

Lemma E.1. The bounds from Lemma A.4 and Corollary A.5 hold for the Bernoulli test design.

Proof. The crucial observation is that (A.1) now becomes P (x ∈ ∂a) = ∆/m for any individual x ∈ V and
test a ∈ F where we avoid any dependencies between tests that we encountered before. The rest of the
proof follows exactly the proof of Lemma A.4 and Corollary A.5. �
Proposition E.2 (Noisy COMP under Bernoulli). Let p, q ≥ 0, p + q < 1, d ∈ (0,∞), α ∈ (q,e−d (1− p)+(
1−e−d

)
q). Suppose that 0 < θ < 1 and ε> 0 and let

mBer
COMP = mBer

COMP(n,θ, p, q) = min
α,d

max{b1(α,d),b2(α,d)}k log(n/k)

where b1(α,d) = θ

1−θ
1

kDKL
(
αd/k‖qd/k

)

and b2(α,d) = 1

1−θ
1

kDKL
(
αd/k‖(e−d (1−p)+ (1−e−d )q)d/k

)

If m > (1+ε)mBer
COMP, COMP will recover σ under the Bernoulli test design w.h.p. given G ,σ̂.

Proof. Using the same two-round exposition of the graph as in prior proofs and again denoting by N x

the number of displayed negative tests for an individual x, we readily find

N x ∼ Bin
(
m, qd/k

)
for x ∈V1

N x ∼ Bin
(
mu

0 +m f
1 ,d/k

)
for x ∈V0

Using the union bound, we thus have

k ·P (N x >α∆|x ∈V1) = o(1) ⇔ c > b1(α,d)(E.1)

(n −k) ·P (N x <α∆|x ∈V0) = o(1) ⇔ c > b2(α,d)(E.2)

closing the proof of the proposition. �
Along the same lines, we obtain the bounds of the DD algorithm under the Bernoulli design.

Proposition E.3 (Noisy DD under Bernoulli). Let p, q ≥ 0, p + q < 1, d ∈ (0,∞), α ∈ (q,e−d (1 − p) +(
1−e−d

)
q) and β ∈ (e−d p,e−d (1−q)). Suppose that 0 < θ < 1,ζ ∈ (0,θ) and ε> 0 and let

mBer
DD = mBer

DD(n,θ, p, q) = min
α,β,d

max
{
c1(α,d),c2(α,d),c3(β,d),c4(β,d)

}
k log(n/k)

where c1(α,d) = θ

1−θ
1

kDKL
(
αd/k‖qd/k

)

and c2(α,d) = 1−ζ
1−θ

1

kDKL
(
αd/k‖(e−d (1−p)+ (1−e−d )q)d/k

)

and c3(β,d) = θ

1−θ
1

k ·DKL
(
βd/k‖e−d (1−q)d/k

)

and c4(β,d) = ζ

1−θ
1

k ·DKL
(
βd/k‖e−d pd/k

)
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If m > (1+ε)mBer
DD, DD will recover σ under the Bernoulli test design w.h.p. given G ,σ̂.

Proof. The bounds for c1(α,d) and c2(α,d) follow as in the proof of Proposition E.2 by replacing the
right-hand side of (E.2) with nζ for some ζ ∈ (0,θ). Next, we note that the bound for m0,nd of Lemma C.2
still holds as long as ζ ∈ (0,θ). Using the same two-round exposition of the graph as in prior proofs
and denoting by P x the number of displayed positive tests for an individual x such that the remaining
neighbourhood of the test is a subset of V0 \V0,PD, we readily find

k ·P(
P x <β∆|x ∈V1

)= o(1) ⇔ c > c3(β,d)

(n −k) ·P(
P x >β∆|x ∈V0

)= o(1) ⇔ c > c4(β,d)

concluding the proof of the proposition. �
To compare the bounds of the Bernoulli and constant-column test design we employ the following

handy observation.

Lemma E.4. Let 0 < x, y < 1 and d > 0 be constants independent of k. As k →∞

kDKL

(
xd

k
‖ yd

k

)
= d

(
DKL

(
x‖y

)+ v(x, y)
)+o(1/k)

with

v(x, y) = y −x + (1−x) log

(
1− y

1−x

)
≤ 0(E.3)

Proof. Applying the definition of the Kullback-Leibler divergence and Taylor expanding the logarithm
we obtain

k ·DKL

(
xd

k
‖ yd

k

)
=xd · log

(
x

y

)
+ (k −xd)

(
log

(
1− xd

k

)
− log

(
1− yd

k

))

= xd · log

(
x

y

)
+ (k −xd)

(
−xd

k
+ yd

k
+o

(
1

k2

))

= d

(
x · log

(
x

y

)
−x + y

)
+o(1/k)

= d

(
DKL

(
x‖y

)+ y −x − (1−x) log

(
1−x

1− y

))
+o(1/k).

We can bound v(x, y) from above by writing the final term as (1− x) log
(
1+ x−y

1−x

) ≤ (1− x) x−y
1−x = x − y ,

using the standard linearisation of the logarithm. �
We are now in a position to prove Proposition 2.15 and 2.16.

Proof of Proposition 2.15. The lemma follows by comparing the bounds from Theorem 2.1 and Proposi-
tion E.2 and applying Lemma E.4. �
Proof of Proposition 2.16. As evident from Corollary 2.8, the fourth bound c4(α,β,d) vanishes under the
Z channel. Now comparing the bounds from Theorem 2.2 and Proposition E.3, observing that (1−ζ)/(1−
θ) > 1 for ζ< θ and applying Lemma E.4 immediately implies the lemma. �

APPENDIX F. CONVERSE BOUND

We can give some sense of the sharpness of these results by considering the p − q communication
channel. That is, we write X for the channel input and Y for the output of a noisy channel with error
probabilities given exactly by Figure 1. Recall that [7, Theorem 3.1] shows that the capacity of a particular
noisy group testing problem is bounded above by the Shannon capacity of the corresponding channel.
For completeness we derive the capacity and optimal signalling strategy of the p −q channel in terms of
h(·), the binary entropy in nats (logarithms taken to base e):
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Lemma F.1. If p +q < 1 the Shannon capacity of the p −q channel of Figure 1 measured in nats is

(F.1) CChan = DKL

(
q‖ 1

1+eφ

)
= DKL

(
p‖ 1

1+e−φ

)
,

where φ= (h(p)−h(q))/(1−p −q). This is achieved by taking

(F.2) P(X = 0) = 1

1−p −q

(
1

1+eφ
−q

)
.

Proof. Write P(X = 0) = γ and P(Y = 0) = T (γ) := (1−p)γ+q(1−γ). Then since the mutual information

(F.3) I (X ;Y ) = h(Y )−h(Y |X ) = h
(
T (γ)

)− (
γh(p)+ (1−γ)h(q)

)
,

we can find the optimal T by solving

0 = ∂

∂γ
I (X ;Y ) = (1−p −q) log

(
1−T (γ)

T (γ)

)
− (

h(p)−h(q)
)

,

which implies that the optimal T ∗ = 1/(1+ eφ). We can solve for this for γ∗ = (T ∗−q)/(1−p −q) to find
the expression above. As ∂

∂2γ
I (X ;Y ) < 0 it is indeed a maximum. Substituting this in (F.3) we obtain that

the capacity is given by

h(T ∗)− (
γ∗h(p)+ (1−γ∗)h(q)

) = h

(
1

1+eφ

)
− (

(T ∗−q)φ+h(q)
)

= log(1+eφ)−φ(1−q)−h(q)(F.4)

= DKL
(
q‖1/(1+eφ)

)

as claimed in the first expression in (F.1) above. We can see that the second expression in (F.1) matches
the first by writing the corresponding expression as DKL

(
1−p‖1/(1+eφ)

)= log(1+eφ)−φp−h(p), which
is equal to (F.4) by the definition of φ. �

Note that this result suggests a choice of density for the matrix: since each test is negative with proba-
bility e−d , equating this with (F.2) suggests that we take

d = d∗
ch = log(1−p −q)− log

(
1

1+eφ
−q

)
.

This is unlikely to be optimal in a group testing sense, since we make different inferences from positive
and negative tests, but gives a closed form expression that may perform well in practice. For the noiseless
and BSC case observe that φ= 0, and we obtain d∗

ch = log2.

APPENDIX G. ILLUSTRATION OF BOUNDS FOR Z, REVERSE Z CHANNEL AND THE BSC
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FIGURE 5. Illustration of achievability bounds for noisy COMP and DD under the Z chan-
nel. The optimal curve refers to the information-theoretic non-adaptive lower bound in
the noiseless setting
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FIGURE 6. Illustration of achievability bounds for noisy COMP and DD under the reverse
Z channel. The optimal curve refers to the information-theoretic non-adaptive lower
bound in the noiseless setting
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FIGURE 7. Illustration of achievability bounds for noisy COMP and DD under the Binary
Symmetric Channel. The optimal curve refers to the information-theoretic non-adaptive
lower bound in the noiseless setting
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FIGURE 8. Comparison of the noisy DD rates under Bernoulli pooling ([48]) with the DD
bounds and converse with constant-column design as provided in the paper at hand
within the Z-Channel
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EFFICIENT AND ACCURATE GROUP TESTING VIA BELIEF PROPAGATION: AN EMPIRICAL STUDY

AMIN COJA-OGHLAN, MAX HAHN-KLIMROTH, PHILIPP LOICK, MANUEL PENSCHUCK

ABSTRACT. The group testing problem asks for efficient pooling schemes and algorithms that allow to screen moderately
large numbers of samples for rare infections. The goal is to accurately identify the infected samples while conducting the
least possible number of tests. Exploring the use of techniques centred around the Belief Propagation message passing
algorithm, we suggest a new test design that significantly increases the accuracy of the results. The new design comes with
Belief Propagation as an efficient inference algorithm. Aiming for results on practical rather than asymptotic problem
sizes, we conduct an experimental study. MSc: 05C80, 60B20, 68P30

1. INTRODUCTION

1.1. The group testing problem. In science generally and in applied science particularly there is much to be said
for simplicity. But occasionally a modest degree of sophistication carries extraordinary rewards. Group testing is a
case in point. Every single day medical labs around the globe screen moderately large numbers of samples for rare
pathogens. The vast majority of samples, anywhere between 90% and 99.9%, are actually uninfected [7, 25, 28, 32,
35, 36, 37, 38, 39]. Labs therefore test pools of samples rather than individual samples. The group testing problem
asks for pooling strategies that minimise the total number of tests required while maximising the accuracy of the
results. The latter is crucial because test results are generally not perfectly accurate.

Coming up with practical solutions to this problem turns out to be challenging precisely because the total num-
ber of samples in a real-world scenario is moderate–say, in the hundreds or thousands. To elaborate, on the one
hand the group testing problem has inspired a body of beautiful mathematical work that deals with the asymp-
totical scenario where the number of samples grows to infinity [4, 10, 11]. However, such asymptotical results do
not directly bear on practical problem sizes. Besides, the theoretical test designs tend to suffer other drawbacks
such as asking for excessively large test pools or subdivisions of individual samples into very many sub-samples
[4, 10, 11]. On the other hand, practical problem sizes far exceed the limits up to which an exhaustive search for an
optimal test design seems remotely feasible. As a consequence, the pooling schemes in practical use remain the
self-same extremely simple ones suggested in the 1940s [7, 25, 28, 32, 35, 36, 37, 38, 39].

The aim of this paper is to investigate better test designs for practical problem sizes. The focus is on improving
the accuracy of the results, i.e., avoiding false positive and/or negative diagnoses while keeping the number of tests
as small as possible. Indeed, the thrust of this paper is that the idea of group testing, originally invented to reduce
the number of tests, actually excels at improving the accuracy of the results. This may seem surprising at first
glance because one might deem individual testing optimal in terms of accuracy. It is not. Group testing does better
in much the same way as error-correcting codes gain power from encoding entire blocks of data simultaneously.

Given the moderate number of samples in real-world scenarios, an empirical approach is the only feasible way
to obtain practically meaningful results. Thus, taking on board the intuition from theoretical work on group testing
as well as recent ideas from information theory and statistical physics, we conduct an extensive experimental
study. The main finding is that a novel test scheme called adaptive Belief Propagation greatly improves the accuracy
of the overall results while keeping the number of tests conducted low. Furthermore, the new test design requires
only relatively small test pools and only assigns each sample to a small number of tests. Finally, the design comes
with an efficient, easy-to-implement algorithm to infer the status of the individual samples from the test results,
namely the Belief Propagation message passing algorithm.

We proceed to discuss the mathematical model of tests and samples that we work with. Subsequently, we
present the results of adaptive Belief Propagation by comparison to other test schemes. These test schemes,
which are partly incorporated into adaptive Belief Propagation, are discussed in detail in Section 2. In Section 3 we
then present the new test design and the corresponding inference algorithm. Section 4 details the theoretical and

Amin Coja-Oghlan, Max Hahn-Klimroth and Philipp Loick are supported by DFG CO 646/3 and DFG CO 646/5. Manuel Penschuck is
supported by ME 2088/5-1.

1

ar
X

iv
:2

10
5.

07
88

2v
1 

 [
cs

.A
I]

  1
3 

M
ay

 2
02

1

131



heuristical considerations that underpin adaptive Belief Propagation. Finally, in Section 5 we discuss the potential
impact of the new results and future directions for both empirical and theoretical work.

1.2. The model. We work with a simple but standard model of group testing that allows for test results to not
be entirely accurate [4]. Let x1, . . . , xn represent the samples submitted for testing. We assume that with a prior
probability of λ ∈ [0,1] any one sample is infected is known. The true infection status of each sample is indicated
by σ(x j ) ∈ {0,1}, with 1 representing ‘infected’. The σ(x j ) are assumed to be independent Bernoulli variables with
mean λ. We refer to the vector σ = (σ(x j )) j=1,...,n as the ground truth. Let k = ∑n

j=1 1{σ(x j ) = 1} signify the actual
number of infected samples.

The way how test pools are formed is represented by a bipartite graph. To be precise, a test design is a bipartite
graph G with one class X = {x1, . . . , xn} of vertices representing the n samples and the other class A = {a1, . . . , am}
representing the test pools. An edge between x j and ai indicates that x j is included in test pool ai . For each x j

we let ∂x j = ∂G x j be the set of test pools that include x j . Similarly, for each test pool ai we write ∂ai for the set of
individual samples x j included in that pool.

Each test ai reports a positive or negative result σ̂(ai ) ∈ {0,1}. Ideally a test ai should come back positive iff at
least one sample x j ∈ ∂ai is actually infected. But the test results need not be completely accurate. We therefore
posit two parameters p, called the specificity, and q , the sensitivity, both between 0 and 1, such that the tests return
results

σ̂(ai ) =
{

0 with probability p

1 with probability 1−p
if σ(x j ) = 0 for all x j ∈ ∂ai (1.1)

σ̂(ai ) =
{

0 with probability 1−q

1 with probability q
if σ(x j ) = 1 for some x j ∈ ∂ai . (1.2)

The random outcomes in (1.1)–(1.2) are mutually independent given σ. Let σ̂= (σ̂(ai ))i=1,...,m encompass the test
results.

Generally the ground truth σ cannot be inferred with perfect accuracy form the test results σ̂ of a single “one-
shot” test design (unless p = q = 1 and we test every x j separately) [1]. Indeed, under the noise model (1.1)–(1.2)
the posterior of the ground truth given the test results reads1

µG (σ) =P [σ=σ | σ̂] ∝
n∏

i=1
λσ(xi )(1−λ)1−σ(xi )

m∏
i=1

ψσ̂(ai )
(
(σ(y))y∈∂ai

)
(σ= (σ(xi ))i=1,...,n ∈ {0,1}n) (1.3)

where ψ0(σ1, . . . ,σ`) = p1−∨`
i=1σi (1−q)

∨`
i=1σi , ψ1(σ1, . . . ,σ`) = (1−p)1−∨`

i=1σi q
∨`

i=1σi . (1.4)

Hence, the information-theoretically optimal inference algorithm just draws a random sample from the distribu-
tionµG . In effect, the accuracy with which the ground truth can potentially be recovered is governed by the entropy
of the posterior µG : the smaller the entropy the better the results. Furthermore, depending on the specific design
G there may or may not exists an efficient algorithm for sampling from µG .

To deal with these challenges, in adaptive group testing tests are not deployed in a single stage like in (1.1)–(1.2)
but in several stages. To be precise, an `-stage test design is an increasing sequence G (0),G (1), . . . ,G (`) of test designs
such that G (i+1) is obtained from G (i ) by adding further tests. How many tests are added and which samples they
contain depends on results from the previous stages. The results of the new tests are assumed to be distributed
independently according to (1.1)–(1.2). The aim, of course, is to diligently add tests so as to maximally reduce the
entropy of the posterior.

In summary, the group testing problem poses the following challenges.

(i) To come up with an adaptive test design that allows to infer the true infection status σ(x j ) of as many x j as
possible while conducting as small a number of tests as possible.

(ii) To devise an efficient algorithm that actually infers the σ(x j ) from the observed σ̂(ai ) with reasonable com-
putational effort.

(iii) To facilitate practical adoption we need to avoid high degrees because very large test pools may be infeasible,
as may be dividing an individual sample into very many pools.

(iv) To ensure a timely reporting of test outcomes we should aim for a small number of test stages, or at least
ensure that most samples can be diagnosed after the first or second stage.

1In (1.3) the ∝-symbol hides the normalisation required to turn µG into a probability distribution.
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1.3. Results. To meet these objectives we devise a new test scheme called adaptive Belief Propagation. We inves-
tigate its performance empirically for the following parameter choices.

• The results in this section refer to n = 1000 samples. In Section 4.3 we discuss that the performance is
similar on instances with n = 100 and slightly better with n = 10000.

• We study prior infection probabilities λ= 0.5%, 1%, 5%, 10%.
• Three different specificity/sensitivity scenarios are investigated:

(a) perfectly reliable tests, i.e. p = q = 1,
(b) moderately high values p = 0.99 and q = 0.98 which reflects, among others, the reliability of certain

Covid-19 tests [7, 8, 31, 38, 41] and
(c) a noisy scenario with p = q = 0.95.

• Each experiment is run 100 times independently for each parameter combination.

The experiments show that adaptive Belief Propagation improves the accuracy of the results by an order of
magnitude by comparison to known test designs while keeping the number of tests at a reasonable level. Let us
begin with the high-noise scenario p = q = 0.95, where we reap the greatest gains. We propose three different test
designs adaptive Belief Propagation 1, adaptive Belief Propagation 2 and adaptive Belief Propagation 3. The first
strikes a balance between accuracy of results and the number of tests, while the latter emphasises accuracy. In
the following, let the false positive rate (fpr) be the number of healthy samples falsely classified as infected over
all healthy samples. Correspondingly, let the false negative rate (fnr) be the number of infected samples falsely
classified as healthy over all infected samples. Figure 1 displays the results of adaptive Belief Propagation 1 in
comparison to several previously known approaches. These include the 2-stage Dorfman and the 3-stage Dorfman
designs, which are widely used in practice, as well as Belief Propagation followed by individual testing advocated in
the theoretical literature 2. A further scheme that we included is informative Dorfman, a 2-stage design proposed
in [29]. We will discuss these approaches in some detail in Section 2. Figure 1 shows that with about the same
number of tests as 2-stage Dorfman, adaptive Belief Propagation achieves up to 78% reduction in the number of
false positives and an up to 42% reduction in the number of false negatives. The gains are particularly high for
small priors.

Nevertheless, the absolute value of the false positive and false negative rate of all test designs in Figure 1, partic-
ularly for large priors, may still be unacceptably high for many real-world applications. Here our other two designs
adaptive Belief Propagation 2 and adaptive Belief Propagation 3 come to the rescue. As Figure 2 shows, these de-
signs, particularly adaptive Belief Propagation 3, dramatically reduce the number of false positives and negatives.
Of course, these improvements come at the expense of a larger number of tests. But for priors λ ≤ 0.05 the num-
ber of extra tests is moderate, and for the largest prior λ = 0.1 adaptive Belief Propagation 2 and adaptive Belief
Propagation 3 require not many more tests than individual testing while being the only designs that deliver decent
accuracy.
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FIGURE 1. Simulation results for high noise scenario (sensitivity and specificity of 95%)

Matters turns out similar in the case of moderately high sensitivity and specificity p = 0.99, q = 0.98. Figure 3
displays the results. In comparison to the classical two- and three-stage Dorfman scheme, adaptive Belief Propa-
gation requires at most 11% more tests for high priors of λ = 0.1 - for small priors even fewer tests. The benefit is

2Note that with perfectly reliable tests, this approach is equivalent to the so-called definite defectives (DD) algorithm followed by individual
testing.
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FIGURE 2. Simulation results of reliability-enhanced adaptive Belief Propagation for high noise
scenario (sensitivity and specificity of 95%)

that adaptive Belief Propagation boosts accuracy compared to all the previously known designs, particularly so for
low priors. We point out that the gains vis-a-vis informative Dorfman for moderately high priors are modest. The
key benefit in adaptive Belief Propagation however, lies in its versatility to meaningfully enhance the accuracy at
the expense of somewhat more tests as shown in Figure 4. A similar extension of informative Dorfman would yield
a similar accuracy but require significantly more tests than adaptive Belief Propagation.
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FIGURE 3. Simulation results for sensitivity for moderate noise scenario (sensitivity of 99%,
specificity of 98%)
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FIGURE 4. Simulation results of reliability-enhanced adaptive Belief Propagation for moderate
noise scenario (sensitivity of 99%, specificity of 98%)

Even with perfectly reliable tests, the conventional definite defectives (DD) approach in the literature can be
improved upon by adaptive Belief Propagation or the informative Dorfman approach. Both schemes are able to
reduce the number of tests compared to the former by up to 18% and comes within 19% to 32% of the information-
theoretic lower bound. The gains vis-a-vis two-stage Dorfman with up to 57% and individual testing with up to 94%
are even more pronounced. We do not need to consider the accuracy in the noiseless case since all test designs
recover the entire ground truth by construction.
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FIGURE 5. Simulation results for the noiseless setting. The left plot displays the numbers of tests
required by the different designs; the black hatched area represents a plausible information-
theoretic lower bound for the number of tests. The right plot shows the reduction achieved by
comparison to the 2-stage Dorfman procedure, a classical and widely used test design.

All examined algorithms require reasonable pool sizes and splits of the individual sample that are in line with
common pooling procedures [22, 24, 29]. The maximum pool size is between 8 and 170 depending on noise level
and prior, while the splits of the individual sample range between 3 and 19. It should be noted that the proposed
algorithms and test designs can readily be adjusted to accommodate smaller pool sizes or individual sample splits
— at the expense of somewhat more tests.

Organisation. In Section 2, we will discuss designs and algorithms that are in practical use or have been stud-
ied in the mathematical literature on group testing. Subsequently, we present the details behind our novel test
design named adaptive Belief Propagation in Section 3. In Section 4 we relate adaptive Belief Propagation to the
theoretical work on group testing and asymptotic considerations.

2. DESIGNS AND ALGORITHMS

We discuss the various previously studied test designs and inference algorithms. In Section 3 we will then see how
we extend and modify these known constructions in order to obtain the new adaptive Belief Propagation design.

2.1. Individual testing. The most straightforward test strategy, of course, is to conduct m = n individual tests for
each of the n samples. At first glance, individual testing may appear to be the gold standard in terms of accuracy.
Naturally, in the case p = q = 1, individual testing will register the status of each sample correctly. However, realistic
values for p and q range between 0.95 and 0.99 [7, 8, 31, 38, 41]. If p, q are less than one, then individual testing
will produce numbers of false positives/negatives distributed as Bin(n −k ,1−p) and Bin(k ,1−q), respectively.

The accuracy of the results could obviously be boosted by conducting two or three individual tests per sample.
Indeed, if we test each x j twice and report x j as infected only if both tests come back positive, then we could
reduce the expected number of false positives to (n−k)(1−p)2. But we would now expect a slightly larger number
of 2k(1− q) false negatives. To reduce the number of false positives and negatives simultaneously we could test
each x j thrice and report the majority of the three test results.

2.2. Dorfman and grid designs. The test designs that currently appear to be most widely used in practice date
back to the 1940s. Indeed, the idea of group testing was first brought up by Dorfman in 1943 [18]. He suggested
a two-stage test procedure. In the first stage, every sample gets placed in precisely one pool. All pools are the
same size, which depends on the prior λ only. Pools with a positive test result get tested separately in the second
stage. An illustration is provided in Figure 6. Depending on the prior, this scheme can significantly reduce the
number of tests required. For example, with λ = 0.05 this scheme uses pools of size five and the expected overall
number of tests conducted in both stages comes to about 0.426n. At the same time, Dorfman’s two-stage procedure
reduces the number of false positives because a sample is ultimately reported as positive only if both the tests are
positive. But for the same reason, the expected number of false negatives increases. For instance, with n = 104 and
k =λn = 500 as above, we expect 18.2 false positives and 9.95 false negatives.
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x1 x2 x3 x4 x5 x6 x7 x8 x9

a1 a2 a3

x1 x2 x3

x4 x5 x6

x7 x8 x9

a1 a2 a3

a4

a5

a6

FIGURE 6. Illustration of first stage of the first stage of the Dorfman scheme (left) and grid test
designs (right)

A natural extension of the Dorfman procedure employs three stages. In the first stage, relatively large pools
are formed. The second stage then splits the positive ones into smaller sub-pools and the third stage resorts to
individual testing. In effect, as with the two-stage procedure, the expected number of false positives drops while
the expected number of false negatives increases. For n = 104 and λ= 0.05 as above the expected numbers of false
positives/negatives work out to be 11.76 and 14.8, respectively.

Grid designs are a variation on the Dorfman scheme. They partition the set of all individual samples into equal-
sized subsets. For instance, if λ = 0.05 the size would be 16. Each of these subsets is mapped onto a 4× 4 grid.
Its rows and columns constitute the pools for the first stage. Thus, each sample lands in two first-stage pools.
Depending on the results, further tests are conducted in a second stage; see Figure 6 for an illustration. Grid designs
significantly reduce the number of false negatives by comparison to individual testing while increasing the number
of false positives. However, the number of tests required exceeds that of the two-stage Dorfman procedure.

x1 x2 x3 x4 x5 x6 x7 x8 x9

a1 a2 a3 a4 a5 a6

FIGURE 7. Illustration of a random biregular test design with ∆= 3 and Γ= 4

2.3. Probabilistic constructions. More sophisticated test designs have been proposed in the mathematical theory
of group testing. The best current, and in certain asymptotic settings provably optimal, test designs harness ran-
domisation [4, 11]. For instance, in the random biregular test design every test pool has an equal size Γ and every
individual sample joins an equal number∆ of pools; see Figure 7 for an illustration. In other words, the test design
G = Gn,m(Γ,∆) is chosen uniformly at random from the set of all (∆,Γ)-regular bipartite graphs [21].3 In order to
extract the maximum amount of information about the ground truth, the parameters Γ,∆ should be chosen so as
to maximise the conditional entropy of the vector σ̂ of test results. Hence, Γ,∆ should be chosen so that about half
the tests will be positive:4

∆= m log(2)

nλ
Γ= log(2)

λ
. (2.1)

Why does such a randomised construction seem promising? Intuitively the randomness of the test design re-
duces dependencies between the different test results σ̂(ai ) to a minimum. Thus, with ∆,Γ chosen as above and

3To be precise, G is typically drawn from the pairing model of graphs with given degrees. In this model, it is rare but possible that the same
individual joins a test pool twice. In practice, such double occurrence could, of course, be reduced to single occurrences.

4Of course, due to rounding issues we cannot ensure that the expected number of positive tests is precisely equal to m/2.
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for a number m of tests up to a certain threshold, we can hope to squeeze as much as one bit’s worth of information
from each test. Similar randomised constructions have proved powerful in coding theory and compressed sensing
as well [16, 15, 26, 34].

While in the designs that we discussed previously obvious inference algorithms suggested themselves, in the
case of the random biregular design matters are not quite so straightforward. In the case p = q = 1 maximum a
posteriori inference boils down to a minimum hypergraph vertex cover problem [10]. However, this problem is
NP-hard and even on random instances no efficient algorithm is known.

A blunt but efficient algorithm that has been analysed in the case p = q = 1 goes by the name of definite defec-
tives (‘DD’) [3]. The algorithm classifies as infected every sample that is included in positive test pools only and that
appears in at least one positive test pool where all other samples appear in a negative test. All other samples are
classified as uninfected. In symbols,

σDD(x j ) =
∧

a∈∂x j

σ̂(a)∧
∨

a∈∂x j

∧
y∈∂a
y 6=x j

∨
b∈∂y

(1− σ̂(b)).

For p = q = 1 this algorithm will never produce false positives but may render false negatives. Several similarly-
flavoured algorithms have been analysed mathematically. Aldridge analysed an adaptive test design whose differ-
ent stages employ random biregular test designs with suitably chosen degrees [2]. This adaptive test design carried
out over an unbounded number of stages achieves rates in excess of 0.95 bits per tests. However, the large number
of stages might render the scheme impractical.

2.4. Glauber dynamics. The DD algorithm merely extracts binary information about each sample. For a more fine-
grained picture we would need to get a better handle on the posterior distribution (1.3) of the random test design.
An immediate idea is to use a Markov Chain Monte Carlo algorithm to approximate the marginals of the posterior.
Specifically, the Glauber dynamics starts at a random initial configuration σ(0) = (σ(0)(xi ))i=1,...,n drawn from the
prior. Thus, the individual σ(0)(xi ) are independent Be(λ) variables. Glauber then proceeds to generate a random
sequence (σ(t ))t=0,...,T of configurations by updating the status of a random sample at each time step according to
(1.3); see [27] for a detailed derivation of the Glauber update rule. The hope is that for moderate T the empirical
means of the sequence approximate the actual posteriors well, i.e.,

µG ({σ(x j ) = s}) ≈ 1

T

T∑
i=0

1
{
σ(t )(x j ) = s

}
( j = 1, . . . ,n; s = 0,1). (2.2)

At this point, no mathematical analysis of Glauber exists. Furthermore, an empirical assessment of (2.2) is
difficult because even for moderate values of n we cannot hope to compute the marginals of the posterior (1.3)
exactly by exhaustive enumeration. Nonetheless, an experimental study of Glauber has been conducted in [14].

2.5. Informative Dorfman. Even if we assume that Glauber (or some other algorithm) approximates the posterior
marginals well, how could we use this information in the second stage? A simple idea is to revisit the original
Dorfman design. Hence, equipped with the posterior marginals from the first round, we could set up test pools
such that each sample gets placed in precisely one pool. But now we could try to take the posteriors from the first
stage into consideration in compiling the pools. Finally, just like in the original Dorfman scheme one could test
the samples in each pool that returns a positive result separately. This procedure goes by the name of informative
Dorfman [29].

How exactly do we take advantage of the marginals to set up the pools? A natural idea is to sort the samples
increasingly according to their marginals and pool them in this order. A simple optimisation given the sequence
of marginals then yields the optimal sequence of pool sizes. The pools containing samples with small marginals
are relatively large, while samples with marginals above 0.3 get tested individually. A combination of Glauber and
informative Dorfman has been studied empirically in [14]. The key finding was that for a given number of tests this
procedure worked decently well but was still outperformed by quite a margin by more complicated multi-stage test
designs and algorithms. In our study, we find that the marginals obtained by running Belief Propagation closely
resemble the empirical marginals of Glauber and thus consistently use Belief Propagation in our analyses.

3. ADAPTIVE BELIEF PROPAGATION

In this section we discuss the new design and inference algorithm. The first stage employs the random biregular
test design from Section 2.3. Given the results of the first stage, in the second and third stage we use a blend
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of the random biregular design and informative Dorfman. For the inference algorithm we seize upon the Belief
Propagation message passing paradigm [33]. Since Belief Propagation and the mathematical theory behind this
algorithm inform the entire construction, that is where we start.

3.1. Belief Propagation. In recent years the Belief Propagation message passing paradigm has been applied in
combination with randomised constructions with stunning success. Prominent examples include coding theory
and other signal processing tasks such as compressed sensing [16, 26, 34]. The development of the Belief Propaga-
tion technique in conjunction with randomised constructions has been inspired by deep ideas from the statistical
mechanics of disordered systems [30]. More recently, a substantial body of mathematical research has been de-
voted to Belief Propagation; e.g., [5, 12, 19, 40]. Although most of the theoretical work from both the physics and
maths communities is intrinsically asymptotical, we let these ideas guide our quest for a practical group testing
design.

Belief Propagation is a generic message passing technique for approximating the marginals of Boltzmann dis-
tributions on factor graphs. The posterior distribution (1.3) turns out to be a specimen of such a Boltzmann dis-
tribution. The basic intuition behind Belief Propagation, which has been substantiated mathematically to a good
extent, is that under certain assumptions the posterior distribution admits a succinct representation in terms of
messages [12, 13, 30, 42]. These assumptions are provably met in many Bayes-optimal inference problems on ran-
dom factor graphs, at least asymptotically as the problem size tends to infinity [6, 9]. The group testing problem as
modelled in Section 1.2 is an example of such a Bayes-optimal inference problem.

At first glance the posterior distribution (1.3) appears to be quite a difficult object of study. For instance, if
we were to estimate the entropy of this distribution we might have to inspect all 2n possible vectors σ ∈ {0,1}n .
But according to the Belief Propagation paradigm we can get a handle on the posterior distribution in terms of
messages associated with the edges of the test design G =Gn,m(Γ,∆). Formally, the message space of M (G) consists
of vectors

(µx j →ai (s),µai→x j (s)) j=1,...,n; i=1,...,m; x j ∈∂ai ; s∈{0,1}.

The idea is that there are two messages µx j →ai ( · ), µai→x j ( · ) associated with every edge of G , one directed from the
sample x j to the test ai and one in the opposite direction. The messages themselves are probability distributions
on {0,1}. Thus,

µx j →ai (0),µx j →ai (1) ∈ [0,1] and µx j →ai (0)+µx j →ai (1) = 1,

and similarly for µai→x j ( · ).
Roughly speaking, µai→x j ( · ) is meant to represent the impact that ai has on x j in the absence of all other tests

b ∈ ∂x j . Moreover, µx j →ai ( · ) represents the status of x j in the absence of test ai . More formally, we define the
standard message µG ,x j →ai (s) as the posterior probability that σ(x j ) = s given the test design G −ai obtained from
G by omitting test ai and given the test results (σ̂(ah))h 6=i . In light of (1.3) we can write this probability out explicitly
as

µG ,x j →ai (s) ∝
∑

σ∈{0,1}X
σ(x j )=s

n∏
i=1

λσ(xi )(1−λ)1−σ(xi )
m∏

i=1
ψσ̂(ai )

(
(σy )y∈∂ai

)
( j = 1, . . . ,n; i = 1, . . . ,m; x j ∈ ∂ai ; s ∈ {0,1}),

with the ∝-sign hiding the normalisation to ensure that µG ,x j →ai (0)+µG ,x j →ai (1) = 1. Similarly, the standard mes-
sage µG ,ai→x j (s) is defined as the posterior probability that σ(x j ) = s given the test design G − (∂x j \ {ai }) obtained
by removing all tests that x j takes part in except for ai and given the test results σ̂(ah) of all tests ah 6∈ ∂x j \ {ai }.

Conceived wisdom, vindicated mathematically for a broad family of inference problems, predicts that asymp-
totically these messages satisfy the following Belief Propagation equations [6, 9, 12, 42]:

µG ,x→a(s) ∝λs (1−λ)1−s
∏

b∈∂x\{a}
µG ,b→x (s), (3.1)

µG ,a→x (0) ∝ 1−q + (p +q −1)
∏

y∈∂a\x
µG ,y→a(0), µG ,a→x (1) ∝ 1−q if σ̂(a) = 0, (3.2)

µG ,a→x (0) ∝ q + (1−p −q)
∏

y∈∂a\x
µG ,y→a(0), µG ,a→x (1) ∝ q if σ̂(a) = 1. (3.3)
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These equations express the notion that the random biregular design Gn,m(Γ,∆) minimises dependencies between
the test results. Furthermore, we expect that the marginals of the posterior distribution can be well approximated
in terms of the messages:

µG ({σ(xi ) = s}) ∝λs (1−λ)1−s
∏

b∈∂xi

µG ,b→xi (s). (3.4)

Apart from the marginals, asymptotic results also suggest that the entropy of the posterior distribution can be
approximated in terms of the messages [9, 12, 30]. This approximation comes in terms of a functional called the
Bethe free energy, defined as

BG =
∑

x∈X

BG ,x +
∑

a∈A

BG ,a −
∑

x∈X ,a∈∂x
BG ,x,a with (3.5)

BG ,x = log
∑

s∈{0,1}

∏
a∈∂x

µG ,a→x (s) (3.6)

BG ,a =
{

log
(
1−q + (p +q −1)

∏
x∈∂a µG ,x→a(0)

)
if σ̂(a) = 0

log
(
q + (1−p −q)

∏
x∈∂a µG ,x→a(0)

)
if σ̂(a) = 1

(3.7)

BG ,x,a = log
∑

s∈{0,1}
µG ,x→a(s)µG ,a→x (s). (3.8)

The resulting approximation of the entropy reads

HG =BG −n logλ+
n∑

i=1
µG ({σx = 0}) log

λ

1−λ (3.9)

−
m∑

i=1
σ̂(ai )=0

p
∏

x∈∂ai
µG ,x→ai (0)

1−q + (p +q −1)
∏

x∈∂ai
µG ,x→ai (0)

log p + (1−q)(1−∏
x∈∂ai

µG ,x→ai (0))

1−q + (p +q −1)
∏

x∈∂ai
µG ,x→ai (0)

log(1−q)

−
m∑

i=1
σ̂(ai )=1

(1−p)
∏

x∈∂ai
µG ,x→ai (0)

q + (1−p −q)
∏

x∈∂ai
µG ,x→ai (0)

log(1−p)+ q(1−∏
x∈∂ai

µG ,x→ai (0))

q + (1−p −q)
∏

x∈∂ai
µG ,x→ai (0)

log q.

Hence, in order to estimate the marginals and the entropy of the posterior we need to calculate the Belief Prop-
agation messages. A natural idea is to perform a fixed point iteration using the Belief Propagation equations (3.1)–
(3.3). Of course, the equations (3.1)–(3.3) may possess several solutions; they usually do [9, 42]. Whether or not the
fixed point iteration homes in on the correct solution then depends on the initialisation.

While there is no generic recipe for choosing an appropriate initialisation µ(0) ∈ M (G), two choices suggest
themselves. First, we could initialise the messages according to the prior λ, i.e.,

µ(0)
x j →ai

(s) =λs (1−λ)1−s . (3.10)

Second, we could initialise the messages in accordance with the ground truth, i.e.,

µ(0)
x j →ai

(s) =σ(x j ). (3.11)

The latter is not practically useful for the obvious reason. But the analogy with other applications of Belief Propa-
gation for inference problems suggests that if the fixed point iteration converges to the same solution to (3.1)–(3.3)
from the two initialisations (3.10) and (3.11), then this solution actually is a good approximation to the correct
messages. Furthermore, whether or not (3.10) and (3.11) yield the same solution we can try out experimentally.

One last but crucial point remains to be clarified: how precisely do we perform the fixed point iteration? The
textbook method is to perform message updates in parallel. This means that, starting from the initialisation
(µ(0)

x j →ai
)i , j , we compute all test-to-sample approximations µ(0)

ai→x j
via (3.2)–(3.3). Then we use these together with

(3.1) to compute the next approximation (µ(1)
x j →ai

( · ))i , j to all sample-to-test messages, and so forth.
This parallel updates mechanism was tried out experimentally in [14]. However, this method does not con-

verge. Instead, the messages oscillate between odd and even rounds as shown in Figure 8. Similar oscillations
emerge in other applications of Belief Propagation. They may result from an instability of the empirical mean of
the messages. To elaborate, if in some particular iteration t the deviation from the prior

n∑
j=1

m∑
i=1

1
{

ai ∈ ∂x j
}

(µ(t )
x j →ai

(1)−λ) (3.12)
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FIGURE 8. Illustration of the oscillatory behavior of Belief Propagation when performing parallel
updates for λ= 0.05 and 0.2 tests/n for the noiseless setting

is positive, then we should expect a negative deviation in the next round. This is because due to (3.12) in the next
iteration many tests will receive a relatively large indication from that one of their samples may be infected. The
test will therefore send out “less urgent” messages to the other samples. Conversely, if (3.12) is negative, then in
iteration t +1 we expect to see a positive deviation. Due to the analytic nature of the update rules (3.1)–(3.3) these
oscillations do not dampen down but actually blow up, leading to oscillations between odd and even rounds. This
observation led the authors of [14] to turn to the computationally more intensive Glauber dynamics algorithm.

But actually oscillations of this type have been observed in other problems as well and several ideas for tackling
the problem are on the market. Perhaps the most organic solution, and the method to which we resort, is to update
the messages in a randomised fashion rather than in parallel. Hence, starting from the initialisation (µ(0)

x j →ai
( · ))i , j ,

we apply (3.2)–(3.3) once to initialise the test-to-sample messages µai→x j ( · ) as well. Then at each time t ≥ 1 we
choose an edge ai x j of G randomly and also flip a fair coin. If the coin comes up heads we update the message

µ(t )
x j →ai

( · ) according to (3.1). Otherwise we update µ(t )
ai→x j

( · ) according to (3.2)–(3.3). The random choices break
the cycle of oscillations. We stop the fixed point iteration after a fixed number T of steps. The precise choice of T is
guided by experiments but of course T should be chosen large enough so that every message will likely get updated
several times. We note that this update scheme does not impede practical matters from using our algorithm in a
laboratory setting since it purely pertains to the computations behind the scene and does not impact how samples
are split and combined.

Beyond relying on asymptotic ideas and comparing the messages that result from the two aforementioned
initialisations we take two additional steps to corroborate the results of Belief Propagation. First, we compared
the marginals obtained by Belief Propagation with the empirical marginals of Glauber dynamics on a number of
samples. They match. Second, we compared the marginals obtained via Belief Propagation on moderately sized
biregular test designs with the marginal distributions obtained via population dynamics, a heuristic intended to
approximate the limiting distribution of the marginals as n →∞ [30]. Once again the Belief Propagation results
align very well. Figure 9 displays the typical outcome of the Belief Propagation for different numbers of tests along
with the estimate (3.9) of the remaining entropy.

What conclusions are to be drawn regarding a promising test design? We see three different scenarios.

• For small numbers m of tests we can extract some information from the negative tests. For instance, in the
case p = 1 of perfect specificity we can rest assured that any sample included in a negative test is indeed
uninfected. But beyond the direct effect of the negative tests the marginals do not align particularly well
with the ground truth.

• The second scenario concerns intermediate values of m. Here Belief Propagation gains information from
both positive and negative test results. As a consequence, the marginals start to align better with the
ground truth.

• Finally, once m gets quite large the ground truth leaves a clear imprint on the test results. In this scenario
we can recover the ground truth with good accuracy, albeit at the expense of investing many tests.

In light of what we learned on Belief Propagation, we now move on to describe the new adaptive Belief Propagation
test design.
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FIGURE 9. Illustration of the posterior distribution from running Belief Propagation on a random
biregular test design for with 0.15 (top left), 0.25 (top right) and 0.6 (bottom left) tests/n and
remaining entropy (bottom right) for λ= 0.05 and the noiseless setting.

3.2. The first stage. As the first stage we use the random biregular design G =Gn,m(∆,Γ) with the optimal choice
of ∆,Γ from (2.1) subject to rounding. Thus, the only free parameter is the total number m of tests conducted in
the first stage. Its choice is informed by Belief Propagation.

Specifically, we choose the largest number m of tests up to which each test yields the optimal entropy reduction
of ln2. Practically, this means that we choose m to match the point at which the entropy plot for the corresponding
parameter values flattens. The fourth graphic in Figure 9 shows the approximation of the entropy as a function of
the number of tests for our illustrative case of n = 1000 and λ= 0.05 in the noiseless setting. For other priors and
noise levels, the story turns out to be analogous.

3.3. The second and third stage. Given the approximation of the marginals from the first stage, how should we
proceed? As we saw in Section 2.3 and 2.5, two ideas for the subsequent stages proposed in the literature include
individual testing of all samples whose marginals are not entirely polarised after the first round and informative
Dorfman. The former strategy, known as Definite Defectives, seems wasteful as it completely disregards any non-
trivial information about the marginals resulting from the Belief Propagation computation. The latter suffers from
the same problem as the original Dorfman scheme, namely a potentially fairly large number of false positives and
negatives.

To remedy these issues, we propose a new design that blends the random biregular design with the informa-
tive Dorfman scheme from Section 2.5. For a start we threshold marginals obtained from the first stage at 0.1%
and 99.9%. Thus, we report samples with Belief Propagation marginals less than 0.1% as healthy and those with
marginals beyond 99.9% as infected right after the first stage. The remaining samples are split into two groups,
one comprising samples with marginals below 12.4% and one with marginals above. Let us refer to these as the
low risk and the high risk groups, respectively. The choice of 12.4% marks precisely the threshold beyond which
the expressions (2.1) suggest that any sample should be placed in one test only. Figure 10 provides an illustration.

For the low risk group we set up another random biregular test design on which we run Belief Propagation once
again. The posterior of the first stage now acts as the prior of the second stage. A range of different tests tested
for the biregular test design depending on the prior, the posteriors of the first stage and noise level and the final
recommended test numbers obtained via optimisation over this range. The resulting marginals are again thresh-
olded at 0.1% and 99.9%. Those samples whose marginals fall in between are subsequently retested individually
with their classification being solely determined by the outcome of the individual test.
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setting with m/n = 0.25.

To be more precise, let X ′ be the samples in the low risk group, let n′ = |X ′| and let m′ be the number of
tests dedicated to this group. Thanks to the Belief Propagation results from the first stage we can (approximately)
calculate the average marginal

λ′ = 1

n′
∑

x∈X ′
µG ({σ(x) = 1}.

Mimicing (2.1) we then choose the degrees

∆′ = m′ log(2)

n′λ′ Γ′ = log(2)

λ′ (3.13)

subject to rounding and set up a random biregular test design G ′ = Gn′,m′ (∆′,Γ′) on X ′. Furthermore, we modify
the Belief Propagation equations on this random biregular design to accommodate the marginals computed in the
first stage. Hence, instead of using the universal prior λ′ for all the samples, we substitute the separate marginals
computed in the first stage:

µG ′,x→a(s) ∝µG ({σ̂(x) = 1})s (1−µG ({σ̂(x))1−s
∏

b∈∂x\{a}
µb→x (s). (3.14)

The test-to-sample equations remain the same as in (3.2)–(3.3).
For the high risk group we set up an informative Dorfman design G ′′ as described in Section 2.5. If such a pooled

test turns out to be negative, we classify all samples in this pool as healthy. Otherwise, we conduct individual tests
and classify samples solely based on this individual test result.

3.4. Enhanced accuracy. The construction that we described up to this point is the one labelled adaptive Belief
Propagation 1 in Section 1.3. Enhanced constructions adaptive Belief Propagation 2 and adaptive Belief Propa-
gation 3 further reduce the number of false positives and negatives, at the expense of increasing the number of
tests. Indeed, the adaptive Belief Propagation 1 construction facilitates such enhancements explicitly. This is be-
cause almost all false positives and negatives actually originate from the informative Dorfman procedure in the
second stage, while neither the thresholding nor the second-stage random biregular design tend to produce a no-
table number of mistakes. Therefore, in adaptive Belief Propagation 2 and adaptive Belief Propagation 3 we simply
perform the informative Dorfman procedure twice or thrice independently in parallel. Thus, in adaptive Belief
Propagation 2 and adaptive Belief Propagation 3 we double or triple the number of tests required for the informa-
tive Dorfman bit of the construction, but only for that bit.

If we perform informative Dorfman twice (adaptive Belief Propagation 2), we need to choose whether to reduce
false negatives or false positives. Accordingly, we classify a sample as healthy (infected) if both Dorfman proce-
dures classify it as healthy (infected). In adaptive Belief Propagation 3 we get to avoid both false positives and
false negatives. To this end we classify according to the majority vote of the three informative Dorfman schemes.
Table 3.4 illustrates the number of tests to be performed in the first and second stage depending on the prior and
noise level.
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noiseless moderate noise high noise
algorithm prior m1/n c m1/n c m1/n c
Belief Propagation + indi-
vidual testing

0.5% 0.05 n/a 0.09 n/a 0.11 n/a

1% 0.08 n/a 0.12 n/a 0.16 n/a
5% 0.23 n/a 0.37 n/a 0.45 n/a
10% 0.3 n/a 0.7 n/a 0.34 n/a

Belief Propagation + infor-
mative Dorfman

0.5% 0.045 n/a 0.05 n/a 0.045 n/a

1% 0.075 n/a 0.075 n/a 0.1 n/a
5% 0.28 n/a 0.24 n/a 0.16 n/a
10% 0.125 n/a 0.1 n/a 0.1 n/a

adaptive Belief Propagation
(1x)

0.5% 0.035 1.0 0.05 2.0 0.05 2.0

1% 0.075 1.0 0.085 2.0 0.1 2.0
5% 0.28 1.0 0.18 2.0 0.16 2.0
10% 0.125 0.25 0.15 4.0 0.1 2.0

adaptive Belief Propagation
(2x)

0.5% n/a n/a 0.075 8.0 0.02 8.0

1% n/a n/a 0.12 8.0 0.03 8.0
5% n/a n/a 0.4 2.0 0.36 2.0
10% n/a n/a 0.5 2.0 0.325 2.0

adaptive Belief Propagation
(3x)

0.5% n/a n/a 0.075 8.0 0.02 8.0

1% n/a n/a 0.085 8.0 0.03 8.0
5% n/a n/a 0.4 2.0 0.4 2.0
10% n/a n/a 0.55 2.0 0.5 2.0

TABLE 1. Number of tests for the first and second stage found via optimization for various algo-
rithms, priors and noise levels. The number of tests in the second stage in terms of the stated
parameter c can be obtained as cλ′n′ log(n′) with λ′ and n′ defined as the average marginal and
size of the low risk group, respectively.

4. ASYMPTOTIC CONSIDERATIONS

Clearly, adaptive Belief Propagation relies on heuristics and is not asymptotically optimal. This begs the question
of how we would adapt the design and algorithm if we decide to live unburdened by practical considerations and
consider the case n →∞?

4.1. Variations on adaptive Belief Propagation. The optimal drop in entropy seen in Figure 9 shows that running
Belief Propagation on a random biregular test design in the first stage seems like a good idea. The discrete partition
into three groups in the second stage, however, gives something away. Indeed, in the asymptotic regime infinites-
imal intervals of posterior marginals contain an unbounded number of samples.5 Thus, it seems information-
theoretically optimal to construct a random biregular design for every single small marginal interval and repeat
this procedure over a few stages. However, such an approach does not seem practical since for moderate n each
random biregular design would only contain very few samples.

A simpler alternative that we considered is to still include all samples in one single second-stage test design, in
which we choose the number of tests in which each sample takes part according to the posterior marginal from the
first stage. Specifically, we chose these numbers so that in expectation half the tests should be positive. However,
this design turned out to be unstable for small values of n because of random fluctuations.

5Of course, depending on the prior and the noise setting the distribution of the posterior marginals need not be supported on the entire
unit interval.
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4.2. Plain Belief Propagation. Thus far we disregarded what might seem at first glance the most straightforward
scheme: just run Belief Propagation on a random biregular design and then simply threshold the marginals at, say,
50%. An obvious plus of this approach is that it requires one stage only. Indeed, when we simulated this scheme for
large group testing instances such as n = 10000, this approach turned out to work extremely well. Particularly for
small priors such as 0.5% and 1%, the plain Belief Propagation plus thresholding design is on par or even outper-
forms adaptive Belief Propagation in terms of both efficiency and reliability. However, for smaller values of n plain
Belief Propagation plus threshold turns out to be extremely vulnerable to fluctuations of the number k of infected
samples. This is because such fluctuations might cause the fraction of positive tests to significantly deviate from
half.

4.3. Scale effects. All the simulation results were presented for group testing instances with n = 1000. However, we
might be interested in smaller instances of say n = 100 or larger ones such as n = 10000. We performed extensive
simulations in these directions and found that our results, particularly the power of the adaptive Belief Propagation
scheme carry over to those group testing sizes as well, subject to rounding issues and few samples in a second stage
for small instances necessitating slightly more tests.

4.4. Population dynamics. In the light of these scaling results for different instance sizes, let us spare a few more
lines on the population dynamics already touched upon above. As mentioned above, this heuristic allows us to get
a glimpse of the marginal distribution resulting from running Belief Propagation as n →∞ [30]. To this end, we
require as input the distribution of infected and healthy samples in the local neighbourhood of a sample which is
provided in [23]. Subsequently, we iteratively sample the local neighbourhood for infected and healthy samples
and perform one-step Belief Propagation updates to model the marginal distribution of those samples whose mar-
ginal is not completely polarised. The resulting distribution which is shown in Figure 11 for a prior of 5% and the
noiseless setting for illustration purposes closely resembles the marginal distribution that we observe from run-
ning Belief Propagation in our simulation in the first stage. As a side product, we obtain the proportion of polarised
healthy and infected samples which lines up nicely with our simulation results. It should be noted that the popu-
lation dynamics heuristic is nowhere near a complete analysis of Belief Propagation on random biregular graphs.
Given the gains in efficiency and reliability that we observe in this empirical work for moderately-sized instances,
a formal analysis of Belief Propagation seems to be an important next step in group testing research.
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FIGURE 11. Illustration of the asymptotic fraction of samples with polarised marginals and the
posterior distribution for non-polarised samples obtained by running population dynamics on
the offspring distribution by [23] for λ= 0.05 in the noiseless setting

5. DISCUSSION

Group testing is a powerful method to efficiently and accurately detect infected samples. Since the mathematical
work on group testing deals with the asymptotic n →∞ scenario, practical adoption of methods proposed in this
literature has been limited. Instead practitioners tend to apply very simple test designs dating back to the 1940s. In
this paper we therefore conducted an experimental study that shows how a mildly more sophisticated test design
can significantly improve the accuracy of the overall test results by comparison to classical methods without asking
for many more tests. The new test design comes with an efficient, easy-to-run and easy-to-implement algorithm
that determines the status of each sample from the test results. Since the new design employs randomisation,
its adoption is probably feasible only in a practical setting that employs a degree of automation in preparing test
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pools. But on the plus side the new adaptive Belief Propagation design keeps the pool sizes and the number of
pools that each sample has to be placed in fairly low.

Apart from the group testing model studied in the present paper, there are several other, more complicated
models. For example, in quantitative group testing each test returns the number of infected samples rather than a
binary positive or negative result. Further variants include the pooled data problem, the generalised coin weighing
problem or the compressed sensing problem [17, 20].

What are the loose ends of the present work? On the one hand, it seems worthwhile to consider alternative
noise models. A candidate might be one where the specificity decreases in the test size. Both the fixed noise model
considered in this work and this diluted model have value from a practical perspective and it would be interesting
to see whether our results carry over. On the other hand, the success of Belief Propagation in practical group testing
leaves us wondering whether it is guaranteed to converge to a fixed point reminiscent of the ground truth. Hence,
a mathematical analysis of Belief Propagation remains as an outstanding open problem.
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APPENDIX A. SAMPLE SPLITS AND TEST DEGREE

The algorithms required the following number of maximum test degree and the following maximum and aver-
age split of samples. The algorithms can be readily adjusted to work with smaller test degrees or sample splits at
the expense of slightly more tests.
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noiseless moderate noise high noise
algorithm prior Γmax ∆max ∆avg Γmax ∆max ∆avg Γmax ∆max ∆avg

Belief Propagation +
individual testing

0.5% 140 8 7.0 134 13 12.0 137 16 15.0
1% 75 7 6.0 67 9 8.0 69 12 11.0
5% 14 4 3.1 14 6 5.2 14 7 6.2
10% 7 3 2.3 8 6 5.2 6 3 2.8

Belief Propagation +
informative
Dorfman

0.5% 134 8 6.0 140 9 7.1 134 8 6.2
1% 67 7 5.1 67 7 5.2 70 9 7.2
5% 15 6 4.1 20 5 3.5 13 4 2.9
10% 8 3 1.8 14 3 2.3 10 3 2.3

adaptive Belief
Propagation

0.5% 143 8 5.2 140 11 7.6 140 13 8.0
1% 67 8 5.1 71 12 6.7 70 13 8.0
5% 15 7 4.1 147 12 6.2 66 12 6.5
10% 8 3 1.8 172 19 10.3 50 10 4.9

APPENDIX B. DISTRIBUTION BETWEEN STAGES

Based on the number of tests in the first and second stage, the following table shows the fraction of samples
identified in each round. It evinces that despite a total of three stages needed for adaptive Belief Propagation the
majority of samples are identified already in the first and second stage, depending on the prior and noise level.

0.0 0.2 0.4 0.6 0.8 1.0
fraction of individual identified

0.005
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r

algorithm
adaptive bp
bp + inf. drofman
bp + ind

stage
stage 1
stage 2
stage 3

FIGURE 12. Fraction of samples identified in each stage by Belief Propagation followed by indi-
vidual testing, Belief Propagation followed by informative Dorfman and adaptive Belief Propaga-
tion
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Abstract
The quantitative group testing (QGT) problem deals with efficiently identifying a small number
of infected individuals among a large population. To this end, we can test groups of individuals
where each test returns the total number of infected individuals in the tested group. For the regime
where the number of infected individuals is sublinear in the population size we derive a sharp
information-theoretic threshold for the minimum number of tests required to identify the infected
individuals with high probability. Such a threshold was so far only known for the case where the
infected individuals form a constant fraction of the population (Alaoui et al. 2014, Scarlett & Cevher
2017). Moreover, we propose and analyze a simple and efficient greedy reconstruction algorithm
that matches the performance guarantees of much more involved constructions (Karimi et al. 2019).
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1 Introduction

We consider the problem of quantitative group testing (QGT) which is defined as follows.
Suppose that k individuals out of a population of size n suffer from a rare disease. Then
the goal is to identify the infected individuals with as few tests as possible. To this end, we
are equipped with a testing procedure which allows us to test groups of individuals. In the
quantitative variant we consider, each test outputs the exact number of infected individuals
in the tested group (see Figure 1).

Group testing has its roots in the work of Dorfman [11], Erdős and Rényi [12], Djackov
[9], and Shapiro [25]. More recently, QGT has gained a lot of interest in the literature
[1, 5, 13, 18, 23], with applications in a multitude of disciplines such as DNA screening [24],
identifying genetic carriers [6] and machine learning [20].

In this paper we study the sublinear regime k ≪ n, where the number of infected
individuals scales sublinearly in the population size. Furthermore, we restrict ourselves to
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2 Quantitative Group Testing in the Sublinear Regime

x1 x2 x3 x4 x5 x6 x7

2 2 3 1 1

Figure 1 A small example of a QGT instance with the individuals x1, . . . , x7 at the top and the
tests a1, . . . , a5 at the bottom. Infected individuals are colored in gray and test results are given in
the test nodes. The dashed lines highlight the appearance of multi-edges.

non-adaptive test-designs, where all tests have to be conducted in parallel in a single step.
This setting has recently gained a lot of attention in the closely related binary group testing
problem [2, 7], in which the tests only output whether at least one individual is infected in
the tested group. In this setting, we are interested in two types of phase-transitions that
commonly arise in the analysis of inference problems:

First, what is the minimum number of tests minf which allows us to infer the infected
individuals from the test results?
Second, how many tests malg are required such that an efficient algorithm can compute
the infected individuals from given test results?

We will refer to the first phase-transition as the information-theoretic threshold minf and to
the second phase-transition as the algorithmic threshold malg.

1.1 Related Work
Information-Theoretic Aspects. A simple information-theoretic lower bound can be ob-
tained by a folklore counting argument: each test outputs a result in {0, . . . , k}, thus a test
design with m tests can produce at most (k + 1)m different outcomes. This number must be
larger than

(
n
k

)
in order to distinguish all possible configurations of k infected individuals.

Applying standard asymptotic bounds, we obtain

mQGT
count ≥ ln n

k

ln k
k. (1)

On the positive side, Bshouty [5] prove that inference of the set of infected individuals is
efficiently possible with (2 + ε)mQGT

count tests by using an adaptive procedure that runs in
multiple rounds. If we restrict the analysis to non-adaptive designs, inference of the infected
individuals in one round of testing is not possible by any design which uses less than

mQGT
non-ada = 2

ln n
k

ln k
k (2)

tests [9]. Grebinski and Kucherov [16] provide a non-adaptive design with an exponential-time
decoding algorithm which guarantees inference with (2 + ε)mQGT

non-ada tests using separating
matrices. So far, these results hold independently of k. If we restrict ourselves to the linear
regime where k = Θ(n), much stricter results are already known: Alaoui et al. [1] and Scarlett
and Cevher [23] show that there is an exponential time construction that achieves inference
with (1 + ε)mQGT

non-ada tests.

Algorithmic Aspects. Bshouty [5] presents an efficient adaptive algorithm that succeeds at
mQGT

non-ada. However, for non-adaptive schemes, there are significant gaps of Θ(ln n) between
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the information-theoretic lower bound and the currently best known efficient algorithms
[1, 10, 13, 14, 19, 21]. For instance, Alaoui et al. [1] present an Approximate Message Passing
algorithm for the linear regime of QGT. Donoho and Tanner [10] present a decoding strategy
based on ℓ1-minimization, and Foucart and Rauhut [14] introduce the Basis Pursuit-algorithm
which both solve the quantitative group testing problem with

2k ln n

k
and 2k ln n ∼ 2

1 − θ
k ln n

k

tests, respectively, in the sublinear regime k ≪ n. (Note that these algorithms solve the
more general Compressed Sensing problem. There are various improvements over the Basis
Pursuit algorithm known (e.g., the Orthogonal Matching Pursuit [21] and its improved
version for discrete signals [26]) but as Wang and Yin [28] discuss, they do not perform
asymptotically better in the quantitative group testing setting. The most recent algorithms
explicitly designed for QGT in the sublinear regime are due to Karimi et al. [19]. The authors
provide two algorithms based on graph codes that require at least

1.72k ln n

k
and 1.515k ln n

k

tests, respectively [18, 19], again leaving a multiplicative ln n-gap to the lower bound?.
Furthermore, after the first version of this paper appeared on arXiv, Feige and Lellouche [13]
introduced a relaxation of the QGT problem called Subset Select problem. They prove that,
under mild assumptions, an algorithm succeeding at this relaxation can be easily turned into
an algorithm for QGT without significantly increasing the required number of tests.

1.2 Our Contributions
We study the QGT problem under the random regular model G which is known to be
information-theoretically optimal in the linear regime of QGT and in similar inference
problems [7]. More precisely, we let G = (V ∪ F, E) be a random bipartite multi-graph
with factor nodes F = {a1, . . . , am} representing the tests, variable nodes V = {x1, . . . , xn}
representing the vertices and edges E indicating how often a specific individual takes part
in a given test. Each test ai ∈ F chooses Γ = n/2 individuals uniformly at random with
replacement. Hence, the number of tests per individual (with multi-edges counted multiple
times) is a binomially distributed random variable with mean ∆ = m/2. Furthermore, the
expected number of distinct tests to which an individual belongs is ∆⋆ = (1 − exp(−1/2))m.
Finally, we denote by σ ∈ {0, 1}n the infection status of the individuals and by y = y(G,σ)
the vector of test results.

Information-Theoretic Results. We prove that in the sublinear regime where k = nθ

for some θ ∈ (0, 1) it is possible to reconstruct σ from (G,y) with high probability if
(1 + ε)mQGT

non-ada tests are conducted. More precisely, we show that there is, with high
probability, no second configuration τ ∈ {0, 1}n leading to the same test results. Note that in
an independent work, Feige and Lellouche [13] submitted an alternative proof of Theorem 1
based on the analysis of random matrices to arXiv.

▶ Theorem 1. Suppose that 0 < θ < 1, k = nθ, and ε > 0 and let

minf = minf(n, θ) = 2k ln(n/k)
ln k

= 21 − θ

θ
k.

If m > (1 + ε)minf(n, θ), σ can be computed from G and y w.h.p.
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4 Quantitative Group Testing in the Sublinear Regime

Algorithmic Results. Beside this novel information-theoretic result, we also present a simple
greedy algorithm called Maximum Neighborhood (MN) Algorithm. It follows a thresholding
approach that is much simpler than the known algorithms by Karimi et al. [18, 19], which
are technically highly challenging. A formal definition of the MN-Algorithm is given in
Algorithm 1.

Algorithm 1 The Maximum Neighborhood Algorithm, a greedy algorithm for QGT
Input: G, y, k

Output: Estimation σ̃ for σ.
1 For every xi for i ∈ [n] calculate Ψi =

∑
j∈∂⋆xi

yj ;
2 Sort the individuals i in decreasing order by Ψi − ∆⋆

i
k
2 ;

3 Declare the first k individuals as infected, declare the other individuals as uninfected;

On an intuitive level, the MN-Algorithm works as follows. First, we sum up the test
results in the neighborhood of each individual, counting multi-edges only once. The sum is
then centralized by its expected value. Finally, we declare those individuals with a large score
as infected and the remaining individuals as uninfected. In our second main theorem, we
analyze how many tests are required for the MN-Algorithm to recover the correct σ w.h.p.
▶ Theorem 2. Suppose that 0 < θ < 1, k = nθ, and ε > 0 and let

mmn(n, θ) = 4
(

1 − 1√
e

)
1 +

√
θ

1 −
√

θ
k ln(n/k).

If m > (1 + ε)mmn(n, θ), then Algorithm 1 outputs σ w.h.p. on input G, y, and k.

1.3 Discussion
Our results extend the results of Alaoui et al. [1] from the linear regime to the sublinear
regime. For θ → 1, our threshold of Theorem 2 turns out to converge towards the threshold
of [1]. The study of the sublinear regime is inspired by studies of the compressed sensing
problem with a sparse underlying signal [3]. In the special case of QGT, it was initiated
by [19]. It turns out that this regime is indeed interesting in real-world applications, as
prominent examples show. For instance, Heaps law of epidemiology [4] models the early
spread of pandemics in that way. It is not surprising that also other variants of group testing
including binary group testing have been analyzed recently in the sublinear regime. By
now, a vast body of related literature exists (see, e.g., the survey by Aldridge et al. [2]).
Interestingly, for the binary (presumably more difficult) variant an efficient algorithm is
known which requires mGT ∼ ln−1(2)k ln n

k tests for θ ≤ ln 2/(1 + ln 2) ≈ 0.409 [7]. Thus,
dropping most of the available information and using this binary algorithm outperforms
not only the simple greedy approach discussed in this paper, but also the quite involved
algorithms by Karimi et al. [18, 19] if θ is small enough.

As in state-of-the art designs for binary group testing [2, 7], we allow individuals to
participate in the same test multiple times. While this seems counterintuitive in the first
place, it does not affect practicability of the proposed design. Finally, note that all known
algorithms do not achieve the order of the information-theoretic bound. An exciting avenue
for future research is to investigate whether other algorithms can be order-optimal or even
achieve the information-theoretic bound. However, it might also be the case that QGT
exhibits a similar impossible-hard-easy transition presumed for other statistical inference
problems, where the best known efficient algorithms do not attain the information-theoretic
bounds [17].
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2 Analysis

Model and Notation. We consider a set of n individuals out of which k are infected,
where k = nθ for some θ ∈ (0, 1). We use G = G(n, m, ∆) to denote the random bipartite
multi-graph that models the test design, where m denotes the total number of tests and
∆ = {∆1, . . . , ∆n} describes the number of tests in which each individual participates.
Observe that ∆i ∼ Bin(mn/2, 1/n). Similarly, we let ∆⋆ = {∆⋆

1, . . . , ∆⋆
n} denote the

number of distinct tests with expected value E [∆⋆
i ] = (1 − exp(−1/2))m. In the following

analysis, all asymptotic notation refers to the limit n → ∞.
The vector σ ∈ {0, 1}n encodes which individuals are infected by assigning the value 1 to

infected individuals and the value 0 to uninfected individuals. The vector y ∈ {0, . . . , Γ}m

denotes the test results. When we refer to any other configuration than σ, we simply write σ

for the configuration and y = y(G, σ) for the corresponding test result vector. Additionally,
we write V = {x1, . . . , xn} for the set of all individuals and V0 = {xi ∈ V : σxi = 0} and
V1 = V \ V0 for the set of uninfected and infected individuals, respectively. For an individual
xi ∈ V we write ∂xi for the multiset of tests aj adjacent to xi. Similarly, we write ∂⋆xi for
the set of distinct tests aj adjacent to xi. Analogously, for a test ai we write ∂ai for the
multiset of individuals that take part in test ai.

Recall that in our model every test has size exactly Γ = n/2, and individuals are assigned
uniformly at random with replacement. In the presence of multi-edges, one individual may
appear more than once in ∂ai. If an infected individual xi participates in a test aj more
than once, it increases yj multiple times. For each xi ∈ V , we let Ψi be the sum of test
results for distinct tests adjacent to xi. That is, even if an individual appears more than
once in a test and thus contributes to the test result multiple times, this test contributes to
Ψi only once. The infection status of xi has a significant impact on this sum, increasing it
by ∆i, if individual xi is infected. To account for this effect in our analysis, we introduce a
second variable Φi that sums the adjacent test results and excludes the impact of the status
of individual xi. Formally, for any configuration σ ∈ {0, 1}n we define

Ψi(σ) =
∑

j∈∂⋆xi

yaj
and Φi(σ) = Ψi(σ) − 1{σ(i) = 1}∆i

and let Ψ = (Ψ1, . . . , Ψn) and Φ = (Φ1, . . . , Φn). When we consider a specific instance (G,y),
we will write Ψi = Ψi(σ) and Φi = Φi(σ) for the sake of brevity. Notably, while Ψi is
known to the observer or an algorithm instantly from the test results, Φi is not, since the
individuals’ infection status is unknown.

We let c(n) > 0 denote a positive function from the natural numbers to R+ such that

m = c(n)k ln(n/k)
ln k

.

While we will assume that c(n) = Θ(1) for the information-theoretic bound, we will see that
the algorithmic bound requires c(n) to scale as Θ(ln n).

Define R as the event that, for all i ∈ [n], we have

∆i = m

2 + O
(√

m ln n
)

and ∆⋆
i = (1 − exp (−1/2)) m + O

(√
m ln n

)
.

Due to standard concentration results, R is a high probability event. A proof of the statement
can be found in Appendix A.2.

▶ Lemma 3. For the random experiment leading to graph G, we find P(R) = 1 − o(1).

As Theorems 1 and 2 only contain w.h.p.-assertions, we can safely condition on R.
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6 Quantitative Group Testing in the Sublinear Regime

2.1 The Teacher-Student Model
As in many related inference problems [8] the teacher-student model provides the fundamental
means towards analyzing information-theoretic questions in random constraint satisfaction
problems and will also be employed in the present paper. Specifically, the challenge in random
constraint satisfaction problems lies in deriving probability distributions that are dependent
on a variety of random variables and per-se hard to express. However, deriving probability
distributions conditioned on certain high-probability events is feasible. For an excellent
introduction and mathematical justification of the model, we refer to the reader to [8]. The
setup is the following: a teacher aims to convey some ground truth to the student. Rather
than directly providing the ground truth to the student, the teacher generates observable
data from the ground truth via some statistical model and passes both information to the
student. The student now aims to infer the ground truth from the observed data and the
model.

In terms of this paper, we see σ as the generated ground truth. Its distribution is inherited
from all vectors in {0, 1}n of Hamming weight k. The observable data y, together with
the used pooling scheme G are passed to the student in order to infer σ. In the following,
we analyze the chances of the student to infer the ground truth from the observable data.
First, we derive the model distribution from the provided pair (G,y). Afterwards, we use
the gained knowledge to analyze the chances of the student to recover the ground-truth by
estimating the number of solutions that fulfill the necessary prerequisites. As our goal is
to recover σ w.h.p., we condition on the event that the underlying bipartite multi-graph
behaves almost as expected. We exploit the knowledge about the pooling scheme to derive
high-probability events which we can condition on. Eventually, our analysis outputs the
information whether there is a unique or multiple solutions the student might guess.

2.2 Information-Theoretic Achievability
In order to proof Theorem 1 we count alternative configurations yielding the same test results
as the true configuration. This approach rests on techniques that are regularly employed
for random constraint satisfaction problems [8]. To this end, let Sk(G,y) be the set of all
vectors σ ∈ {0, 1}n of Hamming weight k such that

yai
= |{xj ∈ ∂ai : σ(xj) = 1}| for all i ∈ [m].

In words, Sk(G,y) contains the set of all vectors σ with k ones that label the individuals
infected and uninfected in a way consistent with the test results. Let Zk(G,y) = |Sk(G,y)|.
We need to prove that Zk(G,y) = 1 w.h.p. as soon as the number of tests m exceeds mQGT

non-ada.
In this case, we can find σ via exhaustive search. It turns out that it is much more convenient
to study Zk,ℓ(G,y), the number of alternative configurations that are consistent with the
test results and have an overlap of ℓ with σ. The overlap signifies the number of infected
individuals under σ that are also infected under the alternative configuration. Formally, we
define

Zk,ℓ(G,y) = |{σ ∈ Sk(G,y) : σ ̸= σ, ⟨σ, σ⟩ = ℓ}| .

Thus it suffices to prove that, for m > minf , w.h.p.,
∑k−1

ℓ=0 Zk,ℓ(G,y) = 0. To this end,
two separate arguments are needed. First, we show via a first moment argument that no
second satisfying configuration can exist with a small overlap with σ. Second, we employ the
classical coupon collector argument to show that a second satisfying configuration cannot
exist for large overlaps, i.e., one individual flipped from uninfected under σ to infected under
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an alternative configuration initiates a cascade of other changes in infection status to correct
for this initial change. The following two propositions rule out configurations with a small
and large overlap, respectively.

▶ Proposition 4. Let ε > 0, 0 < θ < 1 and assume that m > (1 + ε)minf(n, k, θ). W.h.p.,
we have

k(1−exp(−1/2))∑

ℓ=0
Zk,ℓ(G,y) = 0.

By Markov’s inequality it clearly suffices to show that E[Zk,ℓ(G,y)] → 0 fast enough for all
0 ≤ ℓ < k − (1 − exp(−1/2)) ln k if m ≥ (1 + ε)minf for some ε > 0. A rigorous proof and the
proofs of the following lemmas can be found in Appendix B. It turns out that E[Zk,ℓ(G,y)]
satisfies

E[Zk,ℓ(G,y)] ≤
(

k

ℓ

)(
n−k

k −ℓ

) m∏

i=1

yai∑

j=1

(
Γ

j, j, Γ−2j

)(
(1−ℓ/k) k

n

)2j (
1−2(1−ℓ/k) k

n

)Γ−2j

.

The combinatorial meaning is immediate. The binomial coefficients count the number of
configurations of overlap ℓ with σ. The subsequent term measures the probability that
a specific configuration σ yields the same test result vector as σ. To this end, we divide
individuals into three categories. The first contains those individuals exhibiting the same
status under σ and σ, while the second and third category feature those individuals that are
infected under σ and uninfected under σ and vice versa. The probability for an individual
to be in the second or third category is (1 − ℓ/k)k/n each, while the probability in the first
category is 1 − 2(1 − ℓ/k)k/n. The key observation is that a test result is the same between
σ and σ, if the number of individuals in the second category is identical to the number in
the third category. We compute the sum over the number of individuals which are flipped.
Since the probability term allows for an individual included in a test multiple times to be
both infected and uninfected, the expression considers cases that do not occur in the model
and therefore is an upper bound to E[Zk,ℓ(G,y)]. Simplifying the term and conditioning on
R yields the first lemma. Let Bin≥i(n, p) be the binomial distribution with parameters n

and p conditioned on being at least i.

▶ Lemma 5. For every 0 ≤ ℓ ≤ k − (1 − exp(−1/2)) ln k and a random variable X ∼
Bin≥1(Γ, 2(1 − ℓ/k)k/n), we have

E[Zk,ℓ] ≤ (1+O(1))E[Zk,ℓ(G,y) | R] ≤ (1+O(1))
(

k

ℓ

)(
n−k

k −ℓ

)(
1√
2π

E
[

1√
X

])m

.

Using standard asymptotics, we are able to simplify this expression.

▶ Lemma 6. For every 0 ≤ ℓ ≤ k − (1 − exp(−1/2)) ln k and n → ∞, we have
1
n

ln (E[Zk,ℓ(G,y) | R])

≤ (1 + o(1))
(

k

n
H

(
ℓ

k

)
+
(

1 − k

n

)
H

(
k − ℓ

n − k

)
− ck/n ln(n/k)

2 ln k
ln
(

2π

(
1 − ℓ

k

)
k

))
.

The key is to choose c such that Zk,ℓ(G,y) → 0 for every ℓ ≤ k − (1 − exp(−1/2)) ln k and
n → ∞. We find that, asymptotically, lnE[Zk,ℓ(G,y)]/n takes its maximum at ℓ = Θ

(
k2/n

)
.

Therefore, the r.h.s. of (6) becomes negative, if and only if the number of tests m, parametrized
by c, is larger than minf(θ, k). This is formalized in the following lemma, concluding the
proof of Proposition 4.
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8 Quantitative Group Testing in the Sublinear Regime

▶ Lemma 7. For every 0 ≤ ℓ ≤ k − (1 − exp(−1/2)) ln k, 0 < θ < 1 and ε > 0 the following
holds. If m ≥ (1 + ε)minf(θ, k) then

1
n

lnE[Zk,ℓ(G,y) | R] < 0.

Proof of Proposition 4. The proposition is a direct consequence of Lemmas 5–7 and Markov’s
inequality. ◀

While we could already establish that there are no feasible configurations that have a small
overlap with the true configuration σ, we still need to ensure that there are no feasible
configurations that are close to σ. Indeed, we can exclude configurations with a large overlap
with the next proposition.

▶ Proposition 8. Let ε > 0 and 0 < θ ≤ 1 and assume that m > (1 + ε)minf(k, θ). Given R
we have Zk,ℓ(G,y) = 0 for all k − (1 − exp(−1/2)) ln k < ℓ < k w.h.p.

Appendix B.4 is devoted to prove Proposition 8 rigorously. The proof, while fundamentally
easy as it follows the classical coupon collector argument, needs some technical attention. If
we consider a configuration σ different from σ with the same Hamming weight k, at least one
individual that is infected under σ, is labeled uninfected under an alternative configuration σ.
Given R, this individual participates in at least ∆⋆

i > m/4 different tests, whose results all
change by at least −1, depending on how often the individual participates. To compensate
for these changes, we need to find individuals x1 . . . xl that are uninfected under σ and
infected under σ and such that their joint neighborhood is a super-set of the changed tests.
The balls-into-bins experiment [22] shows that the size of this super-set is of order at least

(1 − exp(−1/2)) ln m ≥ (1 − exp(−1/2)) ln k.

Now Theorem 1 follows directly.

Proof of Theorem 1. The theorem is a direct consequence of Propositions 4 and 8. ◀

2.3 Greedy Algorithm
We now sketch how to prove Theorem 2. Subsequently, we present simulations that analyze
the performance of the algorithm empirically.

Performance Guarantees. Recall that Ψi is the sum over all test results in the neighborhood
of individual xi (multi-edges counted only once) and ∆⋆

i is the (random) number of disjoint
tests xi belongs to. Finally, let Ej be the σ−algebra generated by the edges connected with
xj . As already discussed, we find that

∆⋆
i = (1 + o(1)) (1 − exp (−1/2)) m

with high probability. Intuitively, an infected individual xi increases the value of Ψi by
∆i = (1 + o(1))m/2 while this is not true for uninfected individuals. Furthermore, by
construction of the random graph, we find that the second neighborhood of xi contains
Bin (Γ∆⋆

i , k/n) infected individuals, thus we expect

E
[
Ψi − ∆⋆

i

k

2

∣∣∣Ei

]
= 1{σ(i) = 1}∆i,
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thus the scores Ψi − ∆⋆
i

k
2 differ between infected and uninfected individuals. The whole

proof of the algorithmic performance boils down to identify a threshold value T (α) such
that, if sufficiently many tests are conducted, all scores of uninfected individuals are below
T (α) while the scores of all infected individuals exceed this threshold w.h.p. If we conduct
m = dk ln n

k tests, we find by a standard application of a Chernoff bound and a union bound
over all infected and, respectively, uninfected individuals that T (α) is a valid threshold
whenever

−(1 − θ)α2d

4 (1 − exp (−1/2)) (1 + o(1)) + θ < 0 and −(1 − θ)(1 − α)2d

4 (1 − exp (−1/2)) (1 + o(1)) + 1 < 0. (3)

Optimizing this expression with respect to α and plugging d into m = dk ln(n/k) yields, for
any ε > 0, the sufficient condition

m ≥ (4 + ε)(1 + o(1)) (1 − exp (−1/2)) 1 +
√

θ

1 −
√

θ
k ln(n/k).

A formal derivation of those statements can be found in Appendix C.

Empirical Analysis. In this section we present simulation results for the MN-Algorithm
(Algorithm 1). In Figure 2 we plot the number of tests required to reconstruct σ for
n ∈ [102, 106] and different values of θ. The dotted lines show our theoretical bounds.
Note that the discontinuities in the theoretical bound stem from rounding the number of
infected individuals to the closest integer. We remark our simulation results align well with
the theoretical predictions for larger values of n. For smaller values of n, our theoretical
results are too pessimistic: the lower-order term hidden in the o(1) in Equation (3) scales as
Θ
(√

ln n
k

)
, and while this expression decreases polynomially fast in n, it is far from vanishing

for small values of n and θ.
In Figures 3 and 4 we analyze the success probability for exact reconstruction of σ and

the number of correctly identified infected individuals. For different numbers of tests we
conducted 100 independent simulation runs for population sizes of n = 103 and n = 104 and
different values of θ. The dashed lines show the phase transition predicted by Theorem 2.
The data in Figure 4 indicate that all but a small fraction of infected individuals are correctly
detected, even if the exact reconstruction of σ is still quite unlikely according to Figure 3.
Overall, the implementation hints at the practical usability of the MN-Algorithm, even for
small population sizes.
▶ Remark 9. The formal proof of the algorithmic bound directly gives an insight about
the convergence speed and thus about the expected performance of the MN-Algorithm for
finite n: we can compute that the MN-Algorithm requires an additional multiplicative factor
of at least
(

1 +
√

2 ln n√
4 (1 − exp (−1/2)) mk

)

tests in addition to the asymptotic analysis for n → ∞. This explains the (slight) deviation
of the theoretical and the empirical results for small values of n. See the proof of Corollary 19
in Appendix C for the rigorous analysis.

157



10 Quantitative Group Testing in the Sublinear Regime
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Figure 3 The plot shows the rate of successful recovery of σ among 100 independent simulation
runs over the number of tests m for different values of θ and n = 103 (left) and n = 104 (right).
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Figure 4 The plots show the overlap – the fraction of correctly classified infected individuals –
among 100 independent simulation runs over the numbers of tests m for different values of θ and
n = 103 (left) and n = 104 (right).
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A Groundwork

A.1 Preliminaries
In this section we present some standard results on concentration bounds and comparing
distributions. Afterwards, we present some technical lemmas from the theory of concentration
inequalities of the binomial distribution and approximating results for random walks that
are used throughout the proof section.

We begin, for the convenience of the reader, with the basic Chernoff bound in the form
which we will employ due to [27].

▶ Lemma 10. Let X ∼ Bin(n, p), ε > 0 and δ ∈ (0, 1). Then we find that

P [X > (1 + δ)np] ≤ exp
(
−npδ2/(2 + δ)

)
and P [X < (1 − δ)np] ≤ exp

(
−npδ2/2

)
.

The following lemmas are results on the asymptotic behavior of random walks. A random
walk R can be described by its transition probabilities R(x, y). The simple random walk on
Z has the transition probabilities R(x, x + 1) = R(x, x − 1) = 1/2.

▶ Lemma 11 (Section 1.5 of [27]). The probability that a one-dimensional simple random walk
with 2j steps will end at its original position is asymptotically given by (πj)−1/2(1 + O(j−1)).

▶ Lemma 12. The following asymptotic equivalence holds for every 0 < p = p(n) < 1 s.t.
np → ∞.

n/2∑

j=1

(
n

2j

)
p2j(1 − p)n−2jj−1/2 = 2−1/2

n∑

j=1

(
n

j

)
pj(1 − p)n−jj−1/2 + O((np)−1) (4)

Proof. Let X ∼ Bin≥1(n, p) and define aj = P (X = j) /
√

j/2 for j = 1 . . . n. Then

aj+1/aj = (p/(1 − p))
(
j/(j + 1)3)1/2 (n − j)

is larger than 1 up to j⋆ ∈ {⌊(n + 1)p⌋ , ⌊(n + 1)p − 1⌋}, depending on n being even or odd,
and strictly less than 1 for j = j⋆ + 1, ..., n. Furthermore, aj = o(1) for every j. Define j′ as
the largest even integer s.t. j′ ≤ j⋆. Then

n/2∑

j=1
a2j ≥ 1

2




j′/2∑

j=1
a2j + a2j−1 +

n/2−1∑

j=j′/2+1

a2j + a2j+1




=


1

2

n∑

j=1
aj


+ 1

2 (aj′+1 + an + an−1 · 1(n odd )) =


1

2

n∑

j=1
aj


+ O((np)−2),

(5)

and similarly

n/2∑

j=1
a2j ≤ 1

2




j′/2∑

j=1
a2j + a2j+1 +

n/2−1∑

j=j′/2+1

a2j−1 + a2j


 ≤


1

2

n∑

j=1
aj


+ O((np)−2). (6)

Equations (5) and (6) jointly imply (4). ◀
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14 Quantitative Group Testing in the Sublinear Regime

Let µ be a distribution, f a real-valued function and X ∼ µ. Then the Jensen gap J (f, µ)
is defined as

J (f, µ) = |E [f(X)] − f (E [X])| .

A well known upper bound on the Jensen gap for functions f : I → R s.t. |f(x) − f(E[X])| ≤
M |x − E[X]| for all x ∈ I (see equation (1.1) of [15]) is given by

J (f, µ) ≤ ME [|X − E[X]|] . (7)

An immediate consequence is the following corollary.

▶ Corollary 13. Let X ∼ Binx≥1(n, p) be a binomial random variable conditioned on being
at least 1, s.t. limn→∞ np = ∞. Then, as n → ∞, the following holds.

E
[
X−1/2

]
=
(
1 + o(n−1)

)
E[X]−1/2 and E

[
X−1] =

(
1 + o(n−1)

)
E[X]−1 (8)

Proof. Let X ′ ∼ Bin(n, p). As P (X = 0) = (1 − p)n = o(1), we find
∥∥X −X ′∥∥

TV = o(1).
Then Lemma 10 and (7) imply
∣∣∣E
[
X−1/2

]
− E[X]−1/2

∣∣∣ ≤ E [|X − E[X]|] = o(n−1) and (9)
∣∣∣E
[
X−1]− E[X]−1

∣∣∣ ≤ E [|X − E[X]|] = o(n−1). (10)

The corollary follows directly from Equation (10). ◀

Finally, we require the following result for the balls-into-bins experiment.

▶ Lemma 14. Suppose that B balls are thrown uniformly at random into D bins. Then,
with probability

(
1 −

(
1 − 1

D

)B
)D

, we find no empty bins.

A.2 Properties of the Pooling Scheme
For the analysis of QGT, the underlying pooling scheme can be seen as a bipartite factor
graph G. The structure is induced by degree sequences ∆ = (∆i)i∈[n] and Γ and the chosen
test design is randomized. Nevertheless we can apply standard techniques to gain insight
into the form of the underlying graph. In order to prove Lemma 3, we show each of the two
statements.

▶ Lemma 15. With probability 1 − o
(
n−2) we have for all i ∈ [n]

∆i = m

2 + O
(√

m ln n
)

.

Proof. From the construction of G, it follows that ∆i is distributed as Bin(mn/2, 1/n).
Then Lemma 10 implies for an individual xi ∈ V

P
(
∆i > m/2 + O

(√
m ln2 n

))
= n−ω(1)

Taking the union bound over all n individuals implies the lemma. ◀

▶ Lemma 16. With probability 1 − o
(
n−2) we have for all i ∈ [n]

∆⋆
i =

(
1 − 1/

√
e
)

m + O
(√

m ln n
)

.
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Proof. The probability that an individual xi is assigned to a specific test aj is given by

p = 1 −
(

1 − 1
n

)Γ
=
(

1 + n−Ω(1)
) (

1 − 1/
√

e
)

.

Since tests select their participating individuals independently of each other, we observe that
∆⋆

i ∼ Bin (m, p). Thus, a standard application of the Chernoff bound and the union bound
over all n individuals implies the lemma. ◀

Those results suffice in order to show that R as given through Lemma 3 is indeed a high
probability event.

Proof of Lemma 3. The lemma follows from Lemmas 15 and 16. ◀

B Proof of Theorem 1

B.1 Proof of Lemma 5

The product of the two binomial coefficients simply accounts for the number of configurations σ

that have overlap l with σ. Hence, with S denoting the event that one specific σ ∈ {0, 1}V that
has overlap ℓ with σ belongs to Sk,ℓ(G,y), it suffices to show forX ∼ Bin≥1(Γ, 2(1−ℓ/k)k/n)
that

P[S | R] ≤ (1 + O(1))
(

1√
2π

E
[

1√
X

])m

By the pooling scheme, the size of each test is fixed to Γ = n/2 with individuals chosen
uniformly at random with replacement. Observe that all tests are independent of each
other. Therefore, we need to determine the probability that for a specific σ and a specific
test ai the test result is consistent with the test result under σ, i.e., yi = yi. Given
the overlap ℓ, we know for a uniformly at random drawn σ that P [σi = σi = 1] = ℓ/n,

P [σi = σi = 0] = (n − 2k + ℓ)/n and finally P [σi ̸= σi] = (k − ℓ)/n holds for all individuals
xi. We get

P[S | R] ≤
m∏

i=1

yi∑

j=1

(
Γ

j, j, Γ − 2j

)(
(1 − ℓ/k) k

n

)2j (
1 − 2(1 − ℓ/k) k

n

)Γ−2j

≤




Γ/2∑

j=1

(
Γ
2j

)(
2(1 − ℓ/k) k

n

)2j (
1 − 2(1 − ℓ/k) k

n

)Γ−2j (2j

j

)
2−2j




m

(11)

The last two components of (11) describe the probability that a one-dimensional simple
random walk will return to its original position after 2j steps, which is by Lemma 11 equal to
(1+O(j−1))/

√
πj. The term before describes the probability that a Bin≥1(Γ, 2(1− ℓ/k)k/n))

random variable X takes the value 2j. For ℓ ≤ k − (1 − exp(−1/2)) ln k the expectation of
X given G is at least of order ln k such that the asymptotic description of the random walk
return probability is feasible. Note that if ℓ gets closer to k, the expectation of X gets finite,
s.t. the random walk approximation is not feasible anymore. Therefore, using Lemma 12, we
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16 Quantitative Group Testing in the Sublinear Regime

can, as long as Γ(2(1 − ℓ/k)k/n) = Ω(ln n), simplify (11) in the large-system limit to

P[S | R] ≤ (1 + O(1))




Γ/2∑

j=1

(
Γ
2j

)(
2(1 − ℓ/k) k

n

)2j (
1 − 2(1 − ℓ/k) k

n

)Γ−2j 1√
πj




m

= (1 + O(1))


1

2

Γ∑

j=1

(
Γ
j

)(
2(1 − ℓ/k) k

n

)j (
1 − 2(1 − ℓ/k) k

n

)Γ−j 1√
πj/2




m

= (1 + O(1))
(

1√
2π

E
[

1√
X

])m

which implies Lemma 5. ◀

B.2 Proof of Lemma 6
Let X ∼ Bin(Γ, 2(1 − ℓ/k)k/n)). Then Lemma 5 and Corollary 13 imply

E[Zk,ℓ(G,y) | R] ≤ (1 + O(1))
(

k

ℓ

)(
n − k

k − ℓ

)
(2πE[X])−m/2

In the following we use the well known fact [27] that as n → ∞ we have

n−1 ln
(

n

np

)
→ H(p),

where the expression H(a) with a ∈ [0, 1] denotes the entropy of a Be(a)-variable such that
H(a) = −a ln(a) − (1 − a) ln(1 − a). Correspondingly by taking the ln(·) on the r.h.s. and
scaling with 1/n, we find that

1
n

ln (E [Zk,ℓ(G,y) | R]) (12)

= 1
n

(
ln(1 + O(1)) + ln

((
k

ℓ

))
+ ln

((
n − k

k − ℓ

))
− m

2 ln(2πE[X])
)

≤ (1 + o(1))
(

k

n
H

(
ℓ

k

)
+
(

1 − k

n

)
H

(
k − ℓ

n − k

)
− m

2n
ln
(

4πΓ
(

1 − ℓ

k

)
k

n

))

= (1 + o(1))
(

k

n
H

(
ℓ

k

)
+
(

1 − k

n

)
H

(
k − ℓ

n − k

)
− ck/n ln(n/k)

2 ln k
ln (2πk (1 − ℓ/k))

)

(13)

Lemma 6 follows. ◀

B.3 Proof of Lemma 7
Recall that for γ = 1 − exp(−1/2) and c being a constant we have

m = ck ln
(n

k

)
/ ln k = c

1 − θ

θ
k and 0 ≤ ℓ ≤ k − γ ln k. (14)

Then define fn,k : [0, k − γ ln k] → R as

ℓ 7→
(

k

n
H

(
ℓ

k

)
+
(

1 − k

n

)
H

(
k − ℓ

n − k

)
− ck/n ln(n/k)

2 ln k
ln(2π(1 − ℓ/k)k)

)
(15)
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and suppose, as usually, 0 ln 0 = 0. By Lemma 6 we find n−1 ln (E [Zk,ℓ(G,y) | G]) ≤
(1 + o(1))fn,k(ℓ). Expanding the entropy yields

fn,k(ℓ) = 1
n

(
− ℓ ln

(
ℓ

k

)
− (k − ℓ) ln

(
1 − ℓ

k

)
− (k − ℓ) ln

(
k − ℓ

n − k

)
−

(n − 2k + ℓ) ln
(

1 − k − ℓ

n − k

)
+ ck ln(k/n)

2 ln k
ln
(

2πk

(
1 − ℓ

k

)))
.

Therefore,

f ′
n,k(ℓ) = 1

n

(
− ln

(
ℓ

k

)
+ ln

(
1 − ℓ

k

)
+ ln

(
k − ℓ

n − k

)
− ln

(
1 − k − ℓ

n − k

)
− ck ln(k/n)

2(k − ℓ) ln k

)
,

f ′′
n,k(ℓ) = 1

n

(
− 1

ℓ
− 2

k − ℓ
− 1

n − 2k + ℓ
− ck ln(k/n)

2 ln k(k − ℓ)2

)
.

As long as ℓ = o(k) we find that

nf ′′
n,k(ℓ) = −1

ℓ
− 1

n − 2k + ℓ
− 1

k − ℓ

(
2 − ck(1 − θ)

2θ(k − ℓ)

)
< 0 (16)

as
∣∣∣ 1

k−ℓ

(
2 − ck(1−θ)

2θ(k−ℓ)

)∣∣∣ ≪ 1
ℓ . In this case, Equation (16) shows that f ′

n,k is monotonously
decreasing in ℓ for large enough n. Furthermore, f ′

n,k is continuous on (0, k − γ ln k]. Let
c̃ > 0 be an arbitrary constant, then we have

nf ′
n,k

(
c̃
k2

n

)

= − ln
(

c̃
k

n

)
+ ln

(
1 − c̃

k

n

)
+ ln

(
k

n

)
+ ln

(
1 − c̃k/n

1 − k/n

)
(17)

− ln
(

1 − k(1 − c̃k/n)
n(1 − k/n)

)
+ c(1 − θ)

2θ(1 − c̃k/n) (18)

= − ln (c̃) + c(1 − θ)
θ

+ o(1)

Thus, Equation (18) implies that there are constants 0 < c̃1 < c̃2 < ∞ such that

nf ′
n,k

(
c̃1

k2

n

)
> 0 and nf ′

(
c̃2

k2

n

)
< 0.

By the intermediate value theorem we conclude that there is ĉ ∈ [c̃1, c̃2] such that ĉ k2

n is
the unique zero of f ′

n,k for all ℓ = o(k) and, respectively, the unique maximizer of fn,k in
this regime. Finally, by putting this value into Equation (15) we find that the highest order
terms satisfy

nfn,k

(
ĉ
k2

n

)
< 0 ⇐⇒ nH (k/n) − ck ln(n/k)

2 < 0 ⇐⇒ c > −2 H(k/n)
k/n ln(k/n) = 2 + o(1).

(19)

We are left to show that, for large enough n, we have fn,k(ℓ) < 0 for any k − γ ln k ≥ ℓ =
Θ(k). It is immediate from the definition that, in this case, we find

nfn,k(ℓ) = −c(1 − θ)
2θ

k ln(k) + O(k) (20)

which is negative.
Therefore, the assertion of the lemma follows from Equations (14), (19), and (20) ◀
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18 Quantitative Group Testing in the Sublinear Regime

B.4 Proof of Proposition 8
Assume, σ ∈ {0, 1}n is a second configuration consistent with the test results vector y. By
definition, there is at least one infected individual xj ∈ V s.t. σj = 0.

By Lemma 3 the size of ∂⋆xj is at least ∆⋆
i ≥ (1 − exp(−1/2)) m − O (

√
m ln n) and

for any test al ∈ ∂xj we find |yl(σ) − yl(σ)| ≥ 1. In order to guarantee y(σ) = y(σ), it
is certainly necessary (admittedly not likely sufficient) to identify individuals x1, ..., xh s.t.
σi = 1 − σi for i = 1 . . . h s.t. ∂{x1, ..., xh} ⊇ ∂xj .

By construction of G, the amount of tests in ∂⋆xj that do not contain any of the
individuals x1, ..., xh, i.e., H = |{a ∈ ∂⋆xj : {x1, . . . , xh} ∩ ∂a = ∅}|, can be coupled with the
distribution of the number of empty bins in a balls-into-bins experiment, described as follows.
Given G, throw b =

∑h
i=1 deg(xi) balls into deg(xi) ≥ (1 − exp(−1/2)) m − O (

√
m ln n)

bins. Denote by H ′ the number of empty bins. Since for any xi the deg(xi) edges are not
only distributed over the (1 − o(1)) (1 − exp(−1/2)) m factor nodes in ∂xj but over all m

factor nodes in G, we find

P [H = 0 | R] ≤ P [H ′ = 0 | R] . (21)

Since given R, b = (1 + o(1))hm/2 by Lemma 14, the r.h.s. of (21) becomes by using
h = L ln m and letting γ = (1 − exp(−1/2))

P [H ′ = 0 | R] ≤
(

1 −
(

1 − 1
γm

)hm/2
)γm

= (1 + o(1)) exp
(

−γm1−L/(2γ)
)

.

This value is n−ω(1) whenever L < 2γ, thus if

h < 2γ ln (m) ∼ 2γ (ln k + ln ln k) .

We conclude that if the Hamming distance of σ and σ is at least one, it is w.h.p. at least
2γ (ln k + ln ln k) with probability 1 − n−ω(1). Thus, a union bound over all k infected
individuals implies the proposition. ◀

C Proof of Theorem 2

Recall that ∆⋆
j is the number of distinct tests individual xj is connected to and ∆j signifies

the total number of tests in which xj is contained (multi-edges counted multiple times.
Furthermore, let Ej be the σ−algebra generated by the edges incident to xj . Furthermore,
let Aij ∈ N0 denote how often individual xj appears in test aj .

▶ Corollary 17. Let 1 ≤ j ≤ n. Given Ej the random variable

Sj = ψj − ∆j =
m∑

i=1
1 {Aij > 0}

(
yj −Aij

)

has distribution
Bin

(
∆⋆

j Γ − ∆j ,
k − 1{σ(j) = 1}

n − 1

)
.

Proof. This is immediate from the model definition. There are Γ∆⋆
j − ∆j half-edges

connected to tests in the neighborhood of xj which are connected to different individuals
than xj . Each of those half-edges is connected to one of k − 1 {σ(j) = 1} infected individuals
independently out of the n − 1 remaining individuals. ◀
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For the sake of brevity let γ = 1 − exp (−1/2) . Given the event R which guarantees
concentration properties of the underlying graph we find, with high probability,

E [Sj | Ej , R] = (1 ± δ) γkm

2 where δ :=
√

2 ln n√
γmk

= o(1). (22)

The Chernoff bound allows us to bound the tails of Sj as follows.

▶ Lemma 18. Let α ∈ (0, 1) be a constant and m = dk ln n
k . Given R we find

P (|Sj − E [Sj | Ej , R]| ≥ (1 − α)m/2 | Ej , R) ≤ exp
(

− (1 + o(1)) (1 − α)2d

4γ(1 + o(1)) ln n

k

)
.

Proof. The Chernoff bound (Lemma 10) directly implies

P (|Sj − E [Sj | Ej ] | Ej , R| ≥ (1 − α)m/2) ≤ exp
(

− (1 + o(1)) (1 − α)2m

8E [Sj | Ej , R]

)

= exp
(

− (1 + o(1)) (1 − α)2m

4γk(1 + o(1))

)

= exp
(

− (1 + o(1)) (1 − α)2dk ln(n/k)
4γk(1 + o(1))

)

= exp
(

− (1 + o(1)) (1 − α)2d

4γ(1 + o(1)) ln(n/k)
)

,

as claimed. ◀

Next we show that, depending on a suitable choice for a threshold, the scores of infected and
uninfected individuals are indeed well separated.

▶ Corollary 19. Let ε > 0 be an arbitrary constant.
If m ≥ (4 + ε) (1 − exp (−1/2)) 1+

√
θ

1−
√

θ
k ln n

k there is an α ∈ (0, 1) such that, w.h.p., we have

Sj + ∆j ≥ E [Sj | Ej ] + (1 − α)m/2 for all xj s.t. σ(j) = 1,

Sj < E [Sj | Ej ] + (1 − α)m/2 for all xj s.t. σ(j) = 0.

Proof. Let xj be an infected individual. We may condition on the event R, therefore, we
suppose that ∆j = m/2 + O(

√
m ln n). Then Lemma 18 ensures

P (Sj + ∆j ≤ E [Sj | Ej ] + (1 − α)m/2 | Ej , R) ≤ exp
(

−α2d/(4γ(1 + o(1))) ln n

k

)

= exp
(

(θ − 1)α2d

4γ(1 + o(1)) ln n

)
.

Hence, the union bound shows that the first inequality holds for all infected individuals xj

w.h.p. if

(θ − 1)α2d

4γ(1 + o(1)) + θ < 0. (23)

Analogously, the second inequality holds for all uninfected individuals w.h.p. if

P [Sj ≥ E [Sj | Ej ] + (1 − α)m/2 | Ej ] ≤ exp
((

(1 − α)2d/(4γ(1 + o(1)))
)

ln n

k

)

= exp
(

(θ − 1)(1 − α)2d

4γ(1 + o(1)) ln n

)
.
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20 Quantitative Group Testing in the Sublinear Regime

Thus, the union bound shows that the second inequality holds w.h.p. if

(θ − 1)(1 − α)2d

4γ(1 + o(1)) + 1 < 0. (24)

Thus, as one sufficient condition is monotonously increasing in α while the other is monotonously
decreasing, the optimal choice of α is the one that makes the two terms (23) and (24) equal:

(θ − 1)α2d

4γ(1 + o(1)) + θ = (θ − 1)(1 − α)2d

4γ(1 + o(1)) + 1,

which boils down to

α = d − 4γ(1 + o(1))
2d

.

By putting this solution for α into (23) we find that (23) equals

(θ − 1)(d − 4(γ + o(1))2

16γd + o(1) + θ.

Hence, it suffices to find d = d(θ) such that

(θ − 1)(d − 4γ + o(1))2

16γd + o(1) + θ = 0.

There are two solutions, the greater of which works out to be

d = 4γ · 1 +
√

θ

1 −
√

θ
+ o(1).

Hence, for d exceeding this value the two desired inequalities are valid w.h.p. ◀

C.1 Proof of Theorem 2
Theorem 2 follows directly from Corollary 19 and the definition m = dk ln n

k .
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THE ISING ANTIFERROMAGNET AND MAX CUT ON RANDOM REGULAR GRAPHS

AMIN COJA-OGHLAN, PHILIPP LOICK, BALÁZS F. MEZEI, GREGORY B. SORKIN

ABSTRACT. The Ising antiferromagnet is an important statistical physics model with close connections to the MAX

CUT problem. Combining spatial mixing arguments with the method of moments and the interpolation method,
we pinpoint the replica symmetry breaking phase transition predicted by physicists. Additionally, we rigorously es-
tablish upper bounds on the MAX CUT of random regular graphs predicted by Zdeborová and Boettcher [Journal of
Statistical Mechanics 2010]. As an application we prove that the information-theoretic threshold of the disassorta-
tive stochastic block model on random regular graphs coincides with the Kesten-Stigum bound. MSc: 05C80.

1. INTRODUCTION

1.1. Motivation. The Ising model is to statistical physics what the k-SAT problem is to computer science or the
Ramsey problem to combinatorics: it serves as a benchmark for new techniques to prove their mettle. Devised
by Lenz in the 1920s to explain magnetism, the Ising model can be defined on an arbitrary graph G. Think of
the vertices of G as iron atoms that each carry one of two possible magnetic spins, ±1. With the topology of
interactions defined by the edges of G, the Hamiltonian HG (the ‘energy’ function) maps a spin configuration
σ ∈ {±1}V to the number of edges of G that link two vertices with the same spin, i.e.,

HG (σ) =
∑

{v,w }∈E

1+σvσw

2
. (1.1)

Together with a real parameter β the Hamiltonian induces a probability distribution µG ,β on the set of spin
configurations via

µG ,β(σ) = exp(−βHG (σ))

ZG ,β
(σ ∈ {±1}V ) where ZG ,β =

∑
τ∈{±1}V

exp(−βHG (τ)). (1.2)

This probability measure is called the Boltzmann distribution. The normalising term ZG ,β is known as the par-
tition function. If β> 0, then µG ,β favours spin configurations σ with a small number of edges joining vertices
with the same spin; this case is known as the antiferromagnetic Ising model. By contrast, in the ferromagnetic
case β< 0 configurations with many aligned spins receive a boost.

Both variants of the Ising model are of keen interest in physics and the literature on each, rigorous as well
as non-rigorous, is vast [30, 37]. But the antiferromagnetic Ising model appears to be more challenging. Ac-
cording to physics lore this is because its Boltzmann distribution is prone to a complicated type of long-range
correlation known as ‘replica symmetry breaking’. Another way to see the challenge is that from the partition
function we could solve the NP-complete problem MAX CUT: as β increases the mass of the Boltzmann dis-
tribution shifts to spin configurations with more edges joining vertices with opposite spins. Ultimately the
measure concentrates on the maximum cuts of the graph G, and it is well known (and easy to check) that

MAXCUT(G)= dn

2
+ lim
β→∞

∂

∂β
log ZG ,β. (1.3)

We study the Ising antiferromagnet on the random d-regular graph G = G(n,d). From a statistical physics
perspective, this example has been suggested as one of the simplest models where replica symmetry breaking
is expected to occur. Fond of lattice-like geometries, physicists favour the random regular graph, which con-
verges to the d-regular tree in the Benjamini-Schramm topology, over the Erdős-Rényi model. In particular,
regularity greatly simplifies the physics ‘cavity equations’ that Zdeborová and Boettcher [63] employed to put
forward a beautiful, well-known conjecture about MAX CUT on random regular graphs. From a combinatorics
perspective, the random regular graph provides a neat but notoriously challenging model for MAX CUT, both
structurally (determining the fraction of edges it should be possible to cut, asymptotically almost surely) and
algorithmically (finding algorithms that give large cuts in such graphs). The problem has received a great deal
of attention in the combinatorics community, e.g. [18, 19, 26, 27, 38, 39, 61]. Additionally, the Ising model is
intimately related to the regular version of the disassortative stochastic block model [16], a prominent case
study in Bayesian inference.

Amin Coja-Oghlan and Philipp Loick are supported by DFG CO 646/3.
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1.2. Our contributions and paper outline. Our first contribution is to identify the precise value ofβwhere the
replica symmetry breaking phase transition occurs; see Theorem 1.1. A common approach to problems of this
type would be the trick of bounding the second moment of random regular graphs by that of the Erdős-Rényi
as applied in [1, 13]. Since this approach fails in our case, we instead turn to harnessing spatial mixing argu-
ments to establish the phase transition. As a ramification of the replica symmetry breaking phase transition,
our second contribution is to derive the information-theoretic threshold of the disassortative regular stochas-
tic block model; see Theorem 1.4. Our third contribution is to establish rigorously the upper bound on the MAX

CUT of the random regular graph predicted by Zdeborová and Boettcher; see Corollary 1.3. Specifically, their
prediction is based on the so-called ‘1-step replica symmetry breaking’ formalism from physics. Using the in-
terpolation method it is easy to obtain a rigorous upper bound that comes as a variational problem. However,
this variational problem appears rather unwieldy at first glance. But by expressing the variational problem as
a certain random walk that we can analyze, we obtain an elegant explicit expression whose numerical results
match those of Zdeborová and Boettcher.

In the remainder of Section 1 we state the main results of the paper precisely. In Section 2 we outline the
proof strategy, and in Section 3 we discuss the advances over earlier work. Details of the proofs of Theorem 1.1,
Theorem 1.2, and Corollary 1.3 are given respectively in Sections 4, 5, and 6.

1.3. Replica symmetry breaking. The key quantity associated with the Ising model on G is the partition func-
tion ZG,β. This is because various combinatorially meaningful observables derive from the partition function
via differentiation; see, for example, (1.3). Because ZG,β scales exponentially in n, it is common to consider
the normalised logarithm n−1 log ZG,β, known as the free energy. Routine arguments show that this random
variable concentrates about its mean. Hence, we are led to investigate the function

Φd :β ∈ (0,∞) 7→ lim
n→∞

1

n
E
[
log ZG,β

]
; (1.4)

the limit is known to exist for all d ≥ 3,β > 0 [8]. In particular, for a fixed d ≥ 3 the singularities β of Φd (the
points at which Φd cannot be expanded to an absolutely convergent power series) are called the phase tran-
sitions of the Ising model. Hence, from a mathematical physics point of view computing Φd and pinpointing
the phase transitions is the key challenge associated with the model.

Jensen’s inequality immediately yields the inequality

Φd (β) ≤ lim
n→∞

1

n
logE

[
ZG,β

]= log2+ d

2
log

1+e−β

2
, (1.5)

where the equality is taken from the (easy) calculation of E[ZG,β] as (2.10) in Lemma 2.1. A tempting first guess
might be that (1.5) is generally tight. Combinatorially this would indicate that the Boltzmann distribution µG,β

is free from long-range correlations. To see this, consider the experiment of removing a single random edge
e = {v, w} fromG. Because short cycles are scarce, w.h.p. the vertices v, w have distanceΩ(log n) inG−e. Hence,
in the absence of long-range correlations, in a sample σ from the Boltzmann distribution of G− e, the spins
σv ,σw should be asymptotically independent, i.e., P[σv =σw | G,e] = 1/2+o(1). Therefore, adding e back in
should change the partition function by

log
ZG,β

ZG−e,β
= log

(
1− (1−e−β)P[σv =σw |G,e]

)
∼ log

1+e−β

2
.

Removing a random edge dn/2 times until all the edges are gone and observing that the partition function of
the empty graph equals 2n , we would thus obtain equality in (1.5). However, the following theorem shows that
(1.5) is tight only for β up to an explicit threshold β∗.

Theorem 1.1. For any d ≥ 3 let

β∗(d) = log

(p
d −1+1p
d −1−1

)
. (1.6)

(i) If β<β∗(d), then

Φd (β) = log2+ d

2
log

1+e−β

2
.

(ii) If β>β∗(d), then

Φd (β) < log2+ d

2
log

1+e−β

2
.
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Because the function β 7→ log2+ d
2 log 1+e−β

2 is analytic, Theorem 1.1 implies that Φd (β) is non-analytic at
the point β=β∗. Hence, there occurs a phase transition at β∗ that separates a regime where ZG,β concentrates
about its mean from a regime where the mean is driven up by rare events. In physics jargon this phase tran-
sition is called the replica symmetry breaking transition. The value β∗ has a special combinatorial meaning:
it is the reconstruction threshold for a broadcasting process first studied by Kesten and Stigum [40], and is
thus known as the ‘Kesten-Stigum bound’. Thus, Theorem 1.1 shows that the replica symmetry breaking phase
transition in the Ising antiferromagnet on G occurs precisely at the Kesten-Stigum bound.

1.4. Bounding MAX CUT. Theorem 1.1 does not provide a simple expression for Φd (β) for β > β∗. Indeed,
such a simple expression may not exist. This is because according to physics predictions the value Φd (β)
for β > β∗ results from a complicated variational problem over an infinite-dimensional space of probability
measures that meticulously characterises the long-range correlations of the Boltzmann distribution [15].

Yet in the limit β→∞ it is possible to derive an explicit upper bound on the value of Φd (β). To state this
bound consider the following right stochastic band matrix M of size (d +1)× (d +1):

M =




0 1 0 · · · · · · · · · 0

1
2 0 1

2

. . .
...

0 1
2 0 1

2

. . .
...

...
. . .

. . .
. . .

. . .
. . .

...
...

. . .
. . .

. . .
. . . 0

...
. . . 1

2 0 1
2

0 · · · · · · · · · 0 1 0




. (1.7)

Moreover, let

Fd (α, z) =− log
(
ζA dξ

)

log z
+ d log

(
1−2α2 +2α2z

)

2log z
, where (1.8)

A = (1−2α)id+2α
p

zM , (1.9)

ζ= [
1, 0, 0, · · · ] ∈R1×(d+1), (1.10)

ξ= [
1, z−1/2, z−1, z−3/2, · · ·]T ∈R(d+1)×1. (1.11)

Theorem 1.2. For any d ≥ 3 we have

lim
β→∞

β−1Φd (β)≤ inf
0<α≤1/2

0<z<1

Fd (α, z).

Since (1.3) shows that the MAX CUT problem is tied to Φd (β) for large β, we can use Theorem 1.2 to derive
upper bounds on the maximum cut size of the random regular graph.

Corollary 1.3. Let MAXCUT(G) be the number of edges cut by a maximum cut of G. Then, w.h.p.,

MAXCUT(G) ≤ dn

2
inf

0<α<1/2
0<z<1

(
1+ 2

d
Fd (α, z)

)
+o(n).

Zdeborová and Boettcher [63] conjectured that the expected maximum cut size in a random regular graph is
upper bounded by the solution to the one-step replica-symmetry breaking equations and provided numerical
estimates of the resulting cut size. Corollary 1.3 matches their numbers.

Table 1 displays the upper bounds from Corollary 1.3 for d = 3, . . . ,10. For comparison the table also con-
tains the previous best rigorous upper bounds we are aware of, and the best rigorous lower bounds. Upper
bounds appear to have received little attention. For d > 3 the upper bounds shown come from straightforward
application of the first moment method, counting cuts of the given size; this can be done either by standard
counting arguments or using [13, Corollary 2.8], in either case followed by a small numerical computation. For
d = 3 better upper bounds come from the first moment method but restricting to cuts satisfying some local
maximality conditions; the bound shown is from [61]. The lower bounds result from analyses of algorithms,
and are from [31] via [20] for d = 3, [26] for d = 4 and [27] for d > 4.

The article of Zdeborová and Boettcher contains a second, more prominent conjecture that ties together the
MIN BISECTION and MAX CUT problems on random regular graphs, namely that the two cases result w.h.p. in
asymptotically equal numbers of edges ‘dissatisfied’ (respectively, cut and not cut). Unfortunately the methods
of the present work do not appear to shed light on this question.
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d 3 4 5 6 7 8 9 10
best previous upper bound 0.9320 0.8900 0.8539 0.8260 0.8038 0.7855 0.7701 0.7570
Corollary 1.3 upper bound 0.9241 0.8683 0.8350 0.8049 0.7851 0.7659 0.7523 0.7388

best lower bound 0.9067 0.8333 0.7989 0.7775 0.7571 0.7404 0.7263 0.7144
expected cut size at β∗ 0.8536 0.7887 0.7500 0.7236 0.7041 0.6890 0.6768 0.6667

expected cut size at Gibbs uniqueness 0.7500 0.6667 0.6250 0.6000 0.5833 0.5714 0.5625 0.5556

TABLE 1. Bounds on the fraction of edges in a maximum cut of G(n,d).

However, the work does shed light on a different question of interest: as an application of Theorem 1.1 we
can calculate the information-theoretic threshold of the disassortative stochastic block model.

1.5. The stochastic block model. Over the past decade the stochastic block model has become a prominent
benchmark for Bayesian inference as well as graph clustering. The impressive literature on the model is sur-
veyed in [2, 49]. Like the Ising model, the stochastic block model comes in two variants. In the assortative
version edges are more likely join vertices with the same spin while in the disassortative model edges are more
likely to occur between vertices with opposite spins. Thus, the disassortative variant resembles the Ising anti-
ferromagnet.

Formally the d-regular disassortative stochastic block model is defined by way of the following experiment.
Let Vn = {v1, . . . , vn } be a set of n vertices. In a first step we draw a spin assignment σ∗ ∈ {±1}Vn uniformly at
random. Subsequently we draw a d-regular graph G∗ =G∗(σ∗) from the distribution

P
[
G∗ =G |σ∗]

∝ exp(−βHG (σ∗)). (1.12)

Thus, the probability that a given d-regular graph G comes up is proportional to the Boltzmann weight exp(−βHG (σ∗))
of the ‘ground truth’ σ∗.

The obvious question is whether the bias introduced by (1.12) has a discernible impact on the distribution
of the graph. In other words, is it possible to tell G∗ apart from the ‘null model’ G? To formalise this we use the
Kullback-Leibler divergence of G∗ from G,

DKL
(
G∗‖G)=

∑
G
P

[
G∗ =G

]
log

P [G∗ =G]

P [G=G]
.

The Kullback-Leibler divergence is an information-theoretic potential that gauges the difference between ran-
dom objects. Specifically, if DKL (G∗‖G) = o(n) then extensive observables such as the maximum cut value or
the logarithm of the partition function in the two random graph models are asymptotically equal [45]. By con-
trast, if DKL (G∗‖G) =Ω(n), then one can tell the two random graph models apart by calculating the partition
function [17]. In particular, in the latter case there exists a (not necessarily efficient) algorithm A that given a
graph G outputs A(G)∈ {0,1} such that

lim
n→∞P [A(G) = 0] = lim

n→∞P
[
A(G∗) = 1

]= 1. (1.13)

Hence, A, the essence of which is calculating the partition function, distinguishes the stochastic block model
from the null model with high probability.

Theorem 1.4. For any d ≥ 3 the following are true.

(i) If β<β∗(d), then limn→∞ DKL (G∗‖G)/n = 0 and limn→∞ DKL (G‖G∗)/n = 0.
(ii) If β>β∗(d), then limn→∞ DKL (G∗‖G)/n > 0 and limn→∞ DKL (G‖G∗)/n > 0.

By definition, then, β∗ is the information-theoretic threshold of the stochastic block model.

2. TECHNIQUES

This section contains a survey of the proofs of the main results and the techniques they are based on. We begin
with the proof of the first part of Theorem 1.1, which combines moment computations with a spatial mixing
argument. To motivate this combination we first discuss the Erdős-Rényi case, in which a straightforward
moment calculation does the trick. Subsequently we discuss the proof of the second part of Theorem 1.1,
which relies on the connection between the Ising model and the stochastic block model. This connection
also shows how Theorem 1.4 follows from Theorem 1.1. The final subsection then deals with the the proof of
Theorem 1.2, based on the interpolation method.
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2.1. The second moment method. To get started, we will compute the typical value of the Ising partition
function using the method of moments for the Erdős-Rényi model. To this end, we reproduce the calculation
by Mossel, Neeman and Sly [50] for the Erdős-Rényi model GER where m = dn/2 edges are drawn uniformly at
random. (We skip their supplementing of the second moment method with small subgraph conditioning for
increased precision.) We will show why this does not directly extend to the random regular model.

For the first moment we simply obtain

E
[

ZGER,β
]
=

∑
σ∈{±1}Vn

E
[
exp(−βHGER (σ))

]
=

∑
σ∈{±1}Vn

(
1− 1−e−β

n2

n∑
i , j=1

1{σvi =σv j }

)m+o(n)

. (2.1)

The second equality holds because the edges of GER are asymptotically independent. A moment’s reflection
reveals that the expression in the braces is maximised byσ such that

∑
i σvi = o(n). Combinatorially this means

that σ corresponds to an approximately balanced cut. Since there are 2n+o(n) such σ, (2.1) yields

E
[

ZGER,β
]= 2n+o(n)

(
1+e−β

2

)dn/2

= exp

(
n

((
1− d

2

)
log(2)+ d

2
log(1+e−β)+o(1)

))
. (2.2)

Calculating the second moment is similarly straightforward. Indeed, we obtain

E
[

Z 2
GER,β

]
=

∑
σ,σ′∈{±1}Vn

E
[
exp(−βHGER (σ)−βHGER (σ′))

]
(2.3)

=
∑
σ,σ′

(
1− 1

n2

n∑
i , j=1

(
1−e−β

)(
1{σvi =σv j }+1{σ′

vi
=σ′

v j
}
)
−

(
1−e−β

)2
1{σvi =σv j ∧σ′

vi
=σ′

v j
}

)m+o(n)

.

As in the first moment calculation it is easy to see that asymptotically balanced σ,σ′ dominate. Moreover,
rearranging the sum according to the inner product a =σ ·σ′, we obtain

E
[

Z 2
GER,β

]
=

n∑
a=−n

(
n

(n−a)/4,(n−a)/4,(n+a)/4,(n+a)/4

)(
(1+e−β)2

4
+

( a

n

)2 (1−e−β)2

4

)m+o(n)

. (2.4)

Introducing α = a/n and the entropy function H(p) = −p log p − (1−p) log(1−p) for 0 < p < 1, we can apply
Stirling’s formula to simplify (2.4) to

E
[

Z 2
GER,β

]
= exp

(
n max

−1<α<1
fd (α,β)+o(n)

)
, where (2.5)

fd (α,β) = (1−d) log(2)+H((1+α)/2)+ d

2
log

(
(1+e−β)2 +α2(1−e−β)2

)
. (2.6)

Substituting α= 0 into (2.6) yields

fd (0,β) = (2−d) log(2)+d log
(
1+e−β

)
(2.7)

which is twice the exponent from (2.2). Hence, if fd (α,β) attains its maximum at α = 0, then (2.1) and (2.5)
show that E[Z 2

GER,β]/E[ZGER,β]2 = exp(o(n)). Routine concentration arguments therefore apply and show that

ZGER,β concentrates about its expectation. In particular, we obtain

lim
n→∞

1

n
E
[
log ZGER,β

]
= lim

n→∞
1

n
logE

[
ZGER,β

]
= log2+ d

2
log

1+e−β

2
if max

−1<α<1
fd (α,β) = fd (0,β). (2.8)

By contrast, if the maximum in (2.5) is attained at α 6= 0, then the second moment exceeds the square of the
first moment exponentially. Hence, the moment method succeeds iff fd (α,β) attains its maximum at α= 0.

Whether or not this is the case depends on the value of β. Specifically, for a given d ≥ 3 the function fd (α,β)
is maximised at α= 0, and (2.8) is satisfied, if

β≤β†(d) = log

p
d +1p
d −1

;

as mentioned above, this discovery belongs to Mossel, Neeman and Sly [50]. Note that β∗(d) = β†(d − 1) >
β†(d). Conversely, results from [5, 50] imply that

lim
n→∞

1

n
E
[
log ZGER,β

]< log2+ d

2
log

1+e−β

2
for β>β†(d). (2.9)

Hence, β†(d) marks the replica symmetry breaking threshold for the Ising model on the Erdős-Rényi graph.
5
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FIGURE 1. The function fd (α,β) for d = 3 and β = 1.25 (left), β = 1.32 (middle) and β= 1.40
(right). For d = 3, we have β† ≈ 1.32 and β∗ ≈ 1.76.

To what extent do these considerations carry over to the random regular graph G(n,d)? The following
lemma shows that the first moment for random regular graphs is about the same as in the Erdős-Rényi case;
the calculations, given in [50], are similar to those above.

Lemma 2.1. For any d ≥ 3,β> 0 we have

E[ZG,β] =Θ
(

2n

(
1+eβ

2

)dn/2)
. (2.10)

For the second moment, the expression from (2.5) for the Erdős-Rényi model carries over to the random
regular graph and yields the upper bound

E
[

Z 2
G(n,d),β

]
≤ exp

(
n max

−1<α<1
fd (α,β)+o(n)

)
. (2.11)

The fact that the bound extends to random regular graphs may not appear entirely immediate; the analytic ex-
planation derives from the convexity of the Kullback-Leibler divergence [1, 13]. A similar trick has been applied
with some success to various random regular graph problems, notably graph colouring [1]. Unfortunately, in
our case the second moment trick only yields the desired solution for β<β†(d), while Theorem 1.1 requires it
for allβ<β∗(d). Indeed, for β>β†(d) the trick fails in a rather spectacular way: onceβ crosses aboveβ†(d) the
value α= 0 turns from a global maximum of the function fd (α,β) into a local minimum! Figure 1 provides an
illustration. Thus, we have to turn to other means to establish the first part of Theorem 1.1, which we explore
next.

2.2. Broadcasting and non-reconstruction. Our approach towards proving the first part of Theorem 1.1 relies
on combining spatial mixing arguments with the method of moments. To be precise, we will exhibit an event
O such that for all β<β∗(d),

E
[

ZG(n,d),β1 {O}
]=Θ(E

[
ZG(n,d),β

]
) =Θ

(
2n

(
1+e−β

2

)dn/2)
, E

[
Z 2
G(n,d),β1 {O}

]
= 4n+o(n)

(
1+e−β

2

)dn

. (2.12)

Together with routine concentration arguments (2.12) will imply the first part of Theorem 1.1.
To elaborate, the event O concerns the relative location of two typical samples from the Boltzmann distri-

bution. Hence, for a graph G let σG ,σ′
G denote two independent samples from µG ,β. Then for a sequence

εn = o(1) that tends to zero slowly enough (and that we will specify precisely in due course) we let

O =
{
E
[
|σG ·σ′

G| |G
]
< εnn

}
. (2.13)

Thus, O is the event that two typical samples from the Boltzmann distribution are nearly orthogonal. Since the
combinatorial interpretation of α in (2.11) is to pinpoint the value of the inner product of spin configurations
that renders the largest contribution, one might reasonably hope that conditioning on O will eliminate the
need for taking values α 6= 0 into consideration. Indeed, the proof of the second part of (2.12) will be relatively
straightforward. Unfortunately, it turns out that the same cannot quite be said of the proof of the first part.

Proposition 2.2. The event O from (2.13) satisfies (2.12) for all d ≥ 3, β≤β∗(d).

The proof of Proposition 2.2 uses two tools: the stochastic block model G∗ from (1.12) and the analysis of
a broadcasting process on the infinite d-regular tree from [10]. Specifically, the stochastic block model will
help to derive the first part of (2.12). Indeed, the definition (1.12) suggests that the probability that G∗ =G for
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a given graph G should be roughly proportional to the partition function ZG ,β (see e.g. [17]). This is because
G has a chance proportional to

∑
σ∈{±1}Vn

(
exp(−βHG (σ))/

∑
G exp(−βHG (σ))

)
, and if the denominators were

the same over all σ, this would be proportional to ZG ,β =∑
σexp(−βHG (σ)). By symmetry each denominator

depends only on the magnetisation of σ (the sum of its entries), and summands with magnetisation near 0 are
far more frequent, so it is reasonable to hope that they dominate the sum. Capitalising on this intuition, the
following lemma shows that we can make use of G∗ to establish the first part of (2.12).

Lemma 2.3. Let d ≥ 3,β> 0. If P [G∗ ∈O ]∼ 1, then E
[

ZG,β1 {O}
]
=Θ

(
E
[

ZG,β
])

.

To show that P [G∗ ∈O ]∼ 1 we will couple the planted model G∗ with a broadcasting process on the infinite
(d −1)-ary tree Td−1. Let u0 signify the (degree-d) root of Td−1. Proceeding down the tree, the broadcasting
process constructs an assignment τ ∈ {±1}V (Td−1) as follows. Initially we choose τu0 ∈ {±1} uniformly at ran-
dom. Subsequently, having defined τu for all u at distance at most ℓ from u0 already, we define the value τw

of a child w of such a vertex u by letting

P [τw =τu |τu ]= e−β/(1+e−β). (2.14)

In words, w retains the spin of its parent with probability e−β/(1+e−β), and is assigned the opposite spin with
the remaining probability 1/(1+e−β). Let Tℓ denote the σ-algebra generated by the spins τu of all vertices u at
distance greater than ℓ from u0. The following result shows that the spin τv0 decorrelates from Tℓ in the limit
of large ℓ if β<β∗(d). In other words, the broadcasting process ‘forgets’ the spin of the root, a property known
as non-reconstruction [10].

Lemma 2.4 ([10]). Let d ≥ 3 and β<β∗(d). Then

lim
ℓ→∞

E

∣∣∣∣P
[
τv0 = 1 |Tℓ

]− 1

2

∣∣∣∣= 0. (2.15)

As an aside, β∗(d) actually is the sharp non-reconstruction threshold [36]. Thus, (2.15) ceases to hold for
β>β∗(d).

Equipped with Lemma 2.4 the proof of the condition E
[

ZG,β1 {O}
]
∼ E

[
ZG,β

]
proceeds as follows. For a

typical vertex of G∗, say v1, we couple the spins that the planted configuration σ∗ assigns to vertices in the
ℓ-ball around v1 with the broadcasting process. This coupling is based on the fact that the random regular
graph G∗ converges to the d-regular tree in the Benjamini-Schramm topology. Then we re-sample the spins
inside the ℓ-ball given the spins assigned to all the vertices at distance greater than ℓ from v1 according to the
Boltzmann distribution µG∗,β. Let σ∗∗ denote the resulting spin configuration. Lemma 2.4 will enable us to
conclude that the re-sampled spin σ∗∗

v1
is asymptotically independent from the original spin σ∗

v1
. Finally, we

will show that bothσ∗ andσ∗∗ are distributed approximately as two samples from the Boltzmann distribution
µG∗ ,β, thereby deriving the following.

Lemma 2.5. Let d ≥ 3 and β<β∗(d). Then P [G∗ ∈O ]∼ 1.

As shown in Section 4, Proposition 2.2 will be an easy consequence of Lemma 2.3 and Lemma 2.5, proved
respectively in Sections 4.2 and 4.3. Moreover, the first part of Theorem 1.1 follows from Proposition 2.2 and a
few lines of calculations; this is show just below.

The above argument highlights the difference between the Erdős-Rényi graph and the random regular graph
and the reason why we have the strict inequality β†(d) < β∗(d) for all d ≥ 3. Indeed, in the d-regular tree, to
which the random regular graph converges locally, every vertex has d−1 children. By contrast, the Erdős-Rényi
graph of average degree d converges locally to a Galton-Watson tree with offspring distribution Po(d). Hence,
the average number of children has mean d rather than d −1. The effect is that the broadcasting process on
the Galton-Watson tree is able to remember the spin of the root for smaller values of β than in the regular case.
Therefore, it is natural to expect that on the Erdős-Rényi graph long-range correlations emerge for smaller β.

Proof of Theorem 1.1, part 1. First, we argue by Azuma’s inequality that for any d ≥ 3 and β > 0, log ZG,β is
concentrated about E[log ZG,β]. As is standard, construct G using dn/2 independent random variables Xi each
giving the matching of the next point in the configuration model. Compare this to a uniform random reference
matching. If Xi matches a point A to B but the reference matching matched A to C 6= B and B to D, update
the reference by matching A to B and C to D. The reference copy has two edges added and two deleted, and
with Xi uniformly random the reference remains uniformly random, so Xi changes the expectation of log ZG,β

conditioned on X1, . . . , Xi by at most 2β. Azuma’s inequality yields

P
[∣∣log ZG,β−E[log ZG,β]

∣∣> t
]≤ 2exp

(
− t 2

4β2dn

)
(t > 0). (2.16)
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For β < β∗(d), Proposition 2.2 gives E[ZG,β] = Θ(E[ZG,β1{O})] while trivially E[Z 2
G,β] ≤ E[Z 2

G,β1{O}], so from

the Paley-Zygmund inequality,

P

[
ZG,β ≥ 1

2
E[ZG,β]

]
≥ 1

4

E[ZG,β]2

E[Z 2
G,β]

=Ω(1)
E[ZG,β1{O}]2

E[Z 2
G,β1{O}]

=Ω(exp(−o(n))), (2.17)

the last inequality again from Proposition 2.2. Thus, P
[
log ZG,β ≥ logE[ZG,β]−2

]
= Ω(exp(−o(n))). For any

ε> 0, were there arbitrarily large n for which logE[ZG,β] > E[log ZG,β]+εn this would contradict the result from
Azuma. But by Jensen’s inequality logE[ZG,β] ≥ E[log ZG,β], so E[log ZG,β] = logE[ZG,β]+o(n). Taking the value
of logE[ZG,β] from Lemma 2.1 (or Proposition 2.2) establishes the first part of Theorem 1.1.

�
2.3. The Bethe free energy. In the next step we prove the the second statement of Theorem 1.1. As discussed
earlier, the probability that a given graph G comes up as the result G∗ of the stochastic block model is (nearly)
proportional to the partition function ZG ,β. Therefore, if the partition function ZG,β is tightly concentrated
about its mean E[ZG,β], then we might expect that the distribution of G∗ and of the plain random d-regular
graph are ‘close’. By contrast, if ZG,β is not concentrated but prone to a lottery phenomenon where a few un-
likely outcomes render a disproportionate contribution to E[ZG,β], then we should expect that this discrepancy
is exacerbated upon passing to size-biased model G∗ as outliers receive an extra boost. The following lemma
formalises this intuition. It replaces the vague ‘concentration’ phrasing with asymptotic equality of E

[
log ZG,β

]

and logE
[

ZG,β
]
, and the equivalent for G∗, with logE

[
ZG,β

]
known from (2.10); this equality certainly follows

from sufficient concentration, while without concentration the equality would be an odd coincidence.

Lemma 2.6 ([16, Lemma 4.4]). Let d ≥ 3 and β> 0. We haveΦd (β) = log 2+ d
2 log 1+e−β

2 if and only if

lim
n→∞

1

n
E
[
log ZG∗,β

]= log2+ d

2
log

1+e−β

2
. (2.18)

By the first part of Theorem 1.1 the lemma’s hypothesis holds for β < β∗(d). To prove the second part of
Theorem 1.1 we will show that the conclusion (and thus the hypothesis) is violated if β>β∗(d). As a stepping
stone we use a variational formula for E[log ZG∗,β] from [16]. Let P∗([−1,1]) be the space of all probability
measures on the interval [−1,1] with mean zero. Moreover, for a given such probability measure π let (µπ,i )i≥1

be a family of independent samples from π and let Λ(x) = x log x. The expression

BIsing(π,β,d) = E
[
Λ

(∑
σ∈{±1}

∏d
i=1 1− (1−e−β)(1+σµπ,i )/2

)

21−d (1+e−β)d
−

dΛ
(
1− (1−e−β)(1+µπ,1µπ,2)/2

)

1+e−β

]
(2.19)

is called the Bethe free energy.

Lemma 2.7 ([16, Theorem 2.3]). For any β> 0 and any d ≥ 3, we have

lim
n→∞

1

n
E[log ZG∗,β]= sup

π∈P∗([−1,1])
BIsing(π,β,d).

Combining Lemmas 2.6 and 2.7, we see that the second part of Theorem 1.1 boils down to showing that

sup
π∈P∗({±1})

BIsing(π,β,d) > log2+ d

2
log

1+e−β

2
for β>β∗(d). (2.20)

Luckily, the variational formula (2.20) asks to take a supremum over distributions π. Therefore, it suffices to
point to a specific distribution π such that BIsing(π,β,d) exceeds the first moment bound. Specifically, for a
small ε> 0 let us introduce

π∗
ε =

1

2
(δ2ε+δ−2ε) (2.21)

where δz is the point mass on z. It is easy to see that for ε = 0 we precisely obtain BIsing(π∗
0 ,β,d) = log(2)+

d log((1+e−β)/2)/2. The following proposition shows that for β> β∗(d) small ε> 0 yield a slightly but strictly
larger value.

Proposition 2.8. For any β>β∗(d) there exists ε> 0 such that

BIsing(π∗
ε ,β,d) > log 2+ d

2
log

1+e−β

2
.

Proof of Theorem 1.1, part 2. This follows directly from Lemma 2.7 and Proposition 2.8. �
Proof of Theorem 1.4. The theorem follows from Theorem 1.1, Theorem 17.1 in [16] and the fact that the dis-
assortative stochastic block model with two communities is the planted Ising antiferromagnet. �
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t = 1t = 0

FIGURE 2. The factor graphs G0 and the original factor graph G1 with n = 4,d = 3.

2.4. The interpolation method. With Theorem 1.1 in place, let us consider the case thatβ→∞ which eventu-
ally allows us to derive improved upper bounds on the expected maximum cut size of random regular graphs.
Unfortunately, the stochastic dependencies between vertex spins make it difficult to get a handle on a simple
expression like we had for β<β∗(d) where we simply obtained the first moment bound. Apart from the obvi-
ous short-range dependencies that, for example, induce adjacent vertices to prefer opposite spins, we expect
long-range dependencies to occur above the Kesten-Stigum bound. Thus, for β > β∗(d) the spin of a vertex
impacts those of distant vertices.

The ‘1-step replica symmetry breaking ansatz’ from physics attempts to describe these long-range depen-
dencies by means of an additional hidden variable [42, 46]. The basic hypothesis is that for β > β∗(d) the
phase space, i.e., the set {±1}Vn of all possible spin configurations, decomposes into a number S1, . . . ,Sℓ of
‘pure states’ w.h.p. Mathematically S1, . . . ,Sℓ are pairwise disjoint subsets of {±1}Vn such that µG,β(S1)+ ·· · +
µG.β(Sℓ) ∼ 1. Thus, the sets cover nearly the entire support of the Boltzmann distribution. Furthermore, once
we condition on a pure state Sh , long-range effects disappear; formally,

E

∣∣∣∣∣
ℓ∑

h=1

µG,β(Sh )
(
P

[
σG,v1 = s,σG,v2 = s′ |G,σG ∈ Sh

]−P[
σG,v1 = s |G,σG ∈ Sh

]
P

[
σG,v2 = s′ |G,σG ∈ Sh

])
∣∣∣∣∣= o(1).

Hence, long-range correlations of the unconditional measure µG,β arise because the spin σG,v1 of a vertex
hints at the pure state Sh to whichσG belongs, which in turn skews our expectations as to the other spins. The
existence of such a pure state decomposition has been established rigorously [15].

How does this picture help to estimate the partition function ZG,β? The basic idea behind the interpolation
method is to set up an synthetic model of a spin system that exhibits precisely the long-range dependencies
predicted by the 1-step rsb ansatz, and no others. Mathematically this model is represented by a factor graph
(or a Markov random field); see the left panel of Figure 2. The factor graph contains variable nodes (the white
circles) that represent the vertices of our graph. Each of these variable nodes is connected to an external field
(the blue box) that is meant to represent the impact of the short-range dependencies imposed by one of the
incident edges of the corresponding vertex of G. But instead of the complicated direct interactions between
the vertices through actual edges as in the original random graph G, the variable nodes only interact with each
other through the yellow node. This node represents the hidden variable postulated by the 1-step rsb ansatz,
i.e., the index of the pure state. Finally, the red boxes are ‘negative edges’. They are necessary because the
variable nodes do not interact directly. In effect, the number of blue nodes is twice the number of edges of the
actual graph G, and thus we have to compensate for the impact of dn/2 spare blue boxes.

The cunning idea behind the interpolation method is to build a family of factor graph models parametrised
by time t ∈ [0,1]. The interpolation scheme starts from the artificial factor graph model at time t = 0. At each
intermediate time step t ∈ (0,1) the model blends the synthetic t = 0 case and the actual Ising model on G.
Ultimately at time t = 1 all the synthetic ingredients (the blue and red boxes) disappeared and we are left with
just the Ising antiferromagnet on G. Remarkably, it is possible to prove that the partition function decreases
monotonically in terms of t . As a consequence, the partition function of the synthetic model upper bounds
that of the Ising model on G. Fortunately we do not need to carry out the interpolation method in full. The
result that we need follows from a more general version of the interpolation bound derived in [60].

To state the resulting upper bound precisely, fix any probability measure r on [−1,1]. Let (r i )i≥[d ] be a family
of independent random variables with distribution r; thus, r i ∈ [−1,1] for all i . Further, define

ρi (σ) = 1+σr i

2
(σ=±1).
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The idea is that ρ1, . . . ,ρd represent the short-range influences that the neighbours of some vertex, say v1,
exercise on the spin of that vertex within a single pure state. More specifically, think of ρi (s) as the probability
that the i -th neighbour of v1 would take spin s ∈ {±1} if we removed v1 from the random graph. The following
lemma is an immediate consequence of [60, Theorem E.5].

Lemma 2.9. Let d ≥ 3,β> 0. Then for any y > 0 and any r ∈P ([−1,1]) we haveΦd (β) ≤φβ,y (r), where

φβ,y (r) = 1

y
logE[X y

1 ]− d

2y
logE[X y

2 ], (2.22)

X1 =
∑

τ∈{±1}

d∏
h=1

1− (1−e−β)ρh (τ), X2 = 1− (1−e−β)
∑

τ∈{±1}
ρ1(τ)ρ2(τ).

Clearly, (2.22) is not exactly what we had in mind when aiming for an explicit expression of the upper bound
for Φd (β). However, a key feature of Lemma 2.9 is that the inequality holds for any y,r. We are thus free to
choose these parameters so that we obtain a reasonable expression and, hopefully, at the same time a good
upper bound.

Following physics intuition [46, 47] we define the measure r as follows. Let δx ∈ P ([−1,1]) be the atom on
x ∈ [−1,1]. Then for α ∈ [0,1/2] we let

rα =αδ−1 + (1−2α)δ0 +αδ1 ∈P ([−1,1]). (2.23)

Intuitively, we ‘freeze’ a spin to +1 or −1 with probability α. Otherwise, if the spin does not freeze we leave
it unbiased, i.e., it takes either spin ±1 with equal probability. The following proposition shows that for the
distribution r from (2.23) the function φβ,y (r) boils down to a manageable expression.

Proof of Theorem 1.2. The theorem is an immediate consequence of Lemma 2.9 and Proposition 2.10. �

What does the bound look like in the trivial case α= 0? For any y > 0 we obtain

Φd (β) ≤φβ,y (r0) ≤ 1

y

(
logE[X

y
1 ]− d

2
logE[X

y
2 ]

)
= 1

y
log

(
2

(
1+e−β

2

)d )y

− d

2y
log

(
1+e−β

2

)y

(2.24)

= log2+ d

2
log

1+e−β

2
. (2.25)

Hence, we simply recover the first moment bound (1.5). However, for large β the strictly positive α render a
better bound. The following proposition simplifies the expression from Theorem 1.2 for large β. Recall F from
(1.8).

Proposition 2.10. Let d ≥ 3,β> 0,0 < z < 1,0 <α< 1/2. Then with y = y(β) =− log(z)/β we have

lim
β→∞

1

βy

(
logE

[
X y

1

]− d

2
logE[X y

2 ]

)
= Fd (α, z).

Proof of Corollary 1.3. For any d-regular graph G on n vertices and any β> 0, we have

2

dn
MAXCUT(G)= 1− 2

dn
min

σ∈{±1}n
HG (σ) ≤ 1+ 2

βdn
log Zβ(G).

Thus by Theorem 1.2, we obtain

limsup
n→∞

2

dn
E[MAXCUT(G)]≤ 1+ 2

d
lim
β→∞

Φd (β)/β (2.26)

≤ 1+ 2

d
inf

0<α≤1/2
0<z<1

Fd (α, z). (2.27)

The corollary follows. �

2.5. Organisation. Let us outline how the remainder of the paper is organized. Section 4 is devoted to proving
Proposition 2.2, while Section 5 contains the proof of Proposition 2.8. Jointly, the two sections provide the
missing pieces for the proof of Theorem 1.1. Finally, in Section 6 we prove the two key Lemmas 6.1 and 6.2
needed for the proof of Corollary 1.3.
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2.6. Notation. We will denote a random d-regular graph on n vertices by G(n,d). When the context is clear,
we will simply writeG=G(n,d). We tacitly assume that dn is even. Throughout the paper we will use standard
Landau notation with the usual symbols o(·),O(·),Θ(·),ω(·) andΩ(·). These symbols refer to the limit n →∞ by
default, but may refer to other limits where specified.

For a subset I ⊂ R we denote by P (I ) the set of all Borel probability measures on I . Moreover, for a finite
set Ω 6= ; let P (Ω) be the set of all probability distributions on Ω. We recall that the entropy H(µ) of such a
probability distribution µ ∈P (Ω) is defined as

H(µ) =−
∑
ω∈Ω

µ(ω) logµ(ω).

We will also need the Kullback-Leibler divergence of µ,ν ∈P (Ω), defined as

DKL
(
µ‖ν)=

∑
ω∈Ω

µ(ω) log
µ(ω)

ν(ω)
∈ [0,∞],

with the conventions 0log 0= 0, 0log 0
0 = 0 and − log0 =∞.

3. DISCUSSION

In this section we relate the contributions of the present paper to prior work. We begin with the statistical
physics perspective.

3.1. Replica symmetry breaking. The Ising model, proposed by Lenz in 1920 [43], has become a cornerstone
of statistical physics generally [30, 37]. Moreover, the Ising model on random graphs in particular has proved a
testbed for the investigation of the idea of replica symmetry breaking that was proposed by Mézard and Parisi
on the basis of the non-rigorous ‘cavity method’ [46, 47]. The corroboration of the cavity method’s predictions
for the ferromagnetic Ising model on Erdős-Rényi graphs by Dembo and Montanari [22] was a first success,
although replica symmetry breaking does not occur in this model. The proof was based on the analysis of the
Belief Propagation recurrences on random trees. These techniques have subsequently been extended to the
Potts model, a generalisation of the Ising model with more than two possible spin values [23, 24].

The antiferromagnetic version of the Potts and Ising models is closely related to the stochastic block model.
The results of Mossel, Neeman and Sly [52] on the block model with two communities therefore imply the
existence and location of a replica symmetry breaking phase transition in the Ising antiferromagnet on the
Erdős-Rényi graph. Thus, as we saw above a new contribution of the present paper is the extension to random
regular graphs. Moreover, results from Coja-Oghlan, Krzakala, Perkins and Zdeborová [14] imply the existence
and location of a replica symmetry breaking phase transition for the Potts model on Erdős-Rényi graphs. The
recent work of Coja-Oghlan, Hahn-Klimroth, Loick, Müller, Panagiotou and Pasch [16] extend these results to
graphs with given degree sequences. However, the results from [16] determine the location of the replica sym-
metry breaking phase transition only implicitly as the solution to an infinite-dimensional variational problem.
Thus, the contribution of Theorem 1.1 is the explicit analytic formula for the phase transition β∗(d), which
matches the combinatorially meaningful Kesten-Stigum bound [40].

Apart from the Potts and Ising models, replica symmetry breaking phase transitions have been pinpointed
in several other models. Examples include random (hyper)graph colouring, several other random constraint
satisfaction problems and further models from mathematical physics, such as the Viana-Bray spin glass model
[34]. But usually the formula for the phase transition comes in as a complicated variational problem. Indeed,
the question whether the replica symmetry breaking transition equals the explicit Kesten-Stigum threshold
has been linked to the order of the phase transition [59], a question that merits further rigorous attention.

3.2. The MAX CUT problem. The semidefinite programming based MAX CUT algorithm of Goemans and Williamson
[32] has been one of the most important contributions to algorithms research. The algorithm achieves an
approximation ratio of min0≤θ≤π 2

π
θ

1−cos(θ) ≈ 0.878 on graphs with non-negative edge weights. On regular
graphs better approximation ratios can be achieved (also via semidefinite programming) [28]. The question
whether the Goemans-Williamson approximation ratio is optimal has sparked an important line of research.
Håstad [35] derived from the PCP theorem that no approximation better than 0.941 can be attained unless
P=NP. Moreover, Koth [41] showed that the unique games conjecture implies the optimality of the Goemans-
Williamson approximation ratio; see Barak [6] for a discussion.

Given the great interest in MAX CUT generally, it is hardly surprising that the problem has been studied
intensively on random graphs, too. In the classical combinatorics literature upper bounds have typically
been based on the first moment method, while greedy algorithms were employed to derive lower bounds
[9, 12, 18, 19, 26, 27, 38, 39]. A semidefinite programming approach was taken in [48] on Erdős-Rényi graphs.
Table 1 summarises the best explicit prior bounds for random regular graphs. Naturally, arguments based
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on the method of moments or greedy algorithms suffer from the shortcoming of being inherently local, i.e.,
confined to short-range interactions. In effect, they remain oblivious to the long-range interactions that, ac-
cording to physics prediction, shape the MAX CUT problem on random graphs. Therefore, it is unsurprising
that these techniques only carry so far.

The first complex model where the long-range interactions predicted by the theory of replica symme-
try breaking were well understood is the Sherrington-Kirkpatrick spin glass. The model can be viewed as a
weighted MAX CUT problem on a complete graph. Specifically, the weight of the edge between vertices v, w
is a Gaussian J v,w . The random variables (J v,w )1≤v<w≤n are mutually independent. Hence, the model is de-
scribed by the random Hamiltonian

HSK(σ) =− 1p
n

∑
1≤i< j≤n

J i jσiσ j (σ ∈ {±1}n),

which induces a partition function and a Boltzmann distribution as in (1.2). Clearly, the ‘ground state energy’
minσHSK(σ) corresponds to the maximum cut weight. Parisi’s seminal work [58] predicted formulas for the
free energy and the ground state energy of the Sherrington-Kirkpatrick model. After several decades Talagrand
established the ‘Parisi formula’ rigorously [62]. An important ingredient to this work was the interpolation
method, which Guerra had proposed [33]. Panchenko developed a different argument [56], which also led to a
proof of Parisi’s ultrametricity conjecture [55].

Franz and Leone [29] extended the interpolation method to sparse random graphs; see also [54]. The ver-
sion of the interpolation method quoted in Lemma 2.9 is an adaptation to random regular graphs. Further-
more, Dembo, Montanari and Sen [25] used interpolation techniques to strike a chord between the sparse
Erdős-Rényi graph and the Sherrington-Kirkpatrick model. Specifically, they proved that

lim
d→∞

lim
n→∞

2p
dn

[
MAXCUT(G(n,d/n))− dn

4

]
= p⋆ ≈ 0.7632, (3.1)

where p⋆ derives from the ground state energy of the Sherrington-Kirkpatrick model. Conceptually it seems
natural to expect that the Sherrington-Kirkpatrick model occurs as the limit of sparse random graphs as the
average degree gets large, basically due to central limit theorem-like effects. Yet this result says nothing about
any finite d and, indeed, sparse random graphs for fixed finite values of d appear to exhibit a more diverse and
potentially even more intricate behavior. As a result, we are only just beginning to understand the genuine
behaviour of sparse models in the replica symmetry breaking phase; see, e.g., [7].

Finally, Panchenko [57] obtained a variational formula for the free energy of the Ising antiferromagnet on
Erdős-Rényi graphs. The formula involves an optimisation over exchangeable distributions on {±1}N×N subject
to certain invariance conditions. Coja-Oghlan and Perkins [15] extended this result to random regular graphs,
also pointing out that a corresponding variational formula can be derived for the MAX CUT of G(n,d) for any
fixed d . However, the formula is not explicit, and it appears difficult (to put it mildly) to extract any numerical
estimates. Thus, the contribution of Corollary 1.3 is that we obtain a (relatively) simple explicit formula that
incorporates at least the first level of the physicists’ replica symmetry breaking formalism.

3.3. The stochastic block model. The Ising antiferromagnet is intimately related to the stochastic block model
which has gained significant attention in recent years [2]. The model provides a benchmark for both Bayesian
inference and graph clustering, the basic idea being to create a random graph with a community structure. In
the simplest version the vertex set is partitioned into q communities and edges between vertices in the same
community are either more likely (assortative) or less (disassortative). The question is for what discrepancy
of edge densities it is possible to at least partially recover the community structure or, less ambitiously, to
at least discriminate a random graph drawn from the block model from a null model. The modern study
of the stochastic block model originated with conjectures that Decelle, Krzakala, Moore and Zdeborová [21]
derived via the cavity method. Specifically, they predicted a phase diagram that splits the model parameters
into regions where recovering the community structure is information-theoretically and/or algorithmically
feasible.

Mathematically the most complete picture exists for graphs with independent edges in the case of q = 2
communities. In this case the information-theoretic and algorithmic thresholds were established in a series
of papers by Mossel, Neeman and Sly [50, 51, 52, 53] and Massoulie [44]. For q > 2 communities algorithms
that match the conjecture from [21] have been proposed by Abbe and Sandon [3] and Bordenave, Lelarge and
Massoulie [11]. As explained above, the contribution of Theorem 1.4 is to show that for the disassortative reg-
ular case with two communities the information-theoretic threshold equals the explicit Kesten-Stigum bound
β∗(d). Finally, as an interesting direction for future research we point to the question of developing an efficient
algorithm that (partially) recovers the community structure σ∗ for β>β∗(d).
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4. PROOF OF PROPOSITION 2.2

The proof of Proposition 2.2 requires several steps. First we perform some preparatory calculations; in partic-
ular, we compute the first moment of the partition function of a random multi-graph drawn from the pairing
model. Subsequently we establish a relationship between the stochastic block model G∗ and the ‘null model’
G. Then we construct a coupling of the spin configuration around a typical vertex of G∗ with the broadcasting
process from Lemma 2.4 to estimate the probability that G∗ ∈ O . Finally, we perform a truncated moment
computation to obtain (2.12).

4.1. The pairing model. In order to calculate the first moment, as well as for some of the manoeuvres to follow,
it will be convenient to replace the simple random d-regular graph G by a random graph chosen from the
pairing model. Hence, think of the elements of Vn × [d] as vertex clones. Moreover, let Γ be a random perfect
matching of the complete graph on Vn × [d]. Finally, let G be the d-regular multigraph on Vn obtained by
contracting the clones Vn × [d]. With S the set of all simple graphs, it is well known that

P [G ∈S ]=Ω(1) and P [G ∈ E ]=P [G ∈ E |S ] for any event E . (4.1)

In order to compute the first moment E[ZG,β] we will compute E[ZG,β] and then investigate the impact of
conditioning on S .

To calculate E[ZG,β] we proceed as follows. For σ ∈ {±1}Vn let ρ(σ) = (ρ1(σ),ρ−1(σ)) be the distribution on
±1 defined by

ρ1(σ)= 1

n

n∑
i=1

1{σvi = 1}, ρ−1(σ) = 1

n

n∑
i=1

1{σvi =−1}.

Thanks to the linearity of expectation we can write the first moment as

E[ZG,β]=
∑

σ∈{±1}Vn

E[ψG,β(σ)].

Naturally, ψG,β(σ) depends on the number of edges that join vertices with the same spin. Hence, to calculate
E[ψG,β(σ)] we need to know the number of graphs with a given number of such edges.

The following lemma solves this problem. Let M (σ) be the set of all probability distributions

µ11 +µ1−1 = ρ1, µ−1−1 +µ1−1 = ρ−1, µ1−1 =µ−11 (4.2)

and such that µ11dn,µ−1−1dn are even integers and µ1−1dn is an integer. Moreover, let G (σ,µ) be the event
that G has µ11dn/2 edges that join vertices v, w with σv ,σw = 1. Then due to regularity there are µ−1−1dn/2
edges joining vertices that both carry a −1 spin and µ1−1dn edges that connect vertices with opposite spins.

Lemma 4.1. For σ ∈ {±1}Vn and µ ∈M (σ) we have

P
[
G ∈G (σ,µ)

]=
(

dnρ1(σ)

dnµ11

)(
dnρ−1(σ)

dnµ−1−1

)
(dnµ11 −1)!!(dnµ−1−1 −1)!!(dnµ1−1)!

(dn−1)!!
.

Proof. The denominator (dn−1)!! simply counts the total number of possible perfect matchings Γ. Moreover,
the two binomial coefficients account for the number of ways of selecting clones of vertices with spin ±1 to
constitute edges of the four possible types. Finally, the numerator equals the number of possible ways to match
the clones up according to these designated types. �

As it stands the formula from Lemma 4.1 does not yet lend itself to asymptotical calculations. But Stirling’s
formula yields the following approximation.

Corollary 4.2. For σ ∈ {±1}Vn and µ ∈M (σ) we have P
[
G ∈G (σ,µ)

]= exp
(
−dn

2 DKL
(
µ‖ρ⊗ρ)+O(logn)

)
.

Corollary 4.2 follows from a more general lemma about partitions of random regular graphs from [13]. But
since we will encounter similar calculations again in due course and because the proof is quite short, we in-
clude it here. We need Stirling’s formula

k! =
p

2πk

(
k

e

)k

exp(O(1/k)) (4.3)

and the elementary formula

(2k −1)!! = (2k)!

k!2k
. (4.4)
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Proof of Corollary 4.2. Applying (4.4), we obtain

(dnµ11 −1)!! = (dnµ11)!

2dnµ11/2(dnµ11/2)!
(dnµ−1−1 −1)!! = (dnµ−1−1)!

2dnµ−1−1/2(dnµ−1−1/2)!
, (dn−1)!! = (dn)!

2dn/2(dn/2)!
.

Hence,

(dnµ11 −1)!!(dnµ−1−1 −1)!!(dnµ1−1)!

(dn−1)!!
= 2dn(1−µ11−µ−1−1)/2

(
dnµ1−1

dnµ1−1/2

)−1(
dn/2

dnµ/2

)(
dn

dnµ

)−1

= 2dnµ1−1

(
dnµ1−1

dnµ1−1/2

)−1(
dn/2

dnµ/2

)(
dn

dnµ

)−1

. (4.5)

Thus, Stirling’s formula (4.3) gives

(dnµ11 −1)!!(dnµ−1−1 −1)!!(dnµ1−1)!

(dn−1)!!
= exp

(−dnH(µ)/2+O(log n)
)

. (4.6)

Further, combining (4.2) and (4.3), we obtain
(

dnρ1(σ)

dnµ11

)(
dnρ−1(σ)

dnµ−1−1

)
= exp

(
dn(H(µ)−H(ρ(σ))+O(log n)

)
. (4.7)

Finally, combining Lemma 4.1 with (4.6) and (4.7), we obtain

P
[
G ∈G (σ,µ)

]= exp
(
dn(H(µ)−2H(ρ(σ)))/2+O(log n)

)= exp
(
dn(H(µ)−H(ρ(σ)⊗ρ(σ)))/2+O(log n)

)

= exp
(−dnDKL

(
µ‖ρ(σ)⊗ρ(σ)

)
/2+O(log n)

)
,

as claimed. �

Let Mn = ⋃
σ∈{±1}Vn M (σ) be the set of all conceivable distributions µ. Moreover, for µ ∈ Mn set ρ1(µ) =

µ11 +µ1−1 and ρ−1(µ) = 1−ρ1(µ). Additionally, let µ∗ = µ∗
β

be the distribution

µ∗
11 =µ∗

−1−1 =
1

2(1+eβ)
, µ∗

1−1 = µ∗
−11 =

eβ

2(1+eβ)
. (4.8)

Furthermore, let M ∗
n be the set of allµ ∈Mn such that dTV(µ,µ∗) < n−0.49. Finally, let G (µ) be the set of all pairs

(G,σ) such that σ ∈ {±1}Vn satisfies ρ1(σ)= ρ1(µ) and G ∈G (σ,µ). The following lemma supplies the promised
formula for the first moment of ZG,β.

Lemma 4.3. For all d ≥ 3,β> 0 we have

E[ZG,β] = (1+exp(−nΩ(1)))
∑

µ∈M∗
n

|G (µ)|exp

(
−dn

2

(
µ11 +µ−1−1

))
=Θ

(
2n

(
1+e−β

2

)dn/2)
. (4.9)

Proof. For a givenµ ∈Mn the total number ofσ ∈ {±1}Vn withµ ∈M (σ) equals
( n
ρ1(µ)n

)
. Therefore, Corollary 4.2

and (4.3) yield

E[ZG,β]=
∑

µ∈Mn

|G (µ)|exp

(
−dn

2

(
µ11 +µ−1−1

))

=
∑

µ∈Mn

(
n

ρ1(σ)n

)
exp

(
−dn

2

[
DKL

(
µ‖ρ(µ)⊗ρ(µ)

)
+β

(
µ11 +µ−1−1

)]
+O(log n)

)
(4.10)

= max
µ∈Mn

exp

(
n

[
H(ρ(µ))− d

2
DKL

(
µ‖ρ(µ)⊗ρ(µ)

)− dβ

2

(
µ11 +µ−1−1

)]+O(log n)

)
. (4.11)

Due to the linear relations (4.2) we can view the expression inside the square brackets, i.e.,

ϕd ,β(µ) = H(ρ(µ))− d

2
DKL

(
µ‖ρ(µ)⊗ρ(µ)

)− dβ

2

(
µ11 +µ−1−1

)
, (4.12)

as a function of the two variables µ11 and µ−1−1. The function is strictly concave because the entropy function
is strictly concave and the Kullback-Leibler divergence is convex. Hence, the unique stationary point of ϕd ,β is
its maximiser. Since the derivatives of ϕd ,β work out to be

∂ϕd ,β

∂µ11
= d −1

2
log

ρ1(µ)

ρ−1(µ)
+ d

2
log

µ1−1

µ11
− dβ

2
,

∂ϕd ,β

∂µ−1−1
= 1−d

2
log

ρ1(µ)

ρ−1(µ)
+ d

2
log

µ1−1

µ−1−1
− dβ

2
,
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the stationary point occurs at µ∗. Substituting the solution (4.8) into (4.11), we obtain

E[ZG,β]= exp

(
n

[
log2+ d

2
log

1+e−β

2

]
+O(logn)

)
. (4.13)

as well as the first equality sign in (4.9). To obtain the second part of (4.9) we take another look at Lemma 4.1,
which shows together with Stirling’s formula that there exists c = c(d ,β) such that

|G (µ)|
exp

(
−βdn

2 (µ11 +µ−1−1)
)

(dn−1)!!
= c

n
exp

(−nϕd ,β(µ)
)

uniformly for all µ ∈M ∗
n . (4.14)

Since the function ϕd ,β is strictly concave, (4.14) shows together with the first part of (4.9) and the Laplace
method that

E[ZG,β]=Θ(exp(−nϕd ,β(µ∗))) =Θ
(

2n

(
1+e−β

2

)dn/2)
,

which completes the proof. �
Having calculated E[ZG,β] sufficiently accurately, we proceed to extend this formula to the simple random

graph G and to the truncated first moment E[ZG,β1 {O}]. Fortunately we can kill these two birds with one stone.

4.2. The truncated first moment. We need to calculate truncated first moments of the form E[ZG,β1A ] for
some event A . To this end we define a pairing model variant of the stochastic block model. In analogy to
(1.12) we draw σ∗ ∈ {±1}Vn uniformly at random. Further, given σ∗ for any possible outcome G of G we let

P
[
G∗ =G |σ∗]∝ exp(−βHG (σ∗)). (4.15)

The following lemma will enable us to reduce the task of computing E[ZG,β1A ] for an event A to estimating
the probability of G∗ ∈ A . Similar lemmas have been known for other random problems since the work of
Achlioptas and Coja-Oghlan [4].

Lemma 4.4. Let d ≥ 3,β> 0 and let E be a set of graph/spin configuration pairs. Then

1

E[ZG,β]

∑
σ∈{±1}Vn

E[ψG,β(σ)1{(G,σ) ∈ E }]=Θ(P[(G∗,σ∗) ∈ E ])+o(1).

Proof. The definition (4.15) of G∗ ensures that
∑

σ∈{±1}Vn

E[ψG,β(σ)1{(G,σ) ∈ E }] =
∑

σ∈{±1}Vn

P[(G∗,σ∗) ∈ E |σ∗ =σ]E[ψG,β(σ)]. (4.16)

We now split the above sums up into three parts: for a small ε> 0 pick C > 0 large and let

S =
{
σ ∈ {±1}Vn : |ρ1(σ)−1/2| ≤Cn−1/2} , S ′ =

{
σ ∈ {±1}Vn \ S : |ρ1(σ)−1/2| ≤ n−0.49} , S ′′ = {±1}Vn \ (S ∪S ′).

Then Lemma 4.3 implies that
∑
σ∈S ′′

E[ψG,β(σ)]= o(E[ZG,β]). (4.17)

In fact, (4.14) implies that for large enough C ,
∑
σ∈S ′

E[ψG,β(σ)]≤ εE[ZG,β]. (4.18)

In addition, (4.14) implies together with the fact that µ∗ is the unique stationary point of the concave function
ϕd ,β that

E[ψG,β(σ)]=O(2−nE[ZG,β]) uniformly for all σ ∈ {±1}Vn , (4.19)

E[ψG,β(σ)]=Θ(2−nE[ZG,β]) uniformly for all σ ∈ S. (4.20)

Furthermore, because σ∗ is uniformly random we can choose C so large that
∑

σ∈{±1}Vn

P[(G∗,σ∗) ∈ E |σ∗ =σ]≤ ε+
∑
σ∈S

P[(G∗,σ∗) ∈ E |σ∗ =σ]. (4.21)

Combining (4.16)–(4.21) and taking ε→ 0 slowly, we obtain the assertion. �
As an immediate consequence of Lemma 4.4 we obtain the following.

Corollary 4.5. For all d ≥ 3,β> 0 and for any event A the following two statements are true.

(i) If P [G∗ ∈A ] =Ω(1), then E[ZG,β1A ] =Θ(E[ZG,β]).
(ii) We have P [G∗ ∈A ] = 1−o(1) iff E[ZG,β1A ]∼ E[ZG,β].
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As an application of Corollary 4.5 we will compute E[ZG,β] = E[ZG,β1S ]. To this end we need bound the
probability of the event G∗ ∈S away from zero.

Lemma 4.6. For all d ≥ 3,β> 0 we have P [G∗ ∈S ] =Ω(1).

Proof. Following the well known proof that P[G ∈ S ] = Ω(1), we will use the method of moments. Thus, fix
µ ∈M ∗

n and σ ∈ {±1}Vn with ρ1(σ) = ρ1(µ). Let X be the number of self-loops of G and let Y be the number of
double-edges. We will show that for any fixed integers k,ℓ≥ 1,

E

[
k∏

j=1
(X − j +1)

ℓ∏
j=1

(Y − j +1)

]
∼ κkλℓ with κ= d −1

eβ+1
, λ= (d −1)2(1+e2β)

2(1+eβ)2
. (4.22)

Clearly (4.22) implies that P[G∗ ∈S ]=P[X = Y = 0] ∼ exp(−κ−λ) =Ω(1).
To verify (4.22) we start by computing the means of X ,Y . To be more precise, let X1 be the number of self-

loops at vertices vi with σvi = 1. In order to construct a self-loop we need to pick a vertex and two of its clones

and calculate the probability that these clones get matched. Thus, the number of choices equals
(d

2

)
ρ1(σ)n.

Therefore, Lemma 4.1 and (4.8) yield

E[X1 |G (σ,µ)] =
(d

2

)
ρ1(σ)n

(dnρ1(σ)−2
dnµ11−2

)(dnρ−1(σ)
dnµ−1−1

)
(dnµ11 −3)!!(dnµ−1−1 −1)!!(dnµ1−1)!

(dnρ1(σ)
dnµ11

)(dnρ−1(σ)
dnµ−1−1

)
(dnµ11 −1)!!(dnµ−1−1 −1)!!(dnµ1−1)!

∼ κ

2
. (4.23)

Because (4.8) ensures that ρ1(σ) ∼ 1/2, (4.23) implies that

E[X |G (σ,µ)]∼κ. (4.24)

Similar considerations yield the mean of Y . Specifically, we decompose Y into Y11, Y−1−1 and Y1−1, which,
respectively, count double-edges among vertices assigned spin 1, among vertices with spin −1, and between
vertices with different spins. To work out Y11 we need to select two vertices with spin 1, two clones of each and

a perfect matching. Thus, the number of choices comes to 2
(ρ1(σ)n

2

)(d
2

)2
. Hence, Lemma 4.1 and (4.8) yield

E[Y11 |G (σ,µ)]=
2
(ρ1(σ)n

2

)(d
2

)2(dnρ1(σ)−4
dnµ11−4

)(dnρ−1(σ)
dnµ−1−1

)
(dnµ11 −5)!!(dnµ−1−1 −1)!!(dnµ1−1)!

(dnρ1(σ)
dnµ11

)(dnρ−1(σ)
dnµ−1−1

)
(dnµ11 −1)!!(dnµ−1−1 −1)!!(dnµ1−1)!

∼ (d −1)2µ2
11

4ρ1(σ)2 ∼ (d −1)2

4(eβ+1)2
. (4.25)

The same calculation applies to the mean of Y−1−1. Moreover, analogously we obtain

E[Y1−1 |G (σ,µ)]=
2ρ1(σ)ρ−1(σ)n2

(d
2

)2(dnρ1(σ)−2
dnµ11

)(dnρ−1(σ)−2
dnµ−1−1

)
(dnµ11 −1)!!(dnµ−1−1 −1)!!(dnµ1−1 −2)!

(dnρ1(σ)
dnµ11

)(dnρ−1(σ)
dnµ−1−1

)
(dnµ11 −1)!!(dnµ−1−1 −1)!!(dnµ1−1)!

∼ (d −1)2µ2
1−1

2ρ1ρ−1
= (d −1)2e2β

2(1+eβ)2
. (4.26)

Combining (4.25) and (4.26), we obtain

E[Y |G (σ,µ)]∼ λ. (4.27)

The calculations that we performed towards (4.24) and (4.27) easily extend to a proof of (4.22). Indeed, in-
stead of just accounting for the choice of placing a single double-edge or loop, we need to place fixed numbers
k,ℓ. Since k,ℓ remain bounded as n →∞, the probability that any choices overlap is O(1/n). Therefore, the
joint factorial moment of X ,Y works out to be κkλℓ, which is (4.22). �

Proof of Lemma 2.1. The lemma follows from Lemma 4.3, Corollary 4.5 and Lemma 4.6. �

Proof of Lemma 2.3. This is an immediate consequence of Corollary 4.5 and Lemma 4.6. �

4.3. Coupling with the broadcasting process. In this section we are going to establish a coupling of the local
structure of G∗ around a given vertex vi with the broadcasting process from Lemma 2.4. Specifically, we are
going to prove the following statement.

Lemma 4.7. For any d ≥ 3,β > 0 there exists εn = o(1) such that the event O from (2.13) satisfies E[ZG,β1{O}] ∼
E[ZG,β].

We begin the proof of of Lemma 4.7 by showing that the bounded-depth neighbourhoods in G∗ are typically
acyclic.
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Lemma 4.8. Let d ≥ 3, β> 0. Moreover, for an integer ℓ≥ 1 let Cℓ be the number of cycles of length ℓ in G∗. Then
for any fixed integer L we have

∑
ℓ≤L Cℓ =O(logn) w.h.p.

Proof. By Lemma 4.3 and Corollary 4.5 we may condition on the event G (µ) for some µ ∈M ∗
n and on the event

|ρ1(σ∗)| ∼ 1/2. A cycle of length ℓ passes through (not necessarily distinct) vertices u = (u1, . . . ,uℓ). For each
step of the cycle we select a clone it where the cycle enters and one jt 6= it where it leaves. Set i = (i 1, . . . ,i t )
and j = ( j 1, . . . , j t ). However, we overcounted by a factor of 2ℓ (for the direction and the choice of the starting
point). Given these choices let e11 be the number of edges of the cycle that connect two vertices of spin 1 under
σ∗ and define e−1−1 similarly. Moreover, let e1−1 be the number of cycle edges that join vertices with different
spins. Following Lemma 4.1 we estimate the probability of the event C (u,i , j ) that the specified cycle actually
appears in G∗ by

P
[
C (u,i , j ) |G (µ),σ∗]∼

(
dnρ1(σ)−2e11 −e1−1

dnµ11 −2e11

)(
dnρ−1(σ)−2e−1−1 −e1−1

dnµ−1−1 −2e−1−1

)(
dnρ1(σ)

dnµ11

)−1(
dnρ−1(σ)

dnµ−1−1

)−1

· (dnµ11 −2e11 −1)!!(dnµ−1−1 −2e−1−1 −1)!!(dnµ1−1 −e1−1)!

(dnµ11 −1)!!(dnµ−1−1 −1)!!dnµ1−1 !

∼ (dn)−ℓ
(

µ11

ρ1(σ∗)2

)e11
(

µ−1−1

ρ−1(σ∗)2

)e−1−1
(

µ1−1

ρ1(σ∗)ρ−1(σ∗)

)e1−1

∼
(

2

dn(eβ+1)

)ℓ
eβe1−1 [due to (4.8)]. (4.28)

Since the total number of choices for u,i , j is bounded by nℓ
(d

2

)ℓ
, (4.28) implies that E[Cℓ | G (µ),σ∗] = O(1).

Therefore, the assertion follows from Markov’s inequality. �

For a vertex v of G∗ and an integer ℓ ≥ 0 let σ∗
v,ℓ be the spin configuration that σ∗ induces on the vertices

at distance at most ℓ from v . Furthermore, let τℓ,τ′
ℓ

be two independent copies of the spin configuration that
the broadcasting process from Section 2.2 induces on the vertices of the infinite d-regular tree Td at distance
at most ℓ from its root.

Lemma 4.9. For any d ≥ 3,β> 0,ℓ≥ 0 the spin configurations σ∗
v1,ℓ and τℓ have total variation distance o(1).

Proof. Thanks to Lemma 4.3 and Corollary 4.5 we may condition on the event G (µ) for a µ ∈ M ∗
n and on

|ρ1(σ∗)| ∼ 1/2. Moreover, due to Lemma 4.8 we may confine ourselves to the case that the depth-ℓ neighbour-
hood of v1 is acyclic. Let T be a possible outcome of the depth-ℓ neighbourhood of v1 under these assump-
tions. Moreover, let e11,e−1−1,e1−1 be the numbers of edges of T that join vertices both assigned spin 1 under
σ∗, or both assigned spin −1, or assigned different spins, respectively. Further, set e = e11+e1−1+e−1−1. Finally,
let E (T ) be the event that T occurs in G∗. Then Lemma 4.1 and (4.8) show that

P
[
E (T ) |G (µ),σ∗]=

(
dnρ1(σ∗)−2e11 −e1−1

dnµ11 −2e11

)(
dnρ1(σ∗)

dnµ11

)−1

·
(

dnρ−1(σ∗)−2e−1−1 −e1−1

dnµ−1−1 −2e−1−1

)(
dnρ−1(σ∗)

dnµ−1−1

)−1

· (dnµ11 −2e11 −1)!!(dnµ−1−1 −2e−1−1 −1)!!(dnµ1−1 −e1−1)!

(dnµ11 −1)!!(dnµ−1−1 −1)!!(dnµ1−1)!

∼
(

2

dn

)2e
(

eβ

1+eβ

)e1−1 (
1

1+eβ

)e11+e−1−1

. (4.29)

Hence, (4.29) shows that the probability of observing a given spin assignment σ∗
v1,ℓ depends only on the num-

ber of edges joining vertices with the same spin, and that this dependence is precisely the same as in the case
(2.14) of the broadcasting process. Thus, σ∗

v1,ℓ and τℓ have total variation distance o(1). �

For a graph G, a vertex v of G and an integer ℓ > 0 let ∂ℓ(G, v) be the set of vertices at distance precisely ℓ
from v . Further, for a spin configuration χ ∈ {±1}V (G) let

µG ,β,v,ℓ(s |χ) =
∑
σ∈{±1}V (G) 1{σv = s, ∀u ∈ ∂ℓ(G, v) :σu =χu}exp(−βHG (σ))

∑
σ∈{±1}V (G) 1{∀u ∈ ∂ℓ(G, v) :σu =χu }exp(−βHG (σ))

(s =±1);

in words, this is the conditional Boltzmann marginal of v given the ‘boundary condition’ χ at the vertices at
distance precisely ℓ from v .
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Corollary 4.10. For any d ≥ 3,β> 0,ε> 0 there exists ℓ> 0 such that E
∑n

i=1

∣∣µG∗ ,β,vi ,ℓ(1|σ∗)− 1
2

∣∣< εn.

Proof. Because the random pair (G∗,σ∗) is invariant under vertex permutations, we have

E
n∑

i=1

∣∣∣∣µG∗ ,β,vi ,ℓ(1|σ∗)− 1

2

∣∣∣∣= nE

∣∣∣∣µG∗ ,β,vi ,ℓ(1|σ∗)− 1

2

∣∣∣∣

and Lemma 2.4 and Lemma 4.9 show that the r.h.s. gets small in the limit of large ℓ. �

Proof of Lemma 4.7. We apply Corollary 4.10 to a function ε′n = o(1) that tends to zero slowly. Specifically, let
X (G∗,σ∗) = ∑n

i=1 1{|µG∗ ,β,vi ,ℓ(1|σ∗)− 1
2 | > ε′}. Corollary 4.10 implies together with Markov’s inequality that

P[X (G∗,σ∗) > ε′′n] ≤ ε′′ for a suitable 1 ≪ ℓ= o(logn), provided that ε′,ε′′ = o(1) tend to zero slowly enough.
Hence, Lemma 4.4 shows that

E[ZG,βP[X (G,σG) ≤ ε′′n |G]]∼ E[ZG,β]. (4.30)

We claim that (4.30) implies that there exists n−1/4 ≪ δ= o(1) such that

E[ZG,β1{P[X (G,σG) > δn |G] < δ}]∼ E[ZG,β]. (4.31)

Indeed, (4.30) shows that for a suitable δ,

E[ZG,β1{P[X (G,σG) > δn |G]≥ δ}] ≤ δ−1E[ZG,βP[X (G,σG) > ε′′n |G]]= o(E[ZG,β]).

Due to (4.31) it suffices to prove that there exists ε= o(1) such that for any d-regular graph G of sufficiently
large order n the following is true:

if P[X (G,σG ) > δn] < δ then E
∣∣σG ·σ′

G

∣∣≤ εn. (4.32)

Indeed, since E|σG ·σ′
G | = E[E[|σG ·σ′

G | | σ′
G ]], we may condition on σ′

G . Hence, let V ′
1 contain all vertices

v ∈V (G) such that σ′
G ,v = 1 and let V ′

−1 =V (G) \V ′
1. Further, let

Ys =
∑

v∈V ′
s

1{σG ,v = 1} (s =±1).

Then to establish (4.32) we just need to prove that

|Ys −|V ′
s |/2| = o(n) w.h.p. for s =±1. (4.33)

To deduce (4.33) fix s =±1. If |V ′
s | < δ1/3n, say, then (4.33) is immediate. Hence, we may assume that |V ′

s | ≥
δ1/3n. Draw a vertex v ∈ V ′

s uniformly at random, independently of σG . Then the assumption P[X (G,σG ) ≤
δn |G] implies that

P
[|µG ,β,v ,ℓ(1|σG )−1/2| > ε′ |σ′

G

]< δ2/3. (4.34)

Now, consider a spin configurationσ′′
G drawn from the Boltzmann distribution given the event

A (v ,σG ) = {
σ ∈ {±1}V (G) :σw =σG ,w for all w at distance ℓ or more from v

}
.

In other words,σ′′
G is obtained by re-sampling the spins of the vertices at distance less than ℓ from v from the

Boltzmann distribution with the boundary condition that σG induces on the vertices at distance precisely ℓ
from v . Since σG is a sample from µG ,β, so is σ′′

G . Moreover,σ′′
G is independent of σ′

G . Therefore, (4.34) yields

E[Ys |σ′
G ]= |V ′

s |P
[
σ′′

G ,v = 1 |σ′
G

]= |V ′
s |E[µG ,β,v ,ℓ(1|σG ) |G,σ′

G ] ∼ |V ′
s |/2. (4.35)

To complete the proof we apply similarly reasoning to estimate E[Y 2
s |G,σ′

G ]. Specifically, let v ′ be a second
vertex drawn uniformly from V ′

s , independently of v . Then in analogy to (4.34) we obtain

P
[|µG ,β,v ,ℓ(1|σG )−1/2| > ε′∨|µG ,β,v ′,ℓ(1|σG )−1/2| > ε′ |σ′

G

]< 2δ2/3. (4.36)

Further, draw σ′′′
G from the Boltzmann distribution given

A (v , v ′,σG ) =
{
σ ∈ {±1}V (G) :σw =σG ,w for all w at distance ℓ or more from both v , v ′} .

Since G is d-regular, ℓ is fixed and |V ′
s | ≥ δ1/3n ≥p

n, the vertices v , v ′ are distance more than 2ℓ apart w.h.p.
In this case the spins σ′′′

v ,σ′′′
v ′ are conditionally independent given σ′

G . Consequently, (4.36) implies that

E[Y 2
s |G,σ′

G ]= |V ′
s |2P

[
σ′′′

G ,v = 1,σ′′′
G ,v ′ = 1 |G,σ′

G

]

= |V ′
s |2E[µG ,β,v ,ℓ(1|σG ) |G,σ′

G ]E[µG ,β,v ′,ℓ(1|σG ) |G,σ′
G ]+o(22) = |V ′

s |2/4+o(n2). (4.37)

Finally, combining (4.35), (4.37) and Chebyshev’s inequality, we obtain (4.33), completing the proof. �

Proof of Lemma 2.5. The lemma follows directly from Corollary 4.5, Lemma 4.6 and Lemma 4.7. �
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4.4. The truncated second moment. The aim in this section is to show the following.

Lemma 4.11. For any d ≥ 3,β> 0 there exists εn = o(1) such that the event O from (2.13) satisfies

E
[

Z 2
G(n,d),β1{O}

]
≤ E

[
ZG(n,d),β

]2 exp(o(n)).

Toward the proof of Lemma 4.11 we require the following observation.

Fact 4.12. Suppose that (µn )n≥1 is a sequence of probability measures µn ∈P ({±1}n) such that

lim
n→∞

∑
σ,σ′∈{±1}n

|σ ·σ′|
n

µn (σ)µn(σ′)= 0.

Then limn→∞ n−1 ∑
σ∈{±1}n |σ ·1|µn(σ)µn(σ′) = 0.

Corollary 4.13. For any d ≥ 3,β> 0 there exists δ= δn = o(1) such that

E
[

Z 2
G(n,d),β1 {O}

]
≤ (1+o(1))

∑
σ,σ′∈{±1}Vn

1
{|σ ·1|, |σ′ ·1|, |σ ·σ′| ≤ δn

}
E[exp(−βHG(σ)−βHG(σ′))].

Proof. This is an immediate consequence of Fact 4.12 and the definition (2.13) of the event O . �

Lemma 4.14. For any d ≥ 3,β> 0 we have
∑

σ,σ′∈{±1}Vn

1
{|σ ·1|, |σ′ ·1|, |σ ·σ′| ≤ δn

}
E[exp(−βHG(σ)−βHG(σ′))]≤ exp

(
n fd (0,β)+O(δn)

)
. (4.38)

Proof. Given σ,σ′ ∈ {±1}Vn let ρ = ρ(σ,σ′) = (ρs,t (σ,σ))s,t∈{±1} and µ = µ(σ,σ′,G) = (µr,s,t ,u (σ,σ′,G))r,s,t ,u∈{±1}

be the vectors with entries

ρs,t (σ,σ′) = 1

n

n∑
v=1

1
{
σv = s,σ′

w = t
}

(s, t ∈ {±1}),

µr,s,t ,u (σ,σ′) = 2

dn

∑
{v,w }∈E (G)

1
{
σv = r,σ′

v = s,σw = t ,σ′
w = u

}
(r, s, t ,u ∈ {±1}).

Thus, ρ(σ,σ′) is the empirical distribution of the spin combinations that σ,σ′ assign to the vertices. Similarly,
µ comprises the statistics of the edges of G joining vertices with different spin combinations. Let

Σ⊗ = {
σ,σ′ ∈ {±1}Vn : |σ ·1|, |σ′ ·1|, |σ ·σ′| ≤ δn

}
, R⊗ = {ρ(σ,σ′) :σ,σ′ ∈Σ⊗}, (4.39)

and let M⊗ be the set of all possible outcomes of the random vector µ(σ,σ′) for any σ,σ′ ∈Σ⊗. For ρ ∈R⊗,µ ∈
M⊗ we use the shorthands ρ++ = ρ+1,+1 and µ++++ = µ+1,+1,+1,+1, and similarly for the other possible sign
patterns. Further, let

H (µ) = 2
(
µ+++++µ−−−−+µ+−+−+µ−+−+

)+ (4.40)

µ+++−+µ++−++µ+−+++µ−++++µ−−−++µ−−+−+µ−+−−+µ+−−−. (4.41)

Finally, for µ ∈M⊗ we define ρ(µ) ∈R⊗ by

ρi j (µ) =
∑

k ,l∈{±1}

µi j kl for i , j ∈ {±1} .

We now claim that for any µ ∈M⊗,

∑
σ,σ′∈{±1}Vn

P
[
µ(σ,σ′) =µ]= XµYµZµ

(dn−1)!!
where (4.42)

Xµ =
(

n

ρ++(µ)n,ρ+−(µ)n,ρ−+(µ)n,ρ−−(µ)n

)
,

Yµ =
∏

i , j∈{±}

(
dnρi j (µ)

dnµi j++,dnµi j+− ,dnµi j−+ ,dnµi j−−

)
,

Zµ =
(
dnµ++−−

)
!
(
dnµ−++−

)
!

∏
i∈{±}

((
dnµ+i−i

)
!
(
dnµi+i−

)
!
) ∏

i , j∈{±}

(
dnµi j i j −1

)
!!.

Indeed, the first factor Xµ counts all pairs (σ,σ′) with ρ(σ,σ′) = ρ(µ). Moreover, Yµ accounts for the number of
ways of selecting among clones of vertices with a given spin combination those that will be matched to vertices
with another specific sign combination. Finally, Zµ equals the number of possible matchings of clones in
accordance with their designations.
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Combining (4.40) and (4.42), we obtain
∑

σ,σ′∈{±1}Vn

1
{|σ ·1|, |σ′ ·1|, |σ ·σ′| ≤ δn

}
E[exp(−βHG(σ)−βHG(σ′))]

=
∑

µ∈Mn

∑
σ,σ′∈{±1}Vn

P
[
µ(σ,σ′) =µ]

exp(−βH (µ))

≤ |Mn | max
µ∈Mn

∑
σ,σ′∈{±1}Vn

P
[
µ(σ,σ′) =µ]

exp(−βH (µ))

≤ exp(O(logn)) max
µ∈Mn

XµYµZµ

(dn−1)!!
exp(−βH (µ)), (4.43)

because, naturally, |Mn | ≤ n16. Further, Stirling’s formula (4.3) and the explicit formula (4.4) for the double
factorial yield the approximations

logXρ = nH(ρ(µ))+O
(
logn

)
, logYρ,µ = dn(H(µ)−H(ρ))+O

(
logn

)
, log

Zρ,µ

(dn−1)!!
=−dn

2
H(µ)+O(log n).

Combining these formulas and recalling the the Kullback-Leibler divergence, we obtain

max
µ∈M⊗

XµYµZµ

(dn−1)!!
e−βH (µ) = exp

(
n max
µ∈M⊗

{
H(ρ(µ))−dDKL

(
µ‖ρ(µ)⊗ρ(µ)

)
/2−dβH (µ)/2

}+O(logn)

)
. (4.44)

To simplify the last optimisation problem we reparametrise the exponent in terms of α ∈ [−1,1]. Combina-
torially the optimal choice ofαwill correspond to the overlap valueσ·σ′/n that renders the largest contribution
to the l.h.s. of (4.38). Hence, let M⊗(α) be the set of all µ ∈M⊗ such that

ρ++(µ)= ρ−−(µ) = 1+α
4

, ρ+−(µ) = ρ−+(µ) = 1−α
4

. (4.45)

Then we claim that for any α ∈ (−1,1),

max
µ∈M⊗(α)

H(ρ(µ))−dDKL
(
µ‖ρ(µ)⊗ρ(µ)

)
/2−dβH (µ)/2 ≤ fd (α,β). (4.46)

To see this, we first notice that the constrained optimization problem on the l.h.s of 4.46 is upper bounded by
the result of the unconstrained optimization problem, i.e.

max
µ∈M⊗(α)

H(ρ(µ))−dDKL
(
µ‖ρ(µ)⊗ρ(µ)

)
/2−dβH (µ)/2

≤ max
µ∈M(α)

H(ρ(µ))−dDKL
(
µ‖ρ(µ)⊗ρ(µ)

)
/2−dβH (µ)/2 (4.47)

where M(α) is the set of all probability measures on Pα({±1}4) parametrised byα. Moreover, we notice that the
function µ ∈ M(α) 7→ H(ρ(µ))−dDKL

(
µ‖ρ(µ)⊗ρ(µ)

)
/2−dβH (µ)/2 is concave because H(ρ(µ)) is constant on

M(α), the Kullback-Leibler divergence is strictly convex and the function H (µ) is linear. Hence, it suffices to
find the (unique) zero of the derivative of DKL

(
µ‖ρ(µ)⊗ρ(µ)

)
/2+βH (µ)/2 subject to (4.45).

Letting zα = (1+e−2β)(1+α2)/4+e−β(1−α2)/2, we claim that µα given by

µα,++++ =µα,−−−− = (1+α)2

16zα
e−2β, µα,+−+− =µα,−+−+ = (1−α)2

16zα
e−2β, (4.48)

µα,+++− =µα,++−+ =µα,+−++ =µα,−+++ =µα,−−−+ = µα,−−+− =µα,−+−− =µα,+−−− = 1−α2

16zα
e−β, (4.49)

µα,++−− =µα,−−++ = (1+α)2

16zα
, µα,+−−+ =µα,−++− = (1−α)2

16zα
, (4.50)

fits the bill. Indeed, we calculate

µα,++++ log
µα,++++

ρα,++ρα,++
=µα,++++ log

e−2β

zα
=−µα,++++(log(zα)+2β). (4.51)

The same formula holds with ++++ replaced by any of the other sign patterns from (4.48), i.e., −−−−, +−+−,
−+−+. Moreover,

µα,+++− log
µα,+++−

ρα,++ρα,+−
=µα,+++− log

e−β

zα
=−µα,+++−(log(zα)+β), (4.52)

and similarly for the other seven patterns from (4.49). Further,

µα,++−− log
µα,++−−

ρα,++ρα,−−
=−µα,++−− log zα (4.53)
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and analogously for the other sign patterns from (4.50). Consequently, the derivatives work out to be

∂

∂µα,++++

(
DKL

(
µ‖ρ(µ)⊗ρ(µ)

)+βH (µ)
) ∣∣∣
µα

= 1+ log
µα,++++
ρ++(µα)2 +2β= 1− log(zα), (4.54)

∂

∂µα,+++−

(
DKL

(
µ‖ρ(µ)⊗ρ(µ)

)+βH (µ)
) ∣∣∣
µα

= 1+ log
µα,+++−

ρ++(µα)ρ+−(µα)
+β= 1− log(zα), (4.55)

∂

∂µα,++−−

(
DKL

(
µ‖ρ(µ)⊗ρ(µ)

)+βH (µ)
) ∣∣∣
µα

= 1+ log
µα,++−−

ρ++(µα)ρ−−(µα)
= 1− log(zα). (4.56)

In each case the same calculation applies to the other sign patterns from the respective line (4.48)–(4.50).
Since the right hand sides of (4.54)–(4.56) are identical, the constraint that µ belongs to the simplex P ({±1}4)
shows that µα is a stationary point and therefore the unique maximiser of DKL

(
µ‖ρ(µ)⊗ρ(µ)

)
/2+βH (µ)/2.

Moreover, combining (4.51)–(4.53), we find

−DKL
(
µα‖ρα⊗ρα

)−βH (µα) = log(zα) = log

(
1+α2

(
1−e−β

1+e−β

)2)
+2log

1+e−β

2
, (4.57)

Thus, (4.46) follows from the definition (2.6) of fd (α,β) and (4.57).
To complete the proof consider any µ ∈ M(α). Then (4.39) ensures that there exists µ′ ∈ M(0) such that

‖µ−µ′‖2 = O(δ). Consequently, since the function µ 7→ H(ρ(µ))−dDKL
(
µ‖ρ(µ)⊗ρ(µ)

)
/2−dβH (µ)/2 is dif-

ferentiable, the bound (4.46) shows that

max
µ∈M(α)

H(ρ(µ))−dDKL
(
µ‖ρ(µ)⊗ρ(µ)

)
/2−dβH (µ)/2 ≤ fd (0,β)+O(δ). (4.58)

Thus, the assertion follows from (4.43) and (4.58). �

Corollary 4.15. For any d ≥ 3,β> 0 we have

E
[

Z 2
G(n,d),β1{O}

]
≤ E

[
ZG(n,d),β

]2 exp(o(n)).

Proof. This is an immediate consequence of Corollary 4.13 and Lemma 4.14. �

Proof of Lemma 4.11. The lemma follows from Lemma 4.3, Lemma 2.1 and Corollary 4.15. �

Proof of Proposition 2.2. The proposition follows from Lemma 2.1, Lemma 2.3, Lemma 2.5, Lemma 4.3, and
Corollary 4.15. �

5. PROOF OF PROPOSITION 2.8

We begin by deriving an explicit formula for B(π∗
ε ,β). Recall that Λ(x) = x log x.

Lemma 5.1. Let d ≥ 3,β> 0. Then for small enough ε> 0 we have

BIsing(π∗
ε ,β,d) =

∑d
i=1

(d
i

)
2−dΛ

(∑
σ=±1

(
1− (

1−e−β
)( 1

2 +σε
))i (

1− (
1−e−β

)( 1
2 −σε

))d−i
)

2
(
(1+e−β)/2

)d

−
d

(
Λ

(
1− (

1−e−β
)( 1

2 +2ε2
))+Λ(

1− (
1−e−β

)( 1
2 −2ε2

)))

2(1+e−β)

Proof. The expression follows straight from plugging the distribution π∗
ε from (2.21) into the Bethe functional

from (2.19). Let us shed light on its combinatorial meaning. The first term represents the ’weighted penalty
factor’ arising at a root vertex with d adjacent vertices. Since we polarise each of these adjacent vertices with
probability 1/2 independently, the number of adjacent vertices polarised to ε and −ε follows a binomial dis-
tribution. The term

(d
i

)
2−d captures the corresponding probability while the term inside Λ(·) describes the

resulting penalty factor over all adjacent vertices summed over the +1 and −1 spins at the root vertex. The sec-
ond term represents the ’weighted penalty factor’ between two vertices connected via an edge. Here, the first
corresponds to the case that both vertices are polarised to the same spin, while the second summand picks up
the penalty factor for polarisation towards different spins. �

Lemma 5.2. Let d ≥ 3,β> 0. Then as ε→ 0,

BIsing(π∗
ε ,β,d) = log2+ d

2
log

1+e−β

2
+ 4ε4de−2β

(
eβ−1

)2 (
e2β(d −2)−2deβ+d −2

)

(1+eβ)2(1+e−β)2
+O(ε5).
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Proof. Lemma 5.1 shows that the function ε 7→ BIsing(π∗
ε ,β,d) has five continuous derivatives in for small

enough ε> 0. Hence, Taylor’s formula yields

BIsing(π∗
ε ,β,d) =BIsing(π∗

0 ,β)+ε ∂
∂ε

BIsing(π∗
ε ,β,d)|ε=0 +

ε2

2

∂2

∂ε2 BIsing(π∗
ε ,β,d)|ε=0

+ ε3

6

∂3

∂ε3 BIsing(π∗
ε ,β,d)|ε=0 +

ε4

24

∂4

∂ε4 BIsing(π∗
ε ,β,d)|ε=0 +O

(
ε5)

. (5.1)

The formula for BIsing(π∗
ε ,β,d) from Lemma 5.1 is complicated but explicit. Therefore, we can rely on a com-

puter algebra system to calculate the first four derivatives of BIsing(π∗
ε ,β,d) symbolically at ε= 0. The result of

this calculation reads

∂

∂ε
BIsing(π∗,β,d)|ε=0 =

∂2

∂ε2 BIsing(π∗,β,d)|ε=0 =
∂3

∂ε3 BIsing(π∗,β,d)|ε=0 = 0, (5.2)

∂4

∂ε4 BIsing(π∗,β,d)|ε=0 =
96de−2β

(
eβ−1

)2 (
e2β(d −2)−2deβ+d −2

)

(1+eβ)2(1+e−β)2
(5.3)

Plugging (5.2)–(5.3) into (5.1) yields the desired formula. �

Proof of Proposition 2.8. Let d ≥ 3. A few lines of algebra reveal that e2β(d −2)−2deβ +d −2 > 0 if β > β∗(d).
Therefore, Lemma 5.2 shows that for small enough ε > 0 and β > β∗(d) we have BIsing(π∗

ε ,β,d) > log 2 +
d
2 log 1+e−β

2 , as claimed. �

6. PROOF OF PROPOSITION 2.10

We treat X1, X2 from Lemma 2.9 separately. Let us begin with X2, which is the easier case. In the following, fix
any d ≥ 3, α ∈ (0,1/2) and z ∈ (0,1) and set y = y(β)=−β−1 log z.

Lemma 6.1. We have limβ→∞ logE[X
y
2 ] = log

(
1−2α2 +2α2z

)
.

Proof. Recalling the definition of rα from (2.23) and writing the expectation out explicitly, we obtain

E[X
y
2 ]= E

[(
1− (1−e−β)

∑
τ∈{±1}

ρ1(τ)ρ2(τ)

)y]
=

∑
r1 ,r2∈{0,1,−1}

rα(r1)rα(r2)

[
1− (1−e−β)(1+ r1r2)

2

]y

. (6.1)

To evaluate this expression we consider the possible values of the product r1r2.

Case 1: r1r2 =−1: by the choice (2.23) of r this event has probability 2α2 and

1− (1−e−β)(1+ r1r2)

2
= 1. (6.2)

Case 2: r1r2 = 1: in this case, which occurs with probability 2α2 as well, we obtain

1− (1−e−β)(1+ r1r2)

2
= e−β. (6.3)

Case 3: r1r2 = 0: naturally this event occurs with the remaining probability 1−4α2 and

1− (1−e−β)(1+ r1r2)

2
= 1+e−β

2
. (6.4)

Combining (6.1)–(6.4), we obtain

E

[(
1− (1−e−β)

∑
τ∈{±1}

ρ1(τ)ρ2(τ)

)y ]
= 2α2 +2α2e−βy + (1−4α2)

(
1+e−β

2

)y

. (6.5)

Finally, since z = exp(−βy) and
(

1+e−β

2

)y

= exp

(
− log z

β
log(1+e−b)

)
→ 1 as β→∞,

combining (6.1) and (6.5) shows that limβ→∞ logE[X y
2 ]= log(1−2α2 +2α2z), as desired. �

The computation of E
[

X y
1

]
is a little more intricate. Combinatorially speaking, the basic idea is this. Con-

sider the picture on the left of Figure 2. The expression

X1 =
∑

τ∈{±1}

d∏
h=1

1− (1−e−β)ρh (τ)
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represents the contribution to the partition function of a single white vertex along with its adjacent blue boxes.
Each of these boxed represents an imaginary vertex, or a ‘field’ in physics jargon, that takes the spin τ with
probability ρh(τ). The spins of these imaginary vertices are mutually independent. Hence, the sum on τ in
the definition of X1 accounts for the two possible choices of spin for the white vertex. Thus, if we let H(τ) be
the number of imaginary vertices with spin τ, then the product

∏d
h=1 1− (1− e−β)ρh(τ) equals the expected

Boltzmann weight

E[exp(−βH(τ)) |ρ1, . . . ,ρd ].

Furthermore, the fields ρh(τ) can be either ‘soft’, i.e., ρh (τ) = 1/2, or ‘hard’, meaning ρh (τ) ∈ {0,1}. As in the
proof of Lemma 6.1 we will see that in the limit β→∞ and y → 0 the soft fields are inconsequential. In effect,
the computation of X1 will come down to studying the random variable

∑
τ∈{±1}τ1{ρh (τ) = 1}, which gauges

the relative strength of the hard fields. In other words, the calculation of E
[

X y
1

]
comes down to analysing a

random walk. Let us get down to the details.

Lemma 6.2. We have limβ→∞ logE
[

X y
1

]= log
(
ζA dξ

)
.

Proof. Letting

R−1 =
d∑

h=1
1
{
ρh (1) = 0

}
, R0 =

d∑
h=1

1
{
ρh(1) = 1/2

}
, R1 =

d∑
h=1

1
{
ρh(1) = 1

}

we can write the random walk as
∑
τ∈{±1}τ1{ρh(τ) = 1} = R1 −R−1. Hence,

d∏
h=1

(
1− (1−e−β)ρh (1)

)y
= exp(−βyR1)

(
1+e−β

2

)yR0

, (6.6)

d∏
h=1

(
1− (1−e−β)ρh (−1)

)y
= exp(−βyR−1)

(
1+e−β

2

)yR0

. (6.7)

Since y =−β−1 log z, for any non-negative integers R1,R−1,R0 ≥ 0 such that R1 +R0 +R−1 = d we have

lim
β→∞

(exp(−βyR1)+exp(−βyR−1))

(
1+e−β

2

)yR0

= zR1∧R−1 . (6.8)

Thus, combining (6.6)–(6.8), we obtain

lim
β→∞

logE[X y
1 ]= logE

[
zR1∧R−1

]
. (6.9)

To calculate the mean on the r.h.s. consider a d-step symmetric random walk on {0,1, . . . ,d} with a reflective
barrier at 0. The walk starts at 0 and the available moves are +1, −1 or 0, with probabilities α, α and 1−2α
respectively. We couple this random walk with the probability space (ρ1, . . . ,ρd ) such that R1 and R−1 count
the ±1 moves of the random walk, respectively. Thus, R0 = d −R1 −R−1 equals the number of 0-moves and
|R1 −R−1| is the final position of the walk. To study this random walk we remember the matrix M from (1.7)
and introduce

A= (1−2α)id+2αtM ,

where t is a formal variable that we introduce to track the walk’s movements. Specifically, for any i ∈ [d] the
(1, i )-entry of the d-th power of A works out to be

Ad
1 i =

d∑
k=i−1

t kP [R1 +R−1 = k and |R1 −R−1| = i −1] (6.10)

Finally, we introduce the vector
x= (1, t−1, t−2, t−3, · · · )T ∈R(d+1)×1.

Then recalling the definition of vector ζ from (1.10), we readily find

ζAd x=
d∑

k=0
t kP [R 1 +R−1 −|R1 −R−1| = k]= E

[
t R1+R−1−|R1−R−1|] . (6.11)

Let us shed light on the combinatorial meaning of (6.11). ζAd is a (d +1)-dimensional vector where the i th
entry captures the probability of all random walks that end up at position i −1 and where the exponent of t
measures the number of non-stationary steps performed to reach position i − 1. Thus, using the definition
from (6.10) we have

ζAd =
(
Ad

11,Ad
12,Ad

13, . . .
)

.
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The multiplication with vector x then deducts the final position |R1 −R−1| of the random walk from the ex-
ponent of t . In effect, the exponent now captures the total number of offsetting non-stationary steps of the
random walk which is precisely twice the minimum of R1 and R−1. This relationship can be compactly written
in the basic identity

R1 +R−1 −|R1 −R−1| = 2(R 1 ∧R−1) .

We are now in a position to relate (6.8) to (6.11) by writing

lim
β→∞

logE[X y
1 ]= logE

[
zR1∧R−1

]= E
[p

z
R1+R−1−|R1−R−1|

]
= log

(
ζAd x|t=pz

)
.

Since A from (1.9) and ξ from (1.11) were defined in terms of
p

z rather than t we conclude that

lim
β→∞

logE
[

X y
1

]= log
(
ζAd x|t=pz

)
= log

(
ζA dξ

)

as claimed. �

Proof of Proposition 2.10. The proposition is an immediate consequence of Lemmas 6.1 and 6.2. �
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THE ISING ANTIFERROMAGNET IN THE REPLICA SYMMETRIC PHASE

CHRISTIAN FABIAN, PHILIPP LOICK

ABSTRACT. Partition functions are an important research object in combinatorics and mathematical physics [Barvi-
nok, 2016]. In this work, we consider the partition function of the Ising antiferromagnet on random regular graphs
and characterize its limiting distribution in the replica symmetric phase up to the Kesten-Stigum bound. Our proof
relies on a careful execution of the method of moments, spatial mixing arguments and small subgraph conditioning.

1. INTRODUCTION

1.1. Motivation. The Ising model, invented by Lenz in 1920 to explain magnetism, is a cornerstone in statis-
tical physics. Consider any graph G with vertex set V and edge set E . Each vertex carries one of two possible
spins ±1 and the interactions between vertices are represented by E . For a spin configuration σ ∈ {±1}V on G,
we can consider the Hamiltonian HG

HG (σ) =
∑

(v,w )∈E

1+σvσw

2
.

Together with a real parameterβ> 0 the Hamiltonian gives rise to a distribution on spin configurations defined
by

(1.1) µG ,β(σ) = exp
(
−βHG (σ)

)

ZG ,β

(
σ ∈ {±1}V )

where ZG ,β =
∑

τ∈{±1}V

exp
(−βHG (τ)

)
.

The probability measure µG ,β is known as the Boltzmann distribution with the normalizing term ZG ,β being
the partition function. µG ,β favors configurations with few edges between vertices of the same spin which
is known as the antiferromagnetic Ising model. There is a corresponding formulation of (1.1) where edges
between vertices of the same spin are preferred - the ferromagnetic Ising model. Both models are of great
interest in combinatorics and physics and the literature on each is vast [7].

In this paper, we study the Ising antiferromagnet on the random d-regular graph G = G(n,d). One might
be tempted to think that the regularities of this graph model provide a more amenable study object than its
well-known Erdős-Rényi counterpart with fluctuating vertex degrees. However, for the Ising model the reverse
seems to be true. Indeed, the independence of edges in the Erdős-Rényi-model greatly facilitates deriving the
distribution of short cycles in the planted model and simplifies the calculation of both the first and second
moment.

Clearly, µG,β gives rise to correlations between spins of nearby vertices. The degree of such correlations
is governed by the choice of β. A question which is of keen interest in combinatorics and statistical physics
is whether such correlations persist for two uniformly sampled (and thus likely distant) vertices. According
to physics predictions, for small values of β we should observe a rapid decay of correlation [10] and thus no
long-range correlations. This regime is known as the replica symmetric phase. It is suggested that there exists
a specific β which marks the onset of long-range correlations in G. This value is conjectured to be at the
combinatorially meaningful Kesten-Stigum bound [3]

βKS = log

(p
d −1+1p
d −1−1

)
.

The question of long-range correlations is tightly related to the partition function ZG,β from which also various
combinatorially meaningful observables can be derived. The MAX CUT on random d-regular graphs is a case
in point due to the well-known relation

MAXCUT(G)= dn

2
+ lim
β→∞

∂

∂β
log ZG ,β.

for any graph G. Thus, it is of key interest to understand the behavior of ZG,β.

The authors thank Amin Coja-Oghlan for helpful discussions and insights. The authors also thank Mark Sellke for helpful comments.
Philipp Loick is supported by DFG CO 646/3.

1

196



1.2. Result. In recent work, [3] were able to pinpoint the replica symmetry breaking phase transition at the
Kesten-Stigum bound, thus charting the replica symmetric phase for the Ising antiferromagnet on random d-
regular graphs. The key feature of the replica-symmetric phase is that w.h.p. two independent samples σ1,σ2

from the Boltzmann distribution µG,β exhibit an almost flat overlap in the sense that |σ1 ·σ2| = o(n). To be
precise, [3] determined ZG,β up to an error term exp(o(n)) for β < βKS. In this paper, we move beyond this
crude approximation. By deriving the limiting distribution in the replica-symmetric phase, we show that ZG,β

is tightly concentrated with bounded fluctuations which we can quantify and attribute to short cycles in G.

Theorem 1.1. Assume that 0<β<βKS and d ≥ 3. Let (Λi )i be a sequence of independent Poisson variables with

E [Λi ]= λi where λi = (d−1)i

2i . Then as n →∞ we have

log
(
ZG(n,d),β

)− 1

2
log

(
1+eβ

2+deβ−d

)
−n

((
1− d

2

)
log(2)+ d

2
log

(
1+e−β

))
+ d −1

2

e−β−1

e−β+1
+ (d −1)2

4

(
e−β−1

e−β+1

)2

d−→ log(W ) :=
∞∑

i=3
Λi log

(
1+

(
e−β−1

e−β+1

)i )
− (d −1)i

2i

(
e−β−1

e−β+1

)i

.

The infinite product defining W converges a.s. and in L2.

Taking the expectation of this distribution readily recovers the first part of the result by [3]. The proof of
Theorem 1.1 relies on the combination of the method of moments and small subgraph conditioning enriched
in our case by spatial mixing arguments to make the calculation of the second moment tractable.

2. TECHNIQUES

2.1. Notation. Let G=G(n,d) denote a random d-regular graph on n vertices. We consider sparse graphs with
constant d as n →∞. Throughout the paper, we will employ standard Landau notation with the usual symbols
o(·),O(·),Θ(·),ω(·), andΩ(·) to refer to the limit n →∞. We say that a sequence of events (En)n holds with high
probability (w.h.p.) if limn→∞P [En] = 1. When the context is clear we might drop the index of the expectation.
Moreover, we will use the proportional ∝ to hide necessary normalisations.

2.2. Outline. To get a handle on the distribution of ZG,β in the replica symmetric phase, we need to identify
the sources of fluctuations of ZG,β. One obvious source is the number of short cycles. Since G is sparse and
random, standard arguments reveal that G contains only few short cycles. In the following, let Ci (G) denote
the number of short cycles of length i in a graph G and Fℓ the σ-algebra generated by the random variables
Ci (G) for i ≤ ℓ. A key quantity to consider is the variance of ZG,β. By standard decomposition, we have

E
[

Z 2
G,β

]
−E[

ZG,β
]2 = E

[
E
[

ZG,β |Fℓ

]2 −E[
ZG,β

]2
]
+E

[
E
[

Z 2
G,β |Fℓ

]
−E[

ZG,β |Fℓ

]2
]

for any ℓ≥ 1. Note that the first term of the r.h.s. describes the contribution to the variance by the fluctuations
in the number of short cycles, while the second term accounts for the conditional variance given the number
of short cycles. It turns out that as ℓ→∞ after taking n →∞, the second summand vanishes. In other words,
the entire variance of ZG,β is due to fluctuations in the number of short cycles.

To show this property formally, we leverage a result by [8] that stipulates conditions under which one is
able to describe the limiting distribution of ZG,β (see Theorem 4.1 in the appendix). One ingredient is the
distribution of short cycles in G and a planted model G∗. InG∗, we first select a spin configuration σ uniformly
at random and subsequently sample a graph G with probability proportional to exp

(−βHG (σ)
)
. While the

distribution of short cycles in G is well established, the distribution of short cycles in the planted model G∗

is a key contribution of this paper. The second ingredient is a careful application of the method of moments.
Unfortunately, standard results on the first and second moment on random regular graphs (see i.e. [3]), do not
suffice in our case and we have to sharpen our pencils to yield an error term of order O

(
exp(1/n)

)
. While the

need for this lower error term prolongs calculations, it also poses some challenges that we resolve by a careful
application of the Laplace’s method as suggested by [5] and spatial mixing arguments.

2.3. Short cycles. To get started, let us write

(2.1) δi =
(

e−β−1

e−β+1

)i

and λi =
(d −1)i

2i
.

The first item on the agenda is to derive the distribution of short cycles in G. This is a well-established result.

Fact 2.1 (Theorem 9.5 in [9]). LetΛi ∼ Po(λi ) be a sequence of independent Poisson random variables for i ≥ 3.

Then jointly for all i we have Ci (G)
d−→Λi as n →∞.
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Deriving the distribution of short cycles in the planted modelG∗ informally introduced above requires some
more work. Let us start with the definitions. Given σ ∈ {±1}V and for any β> 0, let us define the distribution of
G∗(σ) for any event A as

(2.2) P
[
G∗(σ) ∈A

]∝ E
[
exp

(−βHG(σ)
)

1 {G ∈A }
]

.

This definition gives rise to the following experiment. First, draw a spin configurationσ∗ uniformly at random
among all configurations {±1}V . In the next step, draw G∗ = G∗(σ∗) according to (2.2). Hereafter, G∗ will be
denoted the planted model.

Proposition 2.2. Let

Ξi ∼ Po(λi (1+δi ))

be a sequence of independent Poisson random variables for i ≥ 3. Then jointly for all i we have Ci (G∗)
d−→Ξi as

n →∞.

Establishing the distribution of short cycles inG∗ is one of the main contributions of this paper. To this end,
we start off with similar arguments as used in [11], but need to diligently account for the subtle dependencies
introduced by the regularities in G∗.

Applying Fact 2.1 and Proposition 2.2 to Theorem 1 in [8] requires a slight detour via the Nishimori property.
To this end, note that the random graph G induces a reweighted graph distribution Ĝ which for any event A is
defined by

(2.3) P
[
Ĝ ∈A

]∝ E
[

ZG,β1 {G ∈A }
]

.

Moreover, consider the distribution σ̂ on spin configurations defined by

(2.4) P [σ̂=σ]∝ E
[
exp

(−βHG(σ)
)]

for any β> 0. Ĝ,G∗,σ̂,σ∗, and the Boltzmann distribution from (1.1) are connected via the well-known Nishi-
mori property.

Fact 2.3 (Proposition 3.2 in [4]). For any graph G and spin configuration σ ∈ {±1}V we have

P
[
Ĝ=G

]
µG (σ) =P (σ̂=σ)P

(
G∗ =G |σ∗ =σ)

.

2.4. The first and second moment. The second key ingredient towards the proof of Theorem 1.1 is the method
of moments. As standard random regular graph results are too crude, we need a more precise calculation.
Fortunately, with some patience and equipped with Laplace’s method as stated in [5], the first moment is not
too hard to find.

Proposition 2.4. Assume that 0<β<βKS and d ≥ 3. Then we have

E
[

ZG,β
]= exp

(
−λ1δ1 −λ2δ2 +O

(
1

n

))√
1+eβ

2+deβ−d
exp

(
n

(
(1−d/2)log (2)+d log

(
1+e−β

)
/2

))

The second moment is not as amenable. The key challenge for applying Laplace’s method is to exhibit that
the obvious choice of the optimum is indeed a global maximum. We resolve this issue by resorting to results
on the broadcasting process on an infinite d-regular tree and the disassortative stochastic block model. This
spatial mixing argument allows us to focus our attention on an area close to the anticipated optimum. To
this end, let us exhibit an event O that is concerned with the location of two typical samples σG,σ′

G
from the

Boltzmann distribution µG,β, i.e.

(2.5) O = {
E
[|σG ·σ′

G| |G
]< εnn

}

for a sequence of εn = o(1). Then we can leverage the following result from [3].

Lemma 2.5 (Lemma 4.7 in [3]). For the event O defined in (2.5) we have for d ≥ 3,0 <β<βKS

E
[

ZG,β1 {O}
]= (1−o(1))E

[
ZG,β

]
.

Conditioning on O greatly facilitates the calculation of the second moment.

Proposition 2.6. For 0 <β<βKS and d ≥ 3 we have

E
[

Z 2
G,β1 {O}

]
= exp

(
λ1 +λ2 −

4λ1(
1+eβ

)2 − 4λ2
(
1+e2β

)2

(
1+eβ

)4 +O

(
1

n

)) (
1+eβ

)2
exp

(
n

(
(2−d ) log(2)+d log

(
1+e−β

)))
(
deβ−d +2

)√
2e2β+2deβ−de2β−d +2
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2.5. Proof of Theorem 1.1. We apply Theorem 1 in [8] to the random variable ZG,β1 {O}. Condition (1) readily
follows from Fact 2.1. For Condition (2) let us write

C (G)= {C1(G) = c1, . . . ,Cℓ(G) = cℓ}

for any graph G. By Lemma 2.5 considering ZG,β rather than ZG,β1 {O} only introduces an error of order 1+o(1)
in Condition (2). Using standard reformulations and the definition of Ĝ from (2.3) we find

E
[

ZG,β |C (G)
]

E
[

ZG,β
] =

E
[

ZG,β1{C (G)}
]

P [C (G)]E
[

ZG,β
] = P

[
C (Ĝ)

]

P [C (G)]
= Eσ̂

[
P

[
C (Ĝ) | σ̂

]]

P [C (G)]
.

Since a typical sample σ from σ̂ has the property that |σ ·1| =O
(
n2/3

)
, i.e. is relatively balanced, the Nishimori

property (Fact 2.3) implies

Eσ̂
[
P

[
C (Ĝ) | σ̂]]∼P[

C (G∗)
]

.

Condition (2) now follows from Fact 2.1 and Proposition 2.2. For Condition (3) consider any β = βKS − ε for
some small ε> 0. Letting η= η(ε) > 0 a simple calculation reveals

∑
i≥1

λiδ
2
i ≤

∑
i≥1

λi

(
e−βKS+ε−1

e−βKS+ε+1

)2i

=
∑
i≥1

(1−η)i

2i
<∞

which also implies
∑

i≥3λiδ
2
i < ∞. Finally, by Lemma 2.5, Propositions 2.4 and 2.6 and the fact that for any

0 < x < 1 log (1− x)=−∑
i≥1 xi /i we find for 0<β<βKS and d ≥ 3

E
[

Z 2
G,β1 {O}

]

E
[

ZG,β1 {O}
]2 = (1+o(1))

E
[

Z 2
G,β1 {O}

]

E
[

ZG,β
]2

= (1+o(1))
1+eβ√

2+2e2β+2deβ−d −de2β
exp

(
λ1 +λ2 −

4λ1(
1+eβ

)2 − 4λ2
(
1+e2β

)2

(
1+eβ

)4 +2λ1δ1 +2λ2δ2

)

= (1+o(1))

(
1− (d −1)

(
e−β−1

e−β+1

))−1/2

exp
(−λ1δ

2
1 −λ2δ

2
2

)= (1+o(1))exp

(
∑
i≥3

λiδ
2
i

)

establishing Condition (4) and thus the distribution of ZG,β1 {O}. Since E
[

ZG,β (1−1 {O})
] = o

(
E
[

ZG,β
])

by
Lemma 2.5, Theorem 1.1 follows from Markov’s inequality.

3. DISCUSSION

Studying partition functions has a long tradition in combinatorics and mathematical physics. k-SAT, q-
coloring or the stochastic block model are just some noteworthy examples where the partition function re-
veals fundamental and novel combinatorial insights. Due to its connection to the MAX CUT problem and
the disassortative stochastic block model, the Ising antiferromagnet fits nicely into this list. For random d-
regular graphs, Coja-Oghlan et al. [3] pinpointed its replica symmetry breaking phase transition at the Kesten-
Stigum bound. Using the method of moments and spatial mixing arguments, they they determine ZG,β up to
exp(o(n)). In this paper, we move beyond this approximation and derive the limiting distribution of ZG,β in the
replica symmetric regime. We note that the distribution of ZG,β above the Kesten-Stigum bound is fundamen-
tally different. A similar analysis for the Erdős-Rényi-model was carried out in [11].

Using the combination of the method of moments and small subgraph conditioning underlying our proof
was initially pioneered by Robinson & Wormald [12] to prove that cubic graphs are w.h.p. Hamiltonian. Janson
[8] subsequently showed that small subgraph conditioning can be used to obtain limiting distributions. This
strategy was successfully applied, among others, to the stochastic block model [11] and the Viana-Bray model
[6]. For other problems, the second moment appears to be too crude for the entire replica symmetric phase and
enhanced techniques are needed [2]. In this work, we enrich the classical strategy of the method of moments
and small subgraph conditioning by spatial mixing arguments to cover the entire replica symmetric phase.

An interesting remaining question is to throw a bridge between the properties of the partition function ZG,β

and long-range correlations in G. While it should be a small step from Theorem 1.1 to vindicate the absence of
long-range correlations in the replica symmetric phase, proving the presence of long-range correlations above
the Kesten-Stigum bound is a more challenging, yet important endeavour.
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4. GETTING STARTED

Before moving to the proofs of Propositions 2.2, 2.4 and 2.6, let us introduce some additional notation.
With P denoting the set of all probability distributions on a finite set Ω 6= ; and two probability measures
µ,ν ∈P (Ω), let us introduce the entropy H(µ) and Kullback-Leibler divergence DKL

(
µ‖ν

)

H(µ) =−
∑
ω∈Ω

µ(ω) logµ(ω) and DKL
(
µ‖ν

)
=

∑
ω∈Ω

µ(ω) log
µ(ω)

ν(ω)
∈ [0,∞].

Note the convention 0·log
( 0

0

)= 0 and furthermore that if there exists someω ∈Ω such that µ(ω) > 0 and ν(ω) =
0, this implies DKL(µ‖ν) =∞. When we consider the product measure between two probability distribution µ

and ν, we will use the notation µ⊗ν.
Next, let us state a fundamental result by Janson [8] which stipulates conditions under which one is able to

obtain the limiting distribution of the partition function.

Theorem 4.1 (Theorem 1 in [8]). Let λi > 0 and δi ≥ −1, i = 1,2, . . . , be constants and suppose that for each
n there are random variables Cin , i = 1,2, . . . , and Zn (defined on the same probability space) such that Xin is
non-negative integer valued and E [Zn] 6= 0 (at least of large n), and furthermore the following conditions are
satisfied:

(1) Cin
d−→Λi as n →∞, jointly for all i whereΛi ∼ Po(λi ) are independent Poisson random variables;

(2) For any finite sequence c1, . . . ,cm of non-negative integers,

E [Zn |C1n = c1, . . . ,Cmn = cm]

E [Zn]
→

m∏
i=1

(1+δi )xi exp(−λiδi ) as n →∞;

(3)
∑

i λiδ
2
i <∞;

(4) E
[

Z 2
n

]
/(E [Zn])2 → exp

(∑
i λiδ

2
i

)
as n →∞.

Then, we have
Zn

E [Zn]
d−→W =

∏
i≥1

(1+δi )Λi exp(−λiδi ) ;

moreover, this and the convergence in (1) hold jointly. The infinite product defining W converges a.s. and in L2,
with E(W ) = 1 and E

(
W 2

) = exp
(∑∞

i=1λiδ
2
i

)
. Hence, the normalized variables Yn/E(Yn) are uniformly square

integrable. Furthermore, the event W > 0 equals, up to a set of probability zero, the event that Zi > 0 for some i
with δi =−1. In particular, W > 0 a.s. if and only if every δi >−1.

A substantial part of this paper is devoted to determining the first and second moment of ZG. As we will see
in due course, this task requires a special version of the well-known Laplace’s method, which is usually formu-
lated in terms of integrals. In contrast to that, the model considered here is discrete and therefore requires a
variation of Laplace’s method which is applicable to countable sums. Fortunately, [5] provides an adaptation
that we can leverage here. Let us start by providing the result of interest:

Theorem 4.2 (Theorem 2.3 in [5]). Suppose the following:

(1) L ⊂RN is a lattice with rank r ≤ N .
(2) V ⊆RN is the r -dimensional subspace spanned by L .
(3) W =V +w is an affine subspace parallel to V , for some w ∈RN .
(4) K ⊂RN is a compact convex set with non empty interior K ◦.
(5) φ : K → R is a continuous function and the restriction of φ to K ∩W has a unique maximum at some

point x0 ∈ K ◦∩W .
(6) φ is twice continuously differentiable in a neighbourhood of x0 and H := D2φ(x0) is its Hessian at x0.
(7) ψ : K1 →R is a continuous function on some neighbourhood K1 ⊆ K of x0 with ψ(x0) > 0.

(8) For each positive integer n there is a vector ℓn ∈RN with ℓn
n ∈W .

(9) For each positive integer n there is a positive real number bn and a function an : (L +ℓn)∩nK →R such
that, as n →∞,

an (ℓ) =O
(
bn enφ(ℓ/n)+o(n)

)
, ℓ ∈ (L +ℓn )∩nK ,

and

an (ℓ) = bn

(
ψ

(
ℓ

n

)
+o(1)

)
enφ(ℓ/n), ℓ ∈ (L +ℓn)∩nK1,

uniformly for ℓ in the indicated sets.
5
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Then, provided det (−H |V ) 6= 0, as n →∞,

∑
ℓ∈(L+ℓn )∩nK

an (ℓ) ∼ (2πn)r /2ψ(x0)bnenφ(x0)

det(L )
√

det(−H |V )
.

Theorem 4.2 is largely self-explanatory. The concept of lattices, however, is not obvious from the theorem
itself. Therefore, we briefly revisit the idea of lattices and how they are connected to our model. In general,
lattices are discrete subgroups of RN where each lattice is isomorphic toZr for some 0 ≤ r ≤ N . In this context,
discrete simply means that the intersection of a lattice with an arbitrary, bounded set in RN is finite. Further-
more, r is commonly called the rank of the respective lattice. This means that each lattice has a (not necessarily
unique) basis consisting of the vectors x1, . . . , xr . The crucial characteristics of these basis vectors are on the
one hand that they are independent. On the other hand, every element of the respective lattice has a unique
representation of the form

∑r
i=1 ki ·xi where ki ∈Z for all i ∈ [r ].

In applying Theorem 4.2 we are especially interested in understanding the determinant det(L ) for a given
lattice L . Formally, det(L ) is simply obtained by calculating the determinant of the matrix that consists of
the basis vectors x1, . . . , xr mentioned above. Intuitively, the determinant provides the r -dimensional volume
of a unit cell of the lattice L . Note that the term (det (L ))−1 in Theorem 4.2 is the key difference compared to
more common versions of Laplace’s method for integrals.

5. SHORT CYCLES IN THE REGULAR STOCHASTIC BLOCK MODEL / PROOF OF PROPOSITION 2.2

Let us start with a brief repetition of the Regular Stochastic Block Model (RSBM) which is the result of the
following experiment. Given a vertex set Vn = {v1, . . . , vn}, we first sample a spin configuration uniformly at
random. We denote this uniformly sampled configuration byσ∗. Next, we draw a d-regular graphG∗ =G∗(σ∗)
from the distribution

P
[
G∗ =G|σ∗ =σ]∝ exp

(−βHG (σ)
)

.

For some graph d-regular G with n nodes and some spin configuration σ ∈ {±1}n on the nodes of G we define

µ++(G,σ) := 2

dn

∑
(u,v)∈E

1{σ(v) =σ(u) =+1}.(5.1)

Since G has dn
2 edges in total, µ++ simply measures the fraction of edges that connect two positive vertices.

Analogously, we define

µ−−(G,σ) := 2

dn

∑
(u,v)∈E

1{σ(v) =σ(u) =−1} and(5.2)

µ+−(G,σ) =µ−+(G,σ) := 1

dn

∑
(u,v)∈E

1{σ(v) 6=σ(u)}.(5.3)

Due to the fact that our model is built on undirected edges, we just count all the edges connecting vertices with
different spins and evenly ’split’ them between µ+− and µ−+. In a similar way, we define

ρ+(G,σ) := 1

n

∑
v∈V

1{σ(v) =+1} and ρ−(G,σ) := 1

n

∑
v∈V

1{σ(v)=−1}(5.4)

whereρ+ andρ− depict the fractions of nodes that have been assigned a positive spin or a negative one, respec-
tively. For notational convenience, we usually drop the reference to the graph G and the spin configuration σ.
Accordingly, let µ′ = µ(G∗,σ∗) and M (σ) denote the set of all probability distributions fulfilling the obvious
symmetry and marginalization conditions, i.e.

µ+++µ+− = ρ+, µ−−+µ+− = ρ−, µ+− =µ−+

and where µ++dn/2,µ−−dn/2 and µ+−dn/2 are integers. Further, we define a probability measure µ̂ with

µ̂++ = µ̂−− = e−β

2
(
1+e−β

) and µ̂+− = µ̂−+ = 1

2
(
1+e−β

) .

To determine the distribution of short cycles in the RSBM, we start by considering the event

Aµ :=
{∥∥µ′−µ

∥∥=O
(
n−1/2 logn

)}
.

In the next lines, we establish that Aµ̂ is a high probability event.

Lemma 5.1. We have P
[
Aµ̂

]= 1−o(1).
6
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Proof of Lemma 5.1. In the following we will write µ for µ(G,σ) when the reference to G and σ is obvious.
For this proof, we leverage some results that are derived in detail in Section 6. More specifically, we consider
equation (6.3), that is

E
[

ZG(n,d),β
]= exp

(
O

(
1

n

))
·

∑

(ρ+,µ++)∈Q

1

πn
√

2µ++µ−−µ+−d
exp

(
nψ

(
µ++,ρ+

))
.

where

ψ
(
µ++,ρ+

)
:= H

(
ρ
)
− d

2

(
DKL(µ||ρ⊗ρ)+β

(
1+2µ++−2ρ+

))

and Q is the set of all conceivable pairs
(
ρ+,µ++

)
. Furthermore, from Lemma 6.5 we know that ψ

(
µ++,ρ+

)

obtains it unique maximum on Q at
(
µ̂++, ρ̂+

)=
(

e−β
2(1+e−β)

, 1
2

)
. The entries of the Hessian turn out to be

∂2ψ

∂µ2
++

(
µ̂, ρ̂

)=−2d
(
1+e−β

)2
eβ =Θ(1)

∂2ψ

∂µ++∂ρ+

(
µ̂, ρ̂

)= 2d
(
1+e−β

)2
eβ =Θ(1)

∂2ψ

∂ρ2
+

(
µ̂, ρ̂

)=−4−2d
(
1+e−β+2eβ

)
=Θ(1).

Note that a detailed calculation of the Hessian can be found in Section 6. With all these results at hand, the
two dimensional Taylor expansion of ψ at

(
µ̂, ρ̂

)
turns out to be

ψ
(
µ++,ρ+

)=ψ(
µ̂, ρ̂

)+Θ (1)
((
ρ+− ρ̂+

)2 + (
µ+− µ̂+

)2 + (
ρ+− ρ̂+

)(
µ+− µ̂+

))+O
(∥∥µ− µ̂

∥∥3
)

=ψ(
µ̂, ρ̂

)+Θ
(∥∥µ− µ̂

∥∥2
)

where we exploited that the higher order derivatives are bounded. Keeping this in mind, we obtain

exp

(
O

(
1

n

))
·

∑

(ρ+,µ++)∈Q

1

πn
√

2µ++µ−−µ+−d
exp

(
nψ

(
µ++,ρ+

))
1
{
1−Aµ̂

}

=
∑

(ρ+,µ++)∈Q

exp
(
nψ

(
µ̂, ρ̂

)−Ω(
log2 n

))
1
{

1−Aµ̂

}

=O
(
n2)

exp
(
nψ

(
µ̂, ρ̂

)−Ω(
log2 n

))=O
(
n− log n

)
exp

(
nψ

(
µ̂, ρ̂

))

which in turn yields

E
[

ZG,β
]= exp

(
O

(
1

n

))
·

∑

(ρ+,µ++)∈Q

1

πn
√

2µ++µ−−µ+−d
exp

(
nψ

(
µ++,ρ+

))
1
{
Aµ̂

}

+exp

(
O

(
1

n

))
·

∑

(ρ+,µ++)∈Q

1

πn
√

2µ++µ−−µ+−d
exp

(
nψ

(
µ++,ρ+

))
1
{
1−Aµ̂

}

= (1+o(1)) ·
∑

(ρ+,µ++)∈Q

1

πn
√

2µ++µ−−µ+−d
exp

(
nψ

(
µ++,ρ+

))
1
{
Aµ̂

}

= (1+o(1))E
[

ZG,β1
{
Aµ̂

}]
.

Now, the proof is almost completed. Corollary 4.5 in [3] states that iff E
[

ZG,β
]= (1+o(1))E

[
ZG,β1

{
Aµ̂

}]
holds,

we have P
[
G∗ ∈Aµ̂

]= 1−o(1). This is just the desired statement. �

The following preliminary arguments combine ideas from [9] and [11] to derive the distribution of short
cycles in G∗. We apply the method of moments to derive expected values conditional on µ′ being close to µ̂.
Then, with Lemma 5.1, we draw conclusions for the unconditional expectation. Let Cl (G∗) be the number
of cycles of length l in G∗. Furthermore, let M denote the number of edges e1, . . . el that connect vertices
with opposite spins. This construction immediately implies that M is an even number. Let us briefly recap
the configuration model to construct a d-regular graph on n uniformly at random. To get started, we take
d copies of each of the n nodes. Thus, we have dn nodes in total. In the next step, we choose a perfect
matching uniformly at random. To obtain a graph with n nodes again, we merge the d copies of each node,
providing a graph with dn

2 edges in total. Since this procedure does not rule out self-loops or double-edges, we
condition on the event S that we obtain a simple graph. Note that standard results from the literature entail
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that P [G ∈S ]=Ω(1). Similarly, conditional on S , each of the admissable d-regular graphs is created with the
same probability.
Now recall the probability to observe a specific graph in the regular stochastic block model

P
[
G∗ =G|σ]∝ exp

(−βHG (σ)
)

.(5.5)

Clearly, the definition of G∗ does not give rise to a uniform distribution over all admissable graphs. However,
it is easy to see that (5.5) yields a uniform distribution over all graphs exhibiting a specific µ. This observation
is central towards deriving the distribution of short cycles in G∗.

Lemma 5.2. Let
Ξi ∼ Po(λi (1+δi ))

be a sequence of independent Poisson random variables for i ≥ 3. Then jointly for all i we have Ci (G∗)|µ̂ d−→Ξi as
n →∞.

Proof. Let pl ,M be the probability that any given set of l edges where l++ edges connect two positive vertices
and l−− edges connect two negative edges results from the construction ofG∗ conditioned on some some fixed
µ. We readily find

pl ,M
(
µ
)
=

(dnρ+−2l++−M
dnµ++−2l++

)(
dnµ++−2l++−1

)
!!

( dnρ+
dnµ++

)(
dnµ++−1

)
!!

·
(dnρ−−2l−−−M

dnµ−−−2l−−

)(
dnµ−−−2l−−−1

)
!!
(
dnµ+−−M

)
!

( dnρ−
dnµ−−

)(
dnµ−−−1

)
!!
(
dnµ+−

)
!

.

Using the following well-known identity.

(2k −1)!! = (2k)!

k!2k
(5.6)

we find

(
dnµ++−2l++−1

)
!!
(
dnµ−−−2l−−−1

)
!!
(
dnµ+−−M

)
!(

dnµ++−1
)
!!
(
dnµ−−−1

)
!!
(
dnµ+−

)
!

=

(dnµ++−2l++)!(
dn
2 µ++−l++

)
!2

dn
2 µ++−l++

· (dnµ−−−2l−−)!(
dn
2 µ−−−l−−

)
!2

dn
2 µ−−−l−−

(dnµ++)!(
dn
2 µ++

)
!2

dn
2 µ++

· (dnµ−−)!(
dn
2 µ−−

)
!2

dn
2 µ−−

· (dnµ+−
)

M

= 2l−M ·

(
dn
2 µ++

)
l++

(
dn
2 µ−−

)
l−−(

dnµ++
)

2l++

(
dnµ−−

)
2l−−

(
dnµ+−

)
M

.(5.7)

Moving on to the binomial coefficients and using Stirling’s formula

k! =
p

2πk

(
k

e

)k

exp

(
O

(
1

k

))
(5.8)

we obtain
(dnρ+−2l++−M

dnµ++−2l++

)(dnρ−−2l−−−M
dnµ−−−2l−−

)
( dnρ+

dnµ++

)( dnρ−
dnµ−−

) =
(
dnµ++

)
2l++

(
dnµ−−

)
2l−−(

dnρ+
)

2l+++M

(
dnρ−

)
2l−−+M

·
(
dnρ+−dnµ++

)
!
(
dnρ−−dnµ−−

)
!(

dnρ+−dnµ++−M
)
!
(
dnρ−−dnµ−−−M

)
!

=
(
dnµ++

)
2l++

(
dnµ−−

)
2l−−

(
dnρ+−dnµ++

)
M

(
dnρ−−dnµ−−

)
M(

dnρ+
)

2l+++M

(
dnρ−

)
2l−−+M

(5.9)

Combining (5.7) and (5.9), we yield

pl ,M
(
µ
)= 2l−M ·

(
dn
2 µ++

)
l++

(
dn
2 µ−−

)
l−−

(
dnρ+−dnµ++

)
M

(
dnρ−−dnµ−−

)
M

(
dnρ+

)
2l+++M

(
dnρ−

)
2l−−+M

(
dnµ+−

)
M

.

In particular, we thus have for all µ̂′ ∈Aµ̂

pl ,M
(
µ̂′)= 2l−M

(
dn
2

e−β
2(1+e−β)

)l++ (
dn
2

e−β
2(1+e−β)

)l−− (
dn 1

2(1+e−β)

)M (
dn 1

2(1+e−β)

)M

(
dn
2

)2l+++M (
dn
2

)2l−−+M (
dn 1

2(1+e−β)

)M
(1+o(1))

=
2l−M

(
e−β

2(1+e−β)

)l−M (
1

1+e−β

)2M

(
dn
2

)l++ (
dn
2

)l−− (
dn 1

2(1+e−β)

)M
(1+o(1)) =

(
2

dn

)l
(

e−β(
1+e−β

)
)l−M (

1(
1+e−β

)
)M

(1+o(1)) .

8
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We point out that pl ,M
(
µ̂′) can asymptotically be expressed without l++ and l−−. Next, we consider the number

of possible cycles with length l and exactly M edges that connect vertices with opposite spins, subsequently
denoted by al ,M

(
µ
)
. For starters, we have

2l ·al ,M
(
µ
)= 2

(
l

M

)
(
nρ+

)
l+

(
nρ−

)
l− (d (d −1))l .

This implies for µ̂′ ∈Aµ̂

al ,M
(
µ̂′)=

(
l

M

)
1

l
nl 2−l (d (d −1))l (1+o(1)) .

Now, we are in a position to calculate the conditional expectation of the number of short cycles, that is

E
[
Cl

(
G∗) |Aµ̂

]=
l∑

i=0
pl ,M=i

(
µ̂
)

al ,M=i
(
µ̂
)

(1+o(1))

∼
l∑

i=0,i even

(
2

dn

)l
(

e−β(
1+e−β

)
)l−M (

1(
1+e−β

)
)M

(
l

i

)
1

l
nl 2−l (d (d −1))l

= (d −1)l

l

l∑
i=0,i even

(
l

i

)(
e−β

1+e−β

)l−i (
1

1+e−β

)i

= (d −1)l

2l

((
e−β

1+e−β
+ 1

1+e−β

)l

+
(

e−β

1+e−β
− 1

1+e−β

)l )

= (d −1)l

2l

(
1+

(
e−β−1

1+e−β

)l )
=:λ∗.

In order to establish Proposition 2.2 we next need to calculate the higher moments of the number of short
cycles in G∗. To this end, we consider E

[
Cl (G∗)2 |Aµ̂

]
which can be interpreted as the expected number of

ordered pairs of cycles in G. We introduce two new random variables, namely X ′ and X ′′. X ′ denotes the
number of ordered cycle pairs that are vertex-disjoint whereas X ′′ counts the ordered cycle pairs that have at
least one vertex in common. This immediately brings us to

E
[
Cl

(
G∗)2 |Aµ̂

]
= E

[
X ′|Aµ̂

]
+E

[
X ′′|Aµ̂

]
.

Starting with X ′ and adopting a corresponding definition of p ′
l ,M and a′

l ,M - just now referring to two vertex-
disjoint cycles - an analogue calculation to the one above yields

p ′
l ,M

(
µ̂
)∼

(
2

dn

)2l
(

e−β(
1+e−β

)
)2l−2M (

1(
1+e−β

)
)2M

and

(2l)2 ·a′
l ,M

(
µ
)
= 4

((
l

M

))2 (
nρ+

)
2l+

(
nρ−

)
2l− (d (d −1))2l .

Therefore, we arrive at

E
[

X ′|Aµ̂

]∼ (
λ∗)2 .

All that remains to do is to show that E
[

X ′′|Aµ̂

]
is asymptotically dominated by E

[
X ′|Aµ̂

]
. More precisely, we

show that E
[

X ′′|Aµ̂

]=O
(
n−1

)
where we adopt an argument from [9] to our case. Whenever we have two cycles

of length l that have k vertices in common, the number of shared vertices will exceed the number of shared
edges by at least one. Put differently, the number of shared edges is at most k −1. As a result of this insight we
have

al ,M
(
µ̂′)=Θ

(
n2l−k

)
and pl ,M

(
µ̂′)=O

(
n−2l+k−1

)

for any k < l and µ̂′ ∈Aµ̂. Summing up over all k ∈ [l −1] yields the desired statement

E
[
X ′′|Aµ̂

]=O
(
n−1) .

This same argumentation can be extended to arbitrary higher moments E
[
Cl (G∗)j |Aµ̂

]
with j ∈N. Thus, the

method of moments provides the desired statement. �
9
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Proof of Proposition 2.2. The Proposition results from combining Lemmas 5.1 and 5.2. �

6. THE FIRST MOMENT/ PROOF OF PROPOSITION 2.4

In this section, we first focus on the so-called pairing model G = G(n,d ). In pairing model, each of the n
initial nodes is represented by d clones. Then, a perfect matching for these dn clones is chosen uniformly at
random. Finally, the clones are merged back into their initial vertex, such that each node in the original vertex
set has degree d . By design, this setup allows for loops and double edges. If the graph does not contain either
of them, we call the graph simple. Furthermore, we denote the event that a graph is simple by S . The following
result (which we will prove first) can be leveraged for showing Proposition 2.4.

Proposition 6.1. Assume that 0<β<βKS and d ≥ 3. Then we have

E
[

ZG,β
]
= exp

(
O

(
1

n

))√
1+eβ

2+deβ−d
exp

(
n

(
(1−d/2) log(2)+d log

(
1+e−β

)
/2

))

6.1. Getting started. Recall the definitions of µ(G,σ) and ρ(G,σ) from (5.1)–(5.4). As a starting point for our
first moment calculations, consider the following result due to [3] which encodes the combinatorial structure
of the first moment of the partition function. Let Mn = ∪σ∈{±1}Vn M (σ) be the set of all conceivable distribu-
tions µ.

Lemma 6.2 (Lemmas 4.1 and 4.3 in [3]). We have

E
[
ZG,β

]=
∑

µ∈Mn

(
n

ρ+n

) (
dnµ++−1

)
!!
(
dnµ−−−1

)
!!
(
dnµ+−

)
!

(dn−1)!!

(
dnρ+

dnµ++

)(
dnρ−

dnµ−−

)
·exp

(
−βdn

2

(
µ+++µ−−

))
.

6.2. Reformulation of the first moment. Recall Stirling’s formula (5.8) and the identity for the double factorial
from (5.6). The next Lemma yields a simplified expression for the first moment which is obtained by applying
(5.8) and (5.6) to the factorials and binomial coefficients in Lemma 6.2. The proof follows [3], but now explicitly
accounting for smaller-order terms to yield an error term of order O(exp(1/n)).

Lemma 6.3. We have

E
[

ZG,β
]
=

∑
µ∈Mn

exp
(
nH

(
ρ
)
− dn

2

(
DKL(µ||ρ⊗ρ)+β

(
µ+++µ−−

))
+O

( 1
n

))

πn
√

2µ++µ−−µ+−d
.

Proof. Starting with Lemma 6.2 and considering the fraction of factorials first, we find

(
dnµ++−1

)
!!
(
dnµ−−−1

)
!!
(
dnµ+−

)
!

(dn−1)!!
=

(
dnµ++

)
!
(
dnµ−−

)
!
(
dnµ+−

)
!
(

dn
2

)
! ·2 dn

2

(dn)!
(

dnµ++
2

)
!
(

dnµ−−
2

)
! ·2 dn

2 (µ+++µ−−)

= exp

(
O

(
1

n

))√√√√2π
dnµ++dnµ−−dnµ+− dn

2

dn dnµ++
2

dnµ−−
2

·2 dn
2 (1−µ++−µ−−) ·

(
dn

e

)dn
(
µ+−− 1

2+
µ++

2 + µ−−
2

)

·2dn
( µ++

2 + µ−−
2 − 1

2

)
·µdn

(
µ++− µ++

2

)
++ ·µdn

(
µ−−− µ−−

2

)
−− ·µdnµ+−

+−

= exp

(
O

(
1

n

))
2
√
πdnµ+− ·µdn µ++

2
++ ·µdn µ−−

2−− ·µdnµ+−
+−

= 2exp




O

(
1

n

)
+ 1

2
log

(
πdnµ+−

)+dn
µ++

2
log

(
µ++

)+dn
µ−−

2
log

(
µ−−

)+dnµ+− log
(
µ+−

)
︸ ︷︷ ︸

=− dn
2 H(µ)




= exp

(
−dn

2
H

(
µ
)+ 1

2
log (n)+ 1

2
log

(
4πdµ+−

)+O

(
1

n

))
(6.1)

where we used (5.6) for the first equality and Stirling’s formula (5.8) for the second equality. Similarly, we
rearrange the second term of interest:
(

dnρ+
dnµ++

)(
dnρ−

dnµ−−

)
=

(
dnρ+

)
!
(
dnρ−

)
!(

dnµ++
)
!
(
dnµ−−

)
!
(
dn

(
ρ+−µ++

))
!
(
dn

(
ρ−−µ−−

))
!
=

(
dnρ+

)
!
(
dnρ−

)
!

(
dnµ++

)
!
(
dnµ−−

)
!
((

dnµ+−
)
!
)2 .
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Another application of (5.8) yields
(

dnρ+
dnµ++

)(
dnρ−

dnµ−−

)

= exp

(
O

(
1

n

))
1

2πdn

√
ρ+ρ−

µ++µ−−µ2
+−

(
dn

e

)dn(ρ++ρ−−µ++−µ−−−2µ+−)

·ρdnρ+
+ ·ρdnρ−− ·µ−dnµ++

++ ·µ−dnµ−−−− ·µ−2dnµ+−
+−

= exp
(
dnρ+ log

(
ρ+

)
+dnρ− log

(
ρ−

)
−dnµ++ log

(
µ++

)
−dnµ−− log

(
µ−−

)
−2dnµ+− log

(
µ+−

))

·exp

(
− log(n)+ 1

2
log

(
ρ+ρ−

µ++µ−−µ2
+−4π2d2

)
+O

(
1

n

))

= exp

(
dn

(
H

(
µ
)−H

(
ρ
))− log(n)+ 1

2
log

(
ρ+ρ−

µ++µ−−µ2
+−4π2d2

)
+O

(
1

n

))
(6.2)

Combining (6.1) and (6.2) and denoting by we have
(
dnµ++−1

)
!!
(
dnµ−−−1

)
!!
(
dnµ+−

)
!

(dn−1)!!

(
dnρ+

dnµ++

)(
dnρ−

dnµ−−

)

= exp

(
dn

2

(
H

(
µ
)−H

(
ρ⊗ρ))− 1

2
log(n)+ 1

2
log

(
ρ+ρ−

µ++µ−−µ+−πd

)
+O

(
1

n

))

= exp

(
−dn

2
DKL(µ||ρ⊗ρ)− 1

2
log (n)+ 1

2
log

(
ρ+ρ−

µ++µ−−µ+−πd

)
+O

(
1

n

))

As an immediate consequence, the first moment from Lemma 6.2 can be expressed as

E
[
ZG,β

]=
∑

µ∈Mn

(
n

ρ+n

)√
ρ+ρ−

µ++µ−−µ+−πdn
exp

(
−dn

2

(
DKL(µ||ρ⊗ρ)+β(

µ+++µ−−
))+O

(
1

n

))

where Mn is again the set of all conceivable distributions µ. A short auxiliary calculation using Stirling’s for-
mula (5.8) yields

(
n

ρ+n

)
= n!(

ρ+n
)
!
(
ρ−n

)
!
= 1√

2πnρ+ρ−

(n

e

)n (ρ+n

e

)−ρ+n (ρ−n

e

)−ρ−n
exp

(
O

(
1

n

))

= ρ
−ρ+n
+ ρ−ρ−n

−√
2πnρ+ρ−

exp

(
O

(
1

n

))
= exp

(
nH

(
ρ
)− 1

2
log(n)− 1

2
log

(
2πρ+ρ−

)+O

(
1

n

))

which enables us to state

E
[

ZG,β
]
=

∑
µ∈Mn

exp
(
nH

(
ρ
)− dn

2

(
DKL(µ||ρ⊗ρ)+β(

µ+++µ−−
))+O

( 1
n

))

πn
√

2µ++µ−−µ+−d

as claimed. �

Revisiting the setup of our model, we see that all values of µ and ρ are completely determined by the choice
of µ++ and ρ+. Exploiting the fact that ρ is a probability distribution, we have

ρ− = 1−ρ+.

A similar argument can be made for µ. Since edges are by definition undirected in our setup, we have µ+− =
µ−+. Keeping in mind that µ is also a probability measure, the missing weights of µ can be deduced from µ++
and ρ+ by the equations

µ+− =µ−+ = ρ+−µ++
µ−− = 1−2

(
ρ+−µ++

)−µ++ = 1+µ++−2ρ+ .

Substituting the above into Lemma 6.3 and some simplifications give us

E
[

ZG,β
]
= exp

(
O

(
1

n

))
·

∑

(ρ+,µ++)∈Q

1

πn
√

2µ++µ−−µ+−d
exp

(
nψ

(
µ++,ρ+

))
.(6.3)

where

ψ
(
µ++,ρ+

)
:= H

(
ρ
)− d

2

(
DKL(µ||ρ⊗ρ)+β(

1+2µ++−2ρ+
))
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and Q is the set of all conceivable pairs
(
ρ+,µ++

)
. The KL-divergence can also be expressed just in terms of

µ++ and ρ+, as the following calculation shows.

DKL
(
µ||ρ⊗ρ) =µ++ log

(
µ++
ρ2
+

)
+µ−− log

(
µ−−
ρ2−

)
+2µ+− log

(
µ+−
ρ+ρ−

)

=µ++ log

(
µ++
ρ2
+

)
+ (

1+µ++−2ρ+
)

log

(
1+µ++−2ρ+(

1−ρ+
)2

)
+2

(
ρ+−µ++

)
log

(
ρ+−µ++
ρ+

(
1−ρ+

)
)

=µ++ log
(
µ++

)
+

(
1+µ++−2ρ+

)
log

(
1+µ++−2ρ+

)

−2
(
1−ρ+

)
log

(
1−ρ+

)+2
(
ρ+−µ++

)
log

(
ρ+−µ++

)−2ρ+ log
(
ρ+

)
.

Having effectively reduced the number of involved variables, we now can move on to apply the Laplace method
as stated in Theorem 2.3 in [5].

6.3. Application of the Laplace method to the first moment. Before we can apply the Laplace method to the
expression for the first moment in (6.3), we need some preliminary work. To be precise, we need to determine
the unique maximum

(
µ̂++, ρ̂+

)
of ψ on the set Q and evaluate the Hessian at this point. To this end, consider

ρ̂+ = ρ̂− = 1

2
,(6.4)

i.e. balanced number of vertices with positive and negative spins. Moreover, let

µ̂++ = µ̂−− = e−β

2
(
1+e−β

) and µ̂+− = µ̂−+ = 1

2
(
1+e−β

) .(6.5)

We will see in due course in Lemma 6.5 that
(
µ̂++, ρ̂+

)
indeed constitutes the unique maximum of ψ. Let us

first calculate partial derivatives and establish the Hessian of ψ at
(
µ̂++, ρ̂+

)
.

Lemma 6.4 (Hessian for the first moment). We have

det

(
−Hesψ

(
1

2
,

e−β

2
(
1+e−β

)
))

= 4d
(
1+e−β

)2
eβ

(
2+d

(
eβ−1

))
.

Proof. Let us get started simple and state the partial derivatives of the Kullback-Leibler divergence from (6.3)
with respect to µ++ and ρ+.

∂DKL
(
µ||ρ⊗ρ)

∂µ++
= log

(
µ++

)
+ log

(
1+µ++−2ρ+

)
−2log

(
ρ+−µ++

)

∂2DKL
(
µ||ρ⊗ρ

)

∂µ2
++

= 1

µ++
+ 1

1+µ++−2ρ+
+ 2

ρ+−µ++
∂DKL

(
µ||ρ⊗ρ)

∂ρ+
=−2log

(
1+µ++−2ρ+

)
+2log

(
1−ρ+

)
+2log

(
ρ+−µ++

)
−2log

(
ρ+

)

∂2DKL
(
µ||ρ⊗ρ

)

∂ρ2
+

= 4

1+µ++−2ρ+
− 2

1−ρ+
+ 2

ρ+−µ++
− 2

ρ+
.

Furthermore, for the entropy we recall

∂H
(
ρ+

)

∂ρ+
= log

(
1−ρ+

)− log
(
ρ+

)
and

∂2H
(
ρ+

)

∂ρ2
+

=− 1

1−ρ+
− 1

ρ+
.

Keeping these auxiliary calculations in mind, the first derivatives of ψ turn out to be

∂ψ
(
µ++,ρ+

)

∂µ++
=−d

2

(
log

(
µ++

)+ log
(
1+µ++−2ρ+

)−2log
(
ρ+−µ++

)+2β
)

∂ψ
(
µ++,ρ+

)

∂ρ+
= log

(
1−ρ+

)− log
(
ρ+

)−d
(− log

(
1+µ++−2ρ+

)+ log
(
1−ρ+

)+ log
(
ρ+−µ++

)− log
(
ρ+

)−β)
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while the second derivatives of ψ are given by

∂2ψ
(
µ++,ρ+

)

∂µ2
++

=−d

2

(
1

µ++
+ 1

1+µ++−2ρ+
+ 2

ρ+−µ++

)

∂2ψ
(
µ++,ρ+

)

∂µ++∂ρ+
= ∂2ψ

(
µ++,ρ+

)

∂ρ+∂µ++
=−d

2

(
− 2

1+µ++−2ρ+
−2

1

ρ+−µ++

)
= d

(
1−ρ+

)
(
1+µ++−2ρ+

)(
ρ+−µ++

)

∂2ψ
(
µ++,ρ+

)

∂ρ2
+

=− 1

1−ρ+
− 1

ρ+
−d

(
2

1+µ++−2ρ+
− 1

1−ρ+
+ 1

ρ+−µ++
− 1

ρ+

)
.

With the above at hand, the entries of the Hessian turn out to be

∂2ψ

∂µ2
++

(
1

2
,

e−β

2
(
1+e−β

)
)
=−d

2


 1

e−β
2(1+e−β)

+ 1

1+ e−β
2(1+e−β)

−1
+ 2

1
2 − e−β

2(1+e−β)




=−2d

(
1+e−β+e−β+e−2β

e−β

)
=−2d

(
1+e−β

)2
eβ < 0(6.6)

and

∂2ψ

∂µ++∂ρ+

(
1

2
,

e−β

2
(
1+e−β

)
)
= ∂2ψ

∂ρ+∂µ++

(
1

2
,

e−β

2
(
1+e−β

)
)
=

d
2

e−β
2(1+e−β)

(
1
2 − e−β

2(1+e−β)

)

= 2d
e−β

1+e−β · 1
1+e−β

= 2d
(
1+e−β

)2
eβ

and

∂2ψ

∂ρ2
+

(
1

2
,

e−β

2
(
1+e−β

)
)
=−2−2−d


 2

e−β
2(1+e−β)

−2+ 1
1

2(1+e−β)

−2




=−4−d

(
4
(
1+e−β

)

e−β
−2+2e−β

)
=−4−2d

(
1+e−β+2eβ

)
.

Combining the above, the determinant of the Hessian at
(
µ̂++, ρ̂+

)
is given by

det

(
−Hesψ

(
1

2
,

e−β

2
(
1+e−β

)
))

= 8d
(
1+e−β

)2
eβ+4d2

(
1+e−β+2eβ

)(
1+e−β

)2
eβ−4d2

(
1+e−β

)4
e2β

= 8d
(
1+e−β

)2
eβ+4d2

(
1+e−β

)2
eβ

(
1+e−β+2eβ−eβ−2−e−β

)

︸ ︷︷ ︸
=eβ−1

= 4d
(
1+e−β

)2
eβ

(
2+d

(
eβ−1

))
> 0.(6.7)

closing the proof of the lemma. �
With the partial derivatives in place, we can proceed to establish that the unique maximum of ψ is indeed

at
(
µ̂++, ρ̂+

)
.

Lemma 6.5 (Maximum for the First Moment Calculation). With the definitions of ρ̂+ and µ̂++ from (6.4) and
(6.5) we have

arg max
(µ++ ,ρ+)∈Q

ψ
(
µ++,ρ+

)= (
µ̂++, ρ̂+

)

Proof. As a starting point, we set the first derivatives equal to zero, resulting in

∂ψ
(
µ̂++, ρ̂+

)

∂µ̂++
=−d

2

(
log

(
µ̂++

)+ log
(
1+ µ̂++−2ρ̂+

)−2log
(
ρ̂+− µ̂++

)+2β
)= 0

which is equivalent to

0 = log
(
µ̂++

)+ log
(
1+ µ̂++−2ρ̂+

)−2log
(
ρ̂+− µ̂++

)+2β

⇔ 1 = µ̂++
(
1+ µ̂++−2ρ̂+

)
(
ρ̂+− µ̂++

)2 e2β

⇔ 0 = µ̂2
++

(
1−e−2β

)
+ µ̂++

(
1−2ρ̂++e−2β2ρ̂+

)
−e−2βρ̂2

+.
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Then, the quadratic formula yields two candidates for the solution, namely

µ̂++,1/2 =
−1+2ρ̂+−e−2β2ρ̂+±

√(
1−2ρ̂+

(
1−e−2β

))2 +4
(
1−e−2β

)
e−2βρ̂2

+
2
(
1−e−2β

)

= ρ̂+−
1∓

√(
1−2ρ̂+

)2 +4ρ̂+e−2β
(
1− ρ̂+

)

2
(
1−e−2β

) .

This result immediately poses the question of possible extrema. First we note that

(
1−2ρ̂+

)2 +4ρ̂+e−2β (
1− ρ̂+

)> 0

since both summands are positive. This in turn enables us to rule out µ̂++,2 = ρ̂+− 1+
√

(1−2ρ̂+)2+4ρ̂+e−2β(1−ρ̂+)
2(1−e−2β)

as a solution since that would imply

µ̂−+ = µ̂+− = ρ̂+− µ̂++,2 =
1+

√(
1−2ρ̂+

)2 +4ρ̂+e−2β
(
1− ρ̂+

)

2
(
1−e−2β

) > 1

2
(
1−e−2β

) > 1

2

which contradicts the fact that µ̂ is a probability measure. As a consequence, the only solution that is consis-
tent with our model assumptions is

µ̂++ = ρ̂+−
1−

√(
1−2ρ̂+

)2 +4ρ̂+e−2β
(
1− ρ̂+

)

2
(
1−e−2β

) = ρ̂+− 1−η
2
(
1−e−2β

)(6.8)

where

η :=
√(

1−2ρ̂+
)2 +4ρ̂+e−2β

(
1− ρ̂+

)=
√

1−4ρ̂+
(
1−e−2β

)+4ρ̂2
+

(
1−e−2β

)

In the next step, we plug (6.8) into the first derivative of ψ with respect to ρ+

∂ψ
(
µ̂++, ρ̂+

)

∂ρ̂+
= log

(
1− ρ̂+

)
− log

(
ρ̂+

)

−d
(− log

(
1+ µ̂++−2ρ̂+

)+ log
(
1− ρ̂+

)+ log
(
ρ̂+− µ̂++

)− log
(
ρ̂+

)−β)= 0

which yields

ξ
(
ρ̂+

)
:= log

(
1− ρ̂+

)− log
(
ρ̂+

)

−d

(
− log

(
1− 1−η

2
(
1−e−2β

) − ρ̂+
)
+ log

(
1− ρ̂+

)+ log

(
1−η

2
(
1−e−2β

)
)
− log

(
ρ̂+

)−β
)

= log
(
1− ρ̂+

)− log
(
ρ̂+

)−d

(
− log

((
1− ρ̂+

)
2
(
1−e−2β

)

1−η −1

)
+ log

(
1− ρ̂+

)− log
(
ρ̂+

)−β
)

= 0

Next, let us take a look at the derivative of ξ with respect to ρ̂+:

∂ξ
(
ρ̂+

)

∂ρ̂+
= (1−d)

(
− 1

1− ρ̂+
− 1

ρ̂+

)
+d




−(1−η)2
(
1−e−2β)+ 2

η (2ρ̂+−1)
(
1−e−2β)

(1−ρ̂+)2
(
1−e−2β)

(1−η)2

(1−ρ̂+)2(1−e−2β)
1−η −1




= d −1(
1− ρ̂+

)
ρ̂+

+d


−(

1−η)
2
(
1−e−2β

)+ 4
η

(
2ρ̂+−1

) (
1− ρ̂+

)(
1−e−2β

)2

(
1− ρ̂+

)
2
(
1−e−2β

)(
1−η

)
−

(
1−η

)2




where we made use of the simple fact

∂η

∂ρ̂+
= 1

2η

(
8ρ̂+−4

)(
1−e−2β

)
= 2

η

(
2ρ̂+−1

)(
1−e−2β

)
.
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To simplify the first derivative, we focus on

−
(
1−η

)
2
(
1−e−2β

)
+ 4

η

(
2ρ̂+−1

) (
1− ρ̂+

)(
1−e−2β

)2

(
1− ρ̂+

)
2
(
1−e−2β

)(
1−η)− (

1−η)2 =
2
(
1−e−2β

) ·
(
−(

1−η)+ 1−η2

η + 2
η

(
ρ̂+−1

) (
1−e−2β

))

(
1−η)(

1−2ρ̂+−2e−2β+2e−2βρ̂++η)

= 2
(
1−e−2β

)
(
1−η)

η
· −η+2ρ̂+−1−2ρ̂+e−2β+2e−2β

1−2ρ̂+−2e−2β+2e−2βρ̂++η =−2
(
1−e−2β

)
(
1−η)

η
.

As a consequence, the derivative can be simplified to

∂ξ
(
ρ̂+

)

∂ρ̂+
= d −1(

1−ρ+
)
ρ+

−2d

(
1−e−2β

(
1−η)

η

)
.

Before proceedings, we point out that

(
1− ρ̂+

)
ρ̂+ = 1−η2

(
1−e−2β

)
4

which brings us to

∂ξ
(
ρ̂+

)

∂ρ̂+
= d −1(

1− ρ̂+
)
ρ̂+

−2d

(
1−e−2β

(
1−η)

η

)
= 1−e−2β

1−η

(
4d −4

1+η − 2d

η

)

= 1−e−2β

(
1−η2

)
η

(
4dη−4η−2d −2dη

)= 1−e−2β

(
1−η2

)
η

(
2d

(
η−1

)−4η−2d
) < 0

where we implicitly assumed that ρ̂+ is conceivable which especially means that 0 < η < 1 holds.
∂ξ(ρ̂+)
∂ρ̂+ < 0

implies that if we can locate any root of ξ
(
ρ̂+

)
it is automatically the unique one. Recalling our definition of

ρ+ and µ++ from (6.4) and (6.5), we conjecture that this root is located at ρ̂+ = 1
2 . A short calculation indeed

verifies

ξ

(
1

2

)
=−d

(
− log

( (
1− 1

2

)
2
(
1−e−2β

)

1−η −1

)
+ log

(
1− 1

2

)
− log

(
1

2

)
−β

)

= d

(
log

(
1−e−2β

1−e−β
−1

)
+β

)
= d

(
log

(
e−β

)
+β

)
= 0

where we used

η=
√(

1−2ρ̂+
)2 +4ρ̂+e−2β

(
1− ρ̂+

)
=

√(
1−2 · 1

2

)2

+4 · 1

2
·e−2β

(
1− 1

2

)
= e−β.

This immediately allows us to calculate the optimal µ̂++ by plugging ρ̂+ = 1
2 into equation (6.8)

µ̂++ = 1

2
− 1−e−β

2
(
1−e−2β

) = 1

2
− 1

2
(
1+e−β

) = e−β

2
(
1+e−β

) .

The above establishes that
(
µ̂++, ρ̂+

)
is the (only) extremum of ψ. Let us next show that it is indeed the global

maximum (and not a minimum or stationary point). From the calculation of the Hessian (Lemma 6.4), we saw
that the first leading principal minor is negative (see inequality (6.6)) and the second one is positive (see in-
equality (6.7)). Thus, ψ is strictly concave at

(
µ̂++, ρ̂+

)
which makes it a local maximum. Due to the uniqueness

of the extremum,
(
µ̂++, ρ̂+

)
thereby also is the unique maximum. �

As an application of Lemma 6.5, we obtain the following corollary.

Corollary 6.6. We have

max
(µ++,ρ+)∈Q

ψ
(
µ++,ρ+

)=ψ(
µ̂++, ρ̂+

)=
(
1− d

2

)
log (2)+ d

2
log

(
1+e−β

)

Proof. We evaluate ψ at the optimal point
(
µ̂++, ρ̂+

)
. Starting with the entropy we have

H
(
ρ̂
)=−1

2
log

(
1

2

)
− 1

2
log

(
1

2

)
= log(2) .(6.9)
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Continuing with the Kullback-Leibler divergence, we find

DKL
(
µ̂||ρ̂⊗ ρ̂)= e−β

2
(
1+e−β

) log

(
e−β

2
(
1+e−β

)
)
+ e−β

2
(
1+e−β

) log

(
e−β

2
(
1+e−β

)
)

(6.10)

+2

(
1

2
− e−β

2
(
1+e−β

)
)

log

(
1

2
− e−β

2
(
1+e−β

)
)
−2log

(
1

2

)
(6.11)

= e−β(
1+e−β

) log

(
e−β

2
(
1+e−β

)
)
+2log (2)+ 1(

1+e−β
) log

(
1

2
(
1+e−β

)
)

(6.12)

= log(2)− βe−β(
1+e−β

) − log
(
1+e−β

)
.(6.13)

Combining (6.9) and (6.10) we arrive at

ψ
(
µ̂++, ρ̂+

)= H
(
ρ̂
)− d

2

(
DKL(µ̂||ρ̂⊗ ρ̂)+β(

1+2µ̂++−2ρ̂+
))

= log(2)− d

2

(
log(2)− βe−β(

1+e−β
) − log

(
1+e−β

)
+2β

e−β

2
(
1+e−β

)
)

=
(
1− d

2

)
log(2)+ d

2
log

(
1+e−β

)
.

as claimed. �

Proof of Proposition 6.1. With Lemmas 6.4 and 6.5 and Corollary 6.6 in place, all that is left for the application
of Laplace’s method from [5] is the determination of the appropriate lattice. Put differently, we are interested
in the respective matrix Afirst which consist of the basis elements of the lattice. For the first moment, the matrix
can be constructed in a rather simple way. Since ρ+ is of the form

ρ+ = 1

n

∑
v∈V

1{σ(v) =+1}

the first entry Afirst,1,1 immediately turns out to be equal to one. Similarly, keeping in mind

µ++ = 2

dn

∑
(u,v)∈E

1{σ(v)=σ(u) =+1}

yields Afirst,2,2 = 2
d . Having constructed the matrix Afirst, we are left to compute its determinant

det(Afirst) = det

(
1 0
0 2

d

)
= 2

d
.

Now, we can bring together all the findings of this section to obtain a precise statement of the first moment up
to an error term of order O(exp(1/n)). Applying the Laplace method, i.e. Theorem 2.3 in [5] to expression (6.3)
yields

E
[

ZG,β
]
= exp

(
O

(
1

n

))
·

∑

(ρ+,µ++)∈Q

1

πn
√

2µ++µ−−µ+−d
exp

(
nψ

(
µ++,ρ+

))

= exp

(
O

(
1

n

))
2πn exp

(
nψ

(
µ̂++, ρ̂+

))

det (Afirst)
√

det
(
−Hesψ

(
µ̂++, ρ̂+

))
πn

√
2µ̂++µ̂−−µ̂+−d

= exp

(
O

(
1

n

)) 2exp
(
n

((
1− d

2

)
log(2)+ d

2 log
(
1+e−β

)))

2
d

√
4d

(
1+e−β

)2 eβ
(
2+d

(
eβ−1

))√
2 e−2β

8(1+e−β)3 d

= exp

(
O

(
1

n

))√
1+eβ

2+deβ−d
exp

(
n

((
1− d

2

)
log(2)+ d

2
log

(
1+e−β

)))
.

as claimed. �
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6.4. The simple d-regular case. Having established the first moment in the pairing model G, we next adapt
the result to the d-regular model G of interest. As we will see, a pairing variant G∗

1 of the planted model will be
a useful tool to do so. The pairing variant G∗

1 is defined as follows. First, draw a spin assignment σ∗ ∈ {±1}n

uniformly at random. Then, draw a graph G∗
1 according to the probability distribution

P
[
G∗

1 =G|σ∗]
∝ exp

(
−βHG

(
σ∗))

.

where G might contain self-loops and double-edges. In the following, we will call a graph G simple if it does
not feature any such self-loops or double-edges. With this definition, we are able to prove Proposition 2.4.

Proof of Proposition 2.4. To get started, we note the asymptotic equality

(6.14) E
[

ZG,β
]
∼ P

[
G∗

1 is simple
]

P
[
G is simple

] E
[

ZG,β
]

.

Fortunately, both P
[
G∗

1 is simple
]

and P
[
G is simple

]
can be readily found in the literature.

Fact 6.7 (Corollary 9.7 in [9]). For d ≥ 3, we have

P
[
G is simple

]∼ exp

(
−d −1

2
− (d −1)2

4

)
.

Lemma 6.8 (Lemma 4.6 in [3]). For d ≥ 0 and β> 0 we have

P
[
G∗

1 is simple
]∼ exp

(
−(d −1)

1

1+eβ
− (d −1)2 1+e2β

2
(
1+eβ

)2

)
.

In combination with Proposition 6.1 and equation (6.14), Fact 6.7 and Lemma 6.8 yield the desired result.
�

7. THE SECOND MOMENT/ PROOF OF PROPOSITION 2.6

Similar to the first moment, we will first establish the following result for the paring model G.

Proposition 7.1. For 0 <β<βKS and d ≥ 3 we have

E
[

ZG,β1 {O}
]= exp

(
O

(
1

n

)) (
1+eβ

)2
exp

(
n

(
(2−d ) log(2)+d log

(
1+e−β

)))
(
deβ−d +2

)√
2e2β+2deβ−de2β−d +2

.

Once we have done so, we bridge the gap between G and G.

7.1. Getting started. For the second moment calculation, we introduce a set of variables that is similar in
meaning to the ones employed in the previous sections. Yet, the definitions become more complicated since
for the second moment each node v in some graph G is assigned two spins σv and τv which can be either
positive or negative. As before, we aim to measure the fractions of edges that connect two vertices with certain
spin configurations. Since each node is equipped with two spins, there are 16 possible spin configurations for
two connected vertices. Usually, we will denote such a configuration as (σ1,τ1,σ2,τ2) ∈ {±1}4 where σ1 and τ1

denote the spins assigned to the first node. Accordingly,σ2 and τ2 are the spins of the second node. With this
notation of spin assignments in mind, we define

µr,s,t ,u := 2

dn

∑
(u,v)∈E

1 {σ(u) = r,σ(v) = s,τ(u) = t ,τ(v) = u} {r, s, t ,u ∈±1} .

with the shorthand notation µ++++ =µ+1,+1,+1,+1 and so forth. Our choices of µ are constrained by the follow-
ing relationship.

µ(σ1 ,τ1 ,σ2 ,τ2) =µ(σ2 ,τ2 ,σ1 ,τ1) ∀(σ1,τ1,σ2,τ2)∈ {±1}4 .(7.1)

Note thatµ++++,µ+−+−,µ−+−+, and µ−−−− get a special meaning: these four configurations satisfy bothσ(u) =
σ(v) and τ(u) = τ(v). Hence, they trivially fit condition (7.1). All of the remaining 12 µ’s can be divided into
pairs which are the same up to the order of the two vertices. Since the edges are undirected, for each of these
pairs we simply count all the edges that could be assigned to either of the two components of µ. Then, to
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ensure that the µ pairs satisfy (7.1), the count is equally split between the µ pair. Combining these thoughts
yields

µ++−− =µ−−++ := 1

dn

∑
(u,v)∈E

1 {σ(u) = τ(u) 6=σ(v)= τ(v)}

µ+−−+ =µ−++− := 1

dn

∑
(u,v)∈E

1 {σ(u) = τ(v) 6= τ(u) =σ(v)}

µ+++− =µ+−++ := 1

dn

∑
(u,v)∈E

1 {σ(u) =σ(v) =+1∧τ(u) 6= τ(v)}

µ++−+ =µ−+++ := 1

dn

∑
(u,v)∈E

1 {σ(u) 6=σ(v)∧τ(u) = τ(v) =+1}

µ−−−+ =µ−+−− := 1

dn

∑
(u,v)∈E

1 {σ(u) =σ(v) =−1∧τ(u) 6= τ(v)}

µ−−+− =µ+−−− := 1

dn

∑
(u,v)∈E

1 {σ(u) 6=σ(v)∧τ(u) = τ(v) =−1} .

Finally, we need expressions to indicate which fraction of vertices is assigned a certain spin configuration
(σ1,τ1) ∈ {±1}2. This is achieved rather easily by defining

ρσ1 ,τ1 := 1

n

∑
v∈V

1 {σ(v) =σ1,τ(v) = τ1}

for (σ1,τ1) ∈ {±1}2. With the definitions in place, we can move on to calculating the second moment. As a
starting point we choose an equation that was derived in detail in [3].

Lemma 7.2 ((4.42) in [3]). We have

E
[

Z 2
G,β

]
=

∑
µ∈U

XµYµZµ

(dn−1)!!
·exp

(
−βdn

2

( ∑
σ∈A1

µ(σ)+2
∑
σ∈A2

µ(σ)

))
(7.2)

where U is the set of conceivable distributions µ, σ is of the form σ := (σ1,τ1,σ2,τ2) ∈ {±1}4, A1 is defined by

A1 := {
x ∈ {±1}4 :σ1 =σ2 and τ1 6= τ2

}∪{
x ∈ {±1}4 :σ1 6=σ2 and τ1 = τ2

}
,

A2 is given by

A2 :=
{

x ∈ {±1}4 :σ1 =σ2 and τ1 = τ2
}

,

and

Xµ =
(

n

ρ++n,ρ+−n,ρ−+n,ρ−−n

)
,

Yµ =
∏

i , j∈{±}

(
dnρi j

dnµi j++ ,dnµi j+− ,dnµi j−+ ,dnµi j−−

)
,

Zµ =
(
dnµ++−−

)
!
(
dnµ−++−

)
!

∏
k∈{±}

((
dnµ+k−k

)
!
(
dnµk+k−

)
!
) ∏

i , j∈{±}

(
dnµi j i j −1

)
!!.

7.2. Reformulation of the second moment. The next Lemma equips us with an useful reformulation of the
second moment.

Lemma 7.3. We have

E
[

Z 2
G,β

]
=

∑
µ∈U

1

8d3π
9
2 n

9
2
√∏

σ∈B µσ
exp

(
nδ

(
µ,ρ

)+O

(
1

n

))

where U is the set of conceivable distributions µ, σ is of the form σ := (σ1,τ1,σ2,τ2) ∈ {±1}4, δ
(
µ,ρ

)
is defined by

δ
(
µ,ρ

)
:= H

(
ρ
)
− d

2

(
DKL

(
µ||ρ⊗ρ

)
+β

∑
σ∈A1

µ(σ)+2β
∑
σ∈A2

µ(σ)

)

and

B := {±}4 \ {(++−−), (−++−), (++−+), (+++−), (+−−−), (−+−−)} .
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Proof. We start off the formulation of the second moment from Lemma 7.2. In the next lines, we will establish
four asymptotic equalities1. Let us start with

(dn−1)!! = (dn)!(
dn
2

)
!2

dn
2

= 2−
dn
2 ·

p
2

(
dn

e

)dn (
dn

2e

)− dn
2

exp

(
O

(
1

n

))
= exp

(
1

2
log(2)+ dn

2
log(dn)− dn

2
+O

(
1

n

))
.

Second, we take a closer look at

Xµ =
(

n

ρ++n,ρ+−n,ρ−+n,ρ−−n

)
= n!(

ρ++n
)
!
(
ρ+−n

)
!
(
ρ−+n

)
!
(
ρ−−n

)
!

= (2π)−
3
2
(
n3ρ++ρ+−ρ−+ρ−−

)− 1
2
(n

e

)n (ρ++n

e

)−ρ++n (ρ+−n

e

)−ρ+−n

·
(ρ−+n

e

)−ρ−+n (ρ−−n

e

)−ρ−−n
exp

(
O

(
1

n

))

= (2π)−
3
2
(
n3ρ++ρ+−ρ−+ρ−−

)− 1
2 ρ

−ρ++n
++ ρ

−ρ+−n
+− ρ

−ρ−+n
−+ ρ−ρ−−n

−−︸ ︷︷ ︸
=exp(n·H(ρ))

exp

(
O

(
1

n

))

= 1√
8π3n3ρ++ρ+−ρ−+ρ−−

exp

(
n ·H (

ρ
)+O

(
1

n

))
.

Moving on to the third term, we obtain

Yµ =
∏

i , j∈{±}

(
dnρi j

dnµi j++ ,dnµi j+− ,dnµi j−+ ,dnµi j−−

)

=
∏

i , j∈{±}
(2πdn)−

3
2

√
ρi j

µi j++µi j+−µi j−+µi j−−

·ρdnρi j

i j µ
−dnµi j++
i j++ µ

−dnµi j+−
i j+− µ

−dnµi j−+
i j−+ µ

−dnµi j−−
i j−− exp

(
O

(
1

n

))

= 1

(2πdn)6

( ∏
i , j∈{±}

√
ρi j

µi j++µi j+−µi j−+µi j−−

)
exp

(
dn

(
H

(
µ
)−H

(
ρ
))+O

(
1

n

))

Last, we consider the fourth term

Zµ =
(
dnµ++−−

)
!
(
dnµ−++−

)
!

∏
k∈{±}

((
dnµ+k−k

)
!
(
dnµk+k−

)
!
) ∏

i , j∈{±}

(
dnµi j i j −1

)
!!

= 2πdn
p
µ++−−µ−++−

(
dnµ++−−

e

)dnµ++−− (
dnµ−++−

e

)dnµ−++−
·exp

(
O

(
1

n

))

·
∏

k∈{±}

(
2πdn

p
µ+k−kµk+k−

(
dnµ+k−k

e

)dnµ+k−k
(

dnµk+k−
e

)dnµk+k−
)
·

∏
i , j∈{±}

(
dnµi j i j

)
!

(
dnµi j i j

2

)
! ·2

dnµi j i j
2

In order to proceed with the fourth equation, we keep in mind

(
dnµi j i j

)
!

(
dnµi j i j

2

)
! ·2

dnµi j i j
2

= 2−
dnµi j i j

2 ·
p

2

(
dnµi j i j

e

)dnµi j i j ( dnµi j i j

2e

)− dnµi j i j
2

·exp

(
O

(
1

n

))

=
p

2

(
dnµi j i j

e

) dnµi j i j
2

·exp

(
O

(
1

n

))

1The basic idea for the proof is the same as the one in [3]. The contribution of this paper is a more precise calculation that allows us to

reduce the error term to order expO
(

1
n

)
.
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which brings us back to

Zµ = (2πdn)3pµ++−−µ−++−

(
dnµ++−−

e

)dnµ++−− (
dnµ−++−

e

)dnµ−++−
·exp

(
O

(
1

n

))

·
∏

k∈{±}

(
p
µ+k−kµk+k−

(
dnµ+k−k

e

)dnµ+k−k
(

dnµk+k−
e

)dnµk+k−
)
·

∏
i , j∈{±}

p
2

(
dnµi j i j

e

) dnµi j i j
2

= 4(2πdn)3pµ++−−µ−++−
(

dnµ++−−
e

)dnµ++−− (
dnµ−++−

e

)dnµ−++−
·exp

(
O

(
1

n

))

·pµ++−+µ+++−
(

dnµ++−+
e

)dnµ++−+ (
dnµ+++−

e

)dnµ+++− p
µ+−−−µ−+−−

·
(

dnµ+−−−
e

)dnµ+−−− (
dnµ−+−−

e

)dnµ−+−− (
dnµ++++

e

) dnµ++++
2

·
(

dnµ+−+−
e

) dnµ+−+−
2

(
dnµ−+−+

e

) dnµ−+−+
2

(
dnµ−−−−

e

) dnµ−−−−
2

.

To simplify this rather complicated term further, we recall the symmetry of our model (see (7.1)). Applying this
insight to our calculation yields

Zµ = 25π3d3n3pµ++−−µ−++−µ++−+µ+++−µ+−−−µ−+−− ·exp

(
−dn

2
·H

(
µ
)
− dn

2
+ dn

2
log(dn)+O

(
1

n

))
.

Next, we combine these four results starting with

Zµ

(dn−1)!!
= 2

9
2π3d3n3pµ++−−µ−++−µ++−+µ+++−µ+−−−µ−+−− ·exp

(
−dn

2
·H

(
µ
)
+O

(
1

n

))
.

Finally, we arrive at

XµYµZµ

(dn−1)!!
= exp

(
dn

2
H

(
µ
)−n (d −1) H

(
ρ
)− 9

2
log(n)− 9

2
log (2π)−3log (d)+O

(
1

n

))

·exp

(
−1

2
log

(
ρ++ρ+−ρ−+ρ−−

)+ 1

2

∑
i , j∈{±}

log

(
ρi j

µi j++µi j+−µi j−+µi j−−

))

·exp

(
1

2
log

(
µ++−−µ−++−µ++−+µ+++−µ+−−−µ−+−−

)+ 3

2
log (2)

)

= exp

(
dn

2

(
H

(
µ
)−2H

(
ρ
))+nH

(
ρ
)− 9

2
log(2πn)−3log (d)+O

(
1

n

))

·exp

(
−1

2
log

(
ρ++ρ+−ρ−+ρ−−

)+ 1

2
log

(
ρ++ρ+−ρ−+ρ−−∏

σ∈{±}4 µσ

))

·exp

(
1

2
log

(
µ++−−µ−++−µ++−+µ+++−µ+−−−µ−+−−

)+ 3

2
log (2)

)

= exp

(
−dn

2
DKL(µ||ρ⊗ρ)+nH

(
ρ
)
− 9

2
log(πn)−3log (2d)− 1

2
log

(
∏

σ∈{±}4

µσ

))

·exp

(
1

2
log

(
µ++−−µ−++−µ++−+µ+++−µ+−−−µ−+−−

)+O

(
1

n

))

To simplify this expression, we introduce the set

B = {±}4 \ {(++−−), (−++−), (++−+), (+++−), (+−−−), (−+−−)}

to write

XµYµZµ

(dn−1)!!
= 1

8d3π
9
2 n

9
2
√∏

σ∈B µσ
exp

(
nH

(
ρ
)
− dn

2
DKL

(
µ||ρ⊗ρ

)
+O

(
1

n

))
.
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With this result , the second moment turns out to be

E
[

Z 2
G,β

]
=

∑
µ∈U

XµYµZµ

(dn−1)!!
·exp

(
−βdn

2

( ∑
σ∈A1

µ(σ)+2
∑
σ∈A2

µ(σ)

))

=
∑
µ∈U

1

8d3π
9
2 n

9
2
√∏

σ∈B µσ
exp

(
nδ

(
µ,ρ

)
+O

(
1

n

))

where U is the set of conceivable distributions µ, σ is of the form σ := (σ1,τ1,σ2,τ2)∈ {±1}4, δ
(
µ,ρ

)
is defined

by

δ
(
µ,ρ

)
:= H

(
ρ
)− d

2

(
DKL

(
µ||ρ⊗ρ)+β

∑
σ∈A1

µ(σ)+2β
∑
σ∈A2

µ(σ)

)

A1 is defined by

A1 :=
{

x ∈ {±1}4 :σ1 =σ2 and τ1 6= τ2
}
∪

{
x ∈ {±1}4 :σ1 6=σ2 and τ1 = τ2

}
,

and A2 is given by

A2 := {
x ∈ {±1}4 :σ1 =σ2 and τ1 = τ2

}
.

�

Our ultimate goal is to apply the Laplace method. In order to keep things manageable, we will substitute
certain variables using basic symmetry and composition arguments. First, we note that ρ can be simply ob-
tained by calculating the marginals of µ, that is

ρ++ =µ+++++µ+++−+µ++−++µ++−−
ρ+− =µ+−+++µ+−+−+µ+−−++µ+−−−
ρ−+ =µ−++++µ−++−+µ−+−++µ−+−−
ρ−− =µ−−+++µ−−+−+µ−−−++µ−−−−.

By construction we know that

µ+−−+ =µ−++−, µ++−− =µ−−++, µ+++− = µ+−++
µ++−+ =µ−+++, µ+−−− =µ−−+−, µ−+−− = µ−−−+

µ−−−− = 1−
∑

σ∈{±1}4,σ6=(−1,−1,−1,−1)

µσ

Bringing these results together we are left with 9 variables, which we rename in the following order for nota-
tional convenience

x1 :=µ+−−+ =µ−++−, x2 :=µ++−− =µ−−++, x3 :=µ+++− =µ+−++,

x4 :=µ++−+ =µ−+++, x5 :=µ+−−− =µ−−+−, x6 :=µ−+−− =µ−−−+
x7 :=µ+−+−, x8 :=µ−+−+, x9 :=µ++++

which implies

µ−−−− = 1−
∑

σ∈{±1}4,σ6=(−1,−1,−1,−1)

µσ = 1−2x1 −2x2 −2x3 −2x4 −2x5 −2x6 − x7 − x8 − x9

ρ++ = x9 + x3 + x4 + x2 = x2 + x3 + x4 + x9

ρ+− = x3 + x7 + x1 + x5 = x1 + x3 + x5 + x7

ρ−+ = x4 + x1 + x8 + x6 = x1 + x4 + x6 + x8

ρ−− = x2 + x5 + x6 +µ−−−− = 1−2x1 − x2 −2x3 −2x4 − x5 − x6 − x7 − x8 − x9.

In order to apply the Laplace method to the second moment, let us consider the function

δ
(
µ,ρ

)
= H

(
ρ
)
− d

2

(
DKL

(
µ||ρ⊗ρ

)
+β

∑
σ∈A1

µ(σ)+2β
∑
σ∈A2

µ(σ)

)
.
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We continue by reformulating terms

DKL
(
µ||ρ⊗ρ

)
= 2x1 log

(
x1

ρ+−ρ−+

)
+2x2 log

(
x2

ρ++ρ−−

)
+2x3 log

(
x3

ρ++ρ+−

)
+2x4 log

(
x4

ρ++ρ−+

)

+2x5 log

(
x5

ρ+−ρ−−

)
+2x6 log

(
x6

ρ−+ρ−−

)
+ x7 log

(
x7

ρ2
+−

)
+ x8 log

(
x8

ρ2
−+

)

+ x9 log

(
x9

ρ2
++

)
+µ−−−− log

(
µ−−−−
ρ2−−

)

= 2x1 log(x1)+2x2 log(x2)+2x3 log (x3)+2x4 log(x4)+2x5 log(x5)+2x6 log(x6)

+ x7 log(x7)+ x8 log(x8)+ x9 log(x9)+µ−−−− log
(
µ−−−−

)−2ρ++ log
(
ρ++

)

−2ρ+− log
(
ρ+−

)−2ρ−+ log
(
ρ−+

)−2ρ−− log
(
ρ−−

)
.

As a consequence, we obtain

δ
(
µ,ρ

)= H
(
ρ
)− d

2

(
DKL

(
µ||ρ⊗ρ)+β

∑
σ∈A1

µ(σ)+2β
∑
σ∈A2

µ(σ)

)

= (1−d) H
(
ρ
)+ d

2
H

(
µ
)−dβ

(
x3 + x4 + x5 + x6 + x7 + x8 + x9 +µ−−−−

)

7.3. Application of the Laplace method to the second moment. To apply the Laplace method we need to
determine the maximum of δ

(
µ,ρ

)
. This is achieved with the following Lemma. Due to its technical and

tedious nature, the proof of the lemma is outsourced to a separate section (see section 8).

Lemma 7.4. For 0<β<βKS, we have

max
µ∈O ′

δ
(
µ,ρ

)= δ
(
µ∗,ρ∗

)= (2−d) log (2)+d log
(
1+e−β

)

where O ′ denotes the set of all µ that are conceivable under the assumption that the event O occurs. The unique
maximum is obtained at

µ∗
++++ =µ∗

−−−− =µ∗
+−+− =µ∗

−+−+ = e−2β

4
(
1+e−β

)2

µ∗
+−−+ =µ∗

−−++ =µ∗
−++− =µ∗

++−− = 1

4
(
1+e−β

)2

µ∗
+++− =µ∗

++−+ =µ∗
+−++ =µ∗

−+++ =µ∗
−−−+ =µ∗

−−+− =µ∗
−+−− =µ∗

+−−− = e−β

4
(
1+e−β

)2

which also implies

ρ∗++ = ρ∗+− = ρ∗−+ = ρ∗−− = 1

4
.

Having determined the maximum, we next need to evaluate the Hessian at the optimal point. The deriva-
tion of the Hessian matrix and evaluation at the optimal point is not too difficult. Thus, we just state the result
here and refer the interested reader to Section 9.

Lemma 7.5 (Hessian for the second moment). We have

det
(−D2δ

(
µ∗,ρ∗

))= 217d6e−8β
(
1+eβ

)16 (
deβ−d +2

)2 (
2e2β+2deβ−de2β−d +2

)
.

Proof of Proposition 7.1. With Lemmas 7.4 and 7.5 in place, we still need to determine the lattice matrix and
its determinant. Similar to the notation for the first moment, we let Asecond denote the matrix consisting of the
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elements in the basis of the lattice for the second moment. Recalling the following definitions

x1 =µ+−−+ =µ−++− = 1

dn

∑
(u,v)∈E

1 {σ(u) = τ(v) 6= τ(u) =σ(v)}

x3 =µ+++− =µ+−++ = 1

dn

∑
(u,v)∈E

1 {σ(u) =σ(v) =+1∧τ(u) 6= τ(v)}

x4 =µ++−+ =µ−+++ = 1

dn

∑
(u,v)∈E

1 {σ(u) 6=σ(v)∧τ(u) = τ(v) =+1}

x7 =µ+−+− = 2

dn

∑
(u,v)∈E

1 {σ(u) =σ(v) =+1∧τ(u) = τ(v) =−1}

x8 =µ−+−+ = 2

dn

∑
(u,v)∈E

1 {σ(u) =σ(v) =−1∧τ(u) = τ(v) =+1}

x9 =µ++++ = 2

dn

∑
(u,v)∈E

1 {σ(u) =σ(v) = τ(u) = τ(v)=+1}

we immediately obtain the diagonal entries for the respective x’s, i.e 1
d and 2

d . From here on, things get more
complicated. Since ρ++,ρ+−,ρ−+, and ρ−− each count fractions of the set of nodes (which contains n nodes
in total) their entries in the lattice matrix all have to be multiples of 1

n . Furthermore, we recall the following
binding conditions

ρ++ = x9 + x3 + x4 + x2 = x2 + x3 + x4 + x9

ρ+− = x3 + x7 + x1 + x5 = x1 + x3 + x5 + x7

ρ−+ = x4 + x1 + x8 + x6 = x1 + x4 + x6 + x8.

Combining these two points, x2, x5, and x6 each need to be chosen such that the sums consisting of four sum-
mands each add up to a number that is a multiple of 1

n . Let us focus on x2. Similar arguments apply to x5 and
x6. For x2, the above equation can be reformulated as

x2 = ρ++− x3 − x4 − x9 =
b2

n
− b3

dn
− b4

dn
− 2 ·b9

dn

where bi ∈ N, i ∈ [9] are the scalars for the linear combination yielding the desired µ. From the reformulated
equation we immediately obtain the matrix entries Asecond,2,2 = 1, Asecond,2,3 = −1/d , Asecond,2,4 = −1/d , and
Asecond,2,9 =−2/d . Following through this procedure for x5 and x6, we obtain the remaining entries of Asecond

that are different from zero. This enables us to calculate the determinant of interest:

det(Asecond) = det




1
d 0 0 0 0 0 0 0 0
0 1 − 1

d − 1
d 0 0 0 0 − 2

d
0 0 1

d 0 0 0 0 0 0
0 0 0 1

d 0 0 0 0 0
− 1

d 0 − 1
d 0 1 0 − 2

d 0 0
− 1

d 0 0 − 1
d 0 1 0 − 2

d 0
0 0 0 0 0 0 2

d 0 0
0 0 0 0 0 0 0 2

d 0
0 0 0 0 0 0 0 0 2

d




= 23

d6 .(7.3)

With these results in place, we can apply Theorem 4.1 to the expression for the second moment in Lemma 7.3
which yields

E
[

Z 2
G,β1{O}

]
= exp

(
O

(
1

n

))
·

∑
µ∈U

1

8d3π
9
2 n

9
2
√∏

σ∈B µσ
exp

(
nδ

(
µ,ρ

))

= exp

(
O

(
1

n

))
· (2πn)

9
2 exp

(
nδ

(
µ∗,ρ∗

))

8d3π
9
2 n

9
2
√∏

σ∈B µ
∗
σdet(Asecond)

√
det

(−D2δ
(
µ∗,ρ∗

)) .
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Using Lemmas 7.4 and 7.5 and the determinant of the lattice matrix from (7.3), we arrive at

E
[

Z 2
G,β1{O}

]
= exp

(
O

(
1

n

))
·

(
1+e−β

)10
exp

(
n

(
(2−d) log(2)+d log

(
1+e−β

)))

e−10β
(
1+eβ

)8 (
deβ−d +2

)√(
2e2β+2deβ−de2β−d +2

)

= exp

(
O

(
1

n

))
·
(
1+eβ

)2
exp

(
n

(
(2−d) log(2)+d log

(
1+e−β

)))
(
deβ−d +2

)√(
2e2β+2deβ−de2β−d +2

) .

�

7.4. The simple d-regular case. Having established the second moment in the pairing model G, we still have
to adapt the result to the d-regular model G of interest. As we will see, a pairing variant (not the same as for
the first moment) G∗

2 of the planted model will be a useful tool to do so. The pairing variant G∗
2 is defined as

follows. First, draw two spin assignments σ∗,τ∗ ∈ {±1}n independently and uniformly at random. Then, draw
a graph G∗

2 according to the probability distribution

P
[
G∗

2 =G|σ∗,τ∗
]∝ exp

(−βHG
(
σ∗)−βHG

(
τ∗

))
.

where G might again feature self-loops and double-edges. With some effort, we obtain the next result.

Lemma 7.6. For d ≥ 0 and β> 0 we have

P
[
G∗

2 is simple
]∼ exp

(
−(d −1)

2
(
1+eβ

)2 − (d −1)2

(
1+e2β

)2

(
1+eβ

)4

)
.

Proof of Lemma 7.6. This proof is based on an idea in [3] (Lemma 4.6). First of all, we are interested in the
number of self-loops X in G∗

2 on the one hand, and the number of double edges Y on the other hand. For

notational convenience, we let G
(
σ,µ

)
be the event that the generated graph has dn

2 µ++++ edges that connect
two vertices that each have been assigned two positive spins; the same is assumed to hold for all entries of µ
and the respective types of edges. With these definitions in place, we move on to the expectations of X and Y .
Instead of calculating the two directly, we decompose the two to simplify the following calculations.

So let us start with the number of self-loops X . Basically, there are four different types of self-loops in our
model, X++, X+−, X−+, and X−−. The index in each of the four cases just refers to the spin pair assigned to the
vertex of the self-loop. Then, the expectation of X++ can be formulated as

E
[

X++|G
(
σ,µ

)]=
ρ++n

(d
2

)( dnρ++−2
dnµ++++−2

)(
dnµ++++−3

)
!!

( dnρ++
dnµ++++

)(
dnµ++++−1

)
!!

=
ρ++n d !

2(d−2)!
(dnρ++−2)!

(dnµ++++−2)!(dnρ++−dnµ++++)!

(dnρ++)!

(dnµ++++)!(dnρ++−dnµ++++)!

(
dnµ++++−1

)

= nµ++++d(d −1)

2
(
dnρ++−1

) ∼ µ++++(d −1)

2ρ++

where, in the first step, we already cancelled out the factors that appeared both in the numerator and denom-
inator. By almost identical calculations, we obtain

E
[

X+−|G
(
σ,µ

)]∼ µ+−+−(d −1)

2ρ+−
, E

[
X−+|G

(
σ,µ

)]∼ µ−+−+(d −1)

2ρ−+
,

and E
[

X−−|G
(
σ,µ

)]∼ µ−−−−(d −1)

2ρ−−
.

Bringing these four results together and plugging in the optimal point
(
µ∗,ρ∗

)
, we arrive at

E
[

X |G
(
σ,µ

)]
∼ (d −1)

2
(
1+eβ

)2 .(7.4)

With a similar argument, we determine the expectation of the number of double edges Y . More precisely,
we decompose Y into the random variables Yσ1 ,τ1 ,σ2 ,τ2 with (σ1,τ1,σ2,τ2) ∈ {±1}4. Each Yσ1,τ1 ,σ2 ,τ2 is just the
number of double edges between two vertices where the first vertex is assigned to the spin-pair (σ1,τ1) and
the second to the pair (σ2,τ2). Let us start with the four spin configurations with (σ1,τ1) = (σ2,τ2). In order to
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keep the calculations simple, we focus on Y++++ and then extend the results to Y+−+−, Y−+−+, and Y−−−−.

E
[
Y++++|G

(
σ,µ

)]
=

2
(ρ++n

2

)(d
2

)2( dnρ++−4
dnµ++++−4

)(
dnµ++++−5

)
!!

( dnρ++
dnµ++++

)(
dnµ++++−1

)
!!

∼
(
ρ++n

)2
(

d(d−1)
2

)2 (
dnµ++++

)4

(
ρ++dn

)4 (
dnµ++++

)2 = (d −1)2

4

µ2
++++
ρ2
++

where, in the first step, we already cancelled out the factors that occured both in the numerator and denomi-
nator. Following this line of thought, we can also state

E
[
Y+−+−|G

(
σ,µ

)]∼ (d −1)2

4

µ2
+−+−
ρ2
+−

, E
[
Y−+−+|G

(
σ,µ

)]∼ (d −1)2

4

µ2
−+−+
ρ2
−+

,

and E
[
Y−−−−|G

(
σ,µ

)]∼ (d −1)2

4

µ2
−−−−
ρ2−−

.

For the next calculation, we consider the sum of Y+−−− and Y−−+−. Since the edges in our model are undi-
rected, it is not suitable to make a distinction between the two.

E
[
Y+−−−+Y−−+−|G

(
σ,µ

)]=
2ρ+−ρ−−n2

(d
2

)2( dnρ+−−2
dnµ+−−−−2

)( dnρ−−−2
dnµ+−−−−2

)(
dnµ+−−−−2

)
!

( dnρ+−
dnµ+−−−

)( dnρ−−
dnµ+−−−

)(
dnµ+−−−

)
!

∼
2ρ+−ρ−−n2

(
d(d−1)

2

)2 (
dnµ+−−−

)4

(
ρ+−dn

)2 (
ρ−−dn

)2 (
dnµ+−−−

)2 = (d −1)2

4

µ2
+−−−

ρ+−ρ−−

Here, we once again tacitly cancelled out the factors in the first expression that are included in both the nu-
merator and denominator. The same approach can be iteratively applied to the remaining types of double
edges, which eventually yields

E
[
Y−+−−+Y−−−+|G

(
σ,µ

)]
∼ (d −1)2

4

µ2
−+−−

ρ−+ρ−−
, E

[
Y+++−+Y+−++|G

(
σ,µ

)]
∼ (d −1)2

4

µ2
+++−

ρ++ρ+−
,

E
[
Y−++++Y++−+|G

(
σ,µ

)]
∼ (d −1)2

4

µ2
++−+

ρ++ρ−+
, E

[
Y++−−+Y−−++|G

(
σ,µ

)]
∼ (d −1)2

4

µ2
++−−

ρ++ρ−−
,

and E
[
Y+−−++Y−++−|G

(
σ,µ

)]∼ (d −1)2

4

µ2
+−−+

ρ+−ρ−+
.

Taking the sum of all these findings and plugging in the optimal point
(
µ∗,ρ∗

)
, we finally obtain

E
[
Y |G

(
σ,µ

)]
∼ (d −1)2

(
1+e2β

)2

(
1+eβ

)4 .(7.5)

With the statements (7.4) and (7.5) in mind, we claim that for all k,ℓ≥ 1

E

[
k∏

i=1
(X − i +1)

ℓ∏
j=1

(
Y − j +1

)
]
∼

(
(d −1)

2
(
1+eβ

)2

)k (
(d −1)2

(
1+e2β

)2

(
1+eβ

)4

)ℓ
(7.6)

holds. This can be seen as follows. In (7.4) and (7.5), we placed just one loop or double edge, respectively.
To obtain (7.6), we now have to place some fixed numbers k and ℓ of self-loops and double edges. Since n
approaches infinity, the probability that any choices of self-loops and double-edges overlap is bounded by
O(1/n). Thus, the desired result can be leveraged from (7.4) and (7.5).

With (7.6) in place, we immediately see

P
[
G∗

2 ∈S
]
=P [X = Y = 0]∼ exp

(
−(d −1)

2
(
1+eβ

)2 − (d −1)2

(
1+e2β

)2

(
1+eβ

)4

)
.

which concludes the proof. �

Now, we are equipped to prove Proposition 2.6.
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Proof of Proposition 2.6. We again use the asymptotic equality

(7.7) E
[

Z 2
G,β1{O}

]
∼ P

[
G∗

2 is simple
]

P
[
G is simple

] E
[

Z 2
G,β1{O}

]
.

Thus, the desired result is obtained by combining equation (7.7), Proposition 7.1, Lemma 7.6, and Fact 6.7. �

8. SECOND MOMENT OPTIMIZATION / PROOF OF LEMMA 7.4

In this section we solve the maximization problem

max
µ∈O ′

δ
(
µ,ρ

)

where

δ
(
µ,ρ

)
:= H

(
ρ
)− d

2

(
DKL

(
µ||ρ⊗ρ)+β

∑
σ∈A1

µ(σ)+2β
∑
σ∈A2

µ(σ)

)
and

A1 :=
{

x ∈ {±1}4 :σ1 =σ2 and τ1 6= τ2
}
∪

{
x ∈ {±1}4 :σ1 6=σ2 and τ1 = τ2

}
and

A2 := {
x ∈ {±1}4 :σ1 =σ2 and τ1 = τ2

}
.

with vectors of the formσ= (σ1,τ1,σ2,τ2) ∈ {±1}4. Furthermore, O ′ denotes the set of allµ that are conceivable
given that the event O from (2.5) holds. At this point, we exploit the spatial mixing argument. Keeping Lemma
2.5 in mind, we limit our attention to the event O . This is a crucial step for the following calculations because
it allows us to perform the reparametrization

ρα(σ1,τ1) := 1+α ·1 {σ1 = τ1}−α ·1 {σ1 6= τ1}

4
(8.1)

where α ∈ (−1,+1) and (σ1,τ1) ∈ {±1}2. Now, the proof strategy is as follows. First, we minimize δ with respect
to µ. This will provide us with a solution of µ formulated in terms of ρ or α, respectively. In a second step, all
that remains to do is to maximize the function δ with respect to α.

8.1. Minimization with respect to µ. Instead of solving the optimization in one step, we start by considering

g (µ,ρα) := DKL(µ||ρα⊗ρα)+β ·
∑
σ∈A1

µ(σ)+2 ·β ·
∑
σ∈A2

µ(σ)

where A1 is defined by

A1 := {
x ∈ {±1}4 :σ1 =σ2 and τ1 6= τ2

}∪{
x ∈ {±1}4 :σ1 6=σ2 and τ1 = τ2

}

and A2 is given by

A2 := {
x ∈ {±1}4 :σ1 =σ2 and τ1 = τ2

}
.

Note that the entropy term H(ρ) is independent of µ and thus not relevant for optimizing with respect to µ.
The above formulation immediately brings us to the constrained minimization problem

min
µ∈O ′

g (µ,ρα)

s.t. ∀(σ1,τ1) ∈{±1}2 :
∑

(σ2,τ2)∈{±1}2

µ(σ1,τ1,σ2,τ2) = ρα (σ1,τ1)

∀(σ2,τ2) ∈{±1}2 :
∑

(σ1,τ1)∈{±1}2

µ(σ1,τ1,σ2,τ2) = ρα (σ2,τ2)

where P
(
{±1}4

)
denotes the set of all probability distributions on {±1}4. For ease of notation, we will drop

the index α and just write ρ. As a first step, we point out that due to symmetry the optimal µ∗ will have the
following properties:

µ∗
++++ =µ∗

−−−−, µ∗
++−− =µ∗

−−++,

µ∗
+−+− =µ∗

−+−+, µ∗
+−−+ =µ∗

−++−,

µ∗
+++− = µ∗

++−+ =µ∗
+−++ =µ∗

−+++ =µ∗
−−−+ = µ∗

−−+− =µ∗
−+−− =µ∗

+−−−.

From the above reparametrization, we additionally emphasize that both

ρ++ = ρ−− and ρ+− = ρ−+
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hold irrespective of the chosen α. This fact directly entails that setting up the Lagrangian function for our min-
imization problem will only require two distinct Lagrangian multipliers, namely λ++ and λ+−. Put differently,
we are going to consider the following Lagrangian function L :

L
(
µ,λ++,λ+−

)
:=g (µ,ρα)−λ++ ·

( ∑
(σ1,τ1)∈{(−1,−1),(+1,+1)}

[ ∑
(σ2 ,τ2)∈{±1}2

µ(σ1,τ1,σ2,τ2)

]
−ρα (σ1,τ1)

)

−λ++ ·
( ∑

(σ2 ,τ2)∈{(−1,−1),(+1,+1)}

[ ∑
(σ1 ,τ1)∈{±1}2

µ(σ1,τ1,σ2,τ2)

]
−ρα (σ2,τ2)

)

−λ+− ·
( ∑

(σ1 ,τ1)∈{(−1,+1),(+1,−1)}

[ ∑
(σ2 ,τ2)∈{±1}2

µ(σ1,τ1,σ2,τ2)

]
−ρα (σ1,τ1)

)

−λ+− ·
( ∑

(σ2 ,τ2)∈{(−1,+1),(+1,−1)}

[ ∑
(σ1 ,τ1)∈{±1}2

µ(σ1,τ1,σ2,τ2)

]
−ρα (σ2,τ2)

)

Keeping the symmetry in mind, it suffices to consider the following derivatives of the Lagrangian function

∂L
(
µ,λ++,λ+−

)

∂µ++++
= 1+ log

(
µ++++
ρ2
++

)
+2β−2λ++

∂L
(
µ,λ++,λ+−

)

∂µ++−−
= 1+ log

(
µ++−−
ρ2
++

)
−2λ++

∂L
(
µ,λ++,λ+−

)

∂µ+−+−
= 1+ log

(
µ+−+−
ρ2
+−

)
+2β−2λ+−

∂L
(
µ,λ++,λ+−

)

∂µ+−−+
= 1+ log

(
µ+−−+
ρ2
+−

)
−2λ+−

∂L
(
µ,λ++,λ+−

)

∂µ+++−
= 1+ log

(
µ+++−
ρ++ ·ρ+−

)
+β−λ++−λ+−

Setting these derivatives equal to zero, we instantly obtain

µ∗
++++ = ρ2

++ exp
(
2λ++−2β−1

)
= ρ2

++x2
1 e−2β(8.2)

µ∗
++−− = ρ2

++ exp(2λ++−1) = ρ2
++x2

1(8.3)

µ∗
+−+− = ρ2

+− exp
(
2λ+−−2β−1

)= ρ2
+−x2

2 e−2β(8.4)

µ∗
+−−+ = ρ2

+− exp(2λ+−−1) = ρ2
+−x2

2(8.5)

µ∗
+++− = ρ++ρ+− exp

(
λ+++λ+−−β−1

)= ρ++ρ+−x1x2e−β(8.6)

where the second equalities in each line represent a notational simplification by introducing x1 := eλ++− 1
2 and

x2 := eλ+−− 1
2 .

Lemma 8.1. The above system of equations (8.2)-(8.6) and therefore the minimization problem of g
(
µ,ρα

)
has

the unique solution

x1 = 2

√√√√
(
1+e−2β

)2 +α(
1−e−2β

)2 −2e−βz

(1+α)2
(
1+e−2β

)(
1−e−2β

)2 .

and

x2 = 2

√√√√
(
1+e−2β

)2 −α(
1−e−2β

)2 ±2e−βz

(1−α)2
(
1+e−2β

)(
1−e−2β

)2 .

Proof. In order to solve this system of equations, we recall two of the initial constraints of our minimization
problem, i.e.

µ+++++µ+++−+µ++−++µ++−− = ρ++
µ+−+++µ+−−−+µ+−−++µ+−+− = ρ+−.
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Plugging in the µ∗ we derived above and once again keeping in mind the symmetry of the problem, the two
constraints can be reformulated into

ρ++x2
1e−2β+2ρ+−x1x2e−β+ρ++x2

1 = 1

ρ+−x2
2e−2β+2ρ++x1x2e−β+ρ+−x2

2 = 1.

which in turn yields

x1 =
1− x2

2ρ+−
(
1+e−2β

)

2ρ++e−βx2
.

Substituting x1 into the first constraint, we arrive at

(
1+e−2β

)(
1− x2

2ρ+−
(
1+e−2β

))2

4ρ++e−2βx2
2

+ ρ+−
ρ++

·
(
1− x2

2ρ+−
(
1+e−2β

))
= 1

For notational convenience, we substitute x := x2
2 and κ := 1+ e−2β. As a consequence, the previous equation

can be expressed as

x2
(
ρ2
+−κ

3 −4ρ2
+−κe−2β

)
+ x

(
4ρ+−e−2β−2ρ+−κ2 −4ρ++e−2β

)
+κ= 0.

Now, we are able to apply the quadratic formula which yields

x =
−4ρ+−e−2β+2ρ+−κ2 +4ρ++e−2β±

√(
4ρ+−e−2β−2ρ+−κ2 −4ρ++e−2β

)2 −4ρ2
+−κ2

(
κ2 −4e−2β

)

2
(
ρ2
+−κ3 −4ρ2

+−κe−2β
)

=
1
2 (1−α)

(
1+e−2β

)2 + (1+α) e−2β− (1−α) e−2β±
√(

2αe−2β+ 1
2 (1−α)κ2

)2 − 1
4 (1−α)2κ4 + (1−α)2κ2e−2β

1
8 (1−α)2

(
1+e−2β

)((
1+e−2β

)2 −4e−2β
)

= 4

(
1+e−2β

)2 −α(
1−e−2β

)2 ±2
√

4α2e−4β+2αe−2β (1−α)
(
1+e−2β

)2 + (1−α)2
(
1+e−2β

)2 e−2β

(1−α)2
(
1+e−2β

)(
1−e−2β

)2

Focusing on the square root term, we note

4α2e−4β+2αe−2β (1−α)
(
1+e−2β

)2
+ (1−α)2

(
1+e−2β

)2
e−2β

= 4α2e−4β−α2e−2β
(
1+e−2β

)2
+

(
1+e−2β

)2
e−2β = e−2β

((
1+e−2β

)2
−α2

(
1−e−2β

)2
)

which leads us to

x = 4

(
1+e−2β

)2 −α(
1−e−2β

)2 ±2e−β
√(

1+e−2β
)2 −α2

(
1−e−2β

)2

(1−α)2
(
1+e−2β

)(
1−e−2β

)2 = 4

(
1+e−2β

)2 −α(
1−e−2β

)2 ±2e−βz

(1−α)2
(
1+e−2β

)(
1−e−2β

)2

where we have introduced z :=
√(

1+e−2β
)2 −α2

(
1−e−2β

)2 for notational convenience. At this point, we recall

that x = x2
2 to arrive at

x2 = 2

√√√√
(
1+e−2β

)2 −α(
1−e−2β

)2 ±2e−βz

(1−α)2
(
1+e−2β

)(
1−e−2β

)2

where we discard the negative square root since x2 by definition is of the form x2 = eλ+−− 1
2 and thereby always

non-negative. This leaves us with two potential solutions for x2 which only differ in the ± sign in the above
equation. Leaving out the detailed calculation, it is easy to show that choosing + at the ± sign would result

in a negative x1. However, similar to x2, x1 = eλ++− 1
2 also cannot become negative by construction. As a

consequence, the only remaining and suitable candidate for x2 and thereby the solution is

x2 = 2

√√√√
(
1+e−2β

)2 −α(
1−e−2β

)2 −2e−βz

(1−α)2
(
1+e−2β

)(
1−e−2β

)2 .
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With this solution for x2 we are now able to calculate the optimal x1. More specifically, we recall the formula
we have derived a few steps back

x1 =
1− x2

2ρ+−
(
1+e−2β

)

2ρ++e−βx2
.

Plugging in the optimal x2, we arrive at the expression

x1 =
1−

(
1+e−2β)2−α(

1−e−2β)2−2e−βz

(1−α)(1−e−2β)2

(1+α) e−β
√

(1+e−2β)2−α(1−e−2β)2−2e−βz

(1−α)2(1+e−2β)(1−e−2β)2

=
(−4e−β+2z

)√
1+e−2β

(1+α)
(
1−e−2β

)√(
1+e−2β

)2 −α(
1−e−2β

)2 −2e−βz
.(8.7)

Next, we claim that

x1 = 2

√√√√
(
1+e−2β

)2 +α(
1−e−2β

)2 −2e−βz

(1+α)2
(
1+e−2β

)(
1−e−2β

)2 .

Indeed, we find starting at (8.7) that

x1 =
(
−4e−β+2z

)√
1+e−2β

(1+α)
(
1−e−2β

)√(
1+e−2β

)2 −α
(
1−e−2β

)2 −2e−βz
.

Thus, our claim is equivalent to

(
z −2e−β

)2 (
1+e−2β

)2
=

((
1+e−2β

)2
+α

(
1−e−2β

)2
−2e−βz

)((
1+e−2β

)2
−α

(
1−e−2β

)2
−2e−βz

)
.(8.8)

To see that (8.8) is indeed true, we execute the following auxiliary calculation:
((

1+e−2β
)2
+α

(
1−e−2β

)2
−2e−βz

)((
1+e−2β

)2
−α

(
1−e−2β

)2
−2e−βz

)

=
(
1+e−2β

)4
−4e−βz

(
1+e−2β

)2
+4e−2β

((
1+e−2β

)2
−α2

(
1−e−2β

)2
)
−α2

(
1−e−2β

)4

=
(
1+e−2β

)2 (
z2 −4e−βz +4e−2β

)
=

(
1+e−2β

)2 (
z −2e−β

)2
.

Hence, we established our claim and thus know

x1 = 2

√√√√
(
1+e−2β

)2 +α
(
1−e−2β

)2 −2e−βz

(1+α)2
(
1+e−2β

)(
1−e−2β

)2 .

�

Let us bring together our findings of this subsection. Due to the well-known fact that the Kullback-Leibler
divergence is convex in its input parameters, we immediately see that the function g (µ,ρα) is convex as well.
As a consequence, the µ∗ we have just calculated is indeed the minimum. Put differently, we are now able to
state

min
µ∈O ′

g (µ,ρα) = g (µ∗,ρα).

Although this statement is satisfactory, we would favor a more explicit expression. This is achieved by the
following Lemma.

Lemma 8.2. We have

g (µ∗,ρα) = 2log (2)− log

((
1+e−2β

)(
1−e−2β

)2
)
− (1+α) log(1+α)

− (1−α) log (1−α)+ 1+α
2

log

((
1+e−2β

)2
+α

(
1−e−2β

)2
−2e−βz

)

+ 1−α
2

log

((
1+e−2β

)2
−α

(
1−e−2β

)2
−2e−βz

)
.
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Proof. In order to get to the desired expression, we take a closer look at the Kullback-Leibler divergence for the
optimal µ∗

DKL(µ∗||ρα⊗ρα) = 2µ∗
++++ log

(
x2

1e−2β
)
+2µ∗

++−− log
(
x2

1

)+2µ∗
+−+− log

(
x2

2e−2β
)

+2µ∗
+−−+ log

(
x2

1

)
+8µ∗

+++− log
(
x1x2e−β

)

=−β(
4µ∗

+++++4µ∗
+−+−+8µ∗

+++−
)+ log(x1)

(
4µ∗

+++++4µ∗
++−−+8µ∗

+++−
)

+ log(x2)
(
4µ∗

+−+−+4µ∗
+−−++8µ∗

+++−
)

Using the reformulation of DKL(µ∗||ρα⊗ρα), g (µ∗,ρα) can be formulated as

g (µ∗,ρα) = log(x1)
(
4µ∗

+++++4µ∗
++−−+8µ∗

+++−
)
+ log(x2)

(
4µ∗

+−+−+4µ∗
+−−++8µ∗

+++−
)

.

This expression in turn is suitable for inserting x1 and x2 leading to

g (µ∗,ρα) = 2log (2)− log

((
1+e−2β

)(
1−e−2β

)2
)

+
[

log

((
1+e−2β

)2
+α

(
1−e−2β

)2
−2e−βz

)
−2log (1+α)

]
· (2µ∗

+++++2µ∗
++−−+4µ∗

+++−
)

+
[

log

((
1+e−2β

)2
−α

(
1−e−2β

)2
−2e−βz

)
−2log (1−α)

]
·
(
2µ∗

+−+−+2µ∗
+−−++4µ∗

+++−
)

.

Since µ∗ is a probability measure by definition, we can exploit the identity

2µ∗
+−+−+2µ∗

+−−++4µ∗
+++− = 1−2µ∗

++++−2µ∗
++−−−4µ∗

+++−

to rearrange g (µ∗,ρα) as

g (µ∗,ρα) = 2log (2)− log

((
1+e−2β

)(
1−e−2β

)2
)
+ log

((
1+e−2β

)2
−α

(
1−e−2β

)2
−2e−βz

)
−2log (1−α)

+
[

log

( (
1+e−2β

)2 +α(
1−e−2β

)2 −2e−βz
(
1+e−2β

)2 −α(
1−e−2β

)2 −2e−βz

)
−2log

(
1+α
1−α

)]
· (2µ∗

+++++2µ∗
++−−+4µ∗

+++−
)

.

To keep the terms relatively brief, we define

T1 := 2log (2)− log

((
1+e−2β

)(
1−e−2β

)2
)
+ log

((
1+e−2β

)2
−α

(
1−e−2β

)2
−2e−βz

)
−2log (1−α)

T2 := 2µ∗
+++++2µ∗

++−−+4µ∗
+++−

T3 := log

((
1+e−2β

)2 +α
(
1−e−2β

)2 −2e−βz
(
1+e−2β

)2 −α
(
1−e−2β

)2 −2e−βz

)
−2log

(
1+α
1−α

)

which implies g (µ∗,ρα) = T1 +T2 ·T3. In the next step, we will plug in µ∗ in order to simplify T2

T2 = 2µ∗
+++++2µ∗

++−−+4µ∗
+++− = 2x2

1ρ
2
++

(
1+e−2β+2e−β

ρ+−x2

ρ++x1

)

=
(
1+e−2β

)2 +α(
1−e−2β

)2 −2e−βz

2
(
1−e−2β

)2

+e−β

√((
1+e−2β

)2 +α(
1−e−2β

)2 −2e−βz
)((

1+e−2β
)2 −α(

1−e−2β
)2 −2e−βz

)

(
1+e−2β

)(
1−e−2β

)2

Applying (8.8) to the term in the square root yields

T2 =
(
1+e−2β

)2 +α(
1−e−2β

)2 −2e−βz

2
(
1−e−2β

)2 +e−β
(
z −2e−β

)(
1+e−2β

)
(
1+e−2β

)(
1−e−2β

)2

=
(
1+e−2β

)2 +α
(
1−e−2β

)2 −4e−2β

2
(
1−e−2β

)2 = 1+α
2

.
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Coming back to g (µ∗,ρα), we obtain the expression that Lemma 8.2 promised

g (µ∗,ρα) = 2log (2)− log

((
1+e−2β

)(
1−e−2β

)2
)
− (1+α) log(1+α)− (1−α) log(1−α)

+ 1+α
2

log

((
1+e−2β

)2
+α

(
1−e−2β

)2
−2e−βz

)
+ 1−α

2
log

((
1+e−2β

)2
−α

(
1−e−2β

)2
−2e−βz

)
.

�
8.2. Maximization with respect to α. In this subsection we focus on the function

fd
(
α,β

)
:= log(2)+H

(
1+α

2

)
− d

2
g (µ∗,ρα).

which results from plugging in the definition of ρ in terms of α from (8.1). More specifically, we are interested
in solving the optimization

max
−1<α<1

fd
(
α,β

)
.

which will immediately yield the answer to our initial optimization problem over δ
(
µ,ρ

)
. Note that we tacitly

exploit the results of both Lemma 8.1 and Lemma 8.2 to be able to state a function fd
(
α,β

)
that only depends

on d ,α, and β. As a consequence, we have to prove the following statement.

Lemma 8.3. Assume that 0 <β<βKS. Then we have

arg max
−1<α<1

fd
(
α,β

)= 0.

Proof. To solve the maximization with respect to α, we calculate the derivatives. Let us start with the simpler
ones, namely the first and second derivative of the entropy with respect to α:

∂H
( 1+α

2

)

∂α
= 1

2
log(1−α)− 1

2
log(1+α)

and

∂2H
( 1+α

2

)

∂α2 = 1

2

( −1

1−α − 1

1+α

)
=− 1

1−α2 .

Before we continue with our main task, let us state a useful observation which will be helpful in the following
calculations. Let

z =
√(

1+e−2β
)2 −α2

(
1−e−2β

)2

Then, we have

∂z

∂α
= −α

(
1−e−2β

)2

√(
1+e−2β

)2 −α2
(
1−e−2β

)2
=−α

(
1−e−2β

)2
z−1.

Next, we determine the first two derivatives for g (µ∗,ρα). Starting with the first derivative, we find

∂g (µ∗,ρα)

∂α
=−1+α

1+α − log

(
1+α

2

)
+ 1−α

1−α + log

(
1−α

2

)

+ 1

2

[
log

((
1+e−2β

)2
+α

(
1−e−2β

)2
−2e−βz

)
− log

((
1+e−2β

)2
−α

(
1−e−2β

)2
−2e−βz

)]

+ 1+α
2

·
(
1−e−2β

)2 +2e−βα
(
1−e−2β

)2
z−1

(
1+e−2β

)2 +α(
1−e−2β

)2 −2e−βz
+ 1−α

2
· −

(
1−e−2β

)2 +2e−βα
(
1−e−2β

)2
z−1

(
1+e−2β

)2 −α(
1−e−2β

)2 −2e−βz

For the next simplification, we focus on the last two summands of the previously stated derivative, i.e.

1+α
2

·
(
1−e−2β

)2 +2e−βα
(
1−e−2β

)2
z−1

(
1+e−2β

)2 +α(
1−e−2β

)2 −2e−βz
+ 1−α

2
· −

(
1−e−2β

)2 +2e−βα
(
1−e−2β

)2
z−1

(
1+e−2β

)2 −α(
1−e−2β

)2 −2e−βz

=
(
1−e−2β

)2

2z
·

(1+α)
(
z +2e−βα

)((
1+e−2β

)2 −α(
1−e−2β

)2 −2e−βz
)

((
1+e−2β

)2 +α
(
1−e−2β

)2 −2e−βz
)((

1+e−2β
)2 −α

(
1−e−2β

)2 −2e−βz
)

+
(
1−e−2β

)2

2z
·

(1−α)
(−z +2e−βα

) ((
1+e−2β

)2 +α(
1−e−2β

)2 −2e−βz
)

((
1+e−2β

)2 +α(
1−e−2β

)2 −2e−βz
)((

1+e−2β
)2 −α(

1−e−2β
)2 −2e−βz

)
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Again, we restrict our attention to one term, namely

(1+α)
(
z +2e−βα

)((
1+e−2β

)2
−α

(
1−e−2β

)2
−2e−βz

)

+ (1−α)
(
−z +2e−βα

)((
1+e−2β

)2
+α

(
1−e−2β

)2
−2e−βz

)

=
((

1+e−2β
)2
−2e−βz

)(
4e−βα+2αz

)
+α

(
1−e−2β

)2 (
−2z −4e−βα2

)

= 2αz4e−2β−8e−2βαz = 0.

As a result, the first derivative can be reduced to

∂g (µ∗,ρα)

∂α
=− log (1+α)+ log (1−α)+ 1

2
log

( (
1+e−2β

)2 +α(
1−e−2β

)2 −2e−βz
(
1+e−2β

)2 −α(
1−e−2β

)2 −2e−βz

)
.

Based on this result, we can instantly compute the second derivative

∂2g (µ∗,ρα)

∂α2 =− 2

1−α2 + 1

2
·
[(

1−e−2β
)2 +2e−βα

(
1−e−2β

)2
z−1

(
1+e−2β

)2 +α(
1−e−2β

)2 −2e−βz
− −(

1−e−2β
)2 +2e−βα

(
1−e−2β

)2
z−1

(
1+e−2β

)2 −α(
1−e−2β

)2 −2e−βz

]
.

Once again, we apply (8.8) to get to

∂2g (µ∗,ρα)

∂α2 =− 2

1−α2 +
(
1−e−2β

)2 2z
((

1+e−2β
)2 −2e−βz

)
−4e−βα2

(
1−e−2β

)2

2z
(
z −2e−β

)2 (
1+e−2β

)2

=− 2

1−α2 +
(
1−e−2β

)2
(
1+e−2β

)2 (
z −2e−β

)

z
(
z −2e−β

)2 (
1+e−2β

)2 =
(
1−e−2β

)2

z
(
z −2e−β

) − 2

1−α2 .

Finally, combining the derivatives of the entropy and g (µ∗,ρa ) we arrive at

∂ fd
(
α,β

)

∂α
=
∂H

( 1+α
2

)

∂α
− d

2
· ∂g (µ∗,ρα)

∂α

= 1

2
log(1−α)− 1

2
log (1+α)

+ d

2

(
log(1+α)− log(1−α)− 1

2
log

((
1+e−2β

)2 +α(
1−e−2β

)2 −2e−βz
(
1+e−2β

)2 −α
(
1−e−2β

)2 −2e−βz

))

= d −1

2
log(1+α)− d −1

2
log(1−α)− d

4
log

( (
1+e−2β

)2 +α(
1−e−2β

)2 −2e−βz
(
1+e−2β

)2 −α(
1−e−2β

)2 −2e−βz

)

and

∂2 fd
(
α,β

)

∂α2 =
∂2H

( 1+α
2

)

∂α2 − d

2
· ∂

2g (µ∗,ρα)

∂2α
=− 1

1−α2 − d

2
·
( (

1−e−2β
)2

z
(
z −2e−β

) − 2

1−α2

)

= d · z2 −4ze−β+ (
1+e−2β

)2 −α2
(
1−e−2β

)2 − (
1−e−2β

)2 +α2
(
1−e−2β

)2

(
1−α2

)
2z

(
z −2e−β

) − 1

1−α2

= d −2

2
(
1−α2

) − de−β(
1−α2

)
z
= d −2

2
(
1−α2

) − d
(
1−α2

)√(
eβ+e−β

)2 −α2
(
eβ−e−β

)2

= d −2

2
(
1−α2

) − d
(
1−α2

)√(
1−α2

) · (e2β+e−2β
)+2+2α2

.

Furthermore, we note that for every β we have for α= 0

∂ fd

∂α

(
0,β

)
= 0.

Now, to complete the maximization with respect to α, we claim is that the global maximum of fd
(
α,β

)
is

at α = 0 as long as β < βKS. We prove this claim in two steps. First, we show that ∂2 fd
∂α2

(
α,β

)
is increasing

in β. Subsequently, we establish that ∂2 fd
∂α2

(
α,β∗)

is smaller than zero for all α ∈ (−1,1). As a consequence,
∂2 fd
∂α2

(
α,β

)
< 0 holds for all β ∈

(
0,β∗)

and α ∈ (−1,1) and thereby implies that the maximum of fd
(
α,β

)
is
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attained at α = 0 for β < β∗. The previously performed technical rearrangements are helpful for calculating
the next derivative in a straightforward manner.

∂

∂β

(
∂2 fd

∂α2

)(
α,β

)= d

2
(
1−α2

)
(
1−α2

) · (2βe2β−1 −2βe−2β−1
)

[(
1−α2

)
·
(
e2β+e−2β

)
+2+2α2

] 3
2

= d

2
2βe2β−1

(
1−e−4β

)

︸ ︷︷ ︸
>0



(
1−α2)

︸ ︷︷ ︸
>0

·
(
e2β+e−2β

)
+2+2α2




− 3
2

︸ ︷︷ ︸
>0

> 0

where we restrict our attention to −1<α< 1. All that remains to do is to plug in the Kesten-Stigum bound into
the second derivative with respect to alpha which yields

∂2 fd

∂α2

(
α,β∗)= d −2

2
(
1−α2

) − d

1−α2 ·




(
1−α2) ·




(p
d −1+1

)2

(p
d −1−1

)2 +

(p
d −1−1

)2

(p
d −1+1

)2


+2+2α2




− 1
2

= d −2

2
(
1−α2

) − d

1−α2 ·




(
1−α2)

·




(p
d −1+1

)4
+

(p
d −1−1

)4

(d −1−1)2


+2+2α2




− 1
2

= d −2

2
(
1−α2

) − d

1−α2 ·
[

4d2 +α2 (16−16d)

(d −2)2

]− 1
2

= d −2

2
(
1−α2

) ·
(

1− d√
d2 −4α2 (d −1)

)

︸ ︷︷ ︸
<0

< 0

where we assume both d > 2 and −1<α< 1. This concludes the maximization problem. �

What remains is to bring all the findings of this section together.

Proof of Lemma 7.4. Substituting α = 0 from Lemma 8.3 into the previous reformulations, we can state that
δ

(
µ,ρ

)
obtains its optimum at µ∗ where

µ∗
++++ =µ∗

−−−− =µ∗
+−+− =µ∗

−+−+ = e−2β

4
(
1+e−β

)2

µ∗
+−−+ =µ∗

−−++ =µ∗
−++− =µ∗

++−− = 1

4
(
1+e−β

)2

µ∗
+++− =µ∗

++−+ =µ∗
+−++ =µ∗

−+++ =µ∗
−−−+ =µ∗

−−+− =µ∗
−+−− =µ∗

+−−− = e−β

4
(
1+e−β

)2

which also implies

ρ∗++ = ρ∗+− = ρ∗−+ = ρ∗−− = 1

4

and

δ
(
µ∗,ρ∗

)= H
(
ρ∗

)− d

2

(
DKL

(
µ∗||ρ∗⊗ρ∗)+β

∑
σ∈A1

µ∗(σ)+2β
∑
σ∈A2

µ∗(σ)

)

= (2−2d) log(2)+d log
(
2
(
1+e−β

))
+ d

2

(
− e−2β

(
1+e−β

)2 log
(
e−2β

)
− 2e−β

(
1+e−β

)2 log
(
e−β

))
−dβ

e−2β+e−β
(
1+e−β

)2

= (2−d) log (2)+d log
(
1+e−β

)
+dβ

(
e−2β

(
1+e−β

)2 + e−β
(
1+e−β

)2

)
−dβ

e−2β+e−β
(
1+e−β

)2

= (2−d) log (2)+d log
(
1+e−β

)
.

Lemma 7.4 readily follows. �
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9. THE HESSIAN FOR THE SECOND MOMENT / PROOF OF LEMMA 7.5

The proof of Lemma 7.5 boils down to tedious calculations of the first and second partial derivatives. As a
starting point we reformulate δ

(
µ,ρ

)
with the restricted number of variables.

δ
(
µ,ρ

)= H
(
ρ
)− d

2

(
DKL

(
µ||ρ⊗ρ)+β

∑
σ∈A1

µ(σ)+2β
∑
σ∈A2

µ(σ)

)

= (1−d) H
(
ρ
)+ d

2
H

(
µ
)−dβ

(
x3 + x4 + x5 + x6 + x7 + x8 + x9 +µ−−−−

)

Now, let us turn to the first derivatives of H
(
ρ
)

∂H
(
ρ
)

∂x1
=− log

(
ρ+−

)−1− log
(
ρ−+

)−1+2log
(
ρ−−

)+2

∂H
(
ρ
)

∂x2
=− log

(
ρ++

)−1+ log
(
ρ−−

)+1

∂H
(
ρ
)

∂x3
=− log

(
ρ++

)
−1− log

(
ρ+−

)
−1+2log

(
ρ−−

)
+2

∂H
(
ρ
)

∂x4
=− log

(
ρ++

)−1− log
(
ρ−+

)−1+2log
(
ρ−−

)+2

∂H
(
ρ
)

∂x5
=− log

(
ρ+−

)−1+ log
(
ρ−−

)+1

∂H
(
ρ
)

∂x6
=− log

(
ρ−+

)−1+ log
(
ρ−−

)+1

∂H
(
ρ
)

∂x7
=− log

(
ρ+−

)
−1+ log

(
ρ−−

)
+1

∂H
(
ρ
)

∂x8
=− log

(
ρ−+

)−1+ log
(
ρ−−

)+1

∂H
(
ρ
)

∂x9
=− log

(
ρ++

)−1+ log
(
ρ−−

)+1

and the first derivatives of H
(
µ
)

∂H
(
µ
)

∂x1
=−2log (x1)−2+2log

(
µ−−−−

)+2

∂H
(
µ
)

∂x2
=−2log (x2)−2+2log

(
µ−−−−

)+2

∂H
(
µ
)

∂x3
=−2log (x3)−2+2log

(
µ−−−−

)
+2

∂H
(
µ
)

∂x4
=−2log (x4)−2+2log

(
µ−−−−

)+2

∂H
(
µ
)

∂x5
=−2log (x5)−2+2log

(
µ−−−−

)+2

∂H
(
µ
)

∂x6
=−2log (x6)−2+2log

(
µ−−−−

)
+2

∂H
(
µ
)

∂x7
=− log(x7)−1+ log

(
µ−−−−

)+1

∂H
(
µ
)

∂x8
=− log(x8)−1+ log

(
µ−−−−

)+1

∂H
(
µ
)

∂x9
=− log(x9)−1+ log

(
µ−−−−

)+1.
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For the second derivatives we obtain

∂2δ
(
µ,ρ

)

∂x2
1

= (1−d)

(
− 1

ρ+−
− 1

ρ−+
− 4

ρ−−

)
+ d

2

(
− 2

x1
− 4

µ−−−−

)

∂2δ
(
µ,ρ

)

∂x2∂x1
= (1−d)

(
− 2

ρ−−

)
+ d

2

(
− 4

µ−−−−

)

∂2δ
(
µ,ρ

)

∂x3∂x1
= (1−d)

(
− 1

ρ+−
− 4

ρ−−

)
+ d

2

(
− 4

µ−−−−

)

∂2δ
(
µ,ρ

)

∂x4∂x1
= (1−d)

(
− 1

ρ−+
− 4

ρ−−

)
+ d

2

(
− 4

µ−−−−

)

∂2δ
(
µ,ρ

)

∂x5∂x1
= (1−d)

(
− 1

ρ+−
− 2

ρ−−

)
+ d

2

(
− 4

µ−−−−

)

∂2δ
(
µ,ρ

)

∂x6∂x1
= (1−d)

(
− 1

ρ−+
− 2

ρ−−

)
+ d

2

(
− 4

µ−−−−

)

∂2δ
(
µ,ρ

)

∂x7∂x1
= (1−d)

(
− 1

ρ+−
− 2

ρ−−

)
+ d

2

(
− 2

µ−−−−

)

∂2δ
(
µ,ρ

)

∂x8∂x1
= (1−d)

(
− 1

ρ−+
− 2

ρ−−

)
+ d

2

(
− 2

µ−−−−

)

∂2δ
(
µ,ρ

)

∂x9∂x1
= (1−d)

(
− 2

ρ−−

)
+ d

2

(
− 2

µ−−−−

)

and

∂2δ
(
µ,ρ

)

∂x2
2

= (1−d)

(
− 1

ρ++
− 1

ρ−−

)
+ d

2

(
− 2

x2
− 4

µ−−−−

)

∂2δ
(
µ,ρ

)

∂x3∂x2
= (1−d)

(
− 1

ρ++
− 2

ρ−−

)
+ d

2

(
− 4

µ−−−−

)

∂2δ
(
µ,ρ

)

∂x4∂x2
= (1−d)

(
− 1

ρ++
− 2

ρ−−

)
+ d

2

(
− 4

µ−−−−

)

∂2δ
(
µ,ρ

)

∂x5∂x2
= (1−d)

(
− 1

ρ−−

)
+ d

2

(
− 4

µ−−−−

)

∂2δ
(
µ,ρ

)

∂x6∂x2
= (1−d)

(
− 1

ρ−−

)
+ d

2

(
− 4

µ−−−−

)

∂2δ
(
µ,ρ

)

∂x7∂x2
= (1−d)

(
− 1

ρ−−

)
+ d

2

(
− 2

µ−−−−

)

∂2δ
(
µ,ρ

)

∂x8∂x2
= (1−d)

(
− 1

ρ−−

)
+ d

2

(
− 2

µ−−−−

)

∂2δ
(
µ,ρ

)

∂x9∂x2
= (1−d)

(
− 1

ρ++
− 1

ρ−−

)
+ d

2

(
− 2

µ−−−−

)
.
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We continue with

∂2δ
(
µ,ρ

)

∂x2
3

= (1−d)

(
− 1

ρ++
− 1

ρ+−
− 4

ρ−−

)
+ d

2

(
− 2

x3
− 4

µ−−−−

)

∂2δ
(
µ,ρ

)

∂x4∂x3
= (1−d)

(
− 1

ρ++
− 4

ρ−−

)
+ d

2

(
− 4

µ−−−−

)

∂2δ
(
µ,ρ

)

∂x5∂x3
= (1−d)

(
− 1

ρ+−
− 2

ρ−−

)
+ d

2

(
− 4

µ−−−−

)

∂2δ
(
µ,ρ

)

∂x6∂x3
= (1−d)

(
− 2

ρ−−

)
+ d

2

(
− 4

µ−−−−

)

∂2δ
(
µ,ρ

)

∂x7∂x3
= (1−d)

(
− 1

ρ+−
− 2

ρ−−

)
+ d

2

(
− 2

µ−−−−

)

∂2δ
(
µ,ρ

)

∂x8∂x3
= (1−d)

(
− 2

ρ−−

)
+ d

2

(
− 2

µ−−−−

)

∂2δ
(
µ,ρ

)

∂x9∂x3
= (1−d)

(
− 1

ρ++
− 2

ρ−−

)
+ d

2

(
− 2

µ−−−−

)

and

∂2δ
(
µ,ρ

)

∂x2
4

= (1−d)

(
− 1

ρ++
− 1

ρ−+
− 4

ρ−−

)
+ d

2

(
− 2

x4
− 4

µ−−−−

)

∂2δ
(
µ,ρ

)

∂x5∂x4
= (1−d)

(
− 2

ρ−−

)
+ d

2

(
− 4

µ−−−−

)

∂2δ
(
µ,ρ

)

∂x6∂x4
= (1−d)

(
− 1

ρ−+
− 2

ρ−−

)
+ d

2

(
− 4

µ−−−−

)

∂2δ
(
µ,ρ

)

∂x7∂x4
= (1−d)

(
− 2

ρ−−

)
+ d

2

(
− 2

µ−−−−

)

∂2δ
(
µ,ρ

)

∂x8∂x4
= (1−d)

(
− 1

ρ−+
− 2

ρ−−

)
+ d

2

(
− 2

µ−−−−

)

∂2δ
(
µ,ρ

)

∂x9∂x4
= (1−d)

(
− 1

ρ++
− 2

ρ−−

)
+ d

2

(
− 2

µ−−−−

)

and

∂2δ
(
µ,ρ

)

∂x2
5

= (1−d)

(
− 1

ρ+−
− 1

ρ−−

)
+ d

2

(
− 2

x5
− 4

µ−−−−

)

∂2δ
(
µ,ρ

)

∂x6∂x5
= (1−d)

(
− 1

ρ−−

)
+ d

2

(
− 4

µ−−−−

)

∂2δ
(
µ,ρ

)

∂x7∂x5
= (1−d)

(
− 1

ρ+−
− 1

ρ−−

)
+ d

2

(
− 2

µ−−−−

)

∂2δ
(
µ,ρ

)

∂x8∂x5
= (1−d)

(
− 1

ρ−−

)
+ d

2

(
− 2

µ−−−−

)

∂2δ
(
µ,ρ

)

∂x9∂x5
= (1−d)

(
− 1

ρ−−

)
+ d

2

(
− 2

µ−−−−

)
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and

∂2δ
(
µ,ρ

)

∂x2
6

= (1−d)

(
− 1

ρ−+
− 1

ρ−−

)
+ d

2

(
− 2

x6
− 4

µ−−−−

)

∂2δ
(
µ,ρ

)

∂x7∂x6
= (1−d)

(
− 1

ρ−−

)
+ d

2

(
− 2

µ−−−−

)

∂2δ
(
µ,ρ

)

∂x8∂x6
= (1−d)

(
− 1

ρ−+
− 1

ρ−−

)
+ d

2

(
− 2

µ−−−−

)

∂2δ
(
µ,ρ

)

∂x9∂x6
= (1−d)

(
− 1

ρ−−

)
+ d

2

(
− 2

µ−−−−

)

and

∂2δ
(
µ,ρ

)

∂x2
7

= (1−d)

(
− 1

ρ+−
− 1

ρ−−

)
+ d

2

(
− 1

x7
− 1

µ−−−−

)

∂2δ
(
µ,ρ

)

∂x8∂x7
= (1−d)

(
− 1

ρ−−

)
+ d

2

(
− 1

µ−−−−

)

∂2δ
(
µ,ρ

)

∂x9∂x7
= (1−d)

(
− 1

ρ−−

)
+ d

2

(
− 1

µ−−−−

)

and

∂2δ
(
µ,ρ

)

∂x2
8

= (1−d)

(
− 1

ρ−+
− 1

ρ−−

)
+ d

2

(
− 1

x8
− 1

µ−−−−

)

∂2δ
(
µ,ρ

)

∂x9∂x8
= (1−d)

(
− 1

ρ−−

)
+ d

2

(
− 1

µ−−−−

)

∂2δ
(
µ,ρ

)

∂x2
9

= (1−d)

(
− 1

ρ++
− 1

ρ−−

)
+ d

2

(
− 1

x9
− 1

µ−−−−

)
.

Recall the definition of µ∗

µ∗
++++ =µ∗

−−−− =µ∗
+−+− =µ∗

−+−+ = e−2β

4
(
1+e−β

)2

µ∗
+−−+ =µ∗

−−++ =µ∗
−++− =µ∗

++−− = 1

4
(
1+e−β

)2

µ∗
+++− =µ∗

++−+ =µ∗
+−++ =µ∗

−+++ =µ∗
−−−+ =µ∗

−−+− =µ∗
−+−− =µ∗

+−−− = e−β

4
(
1+e−β

)2

which implies

ρ∗++ = ρ∗+− = ρ∗−+ = ρ∗−− = 1

4

and

δ
(
µ∗,ρ∗

)= (1−d) H
(
ρ∗

)+ d

2
H

(
µ∗)−dβ

(
x∗

3 + x∗
4 + x∗

5 + x∗
6 + x∗

7 + x∗
8 + x∗

9 +µ∗
−−−−

)

= (2−d) log(2)+d log
(
1+e−β

)
.
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Evaluating the above derivatives at µ∗,ρ∗ we obtain the Hessian at µ∗,ρ∗.

D2δ
(
µ∗,ρ∗

)= 4(d −1)




6 2 5 5 3 3 3 3 2
2 2 3 3 1 1 1 1 2
5 3 6 5 3 2 3 2 3
5 3 5 6 2 3 2 3 3
3 1 3 2 2 1 2 1 1
3 1 2 3 1 2 1 2 1
3 1 3 2 2 1 2 1 1
3 1 2 3 1 2 1 2 1
2 2 3 3 1 1 1 1 2




−2d

(
1+e−β

)2

e−2β




4 4 4 4 4 4 2 2 2
4 4 4 4 4 4 2 2 2
4 4 4 4 4 4 2 2 2
4 4 4 4 4 4 2 2 2
4 4 4 4 4 4 2 2 2
4 4 4 4 4 4 2 2 2
2 2 2 2 2 2 1 1 1
2 2 2 2 2 2 1 1 1
2 2 2 2 2 2 1 1 1




−2d
(
1+e−β

)2




2 0 0 0 0 0 0 0 0
0 2 0 0 0 0 0 0 0
0 0 2eβ 0 0 0 0 0 0
0 0 0 2eβ 0 0 0 0 0
0 0 0 0 2eβ 0 0 0 0
0 0 0 0 0 2eβ 0 0 0
0 0 0 0 0 0 e2β 0 0
0 0 0 0 0 0 0 e2β 0
0 0 0 0 0 0 0 0 e2β




The lemma now follows from calculating the determinant of the preceding expression.
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