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The kidneys play a vital role in the basic physiological functions of the body. Kidney
dysfunction impairs these physiological functions and can lead to a wide range of diseases.
Damage to the kidney cells can be caused by a variety of ischemic, toxic or immunological
complaints that lead to inflammation and cell death, which can lead to organ damage and,
ultimately, complete failure. Although the mechanisms underlying acute kidney injury
(AKI) and chronic kidney disease (CKD) are quite distinct, clinical evidence suggests that
the two conditions are inextricably interconnected [1]. AKI and CKD, regardless of the
underlying cause, have inflammation and activation of the immune system as the common
underlying mechanisms. Inflammation, a process aimed, in principle, at detecting and
fighting harmful pathogens, is, therefore, a major pathogenic mechanism for both AKI
and CKD [1]. While the kidney has the remarkable ability to regenerate after an acute
injury and can recover completely, depending on the type of kidney lesion, the options
for clinical interventions are currently limited to fluid management and extracorporeal
kidney support. However, persistent chronic inflammation can trigger renal fibrosis and
chronic kidney disease. The investigation of the molecular mechanisms involved in each
individual injury is currently insufficiently understood.

In this context, we started a forum for the publication of new results on kidney
inflammation, injury and regeneration, as well as for reviewing and discussing existing
studies from this interesting research area. In 2019, we initiated the first edition of the
Special Edition “Kidney Inflammation, Injury and Regeneration” with 29 articles [2]. The
focus of this first edition was more on a summary of current results (represented by
17 review articles), along with 12 original articles from the current research. In the second
Special Edition, presented here, the focus is now more on the current research results
mainly from in vivo studies. This issue is accompanied by five review articles summarizing
the current results on various nephrological diseases or issues. In this current Special
Edition, thirteen original research articles are presented: twelve in vivo studies in a murine
or rat model and one in vitro study [3]. Seven studies show results from AKI models [4–10],
five from fibrosis models (or CKD models) [9,11–14] and two from a transplant rejection
model [4,15] (two studies used two different in vivo models).

Steines and coworkers demonstrated that intrarenal tertiary lymphoid organs are
sites of humoral immune activation within allografts during chronic rejection and that
anti-B-cell activating factor treatment can hinder the formation of tertiary lymphoid organs
in allografts [15]. The authors hypothesized that inhibition of the local alloresponses
in chronic rejection with an anti-B-cell activating factor antibody represents a potential
benefit to kidney transplant patients. Others evaluated the effects of a novel human fusion
recombinant protein in two representative kidney inflammatory models: a renal ischemia-
reperfusion model (an AKI model) and an allogeneic kidney transplant model [4]. This
study shows that targeting with that novel protein offers a good microenvironment profile
to protect the ischemic process in the kidney and to prevent kidney rejection.

Another study using a renal ischemia–reperfusion (IR) model showed that precon-
ditioning with cilastatin, a specific inhibitor of renal dehydrodipeptidase-1, attenuates
renal IR injury via activation of the main hypoxia factor. The authors confirmed this effect
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through in vitro studies with immortal tubular epithelial cells [10]. Others used an IR
model to show that the NOX1-selective inhibition attenuates kidney IR injuries via the
downregulation of oxidative stress-mediated kinase signaling [8] or to investigate the
autophagy dynamics during an IR injury, a potential treatment strategy due to removing
damaged cells, macromolecules and organelles [6]. The effect of growth differentiation
factor 15 (GDF15) was investigated in a murine model of anti-glomerular basement mem-
brane glomerulonephritis [7]. The study showed that GDF15 is required for the regulation
of T-cell chemotactic chemokines in the kidneys and demonstrated the protective effects
of GDF15. The study revealed a novel mechanism limiting the migration of lymphocytes
to the site of inflammation during glomerulonephritis [7]. The findings of Nežić and
coworkers investigated the molecular mechanism involved in the reno-protective effects of
simvastatin in an endotoxin-induced AKI model [5]. The study indicated that simvastatin,
a well-known lipid-lowering medication, has cytoprotective effects on induced tubular
apoptosis, mediated by the upregulation of cell survival molecules and inhibition of the mi-
tochondrial proteins. Therefore, the authors hypothesized that simvastatin has significant
cell-protective effects in septic AKI [5].

Leong and coworkers showed that cyclophilin A, a damage-associated molecular
pattern, promoted inflammation and acute kidney injury in a renal IR model but did
not contribute to inflammation or interstitial fibrosis in a model of progressive kidney
fibrosis (unilateral ureteric obstruction (UUO)) [9]. Other studies showed the effects of
different proteins/peptides against UUO-induced renal injury, inflammation and fibrosis.
The 20-amino acid peptide ND-13 protects against UUO-induced damage and is, therefore,
a potential new therapeutic approach to prevent renal diseases [14]. Furthermore, the
effects of verteporfin on UUO-induced renal tubulointerstitial inflammation, fibrosis and
transforming growth factor-β1 regulation were investigated. The study showed that
verteporfin decreases the UUO-induced increase in tubular injury, inflammation and
extracellular matrix deposition in mice [12]. Son and coworkers investigated the attenuating
effects of dieckol on hypertensive nephropathy in spontaneously hypertensive rats and
hypothesized that dieckol could be beneficial for decreasing hypertensive nephropathy by
decreasing EMT and renal fibrosis [11].

Others investigated the role of xanthine oxidase (XO) in CKD progression associated
with hypercholesterolemia [13]. The authors used a murine model of uninephrectomy
to induce CKD, in addition to a high-cholesterol diet with a XO inhibitor, and, also,
evaluated the results in an in vitro model using immortal tubular epithelial cells. The study
clearly showed that XO inhibition exerts reno-protective effects and identifies XO as a
novel therapeutic target for hypercholesterolemia-associated kidney injury [13]. Finally,
one in vitro study using cisplatin-injured primary tubular epithelial cells focused on the
decisive role of the Lipocalin-2 iron load for its pro-regenerative functions [3]. The study
detected a positive correlation between the total iron amounts in tubular epithelial cells
and cellular proliferation. In conclusion, it was hypothesized that macrophage-released
Lipocalin-2-bound iron is provided to tubular epithelial cells during toxic cell damage,
whereby the injury is limited and recovery is favored [3].

In addition, five interesting review articles were included in this Special Edition
summarizing the current state of knowledge of the treatment of IgA nephropathy [16],
the role of endocan in kidney diseases [17] and the influence of inflammation on anemia
in CKD patients [18]. It also discusses the mechanism of kidney injury in preeclampsia
and the susceptibility of podocytes [19]. Finally, the review summarizes the role of Toll-
like receptors in the pathogenesis of glomerulopathy and their role as potential marker
molecules for the development of renal diseases [20].
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19. Kwiatkowska, E.; Stefańska, K.; Zieliński, M.; Sakowska, J.; Jankowiak, M.; Trzonkowski, P.; Marek-Trzonkowska, N.;

Kwiatkowski, S. Podocytes—The Most Vulnerable Renal Cells in Preeclampsia. Int. J. Mol. Sci. 2020, 21, 5051. [CrossRef]
[PubMed]
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