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Deutsche Zusammenfassung

Die Existenz der Starken Wechselwirkung ist alles andere als augenschein-
lich, da sie in unserem von elektromagnetischen und gravitativen Kräften ge-
prägten Alltag nicht unmittelbar sichtbar ist. Stellt man sich jedoch die Frage,
was eigentlich die kleinsten Bausteine unserer Welt, die Atomkerne, zusam-
menhält, so kommt man nach reiflicher Überlegung zu dem Schluss, dass
weder Gravitation noch Elektromagnetismus die Stabilität von Atomkernen
erklären können. Für Elemente mit Kernladungszahl zwei und größer ver-
hindert die elektromagnetische Wechselwirkung die Entstehung von stabilen
Atomkernen, da die resultierende abstoßende Kraft zwischen zwei gleich ge-
ladenen Teilchen bei solch kleinen Abständen enorm ist. Gravitation dagegen
ist um 36 Größenordnungen schwächer als die elektromagnetische Kraft und
daher kann auch die kleine gravitative Anziehung zweier Protonen keine
Stabilität garantieren. Das ist der Punkt, an dem die Quantenchromodyna-
mik (QCD) ins Spiel kommt. Die QCD ist die fundamentale Theorie zur Be-
schreibung der Starken Wechselwirkung und sie kann die Existenz und Sta-
bilität der Atomkerne erklären. Atomkerne bestehen aus Protonen und Neu-
tronen, und diese wiederum bestehen aus jeweils drei sogenannten Quarks.
Die Quarks besitzen ebenfalls elektrische Ladung und erklären damit die po-
sitive Ladung von Protonen, aber im Gegensatz zu Elektronen besitzen sie
eine weitere Quantenzahl, nämlich die sogenannte Farbladung. Diese Farbla-
dung macht sie empfänglich für die Starke Kraft, die durch die sogenannten
Gluonen vermittelt wird. Die Starke Wechselwirkung führt dann zu einer ef-
fektiven attraktiven Nukleon-Nukleon-Wechselwirkung, die durch effektive
mesonische Freiheitsgrade realisiert wird. Die attraktive Nukleon-Nukleon-
Wechselwirkung überwindet die abstoßende elektromagnetische Kraft und
erklärt damit die Stabilität von Atomkernen.

Dieses Ergebnis ist allerdings alles andere als trivial, denn die tatsäch-
lichen Details der starken Wechselwirkung sind von enormer Komplexität.
Zum einen besitzt die Farbladung im Gegensatz zur elektrischen Ladung
drei mögliche Werte, die rot, grün und blau genannt werden. Ein Zustand,
der aus drei verschiedenfarbigen Quarks besteht, ist ein farbneutraler Zu-
stand, sowie ein Zustand aus Farbe+Antifarbe einem farbneutralen Zustand
entspricht. Wenn die Nettofarbladung eines Teilchens verschwindet, dann
sagt man auch, dass das Teilchen weiß ist. In der Niederenergieregion der
QCD, das ist der Bereich für Impulsüberträge / 200 MeV, existieren Quarks
und Gluonen nicht als freie Teilchen, sondern kommen nur in weißen Bin-
dungzuständen vor. Dieses Phänomen nennt man Confinement und wurde
aufgrund der mathematischen Komplexität der QCD bisher noch nicht end-
gültig verstanden.
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Eine weitere Schwierigkeit der QCD ist die sogenannte chirale Symme-
triebrechung. In einem ebenfalls analytisch noch nicht vollständig verstande-
nen Prozess bilden quasi masselose Quarks ein chirales Kondensat, das die
ursprünglich vorhandene chirale Symmetrie bricht, da sich die Quarks auf-
grund der Drehimpulserhaltung in Paaren mit entgegengesetzter Chiralität
anordnen. Das wiederum führt dazu, dass die Quarks mit dem Kondensat
wechselwirken und dadurch eine effektive Masse erhalten. Dieses Phäno-
men erklärt den größten Teil der Masse von z.B. Protonen und Neutronen.
Während die Up- und Down-Quarks Massen von jeweils weniger als 5 MeV
haben, so haben Protonen und Neutronen jedoch eine Masse von jeweils un-
gefähr 939 MeV. Die restliche fehlende Masse, in etwa 99%, entstehen effektiv
durch die Wechselwirkung mit dem chiralen Kondensat.

Es gibt außerdem noch eine weitere Schwierigkeit der QCD, nämlich das
Phänomen der sogenannten asymptotischen Freiheit, die möglicherweise mit
dem Confinement in Verbindung steht. Die asymptotische Freiheit bezeich-
net das Phänomen, dass die Starke Wechselwirkung schwächer wird, je klei-
ner die Abstände der wechselwirkenden Quarks sind, und umgekehrt wird
sie größer, je größer die Abstände werden. Das führt dazu, dass man in dem
Energiebereich, in dem die Kopplung zu groß ist, keine störungstheoreti-
sche Näherung durchführen kann und das Problem somit nichtperturbativ
wird. Das erhöht den Aufwand von analytischen Rechnungen drastisch, da
im Prinzip unendlich viele Feynman-Diagramme aller Ordnungen berück-
sichtigt werden müssen.

Aufgrund der erläuterten Komplexität der QCD, ist es bis jetzt nicht ge-
lungen, die QCD direkt zu lösen. Stattdessen kann man Niederenergiemo-
delle der QCD verwenden, die die Symmetrien der QCD realisieren, dabei
aber weniger technische Schwierigkeiten bereiten. Das ist die Herangehens-
weise in dieser Doktorarbeit. Wir studieren dazu zwei unterschiedliche Nie-
derenergiemodelle der QCD, das sogenannte Nambu–Jona-Lasinio-Modell
und das Quark-Meson-Modell. Das Nambu–Jona-Lasinio-Modell enthält zu-
nächst nur Konstituentenquarks. Die relevanten mesonischen Freiheitsgrade
werden dann durch Bosonisierung der Quark-Quark-Wechselwirkung expli-
zit in das Modell eingebaut. Das Quark-Meson-Modell hat den gleichen phy-
sikalischen Inhalt wie das bosonisierte Nambu–Jona-Lasinio-Modell, jedoch
enthält es bereits auf dem Level der Lagrangedichte die kinetischen Terme
für die mesonischen Freiheitsgrade und einen allgemeineren Potentialterm,
die im Nambu–Jona-Lasinio-Modell erst durch weitere Quantenkorrekturen
erzeugt werden. Beide Modelle können daher als unterschiedliche Trunkie-
rungen der gleichen Niederenergietheorie aufgefasst werden.

Um die Welt um uns herum zu verstehen, reicht es nicht aus, die Eigen-
schaften von einzelnen isolierten Teilchen zu studieren, da diese üblicherwei-
se in Ensembles auftreten und die Ensembles wiederum in verschiedenen
Phasen in Erscheinung treten. Das bekannteste Beispiel aus dem Alltag ist
wohl Wasser, das in fester, flüssiger und gasförmiger Form auftreten kann.
Und es sind die kollektiven Eigenschaften von Wasser, die unseren Alltag
prägen, nicht die Eigenschaften auf molekularer Ebene. Dies gilt in ähnlicher
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Weise auch für die Starke Wechselwirkung und deshalb ist es das Ziel die-
ser Arbeit, das Phasendiagramm der QCD besser zu verstehen. Ein besseres
Verständnis des QCD-Phasendiagramms ist von enormer Bedeutung für die
Erforschung von kompakten Sternen, dem frühen Universum, sowie Schwe-
rionenkollisionen in Teilchenbeschleunigern.

Der Fokus dieser Arbeit liegt auf der Erforschung sogenannter inhomoge-
ner chiraler Phasen. Das sind Phasen, die sich durch ein räumlich variieren-
des chirales Kondensat auszeichnen, was man sich bildlich wie ein Kristall
vorstellen kann. Eine weiteres Merkmal dieser Arbeit ist die Berücksichti-
gung von Farbsupraleitung für zwei Quark-Flavors. Dadurch, dass inhomo-
gene chirale Phasen und farbsupraleitende Phasen in effektiven Niederener-
giemodellen der QCD üblicherweise in der Nähe des chiralen Phasenüber-
gangs auftreten, kommt es zu einem Wettbewerb beider Phasen. Dieser Wett-
bewerb führt zu drei verschiedenen Möglichkeiten: Erstens, die inhomogene
chirale Phase ist gegenüber der farbsupraleitenden Phase energetisch bevor-
zugt und verdrängt die farbsupraleitende Phase. Zweitens, der umgekehrte
Fall tritt ein. Die farbsupraleitende Phase ist gegenüber der inhomogenen
chiralen Phase energetisch bevorzugt und verdrängt die inhomogene chirale
Phase. Oder drittens, der energetisch günstigste Zustand ist erreicht, wenn
beide Phasen koexistieren.

Wie bereits besprochen, verwenden wir das Nambu–Jona-Lasinio-Modell
und das Quark-Meson Modell zur Untersuchung dieser Fragestellung. Und
obwohl diese Modelle eine deutliche Vereinfachung zur fundamentaleren
Theorie, der QCD, darstellen, ist das Lösen dieser Modelle ohne Näherung
schlicht nicht möglich. Ein bekanntes Näherungsschema ist die sogenann-
te Mittelfeldnäherung. Bei der Mittelfeldnäherung linearisiert man die Wir-
kung der Theorie, indem man den fluktuierenden Anteil der bosonischen
Freiheitsgrade vernachlässigt. Das führt dann zu einem effektiven Pfadinte-
gral, das analytisch ausgewertet werden kann.

Diese Methode wenden wir in dieser Doktorarbeit auf das Nambu–Jona-
Lasinio-Modell an, um so den Wettbewerb zwischen verschiedenen inho-
mogenen Ansätzen mit der two-flavor color-superconductivity (2SC) Pha-
se zu untersuchen. Die 2SC Phase ist durch Spin-0 Cooperpaaren bestehend
aus jeweils einem Up- und einem Down-Quark charakterisiert. Im Vergleich
zu bereits existierenden Studien in diesem Bereich, haben wir in der vor-
liegenden Arbeit die Dispersionsrelation für einen allgemeinen Ansatz des
inhomogenen chiralen Kondensates in Anwesenheit eines homogenen 2SC-
Diquark-Kondensats hergeleitet, für den Fall, dass die Dispersionsrelation
des inhomogenen Ansatzes ohne Berücksichtigung der Farbsupraleitung be-
kannt ist. Diese Verallgemeinerung hat den Vorteil, dass wir bereits bekann-
te inhomogene Ansätze für den chiralen Ordnungsparameter ohne weitere
Schwierigkeiten in unseren Formalismus einsetzen können. Wenn außerdem
in Zukunft die Dispersionsrelationen weiterer inhomogener Ansätze gefun-
den werden, so können diese einfach in unseren Formalismus eingesetzt wer-
den, um den Wettbewerb mit der 2SC-Phase zu studieren.
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Wir haben in diesem Formalismus zwei unterschiedliche inhomogene An-
sätze des chiralen Kondensats untersucht, nämlich die sogenannte Chiral Den-
sity Wave und den sogenannten Real-Kink Crystal. In beiden Fällen finden wir
für bestimmte Diquark-Kopplungen alle Phasen, die durch unseren Ansatz
prinzipiell möglich sind: Eine homogene chirale Phase ohne Farbsupralei-
tung, eine inhomogene chirale Phase ohne Farbsupraleitung, eine Koexis-
tenzphase mit inhomogenem chiralen Kondensat und homogener Farbsu-
praleitung, eine rein homogene farbsupraleitende Phase ohne chirale Kon-
densation, sowie eine vollständig restaurierte Phase, in der alle Ordnungs-
parameter verschwinden. Für größer werdende Diquark-Kopplungen wird
die Koexistenzphase stetig kleiner und auch die rein inhomogene Phase wird
verdrängt, während die farbsupraleitende Phase größer wird. Des Weiteren
konnten wir in Übereinstimmung mit früheren Studien bestätigen, dass der
Real-Kink Crystal auch in Anwesenheit von Fabrsupraleitung im Vergleich
zur Chiral Density Wave energetisch bevorzugt ist.

Auch wenn die Ergebnisse der Studie in der Mittelfeldnäherung äußerst
interessant sind, so haben sie vor allem einen qualitativen Charakter, da die-
se aufgrund der Vernachlässigung der bosonischen Fluktuationen eine grobe
Näherung darstellen. Der nächste logische Schritt ist es daher, bosonische
Fluktuationen systematisch zu berücksichtigen. Das ist das Thema des zwei-
ten Teils dieser Doktorarbeit. Dazu verwenden wir den Formalismus der
Funktionalen Renormierungsgruppe. Dies ist ein nichtstörungstheoretischer
Formalismus, der nicht auf die Entwicklung in der Kopplungskonstanten be-
schränkt ist, sondern weitere Entwicklungsschemata der 1PI-Diagramme er-
laubt. Wir wählen dazu die Ableitungsentwicklung in der niedrigsten Ord-
nung, die sogenannte Local Potential Approximation, da in der Literatur auf Ba-
sis dieses Trunkierungsschema bereits vielversprechende Ergebnisse erzielt
wurden. Obwohl die Local Potential Approximation die einfachste Trunkie-
rung der Ableitungsentwicklung darstellt, so handelt es sich um eine deutli-
che Verbesserung gegenüber herkömmlichen Studien in der Mittelfeldnähe-
rung, da diese im Gegensatz zur Mittelfeldnäherung bosonische Fluktuatio-
nen beinhaltet.

Wir verwenden die Funktionale Renormierungsgruppe, um das Phasen-
diagramm des Quark-Meson-Diquark-Modells herzuleiten. Wir zeigen hier,
dass die in der Publikation [1] auftretenden unphysikalischen negativen En-
tropiedichten verschwinden, wenn man 2SC-Diquarks berücksichtigt und
die Diquark-Kopplung groß genug wählt. Das ist eine wichtige Erkennt-
nis, weil dadurch klar wird, dass es für eine thermodynamisch konsisten-
te Beschreibung des Niederenergiebereichs der QCD wichtig ist, alle rele-
vanten bosonischen Freiheitsgrade zu berücksichtigen. Anschließend haben
wir eine Stabilitätsanalyse durchgeführt, um nach Hinweisen für die Exis-
tenz inhomogener chiraler Phasen im Quark-Meson-Diquark-Modell zu su-
chen. Wir haben dazu die skalenabhängige Pion-Zweipunktfunktion herge-
leitet und untersucht, ob während des Flusses für bestimmte externe Impul-
se Nullstellen auftreten. Dabei konnten wir zeigen, dass die zuvor in Ref. [1]
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gefundene Region der Instabilität durch die Berücksichtigung der Diquark-
Freiheitsgrade stark beeinflusst wird. Ähnlich wie im ersten Teil der vorlie-
genden Arbeit konnten wir zeigen, dass die farbsupraleitende Phase einen
verdrängenden Effekt auf die Region der Instabilität ausübt: Je größer die
Diquark-Kopplung, desto kleiner die Region der Instabilität. Des Weiteren
finden wir auch einen Bereich im Phasendiagramm, indem sowohl eine In-
stabilität in der Pion-Zweipunktfunktion auftritt, als auch ein Diquark-Kon-
densat existiert. Das ist ein wichtiger Hinweis auf die mögliche Existenz ei-
ner Koexistenzphase, so wie wir sie in der Studie in der Mittelfeldnäherung
gefunden haben. Auch wenn das Auffinden der Instabilität kein eindeutiger
Indikator dafür ist, dass eine inhomogene chirale Phase im IR existiert, so
dienen die in dieser Arbeit präsentierten Ergebnisse als wichtige Motivation,
um weiter in diese Richtung zu forschen.
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Inhomogeneous Chiral Condensates
in Low-Energy Color-Superconductivity Models of QCD

by Phillip LAKASCHUS

This thesis explores the phase diagrams of the Nambu–Jona-Lasinio (NJL)
and quark-meson (QM) model in the mean-field approximation and beyond.
The focus lies in the investigation of the interplay between inhomogeneous
chiral condensates and two-flavor color superconductivity.

In the first part of this thesis, we study the NJL model with 2SC diquarks
in the mean-field approximation and determine the dispersion relations for
quasiparticle excitations for generic spatial modulations of the chiral conden-
sate in the presence of a homogeneous 2SC-diquark condensate, provided
that the dispersion relations in the absence of color superconductivity are
known. We then compare two different Ansätze for the chiral order parame-
ter, the chiral density wave (CDW) and the real-kink crystal (RKC). For both
Ansätze we find for specific diquark couplings a so-called coexistence phase
where both the inhomogeneous chiral condensate and the diquark conden-
sate coexist. Increasing the diquark coupling disfavors the coexistence phase
in favor of a pure diquark phase. On the other hand, decreasing the diquark
coupling favors the inhomogeneous phase over the coexistence phase.

In the second part of this thesis the functional renormalization group is
employed to study the phase diagram of the quark-meson-diquark model.
We observe that the region of the phase diagram found in Ref. [1], where
the entropy density takes on unphysical negative values, vanishes when in-
cluding diquark degrees of freedom. Furthermore, we perform a stability
analysis of the homogeneous phase and compare the results with those of
Ref. [1]. We find that an increasing diquark coupling leads to a smaller re-
gion of instability as the 2SC phase extends to a smaller chemical potential.
We also find a region where simultaneously an instability occurs and a non-
vanishing diquark condensate forms, which is an indication of the existence
of a coexistence phase in accordance with the results of the first part of this
work.
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Chapter 1

Introduction

The exploration of the phase diagram of quantum chromodynamics (QCD)
is one of the central subjects in contemporary high-energy physics. A better
understanding of it has very significant implications for our understanding
of the early Universe, where matter was very hot, and for compact stars,
where matter is extremely dense.

With QCD we have found the theory of strong interactions, explaining
the origin of most of the mass of visible matter in the form of protons and
neutrons. These are made of electrically and color-charged particles, the so-
called quarks, as well as the color-charged gauge bosons, the gluons, which
act as a "glue" between the quarks, leading to the formation of bound states
to protons and neutrons. QCD exhibits several interesting but also highly
non-trivial phenomena that make its theoretical treatment very challenging.
One phenomenon is the confinement of quarks inside hadrons, thus making
it impossible to observe them as isolated particles. Another phenomenon is
the generation of a chiral condensate 〈ψ̄ψ〉, which in turn leads to a dynam-
ical generation of effective quark masses as the quarks interact with the chi-
ral condensate through gluon exchange and thereby make them effectively
heavier. In this process, the chiral symmetry is spontaneously broken. Lastly,
QCD is asymptotically free, i.e., as momentum transfer decreases the inter-
action strength increases and vice versa, and therefore perturbation theory
breaks down at large distances and thus prevents us from accessing the low-
energy region analytically. This is the main reason why deriving the phase
diagram from the theory of strong interactions is everything but simple.

To the rescue comes Lattice QCD (LQCD), which enables the numeri-
cal calculation of the path integral through Monte-Carlo simulations by dis-
cretizing spacetime. However, it is plagued by the infamous sign problem,
which prevents the application of LQCD at arbitrary finite densities since the
fermion determinant becomes complex at finite chemical potential and can
therefore no longer be used as a probability weight in Monte-Carlo simula-
tions. Advances in LQCD have made it possible to circumvent this problem
to some degree, however, still only a small region of the phase diagram is
accessible using LQCD.

A completely different approach is the study of effective low-energy mod-
els (LEMs) of QCD. These are models that try to mimic the most important
features of QCD in the low-energy regime while being significantly easier to
solve with analytical methods, such as the mean-field approximation (MFA)
or the functional renormalization group (FRG). The reason they are easier
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to solve analytically is because they usually neglect the complex gluon dy-
namics completely. Sometimes not even quarks are included, but only the
hadrons, e.g., pions and nucleons. In many such models it is comparatively
easy to derive the phase diagram, but always with the caveat that no quanti-
tative predictions for the QCD phase diagram can be made, since it is possible
that the effective models do not accurately describe QCD in the low-energy
region due to the missing gluon and current quark dynamics. Despite this
caveat, the qualitative features derived from these models may very well also
hold for QCD as hadrons are certainly the dominant degrees of freedom in
the low-energy regime.

FIGURE 1.1: The QCD phase di-
agram proposed by N. Cabibbo
and G. Parisi. ρB is the baryon
density and T the temperature. In
phase I the quarks are confined in
hadrons and in phase II they are
deconfined. Figure taken from
Ref. [2].

A very good example for this is the very
first QCD model phase diagram which was
published by N. Cabibbo and G. Parisi [2]
in 1975, see Fig. 1.1. In this publication
it has been recognized that at some criti-
cal temperature and density quarks are not
confined anymore. The course of history
was as follows: Rolf Hagedorn had pub-
lished his statistical bootstrap hypothesis [3]
in 1965, which states that heavier hadrons
are made of lighter hadrons in a self-similar
fashion. This model leads to an expo-
nentially increasing spectrum of hadronic
states, which comes with a critical temper-
ature above which hadronic matter cannot
be heated further. It should be noted that
Hagedorn’s model was invented in a time
when it was not yet known that quarks are
the constituents of hadrons. The insight that
led N. Cabibbo and G. Parisi to the phase

diagram in Fig. 1.1 was the following: When the hadron model is replaced
by a quark confinement model, the previously obtained limiting tempera-
ture by Hagedorn becomes the critical temperature for a second-order phase
transition for hadronic matter. Interestingly, Hagedorn’s statistical bootstrap
method yields a limiting temperature of about ∼ 154 MeV [4], which is
surprisingly close to the most up-to-date crossover transition temperature,
T ∼ (156.5± 1.5) MeV, obtained by LQCD [5].

A lot has happened since. While the largest part of the phase diagram is
not accessible to experimental measurement or first-principle QCD methods
such as Lattice QCD, a few certain statements can be made. For one, as just
mentioned, Lattice QCD predicts a crossover along the temperature axis at
small densities. On the other hand, it is known that at asymptotically large µ
and moderate T, quark matter is a color superconductor [6, 7, 8]. This result is
model-independent because at very high densities the QCD coupling is weak
due to asymptotic freedom such that rigorous calculations are possible.

Another well-established piece of the QCD phase diagram is found in-
side the hadronic phase, namely the liquid-gas phase transition for nuclear
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FIGURE 1.2: A QCD phase diagram compiled from knowledge obtained by LQCD
(along the temperature axis at vanishing chemical potential), perturbation theory
(for very large chemical potential), experimental data (nuclear liquid-gas phase tran-
sition), and LEMs (everywhere else). Figure is taken from Ref. [10].

matter, see also Section 5.1.1 in Ref. [9] and refs. therein for an overview of
experimental findings. The analyses of many studies show that the liquid-
gas phase transition is of first order with a second-order critical endpoint.
The critical temperature is not precisely determined and lies in the range
Tc ∼ 5− 20 MeV.

For the exploration of the remaining pieces of the phase diagram we have
no other choice than using effective low-energy models such as the Nambu–
Jona-Lasinio (NJL) model. The NJL model is particularly suitable for phase
diagram studies of strongly interacting matter since it inherits not only all the
symmetries of QCD, but also its most important symmetry-breaking pattern,
namely the spontaneous breaking of chiral symmetry. However, confine-
ment can not be described in the NJL model due to missing gluon degrees of
freedom. Mean-field calculations of the NJL model show that the chiral sym-
metry gets restored in a first-order phase transition at large µ and moderate
T, which then terminates at a second-order critical endpoint.

If we now compile the results from experiment, lattice studies, and LEMs,
we arrive at our currently best guess for the phase diagram of QCD, which is
schematically presented in Fig. 1.2.

Of course, the QCD phase diagram can become even more complex, for
instance by including another axis for the isospin chemical potential which
accounts for the imbalance between up and down quarks in the two-flavor
case. For neutron-star studies the consideration of this imbalance is of ut-
most importance since the electric charge neutrality of neutron stars necessi-
tates a finite isospin chemical potential. Another important example would
be the consideration of external magnetic fields. This is not only relevant
for neutron stars, in particular magnetars, but also for noncentral heavy-ion
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collisions or for studies of the early Universe [11].
The focus of this thesis lies in the investigation of inhomogeneous chi-

ral phases, which are usually found to supersede the first-order chiral phase
transition. Inhomogeneous phases are characterized by an order parameter
that varies as a function of spatial coordinates. Inhomogeneous chiral phases
correspond in some cases also to a varying quark number density, therefore
they are sometimes also called crystal or crystalline phases. As early as the
1960s, inhomogeneous phases were subject of research. For instance, spin
density waves have been discussed in condensed-matter physics [12], in par-
ticular in the context of superconductivity [13]. One of the first publications
on inhomogeneous phases in strong-interaction matter was about density
waves in nuclear matter [14] and later on, in the 1970s and 1980s, many stud-
ies have been published about inhomogeneous pion condensation [15, 16,
17].

Since then, inhomogeneous phases have been found in many different
QCD-like models. Noteworthy are for example 1+1-dimensional Gross-Neveu
(GN) model studies in the large-N limit [18, 19] or studies in the linear σ-
model [20], and in the NJL model [21]. In most of these studies, an analyti-
cal treatment of inhomogeneous condensates is possible because specific An-
sätze for the shape of the chiral order parameter are chosen, such as the chi-
ral density wave (CDW) or the real-kink crystal (RKC) Ansatz. But there are
also alternative approaches to inhomogeneous chiral phases, where no spe-
cific Ansatz for the shape of the condensate is chosen, e.g., Ginzburg–Landau
theory [22, 23] and studies where the action of the theory in mean-field ap-
proximation is minimized [24].

As seen in Fig. 1.2, the location of the inhomogeneous chiral phase in the
phase diagram might be very close to the region where color superconduc-
tivity sets in. It is therefore an interesting question, how far such a color-
superconducting phase extends to lower chemical potential µ and whether
it even overlaps with an inhomogeneous chiral phase. There are only very
few studies that address this question [21, 25, 26] and indeed they found a
phase where the inhomogeneous chiral condensate and the two-flavor color-
superconducting phase (2SC) condensate coexist. However, only in Ref. [21]
a full phase diagram was calculated and there the Lifshitz and the tricriti-
cal point do not coincide, which contradicts the Ginzburg–Landau studies of
Ref. [22].

One part of this thesis builds on Ref. [21] by extending it in the following
ways: We investigate the phase diagram at finite T and µ using the Pauli-
Villars regularization instead of the 3D cutoff regularization based on a Tay-
lor expansion of the grand potential in the wave number q as done in Refs.
[21, 25]. The reason for this is that the mismatch of the Lifshitz and the tri-
critical point is most likely due to the particular regularization scheme used
in Ref. [21]. Second, while in Refs. [21, 25, 26] the CDW Ansatz was used, we
extend it by the RKC Ansatz in order to investigate how the competition be-
tween inhomogeneous chiral phases and two-flavor color superconductivity
is affected by the particular shape of the chiral order parameter.
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The second part of this thesis is an investigation of the competition be-
tween inhomogeneous chiral phases and two-flavor color superconductivity
in the FRG framework. Since almost all studies are done in the mean-field ap-
proximation, it is not clear on whether inhomogeneous phases will survive
when bosonic fluctuations are included. Instead of using a specific Ansatz
for the shape of the chiral order parameter, we perform a stability analysis as
first proposed in Ref. [27]. In the quark-meson-model such a stability anal-
ysis has been performed first in Ref. [1] where an instability was found in a
region of the phase diagram where inhomogeneous chiral phases in mean-
field studies are typically found. In this thesis we extend the quark-meson
model by diquark degrees of freedom, which we then call the quark-meson-
diquark model, and investigate how the instability is affected by the diquark
degrees of freedom.
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Chapter 2

Quantum Chromodynamics and
Low-Energy Effective Models

2.1 Quantum Chromodynamics

Quantum Chromodynamics is the fundamental theory of the strong interac-
tion. Its degrees of freedom are the quarks, which are spin-1/2 fermions and
the gluons, which are spin-1 gauge bosons and mediate the strong force. The
quarks come in six different flavors, which in ascending order of mass are
named up (u), down (d), strange (s), charm (c), bottom (b), top (t). The masses
and electric charges of the quarks are listed in Tab. 2.1. Each of the quarks
also carries a color charge, which is the reason for their strongly interacting
nature. The quarks can carry three possible color charges, which we will la-
bel red, green, blue. The gluons on the other hand do not come in flavors, but
they carry both color and anticolor charge. The complex dynamical behavior
of quarks and gluons is dictated by the Lagrangian of QCD, which can be
separated into three different contributions:

LQCD = LDirac + LYM + LGhost . (2.1)

The first part describes the dynamics of the quarks and their interaction with
the gluons:

LDirac = ψ̄(x) (i /D−M)ψ(x) , (2.2)

Quark properties
Flavor up (u) down (d) strange (s) charm (c) bottom (b) top (t)

Mass 2.16+0.49
−0.26 MeV 4.67+0.48

−0.17 MeV 93+11
−5 MeV 1.27± 0.02 GeV 4.18+0.3

−0.2 GeV 172.76± 0.3 GeV

Charge 2/3 −1/3 −1/3 2/3 −1/3 2/3

TABLE 2.1: Each quark is a fermion with spin 1/2 and carries a baryon number
of 1/3. For each quark there is also an antiquark, which has the same mass and
opposite signs for the charge-like quantum numbers. The masses are taken from the
latest particle data group (PDG) data [28], which are obtained in the MS scheme.
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where ψ(x) contains all quark fields and is therefore a 4N f Nc-dimensional
spinor. The mass matrix M is a diagonal 4N f Nc × 4N f Nc matrix:

M =


mup14Nc 0 0 . . .

0 mdown14Nc 0 . . .
0 0 mstrange14Nc . . .
...

...
... . . .

 . (2.3)

The covariant derivative is defined as

/D = γµDµ , (2.4)
Dµ = ∂µ1N f Nc − igAa

µTa ⊗ 1N f , (2.5)

where Aa
µ are the gluon fields and Ta are the N2

c − 1 generators of the non-
Abelian SU(Nc)c group in the adjoint representation, which are half the Gell-
Mann matrices. There are three different colors in total, therefore the index
a runs from a = 1, ..., 8, meaning there are eight different gluons. The strong
coupling determines the interaction strength between the quarks and gluons
and between the gluons themselves, who are in contrast to photons in Quan-
tum Electrodynamics self-interacting already at tree level 1. This is described
by the Yang-Mills part of QCD:

LYM = −1
4

Fa
µνFa,µν , (2.6)

where Fa
µν is the gluon field strength tensor and defined as

Fa
µν = ∂µ Aa

ν − ∂ν Aa
µ + g f abc Aa

µ Ab
ν , (2.7)

with the antisymmetric structure constants extracted from the relation [Ta, Tb]
= i f abcTc.

The last part, LGhost, has no actual physical content, but is necessary from
a technical point of view because it ensures that one does not integrate over
gauge-equivalent gauge-field configurations in the path integral formalism.
Note that the Lagrangian in Eq. (2.1) is classical, i.e., it does not intrinsically
contain quantum effects. Although the QCD Lagrangian describes quantum
fields that are defined in spacetime, these are not to be confused with wave
functions, which are proper quantum-mechanical waves, whose domain is
the configuration space of an N particle system and which as Hilbert-space
objects obey the Schrödinger equation. In order to obtain a fully functional
quantum-mechanical description of quarks and gluons, in some form or an-
other it is necessary to apply the Schrödinger equation to the fundamental

1Photons on the other hand do not interact with themselves at tree level, however, loop
corrections lead to very small effective self-interaction terms.
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degrees of freedom, namely the quantum fields. Nowadays, the most estab-
lished approach to quantizing QCD is the so-called path-integral formalism,
where all possible field configurations are summed up, from which we are
then able to derive physical observables.
This approach can be derived from the Schrödinger equation2, however in
most applications it is more feasible to evaluate the path integral instead of
solving the Schrödinger equation. Therefore, in this thesis we will for all
practical calculations apply the path-integral formalism.

Asymptotic Freedom and Confinement

Asymptotic freedom states that the interaction strength decreases for increas-
ing momentum transfer. Since QCD is a non-abelian gauge theory it is also
asymptotically free, which allows for a perturbative treatment for large en-
ergy scales or small length scales, respectively. Using perturbation theory
one can solve the Callan-Symanzik equation for the strong coupling in order
to obtain the QCD running coupling, which in leading order yields

αs(q) =
2π(

11
3

Nc −
2
3

Nf

)
ln

q
ΛQCD

, (2.8)

with αs =
g2

4π
. The emergence of the QCD scale ΛQCD is a phenomenon

called dimensional transmutation. It marks the scale at which the running
coupling constant starts to diverge 3. Below this scale non-perturbative meth-
ods must be applied.

Deeply connected to asymptotic freedom is the phenomenon of confine-
ment. Confinement is the phenomenon that quarks and gluons are never ob-
served as isolated particles, as they always clump together to form hadrons
with zero net color charge. A low-energy description of QCD must therefore
account for confinement by incorporating hadrons as the dominant degrees
of freedom.

Chiral Symmetry

The symmetries of QCD are very important for this thesis, as they need to
be realized in low-energy effective models of QCD as well. We list the sym-
metries of QCD in Tab. 2.2. Chiral symmetry and in particular the breaking
thereof will be discussed in more detail here, as it is of particular importance
for the understanding of this work. Chiral symmetry is defined as the com-
bined symmetry group SU(N f )V × SU(N f )A, which is associated with two

2Or the Schrödinger equation can be derived from the path-integral formalism, depend-
ing on your point of view.

3Note that the QCD scale depends on the renormalization scheme. For a recent review
and estimates of ΛQCD, see Ref. [29].
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symmetry transformations defined in Tab. 2.2. Let us apply these transfor-
mations to LDirac (the Yang-Mills and ghost parts of the QCD Lagrangian are
trivially invariant with respect to these transformations):

LDirac
SU(N f )V→ L′Dirac = ψ̄e−i~θV·~T(i /D−M)ei~θV·~Tψ (2.9)

= ψ̄(i /D−M)ψ = LDirac , (2.10)

LDirac
SU(N f )A→ L′Dirac = ψ̄eiγ5~θA·~T(i /D−M)eiγ5~θA·~Tψ (2.11)

= ψ̄(i /D− e2iγ5~θA·~T M)ψ 6= LDirac . (2.12)

The QCD Lagrangian is evidently invariant under SU(N f )V transformations
but not under SU(N f )A transformations. However, this is not to be con-
fused with the spontaneous breaking, as it is broken explicitly due to a non-
vanishing quark mass.

The explicit breaking of this symmetry is better understood when explic-
itly writing the Lagrangian in terms of left- and right-handed spinors, which
represent the two chirality eigenstates of the quark field. To this end, we
introduce the projection operator

PR/L =
1± γ5

2
(2.13)

with the right- and left-handed quark spinors defined as

ψR/L = PR/Lψ . (2.14)

In this basis, the Lagrangian can be rewritten as

LDirac = ψ̄ (i /D−M)ψ = ψ̄Ri /DψR + ψ̄Li /DψL − ψ̄RMψL − ψ̄LMψR

=

(
ψ̄R
ψ̄L

)(
i /D −M
−M i /D

)(
ψR
ψL

)
. (2.15)

It now becomes clear that the mass term mixes the right- and left-handed chi-
rality states, while the kinetic term is diagonal in the new basis. To this end,
let us now define an isomorphic symmetry group SU(N f )R × SU(N f )L =
SU(N f )V × SU(N f )A with the associated transformations

ψR
SU(N f )R−→ ei~θR·~TψR , ψL

SU(N f )L−→ ei~θL·~TψL , (2.16)
~θR = ~θV +~θA , ~θL = ~θV −~θA . (2.17)

In this representation, we immediately notice that it is precisely the mixing
of the opposite chirality degrees of freedom that breaks the chiral symmetry
explicitly. However, in the limit of vanishing quark masses, i.e., M = 0, chiral
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Symmetries of QCD
Symmetry Associated Transformation Type Broken?

Poincaré Symmetry Aµ(x)
x′µ=Λµ

ν xν

−→ Λµ
ν Aν(Λ−1x) ,

ψ
x′µ=Λµ

ν xν

−→ S[Λ]ψ(Λ−1x)

spacetime Exact

Charge Conjugation and
Parity

ψ(t,~x) P→ ψ(t,−~x) , ψ
C→ Cψ̄T Discrete Exact

Time Reversal ψ(t,~x) T→ ψ(−t,~x) Discrete Exact (Equivalent to
CP symmetry)

Baryon Number Symmetry
U(1)V

ψ
U(1)V→ eiθV ψ Global Exact

Axial Symmetry U(1)A ψ
U(1)A→ eiγ5θA ψ Global Explicitly broken by

quark masses and
anomalously broken

Vector Symmetry SU(N f )V ψ
SU(N f )V−→ ei~θV ·~Tψ Global Explicitly broken by

non-degenerate mass
matrix

Axial-Vector Symmetry
SU(N f )A

ψ
SU(N f )A−→ ei~θV ·~Tγ5 ψ Global Explicitly broken

by non-zero quark
masses

Local Color SU(Nc) Aµ
SU(Nc)−→ Uc(x)AµU†

c (x) −
i
g
(
∂µUc(x)

)
U†

c (x) and ψ
SU(Nc)−→

Uc(x)ψ

Local Exact

Dilatation Symmetry x′µ −→ λ−1xµ such that
A′µ(x′) −→ λAµ(x)

Global Realized in YM and
in Dirac sector for
small quark masses,
anomalously broken

TABLE 2.2: An overview of all symmetries of QCD. The transformation matrix for
Dirac spinors is defined as S[Λ] = exp(1/2ΩαβSαβ), where Ωαβ are the generators of
the Poincaré group and Sαβ = −i/4[γα, γβ].

symmetry is realized. If we now consider only two flavors, i.e., an up and a
down quark, we observe that they are significantly smaller than the QCD
scale, ΛQCD ∼ 300 MeV, and from a phenomenological point of view, we
can therefore start with a chirally symmetric Lagrangian and treat the finite
quark masses as a small perturbation around the chirally symmetric limit.

Now that we considered only two quark flavors and can therefore assume
chiral symmetry to be approximately realized, let us ponder about the impli-
cations. If chiral symmetry for two-flavor QCD described the real world, then
we would expect this symmetry to be found among the observed strongly
interacting particles, the hadrons. But this symmetry is not found in exper-
iments - hadrons do not come in opposite-parity pairs with approximately
equal masses. Therefore, chiral symmetry must be broken even in the zero
quark-mass limit, and the resolution to this is spontaneous symmetry break-
ing.

The mechanism behind the spontaneous breakdown of chiral symmetry
can be explained as follows: The production of quark-antiquark pairs comes
basically at no cost of energy because, as already elaborated, up and down
quarks can be considered almost massless. Particles constantly interact with
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these quark-antiquark pairs, because they are figuratively "omnipresent". Be-
cause of the non-perturbative nature of QCD this sea of quark-antiquarks
leads to a non-vanishing condensate. Angular-momentum conservation then
leads to a condensate of the form

〈q̄q〉 = 〈0| q†
LqR + q†

RqL |0〉 , (2.18)

because the right- and left-handed components of quark spinors have oppo-
site chirality. This is the chiral condensate and also the order parameter of the
chiral phase transition. Note that the chiral condensate corresponds to a mix-
ing of the right- and left-handed chirality states as shown in Eq. (2.15). Now
since quarks strongly interact with the chiral condensate, they get effectively
heavier, which breaks chiral symmetry spontaneously. It is now evident why
chiral symmetry and its breaking is so important for low-energy models of
QCD: It explains the largest proportion of the origin of hadron masses. Fur-
thermore the Goldstone theorem [30] states that the spontaneous breaking
of a continuous symmetry leads to dim(G)− dim(H) spinless particles with
zero mass, where G is the symmetry group of the classical Lagrangian and H
the symmetry group of the ground state. In the case of QCD we have chiral
symmetry that is spontaneously broken and it generates for two-flavor QCD
dim(SU(2)V× SU(2)A)−dim(SU(2)V) = 3 Goldstone bosons which are the
pions. Pions are the lightest mesons and therefore they play a crucial role in
the low-energy regime of QCD.

Color Superconductivity

In Ref. [6] it was found that quark matter at large chemical potential and low
temperature is a color superconductor, which is characterized by a degener-
ate Fermi gas of quarks interacting with a condensate of Cooper pairs near
the Fermi surface.

This can be proven rigorously because at high densities the QCD coupling
is weak due to asymptotic freedom. The rationale is as follows: Due to the
weak QCD coupling at large densities we can neglect interactions, i.e., the
quarks near the Fermi surface are almost free. Thus the energy required to
add a particle to the system is just the Fermi energy EF = µ and therefore
adding quarks or antiquarks costs no free energy near the Fermi surface:

Ω(N) = E− µN −→ Ω(N + 1) = (E + µ)− µ(N + 1) = Ω(N) . (2.19)

Now, if we have a weak attractive channel between a pair of quarks or anti-
quarks, the free energy is even lowered by the amount of the potential energy
of their attraction:

Ω(N) = E− µN −→ Ω(N + 2) = (E + 2µ− EB)− µ(N + 2) = Ω(N)− EB .
(2.20)
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Therefore, more stability is achieved by adding bound states at the Fermi sur-
face. We certainly know that in some channels the quark-quark interaction
must be attractive, since we know that quarks form baryons. In App. B we
prove this for a two-flavor quark-quark channel with total angular momen-
tum J = 0.

The attractive force leads to a formation of bound states, which are the
Cooper pairs of color superconductivity4. From a macroscopic viewpoint
Cooper pairs are composite bosons obeying Bose-Einstein statistics and thus
forming a condensate. This condensate in turn then affects the dispersion
relations of the quarks as they interact with the condensate:

ω± =

√(
E~p ± µ

)2
+ |∆|2 , (2.21)

where E~p =
√
~p2 + m2 is the quark energy with mass m and |∆| the energy

gap. This leads to an energy gap of 2|∆| between the ground state and the
lowest excited state and in the case of electromagnetic superconductivity this
is the reason why the electric resistance becomes zero: At sufficiently small
temperatures all electrons remain in the ground state in the form of Cooper
pairs, i.e., the electric current is transported by Cooper pairs, not single elec-
trons. However, Cooper pairs are incapable to interact with other particles:
They cannot scatter in such a way that they lose energy, because they are part
of the condensate, the lowest-energy state. Furthermore, because of the low-
temperature surrounding, they cannot go into the next-higher excited state
through scattering processes 5.

Back to quark matter, the phenomenology of color superconductivity is
not as straightforward, because there are different types of color supercon-
ductivity, such as three-flavor color-flavor-locked superconductivity (CFL)
and two-flavor color superconductivity (2SC), which have different symme-
try breaking patterns leading to different phenomenological consequences.

In this work we will focus on the 2SC phase, which is obtained in the
limit of an infinitely large strange quark mass. As shown in App. B we have
a scalar color-antitriplet diquark condensate in the 2SC phase:

〈∆A〉 = 〈ψ̄ciγ5τ2λAψ〉 , (2.22)

with the indices A = 2, 5, 7 corresponding to the anti-symmetric Gell-Mann
matrices. This is a three-dimensional vector in color space, however the con-
densation happens in one particular direction, which can be chosen arbitrar-
ily. Here we use A = 2 to define the diquark condensate

4They are not bound in the sense that its constituents are located close to another, but
rather in the sense that they have non-zero correlations between them.

5As absolute zero temperature can never be achieved, there is always a vanishingly small
chance that a Cooper pair can scatter.
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∆ ≡ 〈ψ̄ciγ5τ2λ2ψ〉 , (2.23)

which in our convention means that red u and green d quarks are paired,
while the blue quarks do not participate in the condensate. This again leads
to symmetry breaking in the Andersen-Higgs mechanism. While QCD is
SU(3)c symmetric, the condensate leads to a violation of the local color sym-
metry because it is only SU(2)c symmetric. This in turn would lead to
dim(SU(3)c) − dim(SU(2)c) = 8 − 3 = 5 Goldstone bosons, however in
gauge theories this does not lead to Goldstone bosons, instead, loosely speak-
ing, the Goldstone modes are "eaten up" by the gauge bosons, which then
become massive. There are then as many massive gauge bosons as there
would have been Goldstone bosons. The remaining three massless gluons
correspond to the residual local SU(2)c symmetry. Note that while Eq. 2.23
breaks SU(3)c, it is still invariant under chiral symmetry.

The motivation for the investigation of the 2SC phase in this work is as
follows: While at very large chemical potentials we expect a CFL phase, at
intermediate densities the strange quark can be considered frozen due to its
larger mass compared to the up and down quarks. We are in particular inter-
ested in the critical region of the phase diagram, i.e., the region of the first-
order chiral phase transition (which is usually superseded by an inhomoge-
neous chiral phase, when a spatial modulation of the chiral order parameter
is considered). In NJL model studies this first-order transition for T = 0 is
typically found at a quark chemical potential∼ 300 MeV, which is somewhat
lower than the constituent strange quark mass ms ∼ 500 MeV. We therefore
assume that the onset of a color-superconducting phase is defined by a 2SC
diquark condensate. 6

2.2 Low-Energy Models of QCD

Most regions of the QCD phase diagram are not accessible with perturba-
tion theory because of asymptotic freedom or lattice methods due to the
sign problem, therefore we need to approach low-energy QCD with another
strategy, namely by using (effective) low-energy models (LEMs). The goal of
LEMs is to find a suitable field theory that incorporates the relevant degrees
of freedoms and features of a specific energy scale, while neglecting more
complicated dynamics originating from different scales. This not only sim-
plifies the calculations, but in many cases the calculation of some observables
is made possible by this approach. Ideally, the neglected dynamics should be
irrelevant to the phenomenology that is studied, but unfortunately in case
of low-energy QCD this cannot be guaranteed due to its non-perturbative
nature.

6Note however that in compact stars this line of reasoning is not valid anymore because a
large volume of quark matter, such as neutron stars, must be electrically neutral and a color
singlet [31].
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Effective Field Theories/Low-Energy Models

Model Summary Refs.

MIT bag model Purely phenomenological model in which
quarks are confined inside hadrons. Inside the
hadron they behave as free particles. The bag
model predicts hadron spectrum surprisingly
well except for the pion mass.

[32]

Skyrmion models The Skyrmion is a topologically stable field
configuration and in the Skyrmion models the
baryon number is regarded as a topological
quantum number. This model has only two pa-
rameters to fix and all other low-energy prop-
erties are then predictions.

[33]

Nambu−Jona-Lasinio model Models χSB, and is non-renormalizable. Con-
tains only quarks and can be seen as "proper"
effective theory since the four-fermi interaction
can be in principle derived from QCD.

[34, 35]

Quark-Meson (Diquark) Model Models χSB, and is renormalizable. Quarks
and mesons are coupled via Yukawa interac-
tion and exhibits O(N) symmetry for bosons.

[36]

Linear Sigma Model Models χSB, contains pions and the sigma me-
son in O(4) vectors, and baryons are coupled
to the bosons via Yukawa interaction. If the
baryon is interpreted as quark, then it is the
same as the quark-meson model. If the Yukawa
term is dropped it can be generalized to an
O(N) model.

[37, 38]

Extended Linear Sigma Model Similar to the linear sigma model, mesons
are arranged in chiral multiplets and exhibits
spontaneous chiral symmetry breaking; Ex-
otic mesons can also be incorporated, such as
tetraquarks, meson molecules and glueballs;
easy to calculate observables such as masses
and decay widths.

[39, 40, 41,
42]

Parity-Doublet Model two nucleons are incorporated as chiral part-
ners, often used to study chiral symmetry
restoration in nuclear matter and neutron-star
physics.

[42, 43, 44]

Chiral Perturbation Theory
(ChPT)

Based on a non-linear realization of chiral sym-
metry. Can be treated using perturbation the-
ory in terms of an expansion in pion energies.

[45]

Polyakov-Loop models The Polyakov loop can be added in many effec-
tive models of QCD mentioned here. The ex-
pectation value of the Polyakov loop serves as
order parameter for the deconfinement phase.

[46, 47]

Walecka model Also known as σ− ω model. Commonly used
to calculate the liquid-gas phase transition of
nuclear matter.

[48, 49]

Vector-Dominance Models The electrically neutral light vector mesons
fields such as ρ0

µ, ωµ, and φ mesons are identi-
fied with the electromagnetic hadronic current.
This assumption is based on the observation
that hadron interactions with the electroweak
sector happen dominantly via exchange of vec-
tor mesons.

[50]

TABLE 2.3: A few different low-energy effective models of QCD. Some are of more
phenomenological nature, while others, such as ChPT can be understood as proper
effective field theories in the sense that they can be treated perturbatively.
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In order to avoid a misunderstanding what we mean by low-energy mod-
els, let us compare it with a very similar term, namely effective field theory
(EFT). According to standard effective field theory reviews as in Refs. [51,
52, 53], an appropriate field theory at the respective energy regime should be
addressing three questions:

1. What are the relevant degrees of freedom (fields)?

2. What are the symmetries? What interactions result from them and what
is the symmetry-breaking pattern?

3. Power counting and matching: What are the expansion parameters of
the respective EFT? How to match an EFT to its underlying field theory?

In this work, the first two questions will be our guide to writing down our
effective models. The third question, however, is more subtle and there-
fore we would like to clarify this. If we for example call a quark-meson
model an effective field theory with respect to QCD, then this could be con-
sidered as misnomer because we actually will not integrate out gluons and
quarks and we will not match the emerging operators to the operators of the
quark-meson model. What is rather meant in this work when talking about
low-energy effective theories of QCD is that we think of a phenomenological
model that shares the same symmetries and symmetry-breaking pattern with
full QCD. Furthermore, in many effective field-theory lectures a large sepa-
ration of scales between the effective and the more fundamental underlying
theory is assumed, which is most likely not the case for low-energy effective
theories of QCD. In order to try to prevent confusion and to highlight that
the models used in this work have a more phenomenological nature, we call
them low-energy models (LEMs) of QCD instead of effective field theories.
This can be further emphasized by the fact that in contemporary high-energy
physics there are many different possible models that are used at roughly the
same energy scale, and each of them has a slightly different phenomenology.
Therefore one can see these models as different representations of low-energy
QCD.

In Tab. 2.3 we list some LEMs of QCD. In this work the focus lies on the
study of the NJL model and the quark-meson model.

2.3 The Nambu−Jona-Lasinio Model

The Nambu−Jona-Lasinio (NJL) model has been developed in Refs. [54, 55]
dating back to 1961, a time where quarks were still unknown, and thus QCD
as well. However, at that time there were already hints for chiral symmetry
breaking, namely due to the experimental fact that the SU(3) pseudoscalar-
isovector mesons (the pions, kaons, and the eta meson) are significantly lighter
than the mesons with different quantum numbers. As discussed in the last
section, spontaneous chiral symmetry breaking leads to the appearance of
massless Goldstone bosons, which are just the SU(3) pseudoscalar-isovector
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mesons. In addition, the interaction of all other hadrons with the chiral con-
densate generates the largest part of their masses.

The Lagrangian of the NJL model for N f = 2 quark flavors in its original
form reads

LNJL = ψ̄(i/∂ −m)ψ + G
[
(ψ̄ψ)2 + (ψ̄iγ5~τψ)2

]
. (2.24)

The NJL Lagrangian consists of the typical Dirac Lagrangian and a four-
fermion interaction term with coupling G. The four-fermion interaction is
symmetric with respect to the SU(2)V × SU(2)A ×U(1)V, whereas the mass
m explicitly breaks SU(2)A symmetry.

Originally the fermions of the NJL model were interpreted as nucleons
in order to model nucleon-nucleon interactions, however, after the discovery
of QCD it was reinterpreted as a quark model to model low-energy QCD
(for reviews, see Refs. [56, 57]). It is easily seen that the NJL model is
not a suitable fundamental theory as the four-fermion coupling G has the
dimension of an inverse energy squared and therefore it is manifestly non-
renormalizable. Its success as a LEM is of course not a coincidence. For one it
has the same global symmetries as QCD, leading to similar phenomenology.
And while the point-like four-fermion interaction is not shared with the QCD
Lagrangian, it can be seen as an emergent interaction that is obtained when
integrating out the gluons. However, as an LEM, it also has its shortcom-
ings. For one, since it is non-renormalizable, the results obtained from the
NJL model depend on the specific regularization scheme. This drawback can
be ameliorated by using several regularization schemes and comparing how
much the results depend on the choice of the specific regularization scheme.
Another shortcoming of the NJL model is that the local self-interaction term
is not confining and therefore one should apply the NJL model only where
confinement is not essential. Since the mechanism of confinement is not yet
unraveled, the range of applicability for the NJL model is unknown. This is
also connected to the discussion of the last section, where we explained that
it is somewhat misleading to speak of effective field theories because there is
no clear way how to derive the NJL model from QCD and it should therefore
be rather seen as a phenomenological model.

In this work we will use the NJL model and extend it by a diquark inter-
action term in order to calculate the phase diagram in the mean-field approx-
imation:

LNJL+∆ = LNJL + L∆ , (2.25)

where the second term in Eq. (2.25) is added in order to describe diquark
condensation in the spin-zero color-antitriplet channel,

L∆ = G∆ (ψ̄ciγ5τ2λAψ) (ψ̄iγ5τ2λAψc) . (2.26)

where ψc = Cψ̄T, with C = iγ2γ0 being the charge-conjugation matrix, and
λA, A = 2, 5, 7, are the antisymmetric Gell-Mann matrices in color space. We
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will return to this model in Chapter 3, but now we would like to introduce
another low-energy model of QCD, the quark-meson model, which has the
same physical content but a different Lagrangian.

2.4 The Quark-Meson Model

The Lagrangian of the quark-meson model reads:

LQM = ψ̄
[
i/∂ − hφ(σ + iγ5~τ · ~π)

]
ψ

+
1
2

[
(∂µσ)2 + (∂µ~π)2

]
−U(φ2) + cσ . (2.27)

The quark-meson model is symmetric with respect to SU(2)V × SU(2)A ×
U(1)V, except for the explicit symmetry breaking term, cσ, which breaks the
SU(2)A symmetry:

σ
SU(2)A−→ σ′ = σ eiγ5~θA·~τ . (2.28)

In general, the potential U(φ2, ∆2) includes all terms that are allowed by chi-
ral symmetry and therefore it can be written as

U(φ2) =
∞

∑
n=0

λn

(
σ2 + ~π2

)n
. (2.29)

As in the case for the NJL model, the major reason to study the QM model
is the simple fact that it mimics the symmetries of QCD while being far sim-
pler due to the fact that gluonic degrees of freedom are missing. Compared
to the NJL model it also has the advantage that it contains both quarks and
mesons as dynamic degrees of freedoms and it is renormalizable, and there-
fore it is especially suitable for FRG studies [36, 47, 58, 59, 60].

The relation between the NJL model and the QM model is rarely dis-
cussed in literature and it is often not clear why one would choose one over
the other. In particular, it is somewhat peculiar, why the QM model is renor-
malizable while the NJL model is not, despite the fact that both models have
the same physical content and the same symmetries. Here we would like to
have a closer look on the relation between these two models by showing how
one can arrive at one model starting from the other.

To this end, we consider the chiral limit, i.e., m = 0, and we follow Ref.
[61]. First, we perform a Hubbard-Stratonovich transformation on the four-
point part of the NJL Lagrangian, introducing the fields σ and ~π:
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exp
{

i
∫

x

[
(ψ̄ψ)2 + (ψ̄iγ5~τψ)2

]}
=

N
∫
DσD~π

{
i
∫

x

[
− (σ2 + ~π2)

4G
+ ψ̄(σ + iγ5~τ · ~π)ψ

]}
. (2.30)

The generating functional for the NJL model is then found to be

Z =
∫
DσD~πDψ̄Dψei

∫
x L̃NJL , (2.31)

with the new Lagrangian

L̃NJL = ψ̄
[
i/∂ − hφσ0 + hφ(σ + iγ5~τ · ~π)

]
ψ− h2

φ
(σ2 + ~π2)

4G
, (2.32)

where we introduced the Yukawa coupling hφ by redefining σ → hφσ and
~π → hφ~π, and shifted σ → σ + σ0. Next, we integrate over the fermionic
degrees of freedom:

Z =
∫
DσD~π exp

{
iTr ln

[
i/∂ − hφσ0 − hφ(σ + iγ5~τ · ~π)

]
− i

∫
x

h2
φ
(σ2 + ~π2)

4G

}
.

(2.33)

Let us now focus on the Tr ln term:

Tr ln
[
i/∂ − hφσ0 − hφ(σ + iγ5~τ · ~π)

]
=Tr ln

[
(i/∂ − hφσ0)

(
1− 1

i/∂ − hφσ0
hφ(σ + iγ5~τ · ~π)

)]
=Tr ln

[
i/∂ − hφσ0

]
+ Tr ln

[
1− 1

i/∂ − hφσ0
hφ(σ + iγ5~τ · ~π)

]
. (2.34)

The first term is just an irrelevant constant. The second term can now be
expanded in a log power series:

iTr ln
[

1− 1
i/∂ − hφσ0

hφ(σ + iγ5~τ · ~π)

]
= −

∞

∑
n=1

i
n

Tr
[

1
i/∂ − hφσ0

hφ(σ + iγ5~τ · ~π)

]n

= −
∞

∑
n=1

i
n

Tr
[
(−i/∂ − hφσ0)

∂µ∂µ + (hφσ0)2 hφ(σ + iγ5~τ · ~π)

]n

≡ −
∞

∑
n=1

U(n) . (2.35)
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FIGURE 2.1: Diagrammatic
representation of the Tr ln ex-
pansion in Eq. (2.35). The
solid lines are the fermion
loops, while the dashed lines
correspond to the σ or the ~π
mesons, respectively.

The lowest four orders, n ≤ 4, yield divergent
diagrams that need to be renormalized, which
yield quadratically and logarithmically diver-
gent loop integrals. Explicitly, these are

Ilog = −4i
∫

q

1[
q2 − (hφσ0)2

]2 , (2.36)

Iquad = 4i
∫

q

1
q2 − (hφσ0)2 . (2.37)

The derivation is shown in Refs. [61, 62] and
derived with more detail for the two-color NJL
model in Refs. [63, 64]. Furthermore, we define

Lconv =
4

∑
n=2

U(n)
c +

∞

∑
n=5

U(n) , (2.38)

where U(n)
c denotes the convergent part of U(n),

while U(n), n > 5, are fully convergent. Finally,
we arrive at the following effective Lagrangian:

Leff =
1
2

Ilogh2
φ

[
(∂µσ)2 + (∂µ~π)2

]
−

h2
φ

2

[
1

2G
− 2Iquad − Ilog2(hφσ0)

2
]
(σ2 + ~π2)

−
h4

φ

2
Ilog(σ

2 + ~π2)2 + Lconv . (2.39)

Here, we have obtained kinetic and interaction
terms by including radiative corrections. Note,
that if we now apply a proper regularization for

the loop integrals and redefine the couplings, the new effective Lagrangian
would look like a normal renormalizable Lagrangian. Indeed, if we intro-
duce renormalized fields and couplings,
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σR =
σ√
Z

, ~πR =
~π√
Z

, (2.40)

Ilogh2
φ =

1
Z

, (2.41)

Ilogh4
φ =

λ0

2Zλ
, (2.42)

Iquad =
1

4G
, (2.43)

λ =
λ0Z2

Zλ
, (2.44)

σ2
0 = −ZM2

2λ
. (2.45)

the effective Lagrangian can then be reformulated in a more familiar form :

Leff =
1
2

[
(∂µσR)

2 + (∂µ~πR)
2
]
− M2

2
(σ2

R + ~π2
R)−

λ

4
(σ2

R + ~π2
R)

2 + Lconv .

(2.46)

Neglecting the convergent contribution Lconv this is just the Lagrangian of
the linear sigma model.

Now, let us perform a similar analysis for the quark-meson model defined
in Eq. (2.27). First, we note that the explicit symmetry breaking term cσ is
equivalent to a fermion mass term ψ̄mqψ. To show this simply perform a

shift, σ → σ−
mq

hφ
, and choose the explicit symmetry-breaking parameter, c,

such that the linear terms in Uk((σ−mq/hφ)2 + ~π2) vanish. For instance, if
the effective potential is simply Uk(φ

2) = m2/2(σ2 + ~π2), then upon shifting
the σ field we obtain

c = m2 mq

hφ
. (2.47)

Note however, that this definition of the explicit symmetry-breaking param-
eter is modified as more interaction terms in the effective potential are con-
sidered. Again, we consider the chiral limit, i.e., mq = c = 0, and shift
σ → σ + σ0. Now, if we integrate out the fermionic fluctuations for the QM
model and expand the Tr ln in the same way as we did for the bosonized NJL
model, we arrive at the following effective Lagrangian [61]:
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LQM,eff = −
1
2

[
m2 − 2Iquadh2

φ − 2Ilogh2
φ(hφσ0)

2
]
(σ2 + ~π2)

+
1
2
(1 + Ilogh2

φ)
[
(∂µσ)2 + (∂µ~π)2

]
− 1

4
(λ + 2Ilogh4

φ)(σ
2 + ~π2)2

+ Ũ(φ2) + Lconv . (2.48)

We explicitly wrote out the mass and self-interaction terms of the potential:

U(φ2) ≡ m2

2
(σ2 + ~π2) +

λ

4
(σ2 + ~π2)2 + Ũ(φ2) , (2.49)

where Ũ(φ2) contains all higher-order self-interaction terms.
Now we define the renormalization parameters

σR =
σ√
Z

, ~πR =
~π√
Z

, (2.50)

1 + Ilogh2
φ =

1
Z

, (2.51)

λ + 2Ilogh4
φ =

λ0

Zλ
, (2.52)

m2 + λσ2
0 − 2Iquadh2

φ = 0 , (2.53)

σ2
0 = −ZM′2

2λ′
, (2.54)

λ′ =
λ0Z2

Zλ
. (2.55)

Lconv contains all the terms that are also in Ũ(φ2), therefore we will omit
Ũ(φ2) in the final step. The new Lagrangian in terms of the renormalized
fields reads

LQM,eff =
1
2

[
(∂µσR)

2 + (∂µ~πR)
2
]
− 1

2
M′2(σ2

R + ~π2
R)

− 1
4

λ′(σ2
R + ~π2

R)
2 + Lconv . (2.56)

The new effective Lagrangian is again just a linear sigma-model Lagrangian
when neglecting Lconv.

This analysis makes it clear what the relation between the NJL model and
the QM model actually is. Both models are just different starting UV actions,
which upon integrating out fermionic fluctuations lead to the same linear
sigma model-type effective action. However, while for the NJL model the ki-
netic terms are generated by radiative corrections, they are already included
in the QM model. Thus the NJL model could be seen as more fundamental
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than the QM model. Furthermore, the reason that the QM model is renormal-
izable but the NJL not becomes now evident: In the QM model the divergent
parts are assumed to be renormalized and absorbed in the couplings of the
QM model.

In FRG studies, the main reason to use the quark-meson model instead
of a bosonised NJL model is for the practical reason that the kinetic term
∂µφ∂µφ yields a ~p2 term in the Wetterich equation, which then simply gets
canceled when using the optimized Litim regulator, Rk = (k2−~p2)θ(k2−~p2),
simplifying the flow equation for the effective potential significantly. This
will become more clear in Sec. 4 where we will discuss the FRG formalism in
more detail.

2.5 The Quark-Meson-Diquark Model

One of the main topics of this thesis is the study of the quark-meson-diquark
model for three-color QCD with the functional renormalization group. The
Lagrangian of this model reads

LQMD = ψ̄
[
i/∂ − µγ0 + hφ(σ + iγ5~τ · ~π)

]
ψ

+
h∆

2

[
∆∗aψTCτ2εaγ5ψ− ∆aψ̄γ5εaτ2Cψ̄T

]
+

1
2

[
(∂µσ)2 + (∂µ~π)2

]
+

1
2
[(∂ν − 2δν0µ)∆∗a] [(∂ν + 2δν0µ)∆a] + U(φ2, |∆a|2)− cσ , (2.57)

which can be seen as a quark-meson model extended by a diquark-quark in-
teraction term and a kinetic term for the diquarks7. The first line is essentially
the same as in the QM model, however, here we have included the quark
chemical potential term ψ̄µγ0ψ. The first term in the second line models the
quark-diquark interaction. Here again we have the kinetic term for the sigma
and pion fields, but also for the complex diquark fields. Since the diquark is
a complex scalar field the zero components of the usual kinetic term is mod-
ified ∂0 → ∂0 ± µ∆, where µ∆ = 2µ, because the diquark is composed of two
quarks. The potential term is similar to the one in the QM model but with
the diquark invariants considered:

U(φ2, |∆|2) =
∞

∑
n=0, m=0

[
λn,m

(
σ2 + ~π2

)n
(∆a∆∗a)

m
]

. (2.58)

To our knowledge, Ref. [65] is the only FRG study of the quark-meson-
diquark model as an effective low-energy model for three-color QCD. The

7As a remark, here we can again apply the discussion of the last section where we com-
pared the QM and the NJL model: The kinetic terms can be obtained from radiative correc-
tions when starting from Eq. (2.25). One can see the QMD model and the NJL model with
diquarks as different truncations of the same theory, which both lead to a linear sigma-model
Lagrangian extended by diquarks when integrating out the quark degrees of freedom.
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reason we highlight "three-color" is the fact, that the quark-meson-diquark
model is also known as a low-energy model for two-color QCD, see also
Refs. [65, 66, 67, 68, 69, 70]. But from now on we will call the three-color
QMD model just QMD model. The two-color variant of this model can be
obtained by replacing ∆a → ∆, where ∆ in two-color QCD also happens to
be a baryon. Furthermore, we need to identify h∆ ≡ hφ in order to restore the
SO(6) symmetry of QC2D in vacuum [71, 72]. The main reason to study a
model for two-color QCD instead of a physical QCD model is because of the
absence of the sign problem in QC2D, enabling lattice studies of the QC2D
phase diagram [73, 74]. The lattice data can then be used as benchmark for
the FRG study of the QMD. Note that in this thesis we will only study the
three-color variant.
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Chapter 3

Competition of Inhomogeneous
Chiral Condensates with
Color Superconductivity in the
Mean-Field Approximation

This chapter is based on Ref. [75] and here we will calculate the phase di-
agram for the NJL model with diquarks in the mean-field approximation
(MFA). The MFA is also known as Hartree-Fock approximation and there
is a rich literature on it with applications not only in high-energy physics,
but also atomic physics, condensed-matter physics, and chemistry.

The MFA has also a long history in research on non-perturbative low-
energy models, and although it is a rather rough approximation, it yields
physically reasonable results surprisingly well. However, there might be a
confirmation bias at play. Since so many studies in non-perturbative high-
energy physics have been performed in the MFA, these results seem to be the
norm and what we expect. Therefore it is important to go beyond the MFA
using the FRG, which will be discussed later in this thesis.

The starting point is the NJL Lagrangian Eq. (2.25). Furthermore, we
consider quark-number fluctuations by adding the quark chemical potential:

LNJL+∆ = ψ̄(iγµ∂µ + µγ0)ψ + G
[
(ψ̄ψ)2 + (ψ̄iγ5~τψ)2

]
+ G∆ (ψ̄ciγ5τ2λaψ) (ψ̄iγ5τ2λaψc) . (3.1)

A common implementation of the MFA is achieved by linearizing the La-
grangian with respect to its fermion bilinears. This is done by introducing
the expectation values

〈ψ̄ψ〉 = σ , 〈ψ̄iγ5~τψ〉 = ~π , 〈ψ̄ciγ5τ2λaψ〉 = ∆a , (3.2)

and thus

ψ̄ψ = σ + δσ , ψ̄iγ5~τψ = ~π + δ~π , ψ̄ciγ5τ2λaψ = ∆a + δ∆a . (3.3)
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This results in a Lagrangian quadratic in fluctuations such that fermionic
fluctuations can be integrated out analytically.

Here we use an alternative approach that yields the same results. The ac-
tion of the model is bosonized by performing a Hubbard-Stratonovich trans-
formation and the fermion degrees of freedom are doubled in such a way that
it leaves the total path integral unchanged [76], see App. C.1 for the detailed
calculation. After bosonizing the action we obtain the following effective La-
grangian

Leff =
1
2

[
ψ̄(i/∂ + µγ0 + σ + iγ5~π·~τ)ψ + ψ̄c(i/∂ − µγ0 + σ + iγ5~π·~τ)ψc

+ ∆a

(
ψ̄ciγ5τ2λaψ

)
+ ∆∗a

(
ψ̄iγ5τ2λaψc

)
− σ2+~π2

2G
− |∆a|2

2G∆

]

≡ 1
2

(
Ψ̄S−1Ψ− σ2+~π2

2G
− |∆a|2

2G∆

)
, (3.4)

where the real auxiliary fields σ and ~π correspond to scalar- and pseudoscalar-
mesonic degrees of freedom, and the complex auxiliary fields ∆A correspond
to diquarks. In the last step we introduced Nambu-Gor’kov spinors Ψ =
(ψ, ψc)T for a more compact notation and defined the inverse propagator

S−1 =

(
i/∂ − M̂ + µγ0 ∆̂
−∆̂† i/∂ − M̂− µγ0

)
, (3.5)

with
M̂ = −σ− iγ5~τ · ~π (3.6)

and
∆̂ = iγ5τ2λa∆a . (3.7)

3.1 Grand Potential

For spatially varying scalar and pseudoscalar fields σ(x), ~π(x) and a con-
stant color-superconducting gap parameter ∆a = δa2∆, the grand potential
reads in MFA

Ω = − T
V

lnZ = Ωkin +
1

4G
1
V

∫
d3x
[
σ2(x) + ~π 2(x)

]
+
|∆|2
4G∆

, (3.8)

where

Ωkin ≡ −
1
2

T
V

Tr ln
(
S−1

T

)
. (3.9)

Z is the generating functional for the Lagrangian of Eq. (3.4). The trace is
taken over space-time, spin, color, and flavor indices. The bosonic part does
not come with a Tr ln term because we have neglected bosonic fluctuations.
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Now, instead of specifying an Ansatz for σ2(x) and ~π 2(x) we will rewrite
the generating functional as an integral over the spectrum of the full Hamil-
tonian of the theory. We will then see that the resulting density of states only
contains the spectrum of the theory without diquarks. This is a desirable re-
sult since this allows us to use density of states that are already known from
NJL model studies without diquarks.

To this end we follow the approach of Refs. [77, 78] and isolate the time
derivative

S−1 = γ0(i∂0 − HNG
)

, (3.10)

with the effective Dirac Hamiltonian

HNG =

(
H − µ −γ0∆̂
γ0∆̂† H + µ

)
, (3.11)

where
H ≡ −iγ0~/∂ + γ0M̂ (3.12)

is the effective Hamiltonian in the case without diquark pairing. Equation
(3.9) can then be written as

Ωkin = − T
2V ∑

n
∑
λ

ln
(

iωn + Eλ

T

)
, (3.13)

where Eλ are the eigenvalues of HNG.
The Matsubara sum can be evaluated with standard techniques [79] and

yields

T ∑
n

ln
(

iωn + Eλ

T

)
=
|Eλ|

2
+ T ln

(
1 + e−|Eλ|/T

)
. (3.14)

We determine the eigenvalues Eλ by squaring HNG, which yields the block-
diagonal matrix (C.3)

H2
NG =

(
(H − µ)2 + |∆|2Prg 0

0 (H + µ)2 + |∆|2Prg

)
, (3.15)

where

Prg = λ2
2 =

1 0 0
0 1 0
0 0 0

 (3.16)

is identified as the projector onto the space of gapped quark colors.
The eigenvalues can now be read off from those of the squared Hamil-

tonian, which are (Eλ ∓ µ)2 for the ungapped quark/antiquark and, with
twofold degeneracy, (Eλ∓µ)2 + |∆|2 for the gapped quarks/antiquarks, where
Eλ are the eigenvalues of H. The absolute values ελ,± ≡ |Eλ,±| for quarks/
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antiquarks are thus found to be

ελ,± =
√
(Eλ ∓ µ)2 + |∆|2 for the gapped quarks, (3.17)

ε
(0)
λ,± = |Eλ ∓ µ| for the ungapped quark. (3.18)

Inserting these into Eq.(3.13) yields

Ωkin = −1
2 ∑

i=±

1
V ∑

λ

[
ελ,i + 2T ln

(
1 + e−ελ,i/T

)

+
ε
(0)
λ,i

2
+ T ln

(
1 + e−ε

(0)
λ,i /T

)]
. (3.19)

Now we can define the density of states for H as

ρ(E) =
1
V ∑

λ

δ(E− Eλ) , (3.20)

which allows us to express Eq. (3.19) in the following way:

Ωkin = −1
2 ∑

i=±

∞∫
−∞

dE ρ(E)
[
εi + 2T ln

(
1 + e−εi/T

)

+
ε
(0)
i
2

+ T ln
(

1 + e−ε
(0)
i /T

)]
, (3.21)

with
ε± =

√
(E∓ µ)2 + |∆|2 and ε

(0)
± = |E∓ µ| . (3.22)

Since the original spectrum and, as a consequence, ρ(E) are symmetric around
zero, we can replace 1

2

∫ ∞
−∞ dE by

∫ ∞
0 dE. Our final result for the grand poten-

tial is then given by

Ω = − ∑
i=±

∞∫
0

dE ρ(E)
[
εi + 2T ln

(
1 + e−εi/T

)
+

ε
(0)
i
2

+ T ln
(

1 + e−ε
(0)
i /T

)]
+

1
4G

1
V

∫
d3x
[
σ2(x) + ~π 2(x)

]
+
|∆|2
4G∆

. (3.23)

Note that ρ(E) was defined by the spectrum of H, the Hamiltonian in absence
of diquark pairing. Thus, the diquarks contribute to the grand potential only
through the energies ε±. This means that if ρ(E) is known in the absence of
diquark condensation, the extension to include homogeneous 2SC conden-
sates is straightforward.

Incidentally, if we take the limit ∆→ 0 of Eq. (3.23) we obtain
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Ω∆→0 = −6
∞∫

0

dE ρ(E)
[

E + T ln
(

1 + e−(E−µ)/T
)
+ T ln

(
1 + e−(E+µ)/T

)]
+

1
4G

1
V

∫
d3x
[
σ2(x) + ~π 2(x)

]
, (3.24)

which is exactly the grand potential of the NJL model without diquarks, see
also Ref. [78]. We therefore expect to exactly reproduce the results for the
standard NJL Lagrangian in this limit.

3.1.1 Inhomogeneous Chiral Condensates

We now evaluate the grand potential (3.23) for the CDW and RKC configu-
rations. The respective densities of states have been found in Ref. [77]. It is
already known that, without diquark condensation, the RKC solution is pre-
ferred over the CDW one, and we do not expect that this will change when
accounting for diquark condensation. Nevertheless, here we study both An-
sätze, in order to confirm this expectation.

Chiral Density Wave
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FIGURE 3.1: The CDW for q = 1 and amplitude M = 1.

For the one-dimensional CDW the Ansatz for the inhomogeneous chiral con-
densate is given by

M(z) = σ(z) + iγ5~π(z) ·~τ = −M eiγ5τ3qz , (3.25)

with an amplitude M and the wave number q of the CDW. Without loss of
generality, we have chosen the one-dimensional modulation to align with the
z-axis. In the case q = 0, M is equal to the constituent quark mass.

The eigenvalues Eλ for the CDW without a color-superconducting con-
densate have been determined in Refs. [80, 81]. Inserting these into Eqs.
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(3.17), (3.18) yields the respective eigenvalues in the presence of a color-
superconducting condensate, which are identical to those found in Ref. [25].
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E [MeV]

10000

20000
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ρCDW(E) [MeV2]

M = q = 0

M = 300 MeV, q = 0

M = 300 MeV, q = 100 MeV

FIGURE 3.2: The density of states for the CDW Ansatz. For the case M = q = 0,
which corresponds to the restored phase, the quarks are not bound hadrons and
therefore the density of states increases continuously as more energy is added to the
system. The case M = 300 MeV and q = 0 corresponds to the chirally broken phase
and here we nicely see that the density of states is zero for energies smaller than the
gap M. At energies larger than the gap, the hadrons dissolve because the quarks
overcome the attractive potential that binds them. For non-vanishing wave number
the density of states sets in already at E = M− q because quarks can scatter off the
inhomogeneous condensate.

The density of states (3.20) for the CDW has been found in Ref. [77],

ρCDW(E) =
N f E
2π2

[
θ(E− q−M)

√
(E− q)2 −M2

+ θ(E− q + M) θ(E + q−M)
√
(E + q)2 −M2

+ θ(q−M− E)
(√

(E + q)2 −M2 −
√
(E− q)2 −M2

) ]
.

(3.26)

In Fig. 3.2 we present a plot of the CDW density of states for different
parameters, which makes Eq. (3.26) more intuitive.

Inserting the density of states into Eq. (3.23) we find

ΩCDW = − ∑
i=±

∫ ∞

0
dE ρCDW(E)

[
εi +

ε
(0)
i
2

+ 2T ln
(

1 + e−εi/T
)
+ T ln

(
1 + e−ε

(0)
i /T

)]

+
M2

4G
+
|∆|2
4G∆

. (3.27)
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Real-Kink Crystal
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FIGURE 3.3: The RKC for various ν and D = 1. For ν = 1 the RKC Ansatz becomes
M(z) = D tanh Dz.

For the one-dimensional RKC, the pion field is set to zero and the Ansatz for
the sigma field reads

σ(z) ≡ νD
sn(Dz|ν) cn(Dz|ν)

dn(Dz|ν) , (3.28)

where sn, cn, dn are Jacobi elliptic functions. The parameter ν determines the
shape of the condensate: For ν → 1 the Ansatz becomes D tanh(Dz), i.e., a
kink-like soliton of amplitude D and width 1/D. For ν→ 0 it becomes a sine
of infinitesimal amplitude.
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FIGURE 3.4: In contrast to the CDW Ansatz, we have for non-vanishing wave num-
ber a non-zero density of states even for smaller energies than E = M − q. This
shows that the notion of a wave number is misleading for the RKC because the
RKC solution can be written as a Fourier series with infinitely many non-vanishing
Fourier coefficients.

The density of states for the RKC has already been computed in Ref. [77],
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ρRKC(E) =
N f ED

π2

{
θ(
√

ν̃D− E)
[
EEE(θ̃|ν̃) +

(
EEE(ν)
KKK(ν)

− 1
)

FFF(θ̃|ν̃)
]

+ θ(E−
√

ν̃D) θ(D− E)
[
EEE(ν̃) +

(
EEE(ν)
KKK(ν)

− 1
)

KKK(ν̃)

]
+ θ(E− D)

[
EEE(θ|ν̃)+

(
EEE(ν)
KKK(ν)

−1
)

FFF(θ|ν̃)+
√
(E2−D2)(E2−ν̃D2)

ED

]}
,

(3.29)

where KKK(·) are the complete and FFF(·|·) the incomplete elliptic integrals of the
first kind, respectively, while EEE(·) are the complete and EEE(·|·) the incomplete
elliptic integrals of the second kind. We followed the notational convention
of Ref. [77], where ν̃ = 1− ν, θ̃ = arcsin[E/(

√
ν̃D)], and θ = arcsin(D/E).

The grand potential for the RKC Ansatz is found to be

ΩRKC = − ∑
i=±

∫ ∞

0
dE ρRKC(E)

[
εi +

ε
(0)
i
2

+ 2T ln
(

1 + e−εi/T
)
+ T ln

(
1 + e−ε

(0)
i /T

)]

+
M2

4G
+
|∆|2
4G∆

, (3.30)

where we introduced the average squared amplitude of the RKC,

M2 ≡ 1
L

∫ L

0
dz |σ(z)|2 , (3.31)

with the period L ≡ 4KKK(ν)/D of the RKC. For later purposes, we also define
the effective wave number of the RKC as q ≡ 2π/L. In Fig. 3.4 we provide a
plot for the RKC density of states.

Regularization and Model Parameters

Due to scattering of the quarks off the crystal the quasi-particle energies in
the inhomogeneous phase cannot be labelled by a conserved three-momen-
tum. Thus 3-dimensional momentum cutoff regularization is not suitable
here and leads to regularization artifacts as seen in Refs. [21, 25]. There the
authors isolated the wave-number independent part of the grand potential
and applied a momentum cutoff only to this part, which then leads to an
misalignment of the Lifshitz point compared to the tricritical point, in con-
tradiction to the general Ginzburg-Landau result of Ref. [22], where both the
Lifshitz point and the tricritical point are found to coincide. This regulariza-
tion artifact can be prevented by following Ref. [26] and applying a Pauli-
Villars regularization scheme, which acts on the energy spectrum instead. In
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our case this amounts to a replacement of

ε± =
√
(E± µ)2 + |∆|2 →∑

j
cj

√(√
E2 + jΛ2 ± µ

)2

+ |∆|2 (3.32)

in the temperature-independent part of the thermodynamic potential. Fol-
lowing Ref. [77], we take three regulators with the coeffcients c0 = −c3 =
1, c1 = −c2 = −3, and fix the cutoff parameter Λ together with the cou-
pling constant G by fitting [82] the constituent quark mass in vacuum to
M = 300 MeV and the vacuum pion decay constant to its (approximate)
value in the chiral limit, fπ = 88 MeV, which yields Λ = 757.048 MeV and
GΛ2 = 6.002.

The diquark coupling G∆ can be obtained from a Fierz transformation of
the interaction part of the Lagrangian. In a color-current interaction model
based on one-gluon exchange, it is found to be G∆ = 3/4 G [56]. However,
here we will treat G∆ as a free parameter since its value can not be reliably
associated with a well-measured observable. We therefore present phase di-
agrams for four different diquark couplings: G∆ = 0, 0.3 G, G/2, and 3G/4.

3.2 Results

Now let us present the phase diagrams for the CDW and RKC Ansatz by
minimizing the grand potentials given by Eqs. (3.27) and (3.30), respectively.
For the CDW Ansatz we need to minimize the grand potential with respect to
M, q, and the diquark gap ∆, while for the RKC Ansatz we have the parame-
ters D, ∆, and ν. As a side remark, the minimization procedure for the RKC
Ansatz is numerically more difficult because extremely small changes in the
parameter ν lead to large changes in the shape of the inhomogeneous con-
densate and thus also in the grand potential. Therefore, we need to perform
both the numerical integration and minimization with significantly higher
precision compared to the CDW Ansatz.

The resulting phase diagrams are shown in Fig. 3.5, where in total five
different phases can be found:

• The chiral symmetry-restored phase (R): M = 0, q = 0, ∆ = 0.

• The homogeneous chiral symmetry-broken phase (Ch): M 6= 0, q =
0, ∆ = 0.

• The inhomogeneous chiral phase (InhCh): M 6= 0, q 6= 0, ∆ = 0.

• The 2SC phase (2SC): M = 0, q = 0, ∆ 6= 0.

• The coexistence phase (C): M 6= 0, q 6= 0, ∆ 6= 0.

Regions with inhomogeneous chiral condensates are bounded by green
lines and regions with a nonvanishing 2SC condensate by blue lines. Solid
lines represent the phase boundaries for the CDW Ansatz, while dashed lines
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correspond to the RKC Ansatz. The orange lines separate the homogeneous
chiral symmetry-broken phase from the restored phase. In all cases where an
inhomogeneous phase occurs, the tricritical point coincides with the Lifshitz
point, in agreement with the results of Ref. [22].

As a first observation in Fig. 3.5 we would like to highlight that the spe-
cific Ansatz for the inhomogeneous condensate affects the phase boundaries
only slightly. For example, in the upper left panel the inhomogeneous re-
gion for the RKC Ansatz extends to slightly smaller µ compared to the CDW
Ansatz, which is in agreement with previous NJL studies without color-
superconductivity, see, e.g., Ref. [83].

Coexistence phases are found for G∆ = 0.3 G and G∆ = 0.5 G, as seen in
the upper right and the lower left panels in Fig. 3.5. This is a nontrivial result
because it could just as easily have been the case that either the pure inho-
mogeneous phase was energetically preferred, which would prevent diquark
condensation within the inhomogeneous phase, or that the pure 2SC phase
was energetically preferred over a pure inhomogeneous chiral phase, which
would then have removed the low-temperature part of the inhomogeneous
phase. Indeed, it is seen that as we increase the diquark coupling, the 2SC
phase increases in size and replaces the inhomogeneous chiral phase. This
of course is no surprise because increasing the diquark coupling means that
Cooper pairs are more bounded in a more attractive potential and thus sta-
bilize the system. The choice of the specific inhomogeneous condensate also
affects the boundaries of coexistence phase slightly. The RKC Ansatz leads to
a smaller coexistence phase, which can be explained by the fact that the RKC
crystal is energetically preferred over the CDW and therefore the RKC in-
homogeneous phase can extend to smaller temperatures before competition
with the 2SC phase sets in.

In this context, another interesting observation is that the coexistence
phase sets in at smaller values of the chemical potential than a pure 2SC
phase without inhomogeneous chiral condensate. This effect is rather small,
and it is analogous to the fact that the phase transition between the homoge-
neous chiral symmetry-broken phase to the inhomogeneous phase occurs at
slightly smaller µ than the first-order phase transition between the homoge-
neous chiral symmetry-broken and the restored phase [84].

This can be seen in Fig. 3.6, where the grand potentials for the different
homogeneous and inhomogeneous phases are compared. Each line repre-
sents a local extremum associated with the phase denoted in the legend of
the figure. Intersections of two lines correspond to first-order phase transi-
tions between the two respective phases, while converging lines characterize
two converging extrema, corresponding to a second-order phase transition.

With Fig. 3.6 we can verify the result of Ref. [83]. There the authors
found that, while for the CDW Ansatz we have a first-order phase transi-
tion between the chiral symmetry-broken phase to the inhomogeneous chi-
ral phase, this becomes a second-order transition when employing the RKC
Ansatz. This qualitative finding remains valid when including a 2SC phase,
but here the second-order transition is to the coexistence phase instead of to
the inhomogeneous chiral phase.
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The different nature of the chiral phase transitions for the CDW and the
RKC Ansatz can be also seen in the three-dimensional plots in Figs. 3.7 and
3.8. While both plots for the CDW and the RKC Ansatz look very similar, one
can see the different behavior for the wave number close to the Ch-C phase
boundary. For the CDW Ansatz, the wave number jumps from zero to a finite
value, corresponding to the first-order transition, while for the RKC Ansatz,
it increases very steeply but continuously at the second-order transition. One
can also see a small discontinuous onset of the diquark gap for the CDW
Ansatz, while the onset becomes continuous for the RKC case.
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FIGURE 3.5: The phase boundaries for different diquark couplings G∆ =
0, 0.3 G, G/2, 3G/4. The solid lines correspond to the phase transition lines for the
CDW Ansatz, while the dashed lines are associated with the RKC Ansatz. Where
only solid lines are visible, the phase boundaries for both Ansätze coincide.
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FIGURE 3.6: Comparison of the grand potentials for different scenarios at T = 0 MeV
and for G∆ = 0.3 G. Two intersecting lines represent first-order transitions between
the two respective phases, while converging lines characterize second-order phase
transitions. For each case we subtract the potential of the fully restored (M = q =
∆ = 0) solution.

FIGURE 3.7: A detailed view of the order parameters for the CDW for G∆ = 0.3 G.
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FIGURE 3.8: A detailed view of the order parameters for the RKC for G∆ = 0.3 G.

Finally, in the lower right panel of Fig. 3.5 we increased the diquark cou-
pling to G∆ = 3G/4. For this parameter set, neither an inhomogeneous chiral
phase nor a coexistence phase is found and therefore the phase boundaries
for both the CDW and the RKC Ansatz exactly align. Note that this is in con-
trast to Ref. [21], where the inhomogeneous chiral phase and the coexistence
phase were also found in the case G∆ = 3G/4. The reason for the discrep-
ancy most likely is because of the different regularization scheme that was
used in Ref. [21].

As mentioned in the beginning of this discussion, the major takeaway is
the observation that the phase boundaries are only slightly affected by the
choice of the specific inhomogeneous Ansatz for the chiral order parameter.
This knowledge combined with the finding of Ref. [83], according to which
the RKC Ansatz is the energetically most preferred inhomogeneous Ansatz
that has been found so far, while the CDW is the least favored, this might
be an important insight for future studies in this direction, where it might
not be technically possible to choose the energetically most preferred Ansatz.
Especially for exploratory studies it might be sufficient to employ the CDW,
which, because of its extremely nice properties, is often the first choice when
studying inhomogeneous phases.
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Chapter 4

The Functional Renormalization
Group

In this chapter we will introduce the functional renormalization group and
substantiate why this framework is so important for the purpose of this the-
sis. Subsequently, we will use the functional renormalization group to study
the quark-meson-diquark model in its simplest truncation, the so-called local
potential approximation (LPA). Most of the detailed calculations are given in
Appendices D and E.

4.1 The Concept

The idea of the functional renormalization group goes back to Kadanoff’s
block-spin model [85, 86]. This model is a two-dimensional Ising model,
where the microscopic coupling between two spins is the inverse tempera-
ture, i.e., K = 1/T. The question is now the following: How does the cou-
pling of the effective degrees of freedom change when the scale of the system
changes? To that aim, one combines several spins to a new block, e.g., each
3× 3 spin square configuration becomes a new block, and then one takes the
average of each block1. This so-called coarse graining procedure reduces the
degrees of freedom of the system (in this example by a factor of nine) and
thus also its scale. Using the block-spin transformation we can determine the
new effective Hamiltonian for the spin blocks, which has the same shape but
a different coupling constant. If we now apply the block-spin transformation
repeatedly until the desired scale is reached, we have calculated the effective
coupling for that scale starting from the microscopic theory.

Often, when the block-spin transformation is performed many times, the
effective coupling flows toward a fixed point, where it does not change any-
more even with further iterations of the block-spin transformation. In studies
of fundamental theories these fixed points are very important, because they
are a necessary condition to guarantee that the couplings of the theory do not
diverge in the UV or IR. One of the most prominent examples is the Gaussian

1Incidentally, this is analogous to pooling as commonly used in convolutional neural net-
works [87]. The analogy for the example of this specific block-spin transformation becomes
exact for zero padding and stride equal to three.
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fixed point2 of QCD, where the beta function vanishes at increasingly large
energies, which is the reason for the asymptotic freedom of QCD.

The functional renormalization-group formalism is inspired by Kadanoff’s
block-spin transformation but is formally significantly different. The FRG
has its roots in the Wilson renormalization group [88] which can be seen as
the continuum version of the block-spin transformation. Instead of averaging
spins on a lattice, the Wilson renormalization group successively integrates
out heavy fields in the path integral up to a certain energy scale. Techni-
cally, this works as follows: Consider the generating functional in Euclidean
spacetime

ZΛ = N
∫ Λ

|p|=0
Dφ exp

{
−SΛ[φ] +

∫
x

φ(x)J(x)
}

, (4.1)

where SΛ is a classical action defined at the energy scale Λ. Next, we intro-
duce another cutoff Λ′ < Λ and define soft and hard modes denoted as φ̃
and φ̂, respectively:

φ̃(p) = φ(p)θ(Λ′ − |p|) , (4.2)

φ̂(p) = φ(p)
[
1− θ(Λ′ − |p|)

]
, (4.3)

φ(p) ≡ φ̃(p) + φ̂(p) . (4.4)

Next, if we write the generating functional in terms of the soft and hard
modes, and subsequently integrate out the hard modes, we obtain

ZΛ[J] = N
∫ Λ′

|p|=0
Dφ̃

∫ Λ

|p|=Λ′
Dφ̂ exp

{
−SΛ[φ̃, φ̂] +

∫
x

[
φ̃ + φ̂

]
J(x)

}
= N

∫ Λ′

|p|=0
Dφ̃ exp

{
−SΛ′ [φ̃] +

∫
x

φ̃J(x)
}

, (4.5)

where the new action SΛ′ has been defined via

e−SΛ′ [φ̃,J] =
∫ Λ

|p|=Λ′
Dφ̂ exp

{
−SΛ[φ̃, φ̂] +

∫
x

φ̂J(x)
}

. (4.6)

This is a Schwinger functional and contains quantum corrections, which, on
the one hand, modify the already existing couplings of the classical theory
and, on the other hand, induce all new couplings that respect the symmetry
of the classical theory. If we were in a regime where the couplings are small,
it would be possible to neglect the new couplings using perturbation theory,
but for strongly coupled systems this is an invalid approximation. There-
fore, the idea is now to first keep all the new couplings and find an equation
that describes how the couplings change when the generating functional is

2The Gaussian fixed point is a fixed point at which the coupling vanishes.
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FIGURE 4.1: The scale-dependent effective average action interpolates between the
classical action in the UV and the effective action in the IR. This analogous to the
Kadanoff block-spin transformation. In the UV we have many degrees of freedoms,
which are integrated out until we have only a few effective degrees of freedom left
in the IR.

integrated out momentum shell by momentum shell. Subsequently, when
we have found such an equation, we can still apply an approximation that is
most suitable for the investigated phenomenology in question. Thus, the idea
is now to further systematize the idea of the Wilson renormalization group
by introducing a scale-dependent effective action Γk, where k is a continuous
parameter which denotes the momentum scale at which all higher momenta
p2 > k2 are integrated out. In other words, we want the scale-dependent
action to be a functional that interpolates between the classical action S[φ] at
high energies and the full quantum effective action Γ[φ] at low energies. This
interpolation can be described by a partial differential equation called the ex-
act renormalization group equation, also known as the Wetterich equation.

4.2 The Exact Renormalization Group Equation

Now that we have explained the conceptual ideas behind the FRG, we
can mathematically derive the Wetterich equation (See also Refs. [67, 89, 90,
91, 92, 93] for derivations in literature). The idea is the following: We render
the action scale dependent by adding a scale-dependent mass term:

S[φ] −→ S[φ] + ∆Sk[φ] , (4.7)

with the newly introduced term defined as:

∆Sk[φ] =
1
2

∫
p

φT
a (−p)Rab

k (p)φb(p) , (4.8)
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where summation over same indices is implied. φa is a field-space vector of
bosonic and fermionic fields and Rab

k is the so-called regulator in field space,
which is defined such that both IR- and UV-regularization is guaranteed
while at the same time respecting the boundary conditions of the effective
average action, which are defined as

Γk→Λ = S , Γk→0 = Γ . (4.9)

The effective average action interpolating between the classical action S and
the quantum effective action Γ is derived from the scale-dependent generat-
ing functional,

Zk[J] =
∫
D[φ]exp

(
−S[φ]− ∆Sk[φ] +

∫
Jaφa

)
, (4.10)

via Legendre transformation of the scale-dependent Schwinger functional

Wk[J] = ln (Zk[J]) , (4.11)

→ Γk[Φ] = sup
J

(
−Wk[J] +

∫
a

JaΦa

)
− ∆Sk[Φ] . (4.12)

Note that Φ has been introduced as a consequence of the Legendre transfor-
mation and is defined by

Φa(x) = 〈φa(x)〉J=Jsup
=

δ

δJa(x)
Wk[J]

∣∣∣∣∣
J=Jsup

. (4.13)

In the following we will always use J ≡ Jsup. From Eq. (4.12) the constraints
of the regulator are derived:

1. lim
p2/k2→0

Rk(p2) > 0 ,

2. lim
k2/p2→0

Rk(p2) = 0 ,

3. lim
k2→Λ→∞

Rk(p2) = ∞ .

To recapitulate, since the regulator can be seen as a scale-dependent effective
mass, the first property ensures that modes with p2 . k2 acquire a mass re-
sulting in the decoupling of the soft modes, i.e., these soft fluctuations are
suppressed. The second property needs to be fulfilled in order to obtain the
correct physical limit in which the theory should not depend on an arbitrary
regulator. This ensures the recovery of the full quantum effective action,
lim
k→0 Γk[φ] = Γ[φ]. Finally, the last property is needed to obtain the correct
UV limit, i.e., no fluctuations contribute and the theory is described by the
classical action, lim

k→Λ→∞ Γk[φ] = S[φ].
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In the next step let us modify the effective average action by adding the
scale-dependent mass term:

Γ̃k[Φ] = Γk[Φ] + ∆Sk[Φ] = −Wk[J] +
∫

a
JaΦa . (4.14)

Now we would like to investigate how this quantity changes as the flow scale
is varied:

∂kΓ̃k[Φ] = −∂kWk[J]

= −∂kZk[J]
Zk[J]

= − 1
Zk[J]

∫
D[φ] (−∂k∆Sk[φ]) exp

(
−S[φ]− ∆Sk[φ] +

∫
Jaφa

)
.

Note that this result is simply the expectation value of ∂k∆Sk[φ]. This can be
further simplified to

∂kΓ̃k[Φ] = 〈∂k∆Sk[φ]〉

=
1
2

∫
p

∂kRab
k (p) 〈φa(−p)φb(p)〉

=
1
2

∫
p

∂kRab
k (p)

(
〈φa(−p)φb(p)〉connected + 〈φa(−p)〉 〈φb(p)〉

)
=

1
2

∫
p

∂kRab
k (p)

(
W(2)

k,ab(p) + 〈φa(−p)〉 〈φb(p)〉
)

=
1
2

∫
p

∂kRab
k (p)W(2)

k,ab(p) + ∂k∆Sk[Φ] . (4.15)

Thus, inserting this result back into Eq. (4.14) yields

∂kΓk[Φ] = ∂kΓ̃k[Φ]− ∂k∆Sk[Φ] =
1
2

∫
p

∂kRab
k (p)W(2)

k,ab(p) . (4.16)

From Eq. (4.13) it follows that

δ

δJb(y)
Φa(x) = W(2)

k,ab(x, y) , (4.17)

and from Eq. (4.12) we obtain

δ

δΦb(y)
Ja(x) =

(
Γ(2)

k + Rk

)
ab
(x, y) . (4.18)

Now, using the identity
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δabδ(x− y) =
δJa(x)
δJb(y)

=
∫

x′

δJa(x)
δΦa′(x′)

δΦa′(x′)
δJb(y)

=
∫

x′
(Γ(2)

k + Rk)aa′(x, x′)W(2)
k,a′b(x′, y) (4.19)

we have shown that

W(2)
k = (Γ(2)

k + Rk)
−1 . (4.20)

Inserting this identity into Eq. (4.16) we obtain the Wetterich equation:

∂kΓk[Φ] =
1
2

∫
p

∂kRab
k (p)W(2)

k,ab(p)

=
1
2

∫
p

∂kRab
k (p)

(Γ(2)
k + Rk)ab(p)

, (4.21)

or in an equivalent notation

∂kΓk[φ] =
1
2

STr

[
∂kRk

Γ(2)
k [φ] + Rk

]
= ∑

η=±

η

2

∫
p

∂kRk(p2)

Γ(2)
k (p,−p) + Rk(p2)

, (4.22)

where STr is a trace with an additional minus sign for fermions. Equivalently,
we have η = 1 for bosons and η = −1 for fermions.

Throughout this thesis we will use the so-called Litim regulator [94], which
is widely used in many FRG studies because it has properties that are very
useful in analytic computations. The Litim regulator is defined as

Rk(p2) =


(
k2 − p2) θ

(
k2 − p2) , in the bosonic subspace

i/p

(√
k2

p2 − 1

)
θ
(
k2 − p2) , in the fermionic subspace

(4.23)

The Wetterich equation is exact in the sense that no approximations have
been made during the derivation. However, since the right-hand side of the
Wetterich equation depends on the second functional derivative of the effec-
tive action, we need to access the information of the full flow dependence of
Γ(2)

k . This information can in principle be obtained by taking two functional
derivatives of the Wetterich equation with respect to φ:
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∂kΓ(2)
k =

1
2

STr

[
∂kRk

1

Γ(2)
k + Rk

Γ(3)
k

1

Γ(2)
k + Rk

Γ(3)
k

1

Γ(2)
k + Rk

]

− 1
2

STr

[
1

Γ(2)
k + Rk

Γ(4)
k

1

Γ(2)
k + Rk

]
, (4.24)

where we suppressed the momentum dependence. The flow of the scale-
dependent two-point function thus depends on the three- and four-point
function. Therefore, continuing taking functional derivatives of the Wetterich
equation yields an infinite tower of coupled differential equations. Hence,
without some truncation scheme it is not possible to solve the Wetterich equa-
tion analytically.

4.3 Truncations

In general, we can write the scale-dependent effective average action as

Γk[φ] = ∑
n

gn,kOn[φ, ∂µφ] , (4.25)

where gn,k are the running coupling constants and On[φ, ∂µφ] are the opera-
tors consisting of fields and derivatives of fields. Note, this is an infinite sum
as quantum fluctuations will produce all possible operators that respect the
symmetries of the underlying theory. As mentioned before, we cannot solve
the Wetterich equation with infinitely many operators, but if we consider Eq.
(4.25) three possible truncation schemes present ourselves:

1. Loop expansion: Expanding Eq. (4.25) for small gn,k, which is related
to the well-known perturbation theory

2. Vertex expansion: Expanding in powers of fields

3. Derivative expansion: Expanding the effective average action with re-
spect to the powers of derivatives

Throughout this thesis we will be using the derivative expansion to truncate
the effective action. Taking the O(N) model as example, the Ansatz for the
effective average action in the derivative expansion is written as

Γk =
∫

x

[
Uk(φ

2) +
1
2

Zk(φ)∂µφ∂µφ +O(∂4)

]
, (4.26)

where Zk(φ) is the scale- and field-dependent wave-function renormalization
constant and Uk(φ

2) is the effective potential containing all O(N)-symmetric
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interaction terms. Using the Wetterich equation, again a tower of coupled
flow equations needs to be solved:

∂kUk(φ0) =
1

2Vold
Tr

∂kRk

Γ(2)
k + Rk

∣∣∣∣∣
φ=φ0

, (4.27)

∂kZk(φ0) =
1

2Vold
∂p2

 δ

δφ(−p)
δ

δφ(q)
Tr

∂kRk

Γ(2)
k + Rk

∣∣∣∣∣
φ=φ0,p=q


p=0

, (4.28)

... (4.29)

where the dots denote the flow equations for the wave-function renormal-
izations of the higher-order kinetic terms. In this thesis we will truncate the
effective average action such that only the first equation, Eq. (4.27), needs
to be solved. This corresponds to the case where only the local kinetic term
contributes and the wave-function renormalization is set to Zk = 1. This
approximation is called the local potential approximation (LPA).

Of course by omitting all the other terms, we assume that the contribu-
tions of these terms are negligible. However, there is no rigorous a priori rea-
son that this needs to be the case and it is an ongoing challenge for the FRG
community to understand at which order the derivative expansion starts to
be reliable. A notable study in this direction is for example Ref. [70], where
the authors showed in the quark-meson-diquark model, that the LPA yields
significantly different results compared to improved higher-order trunca-
tions. However, in that study the UV parameters have been chosen such that
the highest-order truncations yield the correct IR results and then they used
the same starting values for the LPA. But it is still possible to choose suitable
UV parameters such that the LPA also yields the correct IR observables. The
model then has a more phenomenological nature as the UV parameters are
tuned to agree with observation while for higher-order truncations the UV
parameters could be seen as a prediction from QCD.

Regardless of whether or not the LPA is suitable as a phenomenological
approach to yield an accurate description of low-energy QCD, it is at least
an improvement over the widely used MFA (for example in studies of the
QCD phase diagram). For instance, employing the FRG in the LPA will allow
for a qualitative study of the effect of bosonic fluctuations, whereas the MFA
only incorporates fermionic fluctuations. For example, studies on inhomoge-
neous phases have been mainly done in the MFA [95], as we also did in the
last chapter. Comparing the results of these studies with an equivalent FRG
study could lead to a better understanding of the effects of bosonic fluctua-
tions on inhomogeneous phases. Furthermore, presenting an LPA study can
serve as an important starting point to motivate an FRG study with improved
truncation. Comparing results of the LPA study with one with improved
truncation will lead to important insight on the importance of higher-order
corrections.
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4.4 Flow of the Effective Potential

∂kUk = 12
- -

= 1
2
- 1

2
-+ 1

2
-+ - -

r,
c
g5 7,2 b

FIGURE 4.2: Diagrammatic representation of the different contributions to the flow
of the effective potential. In the first line we have two loops representing the
bosonic (where the green blob denotes the bosonic regulator insertion ∂kRk,B) and
the fermionic (where the blue blob denotes the fermionic regulator insertion ∂kRk,F)
contributions, respectively. In the second line we further unfolded the different con-
tributions in field space.

In this section we present the flow equation for the effective potential of the
quark-meson-diquark model. The scale-dependent effective action of this
model in the LPA is defined as

ΓQMD
k [Φ] =

∫
d4x
{

ψ̄
[
i/∂ − µγ0 + hφ(σ + iγ5~τ · ~π)

]
ψ

+
h∆

2

[
∆∗aψTCτ2εaγ5ψ− ∆aψ̄γ5εaτ2Cψ̄T

]
+

1
2

[
(∂µσ)2 + (∂µ~π)2

]
+

1
2
[(∂ν − 2δν0µ)∆∗a] [(∂ν + 2δν0µ)∆a] + Uk(φ

2, |∆a|2)− cσ
}

, (4.30)

Here we simply rendered the effective potential scale dependent and defined
φ ≡ (σ, ~π). In an improved truncation one could render the couplings hφ and
h∆ scale-dependent, include a running wave-function renormalization Zk or
include interactions of orderO(∂4). These possibilities are all neglected here.
In the LPA, one can then obtain the effective potential by taking Eq. (4.30) at
a constant field configuration

Φ =


σ
~π

Re ∆a
Im ∆a

ψ̄
ψ

→ Φ0 =


σ0
0

δa2∆0
0
0
0

 . (4.31)

In the following we will rename the vacuum expectation values σ0 → σ and
∆0 → ∆. σ is the order parameter for spontaneous chiral symmetry breaking
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and ∆ is the diquark condensate and acts as order parameter for the two-
flavor color-superconducting phase. The flow equation is derived in App.
D:

∂kUk =
k4

12π2

[
3

Eπ,k
coth

Eπ,k

2T
+

3

∑
i=1

α0 − α1z2
i + 3z4

i
(z2

i+1 − z2
i )(z

2
i+1 − z2

i )zi
coth

zi

2T

+
2

Ẽ∆,0,k

(
coth

Ẽ∆,0,k − 2µ

2T
+ coth

Ẽ∆,0,k + 2µ

2T

)]

− k4

3π2

2 ∑
±

1± µ

Ek
E±k

tanh
E±k
2T

+
1
Ek

(
tanh

Ek − µ

2T
+ tanh

Ek + µ

2T

) .

(4.32)

with the energies defined as

Eπ,k =
√

k2 + 2Uk,σ , (4.33)

Eσ,k =
√

k2 + 2Uk,σ + 4σ2Uk,σσ , (4.34)

Ẽ∆,0,k =
√

k2 + 2Uk,∆ , (4.35)

Ẽ∆,k =
√

k2 + 2Uk,∆ + 4∆2Uk,∆∆ , (4.36)

E∆,0 =
√

Ẽ2
∆,0,k − 4µ2 , (4.37)

E∆ =
√

Ẽ2
∆,k − 4µ2 , (4.38)

Ek =
√

k2 + (hφσ)2 , (4.39)

E±k =
√
(Ek ± µ)2 + (h∆∆)2 , (4.40)

where we introduced the short-hand notation

Uk,σ = ∂σUk(σ
2, ∆2) , Uk,σσ = ∂σσUk(σ

2, ∆2) , (4.41)

Uk,∆ = ∂∆Uk(σ
2, ∆2) , Uk,∆∆ = ∂∆∆Uk(σ

2, ∆2) . (4.42)

The zi are defined as:

zk+1 = − i
3

(
β2 + ηkC +

b0

ηkC

)
, k ∈ {0, 1, 2} , (4.43)

z4 = z1, z5 = z2, z6 = z3 , (4.44)
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where

C =
3

√√√√b1 +
√

b2
1 − 4b3

0

2
, (4.45)

η =
−1 +

√
−3

2
, (4.46)

and

b0 = β2
2 − 3β1 (4.47)

b1 = 2β3
2 − 9β2β1 + 27β0 . (4.48)

The coefficients αi and βi are given by

α0 = E2
∆,kE2

∆,0,k + E2
∆,kE2

σ,k + E2
∆,0,kE2

σ,k − 16σ2∆2U2
k,σ∆ , (4.49)

α1 = 2(E2
∆,k + E2

∆,0,k + E2
σ,k + 8µ2) , (4.50)

β0 = E2
∆,0,k(E2

∆,kE2
σ,k − σ2∆2U2

k,σ∆) , (4.51)

β1 = α0 + 16E2
σ,kµ2 , (4.52)

β2 = E2
∆,k + E2

∆,0,k + E2
σ,k + 16µ2 . (4.53)

The diagrammatic representation of Eq. 4.32 is presented in Fig. 4.2. We have
two different diquark energy functions because only the anti-blue (composed
of red and green quarks) diquark comes with a diquark gap, while the other
two have no energy gap. Furthermore, the tilde notation over the diquark
energies highlights that these are not the true energies because their masses
also depend on the quark chemical potential. We have defined Ẽk,∆,0 and Ẽ∆,k
such that they are analogous to Eπ,k and Eσ,k.

The first term in the first square bracket of Eq. (4.32) stems from the pion
loop, the second term arises from the mixed σ and gapped diquark loop and
the third one from the ungapped diquark loop. The two terms in the second
square bracket are contributions from the gapped and ungapped quarks, re-
spectively.

It is instructive to try to derive the quark-meson model flow equation
starting from the QMD model. The flow equation for the effective potential
of the QM model is given by [36]

∂kUk =
k4

12π2

[
3

Eπ,k
coth

Eπ,k

2T
+

1
Eσ,k

coth
Eσ,k

2T

− 12
Ek

(
tanh

Ek − µ

2T
tanh

Ek + µ

2T

)]
. (4.54)

First, let us try to reproduce the fermionic contribution by taking the limit
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∆→ 0 (which is equivalent to h∆ → 0).The first term of the fermionic contri-
bution in Eq. (4.32) reduces to

E±k
∆→0−→ |Ek ± µ| = sgn(Ek ± µ)(Ek ± µ) , (4.55)

∑
±

1± µ

Ek
E±k

tanh
E±k
2T

∆→0−→∑
±

Ek ± µ

Eksgn(Ek ± µ)(Ek ± µ)
tanh

sgn(Ek ± µ)(Ek ± µ)

2T
(4.56)

=
1
Ek

(
tanh

Ek − µ

2T
+ tanh

Ek + µ

2T

)
. (4.57)

The gapped fermion contribution therefore simply reduces to the ungapped
one, restoring the fermionic part of the QM-model flow equation. However,
the bosonic contribution does not reduce to the QM model, which is seen
when looking at the second and third terms of the first square bracket in Eq.
(4.32). Both of these terms include the diquark energies with and without
diquark background field and in the ∆ → 0 limit the diquark energy with

background field becomes Ẽ∆,k
∆→0−→ Ẽ∆,0,k in the zero diquark gap limit. Even

if we assumed that Uk,∆ = 0 the diquark contributions would not vanish,
because then Ẽ∆,0,k = k, i.e., diquarks behave as massless particles. This
discussion might seem trivial because it is clear that the diquark fluctuations
should contribute to the effective potential even in the ∆ → 0 limit. But
here we would highlight that this is in contrast to the MFA. In the previous
chapter we also performed the ∆ → 0 limit for the grand potential (3.24) but
there we exactly reproduced the grand potential of the NJL model without
diquarks. Later on, when we discuss the results, we will confirm, that in the
zero-diquark gap limit we will obtain slightly different results for the QMD
model compared to the QM model, although the difference is very small.

The goal of solving equation (4.54) is to obtain the effective potential in
the IR, i.e., Uk→0. We can then derive the grand potential

Ω(T, µ) = Uk→0 . (4.58)

From Eq. (4.58) important thermodynamic quantities can be derived using
the standard definitions from statistical physics. For the pressure, entropy
density, and quark number density these are

p(T, µ) = −Ω(T, µ) + Ω(0, 0) , (4.59)

s(T, µ) =
∂p(T, µ)

∂T
, (4.60)

n(T, µ) =
∂p(T, µ)

∂µ
. (4.61)

Of particluar interest will be the entropy density. In a recent study [1] it
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has been shown that for a specific choice of the UV potential negative entropy
densities are found for small temperatures in the region of the first-order
phase transition line. In this thesis, we would like to address this problem
by investigating how the negative entropy-density region is affected when
diquark degrees of freedom are included. Another possibility for the emer-
gence of the negative entropy-density region is that the assumption of spa-
tially homogeneous phases leads to a thermodynamic instability in the FRG
formalism. In this thesis we follow the approach of Ref. [1], where a sta-
bility analysis of the homogeneous phase in the FRG formalism has been
conducted, and apply this method to the QMD model. This method will be
discussed in the following section.

4.5 Flow of the Two-Point Function and Stability
Analysis

As already mentioned, the flow equations for the two-point functions can be
obtained by repeated functional differentiation, see also Eq. (E.8). In general,
the flow equation for an n-point function depends on the flow equations for
the (n + 1)- and (n + 2)-point functions, leading to an infinite tower of cou-
pled flow equations. Therefore, the right-hand side of the flow equation for
the two-point function then depends on the three- and four-point functions.
Here we follow Ref. [96] and simply neglect all n-point function for n > 4. In
addition, we neglect the momentum dependence of the three- and four-point
functions. In this work we will focus on the pion two-point function, which
is defined as

∂kΓ(2)
k,π(p) = Tr

[
∂kRk(q + p)Gk,B(q + p)Γ(3)

k,πGk,B(q)Γ
(3)
k,πGk,B(q + p)

]
− 1

2
Tr
[

Gk,B(q)Γ
(4)
k,ππGk,B(q)

]
, (4.62)

− 2 Tr
[
∂kRk(q + p)Gk,ψ(q + p)Γ(2,1)

k,ψ̄ψπ
Gk,ψ(q)Γ

(2,1)
k,ψ̄ψπ

Gk,ψ(q + p)
]

.

Gk,B = (Γ(2)
k,B + Rk,B)

−1 is the bosonic FRG propagator in field space and

Gk,F = (Γ(2)
k,F + Rk,F)

−1 the fermionic one. The vertex functions are simply

Γ(3)
k,π =

δ

δπ
Γ(2)

k,B, Γ(4)
k,π =

δ

δπ
Γ(3)

k,π and Γ(2,1)
k,ψ̄ψπ

=
δ

δπ
Γ(2)

k,F . q is the internal momen-
tum, which is integrated over in the trace, and p the external momentum.
More explicit expressions for the QM and QMD model are given in App. E.
Unlike the flow equation for Uk, Eq. (4.62) is an ordinary differential equa-
tion because we always evaluate it at the minimum position of the effective
potential. Since Eq. (4.62) explicitly depends on U(n)

k (n ≤ 4) we need to
first solve the partial differential equation in Eq. (4.32) and save it at Nk steps
during the flow. In this thesis we choose Nk = 100. We then interpolate
the effective potential between the saved flow-time steps and subsequently
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we can feed the interpolated effective potential and its derivatives into Eq.
(4.62).

The two-point function is a very important quantity because several ob-
servables such as spectral functions and transport coefficients can be derived
from it. In this thesis we will focus on the stability analysis of the homoge-
neous phase, for which the retarded two-point function at vanishing external
frequency will be investigated. The initial condition at the UV scale reads:

Γ(2)
Λ,ππ(0,~p) = −~p2 − 2 ∂φ2UΛ(φ

2, ∆2
a) . (4.63)

In general, a stability analysis means to examine the roots of the inverse
propagator, i.e., D−1(ω, |~p|) = 0, which signals the formation of a physical
excitation. A stability analysis of the homogeneous phase is then defined by
D−1(ω = 0, |~p|) = 0, since this is the necessary condition for a resonance
to be added into the ground state without cost of energy, i.e., condensation.
Taking the well-known pion p-wave condensation in nuclear matter [16, 17]
as an example, the necessary condition corresponds to:

D(−1)
π (ω = 0, |~p|) = −~p2 −m2

π −Π(ω = 0, |~p|) = 0 , (4.64)

where Π(ω = 0, |~p|) is the pion self-energy in medium. In vacuum the self-
energy is zero and therefore the inverse pion propagator is inevitably neg-
ative. However, in medium the self-energy might become negative and for
some critical density it could produce an instability of the pion propagator.
Precisely this was found in Ref. [16] in the case of pion p-wave interactions
in symmetric nuclear matter.

Here we would like to perform a similar analysis in the FRG framework.
To this end, we solve Eq. (4.62) for ω = 0 and subsequently, analogous to
the pion-wave condensation example, we will look for the zeros of Γ(2)

k,π(ω =

0, |~p|) = 0. We scan the phase diagram for these zero-crossings by solving
Eq. (4.62) not only for each (T, µ) pair, but also for several values of |~p|.
However, interpreting the instability as the formation of an inhomogeneous
condensate is not as straightforward as in the case of pion p-wave condensa-
tion. The obvious reason is the fact, that the effective average action can only
be considered as physical in the infrared because of the regulator dependence
during the flow. On the other hand, it could be that an instability occurs dur-
ing the flow and then disappears afterwards. In this case, the interpretation
would not be so obvious. At the scale where the instability occurs, one would
have to modify the flow equation to account for the inhomogeneity. But then
the further flow would change afterwards, so that no definite statements are
possible. We will come back to this issue when discussing the results of our
stability analysis.
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Chapter 5

Numerical Solution Details

In Refs. [97, 98, 99, 100, 101] the issue has been raised that standard tech-
niques to solve the flow equations for the effective potential might be un-
suitable to guarantee the convergence to the correct solution of the corre-
sponding partial differential equation. The method in question is the finite-
difference method, which transforms the original partial differential equation
into a system of N coupled ordinary differential equations by expressing the
field dependence on a discrete set of grid points in field space.

One issue with standard finite-difference methods is their inability to re-
solve discontinuous jumps in the potential, i.e., shock waves. If the model
does not produce shock waves then the lack of the shock-capturing ability
of the standard finite-difference method is not a serious problem, however it
was found in Ref. [97] using the discontiuous Galerkin method that the 2+ 1
dimensional O(N) model produces shock waves in the large-N limit.

In order to ensure that the numerical results presented in this thesis are
credible, we will use both the finite-difference method and the finite-volume
method, which is able to resolve shocks reliably. In this way we can ensure
that our results are independent of the numerical method.

In the finite-difference approach, one usually discretizes the effective po-
tential in the chiral invariant φ2

0 = σ2, which leads to an effective potential
that is defined on the positive domain as the invariant is manifestly positive.
The discrete derivatives at the boundaries are then obtained by using for-
ward finite differences at the origin and backward finite differences at σ2

max,
thus no grid points outside of the domain of the effective potential are used.

For the finite-volume method the situation is different, since for the con-
struction of the flux no finite differences are used. In order to reconstruct the
potential and the flux at the origin, we need to introduce so-called ghost cells
at the boundaries. These ghost cells are outside of the domain of the potential
and if we express the effective potential in terms of its chiral invariant, this
means that we need a ghost cell left to the boundary that is negative. This
leads to a problem, as there are no negative σ2 and therefore it is not clear
what value we should assign to the potential at this ghost cell. One way
to circumvent this problem in the finite-volume method is to discretize the

effective potential with respect to
√

φ2
0 = σ. The effective potential is then

defined on the domain σ ∈ [−∞, ∞]. We can still evaluate the effective poten-
tial in the positive domain and use the antisymmetry of u = Uσ(σ) ≡ ∂σU(σ)
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in order to reconstruct the ghost cell left to the origin: u(x1) = −u(x−1).1

Note that changing the field-dependence of the effective potential from
ρ = σ2 to σ also changes the definition of the derivatives, i.e.,

m2
π = 2Uρ(ρ) = u(σ)/σ , (5.1)

m2
σ = 2Uρ(ρ) + 4ρUρρ(ρ) = uσ(σ) , (5.2)

Uρ(ρ) = ∂ρU(ρ) , Uρρ(ρ) = ∂ρρU(ρ) , uσ(σ) = ∂σu(σ) . (5.3)

In the next section we will outline the finite-volume method applied to
the flow of equations in Eqs. (D.75) and (4.54) in more detail before dis-
cussing the numerical test. For some details on the finite-difference method
as usually applied in FRG studies, we refer to Refs. [67, 69].

5.1 Finite-Volume Method

In this thesis we apply the high-resolution central scheme for convection–dif-
fusion equations developed by Kurganov and Tadmor in Ref. [102] and fur-
ther improved in Refs. [103, 104]. In order to apply this scheme the one-
dimensional partial differential equation in question needs to be cast into the
following form:

∂tu + ∂x f (u) = ∂Qx(u, ux) . (5.4)

u = u(x, t) is the conserved quantity, f (u) is the advection flux, and Qx(u, ux)
is the diffusion flux.

Let us first apply the KT scheme to the flow equation of the effective po-
tential of the QM model given in Eq. (4.54). The corresponding flow equation
can be separated into three different contributions (in the following we sup-
press the index denoting the scale dependence of the effective potential):

∂kU = f (Uσ) + Q(Uσ, Uσσ, σ) + s(σ) , (5.5)

f (Uσ) =
k4

12π2
3

Eπ,k
coth

Eπ,k

2T
, (5.6)

Q(Uσ, Uσσ, σ) =
k4

12π2
1

Eσ,k
coth

Eσ,k

2T
, (5.7)

s(σ) =
k4

π2
1
Ek

(
tanh

Ek − µ

2T
+ tanh

Ek + µ

2T

)
. (5.8)

1It should be noted however, that we performed some numerical tests where we naively
constructed the left ghost cell with linear extrapolation. In these experiments we obtain the
same potential in the infrared and the error scaling is the same as well. Although we should
use the method described here, in practice it seems to make no difference.
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Next, we take the derivative of the flow equation with respect to σ and intro-
duce the new variable u = ∂σU(σ).

∂ku = ∂σ f (u) + ∂σQ(u, uσ, σ) + ∂σs(σ) . (5.9)

In this form the KT scheme can be applied. However, instead of solving the
PDE for the effective potential directly, we can only solve this PDE for the
derivative of the effective potential. The effective potential up to a constant
can then be restored by integrating the solution of Eq. (5.9), i.e., U =

∫
σ u.

A pedagogical python implementation of the KT Scheme applied to the
quark-meson model can be found in App. F.2.

Next, we will look at the flow equation for the effective potential of the
quark-meson-diquark model. In order to apply the two-dimensional KT
scheme, the flow equation needs to be recast into the following form:

∂tu + ∂x f (u) + ∂yg(u) = ∂xQx(u, ux, uy) + ∂yQy(u, ux, uy) . (5.10)

u = (u1(x, y, t), u2(x, y, t)) is a two-dimensional vector of conserved quanti-
ties, f (u) = ( f1(u), f2(u)) and g(u) = (g1(u), g2(u)) are the advection fluxes,
and

Qx(u, ux, uy) = (Q1,x(u, ux, uy), Q2,x(u, ux, uy)) ,
Qy(u, ux, uy) = (Q1,y(u, ux, uy), Q2,y(u, ux, uy)) ,

are the diffusion fluxes.
The flow equation (4.32) depends on two fluxes in the σ and ∆ directions, as
well as the diffusion flux and a source term:

∂kU = f (Uσ) + g(U∆) + Q(Uσ, Uσσ, U∆, U∆∆, Uσ∆, σ, ∆) + s(σ, ∆) , (5.11)

f (Uσ) =
k4

12π2
3

Ek,π
coth

Eπ,k

2T
, (5.12)

g(U∆) =
k4

12π2
2

Ẽ∆,0,k

(
coth

Ẽ∆,0,k − 2µ

2T
+ coth

Ẽ∆,0,k + 2µ

2T

)
(5.13)

Q(Uσ, Uσσ, U∆, U∆∆, Uσ∆, σ, ∆) =
k4

12π2

3

∑
i=1

α0 − α1z2
i + 3z4

i
(z2

i+1 − z2
i )(z

2
i+1 − z2

i )zi
coth

zi

2T
,

(5.14)

s(σ, ∆) =
k4

3π2

2 ∑
±

1± µ

Ek
(E±k )

2
tanh

E±k
2T

+
1
Ek

(
tanh

Ek − µ

2T
+ tanh

Ek + µ

2T

) .

(5.15)
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In order to bring it in the form of Eq. (5.10), we take the derivatives with
respect to σ and ∆ and thus obtain two partial differential equations:

∂k∂σU = ∂σ f (Uσ) + ∂σg(U∆) + ∂σQ(Uσ, Uσσ, U∆, U∆∆, Uσ∆, σ, ∆) + ∂σs(σ, ∆) ,
(5.16)

∂k∂∆U = ∂∆ f (Uσ) + ∂∆g(U∆) + ∂∆Q(Uσ, Uσσ, U∆, U∆∆, Uσ∆, σ, ∆) + ∂∆s(σ, ∆) .
(5.17)

Then, we define V = ∂σU and W = ∂∆U, yielding

∂kV = ∂σ f (V) + ∂σg(W) + ∂σQ(V, Vσ, W, W∆, V∆, σ, ∆) + ∂σs(σ, ∆) ,

(5.18)

∂kW = ∂∆ f (V) + ∂∆g(W) + ∂∆Q(V, Vσ, W, W∆, V∆, σ, ∆) + ∂∆s(σ, ∆) ,
(5.19)

∂k

(
V
W

)
= ∂σ

(
f + g

0

)
+ ∂∆

(
0

f + g

)
+ ∂σ

(
Q
0

)
+ ∂∆

(
0
Q

)
, (5.20)

+ ∂σ

(
s
0

)
+ ∂∆

(
0
s

)
(5.21)

If we were to take only the derivative with respect to either to σ or ∆ we
would not be able to recover the full information of the effective potential Uk.
For instance, if we have the function f (x, y) = x2 + y2 + xy + const., upon
taking the derivative in one direction, e.g., ∂x f (x, y) = 2x + y, the informa-
tion for summands that purely depend on y would be lost. On the other
hand, if we have the solutions for both ∂σU = V and ∂∆U = W we can re-
store the full information of the effective potential (except for an irrelevant
constant term) in the following way:

U1(σ, ∆) =
∫ σ

0
dσ′V(σ′, ∆) , U2(σ, ∆) =

∫ ∆

0
d∆′W(σ, ∆′) , (5.22)

→ U(σ, ∆) = U1(σ, ∆ = 0) + U2(σ, ∆) = U1(σ, ∆) + U2(σ = 0, ∆) . (5.23)

Because of the symmetry of second derivatives, i.e., ∂σ∂∆ f = ∂∆∂σ f , the de-
scribed procedure also yields a constraint that needs to be fulfilled when
solving the PDE in Eq. (5.21) numerically, namely ∂∆V = ∂σW ≡ Uσ∆. This
serves as a useful check when implementing the PDE numerically.

5.2 Numerical Tests

In the following we test the reliability of the standard finite-difference and
the KT finite-volume method in the low-temperature regime of the phase di-
agram by employing two different numerical tests. The first one is to deter-
mine the dependence of various IR observables on the number of grid points
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with the grid length held fixed. We call this test the grid point test. The
second one consists of varying the grid length while keeping the distance
between two grid points fixed. This test will be called grid-length test.

All numerical tests are performed for both the quark-meson model and
the quark-meson-diquark model. In the QM model we plot the effective
potential at the minimum, the chiral condensate, and the pion and sigma
masses. In the QMD model we additionally plot the diquark condensate
and the diquark mass. We determine the minimum of the effective poten-
tial by first interpolating the effective potential obtained in the IR with both
methods using quartic splines and then applying a numerical minimization
procedure. We focus on three different points in the phase diagram, one in
the vacuum, one close to the chiral first-order phase transition and one for
larger chemical potential beyond the chiral first-order phase transition.

In the following figures the black solid lines correspond to the test results
obtained by using the FDM, while the blue dashed lines are obtained by us-
ing the FVM. When we speak of relative errors, we mean OFDM/OFVM − 1,
where OFDM denotes the observable O obtained using the FDM and OFVM
the observable O obtained using the FVM.

5.2.1 Numerical Tests: Quark-Meson Model

For the gridpoint test we fix the extent of the grid to σ2
max = 1802 MeV2,

while for the grid-length test we fix the distance between two grid points to
dσ2 = 1402/60 MeV2. As a reminder, for the FDM we use discretization in
terms of ρ = σ2 with length σ2

max and for the FVM we use the discretization
in terms of σ with length σmax.

The UV potential of the QM model reads:

UΛ,QM =
1
2

m2
σσ2 +

1
4

λσσ4 . (5.24)

The parameter set for the QM-model numerical tests are listed in Tab. 5.1,
which are the same as in Ref. [60].

Λ mσ/Λ λσ c/Λ3 hφ kIR
1 GeV 0.969 0.001 0.00175 4.2 50 MeV

TABLE 5.1: Parameters for the QM-model numerical tests.

In Figs. 5.1-5.4 we plot the various observables of the QM model in de-
pendence on the number of grid points. The smallest number of grid points
is chosen to be # = 15. For a smaller number of grid points imaginary ener-
gies occur during the flow since the derivatives of the effective potentials are
becoming too imprecise. In Fig. 5.1 the vacuum results are shown and we
find by looking at the abscissa that the observables barely change. The rela-
tive errors are below 1%, except for the sigma mass, where it fluctuates with
about 5% relative variance for very few grid points. At about 50 grid points



58 Chapter 5. Numerical Solution Details

the FDM and the FVM start to agree very well and for the largest number of
grid points the difference between methods is significantly smaller than 1%.

The result in the vicinity of the chiral first-order phase transition is pre-
sented in Fig. 5.2. Here, the grid-point dependence becomes more signifi-
cant. For instance, for the chiral order parameter, cf. upper right panel, we
note that for less than 30 grid points the wrong chiral order parameter of the
chirally broken phase is found when using the FDM. The FVM on the other
hand seems to yield the correct position of the minimum even for a smaller
number of grid points. This might be attributed to the fact that for the FVM
we use the σ-grid instead of the ρ-grid. Accordingly, in the lower panel, we
find the correct pion and sigma masses also at about 30 grid points for the
FDM as the masses depend on the position of the minimum. For an increas-
ing number of grid points both the FDM and the FVM again agree very well.
It is also instructive to have a look at Fig. 5.3 where the full effective poten-
tials in dependence on the number of grid points are presented.

In Fig. 5.4 we present the case for µ = 400 MeV. Again we find a good
agreement between the FDM and the FVM, however the discrepancy be-
tween both methods becomes larger. For instance the relative error for the ef-
fective potential at the minimum is about 3%. https://www.overleaf.com/project/5eac252ad9c9410001c330da
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FIGURE 5.1: Black: FDM, blue-dashed: FVM. Various IR observables are plotted
with respect to the number of grid points. Here T = 5 MeV and µ = 0 MeV. The
relative errors for each grid configuration are less than 1%.

Next, we will vary the grid length while keeping the grid spacing con-
stant. This allows us to investigate the influence of the boundaries on the
flow of the effective potential. In all plots of Figs. 5.5-5.7 we see that the
dependence on the extent of the grid decreases rapidly for increasing length.
Interestingly, for very small lengths the FVM on the linear σ grid depends
very strongly on the grid size while for the FDM even at very small grid
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FIGURE 5.2: Black: FDM, blue-dashed: FVM. Plot of the grid-point dependence
close to the first-order phase transition line at T = 5 MeV and µ = 330 MeV. Here
the FDM yields the wrong minimum for the number of gridpoints # < 30.
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FIGURE 5.3: The FDM and FVM grid-point dependence of the full potential close to
the first-order phase transition line at T = 5 MeV and µ = 330 MeV. In the case of the
FDM, for a small number of grid points the solution of the flow equation converges
to a wrong solution, where the location of the minimum is still in the chirally broken
phase. On the other hand, for the FVM even for very few grid points the correct
minimum is obtained.
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FIGURE 5.4: Black: FDM, blue-dashed: FVM. Plot of the grid-point dependence at
T = 5 MeV and µ = 400 MeV.

lengths reasonable results are obtained. The grid-size dependence is most
critical in Fig. 5.6, where only for grid sizes larger than ∼ 160 MeV both the
FVM and the FDM coincide.
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FIGURE 5.5: Black: FDM, blue-dashed: FVM. Various IR observables are plotted
with varying grid extent and fixed dσ2 = 1402/60 MeV2. Here T = 5 MeV and
µ = 0 MeV. The relative errors for each grid configuration are less than 1%.
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FIGURE 5.6: Black: FDM, blue-dashed: FVM. Plot of the grid-length dependence
close to the first-order phase transition line at T = 5 MeV and µ = 330 MeV. Here
the results become more uncertain, however we can observe convergent behavior.
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FIGURE 5.7: Black: FDM, blue-dashed: FVM. Plot of the grid-length dependence at
T = 5 MeV and µ = 400 MeV. Both methods approximately converge to the same
values for increasing grid extent.
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5.2.2 Numerical Tests: Quark-Meson-Diquark Model

In the following, we will perform the same numerical tests as in the previous
subsection, but this time to compare the 2D finite-difference method and the
2D finite-volume method. The parameters of the UV potential are listed in
Tab. 5.2 with the UV potential given as

UΛ,QMD =
1
2

m2
σσ2 +

1
2

m2
∆∆2 +

1
4

λσσ4 +
1
4

λ∆∆4 +
1
4

λσ∆σ2∆2 . (5.25)

Λ mσ/Λ λσ m∆/Λ λ∆ λσ∆ c/Λ3 hφ h∆ kIR
1 GeV 0.969 0.001 0.9 8 -0.6 0.00175 4.2 3 80 MeV

TABLE 5.2: Employed parameters for the QMD model.

In Figs. 5.8-5.10 we plot various IR observables such as the position of
the minimum, the effective potential at the minimum (neglecting a constant
term), as well as the masses of the mesonic degrees of freedom, in depen-
dence on the number of grid points in each direction. Note, that the di-
quark mass actually depends on the chemical potential but here we plot
the diquark mass with background field neglecting the contribution from
the chemical potential such that we are left with only one mass definition,
m∆ =

√
2U∆ + 4∆2U∆∆. Also, note that the number of grid points is the

same in both directions. For example, for 80 grid points in each dimension
we have a total of 80× 80 = 6400 grid points for the full 2D grid. Similar as
for the test cases of the QM model we find that the FDM and FVM tend to
approach a common limit, however the discrepancy is somewhat larger.

In Figs. 5.11-5.13 we present the results for varying grid lengths and con-
stant grid spacing. Here we also find small relative errors between both the
FDM and FVM for the largest grid extent with the notable exception of the ∆
mass in Fig. 5.12, where the relative error is approximately 2.5%.

The alert reader will have noticed that we used larger temperatures for
the QMD-model test cases. This is because we were not able to solve the flow
equation at smaller temperatures using the FV method. We observed that in
the low-temperature region the characteristic velocities at the grid bound-
aries become extremely large and thus the time steps extremely small, even
smaller than floating-point precision and thus the numeric flow freezes effec-
tively. This issue might be related to the specific implementation of our code,
which can be found in App. F.3. For the finite-difference method this prob-
lem does not arise for T > 5 MeV and µ < 450 MeV. Because with the FDM
we are able to access lower temperatures at large µ the results presented in
the next chapter are obtained by using the FDM, however, we have checked
all results with the FVM in the regions of the phase diagram where it is possi-
ble. We find no qualitative differences for both methods and the quantitative
difference is of the same order as presented in this chapter.
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FIGURE 5.8: Black: 2D FDM, blue-dashed: 2D FVM. Various IR observables are
plotted with respect to the number of grid points for each dimension. The grid size
is fixed to σ2

max = ∆2
max = 1802 MeV2. Here T = 5 MeV and µ = 0 MeV. The relative

errors for each grid configuration are less than 1%.
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FIGURE 5.9: Black: 2D FDM, blue-dashed: 2D FVM. Plot of the grid-point depen-
dence close to the first-order phase transition line at T = 25 MeV and µ = 310 MeV.
Here the results become more uncertain for the σ and ∆ masses, since these depend
on the second derivatives in the σ and ∆ directions, which are extremely sensitive
with respect to the position of the minimum.
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FIGURE 5.10: Black: 2D FDM, blue-dashed: 2D FVM. Plot of the grid-point depen-
dence at T = 35 MeV and µ = 400 MeV. Further away from the first-order phase
transition the observables seem to become more reliable again, i.e. the dependence
on the grid points becomes small.
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FIGURE 5.11: Black: FDM, blue-dashed: FVM. Various IR observables are plotted in
dependence on the grid length. The grid spacing is fixed to d∆2 = dσ2 = 1802/60
MeV2. Here T = 5 MeV and µ = 0 MeV. The relative errors for each grid configura-
tion are less than 1%.
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FIGURE 5.12: Black: 2D FDM, blue-dashed: 2D FVM. Plot of the grid-length de-
pendence close to the first-order phase transition line at T = 25 MeV and µ = 310
MeV.
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FIGURE 5.13: Black: 2D FDM, blue-dashed: 2D FVM. Plot of the grid-length depen-
dence at T = 35 MeV and µ = 400 MeV.
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Chapter 6

Results

In this chapter we present the main results of the FRG part of this thesis. In
Section 4.4 we have discussed the flow equation of the quark-meson-diquark
model, which we have derived in App. D. Now we will solve this partial
differential equation numerically in order to obtain the effective potential in
the IR. Subsequently we discuss the results and compare it with the known
phase diagram of the quark-meson model in the LPA truncation.

6.1 The Phase Diagram of the Quark-Meson-
Diquark Model

In the following, the parameters of the UV potential are the same as for the
numerical test cases of the last section and listed in Tab. 5.2. These are also
the same parameters as in Ref. [1] except for m∆, λ∆, and λσ∆, which are new
in our model. In this way, we can compare our results with those of Ref. [1].
The diquark coupling h∆ is not yet fixed as we will vary it in the following.

In Fig. 6.1 we plot the chiral order parameter in the (T, µ) plane for four
different diquark couplings, h∆ = 0, h∆ = 2, h∆ = 3 and h∆ = 4. In the
upper left panel of Fig. 6.1, corresponding to h∆ = 0, the phase diagram is
almost identical to the QM model phase diagram of Ref. [1]. Even though
in the QMD model diquark fluctuations contribute during the flow, for small
diquark couplings this does not alter the resulting phase diagram in a sig-
nificant way when compared to the QM model. We also find the region of
negative entropy density as first discovered in Ref. [1]. As expected, no di-
quark condensate forms with zero diquark coupling.

In the upper right panel we increase the diquark coupling to h∆ = 2,
which yields a similar phase diagram but now the negative entropy-density
region does not extend to arbitrarily large chemical potentials.

In the lower left panel of Fig. 6.1, corresponding to h∆ = 3, we notice
that the negative entropy density and thus also the backbending almost com-
pletely vanishes. Further increasing the diquark coupling moves the phase
transition to smaller chemical potentials and completely cures the negative
entropy density as seen in the lower right panel of Fig. 6.1. At this point
we would like to highlight that the negative entropy densities can also be
removed by adding additional meson channels to the model. For instance,
in a recent study [105] it was found that the inclusion of vector mesons also
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removes the negative entropy density, provided the vector interaction Gω is
large enough.

In Fig. 6.2 the diquark condensate in the (T, µ) plane for h∆ = 2, h∆ = 3
and h∆ = 4 is shown. Interestingly, in the h∆ = 2 case the negative entropy-
density region ends exactly where the diquark condensate sets in. This seems
to support the suspicion of Ref. [1], where the authors named missing di-
quark degrees of freedom as a possible reason for the occurrence of the neg-
ative entropy density region. However, for h∆ = 3 a small negative entropy-
density region remains, which overlaps with the 2SC phase.

It is also noteworthy to mention that in the vacuum and for h∆ = 0 we
find the pion decay constant to be fπ = 92.5 MeV agreeing with Ref. [1]. In
the h∆ = 3, case however, we find fπ = 88.9 MeV. This shows that even in
vacuum the diquark loops contributing to the flow equation affect the result-
ing effective potential in the IR, albeit only slightly.

Chiral Condensate σ [MeV]

FIGURE 6.1: The chiral condensate in the (T, µ) plane for the diquark couplings
h∆ = 0, h∆ = 2, h∆ = 3 and h∆ = 4. Below the black-dashed line the entropy density
is negative. For h∆ = 4 the negative entropy density region completely vanishes.
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Diquark Condensate ∆ [MeV]

FIGURE 6.2: The diquark condensate in the (T, µ) plane for the diquark couplings
h∆ = 2, h∆ = 3 and h∆ = 4. Below the black-dashed line the entropy density is
negative.

In Figs. 6.3a-6.3c we present the scale dependence of the pion decay con-
stant, the diquark condensate, and the curvature meson masses (definitions
are given in Eqs. (D.21)-(D.24)) for three interesting points of the phase dia-
gram for the diquark coupling h∆ = 3. One in the vacuum, one close to the
first-order chiral phase transition and one in the 2SC phase. The plot for the
vacuum result is the most recognizable one as it is very similar to the flows
typically obtained in vacuum quark-meson model studies [70, 106]. The di-
quark mass drops slightly as we integrate out the degrees of freedom but
it remains comparatively large and therefore its contribution to the effective
potential is small.

Particularly interesting is Fig. 6.3b where the complex interplay between
the chiral and diquark degrees of freedom unfolds. First the chiral conden-
sate continuously increases as the fluctuations are successively integrated out
and at around k = 450 MeV the diquark condensate sets in as well. However
then there is jump at around k = 200 MeV affecting both the chiral and di-
quark condensate.
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In Fig. 6.3c we notice the almost complete restoration of chiral symmetry
with a negligible chiral condensate and degenerate chiral partners.

In Fig. 6.3d we display the full µ-dependence at T = 5 MeV. Here one
can nicely see that the diquark condensate becomes non-vanishing exactly at
the point where the diquark mass becomes approximately zero, exhibiting a
typical behavior for a radial mode at the phase transition.
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FIGURE 6.3: Scale-dependent curvature masses and the pion decay constant as well
as the diquark gap for h∆ = 3. In the lower right panel the dependence on the
chemical potential is displayed where the quantities are evaluated in the IR.
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FIGURE 6.4: µ-dependence of fπ at T = 5 MeV for both h∆ = 0 and h∆ = 3. The
latter violates the Silver-Blaze property sligthly.

Another interesting aspect is the violation of the Silver-Blaze property for
h∆ = 3. The Silver-Blaze property [107, 108] states that the partition function
at zero temperature is independent of the chemical potential for µ < µcrit,
where µcrit denotes some critical value for the chemical potential. While the
violation of this property is barely visible in Fig. 6.3d, in Fig. 6.4 we compare
the µ-dependence of the pion decay constant for both h∆ = 0 and h∆ = 3 in
more detail. For finite diquark couplings the chiral condensate shrinks very
slightly but continuously even before the phase transition. The violation of
the Silver-Blaze property can be seen even more clearly by plotting the quark
number density. For this purpose, we provide an additional plot in Fig. 6.5.
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nq/n0

FIGURE 6.5: The quark number density compared to the nuclear saturation density,
nq/n0, is plotted in the (T, µ) plane for the diquark couplings h∆ = 0, h∆ = 2, and
h∆ = 3. For non-zero diquark coupling the quark number density starts increasing
from µ = 0 violating the Silver-Blaze property.

The observation of the violation of the Silver-Blaze property is in agree-
ment with Refs. [65, 69] where the author also found a violation of the Silver-
Blaze property for the quark-meson-diquark model of two-and three-color
QCD and analyzed it in the FRG context in much detail. The author came to
the conclusion that if the Silver-Blaze property holds true at the initial scale,
it will be preserved by the flow equation and therefore should also be ful-
filled in the IR. But this is only true, if the full momentum dependence of all
quantities is taken into account, which is not the case for the local potential
approximation. The other way around, the slight violation of the Silver-Blaze
property might imply that there is only a mild momentum dependence that
is not included in our truncation, affecting relevant observables only slightly.
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FIGURE 6.6: Flow of the two-dimensional effective potential of the quark-meson-
diquark model in the vacuum (T, µ) = (5 MeV, 0). The dots denote the position of
the minima. The evolution of the potential in the ∆ direction is minimal and barely
affects the location of the minima, which are almost identical to the QM model ones.

FIGURE 6.7: Flow of the two-dimensional effective potential of the quark-meson-
diquark model close to the phase transition (T, µ) = (5 MeV, 310 MeV).

FIGURE 6.8: Flow of the two-dimensional effective potential of the quark-meson-
diquark model for large chemical potential, (T, µ) = (5 MeV, 400 MeV).
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In Figs. 6.6-6.8 we provide additional 3D plots for the flow of the full 2D
potential for h∆ = 3 to get an idea how the full 2D potential evolves during
the flow.

6.2 Stability Analysis

Before presenting the results for the stability analysis of the quark-meson-
diquark model, we would like to reproduce the stability analysis of Ref. [1].
But here we will use the finite-volume method to cross-check the results of
Ref. [1], where a finite-difference method was used. Our result using the
finite-volume method is presented in Fig. 6.9. Two methods to determine the
instability of the two-point function are employed. In the first approach, we
evaluate the static pion two-point function at the IR value of the chiral con-
densate, i.e., σ = σ0,IR ≡ fπ. We then start integrating from kΛ to k0, where k0
denotes the scale where the two-point function develops a zero crossing for
the first time.

The second approach is to evaluate the minimum at an intermediate scale
k0 > kIR, i.e., σ = σ0,k0 . Subsequently, one then evaluates the two-point func-
tion at this minimum and solves the flow equation for the two-point func-
tion until the intermediate scale k0 is reached. This is repeated for various
k0 towards the IR, whereas k0 = kIR corresponds to the first method. This
approach is similar to a Taylor expansion with a scale-dependent expansion
point, which is often used in FRG studies [67, 109].

It would be preferable to render the chiral order parameter fully scale-
dependent, however this is not part of the truncation, this is why the above
two methods were introduced.

Our results are in excellent agreement with the results of Ref. [1]. This
gives us confidence that the finite-difference method used in previous studies
did not lead to systematic numerical errors.



6.2. Stability Analysis 77

FIGURE 6.9: Region in the (T, µ)-plane where the pion two-point function develops
a zero crossing. In the left panel the numbers denote the flow scale k0 where the
two-point function evaluated at σ0,IR develops a zero crossing for the first time. In
the right panel the two-point function is evaluated at the scale-dependent minima
σ0,k0 instead.

In Figs. 6.10 and 6.11 we present the region of instability for the quark-
meson-diquark model with diquark coupling h∆ = 2 and h∆ = 3, respec-
tively 1. We immediately notice that for both cases the region of instability
compared to the QM model in Fig. 6.9 is significantly smaller.

1The case h∆ = 0 is almost identical to Fig. 6.9.
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FIGURE 6.10: Region of instability for h∆ = 2 evaluated at σ0,IR. The black dash-
dotted line denotes the onset of the diquark condensate. If we consider the scale-
dependent minima σ0,k0 we find no instabilities.
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FIGURE 6.11: Region of instability for h∆ = 3 evaluated at σ0,IR. The black dash-
dotted line denotes the onset of the diquark condensate. If we consider the scale-
dependent minima σ0,k0 we find no instabilities.

FIGURE 6.12: The phase diagram for h∆ = 3. The black line denotes the region of
instability for Γ(2)

k,π evaluated at σIR. If we consider the scale-dependent minima σk0

we find no instabilities.

In the upper half of each of the instability regions, we notice that the
scale k0 at which a zero-crossing develops first increases until it touches the
diquark-onset boundary line. From there towards larger µ and smaller T the
scale k0 then decreases again. Therefore the effect of the diquark condensate
is very significant as it suppresses the k0, i.e., the zero-crossing develops later
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in the evolution of the flow equation compared to the QM model. Then, the
instability region vanishes as the chemical potential and thus also the diquark
condensate further increases. This behavior seems not to be a coincidence
and therefore it might be natural to interpret that there exists a possible com-
petition between the 2SC phase and a hypothetical inhomogeneous phase.
We have already discussed the problem on how to interpret the instabilities
occuring during the flow in Chapter 4.5. Here we would like to reiterate that
from the discovery of an instability region it does not immediately follow
that in the same region an inhomogeneous phase exists. However, this can
be seen as a hint, which is supported by two facts:

1. The region of instability is found in the vicinity of the chiral phase tran-
sition, where in QM and NJL model mean-field studies inhomogeneous
phases are typically found.

2. There is a competition between the instability region and the 2SC phase,
resembling the competition of the chiral inhomogeneous and 2SC phase
in NJL mean-field studies [21, 25, 75].

On the other hand, we find no instabilities using the second method and
thus we cannot come to an unambiguous conclusion. An unequivocal result
could be only obtained in a setting where the order parameters are made
inhomogeneous, i.e., σ = σ(~x), for instance through a chiral density-wave
Ansatz, because then the evolution of the effective potential changes at k0,
where the system wants to form an inhomogeneous state, most likely leading
to a different IR potential and IR two-point function.

6.3 Renormalization-Group Consistent UV Poten-
tials

All the previously discussed results in this chapter have been obtained by
using the UV-initial potential Ansatz in Eq. (5.25). The problem with our
Ansatz for the UV-initial potential is that it has no explicit dependence on
temperature and chemical potential, it is the same for the entire phase di-
agram. However, we expect a dependence as our cutoff scale cannot be
considered large enough to be independent of these external parameters. A
novel way to introduce a temperature- and chemical potential-dependent UV
potential has been proposed in Ref. [110]. In this work the authors used the
concept of RG consistency in order to retrospectively introduce a dependence
on external parameters to the UV potential.

RG consistency states that the full quantum effective action does not de-
pend on the cutoff parameter, i.e.,

Λ
dΓ
dΛ

= 0 . (6.1)
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This is evidently in contrast to our Ansatz in Eq. (5.25), because there the UV
potential has no dependence on Λ at all and therefore changing the cutoff
will necessarily lead to a different flow yielding a different effective action in
the IR.
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FIGURE 6.13

However, one can render the effective action RG-
consistent in a trivial way, namely by introducing a
new Λ-dependent UV potential. This works as follows:
We define our initial Ansatz in Eq. (5.25) at an inter-
mediate cutoff scale by relabeling Λ → Λ′. That is,
UΛ,QMD → UΛ′,QMD. Λ′ is now a label for an inter-
mediate cutoff, whereas Λ > Λ′ labels the proper cut-
off for which RG consistency is fulfilled. Then we in-
tegrate the flow equation backwards in order to obtain
ΓΛ. In this way, the RG-consistency requirement is triv-
ially fulfilled without the need to modify our Ansatz in
Eq. (5.25).

The dependence on external parameters such as
temperature and chemical potential can then be intro-
duced in the following way: We integrate the UΛ′,QMD
up to UΛ,QMD using Eq. (4.32) for T = µ = 0. Then from
UΛ,QMD we solve the flow equation in the usual way for
a specific (T, µ) pair in the phase diagram. This yields a
dependence of UΛ′,QMD on the temperature and chem-
ical potential. In order to fulfill the requirement of RG
consistency, one needs to perform this approach for in-
creasing Λ until the full quantum effective action fulfills
Eq. (6.1).

Unfortunately, there is a caveat when applying this
approach to the full flow equation with bosonic fluc-
tuations. As we have discussed earlier, the flow equa-
tion for the effective potential is actually a convection-
diffusion equation and therefore solving the flow equa-
tion backwards in flow time is ill-posed. Fortunately,
there is a way to circumvent this problem by setting
the bosonic contribution to zero when integrating from
Λ′ to Λ. This amounts to a mean-field approximation
for which no conceptional issues arise when integrating
backwards in flow time.

The strategy is conceptionally visualized in Fig. 6.13. We start with UΛ′ =
ΓΛ′/V using Eq. (5.25) as our initial effective potential. Then we remove the
bosonic contributions in Eq. (4.32) yielding

∂kUΛ′,MFA = − k4

3π2

2 ∑
±

1± µ

Ek
E±k

tanh
E±k
2T

+
1
Ek

(
tanh

Ek − µ

2T
+ tanh

Ek + µ

2T

)
≡ S∆(φ, ∆) + Sφ(φ) . (6.2)
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Subsequently, we use Eq. (6.2) in order to obtain UΛ,QMD:

UΛ,QMD = UΛ′,QMD +
∫ Λ

k=Λ′
dk

[
S∆(φ, ∆)

∣∣∣
T=µ=0

+ Sφ(φ)
∣∣∣
T=µ=0

+
µ2

2

(
∂2

µS∆(φ, ∆)
∣∣∣
T=µ=0

)]
. (6.3)

Note, that the term ∼ µ2 is needed for the correct renormalization of the
chemical potential of the diquarks. If we were to omit this term then the
Silver-Blaze property would be violated [108]. The T- and µ-dependent UV
potential is then obtained by integrating back to Λ′:

UΛ′,QMD(T, µ) = UΛ,QMD +
∫ Λ′

k=Λ
dk
[
S∆(φ, ∆) + Sφ(φ)

]
. (6.4)

Now with the T- and µ-dependent UV potential in hand we use the full flow
equation (4.32) to integrate down to the IR.
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FIGURE 6.14: Blue: Λ = Λ′. Red: Λ = 5Λ′. The dashed line in the χSB phase is
the contour line at σ/σ0 = 0.75. The solid line denotes the first-order chiral phase
transition line. The larger dashed lines denote the diquark onset for the 2SC phase.

Using the RG-consistency procedure we compare the phase boundaries
in Fig. 6.14 for h∆ = 0 and h∆ = 3. Qualitatively we find similar corrections
to the phase boundaries as in Ref. [110]. There the authors have found that
the RG-consistent MFA approach shrinks the chiral symmetry-broken phase
while the 2SC phase is enlarged. Furthermore, the first-order phase transition
sets in for slightly smaller chemical potential.

In our case the corrections are smaller compared to Ref. [110]. This is
most likely due to the fact that we used the modified RG-consistent approach
explained before. The UV potential only contains corrections at the mean-
field level but the full flow also contains corrections from the bosonic loops
and thus rendering the purely fermionic corrections relatively smaller.

We find that the influence of the RG-consistent corrections on all other
results presented in this chapter are of the same order of magnitude.
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Chapter 7

Conclusions and Outlook

This thesis can be seen as a small part of a larger research project, namely
the Collaborative Research Center TR-211, whose goal is to better understand
strongly interacting matter under extreme temperature and density by using
state-of-the-art lattice methods as well as non-perturbative methods such as
the functional renormalization group. Of particular interest in this research
project is the study of the chiral phase transition, since its precise location
and properties are of great importance for our understanding of the early
Universe and compact stars.

This thesis contributed to this research program by studying the compe-
tition between inhomogeneous chiral condensation with homogeneous two-
flavor color superconductivity.

In the first part of this thesis we have looked for this competition in the
phase diagram of the chirally symmetric two-flavor NJL model using the
mean-field approximation. We successfully derived the grand potential for
a generic inhomogeneous condensate, expressed as an energy integral over
a generic density of states. This enabled us to employ already known den-
sities of states for inhomogeneous chiral condensates and, if in the future
more densities of states for inhomogeneous modulations of the chiral order
parameter in the absence of two-flavor color superconductivity are found,
it will be straightforward to include them in our framework, namely by in-
serting the density of states into Eq. (3.23). Here we have employed the
CDW and the RKC densities of states. We have found that for some diquark
couplings the inhomogeneous chiral and the homogeneous 2SC phases may
coexist in a small region close to the chiral phase transition. For the CDW
Ansatz, such a coexistence phase was already found in Refs. [21, 25] and
here we confirm a coexistence phase also for the RKC Ansatz. Another result
of this mean-field study is that the specific shape of the inhomogeneous chi-
ral condensate impacts the size of the inhomogeneous region as well as the
size of the coexistence region. It is known that the RKC Ansatz is energeti-
cally preferred over the CDW Ansatz [78] and therefore the inhomogeneous
region is slightly larger for the CDW Ansatz.

This mean-field study can be extended in several ways. For instance,
the model can be easily extended to include finite current quark masses, for
which the RKC density of states is known as well [77, 111]. Furthermore,
it should be possible to add further degrees of freedom, such as vector in-
teractions [112] and Polyakov-loop dynamics [113]. Lastly, it would be also
interesting to consider isospin-asymmetric matter [26, 114] especially in the
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context of neutron stars, where it is known that the electric neutrality and
beta equilibrium lead to an isospin asymmetry.

In the second part of this thesis we studied the phase diagram of the
QMD model including bosonic fluctuations. To this end, we employed the
functional renormalization group in the local potential approximation and
derived the flow equation of the effective potential and the static pion two-
point function for the QMD model. In the limit of zero diquark coupling the
resulting phase diagram agrees very well with the one found in Ref. [1]. We
can both confirm the existence of the negative entropy-density region and
the emergence of an instability region. We have found that increasing the
diquark coupling almost completely removes the negative-entropy region.
Furthermore, the region of instability competes with the 2SC phase in a sim-
ilar fashion as the competition we found in our mean-field study in the first
part of this thesis. We showed that increasing the diquark coupling leads to
a smaller instability region. We also observed that there is an overlap be-
tween the instability region and the 2SC phase hinting at a possible coexis-
tence phase. However, we would like to underline that the stability analysis
comes with a caveat, since the instabilities found only arise during the flow
and vanish in the IR. The instability region thus depends on the regulator
and therefore no conclusive statement about the existence of inhomogeneous
phases in the QMD model can be made. The discovery of the instability re-
gion, however, serves as an important motivation to continue research in this
direction.

The most straightforward extension of this thesis would be to study the
robustness of the results found in this thesis by using different regulators,
such as the exponential regulator. Such a study would give us a better sense
of whether the instabilities are merely a regulator artifact or a feature of the
QM(D) model at finite temperature and density. More elaborate continua-
tions of this work could be to improve the truncation for the bosonic two-
point functions by taking into account the momentum dependence of the
three- and four-point functions using the BMW approximation [115, 116] and
by including a running wave-function renormalization Zk. The latter has
been done already in Ref. [69] but the investigation of instabilities were not
part of that work.

In this thesis we have only looked at the static pion two-point function,
however, it would also be interesting to conduct an analogous investigation
for the diquark two-point function. If an instability in the ’diquark direction’
could be found, then this would be a hint for an even richer phase diagram
where the diquark condensate could be also spatially varying.

Finally, the most important extension would be to use an explicit inho-
mogeneous Ansatz for the chiral order parameter in the FRG framework. If
one were able to find an inhomogeneous phase using this approach, it would
be a more definitive result than our stability analysis. On the other hand,
in case we do not find an inhomogeneous phase with this approach, this
would not automatically exclude the existence of this phase, since it could be
that another inhomogeneous Ansatz, which is energetically more favorable,
is preferred over the homogeneous phase. However, the combination of both
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approaches, the stability analysis presented in this thesis and the explicit in-
homogeneous Ansatz, most likely would yield an unambiguous result lead-
ing to a better understanding of the QCD phase diagram.
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Appendix A

Notation and Conventions

A.1 Units

In this thesis natural units are used:

kB = c = h̄ = 1. (A.1)

A.2 Minkowski and Euclidean Spacetime

The invariant space-time distance with metric signature (+1, -1, -1, -1)

ds2 = xµxµ = dt2 − dx2 − dy2 − dz2 (A.2)

can be rewritten using the Euclidean metric

ds2 = −dτ2 − dx2 − dy2 − dz2 = −xE
µxE

µ (A.3)

by performing a Wick rotation t = −iτ. The d’Alembert operator then be-
comes

∂µ∂µ = −∂τ∂τ − ∂i∂i = −∂E
µ∂E

µ . (A.4)

Now let us see how a generic generating functional is affected by the Wick
rotation:

Z =
∫
DφDψ̄Dψ exp

[
i
∫

d4x
(
ψ̄i/∂ψ + ∂µφ∂µφ−V(φ, ψ)

)]
=
∫
DφDψ̄Dψ exp

[
i
∫

d(−iτ)d3~x
(
−ψ̄∂τγ0ψ + ψ̄i~∂ · ~γψ− ∂E

µφ∂E
µφ−V(φ, ψ)

)]
=
∫
DφDψ̄Dψ exp

[
−
∫

d4xE
(

ψ̄∂E
µγE

µψ + ∂E
µφ∂E

µφ + V(φ, ψ)
)]

. (A.5)

In the last step we converted the gamma matrices from Minkowski to Eu-
clidean coordinates:

γE
0 = γ0 , γE

i = −iγi . (A.6)
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Throughout the thesis we will drop the label for the Euclidean coordinates,
i.e., xE

µ → xµ. Euclidean four-vectors are always denoted with lower greek
indices.

A.3 Momentum Integral at Finite Temperature

The Euclidean four-vector is given by p ≡ pµ = (p0,~p)T. The zero com-
ponent of the momentum four-vector, p0, becomes the Matsubara frequency
at finite temperature. The bosonic and fermionic Matsubara frequencies are
defined as

p0 −→ ωn =

{
2nπT bosonic
(2n + 1)πT fermionic

. (A.7)

We also employ the following shorthand notation for integrals at finite tem-
perature:

∫
x
≡
∫ 1/T

0
dτ
∫

d3x ,
∫

p
≡ T ∑

n∈Z

∫ d3p
(2π)3 . (A.8)

Furthermore, the Dirac delta distribution at finite temperature is defined as

δ(q− p) ≡ (2π)3δ(3)(~q− ~p)δn,m . (A.9)

A.4 Dirac Algebra

First, we define the Pauli matrices:

σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
. (A.10)

The Pauli matrices are Hermitian and from their product

σaσb = δab1+ i εabcσc , (A.11)

the commutation and anticommutation relations

[σa, σb] = 2i εabcσc , {σa, σb} = 2 δab1 , (A.12)

follow. The Euclidean gamma matrices in the chiral representation are de-
fined as

γk =

(
0 −iσk

iσk 0

)
, γ0 =

(
0 1

1 0

)
, γ5 = γ1γ2γ3γ0 =

(
1 0
0 −1

)
,

(A.13)
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where k = 1, 2, 3. The Gamma matrices have the following properties:

{γµγν} = γµγν + γνγµ = 2δµν14×4 , {γµγ5} = 0 , (γµ)
† = γµ . (A.14)
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Appendix B

Attractive Diquark Channel

Quarks come in two possible spins, N f flavors (here: N f = 2) and Nc = 3
colors, thus the wave function of a quark can be decomposed into the wave
functions of the subspaces of these quantum numbers:

|ψ〉 = |c〉 | f 〉 |s〉 |j〉 , (B.1)

where |c〉 is the color, | f 〉 the flavor, |s〉 the spin, and |j〉 the orbital part of the
total wave function. A diquark is a bound state of two quarks, therefore we
have to combine the wave functions for two quarks:

|∆〉 = |ψ1ψ2〉 = |c1c2〉 | f1 f2〉 |j1 j2; s1s2〉 . (B.2)

If we want to construct a diquark with total angular momentum J = 0,
the combined spin and orbital wave function must be antisymmetric, i.e.,
|j1 j2; s1s2〉 = 1/

√
2 |↑↓ − ↓↑〉. Furthermore, we demand that the color part of

the wave function must be antisymmetric, because only the anti-triplet con-
figuration leads to an attractive potential, which is a necessary condition for
Cooper pairing. Finally, the wave function must then also be antisymmetric
with respect to the flavor indices in order to respect Fermi-Dirac statistics, i.e.,

ψ(x1, x2)
!
= −ψ(x2, x1). These considerations yield the total wave functions

for the three possible scalar spin-zero diquarks:

|∆B〉 =
1
√

2
3 |RG− GR〉 |ud− du〉 |↑↓ − ↓↑〉 , (B.3)

|∆G〉 =
1
√

2
3 |RB− BR〉 |ud− du〉 |↑↓ − ↓↑〉 , (B.4)

|∆R〉 =
1
√

2
3 |GB− BG〉 |ud− du〉 |↑↓ − ↓↑〉 . (B.5)

(B.6)

In the next step we would like to show that the color anti-triplet config-
uration is indeed attractive at tree level. The flavor and angular momentum
wave function part are irrelevant for the determination of the interaction,
therefore we only consider the different color wave functions of the color
anti-triplet configuration
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ui(p1)

uj(p3)

dk(p2)

dl(p4)

µ, a ν, b

FIGURE B.1: Quark-quark tree-level scattering diagram. i, j, k, l are the color com-
ponents of the corresponding quarks, while a, b are the color indices of the gluon
propagator.

|RG− GR〉√
2

,
|RB− BR〉√

2
,
|GB− BG〉√

2
. (B.7)

In the following we use the Feynman rules in order to obtain the tree-level
scattering amplitude of Fig. B.1:

− iM =[
uu(p3)c†

j

(
− i

2
gsγµλa

)
ciuu(p1)

] −gµνδab

q2

[
ud(p4)c†

l

(
− i

2
gsγνλb

)
ckud(p2)

]
≡ ig2

s CF,ijkl [uu(p3)γ
µuu(p1)]

gµν

q2 [ud(p4)γ
νud(p2)] , (B.8)

with the color factor CF defined as

CF,ijkl =
1
4

(
c†

j λaci

) (
c†

l λack

)
, (B.9)

where ci denotes the color part of the respective quark. Here we use the
the basis vectors c1 = (1, 0, 0)T = R, c2 = (0, 1, 0)T = G, c3 = (0, 0, 1)T =
B. Note that the sign of the amplitude now depends on the sign of CF,ijkl.
In the next step, we need to sum all diagrams that correspond to the anti-
triplet configuration. For the sake of simplicity, we will only consider the
state 1/

√
2 |RG− GR〉:

CF,3c
∼ 1

4

[(
RTλaR

) (
GTλaG

)
−
(

GTλaR
) (

RTλaG
)]

(B.10)

= −2
3

. (B.11)
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Finally, the one-gluon exchange potential for large energies can be approxi-
mated by

V = CF
αs

r
, (B.12)

which means that for a negative color factor the interaction is attractive,
while for a positive one the interaction becomes repulsive. Thus we con-
clude that the anti-triplet diquark configuration is attractive and therefore
this type of diquark fulfills the necessary condition in order to form a color-
superconducting phase.

Note that the direct product of two color triplets yields 3c ⊕ 3c = 3c ⊗ 6c,
i.e., an anti-triplet and a sextet. The sextet states are found to be

|RG + GR〉√
2

,
|RB + BR〉√

2
,
|GB + BG〉√

2
, |RR〉 , |GG〉 , |BB〉 . (B.13)

Let us also determine the color factor for a state of the color sextet,
1/
√

2 |RG + GR〉:

CF,3c
∼
(

RTλaR
) (

GTλaG
)
+
(

GTλaR
) (

RTλaG
)
=

1
6

. (B.14)

A positive color factor is obtained and therefore the interaction is repulsive
for this channel. Thus, in leading order in perturbation theory, only the anti-
triplet configuration is a proper candidate to describe color superconductiv-
ity.
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Appendix C

Mean-Field Study Appendices

C.1 Hubbard-Stratonovich Transformation

Here we perform the Hubbard-Stratonovich transformation for the NJL model
with diquarks. To this end, we write down the generating function of the the-
ory:

ZQMD =
∫
Dψ̄DψDψ̄cDψc exp

∫
x

{
ψ̄(iγµ∂µ + µγ0)ψ + G

[
(ψ̄ψ)2 + (ψ̄iγ5~τψ)2

]
+ G∆ (ψ̄ciγ5τ2λaψ) (ψ̄iγ5τ2λaψc)

}
. (C.1)

Next, we need to apply the integration rule for n-dimensional Gaussian inte-
grals:

∫
Xn

e
−

1
2
~XT·A~X+~XT ·~J

=

√
(2π)n

detA
e

1
2
~JT·A−1~J

. (C.2)

Let us first consider the quark-quark channel as an example

~X = (∆a/2, ∆∗a /2)T ,
~J = ((ψ̄ciγ5τ2λaψ) , (ψ̄iγ5τ2λaψc))

T ,

A−1 = G∆

(
0 1
1 0

)
, (C.3)

For the scalar and pseudoscalar quark-antiquark channels it is analogous and
actually easier since it is just a one-dimensional functional integral in field
space. For the scalar-isoscalar channel we have
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X = σ ,
J = ψ̄ψ ,

A−1 =
1

G∆
, (C.4)

and for the pseudoscalar isotriplet we have

X = ~π ,
J = ψ̄iγ5~τψ ,

A−1 =
1

G∆
. (C.5)

The new generating functional up to a different normalization factor now
reads

ZQMD =
∫
Dψ̄DψDσD~πD∆AD∆∗A exp

∫
x
Leff , (C.6)

with

Leff = ψ̄(i/∂ + µγ0 + σ + iγ5~π·~τ)ψ

+
∆A

2

(
ψ̄ciγ5τ2λAψ

)
+

∆∗A
2

(
ψ̄iγ5τ2λAψc

)
− σ2+~π2

4G
− |∆A|2

4G∆
. (C.7)

Finally, we use the fermion-doubling trick [76] and obtain

Leff =
1
2

[
ψ̄(i/∂ + µγ0 + σ + iγ5~π·~τ)ψ + ψ̄c(i/∂ − µγ0 + σ + iγ5~π·~τ)ψc

+ ∆A

(
ψ̄ciγ5τ2λAψ

)
+ ∆∗A

(
ψ̄iγ5τ2λAψc

)
− σ2+~π2

2G
− |∆A|2

2G∆

]
.

(C.8)

C.2 Trace Log

We use the following property for the logarithm of a diagonalizable matrix:

ln A = V ln Ã V−1 , (C.9)

where V is the transformation matrix consisting of the eigenvectors of A,
which diagonalizes A. Ã is the diagonalized matrix. We apply this identity
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to the kinetic part of the grand potential in Eq. (3.9) and use also the cyclicity
of the Tr operator:

Tr ln
(
S−1

T

)
= Tr

[
V ln

(
S̃−1

T

)
V−1

]
= Tr ln

(
S̃−1

T

)
. (C.10)

Since the logarithm of the diagonal matrix S̃−1 is again a diagonal matrix,

the trace is the sum that runs over all eigenvalues of ln
(
S−1

T

)
. We therefore

obtain

Ωkin ≡ −
1
2

T
V

Tr ln
(
S−1

T

)
= −1

2
1
V ∑

n
∑
λ

[
ln
(

iωn + Eλ

T

)]
, (C.11)

where Eλ are the eigenvalues of HNG.

C.3 Square Hamiltonian

We calculate the square Hamiltonian

H2
NG =

(
(H − µ)2 − γ0∆̂γ0∆̂† −(H − µ)γ0∆̂− γ0∆̂(H + µ)

γ0∆̂†(H − µ) + (H + µ)γ0∆̂† (H + µ)2 − γ0∆̂†γ0∆̂

)
.

(C.12)
Using {γi, γ0} = 0, we find that the off-diagonal elements vanish:

− (H − µ)γ0∆̂− γ0∆̂(H + µ) = γ0∆̂†(H − µ) + (H + µ)γ0∆̂† = 0 . (C.13)

On the other hand, the diagonal elements can be simplified to

− γ0∆̂γ0∆̂† = −γ0∆̂†γ0∆̂ = |∆|2λ2
2 , (C.14)

and thus we obtain

H2
NG =

(
(H − µ)2 + |∆|2Prg 0

0 (H + µ)2 + |∆|2Prg

)
. (C.15)
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Appendix D

Flow of the Effective Potential

The starting point for deriving the flow equations for the effective potential
and the two-point function is the Wetterich equation given in Eq. (4.22):

∂kΓk =
1
2

STr
[
∂kRk(Γ

(2)
k + Rk)

−1
]

,

=
1
2

Tr
[
∂kRk,B(Γ

(2)
k,B + Rk,B)

−1
]
− 1

2
Tr
[
∂kRk,F(Γ

(2)
k,F + Rk,F)

−1
]

. (D.1)

Here, we separated the Wetterich equation into the bosonic and fermionic
contribution, since in our case the contributions from the bosonic and fermionic
subspaces are disjoint.

As a reminder, the action of the QMD model is given as

ΓQMD[Φ] =
∫

d4x
{

ψ̄
[
/∂ − µγ0 + hφ(σ + iγ5~τ · ~π)

]
ψ

+ h∆

[
∆∗aψTCτ2λaγ5ψ + ∆aψ̄γ5λaτ2Cψ̄T

]
+

1
2

[
(∂µσ)2 + (∂µ~π)2

]
+

1
2
[(∂ν − 2δν0µ)∆∗a] [(∂ν + 2δν0µ)∆a] + Uk(φ

2, ∆2)− cσ
}

. (D.2)

The flow equation for the effective potential is obtained by the following pro-
jection:

1
vold

Γk|ψ=ψ̄=0, φ=σ, ∆i=δi2∆ ≡Vk(σ
2, ∆2) ,

=Uk(σ
2, ∆2)− cσ− 2µ2∆2 . (D.3)

The explicit symmetry breaking term−cσ and the diquark mass term−2µ2∆2

are scale independent in our truncation and therefore they can just be added
to the effective potential in the IR after solving the flow equation for Uk.

D.1 Bosonic Contribution

In general Γ(2)
k in the bosonic field space looks like this:
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Γ(2)
k,B =

Γ(2)
k,π1π1

Γ(2)
k,π1π2

Γ(2)
k,π1π3

Γ(2)
k,π1σ Γ(2)

k,π1∆R
2

Γ(2)
k,π1∆I

2
Γ(2)

k,π1∆R
5

Γ(2)
k,π1∆I

5
Γ(2)

k,π1∆R
7

Γ(2)
k,π1∆I

7

Γ(2)
k,π2π1

Γ(2)
k,π2π2

Γ(2)
k,π2π3

Γ(2)
k,π2σ Γ(2)

k,π2∆R
2

Γ(2)
k,π2∆I

2
Γ(2)

k,π2∆R
5

Γ(2)
k,π2∆I

5
Γ(2)

k,π2∆R
7

Γ(2)
k,π2∆I

7

Γ(2)
k,π3π1

Γ(2)
k,π3π2

Γ(2)
k,π3π3

Γ(2)
k,π3σ Γ(2)

k,π3∆R
2

Γ(2)
k,π3∆I

2
Γ(2)

k,π3∆R
5

Γ(2)
k,π3∆I

5
Γ(2)

k,π3∆R
7

Γ(2)
k,π3∆I

7

Γ(2)
k,σπ1

Γ(2)
k,σπ2

Γ(2)
k,σπ3

Γ(2)
k,σσ Γ(2)

k,σ∆R
2

Γ(2)
k,σ∆I

2
Γ(2)

k,σ∆R
5

Γ(2)
k,σ∆I

5
Γ(2)

k,σ∆R
7

Γ(2)
k,σ∆I

7

Γ(2)
k,∆R

2 π1
Γ(2)

k,∆R
2 π2

Γ(2)
k,∆R

2 π3
Γ(2)

k,∆R
2 σ

Γ(2)
k,∆R

2 ∆R
2

Γ(2)
k,∆R

2 ∆I
2

Γ(2)
k,∆R

2 ∆R
5

Γ(2)
k,∆R

2 ∆I
5

Γ(2)
k,∆R

2 ∆R
7

Γ(2)
k,∆R

2 ∆I
7

Γ(2)
k,∆I

2π1
Γ(2)

k,∆I
2π2

Γ(2)
k,∆I

2π3
Γ(2)

k,∆I
2σ

Γ(2)
k,∆I

2∆R
2

Γ(2)
k,∆I

2∆I
2

Γ(2)
k,∆I

2∆R
5

Γ(2)
k,∆I

2∆I
5

Γ(2)
k,∆R

2 ∆R
7

Γ(2)
k,∆I

2∆I
7

Γ(2)
k,∆R

5 π1
Γ(2)

k,∆R
5 π2

Γ(2)
k,∆R

5 π3
Γ(2)

k,∆R
5 σ

Γ(2)
k,∆R

5 ∆R
2

Γ(2)
k,∆R

5 ∆I
2

Γ(2)
k,∆R

5 ∆R
5

Γ(2)
k,∆R

5 ∆I
5

Γ(2)
k,∆R

5 ∆R
7

Γ(2)
k,∆R

5 ∆I
7

Γ(2)
k,∆I

5π1
Γ(2)

k,∆I
5π2

Γ(2)
k,∆I

5π3
Γ(2)

k,∆I
5σ

Γ(2)
k,∆I

5∆R
2

Γ(2)
k,∆I

5∆I
2

Γ(2)
k,∆I

5∆R
5

Γ(2)
k,∆I

5∆I
5

Γ(2)
k,∆R

5 ∆R
7

Γ(2)
k,∆I

5∆I
7

Γ(2)
k,∆R

7 π1
Γ(2)

k,∆R
7 π2

Γ(2)
k,∆R

7 π3
Γ(2)

k,∆R
7 σ

Γ(2)
k,∆R

7 ∆R
2

Γ(2)
k,∆R

7 ∆I
2

Γ(2)
k,∆R

7 ∆R
5

Γ(2)
k,∆R

7 ∆I
5

Γ(2)
k,∆R

7 ∆R
7

Γ(2)
k,∆R

7 ∆I
7

Γ(2)
k,∆I

7π1
Γ(2)

k,∆I
7π2

Γ(2)
k,∆I

7π3
Γ(2)

k,∆I
7σ

Γ(2)
k,∆I

7∆R
2

Γ(2)
k,∆I

7∆I
2

Γ(2)
k,∆I

7∆R
5

Γ(2)
k,∆I

7∆I
5

Γ(2)
k,∆I

7∆R
7

Γ(2)
k,∆I

7∆I
7


.

(D.4)

Here we choose the real and imaginary parts of the diquark as independent
degrees of freedom. ∆R

i denotes the real part of the i-th diquark and ∆I
i the

imaginary part. The index runs over i = 2, 5, 7 corresponding to the different
antisymmetric Gell-Mann matrices. Most entries of Eq. (D.4) vanish and
three distinct subspaces can be identified:

Γ(2)
k,B(π, σ, ∆2, ∆5, ∆7) =


Γ(2)

k,π 0 0

0 Γ(2)
k,σ−∆ 0

0 0 Γ(2)
k,∆

 . (D.5)

The submatrices are found to be

Γ(2)
k,π =

 p2 + 2Uk,σ 0 0
0 p2 + 2Uk,σ 0
0 0 p2 + 2Uk,σ

 , (D.6)

Γ(2)
k,σ−∆ =

 p2 + 2Uk,σ + 4σ2Uk,σσ 4∆σUk,σ∆ 0
4∆σUk,σ∆ 4∆2Uk,∆∆ + 2Uk,∆ − 4µ2 + p2 4µp0

0 −4µp0 2Uk,∆ − 4µ2 + p2

 ,

(D.7)

Γ(2)
k,∆ =

 2Uk,∆ − 4µ2 + p2 4µp0 0 0
−4µp0 2Uk,∆ − 4µ2 + p2 0 0

0 0 2Uk,∆ − 4µ2 + p2 4µp0
0 0 −4µp0 2Uk,∆ − 4µ2 + p2

 .

(D.8)

The derivatives of the effective potential are defined as



D.1. Bosonic Contribution 101

Uk,σ =
∂Uk
∂σ2 , (D.9)

Uk,σσ =
∂2Uk

∂σ2∂σ2 , (D.10)

Uk,∆ =
∂Uk
∂∆2 , (D.11)

Uk,∆∆ =
∂2Uk

∂∆2∂∆2 , (D.12)

Uk,σ∆ = Uk,∆σ =
∂2Uk

∂σ2∂∆2 . (D.13)

(D.14)

As bosonic regulator we choose the three-dimensional analogue of the
optimized Litim regulators [94]:

Rk,B = (k2 − ~p2)θ(k2 − ~p2) , (D.15)
(D.16)

We find the inverse of (Γ(2)
k,B + Rk,B110×10) by inverting the three submatrices:

(Γ(2)
k,π + Rk,B13×3)

−1 =

 1/E2
π 0 0

0 1/E2
π 0

0 0 1/E2
π

 , (D.17)

(Γ(2)
k,σ−∆ + Rk,B13×3)

−1 =

1

16µ2p2
0E2

σ + E2
∆,0

(
E2

∆E2
σ − 16∆2σ2U2

k,σ∆

)
 E2

∆E2
∆,0 + 16p2

0µ2 −4∆σUk,σ∆E2
∆,0 16µp0∆σUk,σ∆

−4∆σUk,σ∆E2
∆,0 E2

∆,0E2
σ −4µp0E2

σ

−16µp0∆σUk,σ∆ 4µp0E2
σ E2

∆E2
σ − 16∆2σ2U2

k,σ∆

 , (D.18)

(Γ(2)
k,∆ + Rk,B14×4)

−1 =
1

E4
∆,0 + 16µ2p2

0


E2

∆,0 −4µp0 0 0
4µp0 E2

∆,0 0 0
0 0 E2

∆,0 −4µp0

0 0 4µp0 E2
∆,0

 .

(D.19)

For a more compact notation we defined
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Ex =
√

Rk,B + p2 + m2
x =

√
Rk,B + p2

0 + ~p2 + m2
x , (D.20)

where

mπ =
√

2Uk,σ , (D.21)

mσ =
√

2Uk,σ + 4σ2Uk,σσ , (D.22)

m∆,0 =
√

2Uk,∆ − 4µ2 , (D.23)

m∆ =
√

2Uk,∆ + 4∆2Uk,∆∆ − 4µ2 . (D.24)

(D.25)

Since the submatrices do not mix with each other, the Wetterich equation
further decomposes into three parts:

∂kΓk,B =
1
2

Tr

 ∂kRk,B

Γ(2)
k,π + Rk,B

+ Tr

 ∂kRk,B

Γ(2)
k,σ−∆ + Rk,B

+ Tr

 ∂kRk,B

Γ(2)
k,∆ + Rk,B

 .

(D.26)

The scale derivative of the bosonic regulator is found to be

∂kRk,B = ∂k(k2 − ~p2)θ(k2 − ~p2) = 2k θ(k2 − ~p2) + 2k(k2 − ~p2)δ(k2 − ~p2)

= 2k θ(k2 − ~p2) . (D.27)

The contribution with the delta distribution always vanishes in our calcu-
lations, therefore we omit it here. The trace is understood as the following
operation:

Tr = V T ∑
n∈Z

∫ d3p
(2π)3 tr , (D.28)

where tr is the trace over all remaining spaces, i.e., field, flavor, color, and
Dirac space. Furthermore, we need to replace the zero momenta by the
bosonic Matsubara frequencies: p0 → ωn = 2πT n. Let us first calculate
the pion contribution:
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Tr

 ∂kRk,B

Γ(2)
k,π + Rk,B

 = V T ∑
n∈Z

∫ d3p
(2π)3 tr

 ∂kRk,B

Γ(2)
k,π + Rk,B


= V T ∑

n∈Z

∫ d3p
(2π)3 2k θ(k2 − ~p2)tr

 1

Γ(2)
k,π + Rk,B


=

4πV
(2π)3 T ∑

n∈Z

∫ ∞

0
dp p22k θ(k2 − ~p2)tr

 1/E2
π 0 0

0 1/E2
π 0

0 0 1/E2
π

 .

(D.29)

In the last line we switched to spherical coordinates, where the angular in-
tegration could already be evaluated and yields the factor 4π. Because of
the Heaviside function, only contributions up to p ≤ k will be integrated.
Then, the Heaviside function in the energy functions can be dropped and Ex
becomes

Ex =
√

Rk,B + p2
0 + ~p2 + m2

x =
√

k2 − ~p2 + p2
0 + ~p2 + m2

x =
√

p2
0 + k2 + m2

x

≡
√

ω2
n + E2

x,k . (D.30)

The trace in field space simply yields a factor of 3, thus we obtain

=
4πV
(2π)3 T ∑

n∈Z

∫ k

0
dp p22k

3
ω2

n + E2
π,k

=
3 · 4πV
(2π)3

2k4

3
T ∑

n∈Z

1
ω2

n + E2
π,k

=
3 · 4πV
(2π)3

2k4

3
T

coth
Eπ,k

2T
2Eπ,kT

=
V

2π2
k4

Eπ,k
coth

Eπ,k

2T
. (D.31)

From the first to the second line we performed the momentum integral, and
from the second to the third line we evaluated the Matsubara sum using stan-
dard techniques. The remaining bosonic contributions can be evaluated anal-

ogously. In the following we define Ẽ∆,0,k =
√

k2 + m̃∆,0 ≡
√

k2 + 2Uk,∆ and

Ẽ∆,k =
√

k2 + m̃∆ ≡
√

k2 + 2Uk,∆ + 4∆2Uk,∆∆. For the ungapped contribu-
tion we obtain:
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Tr

 ∂kRk,B

Γ(2)
∆,0, k + Rk,B



= V T ∑
n∈Z

∫ d3p
(2π)3

1
E4

∆,0 + 16µ2ω2
n

tr


E2

∆,0 −4µωn 0 0
4µωn E2

∆,0 0 0
0 0 E2

∆,0 −4µωn

0 0 4µωn E2
∆,0


=

4 · 4πV
(2π)3

2k4

3
T ∑

n∈Z

ω2
n + E2

∆,0,k

(ω2
n + E2

∆,0,k)
2 + 16µ2ω2

n

=
4 · 4πV
(2π)3

2k4

3
1

2Ẽ∆,0,k

sinh
Ẽ∆,0,k

T

cosh
Ẽ∆,0,k

T
− cosh

2µ

T

=
2V
3π2

k4

Ẽ∆,0,k

sinh
Ẽ∆,0,k

T

cosh
Ẽ∆,0,k

T
− cosh

2µ

T

=
V

3π2
k4

Ẽ∆,0,k

[
coth

Ẽ∆,0,k − 2µ

2T
+ coth

Ẽ∆,0,k + 2µ

2T

]
. (D.32)

Note that we have a singularity for Ẽ∆,0,k = 2µ. During the flow of the ef-
fective potential it might happen that the energy approaches the singularity,
making the partial differential equation very stiff. The Matsubara sum for
the second contribution of Eq. (D.26) is somewhat more complicated so we
will have a look at this with a little more detail:
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Tr

 ∂kRk,B

Γ(2)
k,σ−∆ + Rk,B


= V T ∑

n∈Z

∫ d3p
(2π)3

1

16µ2p2
0E2

σ + E2
∆,0

(
E2

∆E2
σ − 16∆2σ2U2

k,σ∆

)
×

 E2
∆E2

∆,0 + 16ω2
nµ2 −4∆σUk,σ∆E2

∆,0 16µωn∆σUk,σ∆
−4∆σUk,σ∆E2

∆,0 E2
∆,0E2

σ −4µωnE2
σ

−16µωn∆σUk,σ∆ 4µωnE2
σ E2

∆E2
σ − 16∆2σ2U2

k,σ∆


=

4πV
(2π)3

2k4

3
T ∑

n∈Z

×
{

(ω2
n + E2

∆,k)(ω
2
n + E2

∆,0,k) + 16ω2
nµ2 + (ω2

n + E2
∆,0,k)(ω

2
n + E2

σ,k)

16µ2ω2
n(ω

2
n + E2

σ,k) + (ω2
n + E2

∆,0,k)
[
(ω2

n + E2
∆,k)(ω

2
n + E2

σ,k)− 16∆2σ2U2
k,σ∆

]
+

(ω2
n + E2

∆,k)(ω
2
n + E2

σ,k)− 16∆2σ2U2
k,σ∆

16µ2ω2
n(ω

2
n + E2

σ,k) + (ω2
n + E2

∆,0,k)
[
(ω2

n + E2
∆,k)(ω

2
n + E2

σ,k)− 16∆2σ2U2
k,σ∆

]}
(D.33)

Note that the denominators of both terms in the last expression are the same.
In the next step, we express the denominators in terms of its zeros with re-
spect to ωn

1. The sum can then be written as

= T ∑
n∈Z

α0 + α1ω2
n + 3(ω2

n)
2

β0 + β1ω2
n + β2(ω2

n)
2 + (ω2

n)
3 = T ∑

n∈Z

α0 + α1ω2
n + 3(ω2

n)
2

(ω2
n − r2

1)(ω
2
n − r2

2)(ω
2
n − r2

3)

=
1
2

3

∑
i=1

α0 − α1z2
i + 3z4

i
(z2

i+1 − z2
i )(z

2
i+1 − z2

i )zi
coth

zi

2T
.

(D.34)

In the last step we used the residue theorem in order to derive the Matsubara
sum. The coefficients are identified to be

α0 = E2
∆,kE2

∆,0,k + E2
∆,kE2

σ,k + E2
∆,0,kE2

σ,k − 16σ2∆2U2
k,σ∆ , (D.35)

α1 = 2(E2
∆,k + E2

∆,0,k + E2
σ,k + 8µ2) , (D.36)

β0 = E2
∆,0,k(E2

∆,kE2
σ,k − σ2∆2U2

k,σ∆) , (D.37)

β1 = α0 + 16E2
σ,kµ2 , (D.38)

β2 = E2
∆,k + E2

∆,0,k + E2
σ,k + 16µ2 . (D.39)

1In general this works only for polynomials up to order (ω2
n)

4, for polynomials of higher
order it may not be possible to determine the zeroes analytically.
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zi = i ri are the roots of the denominator, and z4 = z1, z5 = z2, z6 = z3.
They can be looked up in literature as these are the roots of a third degree
polynomial. The explicit expressions for these are

rk+1 = −i zk+1 = −1
3

(
β2 + ηiC +

b0

ηiC

)
, k ∈ {0, 1, 2} , (D.40)

where

C =
3

√√√√b1 ±
√

b2
1 − 4b3

0

2
, (D.41)

η =
−1 +

√
−3

2
, (D.42)

and

b0 = β2
2 − 3β1 (D.43)

b1 = 2β3
2 − 9β2β1 + 27β0 . (D.44)

Note that both choices for the sign in Eq. (D.41) lead to the same result as
long as C 6= 0, which is the case for our purpose.

Finally, the final result for this contribution is given by

Tr

 ∂kRk,B

Γ(2)
k,σ−∆ + Rk,B

 =
V
π2

k4

6

3

∑
i=1

α0 − α1z2
i + 3z4

i
(z2

i+1 − z2
i )(z

2
i+1 − z2

i )zi
coth

zi

2T
. (D.45)

Now, we can add up all partial contributions in Eq. (D.26) and obtain

∂kUk,B =
k4

12π2

[
3

Eπ,k
coth

Eπ,k

2T
+

3

∑
i=1

α0 − α1z2
i + 3z4

i
(z2

i+1 − z2
i )(z

2
i+1 − z2

i )zi
coth

zi

2T

+
2

Ẽ∆,0,k

(
coth

Ẽ∆,0,k − 2µ

2T
+ coth

Ẽ∆,0,k + 2µ

2T

)]
. (D.46)

D.2 Fermionic Contribution

The fermionic contribution to the Wetterich equation is given as:

∂kΓk = −
1
2

Tr

 ∂kRk,F

Γ(2)
k,F + Rk,F

 . (D.47)
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We choose the following basis for the fermion fields:

ψ =

 ψr
iτ2Cψ̄T

g
ψb

 , ψ̄ =

 ψ̄r
−iψT

g Cτ2
ψ̄b

 , (D.48)

Ψ =

(
ψ

ψ̄T

)
, Ψ =

(
ψ̄

ψT

)
. (D.49)

For the first two components the choice (D.48) is reminiscient of the Nambu-
Gorkov basis with color components explicitly given. This has the advantage
that we can separate the resulting inverse propagator in the gapped and un-
gapped contributions more easily.

The fermionic two-point function in this basis reads

Γ(2)
k,F =

 Γ(2)
k,ψ̄ψ

Γ(2)
k,ψ̄ψ̄T

Γ(2)
k,ψTψ

Γ(2)
k,ψTψ̄T

 . (D.50)

In the following we will already neglect the diquark contributions for the
quarks that do not participate in the pairing, i.e., ∆5 = ∆7 = 0. Therefore, the
off-diagonal components Γ(2)

k,ψ̄ψ̄T and Γ(2)
k,ψTψ

vanish, since these only contain
contributions ∼ ∆5/7. This is valid as long as we do not need to consider the
three-point functions Γ(2,1)

k,ψ̄ψ∆5/7
, which is the case for this study. The remaining

diagonal terms are then found to be

Γ(2)
k,F =

 Γ(2)
k,ψ̄ψ

0

0 −(Γ(2)
k,ψ̄ψ

)T

 , (D.51)

where

Γ(2)
k,ψ̄ψ

=

(
Γ(2)

k,rg 0

0 Γ(2)
k,b

)

=

(
−i/~p − µγ0 + hφ(σ + iγ5~τ · ~π) h∆∆∗2 γ5 0

−h∆∆2γ5 −i/~p + µγ0 + hφ(σ− iγ5~τ · ~π) 0
0 0 −i/~p − µγ0 + hφ(σ + iγ5~τ · ~π)

)
.

(D.52)

The regulator is defined as
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Rk,F =

(
Rk,ψ̄ψ 0

0 Rk,ψTψ̄T

)
=

( −i~/prk(~p)⊗ 13×3 0
0 i~/p

Trk(~p)⊗ 13×3

)
,

(D.53)

with

rk(~p) =

√ k2

~p2 − 1

 θ(k2 − ~p2) , (D.54)

and the scale derivative of the regulator is then given as

∂kRk,F =

( −i~/p∂krk(~p)⊗ 13×3 0
0 i~/p

T∂krk(~p)⊗ 13×3

)
. (D.55)

Now, the inverse FRG propagator in Eq. (D.47) can be written as

(Γ(2)
k,F + Rk,F)

−1 =

 (Γ(2)
k,ψ̄ψ

+ Rk,ψ̄ψ)
−1 0

0 (Γ(2)
k,ψTψ̄T + Rk,ψTψ̄T)−1

 , (D.56)

such that the trace of Eq. (D.47) can be simplified to

Tr
∂kRk,F

Γ(2)
k,F + Rk,F

= Tr


−i~/p∂krk(~p)⊗ 13×3

Γ(2)
k,ψ̄ψ

+ Rk,ψ̄ψ

0

0

−i~/p∂krk(~p)⊗ 13×3

Γ(2)
k,ψ̄ψ

+ Rk,ψ̄ψ

T



= Tr


−i~/p∂krk(~p)⊗ 13×3

Γ(2)
k,ψ̄ψ

+ Rk,ψ̄ψ

0

0
−i~/p∂krk(~p)⊗ 13×3

Γ(2)
k,ψ̄ψ

+ Rk,ψ̄ψ


= 2Tr

−i~/p∂krk(~p)⊗ 13×3

Γ(2)
k,ψ̄ψ

+ Rk,ψ̄ψ

. (D.57)

Now, using the decomposition into the red-green and the blue contributions
from Eq. (D.52) the fermionic contribution to the flow of the effective poten-
tial can be written as
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∂kΓk,F = −1
2

Tr

 ∂kRk,F

Γ(2)
k,F + Rk,F


= −Tr

 −i~/p∂krk(~p)

Γ(2)
k,rg − i~/prk(~p)⊗ 12×2

− Tr

 −i~/p∂krk(~p)

Γ(2)
k,b − i~/prk(~p)

 . (D.58)

Finally, let us first evaluate the red-green contribution of Eq. (D.58). For

the constant field configuration σ = σ0
relabeled−→ σ, ~π = ~0, Re ∆2 = ∆ and

Im ∆2 = 0 we obtain

Γ(2)
k,rg − i~/prk(~p)⊗ 12×2

=

(
−i~/p[1 + rk(~p)]− (µ + ip0)γ0 + hφσ h∆∆γ5

−h∆∆γ5 −i~/p[1 + rk(~p)] + (µ− ip0)γ0 + hφσ

)
,

(D.59)

Note that this is the same fermionic two-point function as for the quark-
meson-diquark model for two-color QCD [66], therefore we expect to obtain
the same result as in Ref. [66]. This two-point function can be inverted fol-
lowing Ref. [117]:

(
Γ(2)

k,rg − i~/prk(~p)⊗ 12×2

)−1
=

(
G+ −G+

0 D−G−

−G−0 D+G+ G−

)
, (D.60)

where the newly introduced quantities are defined as

G± =
(−ip0 − E± µ)Λ+γ0

−p2
0 − (E∓p )2

+
(−ip0 + E± µ)Λ−γ0

−p2
0 − (E±p )2

, (D.61)

G±0 =
Λ∓γ0

−ip0 + E + µ
+

Λ±γ0

−ip0 − E + µ
, (D.62)

D± = ∓h∆γ5∆ , (D.63)

with

Λ± =
1
2

[
1± γ0

E
(
−i~/p(1 + rk) + hφσ

)]
, (D.64)

E =
√

p2(1 + rk)2 + (hφσ)2 , (D.65)

E±p =
√
(E± µ)2 + (h∆∆)2 . (D.66)

Now, let us evaluate the full trace for the red-green contribution:
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Tr

 −i~/p∂krk(~p)

Γ(2)
k,rg − i~/prk ⊗ 12×2


= N f VT ∑

n∈Z

∫ d3p
(2π)3 (∂krk)tr

[
(−i~/p)

(
G+ −G+

0 D−G−

−G−0 D+G+ G−

)]
= N f VT ∑

n∈Z

∫ d3p
(2π)3 (∂krk)tr

[
(−i~/p) (G+ + G−)

]
= 4N f VT ∑

n∈Z

∫ d3p
(2π)3~p

2(∂krk)(1 + rk)

 1− µ

E
p2

0 + (E−p )2
+

1 +
µ

E
p2

0 + (E+
p )2


= 4N f

4π

(2π)3 VT ∑
n∈Z

∫ k

0
dpp2k

 1− µ

Ek
p2

0 + (E−k )
2
+

1 +
µ

Ek
p2

0 + (E+
k )

2


= 4N f

4π

3(2π)3 VT ∑
n∈Z

k4

 1− µ

Ek
p2

0 + (E−k )
2
+

1 +
µ

Ek
p2

0 + (E+
k )

2

 .

(D.67)

In the penultimate step we inserted the Litim regulator, and replaced the
energy functions by

Ek =
√

k2 + (hφσ)2 , (D.68)

E±k =
√
(Ek ± µ)2 + (h∆d)2 . (D.69)

(D.70)

We are left to evaluate the Matsubara sum. To this end, we replace p0 with
the fermionic Matsubara frequencies, νn = (2n + 1)πT, which then yields
the following result:
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Tr

 −i~/p∂krk(~p)

Γ(2)
k,rg − i~/prk(~p)⊗ 12×2


= 4N f

4π

3(2π)3 VT ∑
n∈Z

k4

 1− µ

Ek
ν2

n + (E−k )
2
+

1 +
µ

Ek
ν2

n + (E+
k )

2


= 4N f

4πk4

6(2π)3 V ∑
±

1± µ

Ek
E±k

tanh
E±k
2T

=
2k4

3π2 V ∑
±

1± µ

Ek
E±k

tanh
E±k
2T

. (D.71)

Next, we evaluate the ungapped contribution, which except for a factor of
1
3

yields the same result as for the quark-meson model. The inverse is found to
be

(Γ(2)
k,b − i~/prk(~p))−1 =

i~/p(1 + rk) + γ0(µ + ip0) + hφσ

k2 + (p0 − iµ)2 + (hφσ)2 . (D.72)

Next, the resulting contribution to the flow equation is obtained,

Tr

 −i~/p∂krk(~p)

Γ(2)
k,b − i~/prk(~p)


= N f VT ∑

n∈Z

∫ d3p
(2π)3 (∂krk)tr

{
(−i~/p)

[
i~/p(1 + rk) + γ0(µ + ip0) + hφσ

k2 + (p0 − iµ)2 + (hφσ)2

]}
= 4N f VT ∑

n∈Z

∫ d3p
(2π)3

k
k2 + (p0 − iµ)2 + (hφσ)2

= 4N f
4π

(2π)3 VT ∑
n∈Z

∫ k

0
dp

p2k
k2 + (p0 − iµ)2 + (hφσ)2

= 4N f
4π

3(2π)3 VT ∑
n∈Z

k4

k2 + (p0 − iµ)2 + (hφσ)2

= N f
4π

3(2π)3 V
k4

Ek

(
tanh

Ek − µ

2T
+ tanh

Ek + µ

2T

)
=

V
3π2

k4

Ek

(
tanh

Ek − µ

2T
+ tanh

Ek + µ

2T

)
. (D.73)

Finally, the total fermionic contribution to the flow equation reads:
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∂kUk,F = − k4

3π2

2 ∑
±

1± µ

Ek
E±k

tanh
E±k
2T

+
1
Ek

(
tanh

Ek − µ

2T
+ tanh

Ek + µ

2T

) .

(D.74)

The complete flow equation containing both the bosonic and fermionic con-
tributions is therefore obtained as follows:

∂kUk =
k4

12π2

[
3

Eπ,k
coth

Eπ,k

2T
+

3

∑
i=1

α0 − α1z2
i + 3z4

i
(z2

i+1 − z2
i )(z

2
i+2 − z2

i )zi
coth

zi

2T

+
2

Ẽ∆,0,k

(
coth

Ẽ∆,0,k − 2µ

2T
+ coth

Ẽ∆,0,k + 2µ

2T

)]

− k4

3π2

2 ∑
±

1± µ

Ek
E±k

tanh
E±k
2T

+
1
Ek

(
tanh

Ek − µ

2T
+ tanh

Ek + µ

2T

) .

(D.75)
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Appendix E

Flow of the Two-Point Function at
Finite External Momenta

Here we present the detailed calculation for the derivation of the flow equa-
tion for the two-point function at finite external momenta.

E.1 Wetterich equation for the two-point function

First, we would like to derive the proper variational derivative of a generic
two-point function Γ(2) taking into account the explicit momentum depen-
dence. To this end, we first note that the functional 1 is given as

∫
p

Γ(2)(q, p)Γ(2)(p, r)−1 = δ(q− r) . (E.1)

Now, let us take the functional derivative,

δ

δφ(s)
δ(q− r) = 0

=
∫

p

(
δ

δφ(s)
Γ(2)(q, p)

)
Γ(2)(p, r)−1 +

∫
p

Γ(2)(q, p)
δ

δφ(s)
Γ(2)(p, r)−1

=
∫

p
Γ(3)(q, p, s)Γ(2)(p, r)−1 +

∫
p

Γ(2)(q, p)
δ

δφ(s)
Γ(2)(p, r)−1

⇔
∫

p
Γ(2)(q, p)

δ

δφ(s)
Γ(2)(p, r)−1 = −

∫
p

Γ(3)(q, p, s)Γ(2)(p, r)−1 , (E.2)

we multiply by Γ(2)(t, q)−1 from the left and integrate over q,
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∫
p,q

Γ(2)(t, q)−1Γ(2)(q, p)︸ ︷︷ ︸
δ(t−p)

δ

δφ(s)
Γ(2)(p, r)−1

= −
∫

p,q
Γ(2)(t, q)−1Γ(3)(q, p, s)Γ(2)(p, r)−1

⇔ δ

δφ(s)
Γ(2)(t, r)−1 = −

∫
p,q

Γ(2)(t, q)−1Γ(3)(q, p, s)Γ(2)(p, r)−1 . (E.3)

Next, we can evaluate the second variational derivative,

δ

δφ(u)
δ

δφ(s)
Γ(2)(t, r)−1

=
∫

p1,p2

∫
q1,q2

Γ(2)(t, q1)
−1Γ(3)(q1, q2, u)Γ(2)(q2, p1)

−1Γ(3)(p1, p2, s)Γ(2)(p2, r)−1

+
∫

p1,p2

∫
q1,q2

Γ(2)(t, p1)
−1Γ(3)(p1, p2, s)Γ(2)(p2, q1)

−1Γ(3)(q1, q2, u)Γ(2)(q2, r)−1

−
∫

p1,p2

Γ(2)(t, p1)
−1Γ(4)(p1, p2, s, u)Γ(2)(p2, r)−1 (E.4)

The n-point functions respect energy-momentum conservation, therefore we
can write

Γ(n)(p1, ..., pn) = Γ(n)(p1, ..., pn−1)δ(p1 + ... + pn) . (E.5)

Then, we apply this identity and integrate Eq. (E.4) over the momenta t and
r, which yields:

δ

δφ(u)
δ

δφ(s)

∫
t,r

Γ(2)(t, r)−1 =
δ

δφ(u)
δ

δφ(s)

∫
t
Γ(2)(t)−1

=
∫

p1,p2,q1,q2,t,r
Γ(2)(t, q1)

−1Γ(3)(q1, q2, u)Γ(2)(q2, p1)
−1Γ(3)(p1, p2, s)Γ(2)(p2, r)−1

+
∫

p1,p2,q1,q2,t,r
Γ(2)(t, p1)

−1Γ(3)(p1, p2, s)Γ(2)(p2, q1)
−1Γ(3)(q1, q2, u)Γ(2)(q2, r)−1

−
∫

p1,p2,t,r
Γ(2)(t, p1)

−1Γ(4)(p1, p2, s, u)Γ(2)(p2, r)−1

=
∫

r
Γ(2)(r)−1Γ(3)Γ(2)(r− u)−1Γ(3)Γ(2)(r)−1

+
∫

r
Γ(2)(r)−1Γ(3)Γ(2)(r− s)−1Γ(3)Γ(2)(r)−1

−
∫

r
Γ(2)(r)−1Γ(4)Γ(2)(r)−1 , (E.6)

Here we have dropped the momentum dependence of the three- and four-
point functions as they do not depend on the momentum in our truncation.
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Setting u = −s = p, relabeling r → q, and shifting the first line by q→ q + p
and second line by q→ q− p we obtain

δ

δφ(p)
δ

δφ(−p)

∫
t
Γ(2)(t)−1

=
∫

q
Γ(2)(q + p)−1Γ(3)Γ(2)(q)−1Γ(3)Γ(2)(q + p)−1

+
∫

q
Γ(2)(q− p)−1Γ(3)Γ(2)(q)−1Γ(3)Γ(2)(q− p)−1

−
∫

q
Γ(2)(q)−1Γ(4)Γ(2)(q)−1 , (E.7)

Finally, we can insert this result into the Wetterich equation, which yields:

∂kΓ(2)
k (p) =

1
2

STr
[
∂kRk(q + p)Gk(q + p)Γ(3)

k Gk(q)Γ
(3)
k Gk(q + p)

]
+

1
2

STr
[
∂kRk(q− p)Gk(q− p)Γ(3)

k Gk(q)Γ
(3)
k Gk(q− p)

]
− 1

2
STr

[
∂kRk(q)Gk(q)Γ

(4)
k Gk(q)

]
. (E.8)

Here we defined Gk ≡
(

Γ(2)
k + Rk

)−1
. This expression is valid for both

bosonic and fermionic two-point functions. In the next step we show, that
the first and the second line of the above expression are actually the same.
For the bosonic case this is rather easy to show∫

~q
∂kRk((~q + ~p)2)Gk((~q + ~p)2)Gk(~q2)Gk((~q + ~p)2)

=
∫ ∞

−∞
dqxdqydqz∂kRk(~q2 + ~p2 + 2~q · ~p)Gk(~q2 + ~p2 + 2~q · ~p)Gk(~q2)Gk(~q2 + ~p2 + 2~q · ~p)

~q→−~q
= −

∫ −∞

∞
dqxdqydqz∂kRk(~q2 + ~p2 − 2~q · ~p)Gk(~q2 + ~p2 − 2~q · ~p)Gk(~q2)Gk(~q2 + ~p2 − 2~q · ~p)

=
∫ ∞

−∞
dqxdqydqz∂kRk(~q2 + ~p2 − 2~q · ~p)Gk(~q2 + ~p2 − 2~q · ~p)Gk(~q2)Gk(~q2 + ~p2 − 2~q · ~p)

=
∫
~q

∂kRk((~q− ~p)2)Gk((~q− ~p)2)Gk(~q2)Gk((~q− ~p)2) . (E.9)

We have not considered the zeroth components of the momentum four vec-
tors, because in this work we set p0 = 0. For the fermionic contribution
we first perform the trace, such that odd numbers of Dirac slashed quanti-
ties vanish. It then turns out that the momentum dependencies are either of

the form ~q2 or cosϕ =
~q · (~q± ~p)
|~q||~q± ~p| such that the above calculation holds for

fermions as well.
Thus, we can simplify Eq. (E.8) to
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∂kΓ(2)
k (p) = STr

[
∂kRk(q + p)Gk(q + p)Γ(3)

k Gk(q)Γ
(3)
k Gk(q + p)

]
− 1

2
STr

[
∂kRk(q)Gk(q)Γ

(4)
k Gk(q)

]
. (E.10)

E.2 Simplification of the Two-Point Function for
Finite External Momentum

At finite external momentum, the first term in the flow equation (E.10) con-
tains two different Heaviside functions when using the Litim regulator. In
the numerator of ∂kRk and the denominator of Gk(q + p) we have the Heav-
iside function θ(k2 − (~q + ~p)2). If this Heaviside step function vanishes, the
total integral vanishes. On the other hand, we have also another Heaviside
function contained in a part of the denominator of Gk(q), namely θ(k2 −~q2).
Depending on whether this Heaviside function is zero or not, we have two
different expressions. Thus, we can write

∫
d3q θ(k2 − (~q + ~p)2)

[
θ(k2 −~q2) f1 + θ(−k2 +~q2) f2

]
, (E.11)

where f1 and f2 are the resulting expressions of Gk(q+ p)Γ(3)
k Gk(q)Γ

(3)
k Gk(q+

p) for k2 > ~q2 and for k2 < ~q2, respectively. In the following, we will use
spherical coordinates and choose the reference frame such that the external
momentum vector points in the z-direction, ~pT = (0, 0, p):

2π
∫ π

0
dθ sin θ

∫ ∞

0
dq q2θ(k2−q2−p2−2qp cos θ)

[
θ(k2−q2) f1+θ(−k2 + q2) f2

]
= 2π

∫ 2

0
dv

∫ ∞

0
dq q2θ(k2−q2−p2+2qp−2vqp)

[
θ(k2−q2) f1 + θ(−k2+q2) f2

]
= 2π

∫ 2

0
dv

∫ ∞

0
dq q2θ

(
k2 − (q− p)2

2qp
− v
)[

θ(k2 − q2) f1+θ(−k2 + q2) f2

]
= 2π

∫ ∞

0
dq q2

[ ∫ 2

0
dv θ

(
k2 − (q− p)2

2qp
− 2
)

+
∫ k2 − (q− p)2

2qp
0

dv θ

(
−k2 − (q− p)2

2qp
+ 2
)

θ

(
k2 − (q− p)2

2qp

)]
×
[
θ(k2 − q2) f1 + θ(−k2 + q2) f2

]
. (E.12)

In the second line we substituted v ≡ cos θ + 1. We have distinguished

between three cases:
k2 − (q− p)2

2qp
> 2 ≥ v, 0 <

k2 − (q− p)2

2qp
< 2, and
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0 >
k2 − (q− p)2

2qp
. In the first case, the v integration does not depend on q.

In the last case, the integral vanishes automatically. Let us now consider all
possible combinations and simplify as much as possible:

1 = 2π
∫ ∞

0
dq q2 θ

(
k2 − (q− p)2

2qp
− 2
)

θ(k2 − q2)
∫ 2

0
dv f1

= 2π
∫ ∞

0
dq q2 θ(k2 − (q + p)2)

∫ 2

0
dv f1 = 2π

∫ k−p

0
dq q2 θ(k− p)

∫ 2

0
dv f1 ,

(E.13)

2 = 2π
∫ ∞

0
dq q2 θ

(
k2 − (q− p)2

2qp
− 2
)

θ(−k2 + q2)
∫ 2

0
dv f2 = 0 , (E.14)

3 = 2π
∫ ∞

0
dq q2 θ

(
−k2 − (q− p)2

2qp
+ 2
)

θ

(
k2 − (q− p)2

2qp

)
θ(k2 − q2)

∫ vmax

0
dv f1

= 2π

[∫ k

p−k
dq q2 θ(k− p

2
)θ(p− k)

∫ vmax

0
dv f1 +

∫ k

k−p
dq q2 θ(k− p)

∫ vmax

0
dv f1

]
,

(E.15)

4 = 2π
∫ ∞

0
dq q2 θ

(
−k2 − (q− p)2

2qp
+ 2
)

θ

(
k2 − (q− p)2

2qp

)
θ(−k2 + q2)

∫ vmax

0
dv f2

= 2π

[∫ k+p

p−k
dq q2 θ(

p
2
− k)

∫ vmax

0
dv f2 +

∫ k+p

k
dq q2 θ(k− p

2
)
∫ vmax

0
dv f2

]
.

(E.16)

The complete result is then simply the sum of these integrals, 1 + 2 + 3 +

4 . Furthermore, we have defined vmax =
k2 − (q− p)2

2qp
. In this thesis, we

perform first the traces on the several spaces, then perform the Matsubara
sum, and lastly carry out the integration using Eqs. (E.13) to (E.16) last.

E.3 Flow of the Two-Point Function for the Quark-
Meson-Model

Here we first derive the flow of the pion two-point function for the quark-
meson-model to showcase the general structure of the derivation. For the
quark-meson-diquark model the calculation can be done analogously as we
will see in the next section. The effective action for the quark-meson model
is given below,
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ΓQM[Φ] =
∫

d4x
{

ψ̄
[
/∂ − µγ0 + hφ(σ + iγ5~τ · ~π)

]
ψ

+
1
2

[
(∂µσ)2 + (∂µ~π)2

]
+ Uk(φ

2, ∆2)− cσ
}

.

Next, we can use Eq. (E.10) for the pionic two-point function:

∂kΓ(2)
k,π(p) = ∂kΓ(2),B

k,π (p) + ∂kΓ(2),F
k,π (p) , (E.17)

∂kΓ(2),B
k,π (p) = Tr

[
∂kRk(q + p)Gk,B(q + p)Γ(3)

k,πGk,B(q)Γ
(3)
k,πGk,B(q + p)

]
− 1

2
Tr
[
∂kRk(q)Gk,B(q)Γ

(4)
k,ππGk,B(q)

]
, (E.18)

∂kΓ(2),F
k,π (p) = −2 Tr

[
∂kRk(q + p)Gk,ψ(q + p)Γ(2,1)

k,ψ̄ψπ
Gk,ψ(q)Γ

(2,1)
k,ψ̄ψπ

Gk,ψ(q + p)
]

,

where

Gk,B ≡ (Γ(2)
k,B + RB

k )
−1
∣∣∣
~π=0,σ=σ0

=

(
Gk,ππ13×3 0

0 Gk,σσ

)
, (E.19)

Gk,αα ≡ (Γ(2)
k,αα + RB

k )
−1
∣∣∣
~π=0,σ=σ0

, (E.20)

Γ(2)
k,B =


Γ(2)

k,π1π1
Γ(2)

k,π1π2
Γ(2)

k,π1π3
Γ(2)

k,π1σ

Γ(2)
k,π2π1

Γ(2)
k,π2π2

Γ(2)
k,π2π3

Γ(2)
k,π2σ

Γ(2)
k,π3π1

Γ(2)
k,π3π2

Γ(2)
k,π3π3

Γ(2)
k,π3σ

Γ(2)
k,σπ1

Γ(2)
k,σπ2

Γ(2)
k,σπ3

Γ(2)
k,σσ

 , (E.21)

Γ(3)
k,π =

(
δ

δπ
Γ(2)

k,B

) ∣∣∣
~π=0,σ=σ0

, Γ(4)
k,ππ =

(
δ

δπ

δ

δπ
Γ(2)

k,B

) ∣∣∣
~π=0,σ=σ0

, (E.22)

where α, β ∈ {σ, π}. The vertex functions are found to be

Γ(2,1)
k,ψ̄ψi = hφ

{
1 i = 0
iγ5τi i = 1, 2, 3

, (E.23)

Γ(2,2)
k,ψ̄ψφiφj

= 0 . (E.24)

Note that when we write Γ(2)
k,π(p) we actually choose one pion component,

e.g., π ≡ π1. Inserting the above relations we can make the two-point func-
tion more explicit:
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∂kΓ(2),B
k,π = (Jk,σπ(p) + Jk,πσ(p))(Γ(3)

k,σππ)
2 − 1

2

(
I(2)k,σ Γ(4)

k,σσππ + 5I(2)k,πΓ(4)
k,πππ̃π̃

)
,

(E.25)

∂kΓ(2),F
k,π = −2NcN f J(π)

k,ψ̄ψ
(p) , (E.26)

where the threshold functions I(2)k,α are defined as

I(2)k,α ≡ Trq

[
∂kRB

k (q)G
2
k,α(q)

]
, α ∈ {σ, π} , (E.27)

The trace of field space, including flavor, color and Dirac space for the fermionic
case, is already evaluated in Eqs. (E.25) and (E.26). Therefore, Trq denotes
that the remaining momentum integration as well as the Matsubara summa-
tion still have to be performed. The loop functions are defined as

Jk,αβ(p) = Trq

[
∂kRB

k (q + p)Gk,α(q + p)2Gk,β(q)
]

, (E.28)

J(α)k,ψ̄ψ
(p) = Trq

[
∂kRF

k (q + p)Gk,ψ(q + p)Γ(2,1)
ψ̄ψα

Gk,ψ(q)Γ
(2,1)
ψ̄ψα

Gk,ψ(q + p)
]

.

(E.29)

The mesonic vertex functions derived from the effective potential Uk(φ
2) are

found to be

Γ(3)
k,φiφjφm

= 4U(2)
k (δijφm + δimφj + δjmφi) + 8U(3)

k φiφjφm , (E.30)

Γ(4)
k,φiφjφmφn

= 4U(2)
k (δijδmn + δinδjm + δjnδim)

+ 8U(3)
k (δijφmφn+δjmφiφn+δmnφiφj+δjnφiφm+δinφjφm+δimφjφn)

+ 16U(4)
k φiφjφmφn . (E.31)

Inserting all definitions yields the loop functions

Jk,αβ = Trq

 2k θ(k2 − (~q2 + ~p2))

(E2
α,k + q2

0)
2
[
m2

β + q2
0 +~q2 + (k2 −~q2)θ(k2 −~q2)

]
 , (E.32)
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J(π)
k,ψ̄ψ

=

4 h2
φ Trq θ(k2 − (~q2 + ~p2))

{

×

[
1 +

(
k
|~q| − 1

)
θ(k2 −~q2)

]
|~q| cos ϕ

[
−k2 + (q0 + p0 − iµ)2 + (hφσ)2]

[E2
k + (q0 + p0 − iµ)2]2

(
(hφσ)2 + (q0 − iµ)2 +~q2

[
1 +

(
k
|~q| − 1

)
θ(k2 −~q2)

]2
)

+
k
[
−2(hφσ)2 − 2(q0 − iµ)(q0 + p0 − iµ)

]
[E2

k + (q0 + p0 − iµ)2]2

(
(hφσ)2 + (q0 − iµ)2 +~q2

[
1 +

(
k
|~q| − 1

)
θ(k2 −~q2)

]2
)} .

(E.33)

where cosϕ =
~q · (~q + ~p)
|~q||~q + ~p| . Note, that we have set θ(k2− (~q2 +~p2))→ 1 in the

denominators since for the case where they vanish, the full integrand van-
ishes as well. Depending on the value of the Heaviside function θ(k2 −~q2),
we have two different expressions for the loop function, namely one where
θ(k2 −~q2) = 0 and one where θ(k2 −~q2) = 1. In the following, we need to
perform the Matsubara sums for each of the two cases, which can be done
analytically even though the resulting expressions are quite lengthy. Ulti-
mately, we can perform the integration using Eqs. (E.13) to (E.16), where f1
and f2 are the Matsubara sums of the loop functions for k2 >~q2 and k2 <~q2,
respectively. Here it is possible to perform the angular integration analyti-
cally for all loop functions, while the integration over the inner momenta has
to be done numerically. As an example, we will perform this calculation for
the bosonic loop function more explicitly by using (E.13) to (E.16):
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Jk,αβ =
∫

d3q θ(k2 − (~q + ~p)2)
[
θ(k2 −~q2)J(1)k,αβ + θ(−k2 +~q2)J(2)k,αβ

]
= 2π

[∫ k−p

0
dq q2 θ(k− p)

∫ 2

0
dvJ(1)k,αβ+

∫ k

p−k
dq q2 θ(k− p

2
)θ(p− k)

∫ vmax

0
dvJ(1)k,αβ

+
∫ k

k−p
dq q2 θ(k− p)

∫ vmax

0
dvJ(1)k,αβ +

∫ k+p

p−k
dq q2 θ(

p
2
− k)

∫ vmax

0
dvJ(2)k,αβ

+
∫ k+p

k
dq q2 θ(k− p

2
)
∫ vmax

0
dvJ(2)k,αβ

]
(E.34)

= 2π

[ ∫ k−p

0
dq q2 θ(k− p)2J(1)k,αβ +

∫ k

p−k
dq q2 θ(k− p

2
)θ(p− k)vmax J(1)k,αβ

+
∫ k

k−p
dq q2 θ(k− p)vmax J(1)k,αβ +

∫ k+p

p−k
dq q2 θ(

p
2
− k)vmax J(2)k,αβ

+
∫ k+p

k
dq q2 θ(k− p

2
)vmax J(2)k,αβ

]
, (E.35)

where

J(1)k,αβ = T ∑
n∈Z

2k
(E2

α,k + ω2
n)

2(E2
β,k + ω2

n)
, (E.36)

J(2)k,αβ = T ∑
n∈Z

2k
(E2

α,k + ω2
n)

2(m2
β + ω2

n +~q2)
. (E.37)

Note that J(1)k,αβ does not depend on the inner momentum q because of the

choice of the optimized Litim regulator. On the other hand, J(2)k,αβretains the
momentum dependence because the Heaviside function θ(k2 −~q2) vanishes
for |~q| > k. We can therefore perform the momentum integrals containing
J(1)k,αβ in Eq. (E.34) analytically. This is not possible for J(2)k,αβ because after
evaluating the Matsubara sum the explicit q-dependence gets incorporated
in the bosonic distribution function that emerges from the sum. We have
also tried to integrate the summand of the Matsubara sum first, but this then
leads to a more complicated summand, for which the Matsubara sum cannot
be performed analytically anymore. Thus, the best way to proceed from here
is to evaluate the remaining momentum integrals numerically.

For the case of the fermionic loop function J(π)
k,ψ̄ψ

all integrals need to be
performed numerically after evaluating the Matsubara sum.
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∂kΓ(2)
k,π =

 

+ - 1
2
- -1

2
- -1

2
-

-2 -2
r,g

r,g

b

b

  

FIGURE E.1: Diagrammatic representation of the flow equation for the two-point
function.

E.4 Flow of the Two-Point Function for the
Quark-Meson-Diquark-Model

The calculations for the quark-meson diquark model are much more involved,
therefore it is useful to use a high-level symbolic computation language, such
as Mathematica. In App. F.4 a Mathematica script can be found, which con-
tains a documented code for the calculations of the quark-meson-diquark
model.

The difference to the previous calculation for the quark-meson model is
that we have more diagrams to consider. A diagrammatic representation of
the flow of the two-point function is found in Fig. E.1.

In the following, we sketch the derivation of the two-point function in the
QMD model. The general structure is again given as

∂kΓ(2)
k,π(p) = ∂kΓ(2),B

k,π (p) + ∂kΓ(2),F
k,π (p) , (E.38)

∂kΓ(2),B
k,π (p) = Tr

[
∂kRk(q + p)Gk,B(q + p)Γ(3)

k,πGk,B(q)Γ
(3)
k,πGk,B(q + p)

]
− 1

2
Tr
[

Gk,B(q)Γ
(4)
k,ππGk,B(q)

]
, (E.39)

∂kΓ(2),F
k,π (p) = −2 Tr

[
∂kRk(q + p)Gk,ψ(q + p)Γ(2,1)

k,ψ̄ψπ
Gk,ψ(q)Γ

(2,1)
k,ψ̄ψπ

Gk,ψ(q + p)
]

.

In the case of the QMD model the bosonic propagators are defined by

Gk,B =

 Gk,π13×3 0 0
0 Gk,σ−∆ 0
0 0 Gk,∆

 , (E.40)

Gk,α ≡ (Γ(2)
k,α + RB

k )
−1 , (E.41)

(E.42)

where Gk,π, Gk,σ−∆, and Gk,∆ are given by the expressions in Eqs. (D.17)-
(D.19). The three- and four-point functions are obtained by

Γ(3)
k,π =

(
δ

δπ
Γ(2)

k,B

) ∣∣∣
~π=0,σ=σ0

, Γ(4)
k,ππ =

(
δ

δπ

δ

δπ
Γ(2)

k,B

) ∣∣∣
~π=0,σ=σ0

, (E.43)
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where Γ(2)
k,B in field space is defined by Eq. (D.4). Doing the explicit calculation

for the three-point shows that almost all entries vanish except for

Γ(3)
k,σππ = Γ(3)

k,πσπ = 4σUk,σσ , (E.44)

Γ(3)
k,∆R

2 ππ
= Γ(3)

k,π∆R
2 π

= 4∆Uk,σ∆ . (E.45)

And for the four-point function we have

Γ(4)
k,ππ =


Γ(4)

k,π 0 0

0 Γ(4)
k,σ−∆ 0

0 0 Γ(4)
k,∆

 . (E.46)

Γ(4)
k,π =

 12Uk,σσ 0 0
0 4Uk,σσ 0
0 0 4Uk,σσ

 , (E.47)

Γ(4)
k,σ−∆ =

 4Uk,σσ + 8σ2Uk,σσ 8∆σUk,σ∆ 0
8∆σUk,σ∆ 4Uk,σσ + 8σ2Uk,σσ 0

0 0 4Uk,σ∆

 , (E.48)

Γ(2)
k,∆ =


4Uk,σ∆ 0 0 0

0 4Uk,σ∆ 0 0
0 0 4Uk,σ∆ 0
0 0 0 4Uk,σ∆

 . (E.49)

The fermionic propagator is defined by

Gkψ
=


(

Γ(2)
k,rg − i~/prk(~p)⊗ 12×2

)−1
0

0
(

Γ(2)
k,b − i~/prk(~p)⊗ 12×2

)−1

 ,

(E.50)

where
(

Γ(2)
k,rg − i~/prk(~p)⊗ 12×2

)−1
is given in Eq. (D.60) and(

Γ(2)
k,b − i~/prk(~p)⊗ 12×2

)−1
in Eq. (D.72). Furthermore we find

Γ(2,1)
k,ψ̄ψπi

=

 hφiγ5τi 0 0
0 −hφiγ5τi 0
0 0 hφiγ5τi

 . (E.51)
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The strategy for the loop functions is now analogous to the previous sec-
tion. First, we need to evaluate the field-space traces in Eq. (E.38). Then,
we bring the resulting expression into the form of Eq. (E.11) such that we
are able to distinguish between the two cases k > |~q| and k < |~q|. Subse-
quently, we perform the Matsubara sum for the two different cases, which
can be done analytically. However, the resulting expressions are very cum-
bersome, therefore we recommend doing this calculation using a symbolic
computation language such as Mathematica. Finally, given a fixed external
momentum p, we need to evaluate the remaining integral over the inner mo-
menta q numerically by using Eqs. (E.13) to (E.16).
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Appendix F

Code Reference

The code that has been implemented to produce the results of this thesis can
be found on Github:

https://github.com/lakaschus/PhDThesis

F.1 Minimization of the NJL-model Grand Poten-
tial

https://github.com/lakaschus/PhDThesis/tree/main/NJLModelMF

This link contains two python scripts that perform the minimization of the
grand potentials for the CDW and the RKC Ansätze given in Eq. (3.27) and
Eq. (3.30), respectively.

F.2 Effective Potential of the QM model

https://github.com/lakaschus/PhDThesis/tree/main/FRG/QMM

This directory contains three Jupyter notebooks for solving the flow equation
of the QM model given in Eq. (4.54) using the standard finite-difference and
the KT finite-volume scheme. It also contains a Jupyter notebook comparing
both methods.

F.3 Effective Potential of the QMD model

https://github.com/lakaschus/PhDThesis/tree/main/FRG/QMDM

Here we find the numerical solver for Eq. (4.32) using the standard finite-
difference and the KT finite-volume scheme.

https://github.com/lakaschus/PhDThesis
https://github.com/lakaschus/PhDThesis/tree/main/NJLModelMF
https://github.com/lakaschus/PhDThesis/tree/main/FRG/QMM
https://github.com/lakaschus/PhDThesis/tree/main/FRG/QMDM
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F.4 Derivation of the Flow Equations for the Effec-
tive Potential and the Two-Point Function for
the QMD Model

https://github.com/lakaschus/PhDThesis/blob/main/FRG/QMDM/nPoint
FunctionDerivationThesis.nb

This Mathematica file contains the derivation for the effective potential of the
QMD model. Even though we have already derived it in App. D, this script
validates our analytic calculations. Furthermore, this script also contains the
derivation for the flow equation of the pion two-point function which are
needed for the stability analysis.
In case the reader does not have access to a Mathematica license, we rec-
ommend to use the Wolfram Player, which is a free tool that allows to view
Mathematica scripts.

https://github.com/lakaschus/PhDThesis/blob/main/FRG/QMDM/nPointFunctionDerivationThesis.nb
https://github.com/lakaschus/PhDThesis/blob/main/FRG/QMDM/nPointFunctionDerivationThesis.nb
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done most of the analytic calculations, performed the numerical implemen-
tation for the minimzation of the grand potential, created the figures and
prepared the first draft of the paper. However, Michael Buballa drastically
improved and simplified my analytic calculation by providing the calcula-
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helped to finalize the manuscript for the publication.
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