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Abstract. In partially molten regions inside the Earth, melt
buoyancy may trigger upwelling of both solid and fluid
phases, i.e., diapirism. If the melt is allowed to move sep-
arately with respect to the matrix, melt perturbations may
evolve into solitary porosity waves. While diapirs may form
on a wide range of scales, porosity waves are restricted to
sizes of a few times the compaction length. Thus, the size
of a partially molten perturbation in terms of compaction
length controls whether material is dominantly transported
by porosity waves or by diapirism. We study the transition
from diapiric rise to solitary porosity waves by solving the
two-phase flow equations of conservation of mass and mo-
mentum in 2D with porosity-dependent matrix viscosity. We
systematically vary the initial size of a porosity perturbation
from 1.8 to 120 times the compaction length.

If the perturbation is of the order of a few compaction
lengths, a single solitary wave will emerge, either with a pos-
itive or negative vertical matrix flux. If melt is not allowed to
move separately to the matrix a diapir will emerge. In be-
tween these end members we observe a regime where the
partially molten perturbation will split up into numerous soli-
tary waves, whose phase velocity is so low compared to the
Stokes velocity that the whole swarm of waves will ascend
jointly as a diapir, just slowly elongating due to a higher am-
plitude main solitary wave.

Only if the melt is not allowed to move separately to the
matrix will no solitary waves build up, but as soon as two-
phase flow is enabled solitary waves will eventually emerge.
The required time to build them up increases nonlinearly
with the perturbation radius in terms of compaction length
and might be too long to allow for them in nature in many
cases.

1 Introduction

In geodynamic settings such as mid-ocean ridges, hotspots,
subduction zones, or orogenic belts partial melts are gen-
erated within the asthenosphere or lower continental crust
and ascend by fluid migration within deforming rocks (e.g.,
Sparks and Parmentier, 1991; Katz, 2008; Keller et al., 2017;
Schmeling et al., 2019). Inherent tectonic or rock hetero-
geneities in such systems may result in spatially varying melt
fractions on length scales varying over several orders of mag-
nitudes. These length scales play an important role in deter-
mining whether melt anomalies may rise as porous waves
(Jordan et al., 2018) or by other mechanisms such as di-
apirs (Rabinowicz et al., 1987), focused channel networks
(Spiegelman et al., 2001), or dikes (Rivalta et al., 2015). Here
we focus on the effect of the length scale on the formation
and evolution of buoyancy-driven porous waves or diapirs.

The physics of fluid moving relatively to a viscously de-
formable porous matrix were first described by McKen-
zie (1984), and it was later shown by several authors that
these equations allow for the emergence of solitary poros-
ity waves (Scott and Stevenson, 1984; Barcilon and Lovera
1989; Wiggins and Spiegelman, 1995). Porosity waves are
regions of localized excess fluid that ascend with perma-
nent shape and constant velocity, controlled by compaction
and decompaction of the surrounding matrix. They have
been extensively studied as mechanisms transporting geo-
chemical signatures or magma through the asthenosphere,
lower crust, and middle crust (e.g., Watson and Spiegelman,
1994; McKenzie, 1984; Connolly, 1997; Connolly and Pod-
ladchikov, 2013, Jordan et al., 2018, Richard et al., 2012). It
has been shown that the dynamics of porous waves strongly
depend on the porosity dependence of the matrix rheology
(e.g., Connolly and Podladchikov, 1998, 2015; Yarushina et
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al., 2015; Omlin et al., 2017; Dohmen et al., 2019). However,
one open question is how the length scale of solitary porosity
waves relates to an arbitrary length scale of a possible poros-
ity anomaly in given geodynamic settings.

The size of a solitary porosity wave is usually of the or-
der of a few compaction lengths (McKenzie, 1984; Scott and
Stevenson, 1984; Simpson and Spiegelman, 2011), but this
length scale varies over a few orders of magnitude, depend-
ing on the shear and volume viscosity of the matrix, fluid
viscosity, and permeability (see Eq. 19) with typical values
of 100–10 000 m (McKenzie, 1984; Spiegelman, 1993a, b).
However, partially molten regions in the lower crust or
upper mantle are prone to gravitational instabilities such
as Rayleigh–Taylor instabilities or diapirism (e.g., Griffith,
1986; Bittner and Schmeling, 1995; Schmeling et al., 2019).
Originating from the Greek “diapeirein”, i.e., “to pierce
through”, diapirism describes the “buoyant upwelling of rel-
atively light rock” (Turcotte and Schubert, 1982) through and
into a denser overburden. In the general definition, the rheol-
ogy of the diapir and ambient material is not specified and
both can be ductile, as in our case. Buoyancy may be of
compositional or phase-related origin, e.g., due to the pres-
ence of non-segregating partial melt (Wilson, 1989). In this
model we describe a diapir as a partially molten perturbation,
whose rising velocity, characterizable by the Stokes velocity,
is lower than the corresponding solitary-wave phase velocity.

As characteristic wavelengths of Rayleigh–Taylor instabil-
ities may be similar but also of significantly different order to
those of porosity waves, and the Stokes velocity is strongly
affected by the spatial expansion, the question arises as to
how these two mechanisms interact and what the transition
from a porosity wave to a rising partially molten diapir looks
like. Scott (1988) already investigated a similar scenario. He
calculated porosity waves changing the compaction length by
altering the constant shear to volume viscosity ratio. In con-
trast, we vary the radius of a partially molten perturbation
in terms of compaction lengths while keeping the porosity-
dependent viscosity law the same. While Scott (1988) was
not able to reach the single-phase flow endmember due to his
setup, we can reach this endmember with our description and
can explore the transition.

In this work we will address the question of length scale of
a partially molten region with respect to the length scale of
a solitary porosity wave by varying the sizes of initial poros-
ity perturbations. We further focus on the numerical implica-
tions on modeling magma transport.

2 Methods

2.1 Governing equations

The formulation of the governing equations for the melt-
in-solid two-phase flow dynamics is based on McKenzie
(1984), Spiegelman and McKenzie (1987), and Schmeling

(2000), assuming an infinite Prandtl number, a low fluid vis-
cosity with respect to the effective matrix viscosity, zero
surface tension, and the Boussinesq approximation. In the
present formulation, the Boussinesq approximation assumes
the same constant density for the solid and fluid except for
the buoyancy terms of the momentum equations for the solid
and fluid. In the following all variables associated with the
pore fluid (melt) have the subscript f and those associated
with the solid matrix have the subscript s. The equation for
the conservation of the mass of the melt is

∂ϕ

∂t
+∇ · (ϕvf)= 0, (1)

and the mass conservation of the solid is

∂ (1−ϕ)
∂t

+∇ · ((1−ϕ)vs)= 0. (2)

ϕ is the volumetric rock porosity (often called melt fraction),
vf and vs are the fluid and solid velocities, respectively. The
momentum equations are given as a generalized Darcy equa-
tion for the fluid separation flow

vf− vs =−
kϕ

µϕ
(∇Pf− ρfg) , (3)

where ρf is the fluid density and Pf is the fluid pressure (in-
cluding the lithostatic pressure), whose gradient is driving
the fluid segregation by porous flow, µ is the melt dynamic
viscosity, and g is the gravitational acceleration. kϕ is the
permeability that depends on the rock porosity

kϕ = k0ϕ
n, (4)

with n being the power law exponent constant, usually equal
to 2 or 3. This relation is known as the Kozeny–Carman rela-
tion (e.g., Costa, 2006). The Stokes equation for the mixture
is given as

ρg−∇Pf+∇ · τ = 0. (5)

where ρ is the density of the melt–solid mixture and τ is the
effective viscous stress tensor of the matrix, including both
shear and compaction components

τ = η

(
∂vsi

∂xj
+
∂vsj

∂xi

)
+

(
ζ −

2
3
η

)
δij∇ · vs, (6)

where ζ is the volume viscosity, and vsi and vsj are the ith
and j th component of vs . The linearized equation of state for
the mixture density is given as

ρ = ρ0 (1− cfϕ), (7)

with ρ0 as the solid density and cf =
ρ0−ρf
ρ0

. The shear and
volume viscosity are given by the equations

η = η0 (1−ϕ), (8)
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and

ζ = η0
1−ϕ
ϕ

, (9)

where η0 is the constant intrinsic shear viscosity of the ma-
trix.

As in both Eqs. (3) and (5), Pf is the fluid pressure
(see McKenzie, 1984, Appendix A), these equations can be
merged to eliminate the pressure resulting in

vf− vs =−
k0ϕ

n−1

µ
(ρ0cfg (1−ϕ)+∇ · τ ) . (10)

This equation states that the fluid separation flow (i.e., melt
segregation velocity) is driven by the buoyancy of the fluid
with respect to the solid and the viscous stress in the matrix
including compaction and decompaction.

Following Šrámek et al. (2010), the Stokes equation
(Eq. 3) can be rewritten by expressing the matrix velocity,
vs, as the sum of the incompressible flow velocity, v1, and
the irrotational (compaction) flow velocity, v2, as follows:

vs = v1+ v2 =

(
∂ψ
∂z

−
∂ψ
∂x

)
+

(
∂χ
∂x
∂χ
∂z

)
, (11)

with ψ as stream function and χ as the irrotational velocity
potential, given as the solution of the Poisson equation

∇
2χ =∇ · vs. (12)

The divergence term ∇ ·vs can be derived from Eqs. (1) and
(2) to give

∇ · vs =−∇ · [ϕ (vf− vs)] . (13)

In the small fluid viscosity limit the viscous stresses within
the fluid phase are neglected, resulting in a viscous stress ten-
sor in the Stokes equation of the mixture (Eq. 5), in which
only the stresses in the solid phase are relevant. This is ev-
ident from the definition of the viscous stress tensor, which
only contains matrix and not fluid viscosities. Melt viscosi-
ties of carbonatitic, basaltic, or silicic wet or dry melts span a
range from< 1 Pa s to extreme values up to 1014 Pa s (see the
discussion in Schmeling et al., 2019), while effective viscosi-
ties of mafic or silicic partially molten rocks may range be-
tween 1016 and 1020 Pa s, depending on melt fraction, stress,
and composition. Thus, in most circumstances the small fluid
viscosity limit is justified.

In the limit of this small viscosity assumption, inserting the
above solid velocity Eq. (11) into the viscous stress Eq. (6),
this in turn into the Stokes equation (Eq. 5), and then taking
the curl of the x and z equations, the pressure is eliminated
and one gets(
∂2

∂x2 −
∂2

∂z2

)[
ηs

(
∂2ψ

∂x2 −
∂2ψ

∂z2

)]
+ 4

∂2

∂x∂z

[
ηs
∂2ψ

∂x∂z

]
=−g

∂ρ

∂x
+A(χ), (14)

with

A(χ)=−2
∂2

∂x∂z

[
ηs

(
∂2χ

∂x2 −
∂2χ

∂z2

)]
+ 2

(
∂2

∂x2 −
∂2

∂z2

)[
ηs
∂2χ

∂x∂z

]
. (15)

To describe the transition from solitary waves to diapirs it is
useful to non-dimensionalize the equations. As scaling quan-
tities, we use the radius r of the anomaly, the reference vis-
cosity η0, and the scaling Stokes sphere velocity (e.g., Tur-
cotte and Schubert, 1982) based on the maximum porosity of
the anomaly ϕmax

vSt = CSt
ϕmax1ρgr

2

η0
, (16)

resulting in the following non-dimensionalization where
non-dimensional quantities are primed:

(x,z)=
(
x′,z′

)
· r, vs,f = v

′

s,f · vSt, t = t
′
·
r

vSt
,(

τij , P
)
=
(
τ ′, P ′

)
·
η0vSt

r
,

(η,ζ )=
(
η′,ζ ′

)
· η0, (ψ,χ)=

(
ψ ′,χ ′

)
· rvSt. (17)

For r the half width of the prescribed initial perturbation,
consisting of a 2D Gaussian bell, is chosen. This is reason-
able as the rising velocity in our code is best described by
the Stokes velocity using this radius. The exact shape of the
perturbation is given later in the model setup.
CSt is calculated by using the analytic solution of an in-

finite Stokes cylinder within another cylinder (Popov and
Sobolev, 2008, based on the drag force derived by Slezkin,
1955) because the cylinder gets effectively slowed due to
boundary effects. CSt is calculated using CSt = ln(k)− k2

−1
k2+1 ,

where k is the ratio of outer cylinder radius to inner cylinder
radius. For our model setup, CSt is equal to 0.17.

With these rules, the Darcy equation (Eq. 10) is given in
non-dimensional form

v′f− v
′
s =−

δ2
c

r2
1
η̃′ϕ

(
ez
(1−ϕ)
ϕmax

+∇
′
· τ ′
)
, (18)

where ez is the unit vector in the z direction and η̃′ is equal
to ζ ′+ 4

3η
′. The momentum equation of the mixture Eq. (12)

is given by(
∂2

∂x′2
−

∂2

∂z′2

)[
η′s

(
∂2ψ ′

∂x′2
−
∂2ψ ′

∂z′2

)]
+ 4

∂2

∂x′∂z′

[
η′s
∂2ψ ′

∂x′∂z′

]
=

1
ϕmax

∂ϕ

∂x′
+A′

(
χ ′
)
. (19)

δ2
c/r

2 in Eq. (18) is the squared ratio of compaction length
δc to the system length scale r , which is the main parame-
ter describing our system. The compaction length is a natu-
ral length scale emerging from the problem and of particular
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importance in our context because 2D porosity waves have
half-width radii of the order of 3 · δc to 5 · δc (Simpson and
Spiegelman, 2011). It is defined as follows:

δc =

√
ζ + 4

3η

µ
kϕ . (20)

All quantities in the other equations are simply replaced
by their non-dimensional primed equivalents (Eqs. 1, 2, 6,
11, 12, 13, and 15).

We now compare the two limits, where segregation or
two-phase flow dominates (solitary-wave regime), and where
fluid and solid rise together with the same velocity as par-
tially molten bodies, which we identify with the diapir
regime. We compare the characteristic segregation velocity
within solitary waves, which scales as

vsgr ≈
k0ϕ

n−1
max
µ

(
1ρg (1−ϕmax)−∇

′
· τ
)

= Csgr
k0ϕ

n−1
max1ρg (1−ϕmax)

µ
, (21)

where Csgr is of the order 0.5 for 2D solitary waves (Schmel-
ing, 2000), with the characteristic Stokes sphere rising veloc-
ity given by Eq. (15). The ratio of these is given by

vsgr

vSt
=
Csgr

CSt

δ2
c0
r2
ϕn−2

max (1−ϕmax)

η̃0′ϕ
n
0

. (22)

Here η̃0
′ refers to η̃′ for the background porosity ϕ0 and δc0 to

the compaction length of the background porosity. In contrast
to Scott (1988), who varies the volume viscosity in his model
series, we vary the ratio of initial Stokes radius to compaction
length.

Thus, in the solitary-wave limit

Csgr

CSt

δ2
c0
r2
ϕn−2

max (1−ϕmax)

η̃0′ϕ
n
0

� 1. (23)

Darcy’s law (18) results in large segregation velocity, which
scales as

v′sgr =
Csgr

CSt

δ2
c0
r2
ϕn−2

max (1−ϕmax)

η̃0′ϕ
n
0

. (24)

From Eq. (13), it follows that the irrotational part of the ma-
trix velocity scales with

v1 ≈−ϕmaxvsgr, (25)

while the rotational part is given by Eq. (19). In that equa-
tion, A′ scales with χ ′, which, via Eqs. (12) and (13), scale
with vsgr, i.e., with δ2

c0/r
2. In other words, the second term on

the right-hand side of Eq. (19) dominates for small r2/δ2
c0 as

the first term is of the order of 1. Thus, the rotational matrix
velocity has the same order as the irrotational compaction

Figure 1. The segregation to Stokes velocity ratio, following
Eq. (22), is given as a function of initial perturbation radius r in
terms of compaction length δc. Each colored line refers to differ-
ent values of perturbation amplitude ϕmax, which are given in the
legend.

velocity and serves to accommodate the compaction flow. In
this limit, the buoyancy term in Eq. (19), 1

ϕmax

∂ϕ
∂x′

, is of van-
ishing importance for the matrix velocity, and the matrix ve-
locity, v1+v2, is of the order of ϕmaxvsgr. In the small poros-
ity limit, matrix velocities are negligible with respect to fluid
velocities.

In the diapir limit,

Csgr

CSt

r2

δ2
c

ϕn−2
max (1−ϕmax)

η̃0′ϕ
n
0

� 1, (26)

and Eq. (18) predicts vanishing segregation velocities. As A′

and χ ′ scale with r2/δ2
c0 , both vanish in the diapir limit,

no irrotational matrix velocity occurs, and Eq. (19) reduces
to the classical biharmonic equation (i.e., Stokes equation)
driven by melt buoyancy and describing classical diapiric as-
cent. Segregation velocities are negligible with respect to ma-
trix velocities.

In Fig. 1, the results of this simple analysis are shown,
where we calculated the velocity ratios as a function of ini-
tial perturbation radius for several perturbation radii. In our
models we use a ϕmax of 2 %, for which we get a switch
from solitary wave to diapir dominant behavior at r = 48 ·δc.
Smaller amplitudes lead to a switch at a smaller radius and
larger amplitudes to a switch at a larger radius.

2.2 Model setup

The model consists of aL′×L′ box with a background poros-
ity, ϕ0, of 0.5%. L′ is the non-dimensional side length of the
box and equal to 6 times the initial radius of the perturba-
tion. As initial condition, a non-dimensional Gaussian bell-
shaped porosity anomaly is placed in the middle of the model
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at x0
′
= 3 and z0

′
= 3. The Gaussian wave is given by

ϕ = ϕmax · exp

(
−

(
x′− x′0
w′

)2

−

(
z′− z′0
w′

)2
)
, (27)

where ϕmax is the amplitude equal to 0.02 in our models and
w′ corresponds to the width where ϕ has reached ϕmax/e. In
our case w′ is equal to 1.2.

In our model series we vary the ratio of Stokes radius to
compaction length from 1.8 to 48 to explore the transition
from solitary wave towards diapiric regime. The resolution
of the models is chosen to be at least 201× 201 grid points
and was increased for higher ratios of Stokes radius to com-
paction length so that the compaction length is resolved by at
least 3–4 grid points.

At the top and the bottom domain boundaries, we prescribe
an outflow and inflow for both melt and solid, respectively, to
prevent melt accumulations at the top. The segregation veloc-
ity of the background porosity ϕ0 is calculated using Eq. (18)
without the viscous stress term. The corresponding matrix
velocity is calculated using the conservation of mass.

At the sides we enforce no horizontal flux boundary con-
ditions. The permeability–porosity relation exponent in our
models is always n= 3.

To run models for a longer, practically infinite, amount of
time we let the models coordinate system follow the maxi-
mum melt fraction.

2.3 Numerical approach

We discretize the set of equations using finite differences on
a staggered grid and solve the system using the code FD-
CON (Schmeling et al., 2019). Starting from the prescribed
initial condition for ϕ and assumingA′

(
χ ′
)
= 0 at time 0, the

time loop is entered and the biharmonic Eq. (19) is solved for
ψ ′ by Cholesky decomposition, from which v′1 is derived.
Together with v′2 the resulting solid velocity is used to de-
termine the viscous stress term in the segregation velocity
Eq. (18). This equation and the melt mass Eq. (1) are solved
iteratively with strong under-relaxation for ϕ and v′f− v

′
s for

the new time step using the upwind scheme and an implicit
formulation of Eq. (1). During this internal iteration these
quantities are used, via Eq. (13), to give ∇ ·vs, the divergence
of the matrix velocity, which is needed in the viscous stress
term (Eq. 6). After convergence, ∇ ·vs is used via Eq. (12) to
determine χ by LU decomposition and then to get v′2. Now
A′
(
χ ′
)

can be determined to be used on the right-hand side
of Eq. (19). The procedure is then repeated upon entering the
next time step.

Time steps are dynamically adjusted by the Courant cri-
terion times 0.2 based on the fastest velocity (either melt or
solid).

The model resolution is a critical parameter in this kind
of numerical calculation and should always be kept in mind.
With increasing length scale ratio, the compaction length in

the model gets smaller, and the resolution needs to be in-
creased to keep it equally resolved.

According to several authors (e.g., Räss et al., 2019; Keller
et al., 2013), the compaction length should be resolved by at
least 4–8 grid points to solve for waves with sufficient accu-
racy. For small length scale ratios this is no problem, where
up to nearly 30 grid points per compaction length can be
achieved with a model resolution of 201× 201. The high-
est resolution our code can run is 601×601, which is enough
to resolve the compaction length by three grid points for the
model with a length scale ratio of 48. Everything above that
cannot be sufficiently resolved with respect to studying soli-
tary waves.

Figure 2 shows the resulting models for a length scale ra-
tio of 12 for six different resolutions. The model states where
ϕmax has risen to approximately 0.25 times the initial Stokes
radius (t ′ = 0.25) are shown. With increasing resolution, the
maximum melt fraction increases strongly from 101×101 to
401× 401 by approximately 20 %, but the velocity of ϕmax
decreases by 7 % (not shown in the figure). Both values con-
verge for resolutions higher than 51× 51, corresponding to
δc/dx = 1. Even though the compaction length is not suffi-
ciently resolved in Fig. 2d, one can still observe the main fea-
tures of the model: a main solitary wave has emerged from
the original Gaussian perturbation, and secondary porosity
waves are beginning to emerge within its wake. Even with
δc/dx = 1, these features can be observed but are clearly un-
derresolved. With even lower resolutions, accumulations at
the top of the perturbation can be seen, which can be broadly
interpreted as the attempt of a solitary wave to build up. With
δc/dx = 0.24, the model is too coarse and the results cannot
be trusted anymore.

The solitary waves modeled with our code have been com-
pared to the semi-analytical solution of Simpson and Spiegel-
man (2011), and more benchmarking was carried out in
Dohmen et al. (2019).

In a single-phase flow case, where the melt is not allowed
to move relative to the solid, the initial perturbation ascends,
shortly after beginning, with a velocity of 0.95 times the cal-
culated Stokes velocity and then slowly decreases as the orig-
inal Gauss-shaped wave deforms and loses its amplitude.

3 Results

3.1 The transition from porosity wave to diapirism:
Varying the initial wave radius

In this model series we vary the initial wave radius to cover
the transition from porosity waves towards diapirism. As a
reminder, due to our scaling the initial wave has always the
same size with respect to the model box, and “increasing
the initial wave radius” is equivalent to decreasing the com-
paction length or the size of the emerging solitary waves with
respect to the model box. In Fig. 3, the models are shown at
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Figure 2. The six panels depict a model with an initial perturbation radius of 12 times the compaction length but with different numerical
grid resolutions: (a) 13× 13 (b) 26× 26 (c) 51× 51 (d) 101× 101, (e) 201× 201, and (f) 401× 401. The size of the compaction length in
terms of grid length is given in the lower-left corner in each panel.

t ′ = 0.2. For small radii (r ≤ 12 · δc), a single porosity wave
emerges from the original perturbation. The melt that is not
situated within the emerging wave is left behind and has (for
the most part) already left the model region. For r = 2.4 · δc,
the emerged solitary wave is about the size of the initial per-
turbation, and even smaller radii would lead to too big waves
that would not fit into the model. With increasing radius, the
emerging solitary wave gets smaller. With r = 12 · δc, the re-
sulting wave only has a size that is ∼ 20 % of the initial per-
turbation size.

We compare the observed solitary-wave velocities of
Fig. 3b–e to equivalent Stokes velocities for a diapir based on
Eq. (16). While the dimensional Stokes velocity of a poros-
ity anomaly is proportional to the amplitude of porosity and
the square of the radius, the non-dimensional Stokes velocity
is always equal to 1. In Fig. 4, this non-dimensional Stokes
velocity is indicated by the dashed line with the value 1. The
colored lines give 2D solitary-wave velocities with their ap-
propriate radii, given by Simpson and Spiegelman (2011),
normalized by the Stokes velocity corresponding to different
initial perturbation radii. These semi-analytical solutions are
in good agreement with our solitary-wave models and dif-
fer only by 3 %–5 % percent in velocity, as already shown
in Dohmen et al. (2019). The velocities in this figure corre-
spond to ratios of solitary-wave velocity to initial perturba-
tion Stokes velocity. Inspection of Fig. 4 reveals that for the

first four cases of Fig. 3b–e with radii smaller than or equal to
12 · δc, the phase velocities are always larger than the Stokes
velocity. For example, for r = 12 · δc, an emerging solitary
wave with a typical radius of 4.5 · δc has a higher phase ve-
locity than a r = 12 · δc melt anomaly rising by Stokes flow.
Thus, the cases are always in the solitary-wave regime.

For greater radii (e.g., r = 18 · δc− 30 · δc, Fig. 3e–g) the
phase velocities of solitary waves are of the order of the
Stokes velocity (see Fig. 4), and they therefore need more
time to separate from the remaining melt of the initial pertur-
bation, still rising with the order of the Stokes velocity. The
amount of melt accommodated within the main solitary wave
is just a small percentage of the original perturbation, and
secondary waves evolve in its remains. With further ascend-
ing, more and more solitary waves build up, and the former
perturbation will sooner or later consist of solitary waves in
an ordered cluster or a formation. This formation elongates
during ascent as the main wave has a larger amplitude than all
of the following waves, whose amplitudes are also decreas-
ing with depth, as a higher proportion of melt accumulated
at the top of the perturbation. Similar formations of strongly
elongated fingers can be also observed in 3D, as shown by
Räss et al. (2019), who used decompaction weakening. In
the models with smaller radii, the main solitary wave con-
sisted of the majority of melt originally situated within the
perturbation, and just few or none secondary waves are able
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Figure 3. Melt ascent morphology as function of initial perturbation radius in terms of compaction length. (a) Initial conditions of the model
are valid for all cases apart of the change in compaction length. (b–j) Melt fraction distribution after t ′ = 02 for length scale ratios varying
between 2.4 and 48. (k) Diapiric rise resulting from a compaction length of zero at t ′ = 9. (l) Model transition time as a function of length
scale ratios varying between 1.8 and 120. The transition time gives the time after which the main wave has reached solitary-wave status.

to emerge. With increasing radius, more melt is left behind,
which allows for second and higher generations of solitary
waves.

For greater radii (e.g., r = 24 · δc− 48 · δc, Fig. 3f–j), the
phase velocities of solitary waves are almost equal to the
Stokes velocity (See Fig. 4). This leads to almost no sepa-
ration after t ′ = 0.2. While for r = 36 · δc a solitary wave has
already built up and is rising just ahead of the perturbation,
for r = 42 ·δc and r = 48 ·δc just the accumulation of melt at
the top of the perturbation can be observed, which will even-
tually lead to a solitary wave. Secondary waves also build up
with higher run times, as can already be seen for r = 36 · δc.

For even greater radii, the compaction length cannot be
sufficiently resolved with our approach, but tests using mod-
els that are not sufficiently resolved have shown that solitary
waves can be observed for r ≥ 48 · δc. At some point they no
longer appear, probably due to lack of sufficient resolution,
but our tests show that solitary waves should always emerge,
even if its phase velocity is way below the Stokes velocity.
As long as the ascending time is long enough and melt is
able, independent of segregation velocity, to move separately

to the matrix, a diapir will evolve into a swarm of a certain
number of solitary waves based on the compaction length.
Because the phase velocities of each small solitary wave are
small compared to the Stokes velocity of the full swarm, we
consider such a rising formation of melt a large-scale diapir.

Figure 3l shows the required time for the initial perturba-
tion to build up a solitary wave. This status is achieved after
the dispersion relation of the main wave reaches a point from
where it follows the solitary wave dispersion relation. This
time increases nearly linearly for small radii (r ≤ 48 · δc) but
increases nonlinearly for greater radii. This might be due to
lack of proper resolution, but a nonlinear trend can be already
observed for small radii. The transition time for radii smaller
than 30·δc is smaller than 0.2, the time at which the models in
Fig. 3b–j are shown. The other models already show solitary-
wave-like blobs but did not yet reach their final form.

A classical diapir will evolve only in cases with zero com-
paction length (r =∞·δc), i.e., melt is not able to move with
respect to the matrix (Fig. 3k). Here, no focusing into solitary
waves can be observed and transition time is infinity.
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Figure 4. The dashed line marks the velocity of the Stokes sphere
(v′ = 1). The colored lines refer to the velocity of a 2D solitary
wave, calculated semi-analytically by Simpson and Spiegelman
(2011), in our non-dimensionalization, based on the radii shown in
the legend.

Summarizing Fig. 4, the comparison of Stokes and poros-
ity wave velocities explains our observations shown in Fig. 3
well. For small initial radii the solitary wave velocity is
clearly higher and will therefore build up and separate from
the melt left behind quickly. For cases with approximately
equal perturbation to solitary-wave radius only one solitary
wave will build up, which includes most of the melt of the
initial perturbation. With increasing perturbation radius, the
velocity ratio decreases and multiple solitary waves, requir-
ing more time, will emerge, each including only a fraction of
the melt originally situated in the initial perturbation. How-
ever, even with velocity ratios smaller than 1, solitary waves
emerge and, not being able to separate, rise just ahead of the
remains, slowly elongating the initial perturbation.

3.2 Effects on the mass flux

It is important to study the partitioning between rising melt
and solid mass fluxes in partially molten magmatic systems
because melts and solids are carriers of different chemical
components. Within our Boussinesq approximation, we may
neglect the density differences between solid and melt. Thus,
our models allow the evaluation of vertical mass fluxes of
solid or fluid by quantifying the vertical velocity components
multiplied with the melt or solid fractions, respectively:

qsz
′
= (1−ϕ) · v′sz

and
qf z
′
= ϕ · v′f z. (28)

Horizontal profiles of the mass fluxes through rising melt
bodies are calculated at the vertical positions of maximum

melt fraction at time steps where the main wave has just
reached the status of a solitary wave (Fig. 5).

The mass fluxes of solid and fluid are strongly affected by
the change of the initial radius from the solitary-wave regime
towards the diapiric regime. For r = 2.4 · δc, where we ob-
serve a solitary wave, the fluid has its peak mass flux in the
middle of the wave and the solid is going downwards, i.e.,
against the phase velocity. In the center, the fluid flux is about
10 times higher than the solid net flux. The upward flow in
the center is balanced by the matrix-dominated downward
flow inside and outside the wave. For r = 12 · δc, the wave
area is much smaller and the ratio between solid and fluid
flux is still around the order of 10. At the boundary of the
wave, the solid is nearly not moving at all, but a minimum
can be observed within the center of it. For r ′ = 24 · δc, the
solid flux is just above zero in the center and increases to a
maximum towards the flanks of the wave that is still about 10
times smaller than the maximum fluid flux.

With r ′ = 48 · δc, the solid flux is about 3 times smaller
than the fluid flux, but most of the material ascent is accom-
plished by the solid. This suggests that diapiric rise begins to
dominate.

The transition from solitary waves towards diapirism on
qualitative model observations has so far only been based on
observations. We now invoke a more quantitative criterion.
In a horizontal line passing through the anomaly’s porosity
maximum, we define the total vertical mass flux of the rising
magma body by

∫
ϕ>ϕ0

(qf+ qs)dx, where the integration is
carried out only in the region of increased porosity ϕ > ϕ0.
This mass flux is partitioned between the fluid mass flux,∫
ϕ>ϕ0

qfdx, and the solid mass flux,
∫
ϕ>ϕ0

qsdx. With these
we define the partition coefficients

Csoli =

∫
ϕ>ϕ0

qfdx∫
ϕ>ϕ0

(qf+ qs)dx
, (29)

and

Cdia =

∫
ϕ>ϕ0

qsdx∫
ϕ>ϕ0

(qf+ qs)dx
. (30)

The sum Csoli+Cdia is always 1, and if Csoli > Cdia, then
the solitary wave proportion is dominant, while for Csoli <

Cdia diapirism is dominant. In Fig. 6a these partition coeffi-
cients for several initial radii are shown. In red the diapir is
shown, and in blue the solitary wave partition coefficients are
shown.

For r = 1.8 · δc, Csoli is equal to 5 and Cdia is equal to −4,
i.e., we have a downward solid flux. With increasing radius,
Cdia increases until it changes its sign and the matrix flows
upward, at r ≈ 20·δc. It eventually becomes bigger than Csoli
at r = 36 · δc and then approaches 1 for bigger radii. Csoli
changes so that the sum of both is always equal to 1. Even
though diapirism is dominant for r > 36 · δc, we still observe
solitary waves, yet their phase velocities are much smaller
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Figure 5. The upper row depicts the solid and fluid mass fluxes of a horizontal line cutting through the maximum melt fraction at time steps
where the main wave has just reached the status of a solitary wave. These time steps are t ′ = 002, 0068, 0155, and 0416 from left to right,
respectively. The bottom row depicts the corresponding melt porosity fields. All quantities shown are non-dimensional.

than the large-scale rising velocities of the full melt forma-
tion.

The ratio of maximum fluid velocity (i.e., vf) to absolute
matrix velocity (Fig. 6b) shows that for small radii, where
Csoli� Cdia, this ratio is approximately constant with a high
value of about 100. The absolute velocity maxima them-
selves are not constant but decrease with the same rate un-
til the switch of negative to positive matrix mass flux, where
the absolute matrix velocity starts to increase, while the fluid
velocity keeps decreasing. At this zero crossing we would
expect a ratio of infinity, but while the zero crossing takes
place within the center of the solitary wave, other regions
near the wave still have finite vertical velocities. This switch
from negative to positive mass flux was already observed by
Scott (1988), but while they changed the viscosity ratio as
an independent constant model parameter, we change the ra-
dius and keep the viscosity law the same while still evolving
with ϕ. Both describe the transition from a two-phase limit
towards the Stokes limit, but in our formulation we are able
to reach the Stokes limit, whereas Scott’s formulation (1988)
is restricted to two-phase flow. With even greater radii the ve-
locity ratio will eventually converge towards 1, where melt is
no longer able to move relatively to the matrix (i.e., vf = vs),
and material will be transported collectively as in single-
phase flow. These last models are not sufficiently resolved
to obtain leading and secondary solitary waves but still show
the expected behavior in terms of macroscopically rising par-
tially molten diapir.

Based on these observations, the evolution of these models
can be divided into three regimes. (i) In the solitary wave

regime (r ≤ 36 · δc)Csoli is larger than Cdia, and the initial
perturbation emerges into waves that have the properties of
solitary waves and ascend with constant velocity and staying
in shape. This regime can be further divided into (ia) (r < 20·
δc), where the solid mass flux is negative, and (ib) (20 · δc ≤

r < 36 · δc), where the solid moves upwards with the melt.
Waves in these regimes are very similar, but the further we
are in regime (ia), the fewer solitary waves will emerge out
of the initial perturbation. For radii smaller than about 4.8 ·δc
only one wave will merge. In regime (ib) the perturbation
will always emerge into multiple solitary waves.

In the diapirism-dominated regime of (ii) (r ≥ 36·δc), Cdia
is larger than Csoli, but as the fluid melt is still able to move
relatively to the solid matrix, solitary waves build up and
the whole partially molten region will evolve into a swarm
of them. The phase velocities of these waves are very small
compared to the Stokes velocity of the perturbation and the
whole swarm will rise as a diapir, whose buoyancy is still
comparable to the buoyancy of the initial perturbation.

The endmember of the second regime can be reached by
prohibiting the relative movement of fluid (r =∞· δc) for
which the compaction length has not to be sufficiently re-
solved. In this regime the initial perturbation will not dis-
integrate into solitary waves but instead will rise as a well-
formed partially molten diapir. In every other case in the
present model where fluid is able to move with respect to
the solid, at some point all diapirs will evolve into a swarm
of solitary waves that can be infinitely small compared to
the initial perturbation. However, this is expected to happen
only after a long distance of diapiric rise. In cases where the
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Figure 6. Quantitative parameters as function of initial perturbation radius in terms of compaction length. (a) Solitary wave (blue) and diapir
(red) partition coefficients for several initial perturbation radii. (b) Ratio of maximum fluid velocity to maximum absolute solid velocity in
the entire model.

size of solitary waves is comparable to the perturbation (e.g.,
regime i) this will occur sooner, and in cases where solitary
waves are much smaller this will occur later. Their observa-
tion is mostly limited by resolution. For models that allow
for the diapir to grow (e.g., Keller et al., 2013), they may
not dissolve into solitary waves as they approach the single-
phase limit.

4 Discussion

4.1 Application to nature

While in our models the perturbation size in terms of com-
paction lengths was systematically varied but kept constant
within in each model, our results might also be applicable
to natural cases in which the compaction length varies ver-
tically. In the case of compaction length decreasing with as-
cent, a porosity anomaly might start rising as a solitary wave,
but it may at some point enter the second regime where di-
apiric rise is dominant. If this boundary is sharp, the solitary
wave might disintegrate into several smaller solitary waves
that rise as a diapiric swarm. If the boundary is a continuous
transition, the wave should slowly shrink and become slower.
The melt left behind might also evolve into secondary soli-
tary waves.

A decreasing compaction length could be accomplished
by decreasing the matrix viscosity or the permeability or by
increasing the fluid viscosity. Decreasing matrix viscosity
might be explainable by, for example, local heterogeneities,
temperature anomalies due to secondary convective over-
turns in the asthenosphere, or a vertical gradient of water
content, which may be the result of melt-segregation-aided
volatile enrichment at shallow depths in magmatic systems.
This could lead to the propagation of magma-filled cracks
(Rubin, 1995), as already pointed out in Connolly and Pod-
ladchikov (1998). The latter authors have looked at the ef-

fects of rheology on compaction-driven fluid flow and had
similar results for an upward weakening scenario. A decrease
in permeability due to a decrease in background porosity
might be an alternative explanation. In the hypothetical case
of a porosity wave reaching the top of partially molten re-
gion within the Earth’s upper mantle or lower crust, the
background porosity might decrease, which would most cer-
tainly lead to focusing because the compaction length will
decrease, and eventually, when reaching melt-free rocks,
the solitary waves might be small enough and have a high
enough amplitude to trigger the initiation of dikes.

Even though most diapirs should, according to our mod-
els, disintegrate into numerous solitary waves, not all will
inevitably do so. Within regime (i), solitary waves are pos-
sible and most probably expected, but the deeper we are in
regime (ii) the less expected the disintegration is because
a long time is needed for it to build up. In nature, in con-
trast with our models, they cannot rise for an infinite amount
of time. The time needed to build up a solitary wave in-
creases nonlinearly with r (see Fig. 3l). For example, while
for r = 4.8 · δc a solitary wave is completely evolved after
t ′ = 0.02, for r = 48·δc it needs until t ′ = 0.4, i.e., equivalent
to the diapiric rise time necessary to ascend the distance of
approximately half the initial radii. Additionally, as already
pointed out, if a model setup allows for the diapir to grow, it
could approach the single-phase flow, prohibiting the emer-
gence of solitary waves (see Keller et al., 2013).

4.2 Model limitations

The introduced partition coefficients help to distinguish
whether solitary-wave or diapiric rise is dominant but cannot
be solely consulted as to whether a solitary wave or a diapir
can be expected. As the fluid velocity and flux are still very
high in the wave center for diapiric-dominant cases, small
solitary waves will build up. However, the net mass flux is
dominated by the large-scale rising solid, and the formation
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time of small solitary waves might be long. Additionally, the
internal circulation of diapirs can be faster than the phase
velocity, which would smear out the emergence of solitary
waves and would not allow for them to emerge. Due to the
limitations of our model, we are not able to reach regions
where solitary waves are small enough and their phase ve-
locity slow enough to observe this.

While the minimum size of solitary waves in nature might
be in some way limited by the grain size, in numerical mod-
els the minimum size is limited by the model’s resolution.
We restrict our models in this study to cases where the com-
paction length is at least resolved by three grid lengths dx
(i.e., δc ≥ 3·dx) to get fairly resolved solitary waves, but they
can be also observed for compaction lengths that are resolved
much more poorly. The resolution test (Fig. 2) shows that,
even though they are not solved decently, probable solitary
waves can be observed for cases with δc = dx. Smaller reso-
lutions can show indications of solitary waves but should not
be trusted, as other tests (not shown here) with similar resolu-
tions result in spurious channeling. For very poorly resolved
compaction lengths (δc < 0.25 · dx for our models), no indi-
cations of solitary waves can be observed, and the partially
molten perturbation ascends as a diapir. The deeper we are
in regime 2, the more dominant the dynamics of diapirism
are on a length scale of r compared to Darcy flow or solitary
waves on the unresolved length scale of δc. Thus, two-phase
flow, either Darcy flow or solitary waves, becomes negligible
for r � δc, and partially molten diapirs can be regarded as
well resolved.

5 Conclusions

This work shows that, depending on the extent of a partially
molten region within the Earth, the resulting ascent of melt
may not only occur by solitary waves or by diapirs but in-
stead by a composed mechanism where a diapir splits up into
numerous solitary waves. Their phase velocities might be-
come so slow that the whole swarm will ascend as a diapir,
only slowly elongating due to the main solitary wave hav-
ing a higher amplitude and therefore higher phase velocity
than the following ones. Depending on the ratio of the melt
anomaly size to the compaction length (or rather the model
length scale to compaction length ratio), we can classify the
ascent behavior into two different regimes using mass flux
and velocity of matrix and melt: (ia+ b) solitary wave a
and b regimes, and the (ii) diapirism-dominated regime. In
regime (ia), the matrix sinks with respect to the rising melt,
and in regime (ib) the matrix also rises but only very slowly.
The further we are in this regime, the fewer solitary waves
will emerge out of the initial perturbation until eventually
only one solitary wave will emerge. On the first order, these
regimes can be explained by comparing Stokes velocity of
the rising perturbation with the solitary-wave phase velocity.
If the solitary-wave velocity is higher than the Stokes veloc-

ity, a solitary wave will evolve, and if it is lower it means
that diapirism is dominant but that solitary waves will still
build up if the ascending time is long enough. The deeper we
are in regime (ii), the more time is needed to build up soli-
tary waves and the less likely it is that they will appear in
nature. The endmember regime (ii), i.e., pure diapirism, can
be reached if fluid is not allowed to move separately from the
matrix.

Numerical resolution plays an important role, especially
around the transition of the regimes, as the compaction length
may be under-resolved to allow for the emergence of solitary
waves. Hence, it should be generally important for two-phase
flow models to inspect whether solitary waves are expected
and, if so, whether they have a major influence on the con-
clusions made.
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