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Abstract: Throughout life, macrophages are located in every tissue of the body, where their main
roles are to phagocytose cellular debris and recycle aging red blood cells. In the tissue niche, they
promote homeostasis through trophic, regulatory, and repair functions by responding to internal and
external stimuli. This in turn polarizes macrophages into a broad spectrum of functional activation
states, also reflected in their iron-regulated gene profile. The fast adaptation to the environment in
which they are located helps to maintain tissue homeostasis under physiological conditions.

Keywords: macrophage polarization; iron metabolism; disordered iron metabolism

1. Iron and Macrophage Polarization—A General View

Macrophages (MΦ) are innate immune cells located in every tissue of the body. They
are involved in processes as diverse as inflammation, development, tissue remodeling,
and metabolism. MΦ show remarkable plasticity depending on signals derived from the
organ niche in which they are located [1]. Through their capacity to engulf and digest
foreign particles, such as pathogens, tissue debris, or damaged cells, they play a critical
role in maintaining tissue homeostasis. In many organs, tissue-resident MΦ are derived
from precursor cells of fetal origin that are self-renewing and long-lived, and maintain
a homeostatic pool without contribution of infiltrating monocytes [2]. In some tissues,
however, monocyte-derived cells with a shorter lifespan can replace tissue-resident MΦ.

MΦ show enormous plasticity and functional diversity, which allow for rapid adapta-
tion of the MΦ phenotype to varying stimuli within an inflammatory environment [3]. Two
extreme phenotypes, namely the classical and alternative MΦ phenotypes, were identified
within a broad continuum of different possible MΦ activation states. Classically activated
MΦ show a potent pro-inflammatory profile and play a critical role in host defense against
microbes, as well as tumors [4]. This MΦ subpopulation activates the production and
secretion of pro-inflammatory mediators such as tumor necrosis factor (TNF)-α; interleukin
(IL)-1β, IL-6, IL-12, and IL-23; and reactive oxygen (ROS) and nitrogen (Nos) species [5,6],
and is capable of presenting antigens to T cells. In contrast, alternatively activated MΦ
represent a functionally opposite phenotype, with enhanced secretion of anti-inflammatory
cytokines and chemokines, expression of specific phagocytic receptors, production of extra-
cellular matrix, and growth factors that are pivotal for tissue remodeling [7]. They are key
to the resolution of inflammation and to combat extracellular parasites.

Taking this functional diversity into account, it is not surprising that their polarization
profile may also be reflected by diverse iron-associated phenotypes [8]. The steps of iron
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recycling from erythrocytes in MΦ comprise uptake, storage, and release of iron. In line
with a healing and supportive role, alternative MΦ express high levels of transferrin
receptor (TfR)1 [9] and low levels of ferritin, and contribute to tissue homeostasis by
recycling red blood cells or iron in the form of heme, hemoglobin, and hemopexin, as
well as by clearing away dead cells [10,11]. High levels of ferroportin (FPN1) coupled
with clearance functions suggest that alternative MΦ retain low levels of iron, but actively
provide iron to tissue cells, thereby acting as nutritive suppliers [12,13]. On the contrary,
iron-loaded MΦ have low levels of FPN1, as well as high levels of TFR1 and ferritin. Iron-
retaining MΦ also show enhanced expression of pro-inflammatory cytokines, such as IL-6,
IL-1β, and TNFα, which in turn are essential for the sequestration of iron in situations
where iron maybe detrimental; i.e., during infection [10]. The special way that MΦ handle
iron is also a significant factor in reinforcing their activation status, thereby acting as a
phenotypic driver [10].

By applying iron to MΦ, unstimulated bone-marrow-derived MΦ (BMDMs) can be
activated to a classical-like phenotype [14,15]. The importance of iron in promoting this
phenotype has also been demonstrated for classical polarization of MΦ, where classical
activation was attenuated in MΦ lacking an iron source [16]. Moreover, studies have
shown that applying NTBI to alternative-like MΦ can initiate a phenotypic switch towards
an classical-like phenotype [15,17]. While these results obtained in cultured cells may
show more pronounced effects compared to in vivo situations, these experiments show the
potential of iron in dictating MΦ function. The degree of activation critically depends on
the iron source.

In this review, we will focus on the important role of MΦ in iron metabolism, covering
iron uptake, acquisition, storage, and release. As a consequence of phagocytosing damaged
erythrocytes and other cell types that contain iron, they serve as an iron store able to supply
iron for erythropoiesis, as well as to neighboring cell types in need of iron to stimulate
their proliferation and growth; i.e., during recovery phases after severe tissue damage. As
iron is a critical component of enzymes of the electron transport chain that assures cellular
energy production and proteins involved in DNA synthesis, or for metabolic enzymes, iron
is essential in all cell types.

2. MΦ in Systemic Iron Homeostasis

More than half of the iron contained in the adult human body (approx. 4 g) is found
in hemoglobin within erythrocytes [8]. The recycling of iron from aging or damaged red
blood cells in MΦ contributes most of the iron required for erythropoiesis. Only 1–2 mg of
iron/day is absorbed from the diet by the gastrointestinal (GI) system, compensating for
iron losses due to desquamation and bleeding, whereby approximately 25 mg of iron/day is
supplied by MΦ as a consequence of erythrophagocytosis (reviewed by Muckenthaler et al.
in [18]).

Erythrocytes that reach their maximum life span of approximately 120 days are re-
cycled by highly specialized splenic red pulp MΦ [19,20]. These MΦ are produced by
progenitors that migrate to the spleen perinatally, involving transcriptional programs
induced by the transcription factors SPI-C and PPARγ [21,22]. Their primary functions
include the filtering of microorganisms and senescent red blood cells.

Aging-related changes in erythrocytes, including alterations and membrane cluster-
ing of the highly abundant membrane protein Band 3, the appearance of phosphatidyl
serine (PS) on their outer leaflet of the outer membrane, or increased membrane rigidity,
are recognized by specific receptors expressed by MΦ [23,24]. In addition, infections,
hemoglobinopathies, or alterations in metabolism may induce a cell-death program in red
blood cells called eryptosis, a state recognized by MΦ [20]. The ingested erythrocyte enters
the phagocytic vacuole, where exposure to ROS or hydrolytic enzymes causes release of
hemoglobin and heme into the vacuolar fluid. While some studies indicate that iron is
released from heme in the phagolysosome and transported to the cytoplasm as iron, more
recent evidence suggests that heme is transported across the phagolysosomal membrane
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by the heme transporter heme-responsive gene-1 (HRG-1) [25]. Heme-oxygenase (HO-1), a
membrane-bound enzyme, is essential for heme degradation of iron, biliverdin, and carbon
monoxide [26]. A lack of HO-1 in mouse models causes iron accumulation in spleen and
liver of mice and low serum iron availability in the plasma—consistent with a defect in
iron recycling [26,27].

Conditions such as hemoglobinopathies, excessive exercise, or infections may trigger
uncontrolled lysis of erythrocytes in the vasculature. As a consequence, hemoglobin or
heme is released into the bloodstream [28]. Hemoglobin is recognized by haptoglobin,
and the resulting complex is endocytosed by hepatocytes and MΦ via the cluster of
differentiation (CD)163 receptor [28]. Oxidation of hemoglobin converts heme-bound
ferrous iron to ferric iron (hemin), which will be recognized by hemopexin. Hemopexin–
heme complexes bind the CD91 receptor and are internalized into MΦ and hepatocytes,
where iron is released via the activity of HO-1 [29].

Iron released from heme into the cytoplasm initially enters the redox-active labile iron
pool (LIP). Heme and/or iron activate the nuclear factor erythroid 2-like (NRF2), a tran-
scription factor that assures coordinated iron recycling via stimulating transcription of the
iron storage protein ferritin and iron export via the sole known iron exporter FPN1 [30,31].
In addition, iron levels activate ferritin and FPN1 translation by inhibiting its repression by
the iron responsive element (IRE)/iron responsive protein (IRP) regulatory system [32].

FPN1 is a member of the major facilitator superfamily of transporters, and acts together
with a ferroxidase, ceruloplasmin (CP), that converts the exported ferrous to ferric iron for
binding to the plasma carrier protein transferrin (Tf) [33]. Tf-bound iron can be taken up
by cells that express TfR1 to satisfy their iron demand. Importantly, the process described
here may not only occur in MΦ specialized for iron recycling, but also in MΦ infiltrating
hemorrhagic tissues (e.g., during cancer or a hemorrhagic stroke). Iron export from MΦ
via FPN1 is a highly regulated process involving transcriptional, post-transcriptional,
and post-translational mechanisms. The iron-regulated hormone hepcidin plays a critical
role in the control of FPN1 cell surface expression. Hepcidin is produced by the liver in
response to high iron levels and inflammation. Under these conditions, hepcidin binding to
FPN1 triggers FPN1 ubiquitinylation and degradation, and thus prevents iron export from
MΦ [34]. The same mechanism controls dietary iron uptake in the duodenum. Increased
hepcidin levels in the liver due to high iron availability thus act in a negative feedback
manner to prevent additional iron uptake. Under inflammatory conditions, high hepcidin
levels trigger iron retention in MΦ, whereby iron availability in the plasma is reduced [35].
This is considered an innate immune mechanism that restricts iron; e.g., for growing
microorganisms. However, if the infection persists, too little iron will be available for red
blood cell synthesis, and as a result, anemia of inflammation will develop. We recently
demonstrated that MΦ also decrease FPN1 transcription in response to inflammation to
retain iron. Patterns recognized by the toll-like receptors (TLR) 2 and 6 convey signals to
inhibit Fpn mRNA expression independently of hepcidin [36]. In contrast, TLR 4-mediated
signals decrease Fpn mRNA levels and induce hepcidin at the same time [37]. On the other
end of the spectrum, high iron demand for erythropoiesis and hypoxic conditions reduce
hepcidin levels in the liver, allowing for efficient iron export out of MΦ to supply iron to
the bone marrow to stimulate erythropoiesis.

MΦ not only phagocytose aging red blood cells, but also engage in the elimination
of apoptotic cells in a process called programmed cell removal or efferocytosis [38]. A
combination of “find-me” and “eat-me” signals exposed by apoptotic cells triggers their
phagocytosis. Once a physical connection is established between apoptotic cells and MΦ,
signalling events are triggered, causing internalization of the apoptotic particle in the
phagolysosome. During this process MΦ produce mainly anti-inflammatory cytokines
such as transforming growth factor (TGF)-b, prostaglandin E2 (PGE2), or interleukin (IL)-10,
and suppress the production of proinflammatory cytokines such as tumor necrosis factor
(TNF)-a, IL-1, IL-12, and IL-8. This process avoids tissue inflammation. Any disturbance
of efferocytosis can cause disorders such as inflammatory and autoimmune diseases,
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atherosclerosis, and cancer. How MΦ handle iron during the efferocytosis process requires
further investigation [39].

Taken together, MΦ play a central role in balancing iron levels in the plasma to supply
sufficient amounts of iron to all cell types, and at the same time, prevent iron excess that
cause cellular toxicity and ferroptosis mediated by Fenton chemistry.

3. Gastrointestinal System
3.1. Gut MΦ

Former belief advocated for tissue MΦ being generated from blood monocytes derived
from bone marrow progenitors. However, recent developments demonstrated that many
tissue MΦ exist independently from conventional hematopoiesis, and rather arise from
yolk sac or fetal liver precursors. In contrast, it appears that the intestine is initially
seeded by embryo-derived MΦ that are substituted, over time, by MΦ generated through
hematopoiesis. In the steady state, the largest population of resident MΦ in the body is
found in the intestine. Like their counterparts in other tissues, GI MΦ are highly phagocytic
and participate in tissue remodeling and removal of cellular debris. Gut MΦ are considered
key players in the maintenance of gut homeostasis, as they produce crucial cytokines
and factors involved in the proliferation and differentiation of epithelial progenitors and
enteric neurons to prevent excessive inflammation. This is of crucial importance, as the
intestine has the highest bacterial burden in the body. Exposure of these MΦ to foreign
antigens does not result in overt inflammatory responses, likely due to their priming to
commensal microbiota (reviewed in [40]). An imbalance in MΦ activation skews this
delicate equilibrium in favor of loss of tolerance towards common gut antigens, resulting
in chronic inflammation observed in patients with inflammatory bowel disease (IBD) [41].
Most knowledge about the iron metabolism of the gut microenvironment by MΦ was
gained by studying pathological inflammation, for which anemia is a consistent clinical
feature. Anemia is caused either by impaired iron uptake, as a result of gut inflammation,
or by blood loss in the GI tract that is not compensated by duodenal iron absorption (see
section above) [42–44]. Moreover, local and systemic inflammation may contribute to the
establishment of functional iron deficiency, further adding up to form the above-mentioned
clinical picture. In this setting, GI MΦ are of particular importance, since they are major
local producers of cytokines, thus creating the inflammatory microenvironment [45–47],
and they are also the main iron-retaining cells due to downregulation of the iron exporter
FPN1 under inflammation [36,48]. Moreover, impairment of the immune response has been
reported both during iron deficiency and overload (reviewed in [49,50]), likely reflecting
a narrow range for cellular iron levels promoting proper immune responses, which may
have consequences for MΦ immunosurveillance. In fact, several studies have described
a link between Helicobacter pylori stomach infection and iron-deficiency anemia [51–53],
but a clear physiological mechanism and potential relationship with MΦ iron handling
remains unexplained. Likewise, physiological mechanisms regulating iron absorption
in the duodenum and proximal jejunum are directed towards enterocytes, but whether
interactions with other cell types in the GI tract influence the process has not been studied so
far. Interestingly, in a recent work, Bessman and coworkers identified type 2 conventional
DCs (cDCS2), and not MΦ, as the main myeloid producers of hepcidin in the colon in
IBD. In this setting, hepcidin is required for intestinal repair, as demonstrated by abnormal
colonic architecture and altered composition of the intestinal microbiota in Hamp∆CD11C

mice treated with dextran sodium sulfate (DSS) in comparison with treatment-matched
controls. Nonetheless, they also demonstrate that FPN1-expressing MΦ are main targets for
hepcidin-mediated mucosal healing [54]. As dendritic cell-derived hepcidin only appears
to be induced in the inflamed intestine, the potential role for the local regulation of iron
distribution by hepcidin derived from myeloid cells in the gut still remains unidentified.
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3.2. Other MΦ Populations in the Gastrointestinal System

Hepatic-resident MΦ (Kupffer cells [KCs]), in contrast to gut MΦ, are derived from
fetal liver precursors, and constitute the most abundant type of immune cells in the
liver. Besides the embryo-derived KCs, the liver is also populated by the liver capsular
MΦ, arising from adult circulating monocytes [55]. KCs perform primary scavenging,
phagocytic, and immune-surveillance functions in the liver, and are able to modulate
the liver’s regulatory functions in terms of iron homeostasis. This is best represented
by the ability of KCs to downregulate hepcidin levels, as in vivo liposome-encapsulated
clodronate depletion of KCs results in increased hepcidin expression, with a concomitant
reduction in serum iron levels [56]. KCs are located within the lumen of liver sinusoids,
and this privileged location allows for contact with, among others, nutrients, pathogen-
associated molecules, and toxins transported from the GI tract via the portal vein.

Although KCs are highly tolerogenic, some of these products will still lead to their
activation [57]. This is particularly important for the detection of pathogenic ligands, given
that KCs are the first immune cells in the liver to come in contact with this type of product,
and also are the main liver producers of the hepcidin-activating cytokine IL-6 [48,57].
Despite that, other studies have reported that KCs are not required for the induction of
hepcidin upon iron overload or inflammation [58,59]. Another major role of KC in the
liver is erythrophagocytosis. After the spleen, the liver is the second most important
organ for red blood cell (RBC) and iron recycling [60], with recent studies reporting that,
under pathological conditions causing damage of RBCs in the bloodstream, the liver is the
primary site for RBC clearance [61,62], offering another layer of protection against an acute
heme insult. Several studies have also established a role for KCs in the development of
liver diseases, such as alcoholic liver disease (ALD), non-alcoholic steatohepatitis (NASH),
fibrosis, or hepatocellular carcinoma (HCC) [63]. Reported associations between the func-
tional phenotype of KCs and the progression of hepatic diseases reflect a wider spectrum
of MΦ polarization than reported for most diseases. Whether disease progression and/or
severity is influenced by the iron status of KCs, as has been demonstrated for KC iron
loading in experimental ALD [64], remains a topic of interest.

Furthermore, tissue-resident MΦ also populate the exocrine and endocrine pancreas,
where they perform functions related to immune surveillance and likely angiogenesis
or lymphogenesis, depending on their location [65]. Origin and phenotype of pancre-
atic MΦ differs according to their microenvironment. MΦ in the islets of Langerhans
have been reported to be derived from conventional definitive hematopoiesis and dis-
play an inflammatory phenotype, while MΦ in the exocrine pancreas may be derived
either from primitive or definitive hematopoiesis and are mostly tolerogenic [66]. The
pro-inflammatory phenotype of MΦ in the islets of Langerhans, crucial for the constant
probing of the microenvironment in their vascular beds, has been deemed particularly
detrimental in pathological conditions such as diabetes [65,67,68]. In the context of tissue
iron regulation, β cells on the islets are particularly susceptible to lipotoxicity under iron
deficiency [67], and it has been postulated that MΦ could supply β cells with the neces-
sary iron to protect them from this type of assault [68]. However, in mouse models of
iron overload, iron has been shown to be stored mainly in the exocrine pancreas, more
specifically in acinar cells [69–71]. Although it may be tempting to hypothesize that the
different intraregional MΦ phenotypes (and iron handling) may contribute to the observed
differences in iron loading in the pancreas, experimental validation still awaits.

3.3. MΦ and Malignancies of the Gastrointestinal System

As iron is an essential nutrient for (malignant) cell proliferation, iron intake and
systemic iron levels have been historically considered risk factors for colorectal cancer
(CRC) [72–74]. As reported for other cancer cell types, CRC cells display an “iron-retaining”
phenotype with increased expression of iron importers and decreased expression of iron
exporters in advanced tumors [75,76], correlating with elevated iron content in CRC in
comparison with normal adjacent tissues [75,77]. Accordingly, mice on a low-iron diet
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developed fewer colon tumors in comparison with mice on an iron-replete diet [77,78]. As
chronic inflammation is a major hallmark of CRC, it is not surprising that the presented
risk for CRC in IBD patients is substantially higher [79,80]. Iron is thought to promote
tumorigenesis in an inflammatory setting, as dietary iron supplementation worsens chronic
inflammation and promotes tumor development in CRC mouse models [81,82]. In the
tumor microenvironment, MΦ represent the largest infiltrating leukocyte population,
influencing the formation, growth, and metastasis of tumors through their interaction with
cancer cells. Despite this general “dogma”, the contribution of MΦ to the development
of CRC is less clear, and has been attributed to differences in MΦ characterization and
location within the tumor [83]. In general terms, the presence of pro-tumorigenic MΦ
in the tumor microenvironment has been considered an adverse prognostic marker of
survival for several cancer types [84,85]. These MΦ are characterized by the surface
expression of CD163, a hemoglobin scavenger receptor and therefore specialized in the
uptake of heme-bound iron [86,87]. This parallels the current concept that these MΦ may
further contribute to tumor growth and development due to their iron-recycling capacity,
promoting iron release towards cancer cells via high expression of the iron exporter FPN1
and carrier lipocalin-2 (LCN-2) [15,88,89]. Things are further complicated in the case of
CRC, with several studies demonstrating that increasing numbers of MΦ infiltrating the
tissue microenvironment correlated with improved survival in patients [90,91], which may
reflect higher numbers of iron-loaded, pro-inflammatory, and anti-tumorigenic MΦ. Recent
studies have shed light on this controversy by demonstrating that MΦ infiltration may
exert different effects on tumor growth and progression, depending on the tumor site
and hypoxia conditions (reviewed in [88]), but to the best of our knowledge, to this date,
the “iron phenotype” of these MΦ has not been identified in CRC, nor correlated with
clinicopathological markers of behavior and progression.

4. Cardiovascular System
4.1. Cardiac MΦ Populations

Different MΦ subpopulations have been described in the heart involving tissue-
resident MΦ, embryonically-derived MΦ, and infiltrating monocyte-derived MΦ [89,92,93].
Cardiac-resident MΦ originate from self-renewing embryo-derived populations, and can
be classified in various subsets. MΦ precursors have been shown to seed the embryonic
heart beneath the epicardium [94]. Their property to self-renew faints with aging, and
monocyte-derived MΦ gradually substitute the embryo-derived subpopulation [93]. The
diversity of the cardiac MΦ phenotype is constantly shaped to ensure tissue homeostasis
by fulfilling tissue-specific functions, ranging from homeostatic functions, such as clear-
ance of cellular debris, up to major roles in tissue immune surveillance and resolution
of inflammation. Recently, it was also shown that cardiac MΦ modulate the electrical
activity of cardiomyocytes and are able to facilitate electrical conduction through the distal
atrioventricular node [95]. These diverse properties are attributed to distinct MΦ subtypes
that are reflected by their polarization state.

All populations that have been identified in the mouse heart express varying levels of
lymphocyte antigen 6 (Ly6C) and major histocompatibility complex (MHCII) [96,97]. In the
healthy heart, yolk-sac-derived resident MΦ negative for Ly6C and C-C chemokine receptor
type 2 (CCR2) predominate together with embryonic progenitors that are not replenished by
circulating monocytes under steady-state conditions [89,98]. This subgroup of MΦ contains
MHCII-low and -high subsets. CCR2+ MΦ are replenished by blood monocyte recruitment
and local proliferation, whereas CCR2– MΦ are repopulated by local proliferation [23].
Resident MΦ in the healthy state are anti-inflammatory and express a gene profile similar to
alternative MΦ, promoting angiogenesis and tissue repair to maintain cellular homeostasis.
Under physiological conditions, resident cardiac MΦ remove senescent and dying cells in
the myocardium. Considering their phagocytic activity, cardiac-resident MΦ are polarized
towards an anti-inflammatory state, and it may be speculated that this subpopulation
releases iron to the cardiac environment to maintain cellular homeostasis.
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In contrast, infiltrating pro-inflammatory monocyte-derived MΦ (Ly6C+ CCR2− and
Ly6C+ CCR2+) promote tissue injury and death by substitution of the resident MΦ sub-
population [89,98–100]. After injury under inflammatory conditions, there is evidence that
resident MΦ are substituted by splenic or bone-marrow-derived MΦ (BMDMs) [101,102].
Due to their polarization profile, monocyte-derived infiltrating MΦ may sequester iron
and thereby foster cardiac injury and scar formation. Experimental ablation of resident
MΦ has shown that BMDMs are able to replace the resident MΦ population under some
conditions [103,104]. Depletion of resident cardiac MΦ in a murine model of myocardial in-
farction resulted in an increased infarct area, reduced left ventricular (LV) systolic function,
and aggravated LV remodeling [99]. So far, there is not much known about the cardiac
MΦ iron phenotype in health and disease. However, it is well known that cardiac iron
levels must be tightly regulated; cardiomyocytes are highly susceptible to iron-induced cell
death, known as ferroptosis. However, they also require high amounts of iron for energy
production in mitochondria by iron-containing enzymes. This makes iron an important
player and an additional risk factor for cardiovascular disease. Metabolic disturbances can
lead to changes in the myocardial structure and cardiac function by inducing a smolder-
ing inflammation and, in turn, oxidative stress, mitochondrial dysfunction, endoplasmic
reticulum stress, and impaired calcium handling [105].

4.2. Role of Iron and MΦ in Cardiac Inflammation and Disease

When the heart is under stress or injured, it undergoes cardiac remodeling, involving
structural and functional changes [106]. These include cardiac hypertrophy [107], fibro-
sis [108], apoptosis [109], and an altered metabolism. In the first 24 h after coronary ligation
in mice, half of all monocytes recruited to the heart derive from splenic reservoirs [110].
After entering the cardiac tissue, monocytes differentiate to MΦ that are recruited by
the CCL2/CCR2 axis [111,112] to produce both pro-inflammatory and anti-inflammatory
mediators, phagocytose dead cells, and promote angiogenesis and scar formation. Di-
rectly after an acute ischemia/reperfusion injury, the inflammatory response of MΦ is
required for clearance of the necrotic myocardium by phagocytosis [113]. The recruitment
of reparative monocytes (Ly6C−) helps to resolve inflammation and promote wound heal-
ing [114]. The highest level of this inflammatory MΦ subtype can be found approximately
3 days after injury [98]. At day 5–7 [115,116], MΦ populations reach their maximum in
the infarct zone predominantly with a pro-inflammatory phenotype. After cardiac injury,
the microenvironment becomes hemolytic due to ROS causing cellular debris due to dis-
ruption of red blood cells, as well as the breakdown of collagen. It may be speculated
that in this microenvironment, MΦ may become iron-loaded by clearing the cardiac tis-
sue. Additionally, iron itself could trigger inflammation, as ferric ammonium citrate was
shown to induce MΦ-dependent IL-1β secretion and trigger ventricular arrhythmias in
mice [117]. IL-1β is a regulator of the inflammatory response occurring after myocardial
infarction, and is involved in the recruitment of immune cells, cytokine production, and
extracellular matrix degradation. The underlying inflammatory signaling cascades of these
cytokines facilitate an early response to myocardial injury, and entails mitochondrial ROS
overproduction [118]. ROS-mediated mitochondrial dysfunction and lysosomal membrane
permeabilization trigger inflammasome activation via hypoxia inducible factor (HIF) [105].
HIF increases TfR1 expression at the transcriptional level, leading to an increased iron ac-
cumulation and enhanced oxidative damage by ROS [119]. Iron overload occurring during
hereditary hemochromatosis or cardiac hemorrhage increases the LIP and contributes to
iron-mediated cell death of cardiomyocytes [120] and cardiac dysfunction [121]. In turn,
cardiomyocyte death and cardiac dysfunction cause an increased accumulation of lipid
peroxides [121]. For example, it was shown that high serum iron levels are correlated
with severity of coronary artery disease [122]. During the course of atherosclerosis, iron is
deposited in lesions in the form of hemoglobin/hemin occurring during hemolysis in the
inflammatory microenvironment or intraplaque hemorrhage, which further contributes to
intracellular accumulation of iron and inhibition of phagocytosis [123]. In humans, it has
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been shown that atherosclerotic lesions contain high amounts of ferritin light and ferritin
heavy chain, highlighting the accumulation of iron [124]. The LIP of circulating monocytes
was positively correlated with the TfR1/ferritin ratio and hepcidin levels, as well as the
progression of atherosclerosis and arterial stiffness [125]. It may be speculated that the LIP
of monocytes could be an indicator of atherosclerotic conditions in arteries [120]. Addition-
ally, heme, as well as iron, were found to contribute to LDL formation in different cell types,
such as endothelial cells [123], smooth muscle cells [126], and MΦ [127]. Nevertheless,
systemic parameters measured in the blood of patients such as ferritin and Tf also could be
useful markers for elevated serum iron concentrations associated with increased syntax
score and atherosclerosis severity [122]. A relation between plasma iron values and the
intracellular iron content is not fully understood. Inflammatory mediators contribute to
atherosclerosis, and additionally increase the expression of hepcidin. In turn, serum iron
levels are reduced by decreased duodenal iron absorption and iron sequestration in MΦ.
In contrast, hepcidin deficiency is protective for atherosclerosis by reducing MΦ iron and
the inflammatory phenotype [128].

Iron deficiency during heart failure is highly prevalent, affecting up to 50% of pa-
tients [129,130]. Iron deficiency results in left ventricular hypertrophy and dilatation, and
cardiac fibrosis. At the molecular level, if iron uptake is impaired by cardiomyocyte-specific
knockout of TfR1 in mice, severe heart failure is observed due to a failure of mitochon-
drial respiration [131]. In early clinical studies, iron deficiency in heart failure patients
was only considered clinically relevant in combination with anemia. More recent studies
demonstrated that reduced hemoglobin levels were the result of a process starting with
the gradual depletion of iron stores [132]. Even in the absence of anemia, iron deficiency is
common in heart failure patients [133,134] and is an independent predictor of poor out-
come [134]. The pathophysiology of why iron deficiency correlates with poor prognosis in
heart failure patients and how iron supplementation affects these patients, especially at the
cellular level, is incompletely understood. During heart failure development, inflammation
plays a central role, whereby the inflammatory response enables regenerative processes. In
the early stages, Ly6C+ monocytes infiltrate the heart and differentiate into inflammatory
MΦ, promoting adverse left ventricular remodeling [135]. Considering the abundance
of this MΦ subpopulation and the polarization profile, it may be speculated that iron is
trapped inside immune cells, causing cellular iron deficiency, and thereby contributes to
cardiac injury. Interestingly, the systemic iron status does not necessarily correlate with
the cellular iron status [136]. A reduced cardiac iron content may occur despite normal
systemic iron stores [137]. In turn, cardiac mitochondria may be iron-overloaded in heart
failure patients despite systemic iron deficiency [138].

5. Kidney
5.1. MΦ Phenotypes in Acute and Chronic Renal Pathologies

MΦ are involved in promoting kidney injury, but also in fostering resolution of inflam-
matory disease, as well as renal repair [139,140]. MΦ constitute one of the major infiltrating
immune cell populations following renal damage, whereby their function largely depends
on their phenotypic characteristics and their activation status [141]. We and others found
that MΦ adopt an inflammatory phenotype with enhanced expression of iNOS [142] and
pro-inflammatory cytokines, including IL-1β and TNF-α [143], during early phases after
acute renal injury, whereas during later phases of resolution and recovery, predominately
anti-inflammatory, arginase-1 (Arg1)-expressing, mannose-receptor-positive MΦ were iden-
tified. These observations were impressively shown by MΦ depletion studies, in which
inhibition of MΦ infiltration not only blocked injury development during acute phases of
injury, but also inhibited renal repair mechanisms in subsequent recovery and resolution
phases [144]. Whereas MΦ depletion before the onset of acute injury protected against the
loss of renal function and tubular injury upon acute kidney injury (AKI), the infusion of
pro-inflammatory MΦ was able to restore the AKI injury profile [145,146]. Accordingly, we
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found that ex vivo genetically modified anti-inflammatory MΦ clearly protected against
ischemia-dependent functional decline and kidney inflammation [143,147].

Therefore, it may be speculated that the control of the local MΦ phenotype plays a de-
cisive role in disease outcome. Ly6C+ monocytes are attracted to the inflamed kidney after
acute injury, and migrate to the site of damage via CCR2 and CX3C chemokine receptor 1
(CX3CR1) [145,148]. It is likely that high-mobility group box 1 (HMGB1) is released after
ischemic renal injury, which further promotes active MΦ recruitment [149]. While MΦ
accumulate during the acute phase of renal injury, their local proliferation is considered a
critical hallmark of chronic kidney disease (CKD) [150,151]. Monocytes, which are derived
from the bone marrow, are the precursors of differentiated MΦ populations within the
kidney. Therefore, interfering with colony stimulating factor 1 receptor (CSFR1) was shown
to significantly block MΦ accumulation and proliferation within the kidney due to its
inhibitory function regarding monocyte maturation and proliferation in the bone mar-
row [152,153]. Moreover, CCL2, which binds to CCR2, is involved in monocyte migration
towards the inflamed sites of renal injury, whereby the blockade of CCL2 significantly
attenuated both glomerular and interstitial MΦ infiltration and accumulation [154–156].

Additionally, CX3C chemokine ligand (CX3CL)1 and CX3CL16, as well as MΦ in-
hibitory factor (MIF), are implicated in MΦ recruitment during the development of renal
pathologies [157,158]. Upon differentiation of monocytes, MΦ are activated and polar-
ized by the predominant inflammatory status of the tissue during acute injury. Pro-
inflammatory cytokines and DAMPs foster the pro-inflammatory, tissue-destructive MΦ
phenotype [159–161]. Moreover, the crosstalk of MΦ and renal cells plays a pivotal role in
the maintenance of the MΦ polarization status. This includes the production and secretion
of cytokines from both MΦ and renal cells, but also exosomal delivery of RNA and miRNA,
which massively impacts MΦ polarization, as well as the extent of inflammatory outcome
and disease progression [162,163]. In this sense, it was also shown that, even if absolute
numbers of infiltrated CD64+ MΦ are similar, levels of cytokine activation within the
kidney are decisive for MΦ polarization and, accordingly, for their subsequent impact on
renal disease development or repair. Renal parenchyma-derived DAMPs such as DNA,
HMGB1, or C reactive protein (Crp) further enhance the accumulation of pro-inflammatory
MΦ, which, in turn, exacerbate renal injury [164–167]. Therefore, even if pro-inflammatory
MΦ are needed during early phases of injury to remove inflammatory dead cells, such
as neutrophils, and to clear secreted DAMPs, a prolonged or uncontrolled activation of
pro-inflammatory MΦ not only fosters massive tissue injury and inflammation, but also
delays renal repair mechanisms.

During later phases of disease development, a conversion of pro-inflammatory to-
wards anti-inflammatory MΦ population takes place [168]. Anti-inflammatory MΦ, which
are characterized by high expression of Arg1, dectin-1, and mannose receptor (CD206), play
a pivotal role for the regeneration of damaged epithelial cells and proliferative recovery
of the tissue architecture [142,169]. Moreover, they are highly phagocytic and massively
clear intraluminal debris and apoptotic cells within the tissue. Additional beneficial effects
rely on their ability to activate regulatory T cells, as well as the control of the inflamma-
tory response [170–172]. However, again, tightly controlled MΦ activation is pivotal to
avoid extensive repair with subsequent fibrosis development [173]. Recently, it was shown
that the activation of mineralocorticoid receptors (MR) is involved in the control of the
anti-inflammatory MΦ phenotype, whereby the transition of acute injury towards chronic
injury might be controlled [174]. Additionally, deposited immunoglobin may add to the
recruitment and activation of MΦ, which is mainly accomplished through the fragment
receptor (FcR) [175]. Along these lines, another source of MΦ that may be implicated in
the outcome of tissue inflammation and renal disease development, are resident renal MΦ.
Despite very limited information about this MΦ population, it was recently shown that im-
munoglobulin gamma Fc region receptor (Fcgr)4− and Fcgr1+ resident MΦ are implicated
in renal repair through the activation of the Wnt pathway [176,177]. Interestingly, these
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resident MΦ do not adopt a clear pro-inflammatory or anti-inflammatory phenotype, but
rather show a characteristic and uniquely mixed phenotypic signature.

However, taking into account the positive effects of anti-inflammatory MΦ during
renal recovery from acute injury, their uncontrolled activation and function may lead to
renal fibrosis. Interestingly, a positive correlation was found between anti-inflammatory
CD163+ MΦ and the severity of kidney fibrosis in immunoglobulin A (IgA) nephropathy,
type 2 diabetes, and chronic kidney allograft injury [178–180]. Along these lines, experimen-
tal murine models of CKD showed that anti-inflammatory MΦ are critically involved in
disease progression during glomerulonephritis, and interstitial fibrosis during nephrotoxic
nephritis [181,182].

5.2. Renal Iron Handling—MΦ versus Tubular Epithelial Cells

Interestingly, it has been widely recognized that iron handling by both renal MΦ and
the epithelium may be a pivotal factor in determining the fine balance between tissue
damage versus recovery [183,184]. It was suggested that these two compartments act in an
orchestrated manner in order to coordinate the renal response towards injury and foster the
subsequent recovery. These observations are not surprising due to the critical role of the
kidney in reabsorbing iron that is bound to specific proteins, including Tf, ferritin, or LCN-2.
This is accomplished by the expression of non-specific megalin and cubilin receptors at
the apical plasma membrane of proximal tubular epithelial cells [185–188], from which
iron is recycled into the circulation in order to prevent the loss of filtered iron by urinary
excretion [144,189]. Despite the very prominent role of the kidney for iron homeostasis,
there is still very limited information about mechanistic details of renal iron recycling
and transport. Moreover, it is still not clear how different renal compartments interact
with regard to differences in the iron phenotype. It has been demonstrated, for more than
20 years now, that renal ischemia/reperfusion injury promoted the formation of catalytic
iron, whereby cellular damage was induced through the activation of oxidative stress
pathways [190]. Recently, this type of cell death linked to the action of oxidized iron was
identified as ferroptosis, taking place upon inhibition of the membrane glutamate/cysteine
exchange, as well as the depletion of cellular antioxidants [191]. Along these lines, iron-
mobilizing molecules such as LCN-2, ferritin, hemopexin, and haptoglobin were highly
induced upon renal injury [192], all showing a renoprotective function upon infusion.

It is widely accepted that the application of LCN-2 diminishes renal injury and enables
renal regeneration [147,151,175,193,194]. Recently, we found that LCN-2 fulfills different
biological functions according to its iron-loading status and its cellular source during
sepsis-induced kidney failure [195]. Interestingly, LCN-2 was produced and secreted from
renal tubular epithelial cells in its iron-free form, which was associated with renal damage.
In contrast, increased levels of MΦ-derived LCN-2 appeared in the iron-loaded form and
significantly correlated with renal recovery markers. With regard to LCN-2, we previously
showed that anti-inflammatory, LCN-2-overexpressing MΦ that were infused during the
early onset of acute ischemic injury not only protected from renal tissue destruction and
the decline of renal function, but also promoted renal regeneration [143]. Additionally, a
recent study from our group determined that tubular epithelial cells took up MΦ-secreted,
iron-loaded LCN-2 in an in vitro cisplatin-induced injury model, which correlated with
cellular proliferation and recovery [196]. Moreover, our own observations are in line with
other studies, suggesting that the renoprotective effects of LCN-2 may be due to its ability
to serve as an iron transporter [197]. Taking into account the action of ferritin heavy
chain as a ferroxidase enzyme, promoting the storage of inert-state iron, ferritin heavy is
critical for the protection of proximal tubular cells against cisplatin-induced, as well as
obstructive, kidney injury [193,198]. Ferritin heavy chain deficiency in proximal tubules is
associated with enhanced tubular damage and obstructive disease, as well as increased MΦ
infiltration and pro-inflammatory activation. On the contrary, myeloid ferritin heavy chain
deficiency led to increased levels of HO-1 expressing MΦ, associated with reduced levels
of fibrosis in an unilateral ureteral obstruction (UUO) kidney-injury model [193]. This is
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interesting in the sense of the observation that iron-regulated genes may adopt different
roles and functions with regard to acute versus chronic disease progression. Specifically,
HO-1 expression adopts a critical role in MΦ iron handling due to its heme-degrading
function upon erythrophagocytosis, with a loss of myeloid HO-1 being associated with
dysregulated heme recycling, iron-induced oxidative stress and, consequently, cellular
damage [27,194]. A recent study by Hull et al. impressively showed that myeloid-specific
HO-1 deletion negatively affected renal DC migration to secondary lymphatic organs,
and fostered MΦ activation towards a pro-inflammatory phenotype after ischemic injury,
which, in turn, impaired renal recovery [199]. In accordance with these observations, the
adoptive transfer of HO-1-overexpressing MΦ revealed renoprotective functions during
acute renal injury [200].

The role of the iron exporter FPN1, as well as its subcellular location, is still highly
debated in the kidney. FPN1 is expressed in MΦ, where it serves as an iron exporter. Its
location in tubular epithelial cells is still highly controversial, with some groups suggesting
a basolateral expression for iron export to the circulation [194,201], and other groups observ-
ing apical expression for iron import of luminal iron [201,202]. Nevertheless, it is clear that
MΦ express FPN1 to release iron to their local microenvironment. We and others showed
that FPN1 expression is part of the anti-inflammatory MΦ phenotype, adopting iron-
releasing functions and, consequently, promoting not only cellular proliferation [196,203]
but also T-cell activation [204,205]. With regard to the kidney, more detailed functional
investigations using cell-specific knockout models are urgently needed. FPN1 expression
may be controlled by the hormone peptide hepcidin, which induces FPN1 degradation and
leads to iron sequestration in MΦ. Interestingly, higher serum hepcidin levels were found
in acute renal injury, but did not correlate with clinical patient outcome. However, a variety
of studies revealed that hepcidin has renoprotective functions [206,207]. These observations
allow for the hypothesis of local effects; i.e., by controlling FPN1 levels within the renal
microenvironment, modulating FPN1 expression and function, and thereby controlling
the MΦ phenotype. The mechanisms by which hepcidin exerts its protective roles in the
kidney have not been yet fully elucidated, and urgently need further investigations.

In conclusion, recent advances in elucidating renal iron handling point to a pivotal role
of iron in a variety of mechanisms described for renal acute and chronic pathologies. Iron
seems to be a critical factor during early phases of renal injury with subsequent recovery, as
well as during the transition and progression of chronic disease. Moreover, iron metabolism
of different renal compartments needs further attention, especially the role of the MΦ iron
phenotype during the progression of the different phases of renal pathologies. A closer
look at the iron balance within the kidney may pave the way towards novel therapeutic
avenues for treating kidney disease and its complications.

6. Lung
6.1. MΦ Populations in the Lung

In addition to the structural and functional cells that comprise lung tissue, immune
cells are an integral part of the lung and are constantly in flux [208–210]. As an organ that
has contact with the outside environment, innate immune cells surveil to protect against
pathogens and prevent tissue damage. The lungs contain most of the MΦ in the body, and
MΦ are the most common immune cell in the lungs. Expectedly, MΦ are generally the
first to encounter any kind of external challenge [211,212]. The contact that MΦ maintain
with the epithelial layer is vital for reciprocal communication and lung tissue homeostasis.
Epithelial-bound MΦ have low phagocytosis activity and cytokine expression in the steady
state, yet have the capacity to rapidly initiate inflammatory attacks in response to danger
cues from the surrounding microenvironment [213,214]. As MΦ patrol, they also aid in
maintaining lung surfactant, and perform functions in identifying, removing, or processing
pathogens, harmful particulates, and noxious gases [215–219].

Within the cycle of MΦ recognition, initiation, and participation in an inflammatory
attack, MΦ also orchestrate resolution of inflammation within the lungs. Phagocytosis of
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invading pathogens or debris activate MΦ to secrete oxidative species aimed at invading
pathogens, a mechanism that is tightly regulated to limit host-tissue damage. Propagation
of inflammatory responses, by release of cytokines, chemokines, or oxidative species,
results in the rapid influx of other innate immune cells, like neutrophils, monocytic-derived
MΦ (MDMs), eosinophils, and monocytic-derived dendritic cells (MDDCs). Negative
feedback loops to reduce inflammatory responses in MΦ initiate the clearance of dead cells
or debris, which goes hand in hand with driving the process of tissue remodeling and
repair. CD206+ MΦ coordinate this function by secreting TGFβ, IL-13, and IL-4, and the
expression of resolution markers MerTK and CD163. The specific timing, intricate cocktail
of environmental cues, coordination from other cells, and intracellular signaling pathways
involved in MΦ switching from an inflammation-inducing response to a wound-healing
and resolution response is still not clear [220–225].

All types of MΦ within the lungs share general functional capacities and are found to
express classical “MΦ” identifiers, such as CD64+, F4/80+, and CD36+. They also have the
capacity to phagocytose, express Fc receptors, and flexibly respond to microenvironmental
stimuli [226]. However the population of lung MΦ are heterogeneous in origin and
phenotype [227,228]. There are two main types of lung MΦ, alveolar and interstitial.
Alveolar MΦ (AMs) occupy the structural components of the alveoli, are densely populated
in the lung, and are easily isolated; they are identified using cell-surface markers such
as CD45+/SiglecF+/CD11c+, and by oxidative phosphorylation metabolism signatures.
They can be further classified into two groups: resident AMs (rAMs), which are derived
from embryonic development stage of the body; or the monocytic (or recruited) AMs
(mAMs), which possess slight differences from rAMs in terms of cell proliferation and
metabolism [228]. Both types of AMs are involved in the maintenance of lung surfactant
and engage in defensive roles due to their location within the alveoli.

Non-alveolar MΦ within the interstitum are labelled as interstitial MΦ (IM) [226,229].
Since their abundance is relatively low (~8 times less than AMs), isolation and identification
of IMs from the lungs require tissue digestion followed by phenotyping with a diverse com-
bination of cell-surface markers that differ from those found on AMs [230,231]. In-depth
transcriptional analyses have identified five subsets of IMs under normal circumstances:
IM1, IM2, IM3, IM Lyv1loMHCIIhi, and IM Lyv1hiMHCIIlow. Overall, the function of IMs
is generally thought of as regulatory, but in-depth characterization is required for differ-
entiating functional differences between the IM subsets [226,232]. Each category of IMs is
determined by the degree of marker expression found on the cell surface, as well as by the
specific location where they are found within the lungs. For example, the Lyv1loMHCIIhi

subset possess a strong antigen presentation cell (APC) function, and can be found at or
near nerves within the bronchi. Lyv1hiMHCIIlow secrete cytokines that facilitate repair
and can be found around vessels. IMs were originally thought to stem from a putative
pool of circulating systemic monocytes, but experiments depleting blood monocytes by the
injection of clodronate-containing liposomes showed little to no impact on the population
of IMs in the lung [230]. Using comprehensive transcriptomic techniques, other reports
suggest that the IM3 subtype is monocytic-derived and therefore recruited, whereas the
other IM subtypes are residential. The identification of IM subsets’ cell of origin, as well
as functional capacity, is currently being investigated and will likely require advanced
techniques of flow cytometry combined with single-cell sequencing [101,228,231,233,234].

6.2. Iron and Lung MΦ

As the first responders within the alveolar space, MΦ react rapidly to alterations in
iron levels. Accumulation of iron in MΦ occurs mainly to prevent tissue from experiencing
iron-induced oxidative stress, and secondly to prevent invasion of pathogens [235], illumi-
nating their important protective mechanism. Under conditions of iron overload, iron can
accumulate in structural cells such as alveolar type II cells, vascular smooth muscle cells,
and ciliated airway epithelial cells, but the extent to which this occurs is significantly less
compared to MΦ. AMs constitutively express TFR1 to promote uptake of Tf- bound iron,
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but they also import other sources of iron through receptor-specific mechanisms, including
lactoferrin (LfR) and DMT1, or through scavenging/phagocytosis of non-Tf-bound sources
of iron [236–239]. AMs are often found with little to no FPN1 and high ferritin light chain
expression, indicating a general iron-sequestration phenotype [238]. Indeed, global analysis
of lung AMs showed that a proportion are iron-loaded under normal conditions.

The most abundant source of iron for lung tissue originates from the serum [240].
Other sources of iron can be introduced externally, such as by heavily polluted air, and pose
significant threats to the integrity of the lung tissue. Chronic exposure usually coincides
with adverse side effects including oxidative stress or inflammation, which can culminate
in fibrosis or other more major comorbidities. Mining dust, cigarette smoke, and pollution
contain aerosolized heavy-metal particulates that collect in MΦ, which can impair MΦ
function or result in MΦ apoptosis. Additionally, polluted air can also contain high amounts
of noxious and gaseous pollutants, which has been found to suppress phagocytosis in MΦ.

Iron dysregulation in lung tissue has been implicated in many lung diseases. How-
ever, the degree to which iron dysregulation is either a driver or a repercussion of lung
disease is under intense investigation. Abnormally high levels of iron-loaded MΦ Ph-
have been observed in patients with idiopathic pulmonary fibrosis (IPF), asthma, chronic
obstructive pulmonary disease (COPD), and cystic fibrosis, as well as in patients who
smoke [239,241,242]. Furthermore, in patients with asthma and COPD, the number of
iron-loaded MΦ has been found to correlate with disease severity [239]. This suggests that
there exists a threshold of iron regulation, and thus protection, overseen by AMs, which
when surpassed can inundate lung tissue homeostasis and lead to severe lung disease.
Indeed, when lung tissue was overwhelmed by iron accumulation alone, key features
of asthma were recapitulated in mice, suggesting that dysregulation of iron could be a
pathological component for this disease [236,243]. The cause of iron dysregulation in these
patients was suggested to be due to a subset of AMs that are dysfunctional/non-functional
in iron handling (increased numbers of TFR1+ AMs), and were identified as a significant
factor that aggravates IPF in patients [236]. More recent work has provided mechanistic
detail by showing this subtype has a skewed phenotype that has both pro-inflammatory
and anti-inflammatory features, which function to both produce inflammatory cytokines
and facilitate fibrosis. This effect was ameliorated by removing iron with iron chelation
in house dust mite (HDM)-induced models of experimental asthma, which indicates a
potential therapeutic avenue for future development [243]. The cause of the dysfunction in
AMs and the origin of this subtype require further investigation.

Another lung disease that harbors complex MΦ phenotypes that engage in iron
dysregulation is non-small-cell lung cancer (NSCLC). Many studies have identified tumor-
associated MΦ (TAMs) as anti-inflammatory, and large proportions of this phenotype
correlate with a worse prognosis in patients [239]. Anti-inflammatory MΦ have been found
to possess high levels of FPN1, which correlates with observations that anti-inflammatory
TAMs aid in the growth and development of tumors in NSCLC. MΦ of monocytic origin are
more commonly identified as TAMs in lung cancer [244], whereas AMs have only recently
been implicated [236]. More recent work has observed that iron accumulation within TAMs
of the tumor microenvironment correlates with positive patient outcome compared to
those without [245]. In experimental studies and in other cancer types, iron-loaded MΦ
have been found to engage in tumoricidal and inflammatory actions, leading to reduced
cancer cell growth and number [246]. To target TAMs within the TME of NSCLC provides
an interesting avenue of research and drug development for iron-based therapeutics that
target TAMs within the TME.

7. Brain and Nerves
7.1. The MΦ–Iron Liason in the Central Nervous System (CNS)

The brain consumes the body’s energy, and accordingly has a high demand for iron.
Iron exerts a well-established role in several physiologic processes such as ATP produc-
tion, oxidative metabolism, myelination, and synthesis of neurotransmitter, making it an
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essential protein cofactor for brain functions [247]. Alteration of brain iron homeostasis cor-
relates with different pathologies [248]. Iron deficiency has been associated with cognitive
deficits, whereas iron excess leads to neurodegenerative diseases as well as neuroinflam-
mation [249]. In healthy conditions, the blood–brain barrier (BBB) strictly regulates the
brain’s iron uptake, protecting the brain from fluctuations in blood iron levels [250]. In
addition, it prevents the infiltration of peripheral MΦ into the brain. Traumatic brain injury,
inflammation, or late-stage disease states can lead to a disruption of the BBB, thereby
allowing monocyte-derived MΦ to infiltrate, as well as the accumulation of iron, finally
leading to ROS production and cellular damage [251,252].

Microglia are tissue-resident MΦ that represent the primary innate immune effector
cells of the CNS. They are primarily involved in immune/neuroinflammatory responses
and regulation of brain homeostasis, but they also exert several other functions, such as
neurogenesis, synaptic pruning and plasticity, myelin repair, and oligodendrocyte matu-
ration [253]. Many of these functions require iron as a co-factor. Furthermore, microglia
have been shown to regulate brain iron homeostasis by uptaking and storing iron within
ferritin [254]. In healthy brain, microglial cells are spread throughout the entire brain
parenchyma and are highly ramified, and their processes constantly scan the environment
to check for brain damage. In the context of neural injury, microglia became activated,
showing morphological and immunophenotypic changes. In response to alterations of the
surrounding microenvironment, microglia respond dynamically by polarizing across a
spectrum of pro- to anti-inflammatory states [255]. Activated microglia proliferate, and
change function, morphology, motility, and glycolytic metabolism [256,257]. Microglia
are activated in response to different stimuli and acquire an pro- or anti-inflammatory
phenotype. In the pro-inflammatory state, microglia secrete pro-inflammatory cytokines
and chemokines such as TNFα, IL-1β, and CCL2, and express iNOS, leading to accu-
mulation of nitric oxide and neurotoxicity. Anti-inflammatory microglia tend to resolve
inflammation by releasing IL10, TGF-β, BDNF, and other anti-inflammatory cytokines and
trophic factors [258].

Interestingly, inflammatory cytokines have been shown to alter iron uptake and
metabolism in microglia cells. Indeed, pro-inflammatory microglia increase the expres-
sion of DMT1 and are able to uptake NTBI. They show increased ferritin and labile iron
pools. On the other hand, anti-inflammatory microglia increase the expression of trans-
ferrin receptor to support increased transferrin-bound iron uptake by receptor-mediated
endocytosis. This mechanism may support the increased heme production by mitochon-
dria [247]. Microglia have an important role in maintaining brain iron homeostasis. During
development, microglia store iron when myelination is not active, and transfer iron to
oligodendrocytes when the myelination proceeds [259]. Iron accumulation in microglia
has also been observed in different neurodegenerative diseases, among others Alzheimer’s
disease (AD), Parkinson’s disease (PD), and multiple sclerosis (MS) [260–262].

All these neurodegenerative diseases are characteristic of the elderly, and it was
demonstrated that the brain iron levels increase with age. In particular, in AD, iron
accumulation was seen to correlate with amyloid plaques and with neurofibrillary tangles
inside the neurons, the two main hallmarks of AD [263]. Interestingly, the brain iron content
also was increased in a mouse model of AD as compared with wild-type mice [264]. A
recent study [265] correlated brain iron levels in Alzheimer’s patients with a faster decline
of memory and cognitive functions.

In neurons, iron homeostasis is strictly regulated at the transcriptional level of mRNA
and proteins related to iron metabolism such as Tf, FPN1, TfR1, and ferritin [266]. Further-
more, hepcidin binds FPN1 and mediates its degradation, reducing export of iron from
neurons and astrocytes. In addition, ß-amyloid precursor protein (APP) and Tau are also
involved in iron regulation, mainly interacting with FPN1. Indeed, APP or Tau knockout
mice showed age-dependent brain iron accumulation, indicating the participation of these
proteins in iron homeostasis [267].
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One of the hallmarks of Parkinson’s disease (PD) is the presence of Lewy bodies in
different brain areas, in particular the substantia nigra (SN). Several studies using post-
mortem tissues, as well as non-invasive examination of patients, showed increased iron
content in SN of PD patients compared with healthy controls [268–270]. Furthermore,
iron-binding proteins such as ferritin and neuromelanin are decreased in the SN of PD
patients [271]. Increased expression of the iron import transporter DMT1 and IRP, as well
as decreased expression of FPN1, lead to iron dyshomeostasis in PD patients [272,273];
while α-synuclein aggregation, oxidative stress, and mitochondrial dysfunction, together
with iron accumulation, originate a positive feedback loop leading to neuroinflammation
and neurodegeneration [274,275].

Neurodegenerative diseases are also characterized by neuroinflammation. Reac-
tive microglia are the main driver of brain inflammation due to a massive production
of pro-inflammatory cytokines, ROS, and reactive nitrogen species (RNS), leading to
disruption of iron metabolism, mitochondrial dysfunction, and finally to neurodegenera-
tion [274]. Activation of microglia induces iron accumulation by upregulating DMT-1 via
pro-inflammatory cytokines of the NFкB mediated transcriptional pathway, and down-
regulating cell surface expression of FPN1 via hepcidin-mediated internalization, thereby
decreasing iron efflux from cells [276]. An increased iron content alters the physiological
responses of microglia, leading to increased release of pro-inflammatory cytokines such as
TNF-α and interleukin IL-1β [254], as well as promoting free radical formation [277].

Multiple sclerosis (MS) is a chronic neuroinflammatory disease characterized by
demyelization and axonal damage with progressive loss of white and gray matter. Even if it
is well established that microglia play different roles in MS, spanning from being the driver
of inflammation to having important roles in remyelination and in limiting inflammatory
responses, it is not clear if their behavior depends on iron homeostasis [278]. Previous
studies have functionally linked oxidative damage to axonal and neuronal pathology in
MS [279], as well as the involvement of immune cells, in particular activated microglia,
in myelin and axonal damage [280]. A recent study shows that microglia isolated from
a mouse model of MS or from patients have different phenotypes according to their
association with MS lesions. In particular, it was shown that activated microglia associated
with active lesions in one of the most severe forms of MS (secondary progressive MS) show
changes in iron metabolism, with consequent iron accumulation inside the cells. These
alterations lead to oxidative stress and finally to an altered inflammatory phenotype in
microglial cells.

Cellular death contributes to alterations of brain function in neurodegenerative dis-
eases. Ferroptosis is a death mode recently described that depends on iron. Ferroptosis
is characterized by iron-dependent lipid peroxidation and ROS production. Signs of fer-
roptosis were seen in many neurodegenerative diseases, including MS, AD, and PD. Mice
lacking GPX4, an antioxidant enzyme, show features of ferroptosis and hallmarks of AD,
and this phenotype can be reverted using iron chelators. Based on these observations, iron
chelation can be used as therapeutic approach to ameliorate Alzheimer’s symptoms. A
phase II clinical trial of the use of iron chelators in Alzheimer’s patients began in early 2021.
Interestingly, genetic or pharmacological iron chelation also appears to be promising for
PD, both in a mouse model of PD and in clinical trials [281,282].

Iron brain accumulation during aging has been associated not only with neurodegen-
erative disease, but also with an increased severity and poor prognosis for brain tumors.
Cancer cells frequently show alterations of expression of proteins involved in iron home-
ostasis, such as upregulation of TfR1, Tf, or ferritin; and downregulation of FPN1. Glioma
is the most common brain tumor both in adults and children. Up to 50% of the cellular
content is composed of infiltrating non-cancerous cells, mainly microglia and circulating
MΦ [283]. These glioma-associated microglia and MΦ (GAM) are recruited by glioma
cells, secreting several chemoattractants such as CCL2, Cx3CL1, SDF-1, and CSF-1, among
others [284]. Once recruited to the glioma site, GAM acquire a pro-tumorigenic pheno-
type, secreting anti-inflammatory cytokines such as TGFβ and IL-10, as well as angiogenic
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factors such as VEGFα [284]. Furthermore, the tumor milieu promotes epigenetic and
transcriptional programs that create new molecular identities of the GAM critical for glioma
progression [283]. In recent years, the avenue of single-cell transcriptomic analysis has
revealed a strong heterogeneity of GAM, whereby their function in the development and
progression of glioma is still not fully understood [285]. A better knowledge of this process
and transcriptional signature will help to find new targets for glioma therapies. Recently,
Shonberg et al. (2015) characterized a specific population of cancer cells inside the glioma,
the cancer stem-like cells (CSC). These cells have properties of stem cells, they survive
in unfavorable conditions such as a lack of nutrients or hypoxia, and are chemotherapy
resistant. They correlate with a poor prognosis. Their proliferation is supported by a
mechanism of iron scavenging: they express high levels of Tf and TfR1, as well as ferritin.
Knocking down ferritin reduced the upregulation of TfR1 and the proliferation of CSC.
Furthermore, reducing ferritin expression increased chemotherapy sensitivity of CSC. In-
terestingly targeting ferritin also is beneficial in other types of cancer. Specifically targeting
iron availability to CSC appears to be a more selective therapy against glioma [286].

To overcome the two main barriers to delivery of therapeutics into the brain to treat
brain disorders, namely the sensitivity of nerve cells and the BBB, different strategies have
been developed in recent years. Among others, Tf and TfR have been used as drug-delivery
systems across the BBB. Several types of cancer cells express high levels of TfR, so drugs
directly bound to Tf or on antibodies against TfR are mainly targeting malignant cells,
resulting in a reduction of tumor growth. Binding drugs to Tf or antibodies against TfR
also has been used as a strategy to cross the BBB due to the high expression of TfR on
endothelial brain cells. However, Tf is not a good drug carrier due to its rapid turnover, and
strategies to increase its stability and drug delivery are under study [287]. After spinal cord
injury (SCI), microglia cells, as well as circulating MΦ, are recruited to the lesion site. At the
beginning, they acquire a pro-inflammatory phenotype, with massive phagocytic potential
to clean the injured site of debris and dead cells, then the anti-inflammatory microglia and
infiltrating MΦ promote repair and regeneration [288,289]. Myelin phagocytosis promotes
a MΦ switch from pro-inflammatory to anti-inflammatory polarization in order to sustain
recovery. Most MΦ after SCI maintain a pro-inflammatory polarization that interferes
with the recovery process. Kroner et al. showed that this phenomenon is due to the
high intracellular content of iron as a consequence of red blood cell phagocytosis. High
iron induces the expression of TNFα, which is known to block the transition from pro-
inflammatory to anti- inflammatory polarization [290]. Dysregulation of iron metabolism
and altered expression of iron regulatory genes were shown after SCI, and iron chelation
was proposed as therapy to improve recovery after SCI.

Spinal cord microglia also are activated after peripheral nerve lesions due to the
release of CSF-1 at the dorsal horn level from the central terminal of damaged primary
sensory neurons. This activation is important for the development and maintenance of
neuropathic pain [291]. Interestingly, it was shown that in a mouse model of sickle cell
disease, the elevated free heme content in spinal cord tissue due to chronic hemolysis
mediates evoked pain hypersensitivity via TLR-mediated activation of microglia [292].

7.2. MΦ Populations in the Peripheral Nervous System (Ganglia and Nerves)

Much less is known about peripheral nervous system-associated MΦ. Ganglia and
nerves are not isolated by the BBB, so it is difficult to distinguish between PNS-associated
MΦ and circulating ones. A distinct population of PNS-resident MΦ was identified almost
30 years ago [293], but it only recently could be characterized [294,295]. Circulating MΦ are
usually not associated with nerves or found into the ganglia; they are recruited and infiltrate
the tissue after infection or injury [296]. After peripheral nerve injury, MΦ accumulate
at the site of injury within 3 days [296], and are recruited by specific signals like MCP-1,
IL-1β, and CCL2. Here, they proliferate and acquire a classically activated phenotype,
secrete pro-inflammatory factors, and promote debris removal and elimination of products
of Wallerian degeneration of the distal segment of the nerve, as well as apoptotic cells [297].
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Once they have cleaned the injury site, MΦ transit from the pro- to the anti-inflammatory
state. Alternatively activated MΦ secrete anti-inflammatory cytokines and promote tissue
repair [298]. Interestingly, 3 days after sciatic nerve ligation, MΦ infiltrated into dorsal root
ganglia (DRG) were mainly of the anti-inflammatory phenotype [299–301]. The beneficial
or detrimental effect of iron overload in peripheral neuropathy is still debated [302]. Some
papers report iron promoting infiltration of anti-inflammatory MΦ and resolution of
inflammation [303], while others show a worsening of neuropathy in the presence of high
iron content [304,305].

PNS-associated MΦ are present under homeostatic conditions, both in peripheral
nerves and in ganglia, and they are self-maintained [306]. Based on global transcriptomic
signature, they are MΦ with some properties of CNS microglia, based on both endoneural
localization and surface marker expression [294]. Their function in homeostasis and injury
is still not fully clarified, but it seems that they contribute to nerve surveillance, sliding
along sensory neurons axons [306]. After injury, they have been involved in axon sprouting
of sensory neurons [306] and in Wallerian degeneration of the sciatic nerve [296]. Iron-
dependent modulations of PNS-associated MΦ functions and/or phenotype are still not
identified.

8. Conclusions

The innate immune system plays a crucial role in acute inflammation and resolution
of inflammation, but iron handling by MΦ is an often-disregarded feature contributing to
physiologic function, and may also be involved in disease progression. With this review, we
aimed to contribute to the understanding of iron handling facilitated by MΦ in the systemic
and cellular microenvironment, playing a central role in physiologic and pathophysiologic
functions. The main points of our review are summarized in Figure 1.
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Figure 1. Hypothetical scheme of MΦ iron polarization during injury and recovery. Different MΦ 
subpopulations have been described with varying levels of lymphocyte antigen 6 (Ly6C) and major 
histocompatibility complex (MHCII). Under physiological conditions, resident MΦ predominate to-
gether with embryonic progenitors that are not replenished by circulating monocytes under steady-
state conditions. Resident MΦ in the healthy state promote tissue homeostasis. CCR2+ MΦ are re-
plenished by blood monocyte recruitment and local proliferation, whereas CCR2- MΦ are repopu-
lated by local proliferation. Infiltrating pro-inflammatory monocyte-derived MΦ (Ly6C+ CCR2− and 
Ly6C+ CCR2+) promote tissue injury and death by substitution of the resident MΦ subpopulation. 
Shown is a continuum of functional activation states, with two extreme phenotypes linked to the 
highly diverse MΦ functional activation states in the different stages of inflammation and resolution 
of inflammation. The iron phenotype is also closely related to the MΦ polarization profile, with its 
two extremes of iron retention and iron release. 
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subpopulations have been described with varying levels of lymphocyte antigen 6 (Ly6C) and major
histocompatibility complex (MHCII). Under physiological conditions, resident MΦ predominate
together with embryonic progenitors that are not replenished by circulating monocytes under
steady-state conditions. Resident MΦ in the healthy state promote tissue homeostasis. CCR2+ MΦ
are replenished by blood monocyte recruitment and local proliferation, whereas CCR2− MΦ are
repopulated by local proliferation. Infiltrating pro-inflammatory monocyte-derived MΦ (Ly6C+

CCR2− and Ly6C+ CCR2+) promote tissue injury and death by substitution of the resident MΦ
subpopulation. Shown is a continuum of functional activation states, with two extreme phenotypes
linked to the highly diverse MΦ functional activation states in the different stages of inflammation
and resolution of inflammation. The iron phenotype is also closely related to the MΦ polarization
profile, with its two extremes of iron retention and iron release.
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