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Abstract: Chiral symmetry represents a fundamental concept lying at the core of particle and
nuclear physics. Its spontaneous breaking in vacuum can be exploited to distinguish chiral hadronic
partners, whose masses differ. In fact, the features of this breaking serve as guiding principles for the
construction of effective approaches of QCD at low energies, e.g., the chiral perturbation theory, the
linear sigma model, the (Polyakov)–Nambu–Jona-Lasinio model, etc. At high temperatures/densities
chiral symmetry can be restored bringing the chiral partners to be nearly degenerated in mass. At
vanishing baryochemical potential, such restoration follows a smooth transition, and the chiral
companions reach this degeneration above the transition temperature. In this work I review how
different realizations of chiral partner degeneracy arise in different effective theories/models of
QCD. I distinguish the cases where the chiral states are either fundamental degrees of freedom or
(dynamically-generated) composed states. In particular, I discuss the intriguing case in which chiral
symmetry restoration involves more than two chiral partners, recently addressed in the literature.

Keywords: chiral symmetry restoration; finite-temperature quantum-field theory; mass degeneracy;
effective field theories; chiral perturbation theory; linear sigma mode; Nambu–Jona-Lasinio model;
heavy-quark effective theory

1. Introduction

Chiral symmetry is one of the key properties of the quantum chromodynamics (QCD),
and it is one of the best principles for modeling the low-energy domain of the theory
of strong interactions [1–6]. In vacuum, chiral symmetry is spontaneously broken and
manifested in the absence of parity hadron doublets in Nature. In particular, the realization
of its spontaneous symmetry breaking (SSB) is fundamental to constrain the internal
structure of different effective approaches of QCD [2,4,7]. As an example, the pattern of
the chiral group breaking for N f flavors, SUL(N f )× SUR(N f )→ SUV(N f ), allows for the
development of the chiral perturbation theory (ChPT) by incorporating the dynamics of
the N2

f − 1 Goldstone bosons associated to the SSB [8]. Even when the chiral symmetry is
already broken due to finite bare quark masses [9], these can be incorporated in a consistent
power counting so that the chiral expansion of the ChPT is well under control [8].

The topic of chiral symmetry in the context of high-energy physics is very broad, and
it has been studied in a number of works. For a broader perspective I refer the reader to
the set of references [10–22]. In this (mini-)review I focus on one of the consequences of
chiral symmetry breaking: hadrons can be classified in chiral partners of opposite parity,
with distinct masses. Classical examples (which will be addressed later) are the π (JP = 0−)
and the σ/ f0(500) (JP = 0+) states or the ρ (JP = 1−) and a1 (JP = 1+) mesons.

While the vacuum state breaks chiral symmetry, finite temperature (T) and/or density
(n) can bring chiral symmetry to a (partial) restoration following a phase transition. This
transition from the broken (or Nambu-Goldstone) phase to the symmetric (or Wigner–Weyl)
phase can be first-order, second-order or a crossover depending on microscopical parame-
ters or external conditions [23]. The lowest-dimension order parameter of this transition
is the quark condensate ⟨q̄q⟩(T, n), which takes small values (or zero) at high tempera-
tures/densities. In QCD with physical quark masses, the chiral transition at vanishing net
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baryochemical potential is known to be a crossover [24] at Tc ≃ 155 MeV [25–29]. Recent
results from lattice-QCD calculations in the massless case (O(4) universality class) point
to a transition temperature of T = 132 MeV [30,31]. When chiral symmetry is restored by
the temperature/density one expects that the masses of chiral partners tend to become
degenerate above this transition temperature (as long as no other mechanism makes the
hadronic states to dissolve, like the deconfinement transition which eventually takes place
in QCD [32–37]). The details on how such a degeneracy is achieved have been largely
debated in the past.

An interesting perspective of the chiral partner degeneracy is given by the behavior of
thermal correlation functions [38]. Thermal QCD sum rules, as presented in Reference [39],
allow for different realizations of chiral symmetry restoration in the vector and axial-
vector correlation functions, where the involved states do not necessarily maintain a
quasiparticle picture above Tc [17,39]. Among the different possibilities, the dropping
mass scenario [40,41] and a subsequent mass degeneracy between the ρ and a1 mesons
is one of the most popular ones. Such picture is supported by the results of several
phenomenological models like the linear sigma model (LσM), the quark-meson model
and the Nambu–Jona-Lasinio (NJL) model. A mass reduction of the vector meson with
temperature/density is also supported by some phenomenological works which connect
the shift of the thermal masses with experimental signatures, like the detection of dilepton
(electron or muon) pairs [42]. Thermal modification of the ρ-meson spectral function would
bring measurable modifications in the dilepton spectrum at invariant masses below the ρ
pole mass [43,44]. In a baryon-rich medium, where chiral symmetry can be restored due
to density effects [45], this idea was used to analyze experimental results at low collisions
energies, showing evidences of a medium-dependent vector meson mass [46].

In this review I will examine several scenarios for the chiral-partner mass degeneracy
at finite temperature. The classification is based on the structure/nature of the chiral
partners. By that I refer either a state being a fundamental degree of freedom of the
effective theory, i.e., represented by an explicit quantum field in the Lagrangian or a
dynamically-generated state, which emerges via the solution of a (nonperturbative) few-
body equation, in terms of other fundamental states. In both cases finite-temperature
effects are key to understand the thermal evolution of their masses and decay widths and
how they become degenerate (or not) when chiral transition temperature is approached.
Whenever the (thermal) decay width is much smaller than the thermal mass, I will also
denote the first class of states as quasiparticles; whereas the states which are only generated
through attractive interactions, I will generically call collective excitations. A particular
state—say, the pion π—could be of either type depending on the microscopic model used
to describe it. I will consider the example of light scalar and pseudoscalar mesons (σ/π),
but I will also show examples in the vector-axial vector sectors, genuine diquark states and
finally the situation in the heavy-flavor sector. For that purpose, I will employ different
effective theories/models at finite temperature.

Based on the previous classification, I will consider four distinct scenarios depending
on the nature of the chiral partners:

1. Two fundamental degrees of freedom. The π and σ are explicit propagating fields in
the effective Lagrangian. This case will be studied under the LσM in the limit of a
large number of boson fields. I address this case in Section 2.

2. Two composed (or generated) chiral states. The π and σ are mesonic excitations of the
quark-antiquark attractive interaction. This is the case in the (Polyakov-)NJL model,
which uses quark degrees of freedom with an effective interaction. This case is treated
in Section 3.

3. One fundamental and one composed state. Such is the situation of ChPT, where π is a
degree of freedom of the effective Lagrangian, while the σ is a dynamically-generated
state upon the unitarization of the π −π scattering amplitude. This hybrid system is
described in Section 4.
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4. One fundamental and a two-pole composed state. This case incorporates an additional
state to the study of chiral restoration. I will focus on the charm sector, where the
D meson is a fundamental degree of freedom of the effective Lagrangian, and the
positive parity D∗(2300) is a dynamically-generated state, which presents a two-pole
structure. Section 5 is devoted to this interesting case.

The last case represents a novel situation which was considered at finite temperature
for the first time in References [47,48]. In the present review I will address this system and
speculate about how the chiral symmetry restoration can be reflected where three different
masses evolve with temperature toward the chiral symmetry restoration point.

2. Fundamental Chiral Partners: Linear Sigma Model in the Large-N Limit

In the simplest scenario the effective Lagrangian incorporates explicitly the quantum
fields, whose excitations become chiral companions. Then, both parity states are fundamen-
tal degrees of freedom. This case is probably the most familiar to the reader. Nevertheless, I
will review it here because it helps to set some notation and to introduce finite-temperature
techniques. It also clarifies how the chiral symmetry is recovered at finite temperature
above Tc, for both cases with and without an explicit chiral-symmetry breaking term.

One model belonging to this class is the linear sigma model (LσM), where in its
minimal version, N pions and a σ field are incorporated. Chiral symmetry is realized
linearly in the boson fields, as the σ appears explicitly (in the non-linear version of the
model, the σ field is integrated out and only the pions remain. The resulting Lagrangian
coincides with the one of chiral perturbation theory at the lowest order [8,49]). Some
references describing different aspects of the LσM are [50–56]. See also Reference [57] for
recent applications of this model in the context of the chiral symmetry restoration. In this
section I employ the LσM in the approximation of a large number of pions N, as considered
in References [50,53,58,59].

The Euclidean Lagrangian of the model is

LE = 1
2

∂µΦi∂
µΦi − µ2ΦiΦi +

λ

N
(ΦiΦi)2 − εΦN+1 , (1)

where Φ is a multiplet of N + 1 scalar fields, conveniently parametrized as Φi = (πa, σ)
(with a = 1, . . . , N). The quartic coupling satisfies λ > 0, and µ2 is a positive parameter
forcing the SSB in vacuum. The last term of (1) with finite ε, explicitly breaks the O(N + 1)
symmetry to O(N).

The vacuum expectation value (VEV) of the field—assumed to be homogeneous—is
chosen to be in the direction of the last component,

v2(T = 0) = ⟨ΦiΦi⟩(T = 0) = ⟨σ2⟩(T = 0) . (2)

This VEV is to be matched with the physical value of the pion decay constant,

v2(T = 0) = f 2
π = NF2 , (3)

where in the last step the explicit N dependence has been extracted out.
Minimizing the effective action, one obtains

fπ ≃

¿
ÁÁÀNµ2

2λ
+ ε

4µ2 = fπ(ε = 0)+ ε

4µ2 = α fπ(ε = 0) , (4)

where for convenience I have defined f 2
π(ε = 0) = Nµ2/(2λ). This corresponds to the VEV

of the σ field in the absence of any explicit symmetry breaking term. I have also introduced
α = 1+ Nε/(8λ f 3

π(ε = 0)), which serves as a multiplicative factor relating fπ and fπ(ε = 0)
at T = 0.
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For completeness, the N-scaling of the different terms reads,

λ ∼ O(1), µ2 ∼ O(1), F2 ∼ O(1), f 2
π ∼ O(N), ε ∼ O(

√
N) . (5)

Once the vacuum of the theory is fixed, one allows for fluctuations around the expec-
tation values. Because ⟨πa⟩ = 0 the pion fluctuation is simply denoted as πa, while for the
last component one writes σ = fπ + σ̃.

The Lagrangian (up to an irrelevant constant) contains cubic and quartic interactions
of the fluctuations,

LE = 1
2

∂µπa∂µπa +
1
2

∂µσ̃∂µσ̃ − µ2πaπa − µ2σ̃2 + 2λ f 2
π

N
(πaπa + 3σ̃2)

+ λ

N
[(πaπa)2 + 2πaπaσ̃2 + σ̃4 + 4 fπ σ̃3 + 4 fππaπaσ̃ ] . (6)

From Equation (6) it is possible to extract the tree-level masses [59],

m2
σ̃ = −2µ2 + 12λ

N
f 2
π = 4µ2 + 3

ε

fπ
, (7)

m2
π = −2µ2 + 4λ

N
f 2
π = ε

fπ
. (8)

Equations (7) and (8) show that for ε = 0, the N pions are massless excitations in
accordance to the Goldstone theorem [60] [N = dim O(N + 1) − dim O(N)], while the σ-
excitation receives a nonzero mass. On the other hand, for physical quark masses ε ≠ 0, and
the pions do not remain massless anymore. In this approximation Equation (8) can be used
to fix ε in accordance to the physical pion mass, and then Equation (7) can be employed to
fix the parameter µ2 inserting the vacuum mass of the σ̃ excitation.

At finite temperature (T ≠ 0) one takes advantage of the large-N limit and computes
the partition function,

Z = ∫ DπaDσ exp(−∫ d4xLE) (9)

by introducing and auxiliar field χ to perform the Gaussian integration. The auxiliar field
reads [59]

χ = 2
√

2
λ

N
ΦiΦi , (10)

so that

exp(∫ d4x
λ

N
(ΦiΦi)2) = ∫ Dχ exp[−1

2 ∫ d4x( N
4λ

χ2 −
√

2χΦiΦi)] , (11)

up to an overall irrelevant constant.
The partition function reads

Z = ∫ DπaDσDχ exp{−∫ d4x[1
2

∂µπa∂µπa +
1
2

∂µσ∂µσ − µ2πaπa − µ2σ2

− 1
2

N
4λ

χ2 + 1
2

√
2χπaπa +

1
2

√
2χσ2 − εσ]} . (12)

As for the T = 0 case, one first finds the minimum of the effective action and incorporate
small fluctuations around it. After performing a shift to the σ field, σ = v + σ̃, the auxiliar
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field also receives an induced shift, χ = 2
√

2λv2/N + χ̃ + 4
√

2λvσ̃/N [59]. The Euclidean
action reads

SE[v, χ; πa, σ̃] = ∫ d4x [1
2

πa (−◻E +G−1
π [0, χ]) πa +

1
2

σ̃ (−◻E +G−1
σ̃ [0, χ]) σ̃

+ 1
2

v2G−1
π [0, χ]− f 2

π

2α2 G−1
π [0, χ]− N

16λ
(G−1

π [0, χ])2 − εv] . (13)

where I have introduced the functions,

G−1
π [q, χ] ≡ q2 − 2µ2 +

√
2χ , (14)

G−1
σ̃ [q, χ] ≡ G−1

π [q, χ]+ 8
λ

N
v2 . (15)

These play the role of the inverse pion/sigma propagators at tree level. Notice that
their representation in Fourier space is anticipated in the q2 = ∣q∣2 term. While πa and σ̃ are
dynamical fields, χ has no kinetic term. At mean-field level, one can trade χ by the variable
G−1

π [0, χ] (they are linearly related by Equation (14)). The Euclidean action also depends
on v, which is yet to be determined as a function of T (still assumed to be homogeneous
for simplicity).

One can integrate out the fluctuations πa ad σ̃, leaving an effective action for the
functions G−1

π [0, χ] and v. Formally this step is understood as

exp(−Seff
E [v, G−1

π [0, χ]]) = ∫ DπaDσ̃ exp(−SE[v, G−1
π [q, χ]; πa, σ̃) , (16)

where the integration is performed at finite temperature using the imaginary time formal-
ism [61]. In particular one finds,

∫ Dπa exp(−∫ d4x
1
2

πa[−◻E +G−1
π [0, χ]]πa)→ ∫ d4x exp(−N

2 ⨋q
log G−1

π [q, χ]) , (17)

and similarly for the σ̃ field. The symbol

⨋
q
≡ T∑

n
∫

d3q
(2π)3 , (18)

represents the sum over Matsubara bosonic frequencies (iωn = 2iTn with n ∈ N) and the
integration over three-momentum.

The resulting effective potential density reads [58,59]

Veff(v, G−1
π [0, χ]; T) = 1

2
(v2 − f 2

π

α2 )G−1
π [0, χ]− N

16λ
(G−1

π [0, χ])2 − εv

+ N
2 ⨋q

log G−1
π [q, χ]+ 1

2 ⨋q
log G−1

σ̃ [q, χ] , (19)

where I stress that fπ is the vacuum value of v, for the physical pion mass (ε ≠ 0 case), cf.
Equations (3) and (4).

The large-N limit is invoked here to neglect the last term of Equation (19). This can be
understood by using the scaling properties of the different quantities given in Equation (5).
This approximation suppresses the effects of the σ-mode fluctuations, which in turn, should
become relevant close to the chiral phase transition [62]. Therefore, this limit is basically
equivalent to a mean-field approximation. To next order, the description around the phase
transition should incorporate the fluctuation of the σ field [62–65], and for instance critical
exponents will take values beyond the mean-field predictions. For the purpose of studying
the mass degeneracy above Tc, the leading order of the large-N expansion is enough.
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Finally one needs to renormalize the effective potential. I skip the technical steps and
refer to References [58,59] for details. These are not very illuminating for the purpose of
this work. The final form of the effective potential reads,

Veff(v, G−1
π [0, χ]; T) = 1

2
(v2 − f 2

π

α2 )G−1
π [0, χ]− εv − N

2
g0(T, G−1

π [0, χ])

− N
16

(G−1
π [0, χ])2[ 1

λR(µ) −
1

4π2 log( e1/2G−1
π [0, χ]
µ2 )] , (20)

where the function g0(T, M2) (finite thermal part of the Matsubara sum in Equation (19)) is
defined as

g0(T, M2) = T4

3π2 ∫
∞

M/T
dx (x2 − M2/T2)2 1

ex − 1
, (21)

and λR(µ) is the renormalized coupling which depends on a regularization scale µ. How-
ever, the effective potential does not depend on µ because the running of λR cancels the
explicit µ dependence in the last term of Equation (20).

The effective potential at finite temperature (19) can be now minimized with respect
to v and G−1

π [0, χ]. These two conditions are known as “gap equations”,

∂Veff(v, G−1
π [0, χ])

∂v
∣
v=v,G−1

π [0,χ]=G−1
π [0,χ]

= 0 , (22)

∂Veff(v, G−1
π [0, χ])

∂G−1
π [0, χ]

∣
v=v,G−1

π [0,χ]=G−1
π [0,χ]

= 0 , (23)

and they provide the thermal expectation value of v (denoted v) and G−1
π [0, χ] (denoted

G−1
π [0, χ]). Once these equations are solved, the pion and the sigma thermal masses simply

read [59]

m2
π(T) = G−1

π [0, χ] , (24)

m2
σ(T) = G−1

π [0, χ]+ 8
λR

N
v2 . (25)

I plot the π and σ masses in Figure 1 for the cases ε = 0 (left panel) and ε ≠ 0 (right
panel). In both situations the σ vacuum mass is chosen to be mσ(T = 0) = 500 MeV, and the
pion mass (for the case ε ≠ 0) mπ(T = 0) =138 MeV.

The left panel of Figure 1 presents a genuine SSB where N Goldstone bosons are gen-
erated at low temperatures. For illustration, a value of N = 3 is used in the equations. In the
Nambu-Goldstone phase the renormalized mass of the σ is fixed by the value of λR param-
eter. As shown in Equation (25), the temperature dependence of mσ follows closely the one
of the order parameter v(T) and becomes zero at [59] Tc = 2

√
3F = 2 fπ(ε = 0), which in this

case is Tc ≃ 168 MeV (I choose µ2 so that fπ = 93 MeV; therefore, fπ(ε = 0) = fπ/α ≃ 84 MeV).
In the chirally-restored phase (Wigner–Weyl phase) all the components of the Φ multiplet
become degenerate, and the π − σ chiral partners share the same mass. This can already be
seen from Equations (24) and (25) by setting v = 0.

In the right panel of Figure 1 I present the physical case, with an explicit O(N + 1)-breaking
term. The three parameters (µ2, λR, ε) are fixed by setting the values of (mπ , fπ , mσ) in vac-
uum. In this case both pion and σ masses are nonzero at T = 0. For increasing temperatures
the masses approach each other, and at the phase transition—which happens smoothly, i.e.,
a crossover—they become close and the chiral symmetry has been partially restored.
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Figure 1. π and σ masses as functions of the temperature below and above the chiral phase transition.
(Left panel): Case without explicit symmetry breaking (ε = 0), where the pion is a true Goldstone
boson for T < Tc = 168 MeV. (Right panel): Case with explicit symmetry breaking (ε ≠ 0), where the
pion is a pseudo-Goldstone boson, with a vacuum mass of 138 MeV. In both cases the pion and the σ

fields become degenerate at high temperatures.

The determination of Tc is illustrated in Figure 2. In the left panel I show the tempera-
ture dependence of the order parameter v obtained from the gap Equations (22) and (23)
for the ε ≠ 0 case. The value of v at T = 0 is the value fπ = 93 MeV. Notice that the order
parameter has an inflection point at some intermediate temperature, which can be used
to determine the value of Tc. In the right panel I present (minus) the derivative of the
order parameter with respect to temperature. The maximum of this quantity provides the
value Tc ≃ 246 MeV. It is important to note that at this Tc the π and σ masses are not yet
degenerated, as can be seen in the right panel of Figure 1, and an approximate degeneracy
only happens well above Tc.
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Figure 2. (Left panel): Order parameter of the chiral transition in the LσM in the ε ≠ 0 case,
corresponding to a crossover. (Right panel): Minus the T-derivative of the order parameter as
a function of temperature. A measure of the location of the crossover transition is given by the
maximum of this quantity.

To summarize the fist case described in this work, the LσM clearly illustrates the
thermal evolution of chiral partners (π and σ) and the eventual mass degeneration once
the chiral symmetry is restored for T > Tc. Both hadronic states appear in the original
Lagrangian of the model and the thermal evolution of their masses is calculated by solving
the gap Equations (22) and (23), which describe how thermal fluctuations modify the
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propagation of the different excitations at a mean-field level. Mass degeneracy is clearly
observed in this example.

3. Composed Chiral Partners: (Polyakov–)Nambu–Jona-Lasinio Model

In this section I will describe one of the best-known scenarios in which the chiral
partners are not contained among the degrees of freedom of the Lagrangian. I will also
consider the prototypical π/σ case. However—as opposed to the previous example—both
states will emerge as bounds states/resonances after applying a two-body equation.

One of the effective models able to describe chiral phenomena of QCD in the low
energy regime is the Nambu–Jona-Lasinio (NJL) model [2,12,15,66–68]. It describes quarks
at low energies where gluons have been integrated out. Some gluonic properties (like the
expectation value of the Polyakov loop [34]) can still be described by using the extension
to the Polyakov–Nambu–Jona-Lasinio (PNJL) model [69–74]. The description of the PNJL
model given here is based on the conventions and definitions in References [74,75].

The Lagrangian density of the PNJL model with N f = 3 flavors is

LPNJL =∑
i

ψ̄i(i /D −m0i + µiγ0)ψi

+G∑
a
∑
ijkl

[(ψ̄i iγ5τa
ijψj) (ψ̄k iγ5τa

klψl)+ (ψ̄iτ
a
ijψj) (ψ̄kτa

klψl)]

+GV∑
a
∑
ijkl

[(ψ̄i iγ5γµτa
ijψj) (ψ̄k iγ5γµτa

klψl)+ (ψ̄iτ
a
ijγµψj) (ψ̄kτa

klγ
µψl)]

− H det
ij

[ψ̄i (I− γ5)ψj]− H det
ij

[ψ̄i (I+ γ5)ψj]

−U(T; Φ, Φ̄) , (26)

where the quark field is labeled with flavor indices i, j, k, l = {u, d, s}, and τa (a = 1, . . . , 8)
are the flavor generators of SU f (3) algebra, normalized as tr f (τaτb) = 2δab. The covariant
derivative is Dµ = ∂µ − iδµ0 A0, with A0 the temporal component of the gluon field. µi
are the possible chemical potentials for different flavors, which will be set to zero in this
work. G and GV are the scalar and vector couplings. H is the ’t Hooft six-quark coupling,
and U is the Polyakov loop effective potential, parametrized for the Polyakov loop Φ
and its conjugate Φ̄ as a function of the temperature (see [74] for details and values of
the parameters).

In the Lagrangian (26) the bare quark masses m0i are parameters. If these are taken
to be zero, then the exact chiral symmetry will be spontaneously broken in vacuum by
the quark condensate, and a set of (composed) Goldstone modes appears. When m0i ≠ 0
chiral symmetry is explicitly broken and after SSB, the masses of the pseudo-Goldstone
bosons—in particular, pions and kaons—can be used to fix the values of these parameters
(typically an SUI(2) isospin symmetry is still kept mu0 = md0, so that the three pions are
degenerate in mass).

Quark masses are dressed by interactions and modified by medium effects. At mean-
field level, this is done through the quark condensates [68,72,74]

mi = mi0 − 4G⟨ψ̄iψi⟩+ 2H⟨ψ̄jψj⟩ ⟨ψ̄kψk⟩ , j, k ≠ i; j ≠ k , (27)

where the quark condensate is given by

⟨ψ̄iψi⟩ = Nctrγ ⨋
q

1

/q −mi
, (28)

where trγ denotes the trace in Dirac space, and ⨋q is defined in Equation (18).
Clearly the pseudo-Goldstone modes cannot be described by the degrees of freedom

of the theory. However, mesonic candidates can be generated dynamically after solving
the Bethe–Salpeter equation for the q̄q scattering. Consider the scattering problem for a
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quark-antiquark pair of flavors i + j̄ to give m + n̄. The equation for the T matrix in the
random-phase approximation in the imaginary time formalism reads [66,67,74],

Tab
ij̄,mn̄(iνm, p) = Kab

ij̄,mn̄ −⨋k
Kac

ij̄,pq̄ Sp(iωn, k) Sq̄(iωn − iνm, k − p) Tcb
pq̄,mn̄(iνm, p) , (29)

where a, b denotes the flavor channel of the generated collective excitation. The kernel K
contains color, flavor, and Dirac matrices,

Kab
ij̄,mn̄ = Ωa

ij̄ 2Kab Ω̄b
n̄m , (30)

with
Ωa

ij̄ = (Icolor ⊗ τa
ij̄ ⊗ Γ) . (31)

Given the Lagrangian (26) the possible Dirac structures at the vertices are

Γ = {1, iγ5, γµ, γ5γµ} . (32)

They can be used to generate scalar, pseudoscalar, vector, and axial-vector mesons,
respectively.

The ’t Hooft term of the Lagrangian breaks the flavor symmetry of the quartic coupling
constant G. In the mean-field approximation, H can be combined with G to generate the
effective couplings Kab [67,76]

K00 = G + H
3
(⟨ψ̄uψu⟩+ ⟨ψ̄dψd⟩+ ⟨ψ̄sψs⟩) , (33)

K11 = K22 = K33 = G − H
2
⟨ψ̄sψs⟩ , (34)

K44 = K55 = G − H
2
⟨ψ̄dψd⟩ , (35)

K66 = K77 = G − H
2
⟨ψ̄uψu⟩ , (36)

K88 = G − H
6
(2⟨ψ̄uψu⟩+ 2⟨ψ̄dψd⟩− ⟨ψ̄sψs⟩) , (37)

K03 = K30 = H
2
√

6
(⟨ψ̄uψu⟩− ⟨ψ̄dψd⟩) , (38)

K08 = K80 = −H
2
√

6
(⟨ψ̄uψu⟩+ ⟨ψ̄dψd⟩− 2⟨ψ̄sψs⟩) , (39)

K38 = K83 = − H
2
√

3
(⟨ψ̄uψu⟩− ⟨ψ̄dψd⟩) . (40)

There is a nondiagonal coupling in the (0-3-8) flavor channels, which describes the
π0 − η0 − η8 mixing [67], which needs to be solved in the coupled-channel basis. Even in the
isospin limit (mu = md) a residual coupling in the (0-8) channels remains, which eventually
accounts for the mass difference between the η and η′ mesons. In the absence of the ’t
Hooft term, these states would be degenerate.

Factorizing the function tab as in Equation (30),

Tab
ij̄,mn̄ ≡ Ωa

ij̄ tabΩ̄b
n̄m , (41)

the solution of Equation (29) reads

tab = [ 2K
1− 2KΠ

]
ab

, (42)
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where the polarization function Πab(p2) is calculated at finite temperature as

Πab(iνm, p) = −⨋
k

trγ[Ω̄a
j̄i Si(iωn, k) Ωb

ij̄ S j̄(iωn − iνm, k − p)] , (43)

where Si(iωn, k) is the dressed quark propagator with flavor i in the imaginary time
formalism. The reduction of the polarization function in terms of simple integrals can be
found in References [74,76,77].

After analytic continuation to real energies, the poles of tab(p0 + iε, p) represent dy-
namically generated mesonic states. Performing a Taylor expansion of t−1,ab(p0, 0) around
the pole p0 = mM one finds [74],

tab(p) ≃
−g2

M→q̄q

p2 −m2
M

, (44)

with the effective coupling

g2
M→q̄q ≡

2mM
∂Πab(p2)

∂p ∣
p2=m2

M

. (45)

Therefore, (the amputated) tab(p2) can be identified with the meson propagator in the
appropriate spin-flavor channel, and the pole mass of the states can be computed via

1− 2KabΠab(p0 = mM, p = 0) = 0 . (46)

If the emerging state has a mM larger than the sum of the masses of the two constituent
quarks, then it is possible for this meson to decay into a qq pair—as no genuine confinement
mechanism is imposed in the model. In this case Equation (46) gives a complex solution.
The real and imaginary parts of the solution mM are identified with the mass and (half)
the decay width of the mesonic state, which become functions of temperature. I should
mention that the complications of searching for poles in the different Riemann sheets is
avoided after using an approximation which neglects the imaginary part of p0 in some
pieces of the polarization function (43). To the best of my knowledge this approximation
was first used in [78] and has been commonly used since then. Such an approximation
should be acceptable for poles not far away from the real energy axis, while for states with
a large decay width the analytic continuation to the unphysical Riemann sheet should be
applied instead.

I present the results of the chiral partners masses in Figure 3. They are found by
solving Equation (46) in parity opposed channels, i.e., JP = 0+ and JP = 0− but also
JP = 1+ and JP = 1−. This is done by choosing the appropriate Dirac structure in the
vertex matrix (31). I used the PNJL model with the same parameters used in Reference [74].
The only difference with respect to that work is that the finite ultraviolet (UV) cutoff of
the thermal integrals is removed as unnecessary. This treatment was in fact used later
in Reference [75], as otherwise one cannot reproduce the Stefan–Boltzmann limit of the
thermodynamic quantities for large temperatures [78]. In the present context, the only
effect is a reduction of the chiral transition temperature as can be seen by comparing the
present results of Figure 3 and the outcome of Reference [74].

The left panel of Figure 3 shows the scalar-pseudoscalar channel, i.e., the π − σ case,
with nonzero quark masses (mu0 = md0 = 5.5 MeV). The resulting thermal masses resemble
the situation of the LσM with ε ≠ 0 shown in the right panel of Figure 1. However, there
are some differences. First, the location of the chiral transition Tc is very dependent on
the model, the approximation used and the parameter set employed. Second, for the
SU f (3) PNJL model, with the parameters used in Reference [74], the vacuum mass of
the generated state in the scalar-isoscalar channel is mσ = 967 MeV. Therefore, this state
would be most likely to be identified with the f0(980) rather than with the f0(500). The
rather large vacuum quark masses (ca. 480 MeV for the light quark) can partially explain
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this result. No hints of a generated state close to the f0(500) was found in Reference [74],
pointing to a disfavored q̄q structure for this state. It would be interesting to re-analyze this
scalar channel after coupling the π −π scattering in the PNJL model, to see whether the
f0(500) emerges once the pion-pion correlations are incorporated.
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Figure 3. (Left panel): π and σ masses as a function of temperature below and above the chiral
phase transition of the PNJL model, using physical quark masses. (Right panel): Same results for
the vector-axial vector channel, the ρ and a1 mesons. The bands are a reflection of the thermal decay
width of the different states, above the so-called Mott temperature, where the decay channel to a qq
pair opens.

A thermal decay width for the two states is found at higher temperatures. This is
indicated as a band around the respective thermal masses. Notice that the decay into a qq̄
pair is a feature of the (P)NJL model but not physical due to the lack of real confinement
in the model. The temperature at which the decay width becomes nonzero is called Mott
temperature, and it is precisely the point in which the sum of the quark masses becomes
equal to the real part of the pole position of the generated meson. It is interesting to
observe that both the masses and the decay widths become degenerate around T ≃ 220 MeV,
pointing to a degeneracy of the full spectral functions. The estimation of the chiral transition
temperature, defined as the inflection point of the quark condensate, is Tc ≃ 208 MeV.
Therefore, the effective restoration of chiral symmetry happens also above Tc, similarly to
the LσM shown in Section 2.

Because different Dirac structures have been allowed in the interaction terms of
Lagrangian (26) one can easily compute meson thermal masses in different channels.
Moving to the J = 1 channel, degeneracy between vector and axial-vector states can be
analyzed. In the right panel of Figure 3 I present the results for the ρ meson and its chiral
partner the axial-vector a1. Considering that a single coupling GV is used, the obtained
vacuum masses of 723 MeV and 1098 MeV, respectively, are fair approximations to the
experimental pole masses of 775 MeV and 1230 MeV [79], respectively. Notice that because
the pion-pion channel is not coupled in the Bethe–Salpeter equation, the ρ meson does not
present the physical decay width to ρ → π +π in vacuum (see [80] for the study of this
particular process in the context of the NJL model). On the other hand, the a1 mass at T = 0
is above the two-quark mass threshold so that it presents a decay width at T = 0. Again,
above Tc both masses and (large) decay widths do become degenerate.

In the strangeness sector a single additional parameter—the bare quark mass ms0—
allows to access a series of new states [74]. I show an example of meson states containing
net strangeness in the left panel of Figure 4, where I focus again on the vector channel (the
pseudoscalar case was shown in Reference [74]). Again, the only difference with respect to
that work is the suppression of the UV cutoff for the thermal integrations (the same value
of the cutoff is kept for the vacuum contributions).
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Figure 4. (Left panel): Masses of K∗(892) (JP
= 1−) and K1(1270) (JP

= 1+) mesons as functions of
temperature in the PNJL model below and above the chiral phase transition. (Right panel): Same
results for the low-lying scalar ([ud]) and pseudoscalar ({ud}) light diquarks.

The vector state, with a vacuum mass of mM = 866 MeV, is associated to the K∗(892)
meson, while the axial-vector, and a mass of mM = 1262 MeV at T = 0 is identified with the
K1(1270) [79]. Notice that there are no free parameters to obtain these masses, as the vector
coupling was already fixed in the nonstrange sector, and the current strange quark mass
was fixed using the vacuum kaon mass [74]. The generated K∗ state shows no vacuum
decay width at T = 0, while the K1(1270) presents a decay probability to qq. As for the
ρ meson case, it would be interesting to couple the T-matrix equation for the K∗ state
to the π − K scattering channel. However, within the (P)NJL model, the description of
meson-meson scattering becomes rather involved [80].

To conclude this section I point out that the observed mass degeneracy at high tem-
perature is not limited to qq states. In Reference [74] a similar Bethe–Salpeter equation
was solved for the qq scattering to generate diquark states. Those were used to model
baryon states, upon the correlation with an additional quark. The diquark sector contains
its free parameters in the form of unknown coupling constants. Even when these are in
principle related to the q̄q couplings via Fierz transformation [68], they are typically chosen
as independent parameters to allow for more flexibility. With two extra couplings (for
the scalar and the axial-vector channels) it is possible to eventually explain the masses for
all members of the baryon octet and decuplet representations of the SU f (3) group [74].
In the right panel of Figure 4 I show the masses of the light diquark states in the scalar
and pseudoscalar channels. The scalar diquark [ud] is the lightest one and appears tightly
bound with a mass less than 500 MeV in vacuum. The pseudoscalar diquark {ud} is very
massive at T = 0, with a small decay width. These states have opposite parity and become
a degenerated chiral doublet above the chiral restoration point, as can be observed at
high temperatures.

4. Mixed Chiral Companions: Chiral Perturbation Theory

A third scenario of chiral degeneracy combines the previous two: one of the chiral
partners is an explicit degree of freedom of the effective Lagrangian, while the other is a
composed state emerging from the two-body dynamics. In this scenario the analysis of the
mass evolution with temperature has to be performed between a thermal quasiparticle,
whose vacuum mass is modified by thermal fluctuations, and a collective excitation,
appearing as a dynamically-generated state.

Once more the π −σ system can be studied under this category. The effective approach
I will consider is the chiral perturbation theory (ChPT) [8,81,82]. This effective theory is
considered the true effective description of QCD at low energies, as its Lagrangian is
determined using all terms allowed by the symmetries of QCD. In addition, it incorporates
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the constraints from the chiral symmetry breaking pattern in a model independent way
and exploits a well-defined power counting scheme [8,49,81,83]. I refer to the excellent
reviews [82,84–89] for details.

The degrees of freedom of ChPT are the lightest mesons (the pions for N f = 2, and the
pseudoscalar meson octet for N f = 3). It is built following the pattern of the spontaneous
chiral symmetry breaking SUL(N f )× SUR(N f )→ SUV(N f ), where the degrees of freedom
are related to the elements of the quotient group SUL(N f ) × SUR(N f )/SUV(N f ) (whose
dimension is N2

f − 1). The lightest mesons are the Goldstone bosons appearing after the SSB.
As in the previous examples, a finite quark mass can be introduced as an explicit chiral
symmetry-breaking term, which—as being perturbatively small—is incorporated in the
power counting of the theory [8,81].

The effective Lagrangian is expanded in even powers of derivatives over the Goldstone
fields [8]

LChPT = L2 +L4 +L6 +⋯ . (47)

where the lowest order Lagrangian coincides with the non-linear sigma model [8]

L2 =
F2

0
4

Tr [∂µU∂µU†]+
F2

0
4

Tr [χU† +Uχ†] , (48)

For N f = 2, the exponential representation of fields U(x) reads

U(x) = exp(i
√

2φ(x)
F0

) , (49)

where

φ(x) = λaφa(x) =
⎛
⎝

1√
2

π0 π+

π− − 1√
2

π0
⎞
⎠

, (50)

and λa (a = 1, 2, 3) are the Pauli matrices.
The mass term for the pions contains the explicit symmetry-breaking term

χ = 2B0(
m 0
0 m

) = ( M2
0 0

0 M2
0

) , (51)

with m = mu ≃ md the light quark mass (in the isospin limit) and M0 is the pion mass at
lowest order. Finally, F0 is a parameter which equals the pion decay constant at lowest
order in the chiral limit [8].

The next-order Lagrangian reads [8,53]

L4 =
l1
4
{Tr [∂µU∂µU†]}2 + l2

4
Tr [∂µU∂νU†]Tr [∂µU∂νU†]

+ l3
16

{Tr [χ†U + χU†]}2 + l4
4

Tr [∂µU∂µχ† + ∂µχ∂µU†]− l7
16

{Tr [χU† −Uχ†]}2

+ h1 + h3

4
Tr [χχ†]+ h1 − h3

16
{(Tr [χU† +Uχ†])2 + (Tr [χU† −Uχ†])2

−2Tr [χU†χU† +Uχ†Uχ†]} , (52)

where the constants li and hi are called the “low-energy constants” and they are not known
a priori as symmetry arguments alone do not fix them. They must be obtained from
experiments or from lattice-QCD calculations.

Upon expansion of the unitary matrix of fields U(x) one can describe interactions
between pions at any order, according to the power-counting scheme. The partial scat-
tering amplitudes TI J at definite isospin I and spin J given from the ChPT Lagrangian
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are expressible as even powers of the pion momentum or in powers of the Mandelstam
variable s as,

TI J(s) = T(0)
I J (s)+ T(1)

I J (s)+⋯ , (53)

where T(i)
I J (s) is O(si). The partial amplitude TI J(s) must fulfill the unitarity condition

of the scattering S−matrix. For the partial amplitude this condition reads (for the single
channel case and above the two-meson energy threshold):

Im TI J(s) = ρab(s) ∣TI J(s)∣2 , (54)

where ρab =
√

[1− (ma +mb)2/s][1− (ma −mb)2/s] is the two-meson phase space. However,
the perturbative amplitudes obtained from ChPT only satisfy this relation in a perturbative
way [90],

Im T(0)
I J = 0 , (55)

Im (T(0)
I J + T(1)

I J ) = ρab ∣T(0)
I J ∣2 , (56)

Im (T(0)
I J + T(1)

I J + T(2)
I J ) ≃ ρab ∣T(0)

I J + T(1)
I J ∣2 . (57)

The violation of the exact unitarity constraint (54) produces an unnatural increase of
the involved cross sections even at moderate energies (violation of unitarity bound [88]).
In addition, the polynomial expansion of the partial amplitudes (53) makes it impossible
to describe resonant interactions as they are unable to generate poles at any finite order
in the expansion. Some unitarization methods have been developed in order to cure this
problem. I will first describe two of them, which I will exploit later in this work.

The inverse amplitude method (IAM) [90–92] is a way to construct a scattering am-
plitude that respects exact unitarity and is able to reproduce the presence of resonances
as poles of the partial amplitudes. Omitting the details of the derivation (for which the
reader can consult the mentioned references) the final amplitudes are approximated as
(suppressing the isospin-spin indices to ease the notation)

TIAM(s) ≃ T(0),2(s)
T(0)(s)− T(1)(s)

, (58)

where the right-hand side is written in terms of known perturbative amplitudes (53),
computed from ChPT at leading order (LO) T(0)(s) and at next-to-leading order (NLO)
T(1)(s). The new scattering amplitude TIAM(s) satisfies exact unitarity (54), as

Im TIAM(s) = T(0),2(s)Im [ 1
T(0)(s)− T(1)(s)

] = ρab(s)∣TIAM(s)∣2 , (59)

where Equations (55) and (55) were used. Equation (59) being a rational function of s, it
has the potential presence of poles which give access to resonant states in the relevant
scattering channels in the appropriate Riemann sheet of the complex energy plane. One
should mention that the basic IAM formula (59) has been extended in later works to
accommodate several physical effects, thus improving its accuracy, e.g., by extending to
coupled-channels with N f = 3 [93] or incorporating the presence of Adler zeros of the
amplitudes [94].

Finally I would like to point out the formal similarity between the expressions in
Equations (58) and (42), with the identification 2K ↔ T(0)(s) and Π ↔ T(1)/T(0). While
the context and particular details of both expressions are rather different, in a profound
sense both represent realizations of imposing the exact unitarity constraint of the S matrix.

The IAM has also been combined with other methods to improve the efficiency of the
unitarization procedure. For example, in the SU f (3) ChPT unitarized amplitudes were
obtained in [95,96] by combining the so-called “on-shell factorization method” [97] together
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with the IAM in a fully coupled-channel analysis. The unitarized amplitude TUChPT(s) has
the form [95,96] (again suppressing I J indices),

TUChPT(s) = T(0)[T(0) − T(1p) − T(0)GT(0)]−1T(0) , (60)

where T(1p) denotes the (polynomial) amplitude computed from the tree-level part of the
NLO ChPT Lagrangian and the two-meson propagator G reads,

G(s) = i∫
d4k

(2π)4
1

k2 −m2
a + iε

1
(P − k)2 −m2

b + iε
. (61)

The two-meson propagator is the analogue of the quark-antiquark propagator which
was introduced in Equation (43) for the (P)NJL model. In fact, the imaginary part of G is
related two the two-particle phase space,

Im G(s) = ρab(s) . (62)

Together with the property Im T(1p) = 0—as the polynomial part of the NLO am-
plitude is real—it is possible to show that the amplitude (60) also satisfies the unitarity
constraint in Equation (54),

Im TUChPT = T(0)Im [ 1
T(0) − T(1p) − T(0)GT(0)

]T(0) = ρab∣TUChPT∣2 . (63)

This concludes the basic elements of ChPT and the description of the unitarization
methods which provide an improvement in the description of the scattering over the
perturbative amplitudes. Now I turn to the description of the chiral partner masses at
finite temperature.

In thermal ChPT the pion mass dependence on temperature was addressed as early
as [83,98] followed by the works [99–102]. In particular, in References [100,101] both
the pole and screening pion masses were obtained using an effective approach up to
temperatures of T = 150− 200 MeV. The effective Lagrangian of those works also included
vector and axial-vector mesons as massive Yang-Mills fields, which modify the pion
propagator. The net effect is a decrease of the pole mass of ∆mπ ≃ −20 MeV at T = 200 MeV,
while the screening mass remains fairly constant. The thermal-averaged pion thermal
width was estimated around 170 MeV at the same temperature [101], which supposes a
reduction with respect to the predictions of lowest order ChPT for which the pion width

goes like ≃ T
12(

T
fπ
)

4
[103,104].

ChPT was employed in Reference [99] to obtain a reduction of 60% of the vacuum mass
at T = 200 MeV, a substantial decrease of the pion mass. A similar trend in the pion mass is
seen in Reference [102]. However, these temperatures are too high to rely on ChPT alone,
which has a more restricted validity range (the typical pion momenta start to invalidate
the power counting of the EFT). To improve this aspect, References [99,105] include some
phenomenological fits to the π −π scattering amplitudes based on experimental data. This
was done to gauge the validity of standard ChPT at those temperatures.

However—as I have already anticipated—an alternative possibility is to implement
unitarized amplitudes based on SU f (3) ChPT. These can be used into the expression of the
thermal self-energy provided in [99,105]. This was done, e.g., in Reference [106] using the
amplitudes (58), and more recently in Reference [48] using the amplitudes (60) from [96]. I
will provide some details on these calculations.

To address the thermal correction of the pion propagator one can exploit the expression
obtained in [99,105] for the pion self-energy. Such calculation is based in a one-loop
correction in the dilute limit. The thermal correction to the pion retarded self-energy reads,

ΣR(p0, p) = −∫
d3q

(2π)32ωq
f (ωq, T)Tππ(s) , (64)
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where ωq =
√

q2 +m2
π(T = 0) is the free vacuum dispersion relation, f (ωq, T) is the Bose–

Einstein distribution function,

f (ωq, T) = 1
eωq/T − 1

, (65)

and Tππ(s) is the forward (isospin averaged) scattering amplitude of the ππ → ππ process.
The real part of the self-energy is responsible for the thermal correction to the vacuum

pion dispersion relation,

ω(p) ≃ ωp −
1

2ωp
∫

d3q
(2π)32ωq

f (ωq, T) Re Tππ(s) . (66)

In the same approximation the on-shell thermal pion width Γ(p) (which corresponds
to the damping rate γ(p) defined in [99,105]) is related to the imaginary part of the
retarded self-energy,

Γ(p) = 1
ωp
∫

d3q
(2π)32ωq

f (ωq, T) Im Tππ(s) . (67)

Both quantities ω(p) and Γ(p) can be represented together in the spectral function
of the thermal pion, assuming that the quasiparticle picture is valid for the temperatures
considered (Γ/2 ≪ ω). In this case the spectral function would read,

Sπ(p0, p) = 1
2πω(p)

Γ(p)/2
[p0 −ω(p)]2 + [Γ(p)/2]2 . (68)

Notice that the use of a unitarized ππ scattering amplitude (60), (58) in Equations (66)
and (67) is to be understood as a perturbative approach. The amplitudes are computed in
vacuum and then inserted in the one-loop thermal corrections (a two-loop correction was
also considered in [99], but it would require the implementation of the six-pion scattering
amplitude). Therefore, the main dependence on temperature is then assumed to be on the
Bose–Einstein function Equation (65). Medium-dependent interactions would require a
more sophisticated approach.

The thermal pion mass is computed as mπ(T) = ω(p = 0) from Equation (66). It is
plotted in the left panel of Figure 5 up to T = 150 MeV. The result labeled “SU(3) UChPT”
employs coupled-channel unitarized amplitudes from Reference [96] (therefore, the mass
modification contains subleading effects from higher mesonic states like the KK̄ interaction).
This case is taken from Reference [48]. With that interaction, at T = 150 MeV the pion
mass takes a value of mπ ≃ 120 MeV. Such reduction is not captured by the LσM nor
the (P)NJL model. Within ChPT this reduction was observed when implementing NLO
amplitudes [102,106]. In fact, the current algebra result does not show this trend [99] nor
the LO ChPT amplitudes in the more recent Reference [107] where the pion mass always
increases. This result for mπ(T) is fully consistent with the one using the SU f (2) IAM
in Reference [106] at zero pion chemical potential, which is added to the same panel of
Figure 5 under the label “IAM SU(2) ChPT”. Apart from the intrinsic details of the different
methods, the small differences at high temperatures could be ascribed to the absence of the
KK̄ channel in the second calculation.

In the right panel of Figure 5 I present the pion spectral function in the quasiparticle
approximation (68) using ω(p) and Γ(p) in Equations (66) and (67), respectively. The
interactions are those described by the “SU(3) UChPT” amplitudes, cf. Equation (60).
The pion is taken at rest and the spectral function is plotted as a function of the energy
for three different temperatures T = 50, 100, 150 MeV. One can observe the reduction of
the pion thermal mass with temperature in the shift of the quasiparticle peak as well
as the increase of the thermal decay width from the broadening of the spectral function.
At T = 150 MeV the decay half-width is Γ(p = 0)/2 ≃ 15 MeV, which is still one order of
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magnitude smaller than ω(p = 0) ≃ 120 MeV, and therefore the quasiparticle approximation
should be reasonable, at least for low-momentum pions.
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Figure 5. (Left panel): Thermal pion mass obtained from the one-loop pion self-energy correction at
finite temperature [99] using unitarized scattering amplitudes from ChPT. Solid line employs unita-
rized amplitudes from Reference [96], while dotted line uses the IAM results from Reference [106].
(Right panel): Spectral function (68) of a pion at rest at different temperatures as a function of pion
energy. Interactions are taken from Reference [96].

Unfortunately ChPT cannot be applied much beyond T = 150 MeV, and therefore it
is not possible to study the properties of pions above the chiral restoration temperature.
According to the LσM and the (P)NJL, only for T > Tc the true degeneracy of states
takes place. Nevertheless, I will therefore try to analyze any indication of chiral partner
degeneracy below Tc. For this I need to describe the emergence of the JP = 0+ chiral
companion of the pion in this approach.

It should be mentioned that the history of the σ state (or f0(500) according to the Parti-
cle Data Group [79]) is a long-standing one (and sometimes polemic). For a comprehensive
discussion I refer the reader to the detailed review [108]. From the latest version of the
Particle Data Group review [79] it is a state with a mass between 400 and 550 MeV and a
large decay width. More precisely, the value of the imaginary part of the pole position in
the complex energy plane is estimated as (200–350) MeV (with a full width estimated using
a Breit-Wigner ansatz twice this value Γ = (400 − 700) MeV). Therefore, it is very broad
state already at T = 0.

The σ is not part of the ChPT degrees of freedom, but it could be generated via the
correlation of two pions, to which the σ can decay in an s−wave with a large probabil-
ity [109]. In fact, it is possible to describe this state by unitarizing the scalar-isoscalar
scattering channel of two pions from ChPT [90–92,97]. In particular, this was achieved in
the studies [96] and [106], which I have already used to generate the results of Figure 5.

Unfortunately, studies on the generation of the f0(500)/σ at finite temperature in
the context of the ChPT are scarce. A calculation of the thermal mass/decay width of
this state can be found in References [110,111], where the coupled-channel version of the
SU f (3) IAM is employed. There, the unitarized scattering amplitudes are extended to
include medium effects, together with thermal modification of the kinematic phase-space.
The vacuum value of the σ pole mass was estimated as ≃440 MeV and its decay width
around 460 MeV. When the temperature increases, the pole mass decreases to 350 MeV at
T = 125 MeV and the width increases up to 560 MeV. The results of References [110,111]
are plotted in Figure 6 for the mass and the decay width of the σ resonance.
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Figure 6. Mass and decay width of the σ resonance as obtained in the IAM method applied to SU f (3)
ChPT at finite temperature [110,111]. The mass is computed as the real part of the pole position in
the unphysical Riemann sheet, while the decay width is defined as twice the absolute value of the
imaginary part of the pole position.

The behavior of the thermal σ is also described in the more recent [112], which also
implements the IAM to dynamically generate the σ pole from the ππ scattering. In that
work, the σ mass has a somewhat stronger reduction reaching at T = 150 MeV half of
its vacuum mass. From the results of [112], and assuming a vacuum σ mass of 440 MeV,
together with a pion mass of 120 MeV at the same temperature (according to the results in
Figure 5), the mass difference of the chiral states is mσ −mπ ≃ 100 MeV (for comparison,
at T = 0 this difference is ≃300 MeV). Therefore, one can conclude that there exist some
indications that the chiral mass degeneracy could be partially realized in ChPT as well.
However, notice that the σ decay width is likely to be rather large at T = 150 MeV (similar
to what is shown in Figure 6), while the pion only gets a couple of dozens of MeV of width
at the same temperature, as I discussed before. This observation seems to preclude a full
degeneracy of the spectral functions of the chiral partners at high temperature. Nonetheless,
it would be necessary to carry out a self-consistent calculation in which the pion is sensitive
to the σ mass reduction in medium. This reduction might have a potential effect in the pion
thermal decay width.

To conclude this section I point out that in the chiral limit (mu = md = 0) and argument
for the π − σ mass degeneracy can be found in Reference [113], based on the reduction
of the pion decay constant fπ with temperature [52,83,114]. The reduction of fπ in a
dense medium [115,116] has also been exploited in the work [117] to compute density
modifications of the ππ scattering amplitude of ChPT in the ρ and σ meson channels. I
will insist more on the effect of fπ at the end of the next section.

5. Chiral Partner as a Double-Pole Structure: Open Charm Mesons

In this section I will consider a variation of the previous situation, where the positive-
parity chiral companion is generated via the dynamics of the degrees of freedom and
emerges as a new, resonant state. The difference lies in the fact that this state is not
represented with a single pole of the scattering amplitude but with a two-pole structure. I
will focus on the charm sector and describe the situation of D mesons at finite temperature,
as presented in References [47,48].

In the last decade of heavy-flavor systems have received a lot of attention thanks to
the development of effective theories describing charm and bottom. The large masses
of these states compared to other scales in the system help to define a power counting
to apply a suitable expansion of the effective Lagrangian. Some effective approaches in
the heavy-flavor sector are the “heavy-quark effective theory” [118–121] and the “non-
relativistic QCD” and its extensions [122–126]. In addition, open charm and bottom
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mesons were studied using a combination of heavy-quark spin-flavor symmetry and chiral
symmetry [127–129] in the recent works [130–135].

Let me briefly describe the spectroscopy situation of the open charm states in vac-
uum [79]. Focusing on the low-lying states, the ground state D with a (isospin average)
mass of 1867 MeV is a pseudoscalar (JP = 0−) as well as the strange counterpart Ds (with a
mass of 1968 MeV). The heavy-quark flavor partner of the D meson is the B̄ meson, and
its heavy-quark spin partner is the vector D∗ (mD∗ = 2008 MeV). At the level of the EFT
at LO, the D meson is fully decoupled from the D∗ and they are described by analogous
interactions (except for the explicit breaking when using the physical masses) [134,135].

The chiral partner candidate of the D meson is a JP = 0+ state with a mass around
2 GeV called D∗

0 (2300) [79]. The D∗
0 (2300) decays into the ground state emitting a pion

in s−wave [79]. Therefore, there is a chance to describe this state from the D-π two-body
problem (similar to the σ resonance in the ππ interaction). The analogue companion of
the Ds is the spin-0 D∗

s (2317) [136], which is a very narrow state (an upper limit of the
decay width is 3.8 MeV [79]). In the vector sector, the chiral partner of the D∗ is the broad
D∗

1 (2430), and the companion of the D∗
s is the narrow Ds1(2460). A summary of the

different states according to their total angular momentum (J) and their strangeness (S)
content is given in Figure 7.
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Figure 7. Low-lying D-meson states in the J = {0, 1} and S = {0, 1} channels according to the Particle
Data Group review [79]. The height of the black boxes represents the uncertainty in the masses of the
states, while the height of the red boxes is a measure of the vacuum decay width of the resonances.

Anticipating the situation for the D∗
0 (2300) resonance, what makes this state particu-

larly interesting is its two-pole structure [130,133,137,138] (see also the recent review [139]).
The physical state quoted in [79] is therefore a combination of two poles (sharing the same
quantum numbers) located at different positions in the complex-energy plane. The quoted
mass of the D∗

0 (2300) is (2318 ± 30) MeV, sitting in between the respective real parts of
the two poles [138]. The decay width is large Γ = 261± 40 MeV and similar to (twice) the
imaginary part of the two pole positions.

I now detail how the states shown in Figure 7 are generated in vacuum and at fi-
nite temperature. In References [47,48] we exploited the effective approach of Refer-
ences [131–134] and extended it to finite temperature using the imaginary time formal-
ism [61]. The effective Lagrangian is kept at leading-order (LO) in heavy-quark mass
expansion but at next-to-leading (NLO) order in chiral expansion. The LO Lagrangian
contains the Goldstone-boson sector (that is, the ChPT Lagrangian at LO) plus the sector
involving heavy mesons. These are encoded as an antitriplet in D = (D0 D+ D+

s ), and
their heavy-quark partners, the vector D∗

µ = (D∗0 D∗+ D∗+
s )

µ
. The octet of pseudo-

Goldstone bosons follows the exponential representation u(x) = exp(iΦ(x)/
√

2 fπ), where
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Φ(x) =
⎛
⎜⎜⎜⎜
⎝

√
1
2 π0 +

√
1
6 η π+ K+

π− −
√

1
2 π0 +

√
1
6 η K0

K− K̄0 −
√

2
3 η

⎞
⎟⎟⎟⎟
⎠

. (69)

Notice that the matrix U defined in Equation (49) is equivalent to u2 introduced here,
and the field matrix φ in Equation (50) is the 2-flavor equivalent of the Φ shown here. The
LO Lagrangian reads

LLO = LChPT
LO + ⟨∇µD∇µD†⟩−m2

D⟨DD†⟩− ⟨∇µD∗ν∇µD∗†
ν ⟩+m2

D⟨D∗νD∗†
ν ⟩

+ ig⟨D∗µuµD† −DuµD∗†
µ ⟩+ g

2mD
⟨D∗

µuα∇βD∗†
ν −∇βD∗

µuαD∗†
ν ⟩εµναβ , (70)

where uµ = i(u†∂µu−u∂µu†),∇µD(∗) = ∂µD(∗)−D(∗)Γµ, and the connection Γµ = 1
2(u†∂µu+

u∂µu†). The angular brackets imply a trace in flavor space.
At NLO the Lagrangian contains several low-energy constant hi, h̃i [133–135,140,141],

LNLO = LChPT
NLO − h0⟨DD†⟩⟨χ+⟩+ h1⟨Dχ+D†⟩+ h2⟨DD†⟩⟨uµuµ⟩
+ h3⟨DuµuµD†⟩+ h4⟨∇µD∇νD†⟩⟨uµuν⟩+ h5⟨∇µD{uµ, uν}∇νD†⟩
+ h̃0⟨D∗µD∗†

µ ⟩⟨χ+⟩− h̃1⟨D∗µχ+D∗†
µ ⟩− h̃2⟨D∗µD∗†

µ ⟩⟨uνuν⟩
− h̃3⟨D∗µuνuνD∗†

µ ⟩− h̃4⟨∇µD∗α∇νD∗†
α ⟩⟨uµuν⟩− h̃5⟨∇µD∗α{uµ, uν}∇νD∗†

α ⟩ , (71)

whereLChPT
NLO represents the NLO ChPT Lagrangian involving only Φ, and χ+ = u†χu† +uχu

with the quark mass matrix χ = diag(m2
π , m2

π , 2m2
K −m2

π).
The tree-level amplitudes from the LO+NLO Lagrangian at lowest order in the inverse

D-meson mass expansion are [133,134],

Vij(s, t, u) = 1
f 2
π

[
Cij

LO
4

(s − u)− 4Cij
0 h0 + 2Cij

1 h1

− 2Cij
24(2h2(p2 ⋅ p4)+ h4((p1 ⋅ p2)(p3 ⋅ p4)+ (p1 ⋅ p4)(p2 ⋅ p3)))

+ 2Cij
35(h3(p2 ⋅ p4)+ h5((p1 ⋅ p2)(p3 ⋅ p4)+ (p1 ⋅ p4)(p2 ⋅ p3)))] , (72)

where s = (p1 + p2)2, t = (p1 − p3)2, u = (p1 − p4)2 are the Mandelstam variables. The indices
i, j represent initial and final scattering channels, and Cij are isospin coefficients depending
on the scattering channels, which are described in detail in [47,48]. Both elastic and inelastic
channels (like Dπ → DsK̄) are incorporated in the framework.

Similar to the ChPT case, these amplitudes are only valid at low momentum, violating
the exact unitarity constraint (54) at moderate energies. However, the attractive nature of
the interaction calls for a resummation in the form of a Bethe–Salpeter equation. Its solution
provides a set of unitarized scattering amplitudes. The motivation for such an approach
was explained in Section 4 and also applies in the context of the heavy-flavor sector. In the
so-called “on-shell factorization method” [97,142] the T-matrix equation reads,

Tij(s) = Vij(s)+Vil(s)Gl(s)Tl j(s) , (73)

where a sum over all possible intermediate channels l is implied. Vij(s) corresponds to
the s-wave projection of the perturbative amplitude (72). In vacuum, the two-propagator
function is computed as

Gl(s) = i∫
d4q

(2π)4
1

q2 −m2
D + iε

1
(p − q)2 −m2

Φ + iε
, (74)



Symmetry 2021, 13, 1400 21 of 31

with pµ = (E, p). I make explicit that at T = 0 the loop function is given as a function of the
Mandelstam variable s = p2 = (p1 + p2)2. The solution of the T-matrix equation is

Tij(s) = Vik(s)[1−V(s)G(s)]−1
kj , (75)

which satisfies the exact unitarity relation of the scattering matrix (54). Again I stress the
formal similarity of this equation with Equation (42) where the role of the perturbative
amplitude V is equivalent to the NJL 4-quark coupling 2K, and the two-meson propagator
G corresponds to the polarization function (qq̄ propagator) Π.

Equation (75) is solved in the different channels of angular momentum (J) and
strangeness (S). For (J, S) = (0, 0) we found that the two poles of the D∗

0 (2300) state
are located in two different Riemann sheets: the lower pole in the (−,+,+) sheet in a po-
sition

√
spole = (2082, 86) MeV; whereas the higher one is located in the (−,−,+) sheet at

√
spole = (2526, 147) MeV. These poles can be observed in Figure 8 where I plot the different

Riemann sheets of the diagonal Dπ → Dπ channel. The lower pole appears in a Riemann
sheet which is directly connected to the physical Riemann sheet below the real energy
axis and therefore it is very prominent along the real axis (physical scattering amplitude).
The upper pole appears in a RS which is not directly connected with the physical RS. In
addition, it has a large imaginary part, so its effect will not be significant in the physical
scattering amplitude (however, as shown in Reference [48], it plays a relevant role in the
DsK̄ channel, to which it couples more strongly).
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Figure 8. Two poles of the D∗
0 (2300) at T = 0 as they appear in the complex energy plane of the

Dπ → Dπ channel in Reference [48]. (Left panel): (−,+,+) Riemann sheet where the lower pole
emerges. (Right panel): (−,−,+) Riemann sheet where the upper pole appears.

In the (J, S) = (0, 1) channel a single pole below the DK threshold is found in the
unphysical Riemann sheet (+,+) with a mass of 2252.5 MeV. This state is identified with
the narrow state D∗

s0(2317). While the mass is somewhat below the mass listed in [79], we
found some sensitivity with the parameter set, as explained in Reference [48]. I should
mention that according to Reference [79] this state has a small decay width to Dπ, which is
a process that does not conserve isospin. Including an isospin breaking term in the EFT,
one can explain such decay [143].

At finite temperature one can perform a similar situation using the imaginary-time
formalism [61]. As opposed to the calculation presented in Reference [99]—where the
thermal modification of the mass was computed through a one-loop perturbative correction
of the pion self-energy—in this case, we solved a self-consistent set of equations, where the
correction to the D-meson self-energy utilizes the full T-matrix at the vertices [48]. This
T-matrix is now computed with a medium-modified retarded GDΦ propagator,

GDΦ(E, p; T) = ∫
d3q

(2π)3 ∫ dω∫ dω′ SD(ω, q; T)SΦ(ω′, p − q; T)
E −ω −ω′ + iε

× [1+ f (ω, T)+ f (ω′, T)] , (76)
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where f (ω, T) is defined in Equation (65), and SD, SΦ denote the D-meson and light meson
spectral functions, e.g.,

SD(ω, q; T) = − 1
π

ImDR
D(ω, q; T) = − 1

π
Im

⎛
⎝

1
ω2 − q 2 −m2

D(T = 0)−ΠR
D(ω, q; T)

⎞
⎠

, (77)

which, in turn, depends on the retarded D-meson self-energy,

ΠR
D(ω, q; T) = − 1

π ∫
d3q′

(2π)3 ∫ dE
ω

ωπ

f (E, T)− f (ωπ , T)
ω2 − (ωπ − E)2 + iε

Im TDπ(E, p; T) . (78)

These equations were numerically solved in Reference [47,48] in an iterative scheme.
We considered temperatures up to T = 150 MeV. In those works we checked that the effect
of the pion thermal mass, as shown in the left panel (“SU(3) UChPT” line) of Figure 5, can
be neglected in the thermal modification of the D-meson masses. Then, vacuum spectral
functions for the light mesons were employed in order to simplify the calculation.

The masses of the ground states are defined as the poles of the retarded D-meson
propagator [DR

D in Equation (77)] in the static limit q = 0, i.e., they are the solutions of
the equation,

m2
D(T) = m2

D(T = 0)+ΠR
D(mD(T), q = 0; T) , (79)

where mD(T = 0) is the vacuum D-meson mass. For the masses of the dynamically-
generated states, a simplified analysis was performed in [47,48] to render the problem
tractable. Instead of analytically continuing the thermal scattering amplitudes to the full
complex energy plane, we found the projection into the real energy axis of the different
channels and extracted the masses and decay widths from standard spectral shapes. For
the narrow states a Breit-Wigner-Fano form was employed, which takes into account
the interference of the resonances with the background. For the the broad states in the
S = 0 channels—whose shapes are distorted due to the presence of several thresholds—we
employed a three-coupled-channel Flatté form, with the background subtracted. More
details are given in Reference [48].

I summarize the results of the thermal masses for the different J = 0 states in Figure 9.
The left and right panels show the results for the S = 0 and the S = 1 sectors, respectively.
Ground states are represented in black lines. For completeness, I also present the result in
the J = 1 sector in Figure 10, which are very similar to those in J = 0 sector thanks to the
heavy-quark spin symmetry (apart from a generic mass shift of ∆m ≃ 140 MeV due to the
use of the physical vacuum masses for the ground states).

The different line style represents the set of light mesons used to dress the ground
state mass in Equation (78). The solid lines show the mass modification due to a thermal
bath of pions, while the dashed lines contain the effect of pions, kaon and antikaons in a
self-consistent way. As thermally suppressed, the effect of kaons states is very small and
only appreciable at the highest temperatures.

From Figures 9 and 10 one observes a general dropping of the thermal masses when
temperature increases. This goes in line with the π and σ masses presented in Section 4.
However, the decrease is rather small in relative terms. Nonstrange ground states D and D∗

suffer a drop of ≃2% at T = 150 MeV with respect to their vacuum masses. This reduction
was also seen in the previous calculation [144]. For the states with strangeness, Ds and D∗

s ,
the drop is smaller (≃1%). The mass reduction of the different resonances is even more
limited, of the order of 10 MeV. Such effects are very small to conclude any evidence of
mass degeneracy around T = 150 MeV [47]. The reason is the large vacuum masses in
comparison with the temperatures considered. What is important to notice is the fact that
the chiral-partner degeneracy in the S = 0 case involves not two but three different states.
This is due to the double-pole structure of the positive parity state and consists of a new
situation to explore.
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Figure 9. Thermal masses of the D-meson chiral partners in the J = 0 channel. (Left panel): S = 0
channel with D meson ground state and the D∗

0 (2300) resonance (double pole). (Right panel): S = 1
channel with ground state Ds meson and D∗

s0(2317) bound state.
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Figure 10. Thermal masses of the D-meson chiral partners in the J = 1 channel. (Left panel): S = 0
channel with D∗ meson ground state and the D∗

1 (2430) resonance (double pole). (Right panel): S = 1
channel with ground state D∗

s meson and D∗
s1(2460) bound state.

As in ChPT, the EFT is limited below the chiral restoration temperature, and it is
not possible to study the two-pole structure in the Weyl–Wigner phase. It is unclear if
the double pole structure will merge into a single one before becoming degenerate with
the ground state or if the three states will eventually get similar masses around the same
temperature above Tc. Different scenarios for the chiral restoration are schematically shown
in Figure 11.

In the first case the three states become degenerate around the same temperature
above Tc. In the second case the two poles will merge before becoming degenerate with the
ground state. In the third case the degeneracy occurs in a two-step process, first merging
the lower pole with the ground state and later becoming degenerate with the upper pole. A
more exotic scenario could in principle be considered, e.g., the true chiral companion of the
ground state is only one of the poles, while the other never becomes degenerate. However,
given that the physical state is a superposition of the two poles, it is difficult to imagine
that such situation would correspond to the physical one.

In the calculation of the D-meson masses of Reference [48] the thermal evolution of the
pseudo-Goldstone bosons and the pion decay constant were neglected. For the first case we
found that a reduced π mass at T = 150 MeV only contributed no more than 5 MeV to the
final charm-meson masses (including the ground and the dynamically-generated states).
In addition, no back reaction of the chiral condensate nor fπ was taken into account in the
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calculation. However, the effect of the thermal dependence of the pion decay constant is
expected to be more elucidating as it can be directly related to the chiral condensate via
Gell-Mann-Oakes-Renner relation at finite temperature [83,102,116,145,146]. Notice that fπ

enters explicitly in the perturbative scattering amplitude, cf. Equation (72), and the effect of
the chiral condensate was particularly crucial in the LσM for the σ state (see Equation (25));
and in the (P)NJL model for the dressing of the quark mass (see Equation (27)).

1600

1800

2000

2200

2400

2600

2800

0 0.25 0.5 0.75 1 1.25 1.5

Case I

M
(M

eV
)

T/Tc

D∗
0(2300) (higher pole)
D∗

0(2300) (lower pole)
D

1600

1800

2000

2200

2400

2600

2800

0 0.25 0.5 0.75 1 1.25 1.5

Case II

M
(M

eV
)

T/Tc

D∗
0(2300) (higher pole)
D∗

0(2300) (lower pole)
D

1600

1800

2000

2200

2400

2600

2800

0 0.25 0.5 0.75 1 1.25 1.5

Case III

M
(M

eV
)

T/Tc

D∗
0(2300) (higher pole)
D∗

0(2300) (lower pole)
D

Figure 11. Three scenarios for the mass degeneracy of chiral companions, when the positive
parity state present a double-pole structure. (Left panel): The three states become degenerate at
approximately the same temperature above Tc. (Middle panel): The two-pole structure merges into
a single pole before becoming degenerate with the chiral partner. (Right panel): The two poles of the
chiral state become degenerate with the ground state at different temperatures above Tc.

The implementation of fπ(T)—together with the thermal dependence of light meson
properties—can shed some light on the preferred scenario among those described in
Figure 11. The ChPT sector of the EFT (70), (71) can provide a dependence of fπ(T).
From the works [52,83,145] one would expect a reduction at lowest order (while at finite
temperature one should distinguish between temporal and spatial pion decay constants, I
will neglect such difference for the simple calculation presented here)

fπ(T)
fπ,0

≃ 1− T2

12 f 2
π,0

, (80)

where fπ,0 = fπ(T = 0).
Here I present a simplified calculation aiming for a preliminary implementation of

the effects of the reduction of fπ(T) on the two-pole structure of the D∗
0 (2300) state. I

do not pursue a self-consistent framework and not even a systematic treatment using the
imaginary-time formalism. Just to get a first taste I simply consider the vacuum calculation
of the dynamically-generated poles by solving the T-matrix Equation (75), with an artificial
modified value of fπ . Such a modified pion decay constant will take a fraction of the
vacuum value fπ,0 = 93 MeV. I focus only on the scalar channel J = 0 but including both
S = 0 and S = 1 sectors.

The results are shown in Figure 12, where I allowed for a reduction of the pion decay
constant up to 60 % of its vacuum value. In the left panel I present the evolution of the two
poles associated to the D∗

0 (2300) resonance as a function of fπ . Both poles get a sizable
decrease of their real parts and a strong reduction of their decay widths. The higher pole
remains in the original Riemann sheet (but monotonously approaching the real axis). The
lower pole crosses from the (+,−,−) Riemann sheet to the unphysical one (+,+,+) thus
becoming a bound state very close to fπ = 0.7 fπ,0. While the real parts of the pole positions
are still far from the D-meson mass the approaching is evident and much more pronounced
than the results in Figure 9.
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Figure 12. Pole positions of the positive-parity charm states as functions of the pion decay constant,
when it is reduced with respect to the vacuum value. (Left panel): (J, S) = (0, 0) channel where the
two-pole state D∗

0 (2300) is generated. (Right panel): (J, S) = (0, 1) sector where the bound state
D∗

s0(2317) is obtained.

The situation in the (J, S) = (0, 1) channel is presented in the right panel of Figure 12.
The dynamically-generated D∗

s0 remains bound for all values of fπ considered and stays
in the physical Riemann sheet. Then I only plot the real part of the pole position as a
function of fπ (in units of the vacuum pion decay constant). The positive-parity state
clearly approaches the ground state mass, becoming rather close to it for fπ = 0.6 fπ,0. This
shows a potential mass degeneracy of chiral partners with a reduction of the effective pion
decay constant.

It is even possible to account for the mass reduction of ground states—both charm
and the light mesons—which I described in the previous sections. By repeating the exercise
of varying fπ , but also implementing a 5% reduction to the D and Ds masses (cf. black
solid lines in Figure 9), and a 10% reduction in all the light-meson masses (following the
pion case in Figure 5), I obtain a similar qualitative behaviors as in Figure 12 but the real
part of the pole positions of the D∗

0 (2300) and the pole of the D∗
s0(2317) acquire an extra

shift of ∼ −100 MeV. In fact, both the lower pole of the S = 0 channel and the bound state of
S = 1 sector, become very close to their respectively ground states. These analyses would
favor the third scenario presented in Figure 11, where the lower pole gets degenerate with
the ground state before the higher pole does.

One should keep in mind the very simplified nature of this study. I can only venture
to conjecture that the two poles would become degenerate independently with the ground
state, with the upper pole merging at a higher temperature. I hope this can motivate a
more solid study in this direction, e.g., along the lines of [147], where mean-field effects of
the quark condensate are incorporated in the determination of the vector D∗ mass. That
could confirm whether the two-pole structure will not collapse into a single one before
becoming degenerate with the ground state.

I conclude this section by mentioning that the scenario of three chiral siblings is not
exceptional. Due to heavy-quark spin-flavor symmetry, analogous situations are expected
for the nonstrange sectors of the D∗, B and B∗ mesons (see [139] and references therein). On
the other hand, the two-pole structure of the Λ(1405) baryon [148–150] is well established.
This state can be identified with the chiral partner of the Λ ground state. Other meson and
baryon candidates with a possible double-pole structure are mentioned in Reference [139].
To the best of my knowledge no other study on chiral symmetry restoration in the context
of two-pole structures have been performed apart from [47]. For example, it would be
interesting to address the thermal evolution of the two-pole structure of the Λ(1405) at
finite temperature, together with the thermal modification of the Λ baryon.
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6. Conclusions

In this work I have reviewed some results concerning how chiral partners of opposed
parity become degenerate in mass at high temperatures following the restoration of chiral
symmetry. I have characterized the different patterns depending on the nature of the
chiral states, namely, they are part of the fundamental degrees of freedom of the EFT or
dynamically-generated states emerging from the two-body dynamics.

In particular I have considered the scenarios where two chiral partners are degrees of
freedom of the Lagrangian; both are emergent collective states; and the mixed case, where
the positive parity state is generated by the attractive interactions of the chiral companion.
These cases have been represented respectively by the LσM, the (P)NJL model and the
ChPT. For the latter case—even when incorporating the correct chiral constraints in its
construction—the effective theory is limited to temperatures below the chiral restoration
one. Therefore, a clear conclusion for a full mass degeneracy cannot be drawn. However,
evidences of a relative approach around T = 125 MeV were found when employing a
unitarized version of the ChPT.

Finally, I have addressed the case where the chiral multiplet is represented by three
different states. This situation occurs in the heavy-light meson sector, where the chiral
companion of the D meson is the D∗

0 (2300) state, which is a combination of two poles in the
complex-energy plane. A similar situation occurs in the J = 1 sector between the D∗ meson
and the double-pole structure of the D∗

1 (2430) state. In the case of ChPT definite results
cannot be obtained, being that the temperature dependence is very weak for the mass of
these heavy states. Nevertheless, I argued that a coupling with the chiral condensate might
bring a more solid conclusion in this respect. I have presented a preliminary study of the
thermal masses of the positive-parity states by artificially decreasing the value of fπ . I
found a substantial T dependence pointing to a decrease of the mass difference between
chiral states. While this was a mere exploratory study, it seems to indicate that a potential
degeneracy of chiral siblings at high temperatures might not occur for the three states
at once but sequentially. A rigorous description of how chiral symmetry restoration is
realized with three chiral companions (ground state and double-pole structure) is still an
open issue. I hope future investigations can shed light on this intriguing situation.
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