Supplementary information

Possible combinations of instances in class proportional sampling

The number of possible combinations of r instances of a data set with n cases equals the number of

Combinations $=\binom{n}{r}=\frac{n!}{r!\cdot(n-r)!}$.

If a fraction q in $[0,1]$ of a data set is drawn and the data set contains $m>1$ classes $\left(k_{1}, \ldots, k_{m}\right)$ with weights w_{k} adding up to a value of 1 , the number of instances drawn from each class equals to $r_{k}=$ $w_{k} \cdot n \cdot q$, and the number of possible combinations per class is given by

Combinations $_{k}=\frac{\left(n \cdot w_{k}\right)!}{\left(w_{k} \cdot n \cdot q\right)!\cdot\left(w_{k} \cdot n \cdot(1-q)\right)!}$
and the absolute number of possible combinations for subsamples of size q preserving the class proportion is calculated to the product Combinations $=\prod_{k=1}^{m}$ Combinations ${ }_{k}$.

The probability of each a particular combination C among the instances in a class k is the reciprocal of that value, i.e.,

$$
P(C)=\frac{\left(w_{k} \cdot n \cdot q\right)!\cdot\left(w_{k} \cdot n \cdot(1-q)\right)!}{\left(n \cdot w_{k}\right)!}
$$

In uniformly distributed sampling from a data set with n values x in the range $[a, b]$, the probability of drawing a particular value is given by
$P(x)=\left\{\begin{array}{c}\frac{1}{n} \text { for } a \leq x \leq b \\ 0 \text { for } x<a \mid x>b\end{array}\right.$.

In class-proportional sampling, the probability of sampling a particular combination of cases follows from the probability of the combinations within each class k_{1}, \ldots, k_{m}, and the equal probability of the presence of each class in the final sample, i.e.,
$P(k)=\prod_{k=1}^{m} \frac{\left(w_{k} \cdot n \cdot q\right)!\cdot\left(w_{k} \cdot n \cdot(1-q)\right)!}{\left(n \cdot w_{k}\right)!}$.

Depending on the fraction class-proportionally sampled from the data set, this possibly leads to a huge number of different combinations of instances that can be drawn.

PCA based reconstruction of data

Dimensionality reduction was achieved by performing a principal component analysis (PCA) of the downsampled data $X_{\text {sample }}$. Prior to transformation, the data was centered on the coordinate origin:
$\boldsymbol{X}=\boldsymbol{X}_{\text {sample }}-\boldsymbol{\mu}$

Where $\boldsymbol{X}_{\text {sample }}$ is a $(q n) \cdot p$ matrix with $q n$ rows (number of instances) and p columns (number of features). Centering is achieved by row wise subtracting the vector of the feature averages $\boldsymbol{\mu}$ with p entries. The actual transformation is performed by

$$
\boldsymbol{X}_{\text {proj }}=\boldsymbol{X V}
$$

Where $\boldsymbol{X}_{p r o j}$ is the projected $(q n) \cdot p$ matrix and \boldsymbol{V} is a $p \cdot p$ matrix that comprises the unit vectors that define the principal components (PCs) determined via singular value decomposition. Dimensionality reduction is performed selecting the x columns of \boldsymbol{V} which passed the Kaiser-Guttman criterion. This results in the $p \cdot x$ matrix $\boldsymbol{V}_{\text {reduced }}$ (with $x \leq p$). The PCA results were then used to predict the remaining data in the original dataset $\boldsymbol{X}_{\text {remaining }}$, a $(1-q) n \cdot p$ matrix.
$\boldsymbol{X}_{\text {recosample }}=\left(\boldsymbol{X}_{\text {remaining }} \boldsymbol{V}\right) \boldsymbol{V}_{\text {reduced }}^{T}+\boldsymbol{\mu}$

Thus, the reconstruction MSE between $\boldsymbol{X}_{\text {remaining }}$ and $\boldsymbol{X}_{\text {recosample }}$ calculates to:
$M S E=\frac{\sum_{i=1}^{(1-q) n} \sum_{j=1}^{p}\left(\boldsymbol{X}_{\text {recosample }}[i, j]-\boldsymbol{X}_{\text {remaining }}[i, j]\right)^{2}}{(1-q) n \cdot p}$

