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Supplementary information 

Possible combinations of instances in class proportional sampling 

The number of possible combinations of r instances of a data set with n cases equals the number of 

𝐶𝑜𝑚𝑏𝑖𝑛𝑎𝑡𝑖𝑜𝑛𝑠 =  (
𝑛
𝑟

) =
𝑛!

𝑟!∙(𝑛−𝑟)!
 . 

If a fraction q in [0,1] of a data set is drawn and the data set contains m > 1 classes (k1,…,km) with 

weights wk adding up to a value of 1, the number of instances drawn from each class equals to 𝑟𝑘 =

𝑤𝑘 ∙ 𝑛 ∙ 𝑞, and the number of possible combinations per class is given by 

𝐶𝑜𝑚𝑏𝑖𝑛𝑎𝑡𝑖𝑜𝑛𝑠 𝑘 =
(𝑛 ∙ 𝑤𝑘)!

(𝑤𝑘 ∙ 𝑛 ∙ 𝑞)! ∙ (𝑤𝑘 ∙ 𝑛 ∙ (1 − 𝑞))!
 

and the absolute number of possible combinations for subsamples of size q preserving the class 

proportion is calculated to the product 𝐶𝑜𝑚𝑏𝑖𝑛𝑎𝑡𝑖𝑜𝑛𝑠 = ∏ 𝐶𝑜𝑚𝑏𝑖𝑛𝑎𝑡𝑖𝑜𝑛𝑠 𝑘
𝑚
𝑘=1 . 

The probability of each a particular combination C among the instances in a class k is the reciprocal of 

that value, i.e., 

𝑃(𝐶)  =
(𝑤𝑘∙𝑛∙𝑞)!∙(𝑤𝑘∙𝑛∙(1−𝑞))!

(𝑛∙𝑤𝑘)!
. 

In uniformly distributed sampling from a data set with n values x in the range [a,b], the probability of 

drawing a particular value is given by 

𝑃(𝑥)  =  {
1

𝑛
 𝑓𝑜𝑟 𝑎 ≤ 𝑥 ≤ 𝑏

0 𝑓𝑜𝑟 𝑥 < 𝑎 | 𝑥 > 𝑏
. 
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In class-proportional sampling, the probability of sampling a particular combination of cases follows 

from the probability of the combinations within each class k1,…,km, and the equal probability of the 

presence of each class in the final sample, i.e., 

𝑃(𝑘)  = ∏
(𝑤𝑘∙𝑛∙𝑞)!∙(𝑤𝑘∙𝑛∙(1−𝑞))!

(𝑛∙𝑤𝑘)!
𝑚
𝑘=1 . 

Depending on the fraction class-proportionally sampled from the data set, this possibly leads to a huge 

number of different combinations of instances that can be drawn.  

PCA based reconstruction of data  

Dimensionality reduction was achieved by performing a principal component analysis (PCA) of the 

downsampled data 𝑋𝑠𝑎𝑚𝑝𝑙𝑒. Prior to transformation, the data was centered on the coordinate origin: 

𝑿 = 𝑿𝑠𝑎𝑚𝑝𝑙𝑒 − 𝝁 

Where 𝑿𝑠𝑎𝑚𝑝𝑙𝑒 is a (𝑞𝑛) ∙ 𝑝 matrix with 𝑞𝑛 rows (number of instances) and 𝑝 columns (number of 

features). Centering is achieved by row wise subtracting the vector of the feature averages 𝝁 with 𝑝 

entries. The actual transformation is performed by 

𝑿𝑝𝑟𝑜𝑗 = 𝑿𝑽 

Where 𝑿𝑝𝑟𝑜𝑗 is the projected (𝑞𝑛) ∙ 𝑝 matrix and 𝑽 is a 𝑝 ∙ 𝑝 matrix that comprises the unit vectors 

that define the principal components (PCs) determined via singular value decomposition. 

Dimensionality reduction is performed selecting the 𝑥 columns of 𝑽 which passed the Kaiser-Guttman 

criterion. This results in the  𝑝 ∙ 𝑥 matrix 𝑽𝑟𝑒𝑑𝑢𝑐𝑒𝑑 (with 𝑥 ≤ 𝑝). The PCA results were then used to 

predict the remaining data in the original dataset 𝑿𝑟𝑒𝑚𝑎𝑖𝑛𝑖𝑛𝑔, a (1 − 𝑞)𝑛 ∙ 𝑝 matrix. 

𝑿𝑟𝑒𝑐𝑜𝑠𝑎𝑚𝑝𝑙𝑒 = (𝑿𝑟𝑒𝑚𝑎𝑖𝑛𝑖𝑛𝑔𝑽)𝑽𝑟𝑒𝑑𝑢𝑐𝑒𝑑
𝑇 + 𝝁 
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Thus, the reconstruction MSE between 𝑿𝑟𝑒𝑚𝑎𝑖𝑛𝑖𝑛𝑔 and 𝑿𝑟𝑒𝑐𝑜𝑠𝑎𝑚𝑝𝑙𝑒 calculates to: 

𝑀𝑆𝐸 =
∑ ∑ (𝑿𝑟𝑒𝑐𝑜𝑠𝑎𝑚𝑝𝑙𝑒[𝑖, 𝑗] − 𝑿𝑟𝑒𝑚𝑎𝑖𝑛𝑖𝑛𝑔[𝑖, 𝑗])

2𝑝
𝑗=1

(1−𝑞)𝑛
𝑖=1

(1 − 𝑞)𝑛 ∙ 𝑝
 

 

 


