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Abstract: 
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policy and employment growth. 
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Siegel (1987) exponential components framework which is neither an equilibrium nor

a no-arbitrage model but can be heuristically motivated by the expectations hypoth-

esis of the term structure. In this setting, the term structure is captured by three

factors which are associated with the yield curve’s level, slope and curvature. In a

related approach, Litterman and Scheinkman (1991) propose such factors as the first

three principal components based on the bond return covariance matrix. Cochrane and

Piazzesi (2005) suggest a data-driven one-factor model based on a single tent-shaped

linear combination of forward rates. They show that the so-called ’return forecasting

factor’ has more predictive power than the Litterman-Scheinkman principal compo-

nents. Recently, Diebold and Li (2006) propose a simple dynamic implementation of

the Nelson and Siegel (1987) model and employ it to model and to predict the yield

curve. This approach is extended by Diebold, Rudebusch, and Aruoba (2006) to include

macroeconomic variables and by Koopman, Mallee, and van der Wel (2008) allowing

for time-varying loadings and including a common volatility component.

Motivated by the lacking empirical evidence on the role of term structure volatil-

ity, we aim to fill this gap in the literature and address the following three research

questions: (i) To which extent do the yield curve factors reveal time-varying volatility?

(ii) Do factor volatilities give rise to risk premia in expected bond excess returns? (iii)

How are the factor volatilities linked to macroeconomic fundamentals?

We represent the Nelson-Siegel model in a state space form, where both the (un-

observable) yield factors and their stochastic volatility processes are treated as latent

factors following autoregressive processes. The model is estimated using Markov chain

Monte Carlo (MCMC) methods based on monthly unsmoothed Fama-Bliss zero yields

from 1964 to 2003. In a second step, the estimated yield curve factors and volatility

factors are used (i) as regressors in rolling window regressions of one-year-ahead bond

excess returns and (ii) as components of a VAR model including macroeconomic vari-

ables, such as capacity utilization, industrial production, inflation, employment growth

as well as the federal funds rate.

Based on our empirical study, we can summarize the following main findings: (i) We

find strong evidence for persistent stochastic volatility dynamics in the Nelson-Siegel

factors. It turns out that risks inherent to the shape of the yield curve as represented by

the extracted slope and curvature volatility have explanatory power for future yearly

bond excess returns beyond Cochrane and Piazzesi’s (2005) return-forecasting factor.

In particular, including the volatility factors in rolling window regressions increases the

(adjusted) R2 from 36 percent to up to 50 percent. (ii) Our results provide evidence

that the factor volatilities’ explanatory power for future excess returns arises because
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of two effects. Firstly, it stems from a risk premium due to the uncertainty in the yield

curvature. Secondly, we observe a converse effect arising from a negative relation be-

tween the slope volatility and expected excess returns. (iii) It turns out that both yield

factors and factor volatilities are closely linked to macroeconomic fundamentals, such

as capacity utilization, industrial production, inflation, employment growth as well as

the federal funds rate. Prediction error variance decompositions show evidence for sig-

nificant long-run effects of macroeconomic variables on term structure movements and

volatilities thereof. Converse relations reveal a particular importance of the curvature

volatility.

The remainder of the paper is structured as follows. In Section 2, we describe the

dynamic Nelson and Siegel (1987) model as put forward by Diebold and Li (2006)

and discuss the proposed extension allowing for stochastic volatility processes in the

yield factors. Section 3 presents the data and illustrates the estimation of the model

using MCMC techniques. Empirical results from regressions of one-year excess bond

returns on the extracted yield factors are shown in Section 4. Section 5 gives the

corresponding results when factor volatilities are used as regressors. In Section 6, the

dynamic interdependencies between yield factors, factor volatilities and macroeconomic

variables are investigated. Finally, Section 7 gives the conclusions.

2 A Dynamic Nelson-Siegel Model with Stochastic Volatil-

ity

Let p
(n)
t denote the log price of an n-year zero-coupon bond at time t with t = 1, . . . , T

denoting monthly periods and n = 1, . . . , N denoting the maturities. Then, the yearly

log yield of an n-year bond is given by y
(n)
t := − 1

n
p
(n)
t . The one-year forward rate at

time t for loans between time t+12(n−1) and t+12n is given by f
(n)
t := p

(n−1)
t −p

(n)
t =

ny
(n)
t − (n − 1)y

(n−1)
t . In the following we focus on one-year returns observed on a

monthly basis. Then, the log holding-period return from buying an n-year bond at time

t−12 and selling it as an (n−1)-year bond at time t is defined by r
(n)
t := p

(n−1)
t −p

(n)
t−12.

Correspondingly, excess log returns are defined by z
(n)
t := r

(n)
t − y

(1)
t−12.

Nelson and Siegel (1987) propose modeling the forward rate curve in terms of a

constant plus a Laguerre polynomial function as given by

f
(n)
t = β1t + β2te

−λtn + β3λte
−λtn. (1)

Small (large) values of λt produce slow (fast) decays and better fit the curve at long

(short) maturities. Though the Nelson-Siegel model is neither an equilibrium model nor
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a no-arbitrage model it can be heuristically motivated by the expectations hypothesis

of interest rates. As Laguerre polynomials belong to a class of functions which are

associated with solutions to differential equations, forward rates can be interpreted as

solutions to a differential equation underlying the spot rate. The corresponding yield

curve is given by

y
(n)
t = β1t + β2t

(
1 − e−λtn

λtn

)
+ β3t

(
1 − e−λtn

λtn
− e−λtn

)
. (2)

Diebold and Li (2006) interprete the parameters β1t, β2t and β3t as three latent dynamic

factors with loadings 1, (1 − e−λtn)/λtn, and {(1 − e−λtn)/λtn} − e−λtn, respectively.

Then, β1t represents a long-term factor whose loading is constant for all maturities.

With the loading of β2t starting at one and decaying monotonically and quickly to zero,

β2t may be viewed as a short-term factor. Finally, β3t is interpreted as a medium-term

factor with a loading starting at zero, increasing and decaying to zero in the limit.

Showing that y∞t = β1t, y∞t − y0
t = −β2t, and y0

t = β1t + β2t it is naturally to associate

the long-term factor β1t with the level of the yield curve, whereas β2t and β3t capture

its slope and curvature, respectively. Figure 1 shows the Nelson-Siegel factor loadings

with fixed λ = 0.045 stemming from our estimation results below.1

Denoting the yield factors in the sequel by Lt := β1t, St := β2t and Ct := β3t, we

can represent the model in state-space form

yt = Aft + εt, (3)

where ft := (Lt, St, Ct)
′ denotes the (3 × 1) vector of latent factors,

yt :=
(
y

(1)
t , y

(2)
t , . . . , y

(N)
t

)′
is the (N × 1) vector of yields and

A :=

⎛
⎜⎜⎜⎜⎜⎝

1 1−e−λ·1

λ·1
1−e−λ·1

λ·1 − e−λ·1

1 1−e−λ·2

λ·2
1−e−λ·2

λ·2 − e−λ·1

...
...

...

1 1−e−λ·N

λ·N
1−e−λ·N

λ·N − e−λ·N

⎞
⎟⎟⎟⎟⎟⎠

represents the (N ×3) matrix of factor loadings. Finally, for the (N ×1) vector of error

terms εt we assume

εt :=
(
ε
(1)
t , ε

(2)
t , . . . , ε

(N)
t

)
∼ i.i.d. N(0, Σ)

with

Σ = diag
{

(σ(1))
2
, (σ(2))

2
, . . . , (σ(N))

2
}

, (4)

1All figures and tables are shown in the Appendix.
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where diag(·) captures the diagonal elements of a (symmetric) matrix in a corresponding

vector. Note that we assume the decaying factor λt = λ to be constant over time.

This is in accordance with Diebold and Li (2006) and the common finding that time

variations in λt have only a negligible impact on the model’s fit and prediction power.2

Following Diebold and Li, the latent dynamic yield factors are assumed to follow a

first order vector autoregressive (VAR) process,

ft = μ + Φft−1 + ηt, (5)

where Φ is a (3 × 3) parameter matrix, μ denotes a (3 × 1) parameter vector, and the

(3 × 1) vector ηt is assumed to be independent from εt with

ηt ∼ i.i.d. N(0, Ht). (6)

Diebold and Li (2006) assume the conditional variances to be constant over time,

i.e., Ht = H. This enables estimating the latent factors Lt, St, and Ct in a first step

period-by-period using (nonlinear) least squares and to use them in a second step in a

VAR model as given by (5).

However, given the objective of our study, we propose specifying the covariance

matrix Ht in terms of a stochastic volatility process of the form

vech(ln Ht) = μh + Φhvech(lnHt−1) + ξt, (7)

where vech(·) denotes the vech-operator stacking the distinct elements of the covariance

matrix, μh is a (6 × 1) dimensional parameter vector and Φh is a (6 × 6) dimensional

parameter matrix. The error term vector ξt is assumed to be independent from ηt and

εt and is normally distributed with covariance matrix Σh capturing the ”covariance of

covariance”,

ξt ∼ i.i.d. N(0, Σh). (8)

However, fully parameterizing the matrices Φ, Ht and Φh leads to a complicate

model which is difficult to estimate and is typically over-parameterized in order to

parsimoniously capture interest rate dynamics and associated risks. Hence, to overcome

the computational burden and the curse of dimensionality, we propose restricting the

model to a diagonal specification with

Φ = diag(φL, φS , φC), (9)

Ht = diag(hL
t , hS

t hC
t ), (10)

Φh = diag(φL
h , φS

h φC
h ). (11)

2This is also confirmed by own investigations. Actually, we also allowed λt to be time-varying but

found that this extra flexibility is not important for the model’s goodness-of-fit.
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As shown in the empirical analysis below, these restrictions are well supported by the

data.3 Then, the latent factor structure can be expressed by⎛
⎜⎜⎝

Lt

St

Ct

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

μL

μS

μC

⎞
⎟⎟⎠ +

⎛
⎜⎜⎝

φL 0 0

0 φS 0

0 0 φC

⎞
⎟⎟⎠

⎛
⎜⎜⎝

Lt−1

St−1

Ct−1

⎞
⎟⎟⎠ + ηt , (12)

where ηt ∼ i.i.d. N(0, Ht) with

diag(lnHt) =

⎛
⎜⎜⎝

ln(hL
t )

ln(hS
t )

ln(hC
t )

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

μL
h

μS
h

μC
h

⎞
⎟⎟⎠ +

⎛
⎜⎜⎝

φL
h 0 0

0 φS
h 0

0 0 φC
h

⎞
⎟⎟⎠

⎛
⎜⎜⎝

ln(hL
t−1)

ln(hS
t−1)

ln(hC
t−1)

⎞
⎟⎟⎠ +

⎛
⎜⎜⎝

ξL
t

ξS
t

ξC
t

⎞
⎟⎟⎠ . (13)

We refer hL
t , hS

t and hC
t to as so-called ”factor volatilities” capturing the time-varying

uncertainty in the level, slope and curvature of the yield curve. The level volatility hL
t

corresponds to a component which is common to the time-varying variances of all yields.

It might be associated with underlying latent (e.g. macroeconomic) information driving

the uncertainty in the overall level of interest rates. It can be seen as a model implied

proxy of the bond market volatility which is captured by Engle, Ng, and Rothschild

(1990) in terms of the conditional excess return variance of an equally weighted bill

market portfolio. Correspondingly, hS
t is associated with risk inherent to the slope of

the yield curve. It reflects the riskiness in yield spreads, and thus time-variations in

the risk premium which investors require to hold long bonds instead of short bonds.

Finally, hC
t captures uncertainties associated with the curvature of the yield curve,

which can vary between convex, linear and concave forms. Obviously, such variations

mainly stem from time-varying volatility in bonds with mid-term maturities.

An alternative way to capture time-varying volatility in the term structure of inter-

est rates would be to allow Σ itself to be time-varying. However, this would result in an

N -dimensional MGARCH or SV model which is not very tractable if the cross-sectional

dimension N is high. Therefore, we see our approach as a parsimonious alternative to

capture interest rate risk. Note that the slope and curvature factors can be interpreted

as particular (linear) combinations of yields associated with factor portfolios mimick-

ing the steepness and convexity of the yield curve.4 Then, the corresponding slope and

3Note that we also estimated models with non-zero off-diagonal elements in Φ and Ht and found

that most off-diagonal parameters are indeed statistically insignificant.

4This interpretation is also reflected in the linear combinations of yields which are typically used to

empirically approximate the underlying yield curve factors. In particular, level, slope and curvature

are often approximated by 1
3
(y

(1)
t + y

(3)
t + y

(5)
t ), y

(5)
t − y

(1)
t , and 2y

(3)
t − y

(5)
t − y

(1)
t . See also Section 3.3.
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curvature volatilities are associated with the volatilities of the underlying factor port-

folios. In this sense, they capture time-variations in yields’ variances and covariances

driving the yield curve shape.

Using this structure, the unconditional moments of the yields are straightforwardly

given by E[yt] = A E[ft] and V[yt] = A V[ft] A, where the moments of the i-th element

are given by

E
[
f

(i)
t

]
= μi(1 − φi)−1, (14)

V
[
f

(i)
t

]
=

1

1 − φi2

[
μi

h

1 − φi
h

+

(
σi

h

)2

2(1 − φi2
h )

]
, (15)

Corr
[
f

(i)
t , f

(i)
t−k

]
= φik, k > 0, (16)

where i ∈ {L, S, C}.
Accordingly, the correlation structure in higher-order moments of de-meaned yield

factors corresponds to that of a basic SV model (see Taylor (1982)) and can be approx-

imated by

Corr
[
aip

t , aip
t−k

]
≈ C

(
p,

(
σi

h

)2
)

φik
h , k > 0, (17)

where ai
t := ln

∣∣ηi
t

∣∣ = ln
∣∣∣f (i)

t − μ − φif
(i)
t−1

∣∣∣ and

C
(
p,

(
σi

h

)2
)

=
A(p,

(
σi

h

)2
) − 1

A(p,
(
σi

h

)2
)B(p) − 1

, (18)

B(p) =
√

πΓ

(
p +

1

2

)
Γ

(
p

2
+

1

2

)−2

, (19)

A
(
p,

(
σi

h

)2
)

= exp

(
p2

(
σi

h

)2

1 − φi2
h

)
. (20)

3 Estimating Yield Curve Factors and Factor Volatilities

3.1 Data

In order to make our results comparable to recent studies we use the same data as

in Cochrane and Piazzesi (2005) consisting of monthly unsmoothed Fama-Bliss zero-

coupon yields covering a period from January 1964 to December 2003 with maturities

ranging between one and five years. The data is available from the Center for Research

in Security Prices (CRSP) and is constructed using the method of Fama and Bliss

(1987) based on end-of-month data of U.S. taxable, non-callable bonds for annual
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maturities up to five years. Here, each month a term structure of one-day continuously

compounded forward rates is calculated from available maturities up to one year. To

extend beyond a year, Fama and Bliss (1987) use the assumption that the daily forward

rate for the interval between successive maturities is the relevant discount rate for each

day in the interval. This allows to compute the term structure based on a step-function

in which one-day forward rates are the same between successive maturities. Then, the

resulting forward rates are aggregated to generate end-of-month term structures of

yields for annual maturities up to five years. Summary statistics of the data are given

in Panel A of Table 2.

3.2 MCMC Based Inference

The diagonal model specified above corresponds to a three-level latent hierarchical

model with six latent processes. Let Θ denote the collection of the model parameters.

Moreover, let Ft := (Lt, St, Ct) and Vt := (hL
t , hS

t , hC
t ). Then, the likelihood function

of the model is given by

p(Θ|Y ) =

∫
F1

∫
F2

· · ·
∫

FT

p(Y |Θ, F1, F2, · · · , FT )p(F1, F2, · · · , FT |Θ)dF1dF2 · · · dFT ,

where p(Y |Θ, F1, F2, · · · , FT ) denotes the (conditional) density of the data Y given the

parameters Θ and the latent factors and reflects the imposed structure as given by (3)

and (4). Furthermore, p(F1, F2, · · · , FT |Θ) denotes the (conditional) joint density of the

latent factors, given the model parameters Θ and is determined by (5). Since the factors

are unobservable, they have to be integrated out resulting in a (3 ·T )-dimensional inte-

gral. Obviously, p(F1, F2, · · · , FT |Θ) depends on a further set of unknown components

as represented by the volatility factors V1, . . . , VT . It is computed as

p(F1, F2, · · · , FT |Θ) =

∫
V1

∫
V2

· · ·
∫

VT

p(F1, F2, · · · , FT |Θ, V1, V2, · · · , VT )

× p(V1, V2, · · · , VT |Θ)dV1dVt · · · dVT ,

where p(V1, V2, · · · , VT |Θ) denotes the joint density of the volatility components as de-

termined by (7). This likelihood function cannot be computed analytically in closed

form and requires numerical approximation techniques. We propose estimating the

model using Markov chain Monte Carlo (MCMC) based inference. Consequently, we

consider Ω := {Θ, F1, . . . , FT , V1, . . . , VT } to be a random vector whose posterior dis-

9



tribution p(Ω|Y ) can be arranged according to

p(Ω|Y ) = p(F1, F2, · · · , FT , V1, V2, · · · , VT , Θ|Y ) (21)

∝ p(Y |F1, F2, · · · , FT , V1, V2, · · · , VT , Θ)

× p(F1, F2, · · · , FT |V1, V2, · · · , VT , Θ)

× p(V1, V2, · · · , VT |Θ)

× p(Θ).

By specifying the prior distributions p(Θ) as shown in Appendix A, we utilize Gibbs

and Metropolis-Hastings samplers to simulate the posterior distribution, p(Ω|Y ). Then,

both parameter and factor estimates are obtained by taking the sample averages of the

corresponding MCMC samples.

3.3 MCMC Estimation Results

We start our analysis by estimating the model with constant volatility factors corre-

sponding to the specification proposed by Diebold and Li (2006).5 The estimation

results are given in Panel A of Table 1. The dynamics of Lt, St and Ct are very per-

sistent with estimated autoregressive coefficients of 0.98, 0.96 and 0.91, respectively.

Whereas the level of interest rates is close to a unit root, the persistence of the spread

component is lower but still relatively high. This finding is in strong accordance with

the literature.

The model implied unconditional mean of the level factor, given by μL/(1 − φL),

equals 7.96 which is close to its empirical mean of 7.12. Correspondingly, the mean

value of the slope factor equals −1.96 reflecting that during the sample period the yield

curve has been upward sloped on average.6 Finally, the mean of the curvature factor

is −0.28 but not significantly different from zero. Hence, on average we do not observe

a strong curvature in the yield curve. The estimated decay factor λ equals 0.055,

implying the curvature loading (1−exp(−λn))/(λn)−exp(−λn) to be maximized for a

maturity of 2.72 years. The last column in Table 1 reports the Geweke (1992) Z-scores

which are used to test the convergence of the Markov chains generated from the MCMC

algorithm.7 It turns out that all Markov chains have been properly converged. The

5Exploiting the linearity of this specification, it could be alternatively estimated using quasi maxi-

mum likelihood based on the Kalman filter, see e.g. Harvey (1990). However, to keep our econometric

approach consistent, we estimate all specifications in this paper using MCMC techniques.

6Recall that we define the slope as the difference between short yields and long yields.

7For details, see Appendix A.
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descriptive statistics shown in Panel B of Table 2 indicate that the dynamic Nelson-

Siegel model captures a substantial part of the dynamics in the yields confirming the

findings by Diebold and Li (2006). Nevertheless, remaining autocorrelations in the

residuals as well as squared residuals indicate that there are neglected dynamics in the

first and second moments of the process.

Figure 2 plots the resulting estimated Nelson-Siegel factors and their corresponding

empirical approximations. We observe that the estimated slope factor is nearly per-

fectly correlated with its empirical counterpart yielding a correlation of −0.99. The

corresponding correlations for the level and curvature factors are 0.90 and 0.59 indi-

cating that level and slope factors can be easily approximated by their corresponding

empirical counterparts whereas approximations of the curvature factor tend to be rather

difficult.

Panel B of Table 1 shows the parameter estimates of the model with stochastic

volatility components, given by equations (3) - (5) and (7). The estimated decay pa-

rameter equals 0.045 implying that the curvature loading is maximized at a maturity

of 3.33 years. The estimates of the yield factor parameters are close to those of the con-

stant volatility model. The estimated dynamic parameters in the volatility components

are 0.977, 0.964 and 0.933 for the level, slope and curvature volatilities, respectively.

Hence, as for the yield curve factors we also find a high persistence in the stochastic

volatility processes. This is particularly true for the level and slope volatility.

4 Explaining Bond Returns Using Yield Factors

4.1 Nelson-Siegel Factors

In this section, we examine the explanatory power of the extracted Nelson-Siegel factors

for future bond excess returns. In line with Cochrane and Piazzesi (2005), we regress

the monthly one-year-ahead bond excess returns with maturities of two up to five years

on the estimated level, slope and curvature factors, i.e.,

z
(n)
t = c + βLLt−12 + βSSt−12 + βCCt−12 + ε

(n)
t , n = 2, 3, 4, 5. (22)

Panel A of Table 3 reports the estimation results based on alternative regressions.

Two caveats should be taken into account. Firstly, because of the overlapping win-

dows, the errors ε
(n)
t are per construction strongly autocorrelated. In accordance with

Cochrane and Piazzesi (2005) we apply the classical heteroscedasticity and autocor-

relation consistent (HAC) estimators proposed by Hansen and Hodrick (1980) given

11



by

Cov[b̂] = E[xtx
′
t]
−1

⎡
⎣ k∑

j=−k

E[xtx
′
t−jεt+1εt+1−j ]

⎤
⎦ E[xtx

′
t]
−1 (23)

and the well-known (Bartlett) kernel estimator proposed by Newey and West (1987)

given by

Cov[b̂] = E[xtx
′
t]
−1

⎡
⎣ k∑

j=−k

k − |j|
k

E[xtx
′
t−jεt+1εt+1−j ]

⎤
⎦ E[xtx

′
t]
−1, (24)

where xt denotes the vector of regressors and j denotes the order of lag truncation.

Secondly, high persistence in the yield factors used as regressors might cause spu-

rious effects affecting the R2. Accordingly, we support evaluations of the R2-values

using Newey-West and Hansen-Hodrick adjusted tests for joint significance as well

as the Bayes Information Criterion (BIC).8 Finally, as shown below, the explanatory

power arises typically from those factors which reveal the lowest persistence. This is

evidence against spurious correlation effects and confirms the robustness of our results.

In fact, it is shown that the level factor is virtually insignificant and has no ex-

planatory power for future bond excess returns. Neglecting the latter in the regression

reduces the R2 values9 and Hansen Hodrick HAC χ2-statistics for joint significance

only slightly. This result is mostly true for maturities longer than two years. These

results are consistent with the essentially affine term structure model by Duffee (2002)

that the level factor is irrelevant for bond excess returns. Though the Nelson-Siegel

framework is different from Duffee’s approach, the extracted yield factors behave in a

quite similar way. Actually, Diebold, Piazzesi, and Rudebusch (2005) stress that the

loadings in (3) are quite close to those estimated from the three factor essentially affine

model.

In contrast, the coefficients for the slope and curvature factor are highly significant.

We find that future excess returns decrease with the slope (defined as short minus long)

and increase with the curvature. This result is consistent with, for instance, Fama and

Bliss (1987) and Campbell and Shiller (1991). The positive coefficient for the curvature

factor indicates that future excess returns are expected to be higher the more hump-

shaped, i.e. convex or concave the current yield curve. Hence, a major factor driving

future excess returns is the yield spread between mid-term and short-term bonds.

8For sake of brevity, these measures are not shown in the paper.

9Throughout the paper, the R2 refers to the coefficient of determination, adjusted by the number

of regressors.
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Including all yield factors leads to an R2 of up to 36 percent, revealing basically the

same explanatory power as in Cochrane and Piazzesi (2005) using their “tent-shaped”

return-forecasting factor. The corresponding χ2-values are clearly well above the five

percent critical value indicating that Nelson-Siegel factors jointly do contain significant

information for future bond excess returns. Obviously, the explanatory power arises

mainly from the slope and curvature factors which are statistically significant for all

individual bonds. Omitting both factors from the regressions clearly reduces the R2

and χ2-values. This is particularly true for longer maturities and the curvature factor

which turns out to be most important for explaining future excess returns.

4.2 The Cochrane-Piazzesi Return-Forecasting Factor

Cochrane and Piazzesi (2005) propose forecasting bond excess returns with the so called

return-forecasting factor, ϑt, defined as a linear combination

ϑt = γ′ft (25)

of five forward rates ft = (1, y
(1)
t , f

(2)
t , · · · , f

(5)
t ) with weights γ = (γ(0), γ(1), · · · , γ(5)).

The weights are estimated by running a (restricted) regression of average (across ma-

turity) excess returns on the forward rates,

1

4

5∑
n=2

z
(n)
t = γ(0) + γ(1)y

(1)
t−12 + γ(2)f

(2)
t−12 + · · · + γ(5)f

(5)
t−12 + ut. (26)

Then, the return forecasting regression for individual bond excess returns is given by

z
(n)
t = b(n)ϑt−12 + ε

(n)
t , n = 2, 3, 4, 5, (27)

with regression coefficients b(n) and the restriction 1
4

∑5
n=2 b(n) = 1.

Cochrane and Piazzesi (2005) show that ϑt contain information for future excess

returns which are not captured by yield factors represented by the first three principal

components of the yield covariance matrix. As suggested by Litterman and Scheinkman

(1991), the latter serve as empirical proxies for the level, slope and curvature movements

of the term structure. Panel A in Table 4 reports the R2 values and Hansen-Hodrick

HAC χ2-statistics based on regressions where zn
t is regressed on (i) the principal com-

ponents (PC’s), (ii) the return-forecasting factor, ϑt, and (iii) the Nelson-Siegel yield

curve factors. It turns out that both the return-forecasting factor and the Nelson-

Siegel factors have effectively the same explanatory power with R2 ≈ 0.37 implied by

ϑt and R2 ≈ 0.36 implied by the Nelson-Siegel factors. This result is confirmed by
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the χ2-statistics which are quite similar for longer maturities. The close correspon-

dence between the return-forecasting factor and yield curve factors does not hold if

the latter are constructed from principal components of the covariance matrix. Prin-

cipal component factors reveal a significantly lower explanatory power with an R2 of

approximately 0.25 and clearly reduced χ2-statistics. Figure 3 shows the Nelson-Siegel

curvature loading ((1− e−λtn)/λtn)− e−λtn, the return-forecasting factor loading γ(n),

and the loading of the third PC factor. We observe that both the return-forecasting

factor and the Nelson-Siegel curvature factor are curved at the long end of the yield

curve, whereas the PC curvature is curved only at the short end. Cochrane and Pi-

azzesi (2005) argue that in order to capture relevant information about future bond

excess returns contained in the four-year to five-year yield spread, the factor loading

should be curved at the long end.10 This might explain why the Nelson-Siegel yield

factors outperform the PC yield factors and why the former have similar explanatory

power as the return-forecasting factor. It also stresses the importance of the curvature

factor.

Corresponding results for a regression of both the Nelson-Siegel yield factors and

the Cochrane-Piazzesi forecasting factor is shown in Panel B of Table 4. As expected,

the explanatory power increases only slightly since both types of factors capture similar

information for expected bond returns.

5 Explaining Bond Returns Using Factor Volatilities

As stressed above, the extracted factor volatilities can be heuristically interpreted as

the volatilities of factor portfolios representing the level, steepness and convexity of the

yield curve. A crucial question is whether riskiness in the yield curve is reflected in

future bond excess returns and give rise to a risk premium.

Panel B of Table 3 shows the results of the regression

z
(n)
t = c + αLhL

t−12 + αShS
t−12 + αChC

t−12 + ε
(n)
t . (28)

It turns out that the volatility factors contain significant information for future bond

excess returns. Including all volatility components yields an R2 of up to 18 percent with

all factors being jointly significant.11 The main explanatory power comes from the slope

10Note that the return-forecasting factor is only ’tent-shaped’ when it is estimated from forward

rates. If it is estimated from yields, it is curved at the long end.

11A potential explanation for the predictive power of volatility components for future excess returns

could be that we predict log returns instead of simple returns. However, redoing the whole analysis
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and curvature factor volatility, but not from the level volatility. Most interestingly, the

impact of the slope volatility on future excess returns is negative. Hence, increasing

uncertainty regarding the slope of the yield curve decreases future bond return premia.

I.e., if the yield curve slope turns out to be stable, positive excess returns become

more likely. This result is in contrast to the hypothesis of a positive risk premium

and is rather in line with a ’stability compensation’. In contrast, we find that future

bond excess returns increase with the curvature volatility. As discussed above, the

latter reflects the time-varying uncertainty regarding the convexity or concavity of

the yield curve, respectively, and is dominantly driven by the riskiness of mid-term

bonds. Hence, our results provide evidence that the riskiness regarding yield curve

slope and yield curve convexity work in opposite directions: Investors are compensated

for taking risk regarding medium-term maturities and avoiding risk regarding long-term

maturities. Hence, future excess returns are expected to be highest if spreads between

long-term and short-term bonds are high and stable but the yield curve convexity is

uncertain.

Panel C of Table 3 shows the corresponding estimation results when we control

for the yield curve factors themselves. It turns out that the use of both Nelson-Siegel

factors and factor volatilities yields an R2 of about 50 percent. Hence, the inclusion of

volatility factors in addition to yield factors shifts the R2 from 36 percent to up to 50

percent. This indicates that factor volatilities have significant explanatory power for

future excess returns even when we account for yield curve factors. These results are

also strongly supported by a significant increase of the χ2-statistics showing that this

additional prediction power mainly stems from the slope and curvature volatility.

The regression results shown in Panel C of Table 4 show that the volatility factors

have also explanatory power beyond the Cochrane-Piazessi return-forecasting factor.

Actually, the R2 increases from 36 percent to up to 42 percent if the volatility factors

are added to the Cochrane-Piazzesi return-forecasting factor. This implies that the

volatility factors do contain significant information on bond excess returns which is

neither subsumed by yield curve factors nor by the return-forecasting factor.

based on simple returns even enforces our results and indicates that our findings are not due to a

predictable volatility components in the mean of log returns.
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6 Yield Factors, Factor Volatilities, and Macroeconomic

Fundamentals

In order to analyze in which sense yield factors and factor volatilities are connected

to underlying macroeconomic fundamentals, we relate the former to the inflation rate

(INF), measured by monthly relative changes of the consumer price index, manufac-

turing capacity utilization (CU), the federal funds rate (FFR), employment growth

(EMP) as well as industrial production (IP). The choice of the variables is motivated

by the results by Diebold, Rudebusch, and Aruoba (2006) who identify manufactur-

ing capacity utilization, the federal funds rate as well as annual price inflation as the

minimum set of important variables driving the term structure of interest rates. We

augment the set of variables to account also for labor market activity.

To analyze the mutual correlations between yield factors and macroeconomic funda-

mentals we regress the yield factors on the contemporaneous (monthly) macroeconomic

variables, i.e.,

Ft = μ + β1INFt + β2IPt + β3FFRt + β4EMPt + β5CUt + εt, (29)

where Ft := {Lt, St, Ct, h
L
t , hS

t , hC
t }. The results reported by Table 5 show that the

federal funds rate and capacity utilization are significant determinants of the level and

slope factor and explain a substantial part in variations of the latter.12 The positive

signs for FFR and negative signs for CU are economically plausible and in line with

theory. While the level and slope factor are closely connected to monetary policy and

macroeconomic activity, only a small fraction of variations in the yield curve curvature

can be explained by the latter.

Moreover, it turns out that not only the yield curve factors themselves but also

their volatilities are significantly related to underlying macroeconomic dynamics. It

turns out that periods of high inflation and capacity utilization are accompanied by

a lower volatility in interest rate levels which might be explained by monetary policy

interventions. Moreover, we find evidence for leverage effects in the sense of higher

(lower) level and slope volatilities in periods of higher (lower) federal fund rate levels.

This confirms the results by Engle, Ng, and Rothschild (1990) and Engle and Ng (1993)

12As above, one might argue that the R2 values should be treated with caution since some of the

regressors, such as CU and IP, are relatively persistent and might cause spurious correlation effects.

However, robust tests on joint significance of the regressors yield the same conclusions. Moreover, the

low explanatory power of the curvature factor regression indicates that spurious effects cannot be the

major reason for high R2’s.
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of (positive) GARCH-in-Mean effects.13 Whereas the curvature factor is not easily

explained by observable macroeconomic variables, this is not true for the corresponding

volatility. Actually, we observe that particularly the federal funds rate, the employment

growth rate as well as capacity utilization are significant determinants of the time-

varying uncertainty in the yield curve shape yielding an R2 of about 0.48. It turns

out that periods of a high federal funds rate, low capacity utilization and negative

employment growth induce higher variations in medium-term bonds and thus the term

structure convexity. Overall, we can summarize that factor volatilities are even closer

connected to observable macroeconomic variables than the factors themselves.

To study the dynamic interdependencies between yield factors and macroeconomic

variables, we estimate a VAR(1) model of monthly yield factors and the macroeconomic

fundamentals,

Ft = μ + A Ft−1 + εt, (30)

where Ft := {Lt, St, Ct, INFt, IPt, FFRt, EMPt, CUt}.
Based on the results shown in Table 6 we can summarize the following results:

Firstly, the yield factors primarily depend on their own lags but not on those of the

other factors which confirms the diagonal specification of Φ in (9). Secondly, we ob-

serve that the yield factors are not (short-term) predictable based on macroeconomic

fundamentals. This is particularly true for the level and the curvature factor whereas

for the curvature factor slight dependencies from lagged inflation rates, federal fund

rates, and employment growth rates are observable. Thirdly, it turns out that level and

slope factors have significant short-term prediction power for nearly all macroeconomic

variables. In particular, rising interest rate levels and yield spreads predict increases in

industrial production, federal funds rates, the growth rate of employment as well as the

capacity utilization. In contrast, the term structure curvature contains no information

for one-month-ahead macroeconomic variables. Overall these results generally confirm

those by Diebold, Rudebusch, and Aruoba (2006).

Table 7 shows the results for VAR(1) regressions where we include the factor volatil-

ities, i.e. Ft is chosen as Ft := {hL
t , hS

t , hC
t , INFt, IPt, FFRt, EMPt, CUt}. It turns out

that most of the (short-term) dynamics are driven by process-own dependencies con-

firming also the assumption of a diagonal structure of Ht in (10). Moreover, we observe

13In preliminary studies we found evidence for SV-in-Mean effects for the level factor. Given the

close relation between the federal funds rate and the level of interest rates this effect is now obviously

reflected in the present regressions. The results are not shown here but are available upon request from

the authors.
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that the level volatility is dominantly predicted by past level and slope volatilities but

not by macroeconomic variables. Similar relations are also observed for the slope

volatility where the latter also significantly (positively) depends on the lagged federal

funds rate. In contrast, the curvature volatility depends solely on its own history.

Hence, we can conclude that in the short run term structure volatilities are not pre-

dictable based on macroeconomic factors. Conversely we observe a weak predictability

of the level volatility for future macroeconomic fundamentals. In particular, higher level

volatilities predict increases in industrial production, employment growth rates as well

as decreasing inflation rates and manufacturing capacity utilizations. Similar effects on

inflation rates and capacity utilization is observed for the slope volatility. Interestingly,

the strongest impact on future macroeconomic variables stems from the curvature fac-

tor which has significant prediction power for all macroeconomic factors. This finding

illustrates again the importance of term structure curvature risk confirming our results

above.

Long-term relations between the individual variables are analyzed based on pre-

diction error variance decompositions (see e.g. Hamilton (1994)) implied by the VAR

estimates discussed above. The corresponding plots are shown in Figures 5 to 12. We

observe that not only in the short run but also in the long run macroeconomic variables

virtually do not contribute to the prediction error variances in yield curve levels and

curvatures. Only for the yield curve slope, particularly capacity utilization and indus-

trial production can explain about 25% in prediction error variances after 100 months.

Conversely, we observe significantly higher long-run forecasting ability of yield term

factors for macroeconomic fundamentals. This is particularly apparent for the federal

funds rate whose prediction error variance is dominated by the level and slope factor

(by nearly 80%). For CU, EMP and IP we observe that yield curve factors - predomi-

nantly level and slope - can explain around 40% in long-run prediction error variances.

Hence, in line with Diebold, Rudebusch, and Aruoba (2006) we conclude that level

factors serve as long-run predictors of future industrial utilization, employment growth

and short-term monetary policy. A notable exception is the inflation rate which is not

predictable based on yield curve factors, neither over the short run nor the long run.

Figures 9 to 12 show the corresponding variance decompositions implied by the

VAR estimates for Ft := {hL
t , hS

t , hC
t , INFt, IPt, FFRt, EMPt, CUt}. It is evident

that macroeconomic fundamentals explain a major part in long-term prediction error

variances of level and slope volatilities. Particularly capacity utilization and industrial

production explain approximately 50% and 40% in long-term prediction error variances

of the level volatility and slope volatility, respectively. In contrast, long-term prediction
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error variances of curvature volatility can be explained by less than 20%. Vice versa,

we again observe an important role of curvature volatility for the prediction of future

macroeconomic activity. This is particularly true for capacity utilization, employment

growth and industrial production whose prediction error variation after 100 months

is significantly influenced by the current curvature volatility. In contrast, virtually

no long-run explanatory power of level and slope volatilities for future macroeconomic

variables can be identified. Hence, we observe that particularly the uncertainty with re-

spect to the shape of the yield curve has long-term consequences for capacity utilization

and employment growth.

Further insights into the role of the extracted factor volatilities can be gained by

Figure 4 which plots the former over the sample period. It turns out that the slope

volatility peaks in April 1974, April 1980 and March 2001 corresponding to three major

economic recession periods in the U.S. as identified by the National Bureau of Economic

Research (NBER). Viewing the slope factor as a short-term factor, its high fluctuations

in these periods might be attributed to monetary policy reflected in short-term yields

during economic recessions. The same pattern is observed for the curvature volatility

capturing mainly the uncertainty in medium-term yields and significantly peaking dur-

ing all recessions periods. Hence, we observe that interest rate risk during economic

recessions is dominantly reflected in the shape of the yield curve but not in the overall

level.

7 Conclusions

We propose a dynamic Nelson-Siegel type yield curve factor model, where the un-

derlying factors reveal stochastic volatility. By estimating the model using MCMC

techniques we extract both the Nelson-Siegel factors as well as their volatility compo-

nents and use them to explain bond return premia and to relate them to underlying

macroeconomic variables. This approach allows us to link the approaches by Diebold

and Li (2006), Diebold, Rudebusch, and Aruoba (2006), Cochrane and Piazzesi (2005)

on factor-based term structure modeling with the GARCH-in-Mean models by Engle,

Ng, and Rothschild (1990) and Engle and Ng (1993) capturing interest rate risk premia.

We can summarize the following main findings: (i) We find that the slope and cur-

vature factors extracted from the dynamic Nelson-Siegel model describe time-variations

in future yearly bond excess returns with an R2 of up to 36 percent. (ii) The Nelson-

Siegel yield factors have basically the same explanatory power as the return-forecasting

factor proposed by Cochrane and Piazzesi (2005). This result arises mainly because of
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a close similarity between the loadings of the “tent-shaped” return-forecasting factor

and that of the slope and curvature Nelson-Siegel factor. This forecasting performance

is not achieved when principal components are used as predictors. (iii) We show that

the time-varying volatility associated with the level, slope and curvature factors have

significant explanatory power for future excess returns beyond the factors themselves.

Including the extracted factor volatilities in rolling window regressions increases the

(adjusted) R2 to approximately 50 percent. It turns out that the explanatory power in

the volatility factors mainly stem from the risk inherent to the yield curve’s slope and

curvature. (iv) We document that riskiness regarding the yield curve shape (convex-

ity) but not the riskiness regarding the slope induces a positive risk premium in excess

returns. Actually, we find that slope uncertainties decrease future bond return premia

revealing a compensation for stability in term structure slopes. (v) Yield term factors

and - to an even larger extent - factor volatilities are closely connected to key macroe-

conomic variables reflecting capacity and production utilization, employment growth,

inflation and monetary policy. (vi) We observe that macroeconomic variables have

more long-run predictability for term structure volatilities than for the term structure

itself. It turns out that capacity utilization and industrial production are important

long-term predictors for risk inherent to the level and slope of the yield curve. Con-

versely, we observe that yield factors have significant forecasting ability for capacity

utilization, employment growth and industrial production but only negligible impacts

on the volatilities thereof. Nevertheless, we identify an important role of the curvature

volatility for long-term predictions of macroeconomic variables. These results provide

hints that risk inherent to the shape of the yield curve is relevant and seems to be

effectively captured by a stochastic volatility component in the curvature factor.
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A MCMC based Bayesian Inference

Let Ω collect all model parameters including the latent variables, and let Y denote the

observed data. Applying Clifford-Hammersley’s theorem (see Hammersley and Clifford

(1971), Besag (1974)), the posterior distribution

p(Ω|Y ) ∝ p(Y |Ω)p(Ω) (31)

can be broken up into a complete set of conditional posteriors, p(Ωi|Ω−i, Y ), i =

1, . . . , N , where p(Ω) denotes the prior distribution of Ω, N is the number of blocks,

Ωi denotes the i-th block and Ω−i denotes all the elements of Ω excluding Ωi. Then,

the elements Ωi can be sampled according to the following Markov chain:

• Initialize Ω(0).

• For i = 1, . . . , G:

1. draw Ω
(i)
1 from p(Ω1|Ω(i−1)

2 , Ω
(i−1)
3 , · · · , Ω

(i−1)
N , Y ),

2. draw Ω
(i)
2 from p(Ω2|Ω(i)

1 , Ω
(i−1)
3 , · · · , Ω

(i−1)
N , Y ),

...

N. draw Ω
(i)
N from p(ΩN |Ω(i)

1 , Ω
(i)
2 , · · · , Ω

(i)
N−1, Y ),

where G is the number of MCMC iterations. In dependence of the form of the condi-

tional posteriors we employ Gibbs or Metropolis-Hastings samplers as implemented in

the software package BUGS (see Spiegelhalter, Thomas, Best, and Gilks (1996)). The

procedure works well, is easily implemented but is relatively inefficient in the given con-

text. In order to guarantee a proper convergence of the Markov chain we run 2,500,000

MCMC iterations with a burn-in period of 500,000 iterations.14

All model parameters are assumed to be a priori independent and are distributed

as follows:

• Σ is the variance-covariance matrix with zero off-diagonal elements of equation

(3). We assume that each of its elements follows an Inverse-Gamma(2.5,0.025) distri-

bution with mean of 0.167 and standard deviation 0.024.

• For λ we assign a uniform distribution on the interval [0, 1].

• For the persistent parameters of the yield curve factors φi, i = L, S, C, we assume

their transformations (φi + 1)/2 to follow a beta distribution with parameters 20 and

1.5 implying a mean of 0.86 and a standard deviation of 0.11.

14More efficient estimation algorithms for the model are on the future research agenda but are beyond

the scope of the current paper.
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• μi, i = L, S, C in (5) are assumed to be independently normally distributed with

mean 0 and variance 10.

• hi, i = L, S, C in (5) are assumed to follow an Inverse-Gamma(2.5,0.025) distri-

bution.

• For φi
h, i = L, S, C in (7), we assume their transformations (φi + 1)/2 to follow a

beta distribution with parameters 20 and 1.5 implying a mean of 0.86 and a standard

deviation of 0.11.

• μi
h, i = L, S, C in (7) are assumed to be independently normally distributed with

mean 0 and variance 10.

• σi
h, i = L, S, C in (7) are assumed to follow an Inverse-Gamma(2.5,0.025) distri-

bution.

• di, i = L, S, C are assumed to be normally distributed with mean 0 and variance

10.

To test for the convergence of the generated Markov chain, we use the Z-score by

Geweke (1992). Let {Ω(i)}G
i=1 denote the generated Markov chain with

Ω̄1 =
1

G1

G1∑
i=1

Ω(i), Ω̄2 =
1

G2

G∑
i=p∗

Ω(i), p∗ = G − G2 + 1, (32)

and let Ŝ1(0) and Ŝ2(0) denote consistent spectral density estimates (evaluated at zero)

for {Ω(i)}G1
i=1 and {Ω(i)}G

i=p∗ , respectively. If the sequence {Ω(i)}G
i=1 is stationary, then

as G → ∞,

(Ω̄1 − Ω̄2)/[G−1
1 Ŝ1(0) + G−1

2 Ŝ2(0)]
d→ N(0, 1) (33)

given the ratios G1/G and G2/G are fixed, and (G1 + G2)/G < 1. Geweke (1992)

suggests using G1 = 0.1G and G2 = 0.5G.
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Table 4: Monthly regressions of one-year-ahead bond excess returns on PCA factors,

the Cochrane-Piazzesi forecasting factor and Nelson-Siegel yield factors. Yield factors

extracted from monthly observations of unsmoothed U.S. Fama-Bliss zero coupon yields

from January 1964 to December 2003 with maturities of one to five years.

A.

PCA factors Return-forecasting factor Nelson-Siegel factors

n Adj. R2 HH p-value Adj. R2 HH p-value Adj. R2 HH p-value

2 0.204 36.090 0.000 0.309 65.241 0.000 0.313 49.937 0.000

3 0.212 35.984 0.000 0.336 60.443 0.000 0.321 46.971 0.000

4 0.241 34.375 0.000 0.370 55.896 0.000 0.348 47.469 0.000

5 0.247 35.338 0.000 0.343 46.686 0.000 0.361 51.607 0.000

B. Forecasting regressions: z
(n)
t

= βLLt−12 + βSSt−12 + βCCt−12 + ϕϑt + ε
(n)
t

n βL βS βC ϕ Adj. R2 HH NW

2 0.028
( 0.917)

−0.046
(−0.530)

0.283
(2.024)

0.297
(3.760)

0.336 104.524 99.876

3 0.022
( 0.402)

−0.137
(−0.795)

0.533
(2.172)

0.563
(3.862)

0.358 90.910 89.637

4 0.000
( 0.007)

−0.245
(−1.016)

0.717
(2.173)

0.830
(4.167)

0.390 81.581 85.855

5 −0.030
(−0.356)

−0.472
(−1.618)

1.130
(2.782)

0.786
(3.110)

0.381 67.406 73.079

C. Forecasting regressions: z
(n)
t

= αLhL
t−12 + αShS

t−12 + αChC
t−12 + ϕϑt−12 + ε

(n)
t

n αL αS αC ϕ Adj.R2 HH NW

2 −1.039
(−0.552)

−0.956
(−0.993)

1.135
(2.114)

0.442
(6.730)

0.343 113.181 121.356

3 −3.451
(−1.025)

−1.849
(−1.117)

2.394
(2.394)

0.870
(6.747)

0.381 122.700 131.127

4 −5.411
(−1.202)

−2.758
(−1.254)

3.361
(2.569)

1.278
(6.967)

0.421 135.324 145.272

5 −6.198
(−1.094)

−3.514
(−1.290)

3.795
(2.364)

1.509
(6.524)

0.393 109.265 121.594

z
(n)
t

denotes the one-year-ahead bond excess return of n-year bonds. Lt, St and Ct denote the estimated level,

slope and curvature factors, respectively. Their corresponding volatility factors are hL
t
, hS

t
and hC

t
. Both

yield curve factors and volatility factors are extracted from model (3), (5) and (7). ϑt denotes the return-

forecasting factor of Cochrane and Piazzesi (2005). HH and NW are χ2 statistics for joint significance tests

using Hansen-Hodrick and Newey-West corrections, respectively. The 5-percent critical value of χ2(4) is 9.49.
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Table 5: Linear regressions of monthly yield factors Lt, St, Ct, and factor volatilities hL
t ,

hS
t , hC

t , on log changes of the consumer price index (INF), capacity utilization (CU),

employment growth rate (EMP), the federal funds rate (FFR) and industrial produc-

tion (IP). Yield factors and factor volatilities extracted from monthly observations of

unsmoothed U.S. Fama-Bliss zero coupon yields from January 1964 to December 2003

with maturities of one to five years. Robust standard errors in parantheses.

CONST INF CU EMPLOY FFR IP R2

L 27.781
(3.355)

−0.258
(0.160)

−0.298
(0.044)

27.120
(17.756)

0.495
(0.035)

5.324
(4.787)

0.77

S −29.404
(3.302)

0.159
(0.184)

0.322
(0.044)

−13.601
(19.192)

0.357
(0.029)

−7.225
(4.749)

0.69

C 10.248
(4.302)

−0.697
(0.378)

−0.147
(0.050)

38.976
(18.406)

0.104
(0.091)

−1.060
(6.277)

0.12

hL 0.905
(0.206)

−0.040
(0.014)

−0.012
(0.003)

0.041
(0.827)

0.035
(0.002)

0.465
(0.285)

0.76

hS
−0.058
(0.461)

−0.029
(0.037)

0.002
(0.006)

−3.207
(1.929)

0.071
(0.008)

−1.202
(0.846)

0.63

hC 1.879
(0.530)

0.063
(0.038)

−0.014
(0.006)

−7.449
(2.316)

0.029
(0.010)

1.371
(0.767)

0.48

Table 6: VAR(1) estimates of the monthly yield factors Lt, St, Ct, log changes of

the consumer price index (INF), capacity utilization (CU), employment growth rate

(EMP), the federal funds rate (FFR) and industrial production (IP). Yield factors and

factor volatilities extracted from monthly observations of unsmoothed U.S. Fama-Bliss

zero coupon yields from January 1964 to December 2003 with maturities of one to five

years. Robust standard errors in parantheses.

Lt St Ct INFt CUt FFRt IPt EMPLOYt

Lt−1 0.966
(0.028)

0.085
(0.085)

−0.096
(0.072)

−0.011
(0.0264)

0.311
(0.059)

0.508
(0.133)

0.004
(0.001)

0.001
(0.000)

St−1 −0.010
(0.023)

0.982
(0.069)

−0.078
(0.063)

0.005
(0.023)

0.231
(0.055)

0.466
(0.127)

0.003
(0.001)

0.001
0.000)

Ct−1 −0.011
(0.009)

0.020
(0.016)

0.894
(0.023)

−0.018
(0.012)

−0.013
(0.020)

−0.031
(0.0213)

0.000
(0.000)

0.000
(0.000)

INFt−1 0.046
(0.046)

−0.026
(0.108)

−0.188
(0.113)

0.211
(0.072)

0.091
(0.077)

0.083
(0.078)

0.001
(0.002)

0.000
(0.000)

CUt−1 −0.004
(0.004)

0.026
(0.013)

−0.018
(0.016)

0.001
(0.006)

0.973
(0.015)

0.006
(0.012)

0.000
(0.000)

0.000
(0.000)

FFRt−1 0.023
(0.020)

−0.066
(0.074)

0.098
(0.059)

0.007
(0.022)

−0.278
(0.050)

0.572
(0.114)

−0.004
(0.001)

−0.001
(0.000)

IPt−1 −0.222
(0.465)

−0.978
(1.272)

−1.359
(2.014)

0.949
(0.609)

4.190
(1.752)

1.466
(1.198)

1.017
(0.029)

0.039
(0.008)

EMPLOYt−1 0.975
(1.463)

3.674
(3.991)

8.901
(5.210)

2.381
(1.768)

−2.675
(3.702)

−4.390
(4.483)

−0.168
(0.074)

0.908
(0.022)

CONST 0.412
(0.355)

−2.428
(1.072)

1.225
(1.410)

−0.138
(0.501)

1.945
(1.249)

−0.812
(0.977)

0.006
(0.021)

−0.001
(0.006)
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Table 7: VAR(1) estimates of the monthly factor volatilities hL
t , hS

t , hC
t , log changes

of the consumer price index (INF), capacity utilization (CU), employment growth rate

(EMP), the federal funds rate (FFR) and industrial production (IP). Yield factors and

factor volatilities extracted from monthly observations of unsmoothed U.S. Fama-Bliss

zero coupon yields from January 1964 to December 2003 with maturities of one to five

years. Robust standard errors in parantheses.

hL
t hS

t hC
t INFt CUt FFRt IPt EMPLOYt

hL
t−1 0.981

(0.010)
−0.116
(0.033)

−0.058
(0.038)

−0.491
(0.246)

−4.829
(3.014)

1.138
(0.732)

0.019
(0.012)

0.005
(0.003)

hS
t−1 0.014

(0.003)
0.987
(0.028)

0.019
(0.014)

−0.145
(0.070)

−2.614
(1.106)

−0.055
(0.416)

0.003
(0.005)

0.001
(0.002)

hC
t−1 0.007

(0.003)
0.019
(0.014)

1.003
(0.016)

0.212
(0.102)

5.321
(1.469)

0.458
(0.286)

−0.011
(0.006)

−0.004
(0.002)

INFt−1 0.001
(0.001)

0.016
(0.010)

0.004
(0.005)

0.190
(0.075)

0.888
(0.339)

0.121
(0.087)

0.002
(0.002)

0.001
(0.001)

CUt−1 0.000
(0.000)

0.001
(0.001)

0.000
(0.000)

0.007
(0.006)

0.586
(0.114)

0.013
(0.015)

0.000
(0.000)

0.000
(0.000)

FFRt−1 0.000
(0.000)

0.005
(0.002)

0.001
(0.002)

0.023
(0.011)

0.361
(0.156)

0.945
(0.026)

−0.001
(0.000)

0.000
(0.000)

IPt−1 0.017
(0.020)

−0.064
(0.083)

−0.069
(0.098)

0.634
(0.620)

−31.098
(11.181)

−1.487
(1.568)

1.025
(0.027)

0.044
(0.008)

EMPLOYt−1 0.095
(0.056)

0.274
(0.219)

0.325
(0.283)

2.436
(1.708)

143.696
(36.878)

9.511
(3.923)

−0.162
(0.076)

0.904
(0.024

CONST −0.027
(0.014)

−0.074
(0.058)

−0.016
(0.073)

−0.751
(0.511)

25.893
(8.430)

−1.460
(1.315)

0.030
(0.027)

0.010
(0.008)
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Figure 1: Plot of the Nelson-Siegel factor loadings. λ = 0.045.
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Figure 2: The estimated yield factors (solid lines) and their empirical approximation

(dotted lines).
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Figure 3: Loadings on the Nelson-Siegel curvature factor (left), λ = 0.045, the return-

forecasting factor (middle) and the PC curvature factor (right).
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Figure 4: The estimated level volatility factor (blue line, top), the slope volatility factor

(green line, middle) and curvature volatility factor (red line, bottom).
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Figure 5: Prediction error decompositions of the level and slope factor. Based on a

VAR(1) model of yield factors and macro factors using a Cholesky decomposition of

the covariance.
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Figure 6: Prediction error decomposition of the curvature factor and inflation. Based

on a VAR(1) model of yield factors and macro factors using a Cholesky decomposition

of the covariance.
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Figure 7: Prediction error decomposition of capacity utilization and of the federal funds

rate. Based on a VAR(1) model of yield factors and macro factors using a Cholesky

decomposition of the covariance.
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Figure 8: Prediction error decomposition of industrial production and of the employ-

ment growth rate. Based on a VAR(1) model of yield factors and macro factors using

a Cholesky decomposition of the covariance.
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Figure 9: Prediction error decomposition of the level and slope volatility. Based on a

VAR(1) model of volatility factors and macro factors using a Cholesky decomposition

of the covariance.
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Figure 10: Prediction error decomposition of the curvature volatility and inflation .

Based on a VAR(1) model of volatility factors and macro factors using a Cholesky

decomposition of the covariance.
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Figure 11: Prediction error decomposition of capacity utilization and of the federal

funds rate. Based on a VAR(1) model of volatility factors and macro factors using a

Cholesky decomposition of the covariance.
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Figure 12: Prediction error decomposition of industrial production and of the employ-

ment growth rate. Based on a VAR(1) model of volatility factors and macro factors

using a Cholesky decomposition of the covariance.
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