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Abstract

The lifetime of the remnant produced by the merger of two neutron stars can provide a wealth of information on the
equation of state of nuclear matter and on the processes leading to the electromagnetic counterpart. Hence, it is
essential to determine when this lifetime is the shortest, corresponding to when the remnant has a mass equal to the
threshold mass, Mth, to prompt collapse to a black hole. We report on the results of more than 360 simulations of
merging neutron-star binaries covering 40 different configurations differing in mass ratio and spin of the primary.
Using this data, we have derived a quasi-universal relation for Mth and expressed its dependence on the mass ratio
and spin of the binary. The new expression recovers the results of Koeppel et al. for equal-mass, irrotational
binaries and reveals that Mth can increase (decrease) by 5% (10%) for binaries that have spins aligned (antialigned)
with the orbital angular momentum and provides evidence for a nonmonotonic dependence of Mth on the mass
asymmetry in the system. Finally, we extend to unequal masses and spinning binaries the lower limits that can be
set on the stellar radii once a neutron star binary is detected, illustrating how the merger of an unequal-mass,
rapidly spinning binary can significantly constrain the allowed values of the stellar radii.

Unified Astronomy Thesaurus concepts: Compact binary stars (283); General relativity (641); Gravitational
collapse (662); Neutron stars (1108); Compact objects (288); Stellar remnants (1627); Black holes (162); Binary
pulsars (153)

1. Introduction

With the birth of multimessenger gravitational-wave astron-
omy and the detection of binary neutron star (BNS) mergers via
the the GW170817 event (The LIGO Scientific Collaboration
& The Virgo Collaboration 2017), and the use of numerical
simulations, it has become possible to establish a number of
constraints on the equation of state (EOS) of nuclear matter
(see, e.g., Bauswein et al. 2017; Margalit & Metzger 2017;
Shibata et al. 2017; Malik et al. 2018; Radice et al. 2018;
Raithel et al. 2018; Rezzolla et al. 2018; Ruiz et al. 2018; Tews
et al. 2018; Montaña et al. 2019). Due to the degeneracy
between tidal and stellar spin effects on the inspiral waveform,
low- or high-spin priors are needed to infer the properties of the
binaries from the gravitational-wave measurements (The LIGO
Scientific Collaboration & The Virgo Collaboration 2017).
Strong emphasis has been given to the low-spin priors under
the expectation that the neutron stars (NSs) lose a significant
fraction of their spin angular momentum through electro-
magnetic dipolar radiation well before the merger. While these
assumptions favor irrotational NSs in the late inspiral and
merger of BNSs, the parameter estimations from the gravita-
tional-wave detections still strongly depend on the given
a priori distribution of expected spins, with the high-spin prior
leading to large uncertainties in the mass ratio and effective
spin of the binary (Abbott et al. 2020).

Much of the theoretical modeling of BNS mergers has been
concentrated on mass ratios ≔q M2/M1 0.7 and on irrota-
tional constituents (see, e.g., Shibata & Taniguchi 2006;
Rezzolla et al. 2010; Bauswein et al. 2013; Dietrich et al.
2015; Lehner et al. 2016; Radice et al. 2016), in accordance
with the (limited) sample of observed binary pulsar systems.
However, the modeling of smaller ratios q 0.45 (Dietrich
et al. 2017b; Most et al. 2021; Papenfort et al. 2021) and of
higher spins has also started (Kastaun et al. 2013; Bernuzzi
et al. 2014; East et al. 2016; Dietrich et al. 2017a; Most et al.
2019c). Given its impact on the electromagnetic counterpart, a
particularly important prediction of the theoretical modeling
has been the determination of whether the BNS underwent a
prompt collapse at merger. The threshold mass discerning a
prompt from a delayed collapse has been investigated
thoroughly for irrotational binaries (see Baiotti &
Rezzolla 2017; Burns 2020 for some reviews) using a number
of EOSs. The natural expectation that Mth can be parameterized
in terms of the maximum mass of a nonrotating NS, MTOV

(Bauswein et al. 2013), has been refined by more advanced
parameterizations (Agathos et al. 2020; Koeppel et al. 2019)
and by incorporating the effect of asymmetric binary systems
(Bauswein et al. 2021). The latter resulted in a lowering of Mth

at small mass ratios, i.e., q 0.6, depending on the stiffness of
the EOS (Bauswein et al. 2021). Furthermore, simulations have
suggested that the lifetime of merger remnants increases with
the binary spin (Kastaun et al. 2013; Bernuzzi et al. 2014; East
et al. 2016; Kiuchi et al. 2019), and decreases significantly at
very small mass ratios (Rezzolla et al. 2010; Dietrich et al.
2017a; Kiuchi et al. 2019; Bernuzzi et al. 2020).
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Using three temperature-dependent EOSs compatible with
present astronomical observations, we report on a systematic
exploration the effects that spin and mass asymmetry have on
Mth of BNS configurations with a mass ratio in the range
0.5� q� 1, concentrating mostly on configurations in which
the primary is spinning, while the secondary is irrotational. The
large amount of data collected in this way has allowed us to
derive a quasi-universal relation for Mth in terms of the mass
ratio and spin of the binary.

2. Numerical Methods and Initial Data

Numerical methods.A significant hurdle to exploring
asymmetric spinning binaries is the construction of initial data
(ID) consistent with the Einstein equations. Here, we have used
FUKA (Papenfort et al. 2021), the first publicly available ID
solver able to reliably explore the needed parameter space. See
Appendix A for details on the configurations considered. The
evolution of the ID is performed using the Einstein
Toolkit infrastructure that includes a fixed-mesh box-in-
box refinement framework, Carpet (Schnetter et al. 2004).
The spacetime evolution was handled by Antelope (Most
et al. 2019b) using a constraint damping formulation of the Z4
system (Bernuzzi & Hilditch 2010; Alic et al. 2012). Finally,
the general relativistic magnetohydrodynamic code, FIL (Most
et al. 2019b), was used to evolve the fluid quantities. FIL is a
derivative of the original IllinoisGRMHD code (Etienne
et al. 2015) with the addition of high-order (fourth)
conservative finite-differencing methods (Del Zanna et al.
2007). Importantly, FIL handles EOSs that are dependent on
temperature and electron fraction, and includes a neutrino
leakage scheme to handle neutrino cooling and weak interac-
tions. The simulations were performed using a grid setup with
an extent of ≈3000 km, decomposed in six levels of
refinement, with the finest grid spacing being Δx≈ 295 m.
For comparison, 36 simulations of higher resolution were
performed with a finer grid spacing of Δx≈ 221 m, resulting in
a measure of the error budget of ∼1% (ΔMth;0.03Me).

Space of parameters. Pulsar observations have provided a
wealth of information on the various rotation states that NSs
can have including isolated pulsars with extreme spins and
binary configurations with moderate to high spins. In general,
most of the spin angular momentum of the binary is associated
with the most massive of the two NSs, i.e., the primary
(Lazarus et al. 2016). Hence, the spin configurations considered
here are mostly centered on the effects χ1 has on Mth. Here, 36

out of the 40 binaries considered have χ1= [−0.3, 0, 0.3] and
χ2= 0 where ≔c J M1,2 1,2 1,2

2 are, respectively, the dimension-
less spins of the primary and secondary with spin angular
momenta J1,2. However, in order to gauge the impact of the
spin of the secondary we also have considered four binary
configurations with the same effective dimensionless
spin ˜ ( ) ( )c c c= + +-q q: 1 1

1 2 .
Collapse-time measurement.A crucial aspect of any study

wishing to determine Mth is a rigorous, systematic, and
reproducible definition of what constitutes a collapse. Such
an approach was previously not always considered, and very
qualitative definitions of the threshold mass have been
employed in the literature. Here, instead, we follow the
prescription proposed by Koeppel et al. (2019), which tracks
the minimum of the lapse to compute the collapse time and
compares it to the shortest possible over which a prompt
collapse can take place, that is, the freefall timescale. This
approach, whose details can be found in Appendix B, allows
not only for a precise definition and measurements, but also for
the reproducibility of the results presented here.

3. Results

Dependence on mass ratio and spin.While the work of
Koeppel et al. (2019) provided a first well-defined and rigorous
manner of determining a quasi-universal relation for Mth, it was
restricted to the analysis of equal mass, i.e., with q= 1 and
irrotational binaries, i.e., with χ1= 0= χ2. In this specific
scenario, Mth was found to depend on the EOS rather simply,
so that a quasi-universal relation Mth=Mth(EOS) was
proposed. However, it is clear that when considering the
additional influence of spin and mass asymmetry, the
functional dependence of Mth must account also for these
additional degrees of freedom so that Mth=Mth(EOS, q, χ),
where ≔c χ1+ χ2 is the total dimensionless spin of the
binary.
Determining the exact expression for Mth(EOS, q, χ) clearly

requires the exploration of the space of parameters in mass ratio
and spin for any given EOS. As an example, we report in
Figure 1 the dependence on the total spin and mass ratio of Mth

for the three EOSs considered here. More specifically, shown
with different colored symbols are the values of Mth—and the
corresponding error bars, which are shown in black—as
determined following the prescription discussed in Section 2
and by Koeppel et al. (2019) (see also Appendix B for an
alternative approach leading to the same results), while the gray

Figure 1. Dependence of Mth on the mass ratio and total spin of the binary. The three panels depict the data for the EOSs considered here, while the gray shaded
surface represents the fit via the quadratic ansatz (3).
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shaded surfaces represent the best-fitting function to the data.
Note that the fits for the three EOSs have variable errors, but all
with a small chi-squared of BHB DD2= =LFX X0.001, 0.0012 2 ,
and TNTYST =X 0.0032 , all of which have an average (maximum)
deviation from the fit that is 1% (2%). When expressed in
absolute terms, the average deviations from the fits amount to
ΔMth= 0.03Me.

Quasi-universal behavior.As can be readily appreciated
from the inspection of Figure 1—which corresponds to 40
distinct binary configurations differing in mass ratio and
spin—Mth shows a behavior that is similar for the three EOSs,
but also that it leads to systematically different values for each
of the EOSs considered. Determining accurately the threshold
mass for each configuration has required the calculation of the
inspiral and merger of about a dozen simulations with varying
initial mass; the computational cost associated with Figure 1 is
of about 360 simulations. Extending this work to an arbitrarily
large number of EOSs is computationally prohibitive.

However, we can exploit the existence of a quasi-universal
behavior of Mth (Bauswein et al. 2013; Agathos et al. 2020;
Koeppel et al. 2019; Bauswein et al. 2021). More specifically,
we extend the quasi-universal relation derived by Koeppel et al.
(2019) by proposing that the functional dependence of
Mth(EOS, q, χ) can be split into a part that is dependent on
the EOS and a part dependent on q and χ. From a mathematical
point of view, this essentially amounts to the separability in the
functional dependence and hence in adopting the following
ansatz:

( ) ( ) ( ) ( )c k c=M q f qEOS, , EOS , , 1th

where the dependence on the EOS is expressed via a
multiplicative function following the study of Koeppel et al.
(2019):

⎜ ⎟
⎛
⎝

⎞
⎠

( ) ≔ ( )k -
- 

a
b

c
MEOS

1
. 2

TOV
TOV

where  TOV is the compactness of the nonrotating stellar
configuration with the maximum mass and RTOV its radius, i.e.,

≔ M RTOVTOV TOV . The coefficients in Equation (2) have been
reported by Koeppel et al. (2019) and are a= 2b/(2− c),
b= 1.01, and c= 1.34.

In practice, Equation (1) proposes that f (q, χ) is a surface
that models Mth as a function of q and χ independently of the
EOS. This surface can then be rescaled via a function
describing the EOS, κ(EOS)= κ(RTOV, MTOV), depending
uniquely on the stellar compactness for the maximum-mass
nonrotating configuration. Stated differently, the quasi-uni-
versal expression for Mth is expressed as ˆ ≔ ( )kM M EOSth th ,
where all the dependence on the mass ratio and spin of the
binary is contained in the function f (q, χ), whose behavior
remains to be determined.

Considering the nonlinear behavior shown by the three
fitting functions in Figure 1, it is natural to express the ansatz
for f (q, χ) via a second-order polynomial, i.e.,

( ) ≔ ( ) ( )
( ) ( )

c c c
c

+ - + + -
+ - +

f q a a q a a q

a q a

, 1 1

1 . 3
1 2 3 4

5
2

6
2

Since we wish to recover the quasi-universal fit obtained by
Koeppel et al. (2019), we set a1= 1 in (3).

Note that the data clearly show a nonmonotonic growth of
Mth as the mass asymmetry in the binary changes, which has

been discussed already by East et al. (2016) and Bauswein et al.
(2021) and more recently by Papenfort et al. (2021). Although
the earlier works were restricted to nonspinning binaries with
larger mass ratios, the evidence for a nonmonotonic depend-
ence remained tentative and, indeed, the fitting expressions
proposed by Bauswein et al. (2021) are monotonic. However,
Papenfort et al. (2021) have shown nonmonotonic behavior
should be expected due to an increase in accretion disk mass.
On the other hand, the presence of additional angular

momentum in the system stabilizes the remnant against
gravitational collapse (Breu & Rezzolla 2016; Weih et al.
2018). This implies that the fitting function f should
monotonically increase with spin. Since the maximum
dimensionless spin of uniformly rotating NSs is well
constrained to be c ´2 0.65max (see, e.g., the discussion
in Most et al. 2020), we can improve (3) by requiring that Mth

has a maximum for the maximum allowed value of the
dimensionless spin, i.e.,

( )∣ ( )c¶ =c cf q, 0. 4
max

Imposing (4) on (3) leads to

≔ ( ) ( )
c

-
+ -

a
a a q1

2
, 56

3 4

max

thus leaving only four independent fitting coefficients, whose
values are a2= 0.11, a3= 0.12, a4= 0.07, and a5=−0.3. We
note that we obtain essentially the same coefficients either
when fitting all the values of M̂th for the same values of q and χ
or when averaging the coefficients obtained from the three
distinct fits to the different EOSs (see Table 3 in Appendix A
for the coefficients of the three fits).
Figure 2 reports the fit of the quasi-universal threshold mass

for the combined data, showing an accurate representation of
the functional behavior. Indeed, the fit yields a chi-squared of
X2= 0.028, with an average (maximum) deviation from the fit
of only ∼2% (∼6%). The very good match between the data

Figure 2. Similar to Figure 1, but highlighting the quasi-universal dependence
of M̂th on the mass ratio and spin of the binary. Shown with different symbols
are the values of M̂th and the corresponding uncertainties, while the gray shaded
surface represents the fit via Equation (1).

3

The Astrophysical Journal Letters, 922:L19 (8pp), 2021 November 20 Tootle et al.



and the fitting function provides strong evidence for the
existence of the quasi-universal behavior conjectured with the
separability ansatz (1) and captures nicely the dependence of
Mth on the mass ratio and spin of the binary. In particular, it
highlights that—when compared to the irrotational case—Mth

increases ∼6% for the aligned-spin binaries considered here,
and decreases ∼10% for the antialigned spin binaries. We note
that while the fit has considered all of the 40 binary
configurations, we have verified that predictions for Mth made
when considering only χ2= 0 match equally well the
numerical results obtained when χ2 is nonzero.

Lower limits on the stellar radii. Following Koeppel et al.
(2019), we can use Equations (1)—(3), to set lower limits on
the radii of possible stellar models by computing sequences of
Mth and MTOV for fixed radii, as shown in Figure 3. More
specifically, we recall that once a value for RTOV is fixed,
Equation (1) selects a line in the ( )M M,th TOV plane. The first
intersection of this line with the measured mass of a BNS with
total mass Mtot that has not collapsed promptly sets a lower
limit on Mth (Bauswein et al. 2017). This is shown in the upper
panels of Figure 3 (see the left panel of Figure 4 of Koeppel
et al. 2019)—one for each of the spins considered here—and
where we report with a horizontal blue dashed line the total
gravitational mass estimated for GW170817, ==M qtot, 1

-
+ M2.74 0.01

0.04 (The LIGO Scientific Collaboration & The Virgo
Collaboration 2017). Since the mass ratio is not well known,
the constraint for GW170817 is actually given by a band (blue
shaded area) whose vertical edges depend on the mass ratio q
(see arrows in the top left panel of Figure 3). Also reported in
the top panels of Figure 3 with a gray shaded area is the limit
set by causality and that requires M R 0.354TOV TOV .

In essence, therefore, the blue band constrains the red shaded
area from above, yielding a lower limit for the radius of the
maximum-mass star, =R q, 1TOV (red solid line). The most
important difference with a similar figure presented by Koeppel
et al. (2019) for q= 1 and χ= 0 is that we can now exploit the
dependence of Mth on the mass ratio (and spin) to report the
lower limit on RTOV for different values of q (dashed lines). In
this way it is possible to appreciate that in the case of
antialigned spins (e.g., for χ=−0.3), very strong constraints
can be put on =R q, 1TOV as the threshold mass is, in this case,
considerably smaller (cf. ==R 10.24 kmq, 1TOV for χ=−0.3
versus ==R 9.44 kmq, 1TOV for χ= 0.3). Overall, the top panels
in Figure 3 highlight how the knowledge of the mass ratio and
spin of the binary can be extremely powerful in setting lower
limits on the stellar radii.
As in the analysis by Koeppel et al. (2019), we can set lower

limits not only for RTOV, but for any arbitrary mass M. More
specifically, we have found a fit for the minimum radius as a
function of the mass ratio and spin in the binary, i.e., Rx(M, q,
χ), and verified that this function can be recovered by the
original expression Rx(M) in Koeppel et al. (2019) for q= 1
and χ= 0 (see symbols in the bottom middle panel of
Figure 3):

( ) ( )= - + +R M M M0.88 2.66 8.91, 6x
2

via the same scaling function f (q, χ) in Equation (3), namely,

( ) ( )
( )

( )c
c

=R M q
R M

f q
, ,

,
. 7x

x

Because Equation (7) should be seen as an ansatz representa-
tive of the EOSs used here, it might need additional corrections

Figure 3. Top: the lower bounds on =R q, 1TOV (red) using ansatz (1) for =R 10, 11 kmTOV . The black continuous line corresponds to q = 1, while the colored dashed
lines mark the constraints set by q = 0.9, 0.7, and 0.5. The blue region defines the mass of GW170817 and its uncertainty depending on q. The red shaded area shows
the values excluded by the detection. The gray shaded area represents values excluded by the causality constraint. Each panel, from left to right, corresponds to
χ = [−0.3, 0, 0.3], respectively. Bottom: universal relation for the lower limit of Rx(M, q, χ1). In the middle panel, we demonstrate Rx(M) is recovered when plotting
f (q, χ)Rx(M, q, χ). Overall, the top and bottom panels extend Figure 4 of Koeppel et al. (2019) to binaries with unequal masses and nonzero spin.
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for EOSs that include strong phase transitions (Most et al.
2019a; Bauswein et al. 2020; Weih et al. 2020), or that include
regimes of extremely high densities (Most & Raithel 2021).

The bottom panels of Figure 3 (see the right panel of Figure
4 of Koeppel et al. 2019) report the estimates of Rx(M, q, χ) for
different values of q (different dashed lines) and χ (different
columns); in each plot, we include the original fit for Rx from
Koeppel et al. (2019) as a reference (red dashed line). Note
that, for a given spin of the binary, the knowledge of the mass
ratio can considerably increase the lower limit on the stellar
radii, especially for systems with negative total spin. At the
same time, given the nonmonotonic nature of the dependence
on q, equal-mass systems do not necessarily yield the weakest
constraint, which is instead attained for q; 0.8–0.9.

4. Conclusions

We have performed the first systematic study of the impact
that mass asymmetry and spin have on the threshold mass of
BNS systems, Mth. We have done so by measuring Mth for 40
different BNS configurations encompassing three temperature-
dependent EOSs, four mass ratios, and a systematic sampling
of spin configurations. Using this data we have derived a quasi-
universal relation for Mth and expressed its dependence on the
mass ratio and spin of the binary. The new expression recovers
the results of Koeppel et al. (2019) for equal-mass, irrotational
binaries, and reveals that Mth can increase (decrease) by
5% (10%) for binaries that have spins aligned (antialigned)
with the orbital angular momentum. In addition, we find
evidence for a nonmonotonic dependence of Mth on the mass
asymmetry in the system, which can be explained by an
increase in accretion disk mass (Papenfort et al. 2021).
Furthermore, we have extended to unequal masses and
spinning binaries the lower limits that can be set on the stellar
radii once a neutron star binary is detected, obtaining generic
and analytic expressions for the minimum radii as a function of
the mass ratio and of the total spin of the binary. In this way,
we have highlighted that the merger of an unequal-mass,
rapidly spinning binary can significantly constrain the allowed
values of the stellar radii.

With more than 360 binaries simulated, this work has
represented a challenge both for the associated computational
costs and for the amount of data to be analyzed. Furthermore,
while it has provided a first sparse but complete survey of the
space of parameters to be expected in BNSs, it can be improved
in a number of ways. First, by investigating more carefully the
role played by spin of the secondary star. Second, by increasing
the number of EOSs considered so—especially if they involve
a softening from phase transitions (Most et al. 2019a; Weih
et al. 2020)—as to further refine the properties of the quasi-
universal behavior. Third, by elucidating the role played by
the disruption of the stars at merger. Finally, by exploring the
possibility that ultrastrong magnetic fields could modify
the stability properties of the merged object and hence the
threshold mass. We leave all of these improvements to future
works.

L.R. acknowledges the support by the State of Hesse within
the Research Cluster ELEMENTS (Project ID 500/10.006).
E.R.M. acknowledges support from the Princeton Center for
Theoretical Science, the Princeton Gravity Initiative, and the
Institute for Advanced Study. The simulations were performed
on HPE Apollo Hawk at the High Performance Computing

Center Stuttgart (HLRS) under the grants BBHDISKS and
BNSMIC, and on SuperMUC at the Leibniz Supercomputing
Centre.
Software: Einstein Toolkit (Loeffler et al. 2012),

Carpet (Schnetter et al. 2004), FIL (Etienne et al. 2015;
Most et al. 2019b), FUKA (Papenfort et al. 2021), Kadath
(Grandclement 2010).

Appendix A
Numerical Methods and Setup

Numerical simulations.As mentioned in the main text, our
ID is constructed making use of the recently developed initial-
data solver FUKA, which is based on the KADATH spectral
solver library, solving the eXtended Conformal Thin Sandwich
(XCTS) formulation of Einstein’s field equations (Pfeiffer &
York 2003, 2005; Papenfort et al. 2021). The ID are initially
constructed using the force-balance equations to determine a
quasi-circular orbit. The spin of each NS is achieved by
modeling the velocity field of the fluid as a linear combination
of a purely irrotational component and a uniformly rotating
component (Tacik et al. 2015; Tsokaros et al. 2015; Papenfort
et al. 2021). To minimize the eccentricity of the inspiral, we
utilize 3.5 post-Newtonian (PN) order estimates of the
expansion factor, a, and the orbital velocity as discussed in
Papenfort et al. (2021). This is important as quasi-circular ID
for asymmetric binaries and binaries with spinning objects
result in very eccentric inspirals that are also discussed in
Papenfort et al. (2021). Additionally, it has been shown that
eccentricity can have an impact on the stability of the remnant
(East et al. 2016); therefore, the use of 3.5 PN estimates is
important to obtain accurate measurements of Mth. Finally, the
initial separations of the compact objects are set to 50 km, thus
allowing the binary to equilibrate over the course of a few
orbits prior to merger due to the approximations used in the
initial-data construction.
Realistic, hot EOSs. The binaries simulated here have been

modeled with three different realistic and temperature-depen-
dent (hot) EOSs. In particular, they are the rather soft TNTYST
EOS (Togashi et al. 2017), the rather stiff BHBΛΦ EOS (Banik
et al. 2014), and the intermediate (HS-)DD2 EOS (Typel et al.
2010). The most salient properties of these EOSs, namely, the
maximum mass of the nonrotating configuration, the corresp-
onding radius, the compactness, and the freefall timescales are
reported in Table 1.
Spin configurations. Emphasis in our analysis has been

placed on low-spin priors and on the role of the spin of the
primary in determining the threshold mass. Hence, the large
majority of our binaries have an irrotational secondary (i.e.,
χ2= 0). However, binaries with nonnegligible mixed spins
cannot be ruled out; thus, we have performed additional spot
tests that include configurations of constant mass ratio and

Table 1
For the EOSs Considered Here We Report the Maximum Mass of a

Nonrotating Configuration, MTOV, Together with the Corresponding Radius,
RTOV, Compactness, CTOV, and Freefall Timescale τTOV

MTOV RTOV CTOV tTOV
(Me) (km) (μs)

BHBΛΦ 2.10 11.64 0.26 83.31
DD2 2.42 11.94 0.30 80.60
TNTYST 2.23 10.17 0.32 66.12
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effective spin, but with a spinning secondary so as to ascertain
the difference in the collapse time using the BHBΛΦ EOS. All
of the 40 binaries considered here and their properties are
collected in Table 2.

With the data collected in this way we have performed a
double analysis. First, we have considered only binaries with
irrotational secondaries and performed the fits as discussed in
the main text. Next, using the resulting coefficients we have
compared the predictions of the fit with the actual numerical
results of the four binaries with a spinning secondary. In this
way, we have found that the analytic predictions and the
numerical results differ by less than 3% and are therefore well
within the average error of the fit. Overall, this result has given
us confidence that the spin of the secondary has a negligible
impact on Mth, which is instead dynamically dominated by the

spin of the primary. This is a reasonable estimate for two
distinct reasons. First, Mth effectively measures the strength of
the gravitational field of the merged object and is therefore
dominated by the properties of the primary. Second, the
modifications on Mth due to spin are, overall, not large. As a
second approach, we have performed a fit using all of the data
available and this is what is actually presented in the main text;
the corresponding values of the fitting coefficients and their
uncertainties are collected in Table 3.

Appendix B
Comparison of Threshold Mass Measurements

To determine Mth from our numerical simulations we have
elected to utilize the method of measuring the collapse time,
tcol, as proposed in Koeppel et al. (2019) given the physical

Table 2
Lists of the Binary Configurations Explored in This Study for the Three Nuclear EOSs Considered

Mth th M1 M2 q c
1

c
2 c̃ EOS

( )M ( )M ( )M ( )M

BHBΛΦ.1.0.-0.3 2.961 1.289 1.481 1.481 1.0 −0.3 0.0 −0.150 BHBΛΦ
BHBΛΦ.1.0.+0.0 3.149 1.370 1.574 1.574 1.0 0.0 0.0 0.000 BHBΛΦ
BHBΛΦ.1.0.+0.2 3.197 1.392 1.599 1.599 1.0 0.2 0.1 0.150 BHBΛΦ
BHBΛΦ.1.0.+0.3 3.199 1.392 1.600 1.600 1.0 0.3 0.0 0.150 BHBΛΦ
BHBΛΦ.1.0.+0.4 3.242 1.411 1.621 1.621 1.0 0.4 −0.1 0.150 BHBΛΦ
BHBΛΦ.0.9.-0.3 2.982 1.296 1.569 1.412 0.9 −0.3 0.0 −0.158 BHBΛΦ
BHBΛΦ.0.9.+0.0 3.134 1.362 1.649 1.484 0.9 0.0 0.0 0.000 BHBΛΦ
BHBΛΦ.0.9.+0.2 3.227 1.402 1.699 1.529 0.9 0.2 0.1 0.158 BHBΛΦ
BHBΛΦ.0.9.+0.3 3.288 1.429 1.731 1.558 0.9 0.3 0.0 0.158 BHBΛΦ
BHBΛΦ.0.9.+0.4 3.317 1.442 1.746 1.571 0.9 0.4 −0.1 0.158 BHBΛΦ
BHBΛΦ.0.7.-0.3 2.879 1.230 1.694 1.185 0.7 −0.3 0.0 −0.176 BHBΛΦ
BHBΛΦ.0.7.+0.0 3.077 1.314 1.810 1.267 0.7 0.0 0.0 0.000 BHBΛΦ
BHBΛΦ.0.7.+0.3 3.209 1.371 1.888 1.321 0.7 0.3 0.0 0.176 BHBΛΦ
BHBΛΦ.0.5.-0.3 2.791 1.132 1.861 0.930 0.5 −0.3 0.0 −0.200 BHBΛΦ
BHBΛΦ.0.5.+0.0 2.929 1.188 1.952 0.976 0.5 0.0 0.0 0.000 BHBΛΦ
BHBΛΦ.0.5.+0.3 3.071 1.246 2.048 1.024 0.5 0.3 0.0 0.200 BHBΛΦ

DD2.1.0.-0.3 3.209 1.397 1.605 1.605 1.0 −0.3 0.0 −0.150 DD2
DD2.1.0.+0.0 3.266 1.421 1.633 1.633 1.0 0.0 0.0 0.000 DD2
DD2.1.0.+0.3 3.437 1.496 1.718 1.718 1.0 0.3 0.0 0.150 DD2
DD2.0.9.-0.3 3.219 1.399 1.694 1.525 0.9 −0.3 0.0 −0.158 DD2
DD2.0.9.+0.0 3.287 1.428 1.730 1.557 0.9 0.0 0.0 0.000 DD2
DD2.0.9.+0.3 3.467 1.507 1.825 1.642 0.9 0.3 0.0 0.158 DD2
DD2.0.7.-0.3 3.190 1.362 1.877 1.314 0.7 −0.3 0.0 −0.176 DD2
DD2.0.7.+0.0 3.299 1.409 1.940 1.358 0.7 0.0 0.0 0.000 DD2
DD2.0.7.+0.3 3.517 1.502 2.069 1.448 0.7 0.3 0.0 0.176 DD2
DD2.0.5.-0.3 3.123 1.267 2.082 1.041 0.5 −0.3 0.0 −0.200 DD2
DD2.0.5.+0.0 3.240 1.314 2.160 1.080 0.5 0.0 0.0 0.000 DD2
DD2.0.5.+0.3 3.369 1.366 2.246 1.123 0.5 0.3 0.0 0.200 DD2

TNTYST.1.0.-0.3* 2.870 1.249 1.435 1.435 1.0 −0.3 0.0 −0.150 TNTYST
TNTYST.1.0.+0.0 2.916 1.269 1.458 1.458 1.0 0.0 0.0 0.000 TNTYST
TNTYST.1.0.+0.3 3.048 1.327 1.524 1.524 1.0 0.3 0.0 0.150 TNTYST
TNTYST.0.9.-0.3* 2.855 1.241 1.503 1.352 0.9 −0.3 0.0 −0.158 TNTYST
TNTYST.0.9.+0.0 2.956 1.284 1.556 1.400 0.9 0.0 0.0 0.000 TNTYST
TNTYST.0.9.+0.3 3.095 1.345 1.629 1.466 0.9 0.3 0.0 0.158 TNTYST
TNTYST.0.7.-0.3* 2.845 1.215 1.674 1.171 0.7 −0.3 0.0 −0.176 TNTYST
TNTYST.0.7.+0.0 2.950 1.260 1.735 1.214 0.7 0.0 0.0 0.000 TNTYST
TNTYST.0.7.+0.3 3.135 1.339 1.844 1.290 0.7 0.3 0.0 0.176 TNTYST
TNTYST.0.5.-0.3 2.810 1.139 1.873 0.936 0.5 −0.3 0.0 −0.200 TNTYST
TNTYST.0.5.+0.0 2.850 1.156 1.900 0.950 0.5 0.0 0.0 0.000 TNTYST
TNTYST.0.5.+0.3* 3.030 1.229 2.020 1.010 0.5 0.3 0.0 0.200 TNTYST

Note. Included is the determined threshold mass, Mth; the corresponding chirp mass, ;th the ADM mass, MADM, of each NS at infinite separation; the dimensionless
spin of the each NS, χ1, χ2; and the effective spin of the binary, c̃. In all cases, the spin axis is parallel to the orbital rotation axis. Mth in configurations with a * were
obtained using the averaging method as discussed in the Appendix Materials.
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motivation behind it. We will reference this as the freefall
method, which is discussed below. However, similar measure-
ments can be made with minimal impact to the result of the
measured value of Mth by using a simpler approach, which we
refer to as the averaging method, and which averages the
masses of the two binaries closest to the critical value leading
to a prompt collapse.

Freefall method. The original method of measuring the
collapse time, tcol, as proposed in Koeppel et al. (2019), is
defined by tracking the minimum of the lapse, ˜ ≔ ( )a amin .
While this approach is adequate for equal-mass, nonspinning
binaries, it leads to potential biases when considering unequal-
mass and spinning binaries, since the lapse is not only
dependent on the length scales of the system, but it is strongly
impacted by asymmetries in the system. Therefore, when
performing measurements of the collapse time, tcol, we analyze
ã when normalized by its maximum, which we define
as ˆ ≔ ˜ ( ˜ )a a amax .

Because of this rescaling, new brackets must be applied to
determine the time of merger, tmerge, and the time of black hole
formation, tBH. To do so, we set as the merger time the
coordinate time such that

ˆ ( )a =t : 0.9. B1merg merge

Similarly, we set as the threshold for black hole formation and
the related coordinate time to be

ˆ ( )a =t : 0.1, B2BHBH

such that the remnant is gravitationally unstable across all
EOSs and configurations considered and the formation of a BH
is certain. Note that the merged object never collapses faster
than the shortest freefall timescale (tcol>= τff) where the
freefall timescale is defined as (Rezzolla & Zanotti 2013)

( ) ≔ ( )t
p

M R
R

M
,

2 2
, B3ff

3

and the shortest τff occurs at ≔ ( )t t M R,ffTOV TOV TOV and is a
physically well motivated lower limit. We recognize that both
of these markers are somewhat arbitrary, but as done in
Koeppel et al. (2019), they reproduce well the behavior of the
binaries when other markers, e.g., the time of the maximum of
the gravitational-wave emission and the time of the appearance
of a black hole ringdown, are used.

Using these markers, we measure the collapse time as
defined as

≔ ( )-t t t , B4col mergBH

which is the same as the prescription from Koeppel et al.
(2019), but here it is calculated based on â and with different
bracket values. In Figure 4 we show examples of how â versus

coordinate time looks for all equations with q= 0.7, χ1= 0.3,
χ2= 0. Additionally, one panel shows the fit for the three
EOSs and the extrapolation for t t 1TOV , as discussed by
Koeppel et al. (2019).
Averaging method.As from its name, the averaging method

simply averages the masses of the two binaries that are closest
to the critical threshold mass, with Msup being the supercritical
value and Msub the subcritical one, i.e.,

≔ ( ) ( )+M M M
1

2
. B5th sup sub

To distinguish between the two cases, we define as supercritical
any binary whose evolution of the normalized lapse sharply
decreases to the lower limit â = 0.1 without a characteristic
post-merger local maximum. On the other hand, we define as
subcritical any binary whose evolution of the normalized lapse
shows a local maximum after merger indicating, therefore, that
the merged object has contracted but also expanded at least in
one complete oscillation.
Obviously, the averaging method is far simpler (it does not

require any fitting or extrapolation) but also does not provide
any measure of how close Msup and Msub are from Mth.

Figure 4. Top and bottom left: plots of normalized minimum lapse, â, for
q = 0.7 and χ = 0.3 for each of the EOSs used in this work. Horizontal lines
mark the threshold values to define merger and black hole formation, i.e.,
â = 0.9merge and â = 0.1BH , respectively. Bottom right: example of measuring
Mth using the freefall method for the three EOSs; dashed lines denote a linear-
fit result.

Table 3
Values of the Fitting Coefficients and Their Uncertainty in the Functional Ansatz (3) in the Main Text

FIT a1 a2 a3 a4 a5

BHBΛΦ 0.982 ± 0.005 0.08 ± 0.06 0.14 ± 0.02 0.04 ± 0.06 −0.4 ± 0.1
DD2 0.997 ± 0.007 0.13 ± 0.08 0.12 ± 0.02 0.04 ± 0.08 −0.3 ± 0.1
TNTYST 1.024 ± 0.008 0.14 ± 0.08 0.12 ± 0.03 0.04 ± 0.09 −0.3 ± 0.2
Univ 1 0.11 ± 0.07 0.12 ± 0.03 0.07 ± 0.09 −0.3 ± 0.2

Note. The first three rows refer to the specific EOSs considered here and the last one to the quasi-universal expression
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Interestingly, we have measured Mth using the averaging
method against the freefall method and obtained the same
results with an average (maximum) difference relative to the
value obtained using the freefall method of <1% (∼2%). The
situations in which the averaging method is to be preferred is
when the difference between Msup and Msub is <1%, in which
case the error in measuring Mth would be dominated by the
evolution resolution. This was particularly useful in the case of
the TNTYST EOS, where the separation between the super-
critical and subcritical solutions was very small in some
specific mass ratios and spins.

Both of the methods outlined require a definition on whether
or a not a data set is supercritical or subcritical. In this work we
use the definition such that ˆ ∣a t

t
merg
BH diverges directly. We note the

use of the time derivative of â is important especially in the
highly asymmetric binaries as the collapse behavior is less
apparent when only considering â.
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