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The KMT2A (MLL) gene rearrangements (KMT2A-r) are associated with a diverse
spectrum of acute leukemias. Although most KMT2A-r are restricted to nine partner
genes, we have recently revealed that KMT2A-USP2 fusions are often missed during FISH
screening of these genetic alterations. Therefore, complementary methods are important
for appropriate detection of any KMT2A-r. Here we use a machine learning model to
unravel the most appropriate markers for prediction of KMT2A-r in various types of acute
leukemia. A Random Forest and LightGBM classifier was trained to predict KMT2A-r in
patients with acute leukemia. Our results revealed a set of 20 genes capable of accurately
estimating KMT2A-r. The SKIDA1 (AUC: 0.839; CI: 0.799–0.879) and LAMP5 (AUC:
0.746; CI: 0.685–0.806) overexpression were the better markers associated withKMT2A-r
compared to CSPG4 (also named NG2; AUC: 0.722; CI: 0.659–0.784), regardless of the
type of acute leukemia. Of importance, high expression levels of LAMP5 estimated the
occurrence of all KMT2A-USP2 fusions. Also, we performed drug sensitivity analysis using
IC50 data from 345 drugs available in the GDSC database to identify which ones could be
used to treat KMT2A-r leukemia. We observed that KMT2A-r cell lines were more sensitive
to 5-Fluorouracil (5FU), Gemcitabine (both antimetabolite chemotherapy drugs), WHI-P97
(JAK-3 inhibitor), Foretinib (MET/VEGFR inhibitor), SNX-2112 (Hsp90 inhibitor), AZD6482
(PI3Kβ inhibitor), KU-60019 (ATM kinase inhibitor), and Pevonedistat (NEDD8-activating
enzyme (NAE) inhibitor). Moreover, IC50 data from analyses of ex-vivo drug sensitivity to
small-molecule inhibitors reveals that Foretinib is a promising drug option for AML patients
carrying FLT3 activating mutations. Thus, we provide novel and accurate options for the
diagnostic screening and therapy of KMT2A-r leukemia, regardless of leukemia subtype.
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INTRODUCTION

Chromosomal rearrangements involving theKMT2A (MLL) gene
are recurrently associated with the disease phenotype of acute
leukemia. Considering the high number of genes involved in
KMT2A fusions (Meyer et al., 2018), the identification of KMT2A
rearrangements (KMT2A-r) is routinely based on screening
methods to guide the detection of this alteration regardless of
the partner gene. Such methods include immunophenotyping
using an antibody for detection of chondroitin sulfate
proteoglycan 4 (CSPG4, also known as neuron-glial antigen 2,
NG2) (Behm et al., 1996; Smith et al., 1996) or split-signal
fluorescence in situ hybridization (FISH). Subsequently, the
identification of the most frequent KMT2A fusion transcripts
is generally performed by reverse transcription polymerase chain
reaction (RT-PCR) (Burmeister et al., 2015), and long-distance
inverse polymerase chain reaction (LDI-PCR) (Meyer et al.,
2018). Recent studies have also demonstrated the application
of next-generation sequencing (NGS) technologies for the
detection of KMT2A-r, which also facilitates the identification
of numerous genomic alterations for risk classification of acute
leukemia (Shiba et al., 2019; Brown et al., 2020). However, the
cost of NGS is still very high for most laboratories worldwide, and
low-expression of KMT2A fusion transcripts provide limitations
for precise detection of these alterations using RNA sequencing
(RNA-Seq) in all KMT2A-r cases (Brown et al., 2020).

Recently, we have demonstrated that FISH fails to detect
KMT2A-USP2 fusions in most patients, leading to an
underestimation of its frequency in acute leukemia (Meyer
et al., 2019). Because this gene fusion derives from a short
inversion within 11q23, 5′ and 3′ KMT2A probe signals
usually do not split away from each other, mimicking a wild-
type (normal) FISH pattern. The alteration is only observed
whilst the inversion is accompanied by a 3′ KMT2A deletion.
The challenge to accurately identify KMT2A-r is not restricted to
FISH methodology. Several studies reveal a varying prevalence of
false-negative results associated with NG2 detection by flow
cytometry in patients with acute leukemia (Emerenciano et al.,
2011; Menendez and Bueno, 2011). Therefore, a screening
method that reduces the chances of false-negative results is
still relevant in the context of KMT2A-r diagnosis.

In addition, the standard treatment offered for patients with
KMT2A-r acute leukemia, which typically involves an intensive
chemotherapy as induction, followed by additional consolidation
therapy, has not yet significantly improved outcomes despite
many years of various international efforts. Therefore, the urgent
need for novel therapeutic strategies is unquestionable. Indeed,
many studies are currently addressing new therapeutic options.
MEK inhibitors have been pointed out as potential options for
KMT2A-r patients carrying RAS mutations (Mansur et al., 2017;
Kerstjens et al., 2018). The development of therapeutic strategies
to specifically inhibit the recurrent fusion proteins may also be an
opportunity, as previously reviewed (Steinhilber and Marschalek,
2018). Other promising options are based on the use of epigenetic
drugs, such as demethylating agents and histone deacetylase
inhibitors (Wong and So, 2020). Additionally, immunotherapy
and the inhibition of PARP (Fritz et al., 2021) have shown

potential to enhance the efficacy of other therapies and to
ultimately overcome KMT2A-r acute leukemia. While the
research timeline is running during the clinical testing of the
aforementioned therapies, drug repurposing could meet the
current need in a faster way (Tsakaneli and Williams, 2021).

In parallel, bioinformatics has been a branch of science which
uses different methods and techniques like molecular biology,
computer science, statistics, and artificial intelligence to design
algorithms for solving biological problems. For instance, artificial
intelligence encompasses a set of methodological approaches
(e.g., machine learning) and has already been applied to
understand cancer progression and to develop predictive
models of diagnosis, prognosis and response to treatment in
renal carcinoma and ovarian cancer (Jagga and Gupta, 2014; Xu
et al., 2016). In this approach, the system can learn from varied
data, predict and make decisions through classification and
regression algorithms. The information used by the prediction
model, whether molecular or genetic data, can be extracted, thus
allowing the identification of new genes as possible important
biomarkers for patient stratification and, consequently, for
inferring better therapeutic strategies. Thus, machine learning
approaches hold promise for a more robust and accurate
characterization of hematologic malignancies (Eckardt et al.,
2020). Furthermore, implementing machine learning methods
will help clinicians analyze and interpret data, and increase
objectivity, assisting clinical decision-making (Walter et al.,
2021). Therefore, both the search for a therapeutic strategy
and the search for a diagnostic biomarker can benefit from the
availability of bioinformatics tools and machine learning
approaches. Here, we evaluate the transcriptome of acute
leukemia cases to point out therapeutic options, and to
unravel appropriate markers for diagnostic routine prediction
of KMT2A-r by integrating machine learning and bioinformatics
approaches.

MATERIALS AND METHODS

Patient Cohorts
The acute leukemia patients included in this study were selected
based on known KMT2A status (KMT2A-r or KMT2A wild-type/
KMT2A-WT) and available gene expression data from six
different datasets (Supplementary Table S1). The
Therapeutically Applicable Research to Generate Effective
Treatments (TARGET) dataset (https://portal.gdc.cancer.gov/
projects; dbGAP accession number phs000218) is composed of
four different cohorts with pediatric patients diagnosed with 1)
B-cell precursor acute lymphoblastic leukemia (B-ALL), 2) T-cell
ALL (T-ALL), 3) acute myeloid leukemia (AML), and 4) acute
leukemia of ambiguous lineage (ALAL). The diagnosis of
KMT2A-r in TARGET dataset was obtained from the
respective clinical data available in the TARGET Data Matrix
(https://ocg.cancer.gov/programs/target/data-matrix; see the
Common Data Element (CDE) files for more details). This
identification was based on karyotype and FISH results for the
B-ALL samples, FISH with confirmation by RNA-Seq (Liu et al.,
2017) for the T-ALL cohort, RNA-Seq, Whole Genome
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Sequencing (WGS) and/or karyotype for the AML patients, and
karyotype for the ALAL cohort. The Beat AML programme
consists of a large dataset of AML pediatric and adult patients
(data viewer: http://www.vizome.org/aml/). As previously
described, the diagnosis of KMT2A-r in this cohort was
obtained by conventional karyotype and RNA-Seq. All clinical
data are found in the Supplementary Material of the original
paper (Tyner et al., 2018).

The data from The European Genome-phenome Archive
(EGA - https://ega-archive.org) study EGAS00001004212 (here
called ALL-Ekert dataset) are from pediatric patients diagnosed
with B-ALL and T-ALL. For this cohort, the KMT2A status was
retrieved from the original study, which used conventional
karyotype/FISH and RNA-Seq techniques (Brown et al., 2020).
We also included data from adult patients diagnosed with AML
deposited in the EGA database under the study accession number
EGAS00001003096 (here called AML-Griffioen dataset). The
identification of KMT2A-r was obtained by RNA-Seq analysis
and validated by RT-PCR. The results were also previously
published in the original paper (Arindrarto et al., 2021).

Another dataset evaluated in this work was composed of
pediatric and adult AML samples from The Cancer Genome
Atlas (TCGA) database (http://cancergenome.nih.gov/). To
identify the patients with KMT2A-r, we used annotation of the
structural variant from the “Acute Myeloid Leukemia” study in
cBioPortal database (https://www.cbioportal.org/), which was
based on RNA-Seq analysis (Gao et al., 2018). The last cohort
included B-ALL, T-ALL and ALAL samples from a dataset of
pediatric patients submitted to mRNA sequencing as part of the
diagnostic workup at the Robert Debré hospital (Assistance
Publique des Hôpitaux de Paris, AP-HP) in France (here
called French dataset). The KMT2A status classification was
based on both conventional cytogenetics and RNA-seq data.

Gene Expression Data
All gene expression data were obtained from paired-end RNA-
Seq methodology (Supplementary Table S1). For TARGET
cohorts, we downloaded data corresponding to read counts
(not normalized), when available, and FPKM (Fragments Per
Kilobase Million) values of each gene annotated in the human
reference genome GRCh37/hg19 (Ensembl release 59, Refseq and
UCSC knownGene) from open-access files of these patients. The
description of RNA-Seq data processing is available at the
TARGET project portal (https://ocg.cancer.gov/programs/
target/target-methods). In the case of ALAL samples, we used
the read counts to calculate FPKM values using the Bioconductor
R package “edgeR” version 3.30.3 (Robinson et al., 2010;
McCarthy et al., 2012). For the Beat AML dataset, we
downloaded gene expression log2 normalized FPKM values for
each sample from the Supplementary Table S8 in the original
paper (Tyner et al., 2018). We converted the log2 FPKM values to
normal FPKM values by raising 2 to the power of the logarithmic
values so that they would be correctly used in further analysis.
Gene assignments were also based on the human reference
genome GRCh37 (Ensembl release 75). For more details on
processing steps, please see the methods section in the
reference (Tyner et al., 2018). The gene expression data of the

TCGA dataset were downloaded using the Bioconductor R
package “TCGAbiolinks” version 2.16.4 (Colaprico et al.,
2016). Through the GDCquery function, we used the
following parameters to obtain the FPKM values of data
aligned to the human reference genome GRCh38 (UCSC
knownGene) (Gao et al., 2019): project = “TCGA-LAML,”
data.category = “Transcriptome Profiling,” data.type = “Gene
expression Quantification,” workflow.type = “HTSeq - FPKM,”
legacy = False.

The fastq files from ALL-Ekert and AML-Griffioen datasets
were downloaded via the EGA download client, pyEGA3 (https://
github.com/EGA-archive/ega-download-client), after gaining
access permission to EGA studies EGAS00001004212 and
EGAS00001003096, respectively. The reads were trimmed
using the software Trimmomatic version 0.39 (Bolger et al.,
2014) and then were mapped to the human reference genome
GRCh37 (Ensembl release 82) using STAR algorithm version 2.6.
0c (Dobin et al., 2013). The RSEM software package version 1.3.0
(Li and Dewey, 2011) was used to estimate read counts and FPKM
values of each gene annotated.

The sequencing and gene expression data generation of all
samples included in the French dataset were performed by
IntegraGen. Libraries were prepared with the NEBNextUltra II
Directional RNA Library Prep Kit for Illumina protocol,
according to supplier recommendations, and sequencing was
carried out on Illumina NovaSeq (paired-end 100 bp reads).
The STAR alignment algorithm (Dobin et al., 2013) was used
to obtain the number of reads associated to each gene in the
human reference genome GRCh37 by the Gencode release 31
annotation (restricted to protein-coding genes, antisense and
long intervening noncoding RNAs). Raw counts for each
sample were imported into R statistical software. Extracted
count matrix was normalized for library size and coding
length of genes to compute FPKM expression levels.

We also included RNA-seq data from human acute leukemia
cell lines for validation analysis. The gene expression data, cell
lines annotations and KMT2A fusion information were retrieved
from the Cancer Cell Line Encyclopedia (CCLE) database
(https://sites.broadinstitute.org/ccle/) at the Dependency Map
(DepMap) portal (https://depmap.org/portal/download/; CCLE
2019 release). RNA-seq profiling was performed as previously
described (Ghandi et al., 2019), and reads were aligned to the
GRCh37 human genome reference. The gene expression was
quantified in the TPM (Transcripts Per Million) unit.

Machine Learning Analysis
The workflow used in this step is described in Supplementary
Figure S1. For the identification of predictive markers of
KMT2A-r using machine learning approaches, we obtained a
unique gene expression data with the FPKM normalized values of
14,287 genes. Ensembl IDs were converted to gene IDs using the
Bioconductor R package “biomaRt” version 2.44.4 (Durinck et al.,
2005; Durinck et al., 2009), and duplicate genes were removed.
We also added a batch effect correction step in order to remove
the variability from the different datasets using the
removeBatchEffect function of the Bioconductor R package
“limma” version 3.44.3 (Ritchie et al., 2015). Then, the
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continuous variables were standardized using z-score. Variables
with a correlation greater than 0.90 or low variance (zero or near
zero) were excluded. Then, a wrapper feature selection step was
performed to reduce the dimensionality of this dataset using
BorutaPy version 0.3 (Kursa and Rudnicki, 2010). The acute
leukemia subtype and age group information—pediatric
(<22 years-old), younger adults (≥22 years-old and <60 years-
old), and older adults (≥60 years-old)—were also evaluated for
the construction of the model. Variables with more than two
categories were represented by a set of dummy variables, with one
variable for each category. The Random Forest and LightGBM
models were trained with 70% of the data (training set), and
tested in the remaining 30% (testing set). The 30-folds cross
validation was used to adjust hyperparameters with the
GridSearchCV function. Due to class imbalance, we resampled
our training dataset using the SMOTEENN method, which is an
interesting technique that combines both undersampling [using
Edited Nearest Neighbor (ENN)] and oversampling (SMOTE).

Afterwards, accuracy, sensitivity, specificity, positive
predictive value (PPV) and negative predictive value (NPV)
were analyzed to assess the performance of our model. The
combination of these parameters with the value of the area
under the receiver operating characteristic (ROC) curve
(AUC) was used to select the best model. Besides that, we
calculated the Shapley values of each feature according to the
predictive model to understand their respective contributions
using SHAP (SHapley Additive exPlanations) version 0.36.0
(Lundberg et al., 2017). All previous analyzes were performed
using the Python programming language with the scikit-learn
library (Pedregosa et al., 2011). Heatmaps were constructed with
the CRAN R package “pheatmap” version 1.0.12 (Kolde, 2019)
using log2 (FPKM + 1) values, z-scaled across samples. Genes
(rows) were clustered using Pearson correlation, and samples
(columns) were clustered using Euclidean distance. This step was
performed in the R statistical environment version 4.0.5.

Pathway Enrichment Analysis
The gene list obtained from machine learning step was evaluated
for known functional processes by the Kyoto Encyclopedia of
Genes and Genomes (KEGG) database using the over-
representation analysis (ORA) methodology in the WEB-based
GEne SeT AnaLysis Toolkit (Liao et al., 2019). We used genome
protein-coding as a reference Set. p values were controlled for
false discovery rate (FDR) using the Benjamini–Hochberg
method, and we considered FDR ≤ 0.05 as significant results.

Selection of Candidate Drugs for KMT2A-r
The half-maximal inhibitory concentration (IC50) z-score values
of the drugs with data available in the Genomics of Drug
Sensitivity in Cancer (GDSC) repository (Yang et al., 2013)
were downloaded for acute leukemia cell lines from GDSC1
dataset (https://www.cancerrxgene.org/downloads/bulk_
download). We also downloaded IC50 values of some small-
molecule inhibitors from the Supplementary Table S8 of Beat
AML dataset (Tyner et al., 2018). The data were obtained from ex
vivo functional drug screening analyses using freshly isolated
mononuclear cells from AML samples.

To search for drug-gene interactions, for which KMT2A-r cell
lines demonstrated sensitivity was used as an input in the web
resource Drug-Gene Interaction database (DGIdb; https://www.
dgidb.org/search_interactions) (Freshour et al., 2021). The results
generated by this tool were downloaded as a tab-separated values
(TSV) file.

Statistical Analysis
The ROC curves and AUC values were generated by the CRAN R
package “pROC” version 1.17.0.1 (Robin et al., 2011). Association
analyses were represented by box plots using the CRAN R
package “ggplot2” version 3.3.3 (Wickham, 2016). Expression
and IC50 data were compared between two or more groups with
the unpaired two-samples Wilcoxon test and the Kruskal-Wallis
test, respectively. p-values < 0.05 were considered statistically
significant. All analyses presented in this study, with exception of
the machine learning step, were performed in the R statistical
environment version 4.0.5.

RESULTS

Dataset Description
A total of 1,659 acute leukemia samples were evaluated in this
study, consisting of 899 AML, 415 B-ALL, 273 T-ALL and 72
ALAL from six different datasets. These samples were mostly
obtained at the time of diagnosis (90.3%) and refer to pediatric
patients (61.4%) (Table 1). The frequency of cytogenetic/
molecular alterations in each acute leukemia subtype is shown
in Supplementary Figure S2. We included 121 KMT2A-r cases
(7.3%) and classified the other molecular subgroups as KMT2A-
WT (n = 1,538; 92.7%). As expected, KMT2A-r were more
frequently in the pediatric age group, and less frequently in
the older adults, when compared to KMT2A-WT (76.0% vs.
60.3%, and 5.0% vs. 20.4%, respectively; p = 0.0001).

A Machine Learning Model for KMT2A-r
Prediction
For the algorithm development, we selected the data from four of
the six datasets: TARGET, Beat AML, ALL-Ekert, and AML-
Griffioen. We used gene expression data of 14,287 genes from
1,332 acute leukemia samples, including 100 KMT2A-r and
1,232 KMT2A-WT cases. First, we performed a feature
selection analysis to reduce the dimensionality of the dataset.
As a result, 247 genes were selected due to their potential to
predict KMT2A-r (Supplementary File S1), such as CSPG4,
MLLT10, MEIS1 and several genes of HOX family (HOXA3,
HOXA4, HOXA5, HOXA6, HOXA7, HOXA9 and HOXA10).
Among them, 176 genes had increased expression in KMT2A-
r acute leukemias (Supplementary Figure S3A). The enrichment
analysis revealed a significant association of 13 genes (ETV1,
FCGR1A, HOXA10 HOXA9, MEF2C, MEIS1, PBX3, PROM1,
RUNX2, SMAD1, SPINT1, SUPT3H and ZEB1) with the
“Transcriptional misregulation in cancer” pathway (FDR <
0.001; Supplementary Figure S3B). It is noteworthy that,
based on KEGG Gene Set (hsa05202), HOXA9, HOXA10 and
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TABLE 1 | Cohort characterization.

Variables Overall Acute leukemias KMT2A status

B-ALL T-ALL AML ALAL KMT2A-r KMT2A-WT p-valuea

Age groupb 0.0001
Pediatric 1019 (61.4) 414 (99.8) 270 (98.9) 263 (29.3) 72 (100.0) 92 (76.0) 927 (60.3)
Younger adult 321 (19.3) 1 (0.2) 3 (1.1) 317 (35.3) 0 (0.0) 23 (19.0) 298 (19.4)
Older adult 319 (19.2) 0 (0.0) 0 (0.0) 319 (35.5) 0 (0.0) 6 (5.0) 313 (20.4)

Sex 0.1388
Female 696 (42.0) 190 (45.8) 78 (28.6) 399 (44.4) 29 (40.3) 59 (48.8) 637 (41.4)
Male 963 (58.0) 225 (54.2) 195 (71.4) 500 (55.6) 43 (59.7) 62 (51.2) 901 (58.6)

Sample type —

Diagnosis 1498 (90.3) 395 (95.2) 271 (99.3) 760 (84.5) 72 (100.0) 118 (97.5) 1380 (89.7)
Refractory 93 (5.6) 0 (0.0) 0 (0.0) 93 (10.3) 0 (0.0) 1 (0.8) 92 (6.0)
Relapse 45 (2.7) 20 (4.8) 2 (0.7) 23 (2.6) 0 (0.0) 2 (1.7) 43 (2.8)
Remission 18 (1.1) 0 (0.0) 0 (0.0) 18 (2.0) 0 (0.0) 0 (0.0) 18 (1.2)
Unknown 5 (0.3) 0 (0.0) 0 (0.0) 5 (0.6) 0 (0.0) 0 (0.0) 5 (0.3)

KMT2A status —

KMT2A-r 121 (7.3) 22 (5.3) 14 (5.1) 77 (8.6) 8 (11.1) — —

KMT2A-WT 1538 (92.7) 393 (94.7) 259 (94.9) 822 (91.4) 64 (88.9) — —

Total 1659 (100.0) 415 (100.0) 273 (100.0) 899 (100.0) 72 (100.0) 121 (100.0) 1538 (100.0)

aPearson’s Chi-squared test.
bPediatric (<22 years); Adult—younger adults (≥22 years and <60 years) and older adults (≥60 years).
bold value, p < 0.05.

FIGURE 1 | Machine learning performance. (A) ROC curve of the selected machine learning model with 247 genes, and the confusion matrix with performance
measures of testing data. The darker the quadrant color, the greater the number of patients. Respective performance measures are below the matrix. (B) Feature
contributions according to the shapley values. On the x-axis, positive and negative values are correlated with prediction of KMT2A-r and KMT2A-WT, respectively. Each
dot represents one patient, colored according to the feature value (red fading to blue means high to low values).
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MEIS1 have association with differentiation resistance in
KMT2A-MLLT1 (or MLL-ENL) T-ALL, while this same
biological process has the involvement of PBX3, RUNX2,
SMAD1, MEF2C, HOXA9 and HOXA10 in KMT2A-AFF1 (or
MLL-AF4) B-ALL. The SUPT3H gene is a chromatin regulator
and PROM1 is a signaling mediator, both are also associated with
KMT2A-AFF1 (or MLL-AF4) in B-ALL.

With a final dataset composed by 247 genes and 1,332 samples,
we randomly split our cohort into 70% training (932 samples,
79 KMT2A-r and 853 KMT2A-WT) and 30% testing (400
samples, 21 KMT2A-r and 379 KMT2A-WT) data subsets
(Supplementary Tables S2, S3). First, we used the Random
Forest and LightGBM algorithms to build a better model
based on the 247 selected features and some well-known
features associated with KMT2A-r, such as age group and
acute leukemia subtypes. After the KMT2A-r prediction in the
testing dataset, we compared the performance measures of each
model. In general, we had similar performances between the
different models (Supplementary Table S4a). However, we chose
the model built with the LightGBM algorithm and 247 genes
without clinical variables due to the best combination of AUC,

accuracy, sensitivity and specificity (0.988, 0.973, 0.905, 0.976,
respectively). In other words, given the testing dataset, our model
was able to predict 19 of 21 KMT2A-r patients and 370 of
379 KMT2A-WT patients (Figure 1A). In order to reduce the
gene set list, we selected the top 20 genes with the greatest
contributions to the prediction of KMT2A-r in the LightGBM
algorithm model, as indicated by the Shapley values (Figure 1B).
Most genes are upregulated in KMT2A-r patients in comparison
to KMT2A-WT patients (Supplementary Figure S3C). In
contrast, CPA6, NEDD4, ZNF254 and MYO5C had reduced
expression in KMT2A-r cases. We also validated the
expression of these genes in human acute leukemia cell lines
with and without KMT2A-r. Our results showed the same
expression profile observed in acute leukemia patients, given
the clusterization of KMT2A-r cell lines (exception of RS4;
11 B-ALL cell line) (Supplementary Figure S4). Together,
these data suggest that our model selected a set of genes
highly correlated with KMT2A-r.

With training and testing data subsets now composed of 20
genes, we used LightGBM algorithms again to build four
additional different models also based on selected features

FIGURE 2 | Testing and validation of potential KMT2A-r predictors. (A) ROC curve and confusion matrix of the test cohort for the machine learning model with top
20 genes. The darker the quadrant color, the greater the number of patients. The machine learning performance measures are beside the matrix. (B) Feature
contributions of each gene included in this model according to the shapley values. On the x-axis, positive and negative values are correlated with prediction of KMT2A-r
and KMT2A-WT, respectively. Each dot represents one patient, colored according to the feature value (red fading to blue means high to low values). (C) The
performance measures of our model in an independent cohort (TCGA dataset including AML patients), represented by the confusion matrix, and a (D) heatmap
illustrating the expression of 11 KMT2A-r predictor genes as indicated by the machine learning analysis. The clusterization was performed in the French dataset with ALL
patients.
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and clinical variables associated with KMT2A-r. The
performance measures of these models can be accessed in
Supplementary Table S4b. We chose the model trained and
tested with the 20 genes and acute leukemia subtype variables as
our final prediction model for KMT2A-r, with AUC of 0.984,
accuracy of 0.970, sensitivity of 0.905, and specificity of 0.974
(Figure 2A). It is noteworthy that, even with a significant
reduction of features, our final model was able to predict the
KMT2A-r cases with a good performance (19 of 21 KMT2A-r
and 369 of 379 KMT2A-WT cases). We observed some feature
modifications in Shapley values (Figure 2B), however, the two
most relevant genes to the model (SKIDA1 and LAMP5) did not
change.

To validate our KMT2A-r prediction model, we evaluated its
performance in an independent subset. The TCGA cohort
included 151 AML patients classified according to KMT2A
status: KMT2A-WT (n = 143) and KMT2A-r (n = 8). The
KMT2A partner genes in these patients were: MLLT10 (n = 1),
ELL (n = 3), MLLT3/AF9 (n = 2), and MLLT4 (n = 2). With a
whole new set of data, our model was able to correctly predict six
of eight KMT2A-r samples and 141 of 143 KMT2A-WT cases.
Therefore, we created a good predictor for KMT2A-r samples
(AUC = 0.868), with higher accuracy, sensitivity, and specificity
(0.974, 0.750, and 0.986, respectively; Figure 2C).

We also analyzed one French dataset, which included 176
pediatric patients with acute leukemia (173 B-ALL, 2 T-ALL, and
1 ALAL), consisting of 163 KMT2A-WT and 13 KMT2A-r. Of
notice, KMT2A in-frame fusions were associated with USP2 (n =
3),MLLT10 (n = 3),MLLT3/AF9 (n = 3), AFF1/AF4 (n = 1), and
CBL (n = 1). Two patients had out-of-frame fusions withMGMT
(n = 1) or within the 7q22.3 region (n = 1). Therefore, we
evaluated whether the other genes (11 of 20 genes) would still
be able to clusterKMT2A-r patients. As expected, the two samples
with out-of-frame did not present a similar expression profile of
the other KMT2A fusions, as well as one sample with KMT2A-
USP2, which had higher expression of NEDD4 and lower
expression of SKIDA1, HOXA9 and MEIS1 (Figure 2D). On
the other hand, we demonstrated that our panel of genes is highly
associated with the KMT2A-r phenotype. The information
regarding false negative and false positive groups were also
described (Supplementary Table S5). We observed that
KMT2A-r cases wrongly predicted by our model consist of
rare fusions, which were under or not represented in the
training dataset.

Biomarkers for Prediction of KMT2A-r in
Acute Leukemia
In order to find an optimal biomarker for KMT2A-r
identification, we next evaluated the two most important genes
ranked by the selected machine learning model (SKIDA1 and
LAMP5; Figures 1B, 2B) in comparison with the CSPG4 gene,
which encodes NG2. We evaluated their expression by
cytogenetic/molecular subgroups of AML, B-ALL, T-ALL, and
ALAL (Supplementary Figure S5). Although all genes presented
variable expression in individual subgroups of acute leukemia,
SKIDA1 had pronounced expression in KMT2A-r compared to

the remaining subgroups in all acute leukemia subtypes. SKIDA1
was significantly overexpressed in all molecular subgroups, except
for only two subgroups of AML (DEK-NUP214, and other
alterations). LAMP5 expression was also not different in DEK-
NUP214 and complex karyotype samples when compared to
KMT2A-r in AML, as well as hypodiploid cases in B-ALL.
Besides that, LAMP5 does not appear to be a good biomarker
for KMT2A-r in T-ALL. Similarly, CSPG4 expression was
comparable between KMT2A-r and all other subgroups of
T-ALL. On the other hand, SKIDA1 had the highest
expression in KMT2A-r as compared to all remaining
subgroups of T-ALL (p < 0.01).

To evaluate the performance of these genes on KMT2A-r
classification, we plotted ROC curves and calculated their
respective AUC values among acute leukemia subtypes
(Figure 3A). In general, SKIDA1 (AUC: 0.839; CI:
0.799–0.879) and LAMP5 (AUC: 0.746; CI: 0.685–0.806)
performed better than CSPG4 (AUC: 0.722; CI: 0.659–0.784).
Considering each subtype of leukemia, the most divergent
performance was observed in T-ALL, in which SKIDA1 had
the best estimates (AUC: 0.991; CI: 0.981–1.000), followed by
LAMP5 (AUC: 0.716; CI: 0.570–0.861), and CSPG4 (AUC: 0.558;
CI: 0.418–0.698). The most similar results were associated with
ALAL, in which those three genes provided optimal estimates of
KMT2A-r. Next, we obtained the best thresholds indicated by
ROC curves for SKIDA1, LAMP5 and CSPG4 in acute leukemia
(1.928, 2.874, and 0.401, respectively), AML (2.303, 6.002, and
1.371, respectively), and B-ALL (0.227, 5.846, and 0.305,
respectively) to validate the predictive power of these genes as
biomarkers in the TCGA (151 AML patients) and the French
(173 B-ALL patients) cohorts. These results were demonstrated
through confusion matrices (Supplementary Figure S6) and
performance metrics (Supplementary Table S6). Overall, the
expression of either SKIDA1 or LAMP5 was more accurate for
estimating KMT2A-r as compared with CSPG4 expression. In our
validation analyses, SKIDA1 was associated with a higher
sensitivity (0.875 vs. CSPG4 = 0.625) and specificity (0.734 vs.
CSPG4 = 0.573) in AML, while LAMP5 had greater performance
in B-ALL (sensitivity = 0.833 vs. CSPG4 = 0.417; specificity =
0.820 vs. CSPG4 = 0.870) if the overall acute leukemia threshold
was used. Similar results were also demonstrated when thresholds
for the respective acute leukemia subtype (AML or B-ALL) were
used. It is important to highlight that the validation cohort
contains three B-ALL patients with KMT2A-USP2. Of note,
LAMP5 was extremely overexpressed in these patients (the
median FPKM was 122.13, 0.15, 33.25, for KMT2A-USP2,
KMT2A-WT, and other molecular subgroups, respectively),
thus allowing the prediction of this gene fusion in all cases.
On the other hand, CSPG4 failed to predict it in one of these cases,
and SKIDA1 was not able to predict this rearrangement in all
cases either.

Because KMT2A is a promiscuous gene and the distribution of
fusion partners varies according to leukemia subtypes, we
hypothesized that SKIDA1 and LAMP5 expression could be
associated with specific gene rearrangements (Supplementary
Table S7). The expression of SKIDA1, LAMP5, and CSPG4 varied
according to each KMT2A-r, but the latter had the most
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remarkable variation levels (p = 0.00002). Notably, CSPG4
expression was lower in KMT2A fusions with ELL, MLLT1,
MLLT4, and SEPT6. Conversely, SKIDA1 had the lowest
expression variation across KMT2A fusions (Figure 3B).

Therapeutic Options for KMT2A-r Acute
Leukemia
Since KMT2A-r are often associated with chemo-refractory acute
leukemia, several studies aimed to search for new possibilities of

FIGURE 3 | Relationship between SKIDA1, LAMP5, and CSPG4 expression and KMT2A-r in acute leukemia. (A) ROC curves and AUC values of each gene
transcript according to acute leukemia subtypes. (B) Transcript expression among varied KMT2A fusions.

FIGURE 4 | Identification of therapeutic drugs for KMT2A-r leukemia. (A) Comparison of the IC50 data, available in the GDSC database, to several drugs between
KMT2A-WT and KMT2A-r leukemia cell lines. The KG-1 (red point) is a human AML cell line, with a variant, KG-1a, known to be resistant to chemotherapy. Comparison
of the sensitivity to foretinib between (B) AML molecular subgroups and KMT2A-r, as well as (C) FLT3 wild-type (red boxplot) and FLT3 mutated (yellow boxplot). (D)
Transcript expression compared between KMT2A-WT and KMT2A-r in acute leukemia samples included in this study.
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either new targets or drugs for the treatment of this leukemia
subtype. Here, we evaluated drug screening for 33 acute leukemia
cell lines (20 AML and 13 ALL) using the IC50s of 345 drugs
available in the GDSC database (Supplementary Table S8). After
comparing KMT2A-r (n = 6) with KMT2A-WT (n = 27), we
observed that KMT2A-r cell lines were more sensitive to 5-
Fluorouracil (5FU) and Gemcitabine (both antimetabolite
chemotherapy drugs; p = 0.01 and p = 0.04, respectively),
WHI-P97 (JAK-3 inhibitor; p = 0.03), Foretinib (MET/VEGFR
inhibitor; p = 0.01), SNX-2112 (Hsp90 inhibitor; p = 0.02),
AZD6482 (PI3Kβ inhibitor; p = 0.04), KU-60019 (ATM kinase
inhibitor; p = 0.04), and Pevonedistat (NEDD8-activating enzyme
(NAE) inhibitor; p = 0.03). On the other hand,KMT2A-r cell lines
were more resistant to the γ-Secretase inhibitor, Avagacestat (p =
0.005) (Figure 4A). Due to availability of data from analyses of
ex-vivo drug sensitivity to a variety of some small-molecule
inhibitors, including Foretinib (Tyner et al., 2018), we also
evaluated the IC50 values for this drug in AML samples of the
Beat AML cohort (nine of 13 KMT2A-r and 247 of 390 KMT2A-
WT). We did not observe significant differences between
KMT2A-r and other molecular subgroups (Figure 4B).
Interestingly, Foretinib is an ATP-competitive inhibitor of
tyrosine kinases, and both acute leukemia cell lines with the
lowest IC50 values to this drug carried FLT3 activating mutations
(MONO-MAC-6, p.V592A; MOLM-13, ITD). When we
evaluated the IC50 values in the Beat AML data, we observed
that samples with FLT3 activating mutations were significantly
more sensitive compared with FLT3-WT samples (Figure 4C).

In order to identify other potential drug-gene interactions, we
uploaded a list with these eight drugs, whose KMT2A-r cell lines
demonstrated sensitivity, in the DGIdb database. As result, 127
potential targets were found for three drugs (Fluorouracil,
Foretinib, Pevonedistat) (Supplementary Table S9). Next, we
evaluated if these targets were upregulated in KMT2A-r acute
leukemia samples. We found ALDH3A1, PIK3R2, and TYMP
expression levels increased in KMT2A-r samples when compared
with KMT2A-WT (Figure 4D).

DISCUSSION

The identification of KMT2A-r at the molecular level is
challenging, considering the high number of gene fusions
attributed to this group of alterations (Meyer et al., 2018;
Meyer et al., 2019). Back in 1996, Bernstein’s group produced a
monoclonal antibody (named 7.1) that recognises the CSPG4/
NG2, which is a chondroitin sulfate proteoglycan molecule
(Smith et al., 1996). The CSPG4 antigen expression was
associated with AML-M5 and 11q23 rearrangements, where
KMT2A is located. Immunophenotyping of leukemia cells
using the 7.1 antibody provided the possibility to estimate
the occurrence of KMT2A-r. Further studies have confirmed
the association between CSPG4 expression and KMT2A-r in
acute leukemia (Wuchter et al., 2000; Schwartz et al., 2003).
However, controversies were raised regarding the accuracy of
prediction among different centers, age groups, and leukemia
subtypes (Emerenciano et al., 2011; Menendez and Bueno,

2011). Here, we have performed machine-learning analyses to
provide novel accurate markers for prediction of KMT2A-r in
several types of acute leukemia, including AML, B-ALL,
T-ALL, and ALAL.

Despite the variable frequency of KMT2A-r between each group
of acute leukemia, the high number of gene fusions and dismal
outcome of these patients instigated us to develop novel tools for the
diagnosis of this disease (Winters and Bernt, 2017; Meyer et al.,
2018). The unique gene expression profile observed in KMT2A-r
points out one way for discriminating this genetic subtype from
other alterations in ALL and AML (Armstrong et al., 2002). Thus,
although CSPG4 expression has been widely used for the prediction
of KMT2A-r so far, machine learning analyses using transcriptomic
data currently allow us to agnostically identify novel markers
associated with most acute leukemia cases with KMT2A-r. To our
knowledge, this is the first study to investigate the application of
machine learning for the prediction of KMT2A-r in acute leukemia.
To construct our predictive algorithm, we used RNA-seq data as
input, a single approach that can identify many alterations (e.g.,
fusion transcripts) and provide gene expression profiles. Although it
is important to implement this technology for additional clinical
benefits (Brown et al., 2020), it is still not used in clinical diagnostics
for acute leukemia in many countries, and more accessible methods
should be provided to benefit every patient with acute leukemia.

Here, we revealed 20 gene transcripts that, in combination, were
able to predict KMT2A-r in acute leukemia. The two most
important genes were SKIDA1 and LAMP5. The SKIDA1 gene
(also named DLN1/C10orf140) is located at 10p12.31, in very close
proximity toMLLT10 (downstream) and ~340 kb upstreamNEBL.
Both genes have already been found as partners of KMT2A fusions
(Emerenciano et al., 2013; Meyer et al., 2018). Considering that
previous studies have reported an increased expression of genes in
the vicinity ofMLLT10 associated with KMT2A-MLLT10, but not
other fusion partners in T-ALL (Dik et al., 2005; Kang et al., 2018),
we also analyzed its expression among each KMT2A fusion
included in this study. However, we observed that SKIDA1
overexpression was not restricted to KMT2A-MLLT10 positive
patients. Because most of our patients were diagnosed with AML
(13 out of 14 cases), we speculate that 10p12.2 rearrangements may
disturb the expression of other genes within this region or this
association could be restricted to T-ALL. Additionally, a recent
murine study revealed that Skida1 might cooperate to sustain
hematopoietic stem cells and hematopoietic committed
progenitor cells presenting KMT2A fusion (Mendoza-Castrejon
et al., 2021). The LAMP5 gene is a member of the lysosomal
associated membrane protein family, and it is located at the
cytogenetic band 20p12.2. LAMP5 is a direct target of the
KMT2A fusion protein, which might activate it transcriptionally
(Gracia-Maldonado et al., 2021). As a consequence, several studies
identified LAMP5 overexpression in KMT2A-r leukemia (Ross
et al., 2004; Valk et al., 2004; Zangrando et al., 2009; Stam
et al., 2010; Wang et al., 2019). While SKIDA1 protein localizes
within the nucleus and cytosol, LAMP5 is associated with
endosomes, lysosomes, and the plasma membrane.

The SKIDA1 was the best predictor of KMT2A-r across all
subtypes of acute leukemia, especially in B-ALL and T-ALL.
Although extensive efforts have been made to evaluate the
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value of CSPG4 for the prediction ofKMT2A-r, most studies were
restricted to B-ALL and AML. Moreover, the sensitivity and
specificity associated with CSPG4 expression in KMT2A-r acute
leukemias is controversial, andmany patients harboringKMT2A-
r lack its expression (Menendez and Bueno, 2011). Additionally,
previous studies have shown that CSPG4 expression is correlated
with the degree of maturation arrest in AML (Mauvieux et al.,
1999), and higher among patients with AML-M5 (Petrovici et al.,
2010). In this context, CSPG4 expression evidences KMT2A-r in
the monoblastic population of AML, but fails to indicate this
alteration especially for AML-M1 and -M2 (Mauvieux et al.,
1999). As discussed, the leukemia phenotype may play a role in
dictating CSPG4 expression, and the vast number of fusion
transcripts associated with KMT2A-r could impact its
expression levels. While SKIDA1 was broadly overexpressed
regardless of KMT2A fusion, high levels of CSPG4 were quite
restricted to KMT2A-AFF1, KMT2A-MLLT10, KMT2A-MLLT3,
and KMT2A-MLLT6. Although Wuchter and collaborators have
found no clear correlation between CSPG4 levels by
immunophenotyping and KMT2A partners (Wuchter et al.,
2000), diverse studies indicate its use in specific types of
KMT2A fusions. For instance, the 7.1 antibody distinguished
patients with t(4;11) or t(11;19) in childhood ALL (Behm et al.,
1996), and another study revealed a lack of expression among t(10;
11) and t(11;17) in AML (Hilden et al., 1997). Despite discordances
regarding the relationship between CSPG4 expression and KMT2A
fusions, differences in 7.1 reactivity in KMT2A-r ALL and AML
supports the importance of the identification of alternative markers
for prediction ofKMT2A-r.We highlight that SKIDA1 is one of the
promising markers, which has consistent overexpression among
several types of acute leukemia, and no evidence of biased
expression toward one KMT2A fusion partner.

Screening methods for the identification of KMT2A-r are
expected to be sensitive to detect all or most cases with this
genetic alteration. This fact is even more important for rare
KMT2A fusions, which are generally not evaluated at routine
diagnostics by RT-PCR. Although FISH is one appropriate
approach for detecting KMT2A-r in this population, recently
we have demonstrated that several patients with KMT2A fusions
within its minor breakpoint cluster region appear to be normal at
FISH inspection using break apart probes (Meyer et al., 2019). For
instance, KMT2A-USP2 fusions are derived from an inversion
within 11q23, and FISH is able to indicate KMT2A-r only for
those cases accompanied by 3′KMT2A deletion. In this work, we
observed that CSPG4 expression was unable to predict all
KMT2A-USP2 fusions in B-ALL. Conversely, LAMP5
expression was capable of estimating all of these fusions.
Considering the accuracy of those markers for estimating
common and rare KMT2A-r within our cohorts, we consider
SKIDA1 and LAMP5 expression good predictors of KMT2A-r.
SKIDA1 expression may predict those rearrangements in most
subtypes of acute leukemia, while LAMP5 presents good
performance to point out KMT2A-r in B-ALL and ALAL,
including the KMT2A-USP2 fusion. A recent study showed
specific expression of LAMP5 on the cell surface of several
KMT2A-r cell lines using flow cytometry, and demonstrated
that its inhibition reduced cell viability (Gracia-Maldonado

et al., 2021). Thus, LAMP5 may serve as both a marker and
treatment target in KMT2A-r leukemia.

Over the last decades, a great effort has also been made by the
scientific community in the identification of novel effective
therapeutic approaches for KMT2A-r acute leukemias due to
its association with poor response to standard chemotherapy.
With this in mind, we combined IC50 data from several acute
leukemia cell lines, drug-gene interaction information, besides
transcriptomic analysis to search for new possibilities of targets
for the treatment of KMT2A-r leukemia. Our results pointed, at
first, to the foretinib (GSK1363089) as a new potential
therapeutic agent for this leukemia subtype. Foretinib is an
oral multikinase inhibitor targeting MET, RON, AXL, VEGFR,
c-KIT, FLT3, and PDGFR signaling pathways. Based on that, we
verified that patient’s cells harboring FLT3 mutations, a
frequent secondary event in KMT2A-r leukemia, showed
higher sensitivity to Foretinib, suggesting that this drug
might turn into a therapeutic option for these subgroups.
Foretinib has already been used in several cancer treatment
trials, including Hepatocellular Carcinoma (NCT00920192),
Breast Cancer (NCT01147484, NCT01138384), Non-Small-
Cell Lung Cancer (NCT02034097, NCT01068587), Solid
Tumours (NCT00742131, NCT00742261, NCT00743067),
Head and Neck (NCT00725764), Papillary Renal Cell
Carcinoma (NCT00726323), and Gastric Carcinoma
(NCT00725712). In leukemia, this drug induces mitotic
catastrophe in chronic myelogenous leukemia (CML) cells
via JNK-dependent inhibition of Plk1 expression and triggers
apoptosis by a caspase 2-mediated mechanism (Dufies et al.,
2011). In addition, Schneider and collaborators observed that
RAS-mutant KMT2A-r ALL cells treated with DNA
methyltransferase inhibitor decitabine in combination with
the MEK inhibitor pimasertib strongly decreased cell viability
compared to either drug alone. Besides, the combination of
foretinib and decitabine also decreased cell viability and
indicated moderate synergy in cell lines (Schneider et al.,
2020). Although foretinib was not evaluated, Kampen and
collaborators had already shown that together both MEK and
VEGFR-2 inhibition can induce cell death in a subset of
KMT2A-r AML primary samples (Kampen et al., 2014). We
also demonstrated that KMT2A-r acute leukemia patients
overexpress three genes (ALDH3A1, PIK3R2, and TYMP)
with interaction annotation to 5-Fluorouracil. The
upregulation of thymidine phosphorylase (TYMP) is
commonly associated with 5-fluorouracil resistance (Watson
et al., 2010; Peri et al., 2021). However, the TPI, a TYMP
inhibitor approved by the US FDA, was associated with a
better overall survival of refractory colorectal cancer patients
(Mayer et al., 2015). It is important to highlight that ALDH3A1
was also listed among the 247 genes selected for the machine
learning model and has already been shown that its selective
inhibition by other compounds could increase chemosensitivity
in highly ALDH3A1-expressing tumors (Parajuli et al., 2014;
Okazaki et al., 2018). PIK3R2 is responsible for coding the
subunit beta regulatory component of PI3K and could also
be a potential target for the AZD6482 drug, a PI3Kβ
inhibitor (Xu et al., 2019; Yang et al., 2019).
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In this study, we observed that our algorithm delivered highly
accurate predictions for KMT2A-r acute leukemias. Therefore, we
were able to point out biomarkers (e.g., SKIDA1 and LAMP5) to
predict KMT2A-r regardless of acute leukemia subtypes. Further
studies are needed in order to validate these markers and to
translate their application into the routine diagnostics of acute
leukemia, such as comparing its predictive value compared to
CSPG4/NG2 by immunophenotyping. As a highlight, LAMP5
expression was able to predict even the rare gene fusion KMT2A-
USP2, which is often missed by routine methods, and that gene
product also appears to be a potential treatment target inKMT2A-r
leukemia. At last, our analysis suggested Foretinib as one
therapeutic option for patients with KMT2A-r, especially those
with AML and carrying FLT3 activatingmutations. Further clinical
studies should now explore the application of this drug for the
treatment of KMT2A-r acute leukemia.
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