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A B S T R A C T   

In this study, 56 effluent samples from 52 European wastewater treatment plants (WWTPs) were investigated for 
the occurrence of 499 emerging chemicals (ECs) and their associated potential risks to the environment. The two 
main objectives were (i) to extend our knowledge on chemicals occurring in treated wastewater, and (ii) to 
identify and prioritize compounds of concern based on three different risk assessment approaches for the 
identification of consensus mixture risk drivers of concern. Approaches include (i) PNEC and EQS-based regu-
latory risk quotients (RQs), (ii) species sensitivity distribution (SSD)-based hazard units (HUs) and (iii) toxic units 
(TUs) for three biological quality elements (BQEs) algae, crustacean, and fish. 

For this purpose, solid-phase extracts were analysed with wide-scope chemical target screening via liquid 
chromatography high-resolution mass spectrometry (LC-HRMS), resulting in 366 detected compounds, with 
concentrations ranging from < 1 ng/L to > 100 µg/L. The detected chemicals were categorized with respect to 
critical information relevant for risk assessment and management prioritization including: (1) frequency of 
occurrence, (2) measured concentrations, (3) use groups, (4) persistence & bioaccumulation, and (5) modes of 
action. A comprehensive assessment using RQ, HU and TU indicated exceedance of risk thresholds for the ma-
jority of effluents with RQ being the most sensitive metric. In total, 299 out of the 366 compounds were iden-
tified as mixture risk contributors in one of the approaches, while 32 chemicals were established as consensus 
mixture risk contributors of high concern, including a high percentage (66%) of pesticides and biocides. For 
samples which have passed an advanced treatment using ozonation or activated carbon (AC), consistently much 
lower risks were estimated.   

1. Introduction 

Awareness on the presence of large numbers of emerging contami-
nants (ECs) (Daughton, 2005) in surface and wastewaters, as well as the 
performance of techniques to analyse them by liquid chromatography 
high-resolution mass spectrometry (LC-HRMS), has rapidly increased 
over the last decade (Brack et al., 2019b). More than 200,000 chemicals 
are listed in the Classification and Labelling (C&L) Inventory of New and 

Existing Substances in the EU (ECHA, 2021). When released into the 
environment, this results in complex mixtures of contaminants in Eu-
ropean waste- and surface waters, requiring a holistic approach to water 
quality monitoring, assessment and management (Posthuma et al., 
2019a) to meet the ambitions of the European Water Framework 
Directive (WFD) (European Commission, 2000). While environmental 
monitoring has long been focused on nonpolar persistent organic pol-
lutants, the last two decades of research have seen increasing attention 
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paid to the large number of polar organic pollutants. A specific focus was 
given to pharmaceuticals and personal care products that were consid-
ered particularly relevant (Daughton and Ternes, 1999; Ternes, 1998) 
and European surveys were launched to screen for polar compounds, 
typically addressing 30–50 targets including synthetic chelating agents, 
surfactants, dispersants, biocides and corrosion inhibitors, personal care 
products, pharmaceuticals and pesticides (Loos et al., 2009; Reemtsma 
et al., 2006). Since then, the number of detected chemicals in the water 
cycle continuously increased, with 125 chemicals out of 156 polar 
organic contaminants detected in wastewater treatment plant effluents 
(WWTP) in 2013 (Loos et al., 2013). Recently, a method for wide-scope 
screening for more than 2000 ECs in wastewater samples has been 
developed, which allowed to detect 280 out of 2248 analysed com-
pounds in WWTP effluents from the Danube catchment (Alygizakis 
et al., 2019), as well as 315 out of 2316 analysed compounds in one 
single WWTP effluent from Athens, Greece (Gago-Ferrero et al., 2020). 

The increasing number of detected chemicals in surface and waste-
water samples also enhanced the requirement to better characterize 
these chemicals regarding use groups, frequency of detection, detected 
concentration ranges, and environmental fate (Drakvik et al., 2020), and 
to prioritize compounds according to toxicity, hazards, fate and risks 
(Diamond et al., 2011; von der Ohe et al., 2011). Water pollutants have 
been assessed and prioritized for different criteria including the fre-
quency of occurrence (Alygizakis et al., 2019), measured environmental 
concentrations (Gros et al., 2017; Loos et al., 2013), persistence (Blum 
et al., 2017; Cousins et al., 2019; Gros et al., 2017), the potential for 
bioaccumulation (Blum et al., 2017; Gros et al., 2017), and toxic risks 
(von der Ohe et al., 2011). The latter were expressed based on (1) risk 
quotients (RQs) of measured (MEC) or predicted environmental con-
centrations (PEC) and predicted no-effect concentrations (PNEC) or 
environmental quality standards (EQS) (Alygizakis et al., 2019; Gros 
et al., 2017; Markert et al., 2020; Rodriguez-Mozaz et al., 2020; von der 
Ohe et al., 2011; Zhou et al., 2019), (2) toxic pressure quantification for 
species assemblages based on species sensitivity distributions (SSDs) and 
mixture modelling (Munz et al., 2017; Posthuma and de Zwart, 2006), or 
(3) toxic units (TUs) for selected biological quality elements (BQEs) of 
the WFD, such as algae, crustaceans and fish (Malaj et al., 2014; Markert 
et al., 2020). Within the NORMAN network for emerging contaminants, 
a prioritization approach based on the frequency and spatial extent of 
exceedance of PNECs by MECs has been developed (von der Ohe et al., 
2011) and continuously advanced (Brack, 2015). 

Risk assessment of chemicals and mixtures based on RQs applies 
ratios of MECs and a measure for the toxic potency of the individual 
compounds, represented by a PNEC or a legally binding EQS under the 
WFD, of which the latter is preferably being used if available. PNECs are 
derived for a specific compartment or receptor at risk using the lowest 
agreed effect concentration (acute LC50s or preferably chronic NOECs). 
The EQS values are derived for each chemical as an overall threshold 
which is intended to protect all receptors (i.e. aquatic life, predators via 
secondary poisoning, and human health via the consumption of fishery 
products and drinking water) by taking into account all exposure routes 
(e.g. water, sediment and biota). Several different types of receptors and 
associated quality standards (QS) are considered and the lowest of these 
values is set as the overall EQS (European Communities, 2011; Scientific 
Committee on Health, 2018). Data availability for deriving a PNEC or an 
EQS can vary. The WFD defines two types of EQS: the annual average 
EQS (AA-EQS) used here, which is derived from chronic toxicity data, 
and the maximum acceptable concentration EQS (MAC-EQS), which is 
derived from acute toxicity data. A compound-specific assessment factor 
(AF) below 5 for mesocosm and SSD data, between 10 and 100 in case of 
chronic and 1000 in case of acute data, can be applied to account for 
uncertainty associated with the amount of data, intra- and interlabor-
atory variation, biological variance and not tested taxa, short-term to 
long-term extrapolation, as well as laboratory to field extrapolation 
(European Communities, 2011; Scientific Committee on Health, 2018). 
The RQ-based approach has an obvious link to regulatory frameworks, 

such as the WFD. Provided that all chemicals found in a sample are 
accounted for, RQs below 1 imply that the ‘sampling site’ can be 
considered ‘sufficiently protected’, with a high degree of certainty that 
human health or aquatic life are unaffected by any of the detected 
mixture components. RQ summation is applied as a pragmatic approach 
for mixture risk evaluations, although it poses a potential logical inter-
pretation problem, if the resulting mixture risks are based on toxicity 
values from different species with different AFs (Kortenkamp et al., 
2019). 

Multi-species approaches based on SSDs target mixture impacts a 
priori on the entire aquatic community. The basis of SSDs are multiple 
NOEC or ECx values for as many species as possible, which allow to 
calculate a statistical measure of the toxic pressure of single compounds, 
compound groups or whole mixtures towards species assemblages, 
which are expressed as (multi-substance) potentially affected fractions 
of species, (ms)PAF (Fonseca et al., 2020; Munz et al., 2017; Posthuma 
and de Zwart, 2012). This does, however, not take species interactions 
(e.g. predator–prey interactions, displacement of niche species) into 
account. For each compound, a hazard unit (HU) can be calculated as 
intermediate step, which is based on the ratio of MECs and concentra-
tions for which a specific fraction of species is affected (commonly the 
hazard concentration for 5% of species, referred to as HC5). In this case, 
AFs are not applied. Given available data (Posthuma et al., 2019), the 
HU approach can be used to discriminate chronic impacts (HUch based 
on ECxs from 0 to 20% or NOECs) from acute risks (HUac based on ECxs 
from 30 to 70%), using chronic or acute test data collections, respec-
tively. HU summation and an exceedance of 1 could be used as an 
indication of the likelihood that the mixture can impact the local species 
community exposed to the sample. 

The BQE-specific TU approach (von der Ohe et al., 2009) is based on 
the concept of concentration addition (CA) (Sprague, 1970), and is 
calculated as the quotient of MECs and a respective measured or pre-
dicted effect concentration (EC) for algae, crustaceans and fish, etc. 
Analogous to HUs, and in contrast to RQs, no compound-specific AFs are 
applied to the ratio. The use of acute effects, however, makes it more 
difficult to define a threshold at which effects are not acceptable any 
more, which may vary from BQE to BQE. Moreover, taxonomic-specific 
effects may be overlooked if only one standard test species per BQE is 
used. This approach is often used for group-specific risk assessments, to 
identify the compounds causing observed or predicted impairment in 
the aquatic community. Following the CA model as applied by Backhaus 
and Faust (2012), TU summation is used for the assessment of mixture 
risks to different organism groups of interest, such as the BQEs consid-
ered in the classification of ecological status and impacts under the WFD 
(Kandie et al., 2020; Machate et al., 2021; Markert et al., 2020; Munz 
et al., 2018; von der Ohe et al., 2009). By correlating the loss of sensitive 
species from algal, invertebrate and fish communities, as for example 
indicated by the species at risk (SPEAR) index for invertebrates (von der 
Ohe and Liess, 2004), threshold levels for acute toxic risks (0.1 for all 
BQEs), and chronic risks (0.02 for algae, 0.001 for crustacean and 0.01 
for fish) are applied, which should not be exceeded (Malaj et al., 2014). 

All three approaches are frequently applied and have provided insights 
into individual and mixture risks; they helped prioritize chemicals with 
major contributions to these risk metrics as demonstrated in the above cited 
studies. However, often, it remained largely unclear why a specific 
approach has been selected and how the results compare to other ap-
proaches and thus, how robust the prioritization of environmental chem-
icals and mixtures actually is. Comparative assessments using different 
approaches, based on real-world mixtures, are largely lacking. 

Thus, the current study aims are (1) to extend the knowledge on 
chemicals occurring in WWTP effluents across Europe based on LC- 
HRMS target screening of 499 ECs in 56 WWTP effluents, and to char-
acterize the detected chemicals regarding critical information relevant 
for risk assessment and management, including frequency of occurrence, 
concentration ranges, use groups, persistence and modes of action, (2) to 
identify and prioritize compounds of concern involving the PNEC-based 
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RQ metric, the SSD-based HU metric and the BQE-specific TU metric, 
and (3) to evaluate mixture risks of the WWTP effluents and the po-
tential positive effect of applying advanced wastewater treatments via 
ozonation or activated carbon (AC) on the occurrence of compounds and 
related estimated risks. 

2. Material and methods 

2.1. Sampling, extraction, and sample storage 

In total, 56 effluent samples were taken from 52 European WWTPs 
located in 15 different countries: Germany (17), Switzerland (6), Czech 
Republic (5), Spain (5), Croatia (2), Greece (3), Netherlands (3), 
Romania (2), Slovenia (2), Sweden (2), Austria (1), France (1), Hungary 
(1), Serbia (1) and Slovakia (1). Different capacities and conventional 
treatment technologies, as well as two advanced treatment technologies 
are included. One sample was taken at a WWTP with AC treatment 
(EU019). Three WWTPs applying ozonation were sampled before and 
after this treatment step, providing two samples each (incl. ozonation: 
EU032, EU128, and EU130). One of these WWTPs had already been 
sampled before the upgrade, resulting in a total of 56 (52 + 4) samples, 
which are treated as independent samples in the data set. In general, all 
samples were taken over a period of 1½ years from August 2017 to April 
2019. The precise date is provided in the supporting information 
(Table S1). At each site, 50 L of treated effluent water were collected, 
using on-site large volume solid phase extraction (LVSPE) (Schulze et al., 
2017; Välitalo et al., 2017). In brief, the samples were pre-filtered 
(Sartopure GF + MidiCap, 0.65 μm separation size, Sartorius) and 
extracted using cartridges filled with 10 g of hydrophobic polystyrene 
divinylbenzene copolymer (Chromabond HR-X, Macherey-Nagel). The 
latter were conditioned with 200 mL ethyl acetate (LC-MS grade) fol-
lowed by 200 mL methanol (LC-MS grade) and 100 mL water (LC-MS 
grade) before sampling. In the laboratory, the cartridges were dried with 
nitrogen and afterwards freeze-dried to remove remaining water. The 
cartridges were eluted with 100 mL ethyl acetate, 100 mL methanol, 
100 mL methanol with 1.0 vol% formic acid (98–100%, p.a., Merck), 
and 100 mL methanol wit 2 vol% of 7 N ammonia in methanol (Sigma- 
Aldrich). In addition, 13 traveling blanks were prepared by extracting 1 
L of LC-MS grade water by LVSPE and transporting/processing them 
together with the sampling cartridges. All extracts were finally re- 
dissolved in LC-MS grade methanol at a relative enrichment factor 
(REF) of 1000 (i.e. 50 mL) and stored at –20 ◦C until further analysis. 

2.2. Chemical target screening 

2.2.1. Selection of target compounds 
The list of the 499 target substances (Table S2) was compiled based 

on an extensive literature review and includes chemicals previously 
detected in the water cycle, but also novel compounds that were recently 
identified in water samples with non-targeted and effect-directed ap-
proaches (Beckers et al., 2020; Muschket et al., 2018). Various criteria 
were considered, such as substance properties, fate, behaviour in the 
environment, occurrence and measurability by LVSPE and LC-HRMS. In 
addition, the selection was intended to cover important application 
areas, which are sources for WWTP contaminants, such as the medical 
sector (pharmaceuticals) and the agricultural sector (pesticides). 

2.2.2. LC-HRMS analysis 
For analysis, 100 µL of LVSPE samples (REF 1000) were transferred 

into a 2-mL autosampler vial with a 200-µL conical glass insert and 10 µL 
of an internal standard mixture containing 38 isotope-labelled com-
pounds (1 µg/mL) (Table S3), 30 µL of methanol (LC-MS grade) and 60 
µL of water (LC-MS grade) were added. Travel blanks were treated in the 
same way as LVSPE samples. The sample and travel blank aliquots were 
analysed in four batches in a wide-scope target screening by LC-HRMS, 
including calibration aliquots and instrumental blanks. An example 

sequence is presented in the supporting information (Table S4). The 
matrix-matched calibration was prepared from filtered water from a 
pristine stream (Wormsgraben) in the upper Harz Mountains. To this 
end, 1-L aliquots were spiked with mixtures of all target compounds at 
15 levels ranging from 0.1 to 5000 ng/L. These calibration standards 
were extracted based on a laboratory-scale SPE method using 200 mg of 
HR-X sorbents and the same solvents for elution as for the LVSPE 
method. The calibration aliquots for analysis were prepared the same 
way as the sample aliquots. Instrumental blanks were prepared with the 
same composition (methanol:water 70:30) and run for 4–6 replicates in 
each sequence. 

For the measurement, a reversed-phase LC separation on a Thermo 
Ultimate 3000 LC and an injection volume of 5 µL were used. HRMS data 
was acquired in full scan combined with data-independent mode, using 
a quadrupole-Orbitrap MS (QExactive Plus, Thermo Scientific) with 
electrospray ionization (ESI), and separate runs in positive and negative 
mode. To quantify compounds which have been measured at concen-
trations > 5000 ng/L in the first run, extracts were diluted 50-fold using 
LC-MS grade methanol. The diluted samples (REF20) were analysed 
with the same calibration standards and LC method on a different LC- 
HRMS device (LTQ Orbitrap XL, Thermo Scientific) in full scan mode. 
Further information on settings and instrument parameters are 
described in detail in Beckers et al. (2020). 

2.2.3. Data processing and evaluation 
The obtained Thermo.raw files were converted to the mzML format 

using ProteoWizard (v. 3.0.18265) (Chambers et al., 2012) and pro-
cessed using the software MZmine 2.38 (Pluskal et al., 2010) for peak 
picking, deconvolution, alignment, gap filling and peak annotation as 
detailed in Beckers et al. (2020). The in-house R package MZquant 
(Schulze et al., 2021a) was used for the semi-automated quantification 
of compound concentrations. A generalized additive model was used for 
calibration, which was trimmed to the detection range with at least four 
data points (calibration levels) included. Some compounds were 
checked manually, using the vendor software TraceFinder (version 4.1, 
Thermo Scientific). These were either quality controls (QCs) or com-
pounds, which could not be reliably annotated automatically based on 
previous experience. In total, 44 out of 56 samples were analysed using 
the complete mix of 499 standard compounds (Mix-2), while the first 12 
samples were analysed with a previous mix (Mix-1), containing 365 
compounds (Table S2). The new compounds from Mix-2 were subse-
quently added by retrospective analysis of the LC-HRMS files, together 
with a newly measured Mix-2 calibration line, considering the retention 
time (RT) and the mass-to-charge ratio (m/z) (Wagner, 2020). Method 
detection limits (MDLs) were determined on the basis of US-EPA 
guidelines (US-EPA, 2011). To account for the impact resulting from 
different handling of non-detects, concentrations below the MDL were 
set to zero (dataset A) or to MDL/2 (dataset B). The latter was used as the 
default dataset in this paper, if not stated differently. An overview of the 
final concentrations (dataset A & B) of the 56 WWTP effluent samples is 
presented in the supporting information (Tables S5, S6), and is also 
available on PANGAEA (Finckh et al., 2022). 

Data analysis and basic visualization were performed in Microsoft 
Excel 2013 and Inkscape (version 1.1). Boxplots were created in 
GraphPad Prism (version 8.4.3). Stacked barplots and heatmaps were 
created in R. (version 1.2.1335). 

2.3. Compound characterization 

2.3.1. Use group assignment 
Initially, all analysed target compounds including respective trans-

formation products (TP) were assigned to their primary use group ac-
cording to three main categories: (1) pharmaceuticals; (2) pesticides & 
biocides, among others comprising a wide range of different herbicides 
(H), insecticides (I), fungicides (F) and biocides (B); and (3) others. 
Those compounds, which were detected at least once, were further 
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specified according to the following sub-categories: (1) pharmaceutical 
and pharmaceutical TP, (2) plant protection product (PPP), legacy 
pesticide, biocide and pesticide & biocide TP, and (3) industrial chem-
ical, plastic additive, surfactant, food ingredient, rubber additive, PFC, 
UV filter, corrosion inhibitor, sweetener, dye, repellent, stimulants, 
bittern, flame retardant and TPs. Information was researched from 
different data sources, i.e. PubChem (National Library of Medicine, 
2021) and the C&L Inventory (ECHA, 2021). When a compound is 
knowingly used for different purposes, an individual choice was made, 
deciding on the main area of application. 

2.3.2. Biodegradation and bioaccumulation potential 
The biodegradation and bioaccumulation potential were assessed 

based on a scoring system of five categories, for both the predicted half- 
life time and the bioconcentration factor (BCF), respectively (Gros et al., 
2017). Category 1 (red) represents the highest priority, while increasing 
numbers (from yellow to green) indicate a lower priority (Table 1). Both 
parameters were retrieved from the CompTox Chemical Dashboard 
(Williams et al., 2017), and rely on the OPERA models (Mansouri et al., 
2018). In addition, the biodegradation was also described by “removal 
rates” in % (influent vs. effluent, conventional wastewater treatment) 
from a review study on the fate of organic micropollutants (Margot et al., 
2015). 

2.3.3. Mode of action 
According to the conceptual understanding of the modes-of-action 

(MOA) of chemicals presented in Busch et al. (2016), a database query 
was performed. Then, all detected compounds were annotated by their 
specific MOAs, which were retrieved from PubChem (National Library 
of Medicine, 2021), Drugbank (Drugbank, 2021; Wishart et al., 2018), 
PPDB (University of Hertfordshire, 2021), and Wikipedia (Wikimedia 
Foundation, 2021). In case of ambiguous information, individual expert 
assignment of a compound to the best-known or the environmentally 
most relevant MOA was done. Following a plausibility check on these 
preliminary results, a literature review on uncertain and missing com-
pounds was added to fill as many gaps as possible. Finally, the specific 
MOAs were further categorized into higher-level MOA groups (an 
updated MOA database will be published separately) (Table 2). 

2.4. Environmental risk assessment 

Environmental risk of a chemical is considered present if the risk 
metric exceeds an effect threshold for a species or species assemblage. 
The risk metrics were consistently calculated as the quotient of exposure 
(measured environmental concentration, MEC) and hazard (toxic po-
tency indicator). Risks are ranked higher with increasing degree of 
exceedance. 

As part of this study, three risk metrics were applied (Table 3), with 
different final interpretation: (1) the RQ metric applying regulatory EQS 
and PNEC values, often considering single species endpoints from one of 
three trophic levels, (2) the SSD-based HU metric, using chronic toxicity 
data to statistically derive a measure of species assemblage impacts, and 
(3) the TU metric, based on acute toxicity data for three different BQEs 
(i.e. algae, crustacean and fish impacts). All toxicity values of the 
detected compounds are listed in the supporting information (Table S7), 

and are also available on PANGAEA (Finckh et al., 2022). 

2.4.1. Risk quotient 
Risk quotients (RQs) were calculated by dividing the MEC of a 

compound i by the corresponding PNECi or EQSi (including compound- 
specific AFs between 2 and 1000) downloaded from the NORMAN 
Ecotoxicology Database (NORMAN Network, 2021): 

RQi =
MECi

EQSi or PNECi
(1) 

According to the database description, the lowest PNECs are pref-
erably based on experimental eco-toxicity data. In case of no or 

Table 1 
Scoring system for prioritization. Categorization according to Gros et al. (2017). The respective data can be found in the supporting information (Table S7).  

Score 1 2 3 4 5 

Frequency of detection >0.75 >0.5 >0.25 >0 0 
Biodegradation 

(predicted half-life time in days, DT50pred/d) 
>180 >60 >37.5 >15 <15 

Bioaccumulation 
(predicted bioconcentration factor, BCFpred) 

>10000 >1000 >100 >10 <10  

Table 2 
Modes of action (MOAs) per use group category. The respective data can be 
found in the supporting information (Table S7).  

# MOAs 
pharmaceuticals 

# MOAs pesticides 
& biocides 

# MOAs others 

1 Unknown MoA 15 Unknown MoA 35 Unknown MoA 
2 Neuroactive 16 Photosynthesis 

inhibition 
36 Neuroactive 

3 Cardiovascular 
system 

17 Lipid metabolism 37 Cell and DNA 
protection 

4 Antibiotic 18 Neuroactive 38 Lipid metabolism 
5 Antiinflammatory 19 Sterol 

biosynthesis 
inhibition 

39 Nucleic acid 
damage 

6 Sterol biosynthesis 
inhibition 

20 Respiration 
inhibition 

40 Endocrine 

7 Antihistamine 21 Protein 
biosynthesis 
inhibition 

41 Olfactory/ 
Gustatory system 

8 Endocrine 22 Synthetic Auxin 42 Respiration 
inhibition 

9 Nucleic acid 
biosynthesis 
inhibition 

23 Mitosis, Cell cycle 43 Cardiovascular 
system 

10 Metabolic system 24 Chitin 
biosynthesis 
inhibition 

44 Metabolic system 

11 Lipid metabolism 25 Glycolysis 
inhibition 

45 Nucleic acid 
biosynthesis 
inhibition 

12 Mitosis, Cell cycle 26 Nucleic acid 
biosynthesis 
inhibition 

46 Sterol 
biosynthesis 
inhibition 

13 Folic acid 
biosynthesis 
inhibition 

27 Carotenoid 
biosynthesis 
inhibition 

47 Synthetic Auxin 

14 Synthetic Auxin 28 Cell wall synthesis 
inhibition     

29 Endocrine     
30 Hormone 

biosynthesis 
inhibition     

31 Metabolic system     
32 Nucleic acid 

synthesis     
33 Respiration 

inhibition     
34 Vitamin K 

biosynthesis 
inhibition    
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insufficient empirical endpoints, QSAR predictions were used to esti-
mate a provisional P-PNEC value to allow for a first screening. 

Mixture toxicity was expressed by RQsum. Assuming CA, all avail-
able RQEQS,i values and the RQPNEC,j values were summed up: 

RQsum =
∑n

i=1
RQi (2) 

If RQsum is below 1, the risk metric indicates a sufficient safety of the 
sample. 

2.4.2. Hazard units 
Hazard units (HUs) were based on species sensitivity distributions 

(SSDs) and calculated by dividing the MEC of a compound i by the 
concentration where 5% of the species of a model community are 
impacted (HC5SSD,i, corresponding to a potentially affected fraction 
(PAF) of 0.05). 

HUi =
MECi

HC5SSD,i(PAFi= 0.05)
(3) 

The SSDs were based on all available ecotoxicity data as described in 
Posthuma et al. (2019b). In the case of the chronic HUch these are NOEC, 
LOEC, EC0, EC5, EC10, and EC20 values, as well as maximum accept-
able toxicant concentrations, while the acute HUac are based on suble-
thal (ECx) or lethal (LCx) endpoints from 30% to 70%. SSDs were 
constructed based on available ecotoxicity data. SSD parameters and 
SSD-quality scores were obtained from the supporting information in 
Posthuma et al. (2019b). That publication presents SSDs for a large 
number of compounds, with a four-digit SSD-quality scoring system. For 
the present study we aimed to focus on compounds with a robust SSD, to 
avoid the potential bias that may occur for low-data SSDs in the format 
of a haphazard occurrence of a data-driven ‘shallow’ slope. On the basis 
of practical experiences, data-poor compounds can have such a slope, 
and this biases environmental assessment as they yield a high toxic 
pressure read-out at a low exposure concentration. In practice, the 
present study focused on compounds for which the SSD was constructed 
from data on at least 5 taxa from which a subset had at least 10 taxa, for 
which the occurrence of bias was found low and very low, respectively. 

The impact of chemical mixtures on the community level was 
expressed as sum of HUi values, separate for chronic and acute toxicity, 
assuming CA. 

HUsum =
∑n

i=1
HUi (4) 

In this study, we focused on chronic toxicity values, which are more 
comparable to the protective regulatory RQ metric than the acute 
toxicity values. The threshold of HUchsum = 1 is similar to the 95%- 
protection level of SSDs (i.e. the HC5), which are sometimes used to 
derive PNECs and EQSs. The same applies to the mixture, so that 95% of 
the species are considered to be protected up to a HUchsum of 1. 

2.4.3. Toxic units 
Toxic units (TUs) were calculated according to Malaj et al. (2014), 

Sprague (1970), by dividing the MEC of a compound i by the respective 
acute effect concentrations (i.e. EC50 or LC50) for algae, crustacean, and 
fish, respectively, resulting in three TU values (TUalgae, TUcrust, TUfish) 
per compound. 

TUBQE,i =
MECi

EC50,BQE,i
(5) 

EC50 or LC50 data were selected in the following order: (1) Experi-
mental data retrieved from the US-EPA ECOTOX database (US-EPA, 
2021) or, if no experimental data were available, (2) predicted LC50/ 
EC50 values using the ECOSAR type baseline toxicity model for the BQEs 
fish, daphnia and green algae in Chemprop 6.7.1 (UFZ Department of 
Ecological Chemistry, 2021). For (1), a statistical value was calculated 
based on real measurements. In brief, this effect concentration is the 5th 
percentile of all effect concentrations available per BQE. The different 
effect categories included mortality, growth inhibition, population and 
movement inhibition. In addition, only the data sets with “short-term 
effects” (≤ 120 hours or ≤ 5 days) were considered. If the measured or 
predicted ecotoxicological data exceeded the predicted water solubility 
by more than half a log unit, the measured or predicted ecotoxicological 
value was replaced by the predicted water solubility. Further details on 
the effect data acquisition procedure are published in Schulze et al. 
(2021b). The dataset is available on zenodo (Schulze, 2022). 

Mixture risks were calculated by summation of all TUi per BQE of all 
detected target compounds, yielding the TUsum based on the CA model. 

TUsum =
∑n

i=1
TUi

(
× Fchronic,BQE

)
(6) 

Table 3 
Overview of the applied risk metrics.  

Risk parameter RQ HUch TUalgae TUcrust TUfish 

Name Risk Quotient Hazard Unit (chronic) Toxic Unit 
(BQE = algae) 

Toxic Unit 
(BQE = crustacean) 

Toxic Unit 
(BQE = fish) 

Description “Regulatory approach” “Community/biodiversity-level 
approach” 

“Trophic-level-specific 
approach” 

“Trophic-level-specific 
approach” 

“Trophic-level-specific 
approach” 

Toxicity data  • Environmental quality 
standard (EQS) 

• Predicted no-effect con-
centration (PNEC)  

• No-observed & lowest- 
observed-effect concentration 
(NOEC & LOEC)  

• maximum acceptable toxicant 
concentration  

• Effect concentration (ECx) 
from 0 to 20%  

• Note: Compounds without 
SSD were excluded from the 
risk assessment  

• Effect concentration 
(ECx or LCx) of 50% 
towards algae  

• Effect concentration 
(ECx or LCx) of 50% 
towards crustacean  

• Effect concentration 
(ECx or LCx) of 50% 
towards fish 

Assessment Factor/ 
Risk threshold 

Compound-specific 
assessment factors, included 
in PNEC & EQS values 
(AFs = 2–1000) 

Risk threshold defined by SSD- 
based potentially affected 
fraction of species 
(PAF = 0.05) 

Algae-specific (chronic) 
risk threshold of 0.02 
(Falgae = 50) 

Crustacean-specific 
(chronic) risk threshold of 
0.001 
(Fcrust = 1000) 

Fish-specific (chronic) 
risk threshold of 0.01 
(Ffish = 100) 

Availability of 
toxicity data (of 
the 366 detects)  

• 157 experimental PNECs  
• 203 predicted PNECs  
• 6 no PNEC available  

• 108 available SSDs  
• 258 no SSDs available  

• 111 measurement- 
based ECs  

• 255 predicted ECs  

• 99 measurement-based 
ECs  

• 267 predicted  

• 116 measurement- 
based ECs  

• 250 predicted 
Formula RQ =

MEC
EQS or PNEC 

HUch =
MEC

HC5SSD (PAF = 0.05)
TUalgae =

MEC
EC50, algae

(×

50)

TUcrust =
MEC

EC50,crust
(×

1000)

TUfish =
MEC

EC50, fish
(× 100)
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All WWTP effluent samples and the detected compounds were 
evaluated and prioritized according to the exceedance of the TUsum risk 
thresholds suggested by Malaj et al. (2014): chronic risk for algae 
(TUalgaesum = 0.02), crustacean (TUcrustsum = 0.001), and fish (TUfish-

sum = 0.01). These thresholds are empirically based for invertebrates 
(Beketov et al., 2013; Schäfer et al., 2012) and rely on acute to chronic 
ratios for algae and fish (Ahlers et al., 2006). In order to apply the same 
threshold of 1 as for the other metrics a BQE-specific chronic risk factor 
Fchronic was applied to each TU: Fchronic,algae = 50, Fchronic,crust = 1000, 
Fchronic,fish = 100. 

2.4.4. Identification of mixture components of concern 
For all risk metrics, the same pragmatic approach was applied to 

identify drivers of mixture risks. RQ, TU and HU values of the mixture 
components were summed up individually, starting with the lowest 
value (i.e. compound with the lowest calculated risk) and ending with 
the highest value (i.e. compound with the highest calculated risk). Those 
compounds that in the sum triggered an exceedance of the threshold of 1 
were classified as “mixture components of concern”. Components 
occurring above a risk threshold of 10, reflecting a tenfold effluent 
dilution in the receiving waters, were prioritized as “mixture compo-
nents of high concern”. In a consensus approach, all chemicals priori-
tized by at least two risk metrics as mixture components of concern were 
ranked as “consensus mixture components of concern”. Those chemicals 
that were identified by at least two metrics as mixture components of 
high concern were ranked as “consensus mixture components of high 
concern”. 

3. Results 

3.1. Detected compounds and use groups 

All analysed and detected compounds are summarized in Table S5 
(dataset A) and Table S6 (dataset B), respectively. In addition, all results 
are available on PANGAEA (Finckh et al., 2022). In the following section 
on the results, dataset B (Table S6) was used as the default of all figures, 
where concentrations below the MDL were set to MDL/2. 

Within the set of 56 European WWTP effluent samples, 366 out of 
499 analysed target compounds were detected in at least one sample 
(Fig. S1, left). In most effluents, between 200 and 250 compounds were 
detected (Fig. S1, right); 107 compounds occurring almost ubiquitously 
with a detection frequency of at least 90%, while 53 compounds were 
detected in less than 10% of the samples and 18 compounds were 
detected only once. Compounds were assigned to their specific use 
groups based on the information available from databases (Drugbank, 
Pubchem, PPDB, and Wikipedia) and from literature. The list of detected 

target compounds includes a variety of pharmaceuticals and pesticides, 
but also surfactants, food, plastic and rubber additives, per- and poly-
fluoroalkyl substances (PFAS), UV filters and corrosion inhibitors, 
summarized in a group called “others”. In total, 111 pharmaceuticals, 96 
pesticides and 98 other parent compounds were detected, com-
plemented by 12, 39 and 10 transformation products (TPs), respectively 
(Fig. 1, right). Within the three use group categories (pharmaceuticals, 
pesticides and others), the fractions of detected versus analysed com-
pounds were 79%, 69% and 73%, respectively, and thus quite similar 
(Fig. 1, left). 

Generally, a compound may be used for many purposes. To avoid 
complex multiple entries, compounds were categorized based on the 
best-known use or the main field of application. Pesticides were further 
classified according to their registration as plant protection products 
(PPPs, approved according to regulation (EC) 1107/2009), biocides (not 
approved as PPPs but used as biocides), and legacy pesticides (no cur-
rent approval/approval expired). However, the legal provisions are not 
always clear, as some substances are subject to exemptions at national 
level for certain areas of application. Diazinon, for example, has been 
banned as a biocide in the EU since 2011 (Directive 98/8/EC), but it may 
still be used for veterinary purposes. As a check of the content decla-
rations of animal products showed, it is indeed used for this purpose, 
which is why it is remaining in the category for biocides. 

3.2. Concentration ranges of measured compounds 

Concentrations of the detected target compounds range from less 
than 1 ng/L up to more than 105 ng/L. Concentration ranges of the top 
30 compounds by the 95th percentile of the concentration (MEC95) are 
displayed as a boxplot (Fig. 2). Among them are ten detected target 
compounds with median concentrations above 1 µg/L: The sweeteners 
sucralose (15.3 µg/L) and acesulfame (1.9 µg/L), the corrosion in-
hibitors 1H-benzotriazole (3.6 µg/L) and 5-methyl-1H-benzotriazole 
(1.8 µg/L), certain well known pharmaceuticals, such as hydrochloro-
thiazide (2.3 µg/L), metformin (1.6 µg/L), diclofenac (1.4 µg/L), and the 
TP N-formyl-4-aminoantipyrine (1.0 µg/L), as well as the industrial 
chemical 4′-aminoacetanilide (1.7 µg/L) and the UV-filter phenyl-
benzimidazole sulfonic acid (1.3 µg/L). Further compounds of high 
detected concentrations are the pharmaceuticals gabapentin-lactam, 
telmisartan, N-acetyl-4-aminoantipyrine, tramadol, furosemide, cande-
sartan, valsartan and lamotrigine. The compilation is completed with 
cyclohexylamine, benzophenone-4, hexa(methoxymethyl)melamine 
(HMMM), m-xylene-4-sulfonic acid, cyclamate, 2-(methylthio)benzo-
thiazole, and the pesticide 2,4-dichlorobenzoic acid. 

Very high maximum concentrations (Fig. S2) were retrieved for 
several industrial chemicals, including hexa(methoxymethyl)melamine 

Fig. 1. Quantitative LC-HRMS screening results. Left: number of analysed (light coloured bar) versus detected (dark coloured bar) target compounds per use group 
category. Right: pie-chart of the detected target compounds per use group category: pharmaceuticals (blue), pesticides & biocides (green), others (purple). (For 
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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(HMMM) (461 µg/L), tetrapropyl ammonium (117 µg/L), triethylphos-
phate (88 µg/L), cyclohexylamine (70 µg/L), 2,4-dichlorobenzoic acid 
(20 µg/L), m-xylene-4-sulfonic acid (19 µg/L), tetraglyme (19 µg/L), and 
aminoacetanilide (12 µg/L). The second-highest maximum concentra-
tion was found for the hypnotic and anaesthetic drug secobarbital (150 
µg/L); the related sedative pentobarbital (14 µg/L) was detected in the 
same effluent. 

3.3. WWTPs with advanced treatment via ozonation or AC 

Within the set of 56 WWTP effluent samples, four samples have 
passed an advanced treatment via ozonation (3) or AC (1), resulting in 
lower measured concentrations. For each ozonation sample, an addi-
tional sample upstream of the advanced treatment was taken. For AC, no 
additional sample was taken. In the six ozonation-related samples, a 
total of 262 compounds were detected (Fig. S3, left). For 39% (103/262) 
of the detected compounds, a concentration reduction by at least half 
was observed (Fig. S3, right). If considering the fact that certain com-
pounds were present and reduced only in two or one WWTP, this ratio 
increases to 64% (167/262) and 89% (233/262), respectively. Examples 
for compounds with very high reductions (less than 5% remaining) and 
high initial average concentrations are: phenazone, N-acetyl-4-amino-
antipyrine, clarithromycin, carbamazepine, diclofenac, benzophenone- 
4, trimethoprim, N-formyl-4-aminoantipyrine, and azithromycin. The 
effect of ozonation on high and low concentrated compounds was rather 
similar, as visualized in the second heatmap on scaled concentrations of 
compounds reduced in all three samples by more than 50% (Fig. S3, 
right). 

3.4. Persistency and bioaccumulation potential of detected compounds 

The compounds detected in our study were screened for persistency 
and bioaccumulation potential, representing hazard criteria in EU 
REACH regulation (REGULATION (EC) No 1907/2006). Due to a lack of 
consistent databases on experimental data, the predicted half-life time 
(DT50pred) as indicator for persistency and the predicted bio-
concentration factor (BCFpred) as indicator for the bioaccumulation po-
tential were applied, both calculated with OPERA (Mansouri et al., 
2018). According to this approach, 49% of all detected compounds and 
90% of the top 30 compounds by the MEC95 (Fig. 2), respectively, have 
a predicted BCFpred below 10 represented by score 5 for the lowest 
priority regarding the bioconcentration potential. For 85% of the 
detected compounds and all top 30 compounds, the BCFpred were below 
100 (scores 4 or 5), while only 2% of all detected compounds exhibit a 
predicted BCFpred above 1000 (scores 2 and 1). 

Predicted half-life times of 88% and 93% of all detected compounds 
and the top 30 compounds (Fig. 2), respectively, are below 15 days, 
indicating chemicals that belong to the least persistent group (score 5). 
For 95% of the detected compounds and for all top 30 compounds, 
DT50s below 37.5 days (score 4) were predicted. 

To enhance discriminative power, the persistency scoring was com-
plemented with experimentally determined removal rates in WWTPs 
compiled by Margot et al. (2015). These values were available for 14 out 
of the top 30 compounds by MEC95 (Fig. 2). According to this infor-
mation, the artificial sweeteners sucralose (5%) and acesulfame (5%), 
the plastic additive and flame retardant tris(1-chloro-2-propyl) 
phosphate (1%) as well as 2-(methylthio)benzothiazole (0%) are only 
poorly degradable. The pharmaceuticals hydrochlorothiazole (30%), 

Fig. 2. Top 30 compounds by MEC95 (based on dataset B; NA = MDL/2). Boxplot hinges are representing the 25th and 75th percentile, and the upper/lower 
whiskers: ±1.5*IQR (interquartile range). The centre line represents the median concentration. Information on the MOA categories are presented in Table 2. 
Experimental PNECs include regulatory-adapted EQS, as well as country specific EQS or proposals. The respective data can be found in the supporting informa-
tion (Table S6). 
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diclofenac (20%), and tramadol (33%) add to this list of rather persistent 
wastewater components. Cyclamate (95%), and benzothiazole (80%), in 
comparison, are considered to be highly degradable compounds. 

3.5. Modes of action of detected compounds 

In our study, 278 of the 366 detected compounds (76%) could be 
assigned to at least one specific MOA (Fig. 3, left). The list contains 130 
specific MOAs (Fig. S4), grouped in 27 higher-level categories (Fig. 3, 
right), in which MOAs relevant for different taxa are considered. Within 
the group of pharmaceuticals 13 MOA categories could be discrimi-
nated, with compounds which interact with the nervous system being 
the most prominent category (38), followed by compounds acting on the 
cardiovascular system (20), antibiotics (17) and anti-inflammatories 
(13), including 3, 4, 2 and 2 TPs, respectively. For pesticides and bio-
cides, 19 MOA categories were identified, led by photosystem inhibitors 
(28) and followed by disruptors of the lipid metabolism (27), neuroac-
tive chemicals (17) and sterol biosynthesis inhibitors (16), including 2, 
3, 3 and 1 TPs, respectively. Since both pharmaceuticals and pesticides 
are designed to have a specific effect on biota, only few of them are 
lacking MOA information (2 and 6, respectively). In case of the third use 
group “others”, almost three quarter of the chemicals (74%) lack MOA 
information. This group includes plastic or rubber additives, corrosion 
inhibitors and surfactants, among others, but mainly industrial com-
pounds of unknown use groups (35). For 40% of the top 30 compounds 
by MEC95, no specific MOA was found (Fig. 2). 

3.6. Availability of toxicity data for detected compounds 

Environmental risk assessment of contamination strongly relies on 
reliable toxicity data. Experimental PNEC values from the NORMAN 
Ecotoxicology Database, based on experimental endpoints (incl. 
regulatory-adopted EQS values or (ad-hoc) proposals), were available for 
43% of the detected target compounds (Fig. S5, Table S7), while PNECs 
of the remaining compounds were predicted (55%) or not available 
(2%). Fractions of 47% of the top 30 compounds by MEC95 are covered 
by experimental PNECs (Fig. 2). In the case of HUch for 108 of the 366 
detected chemicals (29%) chronic SSDs were available and considered 
sufficiently reliable (Fig. S5, Table S7). This corresponds to 17% of the 
top 30 MEC95 compounds (Fig. 2). In the largest experimental toxicity 
database (US EPA ECOTOX DB), experimental EC50 values needed for 
the TU calculation for all three BQEs were only available for 60 of the 
366 detected compounds (16%). For 48 compounds (13%) there were 
measured values for two BQEs, and for 50 compounds (14%) there were 

measured values for only one BQE. For 208 compounds (57%) no 
measured toxicity data was available (Fig. S5, Table S7). This implies 
that for 70% of the total of 1098 assessments (366 detects multiplied by 
3 BQEs), only predicted effect concentrations based on QSARs for 
baseline toxicity have been used, neglecting specific effects. For the top 
30 compounds ranked by their MEC95, only one compound (diclofenac) 
was supported by experimental EC values for all BQEs, for 17% of the 
compounds two BQEs were covered and for 7% only for one BQE 
experimental data could be found (Fig. 2). 

3.7. Risk assessment according to RQ, TU and HU 

3.7.1. Availability of toxicity data of highly ranked compounds 
For 47% of the top 30 compounds selected by the 95th percentile of 

the MEC/PNEC ratios (RQ95), experimental PNECs are available 
(Fig. 4), while 53% of the PNECs are predicted. For 57% of the top 30 
compounds, an AF of 1000 is considered. When ranking compounds 
according to the 95th percentile of MEC/EC50 ratios (TU95), 87%, 87% 
and 73% of the top 30 compounds for algae, crustacean and fish, 
respectively, could be assessed based on measured effect concentrations 
(Figs. 6-8). High-risk chemicals with lacking experimental toxicity data 
included the quaternary ammonium compounds (QACs) benzyldime-
thyldodecyl ammonium, didecyldimethyl ammonium, benzyldime-
thyltetradecyl ammonium and didecyldimethyl ammonium, which are 
mainly used as biocides for surface disinfection, the pharmaceuticals 
telmisartan, celecoxib, lamotrigine, clotrimazole and secobarbital, and 
the industrial compounds HMMM, tris(2-ethylhexyl)phosphate and tris 
(2-ethylhexyl)phosphate. For 40%, 70%, 67% and 60% of the com-
pounds prioritized based on RQ95, TU95algae, TU95crust, and TU95fish, 
chronic SSDs were available (Figs. 4 & 6-8) allowing for HU-based pri-
oritization. For the remaining compounds highly ranked by RQ95 or 
TU95, no SSDs were available; consequently no HUch value could be 
calculated for them. Therefore, the list of the top 30 compounds ac-
cording to the 95th percentile of HUch (HU95) (Fig. 5) does not include 
the above mentioned QACs, vancomycin and HMMM, among others. 
SSDs were always missing when no or not sufficient experimental 
toxicity data were available for RQs and TUs. 

3.7.2. Individual risk assessment of detected compounds 
The list of top 30 compounds, ranked by RQ95 (Fig. 4) start with the 

pharmaceuticals, vancomycin, diclofenac and azithromycin, of which 
the first is prioritized based on a predicted PNEC. In addition, highly 
ranked compounds include the industrial compounds HMMM, per-
fluorooctanesulfonic acid and 2-(methylthio)benzothiazole, the 

Fig. 3. Mode of action information for detected compounds. Left: fraction of assigned and unknown MOAs. Right: pie-chart of higher-level MOA information of the 
detected target compounds according to the three main use groups; pharmaceuticals (blue), pesticides & biocides (green), others (purple). (For interpretation of the 
references to colour in this figure legend, the reader is referred to the web version of this article.) 
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Fig. 4. Top 30 compounds by RQ95 (based on dataset B; NA = MDL/2). Boxplot hinges are representing the 25th and 75th percentile, and the upper/lower whiskers: 
±1.5*IQR (interquartile range). The centre line represents the median concentration. Information on the scores (rows 1–3) are presented in Table 1. Information on 
the MOA categories are presented in Table 2. Experimental PNECs include regulatory-adapted EQS, as well as country specific EQS or proposals. The respective data 
can be found in the supporting information (Table S8). 

Fig. 5. Top 30 compounds by HU95 (based on dataset B; NA = MDL/2). Boxplot hinges are representing the 25th and 75th percentile, and the upper/lower whiskers: 
±1.5*IQR (interquartile range). The centre line represents the median concentration. Information on the scores (rows 1–3) are presented in Table 1. Information on 
the MOA categories are presented in Table 2. Experimental PNECs include regulatory-adapted EQS, as well as country specific EQS or proposals. The respective data 
can be found in the supporting information (Table S9). 
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Fig. 6. Top 30 compounds by TU95algae (based on dataset B; NA = MDL/2). Boxplot hinges are representing the 25th and 75th percentile, and the upper/lower 
whiskers: ±1.5*IQR (interquartile range). The centre line represents the median concentration. Information on the MOA categories are presented in Table 2. 
Experimental PNECs include regulatory-adapted EQS, as well as country specific EQS or proposals. The respective data can be found in the supporting informa-
tion (Table S10). 

Fig. 7. Top 30 compounds by TU95crust (based on dataset B; NA = MDL/2). Boxplot hinges are representing the 25th and 75th percentile, and the upper/lower 
whiskers: ±1.5*IQR (interquartile range). The centre line represents the median concentration. Information on the MOA categories are presented in Table 2. 
Experimental PNECs include regulatory-adapted EQS, as well as country specific EQS or proposals. The respective data can be found in the supporting informa-
tion (Table S11). 
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pesticides fipronil (I), imidacloprid (I), fenoxycarb (I), spinosyn A (I), 
terbuthylazine-2-hydroxy (H-TP), diuron (H), diazinon (I), triclocarban 
(B) and imazapyr (H), and further pharmaceuticals such as ketocona-
zole, carbamazepine, atorvastatin, clarithromycin, furosemide, roxi-
thromycin, bosentan, EDDP, ziprasidone, temazepam, raloxifene, 
methotrexate, cetirizine, oxazepam and lorazepam. 

According to the assessment based on HU95 (Fig. 5), the greatest 
chronic impact is expected from the pharmaceuticals diclofenac and 
azithromycin, followed by several pesticides including diazinon (I), 
imidacloprid (I), and further down also fipronil (I), diuron (H), terbutryn 
(H), irgarol (H), isoproturon (H), difenoconazole (F), carbendazim (F), 
ethyl azinphos (I), metolachlor (H), propiconazole (F), bendiocarb (I), 
clothianidin (I) and metribuzin (H). Additionally, the pharmaceuticals 
acetaminophen, carbamazepine, clarithromycin, sulfamethoxazole, 
gemfibrozil, propranolol, atenolol, clotrimazole, climbazole and eryth-
romycin, as well as other compounds such as caffeine, 4-chloroaniline 
and perfluorooctanesulfonic acid were in the top risk group. 

Based on TU95, the greatest risk for algae (Fig. 6) was observed for 
the antibiotic clarithromycin, followed by several herbicides including 
diuron, terbutryn, terbuthylazin and irgarol, the biocide triclosan, the 
fungicide spiroxamine, as well as the pharmaceuticals erythromycin, 
roxithromycin and sertraline. All three top contributors including clar-
ithromycin, diuron and terbutryn were detected with high frequency. 
Greatest TU95-based risks to crustaceans (Fig. 7) are associated with the 
insecticides diazinon, 3,5,6-trichloro-2-pyridinol and imidacloprid, 
further down followed by fipronil, acetamiprid and diflubenzuron, 
complemented by the pharmaceutical diclofenac and the industrial 
chemical 2,4-dichlorophenol. The seven top-ranked compounds also 
exhibit high detection frequencies (scores 1 or 2). For fish, the highest 
TU (Fig. 8) are exhibited by the fungicide carbendazim, different QACs, 
the insecticide ethyl azinphos and the pharmaceuticals telmisartan and 
sertraline. Here, only carbendazim and the two pharmaceuticals are 
characterized by a high detection frequency. The QACs, which were 

often ranked very high, were detected in few WWTP effluents; the un-
derlying TUs were based on predicted EC50 values (baseline toxicity). In 
general, among the top 30 compounds for fish, a great diversity of 
compound classes and use groups were found. 

For the top 30 compounds according to the 95th percentile of RQ, 
HUch, TUalgae, TUcrust, and TUfish, the number of compounds with un-
known MOAs (MOA 1, 15 or 35) is 1, 1, 5, 3 and 10 (Figs. 4-8), 
respectively. Compared to the previous ranking by concentration 
(MEC95) with 12 compounds of unknown MOA (Fig. 2), these numbers 
are much lower. Among the compounds with specific MOA information, 
but without measured toxicity data for any BQE were phenyl-
benzimidazole sulfonic acid (MOA 39 “nucleic acid damage”), hydro-
chlorothiazide, 1-(3-carboxypropyl)-3,7-dimethylxanthine, candesartan 
and valsartan (MOA 3 “cardiovascular system”), benzophenone-4 (MOA 
37 “cell and DNA protection”), gabapentin-lactam and tramadol (MOA 2 
“neuroactive”). For few transformation products, including N-formyl-4- 
aminoantipyrine and 4-aminoantipyrine (TPs of dimethylaminophena-
zone, MOA 5 “antiinflammatory”) N-acetyl-4-aminoantipyrine, and 2,4- 
dichlorobenzoic acid (TP of spirodiclofen, MOA 17 “lipid metabolism”), 
only the MOA of the parent compounds is known. 

3.7.3. Mixture risk assessment of detected compounds 
Mixture toxicity estimates for the different metrics are shown as bar 

plots (Figs. 9-13). The numbers above each bar indicate the number of 
compounds contributing to the exceedance of the chronic risk threshold 
of 1 (bold line); all numbers and names of these components of concern 
are listed in Tables S13 and S14, respectively. Using RQ summation, all 
samples exceeded the threshold of 1 with the highest mixture risk of 
8400 (EU009), exceeding by almost 4 orders of magnitude (Fig. 9), 
while the lowest risk was found for EU124 and the advanced treatment 
sites (EU032, EU128, EU019, and EU130) with a degree of exceedance 
of 33 to 91. Between 49 (EU124) and 183 (EU018) compounds 
contributed to the exceedance of the risk threshold. 

Fig. 8. Top 30 compounds by TU95fish (based on dataset B; NA = MDL/2). Boxplot hinges are representing the 25th and 75th percentile, and the upper/lower 
whiskers: ±1.5*IQR (interquartile range). The centre line represents the median concentration. Information on the scores (rows 1–3) are presented in Table 1. 
Information on the MOA categories are presented in Table 2. Experimental PNECs include regulatory-adapted EQS, as well as country specific EQS or proposals. The 
respective data can be found in the supporting information (Table S12). 
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The calculated HUchsum of the different samples covered a range of 
two orders of magnitude (Fig. 10). In many WWTP effluents, diclofenac 
was the major risk driver, followed by azithromycin and diazinon. Ex-
amples for more site-specific risk drivers are the the insecticides imi-
dacloprid (EU131, EU024), ethyl azinphos (EU033) and fipronil 
(EU001), the herbicides diuron (EU131, EU024), terbutryn/prometryn 
(co-eluting compounds) (EU018) and irgarol (EU009) as well as the food 
ingredient caffeine (EU001, EU005). All samples except the three 
treated with ozonation (EU032, EU128, EU130) and EU124 exceeded 
the risk threshold, with one (EU019) to 20 (EU018) contributing 
compounds. 

Based on BQE-specific TUsum, 91%, 100% and 54% of the WWTP 
effluents exceed the risk threshold maximum by a factor of 71, 6900 and 
84 for algae, crustaceans and fish, respectively (Figs. 11-13), covering 
two to nearly three orders of magnitude. The maximum number of 
compounds contributing to the exceedance was 20, 52 and 7 compounds 
(all in EU018) for the three BQEs. Diazinon and imidacloprid predom-
inate mixture risks to crustaceans, while major contributors to TUsu-

malgae were clarithromycin and some herbicides. Similar to the other 

risk metrics, TUsum of effluents from the treatment plants with advanced 
treatment (ozonation and AC) were the lowest, with only slight ex-
ceedance for crustaceans. 

4. Discussion 

4.1. Detected compounds 

Compared to the most comprehensive study on ECs in treated 
wastewater from one WWTP effluent (Gago-Ferrero et al., 2020), the 
number of detected compounds could be further enhanced from 315 to 
366. Compared to four of the most recent and largest wide-scope target 
studies (Alygizakis et al., 2019; Gago-Ferrero et al., 2020; Munz et al., 
2017; Nickel et al., 2021), we quantified 218 additional compounds not 
yet detected, which include 51 pharmaceuticals, 84 pesticides and bio-
cides and 83 other compounds. Some of these compounds have been 
detected in more than one third of the samples and are prioritized by at 
least two metrics later in the consensus prioritization (Tables 3, S14), 
including HMMM (56/56), 7-diethylamino-4-methylcoumarin (55/56), 

Fig. 9. Risk driving compounds according to RQsum (based on dataset B; NA = MDL/2). The bars represent RQsum for each sample. The coloured stacks within the 
bars represent the compound-specific RQs of the top 10 contributors by maximum RQ (over all samples), and are sorted by increasing values. Further compounds are 
aggregated in the black coloured stacks at the bottom of each bar (“X further compounds”). The bold line indicates the risk threshold of 1. The dashed line indicates 
the risk threshold incl. a dilution factor of 10. Samples from WWTPs with advanced treatment are highlighted in red (suffix “a”). (For interpretation of the references 
to colour in this figure legend, the reader is referred to the web version of this article.) 

Fig. 10. Risk driving compounds according to HUchsum (based on dataset B; NA = MDL/2). The bars represent HUchsum for each sample. The coloured stacks within 
the bars represent the compound-specific HUchs of the top 10 contributors by maximum RQ (over all samples), and are sorted by increasing values. Further com-
pounds are aggregated in the black coloured stacks at the bottom of each bar (“X further compounds”). The bold line indicates the risk threshold of 1. The dashed line 
indicates the risk threshold incl. a dilution factor of 10. Samples from WWTPs with advanced treatment are highlighted in red (suffix “a”). (For interpretation of the 
references to colour in this figure legend, the reader is referred to the web version of this article.) 
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2,4-dichlorophenol (35/56), N,N-dimethyldodecylamine (21/56) and 
spiroxamine (21/56). 

Some of the 61 TPs found in total were detected as often as, or even 
more frequently than their parent compounds. For example, acetyl- 
sulfamethoxazole (52 detects), a TP of sulfamethoxazole (55), meto-
prolol acid (51), a TP of the beta blocker metoprolol (56) and several 
carbamazepine TPs, which occurred ubiquitously, were found in similar 
numbers. The TPs of the legacy pesticides metolachlor (29) and meta-
zachlor (18), metolachlor OA and metazachlor ESA were detected 
almost twice as often, namely in 52 and 46 samples, respectively. The 
frequent detection of TPs of pharmaceuticals, pesticides and “other” 
compounds is in good agreement with previous studies in the U.S. 
(Mahler et al., 2021), and Germany (Halbach et al., 2021; Kiefer et al., 
2019), detecting higher numbers of TPs in higher concentrations 
compared to parent pesticides. Since biological wastewater treatment 
may transform parent chemicals to several stable TPs (Petrie et al., 2015; 
Richardson and Ternes, 2018), the actual number of TPs is probably 
much higher than covered by the current target screening. It should also 
be considered that screening approaches necessarily disregard 

chemicals that are out of the method domain or can be detected only at 
MDLs above effect thresholds, including metals, glyphosate, pyrethroids 
and certain steroids. 

4.2. Concentration ranges 

Many compounds detected in high concentrations are common 
wastewater-related contaminants and in agreement with previous 
studies. The so far most comprehensive monitoring study on European 
WWTP effluent samples by Loos et al. (2013) showed acesulfame at 
place one based on median concentration ranking (14.3 µg/L), followed 
by 1H-benzotriazole (2.7 µg/L), 5-methyl-1H-benzotriazole (2.1 µg/L), 
sucralose (1.7 µg/L) and carbamazepine (0.8 µg/L), which in our study 
showed median concentrations of 1.9 µg/L, 3.6 µg/L, 1.8 µg/L, 15.3 µg/L 
and 0.5 µg/L, respectively. Hence, except for acesulfame and sucralose 
having switched the position, similar median concentrations were 
measured (Fig. 2). Moreover, the diuretic hydrochlorothiazide, the 
diabetes drug metformin, the analgesics diclofenac and tramadol, 
lamotrigine as another anticonvulsant, as well as different sartan 

Fig. 11. Risk driving compounds according to TUalgaesum (based on dataset B; NA = MDL/2). The bars represent TUalgaesum for each sample. The coloured stacks 
within the bars represent the compound-specific TUs of the top 10 contributors by maximum TU (over all samples), and are sorted by increasing values. Further 
compounds are aggregated in the black coloured stacks at the bottom of each bar (“X further compounds”). The bold line indicates the risk threshold of 1. The dashed 
line indicates the risk threshold incl. a dilution factor of 10. Samples from WWTPs with advanced treatment are highlighted in red (suffix “a”). (For interpretation of 
the references to colour in this figure legend, the reader is referred to the web version of this article.) 

Fig. 12. Risk driving compounds according to TUcrustsum (based on dataset B; NA = MDL/2). The bars represent TUcrustsum for each sample. The coloured stacks 
within the bars represent the compound-specific TUs of the top 10 contributors by maximum TU (over all samples), and are sorted by increasing values. Further 
compounds are aggregated in the black coloured stacks at the bottom of each bar (“X further compounds”). The bold line indicates the risk threshold of 1. The dashed 
line indicates the risk threshold incl. a dilution factor of 10. Samples from WWTPs with advanced treatment are highlighted in red (suffix “a”). (For interpretation of 
the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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hypertension drug-derivatives were found in similar concentration 
ranges as in previous studies (Alygizakis et al., 2020; Gago-Ferrero et al., 
2020; Margot et al., 2015). The 30 compounds that have been detected 
at the highest maximum concentrations in this study can be divided into 
two groups:  

(1) Point source industrial chemicals that are emitted at very high 
concentrations from industrial production sites and occur in low or 
non-detectable concentrations in other effluents, with typical 
maximum to median differences of more than two orders of 
magnitude (Fig. S2). This holds true for the compounds HMMM, 
secobarbital, tetrapropyl ammonium, triethylphosphate, cyclohex-
ylamine, 7-diethylamino-4-methylcoumarin, 2,4–dichlorobenzoic 
acid, tetraglyme, pentobarbital, bentazone and 7-(ethylamino)-4- 
methylcoumarin. HMMM is used in the automotive industry for the 
formulation of lacquers. Secobarbital is not registered for medica-
tion in Europe, but is produced for the international market and has 
some application as an illicit drug. Together with pentobarbital, it 
has been reported previously in the Mulde and Elbe rivers (Hug 
et al., 2014; Krauss et al., 2019; Peschka et al., 2006; Schwarzbauer 
and Ricking, 2010). The high concentrations are discharged with a 
mixed industrial and municipal effluent from a WWTP, treating 
among others a production site for these chemicals, complemented 
with contaminated groundwater that contains high concentrations 
of the herbicide bentazone peaking in this effluent (LHW Sachsen- 
Anhalt, 2013). The three peak concentrations of tetrapropyl 
ammonium, triethylphosphate and cyclohexylamine were 
belonging to the same effluent. The first compound is a rarely re-
ported chemical, and the second a plasticizer, used in the production 
of polyvinylchloride, polyester resins and polyurethane foam and 
reported also in high concentrations in previous studies (Kandie 
et al., 2020; Wei et al., 2015). Cyclohexylamine is an industrial 
chemical, but also a known TP of cyclamate (Renwick et al., 2004). 
7-Diethylamino-4-methylcoumarin, which is used as fluorescent 
dye, together with its TP 7-(ethylamino)-4-methylcoumarin were 
detected previously in the receiving river Holtemme with a con-
centration of 14 µg/L (Muschket et al., 2018). 2,4–Dichlorobenzoic 
acid is a known pesticide TP and production intermediate of the 
insecticide spirodiclofen (Kiefer et al., 2019), which is why it was 
classified as such. However, due to some very high peak concen-
trations in different WWTP effluents, it is expected to be linked 
rather to other unknown sources. Most of these chemicals have 

rarely been detected before and highlight the need to complement 
target screening of known WWTP effluent components from do-
mestic and industrial uses, with suspect screening, based on known 
sources and non-target screening to cover local point sources with 
unknown emissions. In general, such prominent maximum con-
centrations occur in 15 out of 56 WWTP effluents and indicate the 
great relevance of industrial emissions for surface water quality. 
Interestingly, also saccharin and caffeine were found in very high 
maximum to median ranges, however, rather indicating poor 
treatment efficiencies at individual WWTPs than industrial uses. 

(2) About half of the compounds with prominent maximum con-
centrations exhibit a relatively small maximum to median ratio, 
indicating ubiquitous detection at high concentrations and thus 
diffuse consumption in high volumes (Fig. S2). These compounds 
include particularly synthetic sweeteners (sucralose, acesulfame) 
that have been already previously detected in high µg/L and even 
mg/L ranges (Loos et al., 2013), but also the two corrosion in-
hibitors (1H-benzotriazole and 5-methyl-1H-benzotriazole) and 
several pharmaceuticals (4-aminoantipyrine, valsartan, N- 
formyl-4-aminoantipyrine, atenolol, hydrochlorothiazide, meto-
prolol acid and metformin) used for the treatment of common 
diseases. Apart from the two UV-filters phenylbenzimidazole 
sulfonic acid and benzophenone-4, the high occurrence of the 
rarely analysed industrial compound 4′–aminoacetanilide also 
speaks for diffuse sources. 

4.3. Fraction of persistent and bioaccumulating compounds 

According to the predicted BCF, indicating the lipophilicity-driven 
bioaccumulation behaviour of organic chemicals, none of the top 30 
compounds exhibited a substantial risk to bioaccumulate (Fig. 2). Since 
detectable water concentrations require sufficient water solubility and 
thus a rather low hydrophobicity (low logKOW) (Palma 2014), these 
results are expected. In order to address the risk of compounds that tend 
to bioaccumulate, other matrices, such as biosolids, should be sampled 
(which may pose a thread in areas where biosolids are used in 
agriculture). 

High persistence of environmental contaminants, either due to slow 
biodegradation, low chemical reactivity or poor physical degradation by 
sun-light, is considered as a key driver for the risk of chemicals to 
accumulate in the environment until exceeding hazard thresholds 
(Cousins et al., 2019). Since (consistent) data on persistence of most 

Fig. 13. Risk driving compounds according to TUfishsum (based on dataset B; NA = MDL/2). The bars represent TUcrustsum for each sample. The coloured stacks 
within the bars represent the compound-specific TUs of the top 10 contributors by maximum TU (over all samples), and are sorted by increasing values. Further 
compounds are aggregated in the black coloured stacks at the bottom of each bar (“X further compounds”). The bold line indicates the risk threshold of 1. The dashed 
line indicates the risk threshold incl. a dilution factor of 10. Samples from WWTPs with advanced treatment are highlighted in red (suffix “a”). (For interpretation of 
the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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water contaminants are widely lacking, estimates typically rely on QSAR 
models such as OPERA (Mansouri et al., 2018). Applying half-life ranges 
adapted from recommendations under REACH scoring from 1 (poorly 
degradable, half-life time greater than 180 days) to 5 (easily degradable, 
half-life time less than 15 days) was not suitable to rank compounds by 
persistence (Fig. 2). For example, the WWTPs marker for poor degrad-
ability in treated wastewater, carbamazepine (Hai et al., 2018), and the 
marker for readily degradable substances in untreated wastewater, 
caffeine (Buerge et al., 2003) share the same score of 5. Experimental 
persistence information seems to have higher discriminative power and 
environmental realism, even if the number of compounds covered is 
limited and a few data are in contradiction to our findings (e.g.; µg/L- 
range concentrations of acetaminophen in many WWTP effluents 
despite reported 100% degradability). High concentrations of readily 
degradable compounds such as saccharin, cyclamate and caffeine in 
individual effluents indicate poor treatment in the respective WWTP. 
Unfortunately, consistent experimental half-life times as comparable to 
modelled values are lacking because of missing standardization and thus 
highly differing experimental designs. 

4.4. Risk assessment 

In this study, risk assessment of individual compounds and mixtures 
detected in WWTP effluents was based on three different risk metrics, 
namely (i) RQ, (ii) HU and (iii) TU (Table 3). The three approaches rely 
on different concepts, such as (i) protection against all impacts on all 
organisms and endpoints, considering uncertainty of toxicity data, (ii) 
assessment of potential impacts on a whole aquatic community and (iii) 
separate assessment of potential impacts towards different BQEs repre-
sented by sensitive model species, as inspired by the WFD assessment 
groups to classify the ecological status. Depending on the approach, 
distinct procedures to consider acute or chronic risks exist; either by 
defining BQE-specific acute and chronic risk thresholds (Malaj et al., 
2014), or by using different toxicity data (NOEC-type endpoints for HUch 
as applied in the current study vs. EC30-70 for HUac (Posthuma et al., 
2019b)). The RQ approach only considers chronic risk (i.e. AA-EQS). In 
the following, in accordance with the second objective of this study, the 
main risk drivers and cumulative risks based on the three different risk 
metrics were identified. 

The risk metric RQsum, often used in the regulatory context, such as 
compound registration and authorisation, or to identify priority sub-
stances in European surface waters, is based on the most conservative 
assumptions of the three approaches. It yields the highest risk metric 
ratios for all chemical mixtures found in effluents and thus is in good 
agreement with the precautionary principle and the use of this approach 
to identify water samples, which may be considered as ‘sufficiently safe’. 
In the current study, however, none of the effluent RQsum values fell 
below 1, but all effluents exceed this threshold of concern by a large 
margin, i.e. 33- to 8400-fold (Fig. 9). The assessment of chemicals ac-
cording to RQ is based on PNECs which have been selected based on 
expert judgement, considering the availability of toxicity data to any 
endpoint and in any organism, also considering uncertainty represented 
by respective AFs. This approach is considered to be protective for the 
individual compounds and provides incentives to improve data quality, 
especially in case of predicted acute toxicity values using an AF of 1000. 
For 16 out of the 30 top priority compounds ranked by RQ95, no 
experimental toxicity data for the BQEs are available in the ECOTOX 
database (Fig. 4). In fact, half of the compounds identified as risk drivers 
were based on predicted PNECs that involve an AF of 1000, among them 
the top-ranked compounds vancomycin and HMMM. The latter strongly 
dominates the cumulative risk metric values in two effluent samples. 
The other half of the compounds are prioritized despite lower or no AFs 
in combination with chronic endpoints, which is in agreement with 
previous findings by Von der Ohe et al. (2011). These compounds 
include particularly pesticides, such as fipronil, imidacloprid, fenox-
ycarb, diuron and diazinon. Thus, the prioritization of chemicals 

according to the RQ approach requires different actions, which might 
range from efforts to provide scientifically sound toxicity data with 
reduced uncertainty to an immediate need for management and regu-
lation. While being highly protective in general, the RQ approach (based 
on EQS and PNECs) bears the potential of overlooking chemicals with 
high acute toxic risks. Since decision makers may intuitively focus their 
management actions on the top n candidates, there is a risk that toxic 
chemicals that might require immediate management and regulation are 
ranked lower than chemicals that are highly prioritized due to greater 
uncertainty (i.e. new chemicals without measured toxicity for which 
only uncertain PNEC values are available). 

Two further approaches on mixture assessment have been explored 
in this paper. They include the SSD-based HUchsum approach and the 
BQE-based TUsum approach for individual organism groups. Both ap-
proaches agree with the results of the RQsum approach that most of the 
effluents are not sufficiently safe. Based on HUchsum, 93% of the efflu-
ents exceed the threshold of concern, with a maximum exceedance of 
42-fold (Fig. 10). This is in line with the percentage of exceedances using 
the TUsum approach, which indicates 100%, 91% and 54% of the ef-
fluents being not sufficiently safe for crustaceans, algae and fish, 
respectively (Figs. 11-13), considering the chronic toxicity thresholds 
defined by Malaj et al. (2014), which have been integrated into the TU 
calculations in this study. Considering HUchsum as a metric inherently 
integrating over all three organism groups mentioned above, com-
plemented with insects, molluscs and others, the obtained results indi-
cate robustness and coherence of both assessments. While both metrics 
list a broad variety of chemicals from different use groups, the HUch 
approach (Fig. 5) and the TU approach for crustaceans (Fig. 7) and algae 
(Fig. 6) agree on a clear dominance of pesticides and biocides among the 
top 30 ranked compounds with insecticides being prioritized for crus-
taceans and herbicides and biocides for algae, while some fungicides are 
relevant for both groups. These findings are well in agreement with the 
biological target the chemicals are designed for. Data-poor chemicals 
lacking experimental toxicity data have a lower probability to be 
prioritized. Using HUs, these compounds are even excluded altogether, 
due to lacking SSDs, while using TUsum they are characterized by pre-
dicted toxicity data using baseline toxicity QSAR models that prioritize 
these individual chemicals only at very high concentrations. Thus, RQ- 
based approaches are complementary in prioritizing chemicals that 
require additional efforts to derive sound toxicity data. 

Compared to algae and crustaceans, TUsumfish exhibits a quite 
different picture with relatively low risks and a larger number of 
chemicals without experimental toxicity data for fish (8 out of top 30 
chemicals by TU95 lack these data, Fig. 8). This is due to the fact that 
hardly any chemicals are in use that are designed to kill fish and thus 
exhibit particularly high fish toxicity. Thus, despite the still high per-
centage of pesticides and biocides among the top 30, data-poor phar-
maceuticals and industrial chemicals gain weight. A major gap related to 
the assessment of risks to fish may be the use of acute toxicity data as a 
basis for the risk metric calculation, while major adverse effects are 
possibly due to long term effects caused by endocrine disruption (Kidd 
et al., 2007), behavioural changes (Martin et al., 2019), inflammation 
(Naslund et al., 2017), fitness reduction by sublethal effects on meta-
bolism (Bojarski and Witeska, 2020) etc. 

4.5. Evaluation of WWTP effluents and impact of advanced treatment 

Prioritization of management measures such as an upgrade of 
WWTPs typically involve mixture risk assessment using the metrics 
applied in this study. For all assessment methods, mixture risks of WWTP 
effluents cover ranges of several orders of magnitude, although the 
nominal treatment technology for 52 out of 56 of them is very similar, 
using mechanical and biological treatment. Thus, individual contami-
nation obviously strongly depends on i) the type and intensity of 
pollution sources, and ii) the actual performance of the WWTP. The 
exploration of individual source-treatment-effluent relationships were 
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beyond the focus of this study. However, HUchsum, RQsum and TUal-

gaesum exhibited correlations with r between 0.63 and 0.69 indicating 
some robustness of the rankings (Fig. 14). Correlations of community- 
related risk metrics with TUs based on the least (fish) and the most 
sensitive species (crustaceans) were lower. For the former this may be 
due to the low contribution of fish toxicity to the community risk. In 
addition, 4–5 sites with high values for TUfishsum (based on mainly ethyl 
azinphos and carbendazim, as well as two QACs due to high MDL/2 
values) highly impacted to the slopes. The low correlation with crusta-
ceans is assumed to be caused by very toxic individual chemicals, 
driving risks particularly on crustaceans, such as diazinon, which may 
be masked in the RQsum approach by less toxic compounds with high AF 
and in the HUchsum by considering the whole SSD rather than a 
particularly sensitive model organism. It should be considered that 
correlations involving RQsum were calculated excluding EU009 as an 
outlier with an RQ strongly driven by a HMMM and thus a compound 
with high concentration and an AF of 1000, but without reliable toxicity 
data. 

All three applied assessment tools agree that the four WWTP samples 
with advanced treatment, using either ozonation or AC, were those with 
by far the lowest risks for aquatic organisms. While using RQ, they still 
exceeded the threshold of concern, in the assessments using HUchsum 
and TUsum, these effluents were clearly below toxicity thresholds, 
except for the chronic risk threshold for invertebrates. Thus, advanced 
treatment was obviously very successful in reducing mixture risks to an 
acceptable level. This is also confirmed by a direct comparison of sam-
ples of the same WWTP – before and after the ozonation of effluents 
(Fig. S3) – and is in agreement with previous studies reporting on the 
elimination of micropollutants by ozonolysis (Hollender et al., 2009). 

In all correlations of the absolute values of the different risk metrics, 
the TUsum of very-low-contamination advanced-treatment effluents 
deviate from the linear regression line towards higher estimates. This 
indicates that the TU approach, as used in this paper tends to over-
estimate risks of these samples by setting a kind of minimum mixture 
toxicity based on concentrations of MDL/2 for all chemicals below MDL, 
and using baseline-toxicity predictions for all chemicals lacking exper-
imental data. Taking this into account, threshold exceedance for chronic 
risks to crustaceans in effluents from WWTPs with advanced treatment 
should be put into perspective and are not in disagreement with the 
achievement of the reduced pollution goals using this technology. 

4.6. Consensus risk drivers 

One of the objectives of the current study was to use the three 
different risk metrics to prioritize risk drivers in a pragmatic consensus 
approach. In total, 299 out of 366 chemicals detected have been iden-
tified by at least one risk metric as relevant mixture component above 
the threshold of 1 in at least one effluent (Fig. S6, left & Table S14). 
Thus, mixture risks are highly relevant for WWTP effluents with many 
components contributing. In total, 185 compounds are prioritized by the 
RQ approach, only. Most of these compounds are currently character-
ized by an AF of 1000, and hence require the revision of the underlying 
PNEC before taking regulatory management actions. Four compounds 
are prioritized only by TU and no compound by HU, only. In total 110 
compounds have been identified by at least two metrics as consensus 
mixture components of concern, with 25 compounds prioritized by all 
metrics. Considering default dilution of the effluents in the receiving 
water by factor of 10, 32 consensus mixture components of high concern 
were identified (Fig. S6, right & Table S14). The 32 consensus mixture 
components of high concern include 21 pesticides and biocides, 5 
pharmaceuticals and 6 other compounds (Table 4). Among them are the 
top risk drivers of TU for algae, i.e. diuron, terbutryn and clari-
thromycin, the top risk drivers of TU for crustacean, i.e. diazinon, imi-
dacloprid and fipronil as well as the top risk driver of TU for fish i.e. 
carbendazim and ethyl azinphos. In addition, diclofenac and azi-
thromycin are among the main risk drivers according to RQ and HUch. 
All of them have been reported previously in treated wastewater sam-
ples (Alygizakis et al., 2020; Kienle et al., 2019; Loos et al., 2013; Munz 
et al., 2017; Nickel et al., 2021; Velki et al., 2019), except for ethyl 
azinphos. Two of these compounds are listed as priority substances ac-
cording to WFD, while two of them are part of the selection of substances 
for the 3rd watch list under the WFD (2020). 

It remains important to recognise that mixture components of high 
concern that lack consensus may include substances of high risk even if 
two approaches fail to identify them. Reasons for a lack of such a 
consensus have already been given in previous sections of the discus-
sion, such as the lack of SSDs for certain substances or the use of baseline 
toxicity for specifically acting chemicals with missing toxicity values. 
Particularly RQ covers endpoints which are not addressed by TU and 
HU, such as risks to human health or the risk of secondary poisoning, 
which is exhibited for example by PFAS (Ankley et al., 2021). Moreover, 
certain EQS used for RQ calculations are based on drinking water limits, 
which satisfy particularly high levels of precaution. 

Fig. 14. Pearson’s correlation of the three risk metrics (based on dataset B; NA = MDL/2). Correlation coefficient r is based on the entire dataset, excluding EU009 in 
case of RQsum. 
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5. Conclusions 

Using wide-scope chemical target screening for 56 European WWTP 
effluents, a total of 366 chemicals from different use groups could be 
detected in at least one effluent. These chemicals include many com-
pounds found almost ubiquitously in WWTP effluents and surface wa-
ters. However, in 27% of the effluents, high concentrations of site- 
specific compounds, for example from industrial emissions, have been 
detected, indicating the need to involve local information on specific 
commercial usages and industrial processes in order to avoid over-
looking these chemicals. Using three different risk metrics (RQ, HU and 
TU), 299 of these 366 compounds contributed to mixture risks by 
exceeding the thresholds for chronic effects, highlighting the need for a 
more comprehensive analysis and assessment of mixture risks, rather 
than focusing on individual compound risks only. The different risk 
metrics have their individual strengths and weaknesses, with RQ being 
the most protective one, using predicted effects and AFs to consider 
uncertainty, integrating over many toxic endpoints. About 60% of the 
mixture components of concern were prioritized only by RQ, typically 
based on high AF. TU and HU assessment metrics were less protective, 
but probably provide a closer link to the impacts on individual BQEs 
(TU) or the entire aquatic community (HU) and tend to prioritize 
chemicals with high known toxicity. Although partly prioritizing 
different chemicals, effluent mixture risks determined with RQ and HU 
were well correlated, indicating the robustness of both approaches. Care 
has to be taken if individual chemicals with high uncertainty and thus 
high AF drive the RQ, which can result in strong outliers. The TU 
approach allows a BQE-specific assessment that is not necessarily in 
agreement with HU and RQ, which address the whole community. 
Consensus chemicals of very high concern, as identified in this study, 
include 32 chemicals dominated by pesticides and biocides, indicating 
the very high relevance of these compounds also in municipal settings 
and not only in agriculture. Appropriate consideration of risks of 

effluents and other contamination sources containing endocrine dis-
ruptors, immune- and neurotoxicants to fish would require the consid-
eration of sublethal effects on reproduction and fitness, going beyond 
acute toxicity. 

While all risk metrics allow for appropriate component-based 
mixture risk assessment involving a large number of chemicals, 
further improvements are possible and required. They include a further 
enhancement of the number of chemicals considered involving both 
extended target and non-target screening, as well as improved detection 
limits below effect thresholds for all chemicals potentially contributing 
to risks. Together with advanced imputation methods beyond using 
MDL/2 or zero for non-detects, improved MDLs will enhance environ-
mental realism of low mixture risks. A major source of uncertainty is the 
lack of measured toxicity data for many frequently detected compounds 
and high uncertainty, if toxicity is predicted by baseline-QSARs or other 
in silico tools. Substantial efforts are required to fill these gaps priori-
tizing chemicals for effect testing and enhancing QSARs for screening 
purposes. While in the current paper, a default dilution of 1/10 has been 
assumed for getting an overview on WWTP-effluent related risks, the 
assessment and prioritization of individual WWTPs triggering manage-
ment measures has to take the real dilution into account. Independent of 
the dilution factor and of the risk metric used, the current study provides 
clear indications that ozonation and active carbon treatment are able to 
minimize toxic risks based on known target chemicals, typically below 
risk thresholds. Due to the formation of possibly harmful TPs that may 
be missed by target screening and lack reliable toxicity data, these re-
sults should be confirmed with effect-based methods (Brack et al., 
2019a). 
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