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Background: Atypical EGFR mutations occur in 10%-30% of non-small-cell lung cancer (NSCLC) patients with EGFR
mutations and their sensitivity to classical epidermal growth factor receptor (EGFR)-tyrosine kinase inhibitors (TKI) is
highly heterogeneous. Patients harboring one group of uncommon, recurrent EGFR mutations (G719X, S768I,
L861Q) respond to EGFR-TKI. Exon 20 insertions are mostly insensitive to EGFR-TKI but display sensitivity to exon 20
inhibitors. Clinical outcome data of patients with very rare point and compound mutations upon systemic
treatments are still sparse to date.

Patients and methods: In this retrospective, multicenter study of the national Network Genomic Medicine (nNGM) in
Germany, 856 NSCLC cases with atypical EGFR mutations including co-occurring mutations were reported from 12
centers. Clinical follow-up data after treatment with different EGFR-TKIs, chemotherapy and immune checkpoint
inhibitors were available from 260 patients. Response to treatment was analyzed in three major groups: (i)
uncommon mutations (G719X, S7681, L861Q and combinations), (ii) exon 20 insertions and (iii) very rare EGFR
mutations (very rare single point mutations, compound mutations, exon 18 deletions, exon 19 insertions).

Results: Our study comprises the largest thus far reported real-world cohort of very rare EGFR single point and
compound mutations treated with different systemic treatments. We validated higher efficacy of EGFR-TKI in
comparison to chemotherapy in group 1 (uncommon), while most exon 20 insertions (group 2) were not EGFR-TKI
responsive. In addition, we found TKI sensitivity of very rare point mutations (group 3) and of complex EGFR
mutations containing exon 19 deletions or L858R mutations independent of the combination partner. Notably,
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treatment responses in group 3 (very rare) were highly heterogeneous. Co-occurring TP53 mutations exerted a non-
significant trend for a detrimental effect on outcome in EGFR-TKI-treated patients in groups 2 and 3 but not in group 1.
Conclusions: Based on our findings, we propose a novel nNGM classification of atypical EGFR mutations.
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INTRODUCTION

L858R mutations and exon 19 deletions represent the most
common, classical EGFR mutations in patients with non-
small-cell lung cancer (NSCLC) treated with epidermal
growth factor receptor (EGFR)-tyrosine kinase inhibitors
(TKIs) in first line (1L).> Retrospective studies indicate that
combinations of classical EGFR mutations with other co-
mutations such as TP53 can be detrimental for outcome.’

Atypical EGFR mutations comprise 10%-30% of EGFR-
mutated NSCLC,>® either alone or in combination with
other EGFR mutations (atypical or classical). Only few
prospective clinical trial data are available to assess the
activity of EGFR-TKI in patients with atypical EGFR muta-
tions. In a post hoc analysis of different prospective trials,
data from 100 patients with rare EGFR mutations were
analyzed.? Seventy-five patients were treated with afatinib
and 25 with chemotherapy and rare EGFR mutations were
categorized into 3 groups. Group 1 contained point muta-
tions or duplications in exons 18-21, either alone or in
combination, group 2 patients with de novo T790M muta-
tion and group 3 patients with exon 20 insertions. This
study showed clinical benefit of afatinib in patients
assigned to group 1. G719X, L861Q and S768l either alone
or in combination were the most common mutations in this
group. Upon treatment with afatinib, progression-free
survival (PFS) was 10.7 months [95% confidence interval
(Cl) 5.6-14.7 months] and overall survival (0OS) was 19.4
months (16.4 months-not estimable). Patients with atypical
EGFR mutations from group 2 (de novo T790M) and group
3 (exon 20 insertions) did not benefit from afatinib
compared to chemotherapy.®

Despite the relatively low frequency of atypical EGFR
mutations, real-world outcome data from patients with
such EGFR mutations are crucial for clinical decision making.
Today most data are available for G179X, L861Q, S768I and
combinations of such and for treatment with afatinib or
osimertinib. This group is often referred to as ‘major un-
common’ or ‘uncommon, group 1’ and is considered sen-
sitive to EGFR-TKI. In current recommendations, afatinib
and/or osimertinib are suggested for treatment of patients
with these mutations, also because less data are available
from other EGFR-TKIs.>>®

Exon 20 insertions are considered less sensitive toward
classical EGFR-TKI. Recently, the Food and Drug Administra-
tion (FDA) approved two drugs specifically for treatment of
NSCLC with exon 20 insertions™*: (i) mobocertinib, an oral,
irreversible TKI designed to selectively target in-frame exon
20 insertions and (ii) amivantamab, a bi-specific MET-EGFR
monoclonal antibody.*™*? Although this is a tremendous step
forward for patients harboring exon 20 insertions, these still
represent a very heterogeneous group of mutations.
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In an attempt to better understand and categorize the
very heterogeneous group of atypical EGFR mutations,
Robichaux et al. recently suggested a structure- and in vitro
drug sensitivity-based approach for improvement of pre-
diction of drug sensitivity for atypical EGFR mutations.”
They screened >16 000 EGFR mutations from five
different databases and reported 7199 cases with atypical
EGFR mutations. Furthermore, in silico prediction models
were used to identify four potential subgroups based on
structural information: (i) classical-like mutations, which
were distant from the ATP-binding pocket and were
predicted to have little effect on the drug-binding
pocket, containing mutations such as L861Q, T725M and
763_764YinsFQEV besides classical EGFR mutations; (ii)
mutations in the interior surface of the ATP-binding pocket
or C-terminal end of the C-helix, which were predicted to be
P-loop and C-helix compressing (PACC), thereby interfering
with third-generation TKI binding. In vitro assays comparing
sensitivity of different TKls in cell lines expressing 76
different atypical EGFR mutations suggested that second-
generation TKls were indeed more effective in PACC mu-
tations. Uncommon mutations including G719X, S786l and
exon 18 deletions were considered PACC mutations; (iii)
T790M-like mutations, with at least one mutation in the
hydrophobic core, mostly consisting of complex mutations
in combination with T790M mutations and (iv) exon 20
insertions. Here, they suggested that C-helix insertions were
classical-like (i.e. 763_764YinsFQEV) and that insertions
following the C-helix could be divided into near loop (NL)
and far loop (FL) insertions based on in vitro sensitivities. In
these in vitro assays, second-generation TKIs (especially to
poziotinib) and exon 20-specific TKIs appeared more sensi-
tive in NL insertions than in FL insertions. Interestingly, data
from the phase II ZENITH20 study also suggested that
poziotinib was more efficient in patients with NL in-
sertions,> while this difference was not observed for
mobocertinib or amivantamab.' "

The authors also confirmed that patients with PACC mu-
tations had a better response to afatinib than patients with
non-PACC mutations and that patients with PACC mutations
benefited more from second-generation EGFR-TKIs (mostly
afatinib) than third-generation TKI osimertinib. However,
most mutations in the second-generation EGFR-TKI-treated
group were already known to respond well to afatinib.’

Taken together, there is still lack of functional data and a
clinical knowledge gap for many atypical EGFR mutations.
Here, we present a retrospective, multicenter study of the
national Network Genomic Medicine (hNGM) in Germany
analyzing the frequency of atypical EGFR mutations, co-
mutations and response to EGFR-TKI, chemotherapy and
immune checkpoint inhibitors (ICls).
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PATIENTS AND METHODS

Study design and participants

Twelve German comprehensive cancer centers participating
in the nNGM contributed data to this retrospective study
(Berlin, Dresden, Disseldorf, Erlangen, Essen, Frankfurt,
Hamburg, K6ln/Bonn, Mainz, Miunchen, Tubingen/Stuttgart,
Wirzburg).

Inclusion criteria were non-resectable NSCLC with atyp-
ical EGFR mutations in exons 18-21 including compound
mutations with atypical or classical EGFR mutations (nNGM
cohort). Information about co-occurring mutations in other
genes and follow-up (FUP) information including PFS and OS
upon palliative systemic treatment with EGFR-TKI, chemo-
therapy and immune therapy were reported if available
(nNGM clinical FUP cohort). We excluded exon 19 deletions
and L858R mutations, and combinations of such with
T790M, and de novo T790M mutations. Response to
treatment was assessed locally without central review.

Sample preparation and sequencing were carried out at
the centers according to local guidelines. Supplementary
Table S1, available at https://doi.org/10.1016/j.annonc.
2022.02.225, gives an overview of different techniques
and next-generation sequencing (NGS) panels that were
used in each cohort. Overall, in the nNGM cohort,
customized NGS panels were used in 85.7% of the cases
(nNGM cohort) and in the clinical FUP cohort in 78.5% of
the cases. Supplementary Table S2, available at https://doi.
org/10.1016/j.annonc.2022.02.225, lists the targeted genes
of the customized NGS panels. In 0.8% (n = 7 cases) of the
NNGM cohort and 1.6% (n = 4) of the clinical FUP cohort,
EGFR-targeted monogene assays were used not including
EGFR exon 20 alterations.

The study was carried out in accordance with the Code of
Ethics of the World Medical Association (Declaration of
Helsinki). It received approval by the ethics committee Il of
Medical Faculty Mannheim at the University of Heidelberg
(no. 2021-800). Informed consent was obtained when
required by law.

Classification of mutations

Classification of atypical EGFR mutations into subgroups is
shown in Supplementary Table S3, available at https://doi.
org/10.1016/j.annonc.2022.02.225, and explained in the
Results section.

Statistical analysis

PFS was calculated from the day of initiation of systemic
palliative treatment until disease progression or death for
1L treatment of each patient and additionally for each drug
applied during the treatment history of the patients
regardless of line of therapy (all lines). OS was calculated
from the day of initiation of 1L palliative treatment to
death. Survival was estimated by Kaplan—Meier (KM) plots.
Hazard ratios (HRs) for EGFR-TKI versus chemotherapy were
calculated using Cox regression models. SPSS version 27
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(IBM, Armonk, NY) and R version 4.1.1 (R Foundation for
Statistical Computing, Vienna, Austria) with packages sur-
vival 3.2-11, survminer 0.4.9, swimplot 1.2.0, ggplot2 3.3.5
and cowplot 1.1.1 were used.

We analyzed PFS and OS as main outcome parameters
because objective response rates were available only for a
minority of patients.

RESULTS

Frequency and distribution of different uncommon EGFR
mutations

A total of 856 patients with 276 different atypical EGFR ab-
errations were reported (nNGM cohort; Supplementary
Table S3, available at https://doi.org/10.1016/j.annonc.
2022.02.225, Figure 1A). Atypical EGFR mutations were
categorized into three major subgroups based on previous
analyses™®: (i) more frequent uncommon EGFR mutations
including G719X, S768I, E709X and L861Q and combinations
of those with classical EGFR mutations L858R and exon 19
deletions (‘uncommon’ based on group 1 from Yang et al.%);
(i) exon 20 insertions (group 3 based on Yang et al.?) and (i)
‘very rare’ mutations including very rare point mutations,
exon 18 deletions, exon 19 insertion and complex mutations
in which very rare point mutations are at least one combi-
nation partner (Supplementary Table S3, available at https://
doi.org/10.1016/j.annonc.2022.02.225, Figure 1A).
Throughout this manuscript, we use the term ‘atypical’ for all
non-classical EGFR mutations and the terms ‘uncommon’ and
‘very rare’ for groups 1 and 3, respectively.

Exon 20 insertions represented the largest subgroup of
atypical EGFR mutations (group 2, 227 cases, 26.5% of the
nNGM cohort, n = 57 different exon 20 insertions), most of
which were located in the loop following the C-helix (n =
224, 98.7% of exon 20 insertions, Figure 1A and
Supplementary Table S3, available at https://doi.org/10.
1016/j.annonc.2022.02.225).* These loop insertions were
mainly NL insertions (79%, AA767-772, Supplementary
Figure S1A, available at https://doi.org/10.1016/j.annonc.
2022.02.225).

A subgroup of comparable size comprised rare point
mutations (223 cases, 26.1% of nNGM cohort, n = 113
different mutations). This subgroup was remarkably het-
erogeneous with approximately half of the mutations
occurring only once (n = 57, 50.4% of very rare point
mutations). However, some mutations such as P848X
(n =16, 7.3%), L747P (n = 12, 5.4%), K713X (n = 11, 4.9%),
A840X (n = 7, 3.1%), R776X (n = 6, 2.6%) and N816X
(n = 6, 2.6%) were recurrent (Supplementary Table S3,
available at https://doi.org/10.1016/j.annonc.2022.02.225).

Altogether, 244 aberrations were complex mutations
(28.5% of nNGM cohort). While 51% of uncommon EGFR
mutations (group 1) occurred as complex mutations, only
31% (n = 117) of complex mutations were reported in the
group of very rare EGFR mutations (group 3). The largest
subgroup of complex mutations in group 3 was combina-
tions of very rare point mutations with classical EGFR mu-
tations (L8585R or exon 19 deletions, 12.6%, n = 48,
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Figure 1. Frequency and distribution of rare EGFR mutations by subgroup.

(A) The nNGM cohort (n = 856 patients) and (B) the nNGM clinical FUP cohort (n = 260 patients). Lighter shades indicate complex mutations. Uncommon mutations

with known EGFR-TKI sensitivity, based on Yang et al.?

EGFR-TKI, epidermal growth factor receptor-tyrosine kinase inhibitor; Ex18del, exon 18 deletions; Ex19ins, exon 19 insertions; Ex20ins, exon 20 insertions; FUP, follow-

up; nNGM, national Network Genomic Medicine.

Supplementary Table S3, available at https://doi.org/10.
1016/j.annonc.2022.02.225, Figure 1A).

The overall distribution of the different types of EGFR
mutations in the nNGM cohort was similar to that in pre-
vious reports.”®

Characteristics of the nNGM clinical FUP cohort

Clinical information about systemic treatment and outcome
was available for 260 patients (nNGM clinical FUP cohort).
This cohort comprised 135 different atypical EGFR aberra-
tions. The distribution in groups 1-3 was similar to that in
the nNGM cohort and comparable with previous reports

Volume 33 m Issue 6 m 2022

(Figure 1A and B, Supplementary Table S3, available at
https://doi.org/10.1016/j.annonc.2022.02.225).

The median age at diagnosis was 64.4 years. Overall, 90%
(n = 235) of patients had adenocarcinomas, and the lowest
frequency of this subtype was observed in patients with
very rare EGFR mutations (group 3). Interestingly, this group
was associated with a higher frequency of squamous cell
carcinoma histology and co-occurring KRAS mutations
(Table 1).

Two hundred and thirty-four patients were treated with
either EGFR-TKI (n = 95), chemotherapy (n = 123) or
mono-ICl treatment (n = 16) as 1L. Twenty-six of 260 pa-
tients were not assessable for 1L therapy or received a

https://doi.org/10.1016/j.annonc.2022.02.225 605
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Table 1. Patient’s characteristics—nNGM clinical FUP cohort
Characteristics Clinical FUP cohort Group 1 Group 2 Group 3 P value
Uncommon Exon 20 insertions Very rare
Total, n (%) 260 (100) 87 (100) 71 (100) 102 (100)
Age in years, mean (range) 64.4 (29-92) 67.5 (44-92) 64.7 (29-87) 63.4 (32-86) 0.059
Sex, n (%)
Male 109 (42) 39 (45) 28 (39) 42 (41) 0.777
Female 151 (58) 48 (55) 43 (61) 60 (59)
Smoking status, n (%)
Current 55 (24) 20 (25) 9 (15) 26 (29) 0.096
Former 92 (40) 31 (39) 23 (37) 38 (43)
Never 83 (36) 28 (35) 30 (48) 25 (28)
Missing 30 8 9 13
Histology, n (%)
Adeno 235 (90) 83 (95) 67 (94) 85 (83) 0.008
Squamous 16 (6) 1(1) 1(1) 14 (14)
Others 9 (4) 3(3) 3 (4) 3 (3)°
TP53, n (%)
Wild type 127 (63) 46 (68) 33 (52) 48 (69) 0.099
Mutated 74 (37) 22 (32) 33 (48) 22 (31)
Missing 59 19 8 32
KRAS, n (%)
Wild type 192 (93) 65 (94) 63 (98) 64 (87) 0.022
Mutated 15 (7) 4 (6) 1(2) 10 (14)
Missing 53 18 28
Treatment, n (%)
1L 234 82 61 91
EGFR-TKI 95 (41) 42 (51) 13 (21) 40 (44) 0.006
Chemo 123 (53) 37 (45) 42 (69) 44 (48)
ICI 16 (7) 3 (4) 6 (10) 7 (8)
2L 136 43 33 60
EGFR-TKI 65 (48) 29 (67) 8 (24) 28 (47) 0.005
Chemo 43 (32) 10 (23) 14 (42) 19 (32)
ICI 28 (21) 4 (9) 11 (33) 13 (22)
3L 69 17 19 33
EGFR-TKI 18 (26) 8 (47) 3 (16) 7 (21) 0.211
Chemo 37 (54) 6 (35) 11 (58) 20 (61)
ICI 14 (20) 3 (18) 5 (26) 6 (18)
4L 26 8 7 11
EGFR-TKI 7 (27) 1(13) 2 (29) 4 (37) 0.813
Chemo 13 (50) 5 (63) 3 (43) 5 (46)
ICI 6 (23) 3 (25) 2 (29) 2 (18)

1L, first line; 2L, second line; 3L, third line; 4L, fourth line; EGFR-TKI, epidermal growth factor receptor-tyrosine kinase inhibitor; FUP, follow-up; ICl, immune checkpoint inhibitor;

LCNEC, large cell neuroendocrine carcinoma; nNGM, national Network Genomic Medicine.

Including two LCNEC; percent may not add to 100 due to rounding.

therapy not fitting into these categories. One hundred and
thirty-nine of 260 patients were assessable for second line
(2L) and 71 patients for third line (3L) therapy. Only 27
patients were reported who received >4 lines of treatment
(Table 1). The choice of treatment differed between groups.
While patients with exon 20 insertions were mostly treated
with chemotherapy in 1L (69%), patients with uncommon
mutations and very rare EGFR mutations were given EGFR-
TKI or chemotherapy with similar frequency in 1L (uncom-
mon mutations: 51% EGFR-TKI, 45% chemo; very rare EGFR
mutations: 44% EGFR-TKI, 48% chemo). In 2L, however,
EGFR-TKIs were administered more often in patients with
uncommon (EGFR-TKI 67%, chemo 23%) and very rare
mutations (EGFR-TKI 47%, chemo 32%, Table 1).

In total, data from 445 different treatments (regardless of
the line of treatment, ‘all lines’ group) were available for
analysis of PFS and OS (Figure 2).

606 https://doi.org/10.1016/j.annonc.2022.02.225

Clinical outcomes of patients

Uncommon EGFR mutations (group 1). In patients with
uncommon EGFR mutations (group 1), median PFS (mPFS) was
significantly longer when patients were treated with EGFR-TKI
in 1L compared to chemotherapy (HR 0.53; 95% CI 0.30-0.93,
P = 0.028, Supplementary Tables S4 and S5, available at
https://doi.org/10.1016/j.annonc.2022.02.225). This effect
was similar when all treatments were considered independent
of treatment line (all lines, HR 0.54, 95% CI 0.35-0.81, P =
0.003, Figure 2A, Supplementary Tables S4 and S5, available at
https://doi.org/10.1016/j.annonc.2022.02.225). Afatinib was
the most frequently applied EGFR-TKI in this group (36/79
treatments, 46%), followed by erlotinib (22/79 treatments,
28%), gefitinib (13/79 treatments, 16%) and osimertinib (8/79
treatments, 10%) (Figure 3A). Patients treated with afatinib
had an mPFS of 12.0 months (95% Cl 4.0-20.0 months) while
mPFS with erlotinib was only 3.8 months (95% ClI 2.7-5.0
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Figure 2. Progression-free (PFS) and overall survival (OS) with EGFR-TKI, chemotherapy and ICI according to the rare EGFR categories.

(A-C) Kaplan—Meier plot indicating PFS in patients with uncommon mutations, groupl (A), exon 20 insertions, group 2 (B) and very rare EGFR mutations, group 3 (C)
calculated from any treatment regardless of treatment line (‘all lines’). (D-F) Kaplan—Meier plot indicating OS for uncommon mutations, group 1 (D), exon 20 insertions,
group 2 (E) and very rare EGFR mutations, group 3 (F) calculated for 1L treatments (‘1L).

1L, first line; Cl, confidence interval; EGFR-TKI, epidermal growth factor receptor-tyrosine kinase inhibitor; HR, hazard ratio; ICl, immune checkpoint inhibitor; ins,

insertions; mPFS, median PFS.

months). The number of patients treated with gefitinib and
osimertinib was very low. However, the overall log-rank test
indicated a significant difference in PFS among the different
EGFR-TKIs (overall log rank 0.014, Figure 3A).

Data for treatment with ICl in 1L were available only for 3
patients and only for 11 patients considering all treatments
regardless of treatment line (‘all lines’). Upon treatment
with ICl, mPFS in the ‘all lines’ group was 3.0 months (95%
Cl 0.2-5.8 months, Figure 2, Supplementary Table $S4,
available at https://doi.org/10.1016/j.annonc.2022.02.225),
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which was lower than mPFS for EGFR-TKI and chemo (6.6
and 4.9 months, respectively, overall log rank 0.016).

Median OS was numerically longer upon TKI treatment
(18 months, 95% Cl 11.7-24.4 months) compared to
chemotherapy (13.9 months, 95% Cl 1.7-26.1 months) and
ICI (7.7 months) albeit this effect was not statistically sig-
nificant (Figure 2D).

PFS outcomes upon treatment with different EGFR-TKIs
per individual mutation for 1L and in the ‘all lines’ group
are displayed in swimmer plots (Supplementary Figure S2,
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Figure 3. Progression-free survival (PFS) according to type of EGFR-TKI.
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available at https://doi.org/10.1016/j.annonc.2022.02.225).
Supplementary Table S6, available at https://doi.org/10.
1016/j.annonc.2022.02.225, indicates mPFS for 1L and in
the ‘all lines” group in uncommon EGFR subgroups.

Exon 20 insertions (group 2). Patients with exon 20 in-
sertions did not benefit from treatment with EGFR-TKI with
a few exceptions (see below). In 1L, mPFS was numerically
longer with chemotherapy compared to EGFR-TKI (6.9
versus 4.0 months, respectively, log rank 0.471,
Supplementary Table S4, available at https://doi.org/10.
1016/j.annonc.2022.02.225). Considering all treatments,
mPFS was 3.3 months upon treatment with EGFR-TKI and
5.0 months with chemotherapy. Possibly due to low
numbers of patients treated with EGFR-TKI (n = 26)
compared to chemotherapy (n = 66), this effect was not
significant (HR 1.27, 95% CI 0.77-2.09, Figure 2B,
Supplementary Tables S4 and S5, available at https://doi.
org/10.1016/j.annonc.2022.02.225). Afatinib was the most
frequently administered EGFR-TKI in this group (13/27,
48.1% Figure 3B). Due to low numbers, no conclusion could
be drawn regarding differences between EGFR-TKIs.
Median OS was longer in the EGFR-TKI group versus
chemotherapy (28.7 versus 15.0 months, respectively). HR
was 0.62, but the effect was not significant (95% CI 0.27-
1.41, P = 0.225, Figure 2E, Supplementary Tables S4 and S5,
available at https://doi.org/10.1016/j.annonc.2022.02.225).
With regard to ICI treatment, only six patients were
treated with ICI in the 1L. Considering all lines (n = 23),
mPFS was similar in ICl-treated patients compared to EGFR-
TKI-treated patients (Supplementary Table S4, available at
https://doi.org/10.1016/j.annonc.2022.02.225, Figure 2B).

Swimmer plots for individual exon 20 insertions
confirmed the already documented sensitivity of
763_764AYinsFQEV to first-generation EGFR-TKI

(Supplementary Figure S2, available at https://doi.org/10.
1016/j.annonc.2022.02.225). In addition, one patient with
a 773_774HVinsAH insertion had a remarkable response to
afatinib as 1L treatment (PFS 25.4 months). The patient died
3.3 months after progression upon afatinib therapy without
any further treatment. Also, a PFS of >10.0 months was
observed in a patient with a 773_774HVinsGHPH insertion
treated with afatinib. This patient had progressed from 1L
chemotherapy after 7.7 months. These data suggest that
afatinib can be effective in patients with these two specific
exon 20 insertions in addition to the already documented
763_743AYinsFQEV mutation. For all other exon 20 in-
sertions, mPFS was <9 months (mPFS 3.3 months, 95% ClI
2.2-4.4 months, Supplementary Figure S2, available at
https://doi.org/10.1016/j.annonc.2022.02.225).

Since NL insertions (AA767-772) may respond better to
second-generation TKI than FL mutations, we also analyzed
outcome in this subgroup of exon 20 insertion.**> NL in-
sertions occurred with a frequency of 79% (n = 56) and FL

insertions with 20% (n = 14) of the exon 20 insertions. For
patients with NL insertions, a mPFS of 8.4 months (95% ClI
4.3-12.6 months) with chemotherapy, 3.3 months (95% ClI
2.9-3.7 months) with EGFR-TKI and 3.4 months with ICI
(95% CI 0.0-6.8 months) was observed in 1L (log rank 0.010,
Supplementary Figure S1D, available at https://doi.org/10.
1016/j.annonc.2022.02.225). In the ‘all lines’ cohort, we
found an mPFS of 5.0 months (95% Cl 3.1-6.8 months) with
chemotherapy, 3.0 months (95% CI 2.3-3.7 months) with
EGFR-TKI and 3.0 months with ICI (95% Cl 1.5-4.3 months)
(log rank 0.024, Supplementary Figure S1J, available at
https://doi.org/10.1016/j.annonc.2022.02.225). The mPFS
for afatinib in the ‘all lines’ cohort was 3.1 months (95% ClI
2.7-3.5 months). However, the number of evaluable treat-
ments for PFS was only 10 for afatinib, 4 for gefitinib and 3
for erlotinib and osimertinib (Supplementary Figure S1L,
available at https://doi.org/10.1016/j.annonc.2022.02.225).

Due to the very low numbers of FL insertions in our
cohort, no conclusions could be drawn in this subgroup
concerning outcome of specific TKI (Supplementary
Figure S1E and K, available at https://doi.org/10.1016/].
annonc.2022.02.225).

Very rare EGFR mutations (group 3). We observed a benefit
for patients harboring mutations from this very heteroge-
neous group upon treatment with EGFR-TKI in comparison
to chemotherapy. mPFS for patients treated with 1L EGFR-
TKI was 6.7 versus 5.5 months for patients treated with
chemotherapy (HR 0.71, 95% Cl 0.42-1.18, P = 0.187,
Supplementary Tables S4 and S5, available at https://doi.
org/10.1016/j.annonc.2022.02.225). When considering all
lines, this effect was statistically significant (6.7 versus 3.5
months upon EGFR-TKI treatment compared to chemo-
therapy, HR 0.67, 95% Cl 0.47-0.95, P = 0.025,
Supplementary Table S5, available at https://doi.org/10.
1016/j.annonc.2022.02.225, Figure 2C). Interestingly, the
PFS advantage translated into a numerical OS advantage
with an mOS in 1L EGFR-TKI-treated patients of 20.5
months versus 12.3 months in patients treated with
chemotherapy; however, this difference was not significant
(HR 0.65, 95% Cl 0.37-1.14, P = 0.131, Supplementary
Tables S4 and S5, available at https://doi.org/10.1016/].
annonc.2022.02.225, Figure 2F).

Again, afatinib was the most frequently given EGFR-TKI.
Twenty-seven patients were treated with afatinib (60.0%),
8/45 with erlotinib (17.8%), 6/45 with gefitinib (13.3%) and
4/45 with osimertinib (8.9%, Figure 3C). Numerically,
gefitinib-treated patients had the longest mPFS (16.0
months, Figure 3C), although the overall log-rank test
comparing all four EGFR-TKIs was not significant
(P = 0.124). Due to the heterogeneous nature and singular
occurrence of many mutations in this group, further pre-
clinical characterization is warranted in order to determine
the functional impact of very rare EGFR mutations.

Kaplan—Meier plot indicating PFS for each EGFR-TKI in patients with uncommon mutations with known EGFR-TKI sensitivity, group 1 (A), exon 20 insertions, group 2 (B)
and very rare EGFR mutations, group 3 (C) calculated from any treatment regardless of treatment line (‘all lines’).
Cl, confidence interval; EGFR-TKI, epidermal growth factor receptor-tyrosine kinase inhibitor; ins, insertions; mPFS, median PFS.
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Table 2. nNGM classification of uncommon EGFR mutations

mPFS upon EGFR-TKI Recommendations

1. nNGM UC1 TKI-sensitive EGFR mutations

G719X, S768X, L861X mutations, alone or in complex with other 6.6 months (Supplementary Table S4,

uncommon mutations such as E709X or classical L858R or exon 19 available at https://doi.org/10.1016/j.

deletions (group 1 in nNGM clinical FUP cohort) annonc.2022.02.225)

B Complex mutations containing classical EGFR mutations L858R or 11.4 months (Supplementary Table S6,
exonl9 deletions with very rare EGFR mutations available at https://doi.org/10.1016/j.

annonc.2022.02.225)

10.0 months (Supplementary Table S6,

available at https://doi.org/10.1016/j.

annonc.2022.02.225)

(Supplementary Figure S2, available at

https://doi.org/10.1016/j.annonc.2022.02.

225)

Erlotinib, 42.5 months

Osimertinib, 13.4 months

Afatinib, 10.1 months

>

This group of EGFR mutations can be
considered EGFR-TKI sensitive albeit these
drugs are generally less effective compared
to classical EGFR mutations.

C Exon 19 insertions

D Specific exon 20 insertions

Y763_V764insFQEV
A767_V769dup
N771_H773dup

EGFR-TKI naive

EGFR-TKI naive

Second EGFR-TKI,

switch from 1L gefitinib
(instead of just gefinitinib)
gefitinib due to toxicities
H773_V774insGHPH EGFR-TKI naive
H773_V774insAH EGFR-TKI naive

Specific very rare single point mutations

Afatinib, 10.0 months

Afatinib, 25.4 months

(Supplementary Figure S2, available at
https://doi.org/10.1016/j.annonc.2022.02.
225)

m

E711Q EGFR-TKI naive Osimertinib, 11.4 months
P733Q EGFR-TKI naive Afatinib, 14.3 months
L747P EGFR-TKI naive Gefitinib, 33.1 months

EGFR-TKI naive Osimertinib, 16.0 months
P753L 5L (1L gefitinib PFS Afatinib, 17.9 months

2.0 months, 2L erlotinib

PFS

3.0 months, 4L and 5L

chemo)
E758G EGFR-TKI naive Afatinib, 34.9 months
R776H EGFR-TKI naive Gefitinib, 58.1 months
Q791H EGFR-TKI naive Erlotinib, 20.3 months

-

Specific complex mutations: uncommon with very rare (Supplementary Figure S2, available at
https://doi.org/10.1016/j.annonc.2022.02.
225)

Afatinib, 10 months

(Supplementary Figure S2, available at
https://doi.org/10.1016/j.annonc.2022.02.
225)

Gefitinib, 15.3 months

G719A, P753Q EGFR-TKI naive
G Specific complex mutations: very rare with very rare

L833V, H835L

nNGM UC2 T790M de novo mutations
De novo T790M (not analyzed in this
study)

EGFR-TKI naive

2

T790M mutations are known to be resistant
to first- and second-generation EGFR-TKIs.
Osimertinib represents the current
treatment of choice. However, information
about T790M compound mutations with
combination partner besides the classical
EGFR mutations is rare. This is subject to
further studies.

w

. NNGM UC3 exon 20 insertions
Exon 20 insertions 3.3 (2.2-4.4) months, Supplementary Table
S4, available at https://doi.org/10.1016/j.

annonc.2022.02.225

Very heterogeneous group. In general, these
mutations are insensitive toward classical
EGFR-TKI, with the exception of specific exon
20 insertions mentioned in group 1 (nNNGM
ucC 1D)

4. nNGM UC4 very rare EGFR mutations with insufficient functional

and clinical data

A Very rare single point mutations (except those mentioned in nNGM 5.0 (2.3-7.8) months, Supplementary Discussion in molecular tumor boards and
UC 1E)

B Complex mutations: uncommon with very rare (except those
mentioned in nNGM UC 1F)

C Complex mutations: very rare with very rare (except those
mentioned in nNNGM UC 1G)

Table S6, available at https://doi.org/10.
1016/j.annonc.2022.02.225

3.0 (0.0-6.5) months, Supplementary
Table S6, available at https://doi.org/10.
1016/j.annonc.2022.02.225

7.0 (5.3-8.9) months, Supplementary
Table S6, available at https://doi.org/10.
1016/j.annonc.2022.02.225

clinical decision making based on
recommended guidelines based on
consented evidence levels**** taking into
account case reports and also preclinical
data. Preclinical in vitro and in silico testing
should be considered in cases with no
available information.

1L, first line; 2L, second line; 4L, fourth line; 5L, fifth line; CI, confidence interval; EGFR-TKI, epidermal growth factor receptor-tyrosine kinase inhibitor; FUP, follow-up; ICI, immune
checkpoint inhibitor; mPFS, median progression-free survival; nNGM, national Network Genomic Medicine.
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As in groups 1 and 2, very few patients were treated with
IClin 1L (n = 6 patients, Supplementary Table S4, available
at https://doi.org/10.1016/j.annonc.2022.02.225). Consid-
ering all treatment lines, mPFS was 4.3 months for ICI-
treated patients with very rare EGFR mutations (95% ClI
0.6-8.4 months, Supplementary Table S4, available at
https://doi.org/10.1016/j.annonc.2022.02.225).

Based on these data, we summarized the EGFR-TKI
sensitivity in four groups of atypical EGFR mutations
(nNGM UC1-4, Table 2). Of note, outcome data can be
derived from one case only which especially applies to
group 3 mutations.

Frequency of co-occurring mutations and their effect on
outcome

The presence of co-occurring mutations such as TP53 or
KRAS mutations is known to influence outcome.’®"’ Co-
mutations were reported for 310 patients in the nNGM
cohort (36.2%) and occurred in 59% of these patients (n =
183) (Supplementary Figure S3A, available at https://doi.
org/10.1016/j.annonc.2022.02.225). In 96% of the cases,
one of three customized NGS panels was used
(Supplementary Table S1, available at https://doi.org/10.
1016/j.annonc.2022.02.225). Here, not all genes were
included in each panel. BRAF, CTNNB1, EGFR, ERBB2, KRAS,
MAP2K1, MET, NRAS, PIK3CA, PTEN and TP53 were
sequenced with all three panels (Supplementary Table S2,
available at https://doi.org/10.1016/j.annonc.2022.02.225).
Most frequently reported co-mutations were TP53 muta-
tions (132/310, 42.6%). In 34 of those patients (25.8%),
TP53 mutations were accompanied by other mutations such
as KRAS (11/132 patients, 8.3%), PIK3CA (6/132 patients,
4.5%) PTEN (3/132 patients, 2.3%) and others (10/132 pa-
tients, 8.3%). KRAS was the second most frequently occur-
ring co-mutation (n = 29, 9%, Supplementary Figure S3B,
available at https://doi.org/10.1016/j.annonc.2022.02.225).
Interestingly, significantly more co-mutations were reported
in the group of very rare EGFR mutations, especially in the
group of rare point mutations (Supplementary Figure S3C
and D, available at https://doi.org/10.1016/j.annonc.2022.
02.225), suggesting that these EGFR mutations may repre-
sent passenger mutations.

Since the co-occurrence of KRAS and other mutations
was very rare, we chose to investigate only the effect of co-
occurring TP53 mutations on PFS in EGFR-TKI-treated pa-
tients in all treatment lines (Supplementary Figure S3F-I,
available at https://doi.org/10.1016/j.annonc.2022.02.225).
The KM plots indicated a detrimental effect of co-occurring
TP53 mutations on outcome in EGFR-TKI-treated patients
with exon 20 insertions and a trend for a detrimental effect
in very rare EGFR mutations but not in the EGFR-TKI-
sensitive group 1 mutations (Supplementary Figure S3F-I,
available at https://doi.org/10.1016/j.annonc.2022.02.225).

DISCUSSION

This nNGM multicenter, retrospective analysis represents
the largest available real-world dataset of atypical EGFR

Volume 33 m Issue 6 m 2022

mutations. Another main novelty lies in the analysis of
clinical FUP data including outcome upon treatment with
different EGFR-TKIs, chemotherapy and ICI while available
studies mostly focus on single TKI.>°

Our most important findings are (i) validation of EGFR-TKI
efficacy in uncommon EGFR mutations generally considered
TKI sensitive (group 1), (ii) TKI sensitivity of complex EGFR
mutations containing exon 19 deletions or L858R mutations
independent of the combination partner and (iii) report of
the largest clinically annotated cohort of rare single and
complex EGFR point mutations revealing a high degree of
heterogeneity of TKI sensitivity.

Our findings are in line with previous data showing
EGFR-TKI sensitivity for group 1 mutations (G719X, S768I,
L861X and combination of these with other group 1 mu-
tations or classical EGFR mutations).>>” Our analysis in-
dicates increased efficacy of afatinib in these patients
compared to gefitinib, erlotinio and osimertinib. This
finding is in line with clinical trial data including NEJOO2
and LUX-Lung 2, 3 and 6 and several smaller retrospective
studies suggesting higher efficacy of afatinib compared to
erlotinib or gefitinib.>” In comparison, data from a recent
phase Il study (KCSG-LU15-09) indicated efficacy of osi-
mertinib with an mPFS of 8.2, 15.2 and 12.3 months in
patients with G719X, L861Q and S7681 mutations,
respectively (n = 19/9/8).2

The reason for a lower mPFS observed with osimertinib
in our cohort (mMPFS = 5.0 months, Figure 3) might be the
relatively low number of treatments with osimertinib (n =
8). Since most of the mutations in group 1 of our cohort
were either PACC or classical-like mutations based on the
structural approach by Robichaux et al., our data are in line
with their predicted response model, as we observed a
longer mPFS with afatinib compared to first-generation TKI
and osimertinib. Although the number of osimertinib
treatments was very low in our cohort preventing definitive
conclusions, it is still remarkable that seven of eight
osimertinib-treated patients had PACC mutations, predicted
to respond less well to osimertinib compared to afatinib,
which we also observed.® Structural modeling suggested
that poziotinib, another second-generation TKI, may be an
even better fit for PACC mutations compared to afatinib.
However, this remains to be clinically validated.

Complex EGFR mutations occur relatively frequently
(~30% in our cohort) and have not yet been extensively
characterized. In addition to validating the already
described sensitivity of complex uncommon compound
mutations, our analysis revealed an overall EGFR-TKI
sensitivity of complex mutations containing a classical
EGFR mutation in combination with very rare point muta-
tions (contained in group 3, mPFS 11.4 months, all lines,
Supplementary Table S6 and Figure S2, available at https://
doi.org/10.1016/j.annonc.2022.02.225). We observed effi-
cacy of afatinib, erlotinib and gefitinib in these patients.
Again, due to low patient numbers, efficacy of osimertinib
could not be assessed reliably in this group.

Our data also confirm low EGFR-TKI sensitivity in patients
with exon 20 insertions in concordance with literature.
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However, in this highly heterogeneous group, we observed
a few exceptions sensitive to EGFR-TKI therapy, such as the
already described 763_764YinsFQEV mutation (Friedlaender
et al,'® PFS 42.5 months 1L erlotinib in our dataset).
Additionally, we found four EGFR-TKI-sensitive mutations:
773_774HvinsAH (EGFR-TKI naive, PFS 25.4 months with
afatinib), 767_769AVdup (EGFR-TKI naive, PFS 13.4 months
with osimertinib), 771_773NHdup (EGFRI-TKI naive, PFS
10.1 months with afatinib) and 773_774HVinsGHPH (EGFR-
TKI naive, PFS 10 months with afatinib, Supplementary
Figure S2, available at https://doi.org/10.1016/j.annonc.
2022.02.225). However, 771_773dup insertions and
767_769AVdup insertions did not respond to all TKls in our
study (Supplementary Figure S2, available at https://doi.
org/10.1016/j.annonc.2022.02.225).

In the whole exon 20 insertion cohort (group 2), mPFS (all
lines) of 3.3 months upon EGFR-TKI treatment was lower
compared to the recently FDA-approved EGFR Exon20Ins
mutation-targeting drugs mobocertinib (mPFS 7.3 months,
EXCLAIM cohort) and amivantamab (mPFS 8.3 months).*"*?
Detailed information about response to specific exon 20
insertions from these studies was only available for one
patient with a 763_764YinsFQEV mutation treated with
amivantamab. Here, a PFS of ~17 months was reported.12

We also investigated outcome especially in NL exon 20
insertions. In our cohort, most patients were treated with
chemotherapy especially in 1L; therefore, any interpretation
should be made with caution (Supplementary Figure S1B
and H, available at https://doi.org/10.1016/j.annonc.2022.
02.225). In vitro studies and clinical data suggest that
some second-generation TKIs (mainly poziotinib) may have
more efficacy in the NL than in the FL insertions.*** Since
treatments with first- and third-generation TKls were very
rare in our cohort and no patients have been treated with
poziotinib, we cannot corroborate this. However, two exon
20 insertions from our cohort and two recent case reports
showed that the second-generation TKI afatinib exerts ef-
ficacy in (some) FL insertions.*®*° Altogether, mPFS upon
EGFR-TKI treatment was lower in the subgroup of NL in-
sertions upon EGFR-TKI treatment compared to chemo-
therapy and to reported outcome data with mobocertinib
or amivantamab.'"*?

Altogether, exon 20 insertions are very heterogeneous,
and despite the recent approval of two new drugs specif-
ically for this cohort, additional investigation is warranted in
order to identify which type of insertion may respond to
specific TKI or drugs. Of note, additional exon 20 insertion-
specific drugs and antibody—TKI combinations such as CLN-
081, BDTX-189 or anti-EGFR monoclonal antibody JMT101
in combination with EGFR-TKI are currently tested in early
clinical trials.*°

Very rare EGFR mutations represent almost one-third of
patients in our study (group 3). Notably, this group was until
now substantially underrepresented in existing cohorts and
clinical trials with patients exhibiting rare EGFR muta-
tions.>”%?* Additionally, in this group, the least knowledge
about functional relevance of the mutations and clinical
response to EGFR-TKI exists. As a note, this group, especially
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the group of very rare point mutations was also under-
represented in the Robichaux et al.s dataset. In this thus far
less well-investigated group, our data indicate clinical effi-
cacy of EGFR-TKI compared to chemotherapy or ICI mono-
therapy. However, mPFS was numerically shorter (6.7
months, Figure 2C) compared to what is achievable with
EGFR-TKI erlotinib or gefinitib (9.2-13.1 months), afatinib
(11.0-11.1 months) or osimertinib (18.9 months) in patients
with classical EGFR mutations.”>%®

In contrast to patients with uncommon mutations (group
1), our data suggest a higher clinical efficacy of gefitinib
(mPFS 16.0 months, n = 12) compared to osimertinib (6.8
months, n = 13), afatinib (5.9 months, n = 40) and erlotinib
(3.1 months, n = 13). It is important, however, to
acknowledge the high degree of heterogeneity and low
numbers of patients with individual treatments in group 3.
We therefore investigated response also in individual mu-
tations and subgroups (Supplementary Table S6 and
Figure S2, available at https://doi.org/10.1016/j.annonc.
2022.02.225). In the absence of other clinical information,
information from one patient with a given very rare alter-
ation who has responded to an EGFR-TKI is valuable to
guide treatment decisions, although with a low level of
evidence (in Germany, this corresponds to m1C case-report
level of evidence leading to treatment recommendations®?).
European ESMO Scale for Clinical Actionability of molecular
Target guidelines in this case refer to a lla investigational
evidence level in case of retrospective studies demon-
strating clinical benefit of patients with a given alteration in
the same cancer entity, however not specifying the number
of patients.>® We found a PFS >10 months in patients with
the following mutations: R776H (gefitinib), L747P (gefitinib,
osimertinib), E758G (afatinib), P753L (afatinib), P733Q
(afatinib), Q791H (erlotinib), E711Q  (osimertinib)
(Supplementary Figure S2, available at https://doi.org/10.
1016/j.annonc.2022.02.225, Table 2).

EGFR-TKIs also showed clinical activity in patients with
exon 19 insertions (mPFS 10.0 months), but were less active
in patients with exon 18 deletions (mPFS 4.0 months,
Supplementary Table S4 and Figure S2, available at https://
doi.org/10.1016/j.annonc.2022.02.225, Table 2), which is in
line with other reports.®>*

It is known that co-mutations such as TP53 can alter
response to treatment and patients with classical EGFR
mutations and ALK alterations with TP53 mutations may
have a detrimental effect on outcome with target-specific
treatment.>>*®> Our data indicate a possible detrimental
effect of co-occurring TP53 mutations on outcome in EGFR-
TKI-treated patients with exon 20 insertion and very rare
EGFR mutations but not in the EGFR-TKI-sensitive group 1
mutations. However, this effect was not significant possibly
due to low numbers and further analysis is warranted.

As a note, one limitation of our study is the retrospective
nature and the investigator-assessed PFS data. Neverthe-
less, our data represent a large real-world dataset and will
be helpful to guide treatment decisions.

Based on our findings, we suggest a novel nNGM classi-
fication of atypical EGFR mutations, NNGM uncommon (UC)
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1, 3 and 4 (Table 2) according to their TKI sensitivity
observed in our study. Based on the documented impor-
tance of de novo T790M mutations and their standard-of-
care treatment option with osimertinib,”’> we included
them as group UC2 even though we have not analyzed
them in our study. It may well be that, in the future, we will
have to split NNGM UC1 into subgroups based on how
these mutations respond to different types of TKI, as
Robichaux and colleagues are already suggesting. It will also
be interesting to see how new third- and fourth-generation
EGFR-TKIs may influence this. Some of these new drugs are
already being tested in uncommon EGFR mutations [i.e.
lazertinib in combination with amivantamb (CHRYSALIS)].
However, until now, clinical data on this are conflicting and
the structure-based approach has to be validated especially
for very rare mutations which have been mostly absent in
their dataset.

Nevertheless, the combination of in silico and in vitro
prediction validated with clinical data will be the way for-
ward to predict response to targeted treatments for rare
mutations even beyond EGFR.
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