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Unconventional supercurrent phase in Ising
superconductor Josephson junction with atomically
thin magnetic insulator
H. Idzuchi1,7, F. Pientka 1,2, K.-F. Huang1, K. Harada3, Ö. Gül 1, Y. J. Shin 1,8, L. T. Nguyen4, N. H. Jo5,6,

D. Shindo3, R. J. Cava4, P. C. Canfield5,6 & P. Kim 1✉

In two-dimensional (2D) NbSe2 crystal, which lacks inversion symmetry, strong spin-orbit

coupling aligns the spins of Cooper pairs to the orbital valleys, forming Ising Cooper pairs

(ICPs). The unusual spin texture of ICPs can be further modulated by introducing magnetic

exchange. Here, we report unconventional supercurrent phase in van der Waals hetero-

structure Josephson junctions (JJs) that couples NbSe2 ICPs across an atomically thin

magnetic insulator (MI) Cr2Ge2Te6. By constructing a superconducting quantum interference

device (SQUID), we measure the phase of the transferred Cooper pairs in the MI JJ. We

demonstrate a doubly degenerate nontrivial JJ phase (ϕ), formed by momentum-conserving

tunneling of ICPs across magnetic domains in the barrier. The doubly degenerate ground

states in MI JJs provide a two-level quantum system that can be utilized as a new dis-

sipationless component for superconducting quantum devices. Our work boosts the study of

various superconducting states with spin-orbit coupling, opening up an avenue to designing

new superconducting phase-controlled quantum electronic devices.
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In a crystal which lacks inversion symmetry, the relativistic
coupling between spins and electron orbits creates a
momentum-dependent spin splitting, leading to spin-

polarization without magnetism1–4. Two-dimensional transition
metal dichalcogenides (TMDs), such as 2H phase of NbSe2, MoS2,
and TaS2, exhibit unusual superconducting properties stemming
from strong spin–orbit coupling (SOC) in combinination with
their 2D structure with broken inversion symmetry. Several
notable properties include in-plane upper critical fields that far
exceed the paramagnetic spin limit of Bardeen–Cooper–Schrieffer
(BCS) theory5–7, co-existance of charge-density-waves with
superconductivity down to monolayer limit8, and higher order
paramagnetic-limited superconductor–normal metal transitions9.
These unusual properties result from an out-of-plane alignment
of electron spins forming ICPs5–9. Early theoretical studies pre-
dicted anomalous Josephson coupling between two non-
centrosymmeteric superconductors, which can carry a spin
current10,11. Josephson coupling between ICPs has been realized
in 2D TMD superconductor van dew Waals (vdW) hetero-
structures, such as NbSe2 heterostructures with a stacked
interface12 or using a graphene layer as a weak link13, and sus-
pended MoS2 bilayers with electrical gating14. However, the spin-
dependent coupling in Josephson characteristics originating from
ICPs has not been realized in these systems. In this work, we
couple the 2D NbSe2 to the magnetic insulartor Cr2Ge2Te6, which
enables phase modulation of the spin wave functions of ICPs. The
atomically sharp vdW interfaces in NbSe2/Cr2Ge2Te6/NbSe2
allows momentum-conserving tunneling and leads to a doubly
degenerate non-trivial JJ phase.

Results
Device characterization. Van der Waals heterostructures are ideal
platforms for creating atomically thin Josephson coupled systems.
Here, we use few atomic layers of the vdW magnetic insulator (MI)
Cr2Ge2Te615 as the magnetic barrier to observe a novel Josephson
coupling. NbSe2/Cr2Ge2Te6/NbSe2 heterostructures (Fig. 1a, b)16

were assembled with a modified dry-transfer technique (see
Methods for device fabrication). Our heterostructures clearly dis-
play Josephson coupling across Cr2Ge2Te6 barriers ranging from
monolayer (ML) to 6-ML. Figure 1c–e shows the current density (J)
versus voltage (V) characteristic across the JJs with 1-, 2-, and 6-ML
MI barriers. For all devices, we find a clear Josephson supercurrent
regime at low bias current, which turns into normal conduction at
high bias current. The J–V characteristic is hysteric, indicating a
switching current density JC (transition from superconducting to
normal state) larger than the retrapping current density JR (tran-
sition from normal to superconducting state). JC becomes con-
siderably larger than JR for thinner junctions, which is expected
since the junction capacitance is larger for smaller the thickness of
F-layer dF. For J > JC, we obtain the normal state resistance RN=
(1/A)dV/dJ, where A is the effective area of the junction. Figure 1f
shows the comparison of RNA obtained from devices with three
different dF. We find an exponential increase of RNA, fitted well to
a exp(dF/t), where the characteristic quasiparticle tunneling length
is t ≈1.3 nm and the normalized barrier resistance is a ≈0.34 kΩ
μm2. Importantly, our junction resistance is much lower than that
of a typical non-vdW ferromagnetic barrier such as EuS
(107−109Ωμm2 for the thickness of 2.5 nm)17. This relatively
small junction resistance is consistent with the smaller semi-
conducting energy gap of Cr2Ge2Te6 (~0.4 eV in plane and ~1 eV
out-of-plane)18. Interestingly, we find that while RNA increases
exponentially with increasing dF, the critical current density JC
decreases more rapidly. Figure 1f shows that the product VC=
JCRNA decreases exponentially with increasing dF, following VC=
V0 exp(−dF/ξF) with the prefactor V0 ≈ 0.8 mV and a characteristic

barrier tunneling length in Cr2Ge2Te6 ξF ≈ 1.4 nm. While V0 is
comparable to VC ~ 0.65mV in NbSe2/graphene/NbSe2
junctions13, the rapid decrease of VC with increasing dF indicates
that the JJ coupling becomes weaker with a thicker magnetic bar-
rier, as expected.

Magnetic Josephson junction. To demonstrate the effect of fer-
romagnetism in Cr2Ge2Te6, we measure the JJ critical current as a
function of applied magnetic field. Figure 2a, b shows the in-plane
and out-of-plane magnetic-field-dependent switching current
IC= JCA of the NbSe2/Cr2Ge2Te6(6ML)/NbSe2 JJ. We observe
hysteretic behavior of IC(H) for both field directions. IC(H) also
shows a sudden drop near zero magnetic field. Interestingly, we
find that the hysteresis in the magnetic field reaches values of ~
±1.5 T, much larger than the saturation field (the field required to
reach the saturation magnetization) of our Cr2Ge2Te6 bulk crystals
(Fig. 2c), and that of reported values in bulk crystals and thin
flakes15,19,20. At high bias, which far exceeds the critical current,
the voltage across the junction does not show notable hysteresis
(Supplementatry Note 1, Supplementary Fig. 2). Furthermore, the
magnetization of our bulk Cr2Ge2Te6 shows neither a notable
hysteresis nor a strong magnetic anisotropy, consistent with earlier
reports19. The larger hysteresis field compared to the saturation
magnetic field of Cr2Ge2Te6 and the strong anisotropy observed in
IC(H) thus cannot be simply attributed to the magnetization of
Cr2Ge2Te6 alone. Rather, the large hysteresis loop for IC(H) can be
related to the microscopic magnetic domain structure of
Cr2Ge2Te6. Using Lorentz transmission electron microscopy (see
Methods for details), we find that thin Cr2Ge2Te6 flakes develop
two different magnetic domain structures: stripe-like (Fig. 2d) and
bubble-like (Fig. 2e). The characteristic domain size is ~100 nm,
consistent with previously reported multiple domain structures in
thicker Cr2Ge2Te6 flakes, where the stripe-phase is more stable
than the metastable bubble phase21. We conclude that the inter-
play between the magnetic domains of Cr2Ge2Te6 and the field-
dependent Abrikosov vortex lattice in NbSe2 can induce a tran-
sition between magnetic states and explain the experimental
observations, including the sudden drop in IC(H) near zero
magnetic field. This critical current drop can be attributed to the
differences in the system energy for the two different vortex states,
which is interacting underlying magnetic domains (see Supple-
mentary Fig. 1 and Supplementary Note 1 for detail).

In a Josephson coupling, as a phase difference φ develops
between two superconductors, a DC Josephson supercurrent
IS= IC sin(φ) flows through the junction. At equilibrium, the
vanishing supercurrent at the minimum energy imposes the
condition that φ can only be 0 or π. For conventional
superconductors with spin-singlet pairing, the spatially sym-
metric Cooper pair wavefunction enforces φ= 0 as the ground
state. When the superconducting (S) electrodes are separated by a
ferromagnetic barrier (F), Cooper pairs can acquire an additional
phase when tunneling through the magnetic barrier, yielding a
spatial oscillation of the superconducting order parameter in the
barrier22–24. Tuning the thickness of the F-layer, dF, can reverse
the sign of the superconducting order parameter across the
barrier owing to an exchange-energy driven phase shift23,25–27,
resulting in a π-phase JJ.

SQUID and ϕ phase. To probe possibly anomalous Josephson
phase, we have realized SQUIDs consisting of one MI JJ (NbSe2/
Cr2Ge2Te6/NbSe2) and one reference JJ (NbSe2/NbSe2). After the
assembly, we create the device by etching away the unnecessary
areas (Fig. 3a, note the edges of the NbSe2 flakes were aligned
parallel to each other (see Methods for details)). The wider MI JJ
allows us to balance the critical currents for each JJ for a maximal
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SQUID critical current ICSQUIDðΦÞ as a function of magnetic flux Φ
threaded through the SQUID loop. The critical current measured
in the SQUID (Fig. 3b) exhibits oscillations with the periodicity
Φ0 ¼ h=2e. However, we observe an irregular SQUID response in
the field range between −1.2 and −2.2 mT, with a telegraph-like
signal oscillating between two metastable critical current branches
(Fig. 3b, c). This bi-stability is possibly related to the sudden
change in critical current seen in Fig. 2a caused by the change of
magnetic structure in the junction. This bistable switching state is
an indirect indication of a doubly degenerate ground state of the
system (see Supplementary Note 2 for details). Nevertheless, the
regular oscillation around zero magnetic field allows us to extract
the phase of the MI JJ (NbSe2/Cr2Ge2Te6/NbSe2). In a previous
study of SQUIDs with ferromagnetic metallic spin valves28, a
controllable switching between 0- and π- Josephson junctions has
been demonstrated. A SQUID that combines 0/0 or π/π JJs shows
a maximal ICSQUIDð0Þ (defined as a 0-phase JJ), whereas a SQUID
combining 0/π JJs shows a minimal ICSQUID 0ð Þ (defined as a
π-phase JJ).

For our SQUID with the MI JJ, we use two schemes to measure
the two different switching currents (Fig. 3d): a switching current
IC− obtained by sweeping from large negative bias to positive bias
and another one, IC0, obtained by sweeping from large positive
bias to zero and then back to positive bias. Generally, we find
IC− >IC0. More importantly, the phases of their oscillations are
different, as shown in Fig. 3e. To obtain the absolute phase of
ICSQUIDðΦÞ, we have carefully calibrated our electromagnet for zero
magnetic field using several on-chip Al SQUIDs with different
sizes (see Supplementary Fig. 7 for details). Strikingly, we find
that none of the switching schemes provide 0 or π phase but
ϕC−= 259° and ϕC0= 59° as shown in Fig. 3e.

The presence of these two nontrivial phases (i.e., not simple
multiples of 180°) is reminiscent of two switching current states
in a metallic ferromagnetic (F) ϕ-JJ29,30. It is reported that an
arbitrary ϕ-phase between 0 and π can be realized by engineering
the combination of 0- and π-JJs29. One example is a long channel
metallic F-JJ (typically 100 μm)30, where the doubly degenerate
ground states are realized by laterally connecting 0-junction and
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π-junction. Here, the π-JJ requires the thickness of the F-layer to
be comparable to the wavelength of the order-parameter
oscillation, implying dF ~10 nm, set by the exchange energy24.
In addition, the widths of the 0-JJ and π-JJ perpendicular to the
supercurrent flow direction is restricted to be much longer than
the Josephson length, λJ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Φ0=2πμ0JCλC

p
, where λC is the

magnetic penetration length, because the formation of a ϕ-FJJ in
the 0-π JJ arrays needs a Josephson vortex pinned at the 0-π
junction. Such values of dF and λJ are incompatible with our
atomically thin Cr2Ge2Te6 based JJ. Specifically, our Cr2Ge2Te6
barrier is an atomically thin insulator (dF= 1 nm), which is too
thin to exhibit spatial order-parameter oscillations. Furthermore,
the lateral size of our JJ, L < 5 μm, is much smaller than λJ
~10 μm, estimated using our experimentally obtained JC and
λC ≈ 0.1 μm for NbSe2 reported previously31. Therefore, the
observed ϕ-JJ formation in our atomically thin MI-JJ, manifested
by the appearance of doubly degenerate nontrivial phase shifts,
requires an alternative mechanism.

Interplay between Ising superconductivity and ferromagnet-
ism. The single-crystallinity of our vdW heterostructure com-
bined with the strong SOC in the quasi-2D superconductor (S)

constituent provides two new characteristics for Josephson cou-
pling that are absent in conventional metallic F-JJs. First, in
contrast to the F-JJs constructed by sputtered heterostructures32,
momentum-conserving tunneling in crystalline vdW hetero-
structures is allowed between the closely aligned Fermi surfaces of
two S-layers in vdW JJ, as the top and bottom S layers in our JJ
are aligned along the same crystallographic axis (< 2°–5° mis-
alignment; see “Methods”). Second, the strong SOC in NbSe2 fixes
the spin quantization axis of the Cooper pairs6,33 normal to the
substrate, denoted by ↑ and ↓. In NbSe2, due to weak interlayer
tunneling and strong inversion symmetry breaking within each
layer, two spin components remain localized predominantly in
even or odd layers with a sizable spin splitting ΔSOC ’100 meV7.
This spin-layer locking results in unconventional Ising Cooper
pairing (K↑–K′↓ or K↓–K′↑) inside each layer where K and K′
denote the electronic band near K and K′ points.

The Josephson phase between ICPs on the surfaces of NbSe2
across the MI barrier can be sensitively modified by the
magnetization direction. For out-of-plane magnetization, the
spin of the ICPs is aligned parallel or antiparallel with the spin of
the MI. Similar to a previous theoretical study of JJs with
magnetic impurities34, the wave function of ICPs tunneling across
the ferromagnetic junction can acquire an additional minus sign
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with respect to the nonmagnetic junction for sufficiently strong
magnetic scattering (Fig. 4a, see “Methods” for details).
Importantly, this sign flip of the Josephson coupled ICPs sets
the phase of the JJ ground state to be φ= π. As the magnetization
of the MI-layer is tilted away from the tunneling direction, the
spin of the ICPs can flip during the tunneling process (see
“Methods” and Supplementary Note 4 for details). As a result, the
ground state of the Josephson junction is at φ= 0 (Fig. 4b).
Unlike metallic F-JJs, our heterostructure allows for both 0- and
π-JJs by adjusting the direction of the magnetization in the MI.

A parallel arrangement of 0- and π-JJ can lead to a degenerate
ϕ-JJ. Our MI-JJ offers such lateral arrays, created by magnetic
domain structures in the MI, similar to what is shown in Fig. 2d,e.
Here, the domains with out-of-plane magnetization separated by
boundaries with titled spins could lead to a coexistence of 0 and π
junction segments. Using a simple model based on a short
junction with finite transparency D and a fraction of the plane λ

that favors a π junction, we can estimate the Josephson energy EJ
of the junction, which provides two ϕ values for the degenerate
ground states (see Methods section for more details). As an
example, Fig. 4d shows EJ(ϕ) computed using this model with
λ= 0.53 and D= 0.75, resulting in the appearance of two ground
states at different nontrivial Josephson phases ϕ1 ’100° and ϕ2
’260°. These two states can be obtained by sweeping back from
positive or negative bias as the switching currents can be simply
controlled by choosing two metastable states in the bi-stable
potential. The telegram-like signal in Fig. 3b is found in the
negative magnetic field region. A careful examination of this two
state switching behavior implies that two meta-stable SQUID
oscillations with different phases involve (Fig. 3c), suggesting that
the bistability can also be controlled by applied magnetic fields.
We also note that the experimental value of ϕ1 deviates
substantially from the theoretical value obtained above. This
can be attributed to the experimental anisotropy and inhomo-
geneity of the devices as observed in the in-plane field Fraunhofer
pattern (see Supplementary Note 3), which is not considered in
our theoretical analysis above.

Discussion
Experimentally, the presence of two minimal phase angles in
EJ(ϕ) can be directly revealed by measuring the JJ switching
current distributions. This distribution is sensitively determined
by the escape rate τ −1 from a tilted washboard potential that is
created by biasing EJ(ϕ) with current I (insets of Fig. 4f). Figure 4e
shows the switching current distribution measured using the two
above-mentioned sweep schemes, as a function of current I(t)
increasing monotonically with time t. The switching current
distribution shows not only different values of the critical current
but also a much wider distribution for the ϕc0 state than for the
ϕc− state (the bottom panel of Fig. 4e). Figure 4f shows the escape
rate for both ground states, which is calculated using the nor-
malized distribution function P(IC) and the Fulton and Dunkle-
berger formula τ ¼ ð1� R I

0 P uð ÞduÞ=½P Ið Þ dIdt�35. Generally, we find
the escape rate for the ϕc0 state to be larger than for the ϕC− state,
suggesting the ϕC− state is more stable than the ϕC0 state under a
bias current. Assuming the escape process is dominated by
thermal activation, it gives τ�1 � e�Δ=kT , where Δ is the barrier
height in the tilted washboard potential and k is the Boltzmann
constant. Since the experimentally estimated τ�1 is smaller for
ϕC− than that for ϕC0, we infer that Δ1 < Δ2 (Fig. 4d), where Δ1 is
responsible for the switching of ϕC0 and Δ2 for the switching of
ϕC−, in agreement with the model presented in Fig. 4d. For an
applied bias current I smaller than the switching current of the
ϕC− state, re-trapping is allowed (inset of Fig. 4f), which con-
sistently explains the slower increase of τ�1 of the ϕC0 state before
the switching of the ϕC− state at higher current.

To date, a metallic ferromagnetic barrier requires dF ≥ 5 nm
and a macroscopic lateral junction size, which is not in general
suitable for use in dissipationless and compact quantum device
components. JJs using magnetic semiconducting GdN barriers
in the spin filter device geometry32 exhibit an unconventional
second harmonic current-phase relation and switching
characteristics36,37. In contrast, we have demonstrated a Joseph-
son phase engineering in dissipationless magnetic JJs. ϕ-phase JJs
can serve as useful components for various superconducting
quantum electronic devices, such as phase batteries that can
be used to bias both classical and quantum circuits,
superconducting-magnet hybrid memories and JJ-based quantum
ratchets28,38–40. The spin sensitivity of an Ising Josephson junc-
tion together with atomically thin magnetic tunneling barriers
provides a route to the fabrication of novel superconducting and
spintronic devices.
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Methods
Crystal synthesis. NbSe2 crystals were grown from pre-cleaned elemental starting
materials in an evacuated quartz glass tube, in a 700 to 650 °C temperature gra-
dient, by iodine vapor transport. Cr2Ge2Te6 was grown out of a ternary melt that
was rich in the Ge–Te eutectic. High purity elements we placed into fritted alumina
crucibles41 in a ratio of Cr5Ge17Te78, sealed in an amorphous silica ampoule under
roughly 1/4 atmosphere of high purity Ar. The ampoule was heated over 5 h to
900 °C, held at 900 °C for an additional 5 h, and then cooled to 500 °C over 99 h. At
500 °C, the excess liquid was separated from the Cr2Ge2Te6 crystals with the aid of
a centrifuge41. The single crystals grew as plates with basal plane dimensions of up
to a cm and had mirrored surfaces perpendicular to the hexagonal c-axis (inset to
Supplementary Fig. 6). Low field magnetization on a bulk sample is shown in
Supplementary Fig. 6 and is consistent with a ferromagnetic transition near 65 K.

Device fabrication. NbSe2 and Cr2Ge2Te6 crystals of the desired thickness were
mechanically exfoliated onto a p-doped silicon chip terminated with 285 nm SiO2.
The following fabrication procedure was employed unless explicitly noted other-
wise. Exfoliated crystals were identified by optical contrast (some of them were
separately characterized with atomic force microscope) in an argon-filled glove
box. The thickness of NbSe2 flakes ranges from 8 to 16 nm (on average 12 nm)
except for the top flake of the 2-ML junction (100 nm) and the NbSe2/NbSe2
junction in Supplementary Note 2. The NbSe2/Cr2Ge2Te6/NbSe2 heterostructure
was prepared by polymer-based dry transfer technique, inside of the Ar glove box,
with maximum process temperature of typically between 60 and 80 °C so that
degradation of the flakes is prevented42. The surface of the stack was examined by
atomic force microscopy and/or scanning electron microscopy to identify the clean
and atomically flat parts of the junction. Unnecessary parts were removed by
reactive ion etching with fluorine gas using an electron (e)-beam (Elionix ELS-
F125) patterned mask. For the SQUID device with field-calibration sensors, a
double-layer resist was patterned by e-beam lithography followed by oblique
deposition of aluminum. To form Al/Al2O3/Al junctions, an in-situ oxidization
process (1 mTorr, 10 min) was utilized between the e-beam evaporation of Alu-
minum. After the lift-off of the e-beam pattern, Ti/Au contacts were patterned by
e-beam lithography using a polymethyl methacrylate mask followed by e-beam

evaporation to contact both NbSe2 and Al. Before this evaporation, the surface was
in-situ cleaned by ion-milling.

Preparation of the states for different switching current. For the measurement
in Fig. 3e, the switching current branch was prepared as follows: first, the device
was measured by specific bias sweeps (from positive bias to negative bias, then
returning to zero bias) at a magnetic field of 8.2 mT. Then we swept the magnetic
field within the range between −0.4 and 0.4 mT to determine the switching current.
The other switching current branch was characterized in the same manner, but the
initial state was prepared by sweeping from positive bias to zero bias (at the same
field of 8.2 mT).

Lorentz transmission electron microscopy. Cr2Ge2Te6 flakes were obtained by
mechanical exfoliation and transferred onto 50-nm-thick SiN membranes with
holes supported by an Si frame in an Argon-filled glove box, by a similar procedure
to the device fabrication. The samples were mounted on the liquid-Helium-cooling
holder (ULTDT, Gatan) and inserted to the 300-kV field-emission TEM (HF-
3300S, Hitachi High-Tech) specially designed for eliminating the magnetic field in
the sample area. The Lorentz micrographs were taken using a defocusing condition
in the electron optical system and the sample tilting condition (45°–30° tilt mea-
sured from the normal position for the optical axis)43. The thin flake (approxi-
mately 18-nm-thick) over the hole showed the disappearance of the stripe pattern
near the holder temperature of 62 K, consistent with Curie temperature of
Cr2Ge2Te6.

Theoretical model. The spectrum of monolayer NbSe2 has Fermi pockets around
the Γ point and around the K and K′ points, and the bands around the K and K′
points have sizable spin splitting ΔSOC ’100 meV due to inversion-symmetry
breaking spin–orbit interaction, which results in Ising superconductivity7. In
contrast, bulk NbSe2 has an inversion center between the layers, such that the SOC
is opposite in even and odd layers destroying the spin-momentum locking. Because
of weak interlayer hopping, however, bulk NbSe2 can be thought of a stack of
weakly coupled Ising superconductors with opposite spin polarization in even and
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e, f switching current distribution for the ϕ state at T= 1.1 K. Different switching current is repeatedly acquired with different sweeping, as depicted in
Fig. 3d. The lower and higher critical currents are depicted in blue and red. e Switching currents with different sweeping events (top panel) and histogram
of switching currents in 0.02 μA bins (bottom panel). f Escape rate τ−1 as a function of the bias current that has a different slope (corresponding to an
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odd layers. Tunneling in a Josephson junction predominantly originates from the
layer adjacent to the junction and as a result the supercurrent will be carried by
ICPs. There can be non-vanishing contribution from the Γ point in the Josephson
coupling, which modifies the relative amplitudes of π- and 0-couplings of the ICP
(see Supplementary Note 4).

In our phenomenological model, we neglect any coupling between the layers.
An effective low-energy Hamiltonian for the K and K′ valleys in a single layer
can be written in Bogoliubov-de Gennes form in the Nambu-spinor basis
ψ ¼ ðψ";ψ#;ψ

y
#;�ψy

"Þ as
HSC ¼ v½pk � ðpF þ pSOCσzλzÞ�τz þ Δ½cosðϕ=2Þτx � sinðϕ=2Þτy � ð1Þ

where σ, τ, and λ are Pauli matrices acting in spin, particle-hole and valley space,
respectively. The SOC is opposite in the two valleys thus preserving time-reversal
symmetry. The superconducting phase ϕ/2 has opposite signs in the two leads, such
that ϕ is the phase difference across the junction. For concreteness, we here assume
that the SOC has the same sign both sides of the junctions. In the case of opposite
signs, a similar argument for a ϕ junction can be made. We moreover assume the
pairing strength Δ to be small compared to the spin splitting 2v pSOC and hence the
Cooper pairs consist of two electrons with opposite spins aligned with the z
direction. The magnetic layer is approximated by a single insulating band for each
spin, whose energy bands are flat in two-dimensional momentum space. In the
Nambu spinor basis ðd"; d#; dy#;�dy"Þ, the Hamiltonian reads

HMI ¼ Vτz þ J σ!� n; ð2Þ
where V and J denote the potential and exchange energy and n is a unit vector
describing the direction of the magnetization. An extension to more complicated
band structures is possible but will not qualitatively change our conclusions. The
superconductors and the magnet are coupled by the hopping Hamiltonian

HT ¼ ∑
σ
ðtψy

L;σdσ þ tψy
R;σdσ þ h:c:Þ ð3Þ

where t is positive. We now calculate the spectrum of Andreev bound states in the
junction. For off-resonant tunneling, t≪V, J, we can obtain an effective hopping
between the left and right superconductor from second-order perturbation theory

HT:eff ¼ etψy
L;σψR;σ þ h:c:; ð4Þ

where the effective hopping strength is

et ¼ t2V

V2 � J2
� t2J~σ � n

V2 � J2
: ð5Þ

If the junction is nonmagnetic, J= 0, we obtain et = t2/V and the Andreev
spectrum simply is that of a narrow Josephson junction in a BCS superconductor.

E ¼ ±Δ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� Dsin2ϕ=2

q
; ð6Þ

where the transparency is D= π2et2ν2/(1+ π2et2ν2) with the ν normal density of
states in the superconductors. This is a regular Josephson junction whose ground
state is at ϕ= 0. For a purely magnetic junction with n along the z axis, we instead
obtain an effective hopping parameter

et ¼ t2σz
J

: ð7Þ

The hopping has a different sign for the two spin components and, hence, a
Cooper pair tunneling across the junction acquires an additional minus sign with
respect to a nonmagnetic junction. We can show this explicitly by doing a gauge
transformation ψL;# ! �ψL;# while leaving all other fermions invariant. In this

new gauge the hopping is nonmagnetic et !t2/J and the pairing term in the left
superconductor changes sign ΔL= hψL;";ψL;#i !−ΔL while the remaining terms
are unchanged. This shows that we obtain the same spectrum as before but with a π
phase shift

E ¼ ±Δ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� Dsin2ðϕþ πÞ=2

q
: ð8Þ

Hence the ground state of the Josephson junction is at ϕ= π. In fact, the system
always forms a π junction when J >V as was first noted in ref. 44.

Now we consider a junction with magnetization along the x direction so that
scattering in the junction can result in spin flips. Due to the strong SOC, however,
the band structure in the superconductor is helical, meaning that at any particular
in-plane momentum there is only one spin component at the Fermi level. Thus, if a
spin flip occurs in the barrier the other spin component has a large momentum
mismatch when entering the superconductor. The latter therefore acts as a hard
wall for flipped spins as long as the superconductor-magnet interface is sufficiently
clean, such that scattering approximately conserves the in-plane momentum.
Andreev reflection can therefore only happen after an even number of spin flips in
the barrier, which means the supercurrent is an even function of J in this case and
all spin dependence drops out. This implies in particular that hopping has the same
sign for electrons with different spins and hence the junction always has a ground
state at zero.

Now let us assume that the magnet is inhomogeneous and there are regions
with magnetization along z and x. This means critical current changes sign as a

function of the in-plane position. When the length scale of the spatial variations is
smaller than the Josephson screening length the critical current is simply the spatial
average of the current. As a simple model, we assume a fraction λ of the plane
favors a π junction described by Eq. (8). The remaining fraction (1− λ) is instead
described by Eq. (6). Note that the latter also includes a conventional Josephson
current due to electron near the Γ point. In Fig. 4d we plot the spectrum of the
Josephson junction when the transparency is D= 0.75 in both regions and
λ= 0.53. See the Supplementary Note 4 for the microscopic description of the
theoretical model.

Data availability
The datasets generated during and/or analyzed in the current study are available from the
corresponding author upon reasonable request.
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