The cryo-EM structure of the bd oxidase from $M$. tuberculosis reveals a unique structural framework and enables rational drug design to combat TB

Schara Safarian ${ }^{1 *}$, Helen K. Opel-Reading ${ }^{2}$, Di Wu ${ }^{1}$, Ahmad R. Mehdipour ${ }^{3}$, Kiel Hards ${ }^{4}$, Liam K. Harold ${ }^{4}$, Melanie Radloff ${ }^{1}$, Ian Stewart ${ }^{5}$, Sonja Welsch ${ }^{6}$, Gerhard Hummer ${ }^{3,7}$, Gregory M. Cook ${ }^{4}$, Kurt L. Krause ${ }^{2}$, Hartmut Michel ${ }^{1 *}$

## Supplementary Table 1

Supplementary Figures 1 to 10
Supplementary References

Supplementary Table 1 - Cryo-EM data collection and validation. Cryo-EM data statistics of oxidized
cytochrome bd oxidase from $M$. tuberculosis.

|  | as isolated | Aurachin D | AD3-11 |
| :---: | :---: | :---: | :---: |
| Data collection |  |  |  |
| Accession number | EMD-12451 | EMD-12533 | EMD-12532 |
| Magnification | 105k | 105k | 105k |
| Voltage / kV | 300 | 300 | 300 |
| Dose / $\mathrm{e}^{-} \AA^{-2}$ | 108 | 108 | 108 |
| Pixel size / A | 0.837 | 0.837 | 0.837 |
| Focus range / $\mu \mathrm{m}$ | -1.1. to -2.1 | -1.1. to -2.1 | -1.1. to -2.1 |
| Recorded movies | 12070 | 7401 | 8514 |
| Final particle images | 843799 | 194987 | 437753 |
| Camera | Gatan K3 | Gatan K3 | Gatan K3 |
| Microscope | Titan Krios G3i | Titan Krios G3i | Titan Krios G3i |
| Image processing |  |  |  |
| Initial model | de novo | EMD-12451 | EMD-12451 |
| ```Resolution (FSC0.143) / Å``` | 2.5 | 3.3 | 2.8 |
| Applied B-factor / A ${ }^{2}$ | -70 | -100 | -80 |
| Model refinement |  |  |  |
| PDB accession | 7NKZ |  |  |
| Validation |  |  |  |
| $\begin{aligned} & \text { FSC }^{\text {map-to-model }}(0.5) \\ & \text { / } \AA \end{aligned}$ | 2.6 |  |  |
| MolProbity score | 1.58 |  |  |
| Composition |  |  |  |
| Atoms | 6424 |  |  |
| Protein residues | 792 |  |  |
| Waters | 42 |  |  |
| Ligands | $\begin{aligned} & 2 \text { HEB, } 1 \text { HDD, } 1 \text { MK-9, } \\ & 1 \text { OXY } \end{aligned}$ |  |  |
| Bonds (R.M.S.D.) |  |  |  |
| Length (Å) | 0.004 |  |  |
| Angles ( ${ }^{\circ}$ ) | 1.07 |  |  |
| B-factors (min/max/mean) |  |  |  |
| Protein | 29.4/88.68/50.67 |  |  |
| Ligand | 33.33/45.54/39.28 |  |  |
| Waters | 33.22/70.97/45.11 |  |  |
| Clashscore | 11.51 |  |  |
| Ramachandran plot(\%) |  |  |  |
| Favored | 98.85 |  |  |
| Allowed | 1.15 |  |  |
| Outliers | 0 |  |  |
| Rotamer outliers (\%) | 0.63 |  |  |




Supplementary Fig. 1 - Sample preparation and image processing. (a) The cytochrome bd oxidase was produced in Mycobacterium smegmatis $\mathrm{mc}^{2} 155 \triangle c y d A B$ cells and purified by FLAG-tag affinity chromatography followed by SEC. The purified complex was reconstituted into lipid nanodiscs (1D1) and separated from empty nanodiscs by SEC. Peak fractions were collected and analyzed by SDS-PAGE (oxidized and reduced form) and used for downstream cryo-EM specimen preparation (b) All datasets (as isolated, Aurachin D, AD3-11) were processed according to the following scheme, which is shown for the as isolated dataset as an example. Statistical values for all three datasets are summarized in Supplementary Table 1. Initial full-frame motion correction was performed with MotionCorr2 (RELION-
3.1). CTF estimation was performed using CTFFind4 (version 4.1). A number of 15 M Particles were picked using crYOLO and subsequently extracted in the RELION-3.1 suite. A total of 2.5 M particle images from 2D classes indicating distinct features were selected for further processing. A subset of these particles was used for initial model generation. Three-dimensional classification showed a single class exhibiting map features of a transmembrane protein. Particle images from class 1 were used for a consensus 3 D refinement to an average resolution of $\mathrm{FSC}_{0.143}=2.9 \AA$. To further improve the resolution, CTF refinement, particle polishing, and nanodisc subtraction were performed. A final refinement step using fine angular sampling steps and a tight soft-edged 3D mask converged to a resolution of $\mathrm{FSC}_{0.143}=2.5 \AA$. The final reconstruction indicates differences in local resolution, with higher resolution in the center and slightly lower resolution at the periphery of the complex. (c) Unsharpened cryo-EM maps of $b d$ oxidase structures in presence of inhibitors Aurachin D and AD3-11. (d) Fourier shell correlation plots of inhibitor datasets.


Supplementary Fig. 2 - Density features at 2.5 Å resolution. Visual inspection of density features of transmembrane helices and cofactors (heme $b_{558}$, heme $b_{595}$, heme $d$, and MK-9). Symmetry related transmembrane helices are presented in a matching color code. Helix topologies are maintained according to the $b d$ oxidase fold. Presented densities are sharpened by a b-factor of -70 .


Supplementary Fig. 3 - Averaged protein hydration map obtained from molecular dynamics simulations. (a) Solvent accessibility from the cytoplasmic and periplasmic space. Entry sites of the substrate proton channel and the solvent accessible region near heme $b_{558}$ are indicated by red and blue arrows, respectively. (b)Periplasmic view on the mycobacterial bd oxidase showing the pathway of solvent molecules towards the enzyme reaction center at the interface between CydA and CydB. CydA, yellow; CydB, green; solvent map, grey.
a

b


Top view
$90^{\circ}$

c

d

|  | 6RKO - CydA (E. coli) |  | 6RX4 - CydA (E. coli) |  | 5DOQ - CydA (G. th) |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | R.M.S.D | Z-score | R.M.S.D | Z-score | R.M.S.D | Z-score |
| CydA (M.tb) | 1.6 | 45.2 | 1.7 | 47.4 | 2.4 | 42.1 |
|  | 6 RKO - CydB (E. coli) |  | 6 RX4 - CydB (E. coli) |  | 5DOQ - CydB (G. th) |  |
| CydB (M.tb) | 1.8 |  | 41.8 | 1.8 | 42 | 2.7 |

## Supplementary Fig. 4 - Fold analysis and structural alignments

(a, c) Folds of CydA and CydB subunits from proteobacterial, actinobacterial and firmicute cytochrome bd oxidase structures shown as ribbon models. Unique structural components such as accessory singletransmembrane helix subunits or bound quinones are shown: $\mathrm{MK9}=$ green, $\mathrm{CydS}=$ pale green, CydX = yellow, $\mathrm{CydH}=$ red. (b) Structural alignment of Q -loop domains from E. coli and M . tuberculosis. The highlighted region (dotted purple circles) indicates the location and topology of the respective $\mathrm{Q}_{\mathrm{c}}$ loops. (d) Root mean square deviations (R.M.S.D) of $\mathrm{C} \alpha$ positions and corresponding Z -scores obtained from alignments of $b d$ oxidase structures.


Supplementary Fig. 5 - Architecture of CydB subunits. Ribbon representation of CydB subunits from E. coli (blue), M. tuberculosis (red), and G. thermodenitrificans (beige) in top view (upper panel) and side view (lower panel) orientations. Aromatic residues positioned within the CydB specific large membrane cavity are shown as yellow stick-and-ball models. The E. coli specific UQ-8 molecule that occupies the membrane cavity of CydB is shown as a purple ball-and-stick model. Distances between TMH6 and TMH7 are indicated. The large distances between these two helices is bridged by the UQ-8 head group in the $E$. coli enzyme. This inter-helix distance is significantly shorter in the bd oxidase structures of M. tuberculosis and G. thermodenitrificans. The mycobacterial enzyme shows a larger number of stabilizing van-der-Waals interactions within the membrane cavity than the enzyme from G. thermodenitrificans.

Mycobacterium tuberculosis H37Rv
Mycobacterium smegmatis
Mycobacterium bovis (BCG)
Escherichia coli K12
Azotobacter vinelandii

Mycobacterium tuberculosis H37Rv
Mycobacterium smegmatis Mycobacterium bovis (BCG) Escherichia coli K12 Azotobacter vinelandii

Mycobacterium tuberculosis H37Rv Mycobacterium smegmatis Mycobacterium bovis (BCG) Escherichia coli K12
Azotobacter vinelandii

Mycobacterium tuberculosis H37Rv
Mycobacterium smegmatis Mycobacterium bovis (BCG) Escherichia coli K12

Azotobacter vinelandii

Mycobacterium tuberculosis H37Rv
Mycobacterium smegmatis
Mycobacterium bovis (BCG)
Escherichia coli K12
Azotobacter vinelandii

Mycobacterium tuberculosis H37Rv
Mycobacterium smegmatis
Mycobacterium bovis (BCG)
Escherichia coli K12
Azotobacter vinelandii

Mycobacterium tuberculosis H37Rv
Mycobacterium smegmatis
Mycobacterium bovis (BCG)
Escherichia coli K12
Azotobacter vinelandii

Mycobacterium tuberculosis H37Rv
Mycobacterium smegmatis
Mycobacterium bovis (BCG)
Escherichia coli K12
Azotobacter vinelandii

Mycobacterium tuberculosis H37Rv
Mycobacterium smegmatis
Mycobacterium bovis (BCG)
Escherichia coli K12
Azotobacter vinelandii
.--MNVVDISRWQFGITTVYHFIFVPLTIGLAPLIAVMQTLWVVTDNPAWYRLTKFFGKLFLI 60 .- - MDALDVSRWQFGITTVYHFIFVPLTIGLAPLIAVMQTVWVATGNDTWYRLTRFFGKLFLI 60 ..-MNVVDISRWQFGITTVYHFIFVPLTIGLAPLIAVMQTLWVVTDNPAWYRLTKFFGKLFLI 60 - - MLDIVELSRLQFALTAMYHFLFVPLTLGMAFLLAIMETVYVLSGKQI YKDMTKFWGKLFGI 61 MI SESVVDLSRLQFAMTALYHFLFVPLTLGMTFLLAIMESVYVMTGKQVYKDMVKFWGKLFGI 63

61 NFAIGVATGIVQEFQFGMNWSEYSRFVGDVFGAPLAMEGLAAFFFESTFIGLWIFGWNRLPRL 123 61 NFAIGVATGIVOEFOFGMNWSEYSRFVGDIFGAPLAMEGLAAFFFESTFIGLWIFGWTRLPRW 123 1 NFAIGVATGIVQEFQFGMNWSEYSRFVGDVFGAPLAMEGLAAFFFESTFIGLWIFGWNRLPRL 123 NFALGVATGLTMEFQFGTNWSYYSHYVGDIFGAPLAIEGLMAFFLESTFVGLFFFGWDRLGKV 124 4 NFALGVTTGITMEFQFGTNWAYYSHYVGDIFGAPLAIEGLTAFFLESTFIGMFFFGWDRLSKI 126

124 VHLACIWIVAIAVNVSAFFIIAANSFMQHPVGAHYNPTTGRAELSSIVVLLTNNTAQAAFTHT 186 124 LHLACIWIVAIAVNLSAFFIISANSFMQHPVGARFNPETGRAELESIFALFTNNTAIAAFTHA 186 124 VHLACIWIVAIAVNVSAFFIIAANSFMQHPVGAHYNPTTGRAELSSIVVLLTNNTAQAAFTHT 186 125 QHMCVTWLVALGSNLSALWI LVANGWMQNPIASDFNFETMRMEMVSFSELVLNPVAQVKFVHT 187 127 QHLAVTWLVALGSNLSALWI LVANGWMQHPVGAEFNFETMRMELVDFGALLLNPVAQVKFVHT 189

187 VSGALLTAGTFVAAVSAWWLVRSSTTHAD--SDTQAMYRPATILGCWVALAATAGLLFTGDHQ 247 187 VSGAFLTAGVFVACVCAWWMVRSHRTGGESAADAATMYRPATI LGCWVTLVAAVALFFTGDAQ 249 187 VSGALLTAGTFVAAVSAWWLVRSSTTHAD--SDTQAMYRPATI LGCWVALAATAGLLFTGDHQ 247 188 VASGYVTGAMFILGISAWYMLKGRDFAFAKRSF............AIAASFGMAAVLSVIVLGDES 241 190 VASGYVTGAVFVLAISSYYLLKKRDLGFARRSF...........AIASAFGMASILSVIVLGDES 243

Conserved N -terminal $\mathbf{Q}$-loop region ( $\mathbf{Q}_{\mathrm{N}}$ )
248 GKLMFQQQPMKMASAESLCDTQTDPNFSVLTVGRQNNCDSLTRVIEVPYVLPFLAEGRISGVT 310 250 GKLMFEQQPMKMASAESLCHSEQDPSFSVLTVGTHNNCDSVVHLIEVPYVLPFLAEGKFSGVH 312 248 GKLMFQQQPMKMASAESLCDTQTDPNFSVLTVGRQNNCDSLTRVIEVPYVLPFLAEGRISGVT 310 242 GYEMGDVQKTKLAAIEAEWETQPAPAAFTLFGIPDQEEETNKFAIQIPYALGIIATRSVDTP-303 244 GYEVGEVQKAKLAAIEAEWETHPAPASFTLIGFPNEEEQRTDFAVKIPWVLGIIATRSLDEQ-305 C-terminal Q-loop insertion (QC)


311 LQGIRDLQQ-.................................................................... 319
304 VIGLKELMVQHEERI RNGMKAYSLLEQLRSGSTDQAVRDQFNSMKKDLGYGLLLKRYTPNVAD 366 306 VIGIKDLIADHEARIRNGMVRYGLLEELRAGNKSPEKIAAFNEVKDDLGYGLLLKKYTPNVVD 368

320--EYQQRFGPNDYRPNLFVTYWSFRMMIGLMAIPVLFALIALWLTRGGQIPNQRWFSWLALLT 380 322 - - SYEEKFGPGDYRPNLFVTYWSFRAMIGFLAVPGLFALAALWLTRGGRIPDQRWFSWFALLT 382 320--EYQQRFGPNDYRPNLFVTYWSFRMMIGLMAIPVLFALIALWLTRGGQIPNQRWFSWLALLT 380 367 ATEAQIQQATKDSIPRVAPLYFAFRIMVACGFLLLAIIALSFWSVIRNRIGEKKWLLRAALYG 429 369 ASEEQIKQAAKDT I PSVASMFWSFRAMVGAGFAMLI LFVCAFWASARKNEESKPWLLKFALYS 431 Periplasmatic loop 8 (PL8)
381 MPAPFLANSAGWVFTEMGRQPWVVVPNPTGDQLVRLTVKAGVSDHSATVVATSLLMFTLVYAV 443 383 IPTPFLANSAGWVFTEMGRQPWVVVPNPTGDQDIRLTVAQGVSDHSVGLVVLSLVAFTLVYAV 445 381 MPAPFLANSAGWVFTEMGRQPWVVVPNPTGDQLVRLTVKAGVSDHSATVVATSLLMFTLVYAV 443 430 I PLPWIAVEAGWFVAEYGRQPWAIGEVLP-......TAVANSSLTAGDLIFSMVLICGLYTL 484 432 LPLPWIATQTGWFVAEHGRQPWTIGGVLP........THLSASSLSTGDLWGSLIALIAFYTL 486

444 LAVIWCWLLKRYIVEGPLEHDAEPA…-...........AHGAPRDDEVAPLSFAY 485
446 LAVIWFFLLRRYIVQGPSEHDSEPA…..........APRPPDADDVAPLSFAY 487
444 LAVIWCWL LKRYIVEGPLEHDAEPA -............ AHGAPRDDEVAPLSFAY 485
485 FLVAELFLMFKFARLGPSSLKTGRYHFEOSSTTTQPAR…
487 LLVVEMYLMIRFARLGPSSLHTGRYHFEQLEQHAVKHASPSQADPQQPVNA -

Supplementary Fig. 6 - Sequence alignment of selected CydA subunits. Sequence alignments of selected CydA homologs from mycobacterial cytochrome bd oxidase and proteobacterial enzymes containing a long $Q_{-l o o p ~ v a r i a n t . ~} Q_{N}$ and $Q_{c}$ regions are indicated by green and black bars, respectively. The periplasmic loop 8 (PL8) which shows an interaction with the $Q_{c}$ domain of cyt. $b d_{M . t b}$ is indicated by a red bar. The mycobacterium specific C-terminal PL8 insertion is highlighted by a red box. Sequence alignments were generated using Clustal Omega ${ }^{1}$.
a Side view


Side view

b


Supplementary Fig. 7 - Stabilizing hydrogen bond network of PL8. (a) Side view and (b) top view orientations of periplasmic loop 8 of CydA. Residues of PL8 are presented as pink ball-and-stick models. Hydrogen bonds are indicated with dashed green lines. Amino acid residue participating in the PL8 hydrogen bond network are indicated. Asterisks refer to backbone oxygens and amides as H -bond donors and acceptors. Brackets indicate participation of backbone and sidechain atoms in H -bond formation.


Supplementary Fig. 8 - LC-MS spectrum of identified MK9 species in the cytochrome bd oxidase. Peaks at $\mathrm{m} / \mathrm{z} 785.6,809.6$, and 825.6 display $\mathrm{H}^{+}, \mathrm{Na}^{+}$and $\mathrm{K}^{+}$adducts of oxidized MK9, respectively.
a

b

c

Mycobacterium tuberculosis Mycobacterium smegmatis Corynebacterium glutamicum Rickettsia prowazekii Escherichia coli (AppC) Escherichia coli (CydA) Azotobacter vinelandii Klebsiella pneumoniae Pseudomonas aeruginosa


Supplementary Fig. 9 - Phylogenetic distribution of structural features involved in allosteric and thiol modulation of cytochrome bd oxidase activity.
Multiple sequence alignments were carried out using 561 CydA sequences from the manually curated representative genome list (Seed) of the protein family database (Pfam). (a) Phylogenetic distribution of Trp ${ }^{9 . A}$ residue among bacterial and archaeal representative genomes. The majority of these sequences belong to the phylum of Actinobacteria (beige). Conservation of the Trp residue was also found in Proteobacteria although with lesser representation (blue). (b) Phylogenetic distribution of the disulfide forming Cys ${ }^{266 . A}$ - Cys ${ }^{285 . A}$ pair. Among the total number of analyzed sequences only 30 orthologs ( $5.7 \%$ ) exhibited this residue pair. Intriguingly, all of these sequences belong the phylum of Actinobacteria, including mycobacteria (green), and also show the presence of the signature Trp residue in TMH1. (c) Multiple sequence alignment of selected cytochrome $b d$ oxidases. Positions of Trp ${ }^{9 . A}, \mathrm{Cys}^{266 . \mathrm{A}}$, and Cys ${ }^{285 . \mathrm{A}}$ residues are indicated. Disulfide bond forming cysteines are highlighted in red.
a

b
Start conformation
Snapshot 1
Snapshot 2


0 ns


195 ns


310 ns

Supplementary Fig. 10 - MD simulation of reduced MK-9 binding to the Q-loop domain. (a) Representative snapshots of a 750 ns MD simulation with reduced MK-9 docked closely to the interface between the $Q_{N}$ region and heme $b_{595}$. The head group was placed within an observable density feature at this location. (b) The simulation snapshots visualized here demonstrate that reduced MK-9 does not form a stable interaction in the region around the b-type heme with the Q-loop domain. The quinol molecule diffuses into the lipid bilayer during the time frame of our simulation. CydA is shown as a grey surface mode Reduced MK-9 is shown as a yellow stick model. Heme $b_{558}$ is shown as a magenta stick model.

## Supplementary References

1. F. Sievers et al., Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega. Molecular Systems Biology. 7, 539-539 (2011).
