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GATA2 deficiency is a heterogeneous multi-system disorder characterized by a high risk of developing myelodysplastic syndrome
(MDS) and myeloid leukemia. We analyzed the outcome of 65 patients reported to the registry of the European Working Group
(EWOG) of MDS in childhood carrying a germline GATA2 mutation (GATA2mut) who had undergone hematopoietic stem cell
transplantation (HSCT). At 5 years the probability of overall survival and disease-free survival (DFS) was 75% and 70%, respectively.
Non-relapse mortality and relapse equally contributed to treatment failure. There was no evidence of increased incidence of graft-
versus-host-disease or excessive rates of infections or organ toxicities. Advanced disease and monosomy 7 (−7) were associated
with worse outcome. Patients with refractory cytopenia of childhood (RCC) and normal karyotype showed an excellent outcome
(DFS 90%) compared to RCC and −7 (DFS 67%). Comparing outcome of GATA2mut with GATA2wt patients, there was no difference in
DFS in patients with RCC and normal karyotype. The same was true for patients with −7 across morphological subtypes. We
demonstrate that HSCT outcome is independent of GATA2 germline mutations in pediatric MDS suggesting the application of
standard MDS algorithms and protocols. Our data support considering HSCT early in the course of GATA2 deficiency in young
individuals.
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INTRODUCTION
Myelodysplastic syndrome (MDS) in young individuals consists of
a heterogeneous group of hematopoietic disorders characterized
by ineffective hematopoiesis, peripheral blood cytopenia, cellular
dysplasia and a high risk of progression to acute myeloid leukemia
(AML). In contrast to older adults, in whom MDS is associated with
age-related somatic mutations, MDS in young patients is often
associated with genetic syndromes predisposing to myeloid
neoplasia. Next to the well-known inherited bone marrow failure
syndromes like Fanconi anemia, Shwachman–Diamond syndrome,

severe congenital neutropenia, or dyskeratosis congenita, a slew
of predisposition syndromes involving genes like GATA2, SAMD9/
SAMD9L, RUNX1, ANKRD26, ETV6, SRP72, ERCC6L2, and others have
recently been uncovered [1–4].
Among these new genetic entities, GATA2 deficiency resulting

from heterozygous germline mutations in the gene encoding the
zinc-finger transcription factor GATA2 appears to be the most
common predisposing condition for MDS in childhood [5, 6].
Although some patients with germline mutations in GATA2
(GATA2mut) have a positive family history, de novo germline
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mutations have been reported in a majority of children with
GATA2mut MDS [6]. Despite the observation that the loss of B-cells
is a common feature of GATA2 deficiency [7], children with GATA2
germline mutations often present as MDS without prior infections.
In contrast, young adults often display a history of opportunistic
infections, slowly progressing bone marrow failure, and subse-
quent transformation to AML.
The prevalence of myeloid neoplasia in GATA2 deficiency has

been estimated to be 75%, with a median age at diagnosis of 19.7
years [8]. Studying a series of 79 GATA2mut patients, Donadieu
described that more than 80% of patients had developed a
hematological malignancy by the age of 40 years; progression
from MDS to AML was observed in 16% [5]. Examining a cohort of
over 600 individuals with MDS enrolled in the registries of the
European Working Group of MDS in Childhood (EWOG-MDS), our
group reported a prevalence of GATA2mut in 7% of all primary MDS
and 15% in advanced primary MDS. GATA2 germline disease was
associated with more advanced MDS type and often accompanied
by monosomy 7 [6].
Allogeneic HSCT is the only curative therapy for hematological

complications of GATA2 deficiency, and has been shown to
eradicate clonal malignancy, restore normal hematopoiesis, clear
underlying infections and improve pulmonary function. As GATA2
deficiency is a newly defined disease, HSCT strategies, as well as
outcome, have yet to be fully elucidated. In particular, it is unclear
whether applying guidelines for HSCT in pediatric MDS results in
similar outcome. Most published reports refer to single-patient
case studies, small series of primarily adult patients, or patients
with immunodeficiency in the absence of clonal disease [9–15].
We have previously observed that 34 individuals with MDS,
monosomy 7 and GATA2mut had a similar outcome compared to
their counterparts with wildtype GATA2 (GATA2wt) [6]. Here we
expand the analysis to an enlarged cohort with longer follow-up
and provide a detailed review of HSCT in young individuals with
GATA2 deficiency.

METHODS
Study population
We identified 66 patients with MDS and GATA2 germline mutation
prospectively enrolled for MDS in the EWOG-MDS registries (EWOG-MDS
98 #NCT00047268, EWOG-MDS 2006 #NCT00662090) who had undergone
HSCT at an age of <20 years between 01/1997 and 11/2018. One patient
was excluded from the analysis due to missing data. Genetic and/or clinical
data from 50 patients had partially been included in previous publications
[6, 16]. HSCT procedures had been performed in accordance with EWOG-
MDS recommendations (www.ewog-mds-saa.org). MDS was classified
based on the 2016 WHO classification for pediatric MDS, and included
refractory cytopenia of childhood (RCC), MDS with excess blasts (MDS-EB),
MDS-EB in transformation (MDS-EBt), and MDS-related acute myeloid
leukemia (MDR-AML) [17]. One patient with myelofibrotic MDS and
increased BM blasts was classified as MDS-EBt. Cytogenetic analysis was
performed according to standard procedures and described according to
the International System for Human Cytogenetic Nomenclature. Karyo-
types with sole monosomy 7, and monosomy 7 with one or two additional
random aberrations were classified as monosomy 7 and analyzed in one
group [18].
Molecular studies to identify GATA2 mutations were conducted as

previously described [6, 16]. In patients enrolled before 2013 GATA2
testing was performed retrospectively, thereafter the diagnosis of
MDS prompted GATA2 testing independent of the clinical presentation.
For the analyses comparing GATA2mut to GATA2wt patients, we identified
404 GATA2wt MDS patients without known underlying predisposition
(including SAMD9/L) who otherwise fulfilled the study criteria (Supple-
mentary Fig. 1).
All studies were approved by the institutional ethics committees of the

respective institutions. Written informed consent was obtained from
patients or patients’ guardians. The study was conducted in accordance
with the Declaration of Helsinki.

Statistical analysis
Overall survival (OS) was defined as the time from HSCT to death or last
follow-up, disease-free survival (DFS) was defined as the time from HSCT to
death, disease recurrence, or last follow-up. The Kaplan–Meier method was
used to estimate survival rates, and the two-sided log-rank test was used to
evaluate the equality of the survivorship functions in different subgroups.
Time-to-event outcome for relapse and non-relapse mortality (NRM) were
estimated using cumulative incidence curves, using relapse and NRM as
the respective competing risks [19, 20]. Differences in the cumulative
incidence functions among groups were compared using Gray’s test [21].
For the analyses comparing GATA2mut with GATA2wt patients the χ2 test

was used to examine the statistical significance of the association between
GATA2 status and categorized factors. Fisher’s exact test was calculated for
2 × 2 contingency analyses. Nonparametric statistics were used to test for
differences in continuous variables in terms of mutational status
(Mann–Whitney U test).
For multivariate analysis, a cause-specific Cox model was fitted,

including all variables with P less than 0.1 in the univariate analysis for
DFS [22]. The model included the GATA2 status, karyotype, and highest
WHO-type. All P values were two-sided, and values < 0.05 were considered
to be statistically significant. Software packages SPSS for Windows 25.0.0
(IBM Corp, New York, NY) and NCSS 2004 (NCSS, Kaysville, UT) were used.

RESULTS
Characteristics of the cohort
The 65 children and adolescents with GATA2 deficiency had been
diagnosed with RCC (n= 36), MDS-EB (n= 22), MDS-EBt (n= 6) or
MDR-AML (1) at a median age of 12.8 (4.4–18.6) years. Karyotypes
included monosomy 7 (n= 44), der (1;7) (n= 4), trisomy 8 (n= 4),
random aberration (n= 1) or a normal karyotype (n= 12). Forty
patients (71%) had additional non-hematological features of
GATA2 deficiency (Table 1). Prior to HSCT, 16 patients had
progressed to a more advanced stage of MDS and five had
received AML-type chemotherapy, resulting in a BM blast count of
<5% at the time of HSCT.
Patients had undergone HSCT from a matched sibling donor

(MSD; n= 17), unrelated donor (UD; n= 40) or mismatched family
donor (MMFD; n= 8) at a median age of 13.5 (4.6–19.9) years
(Table 1). Stem cell source was BM (n= 37), peripheral blood (n=
27) or cord blood (n= 1). Patients were prepared with a busulfan-
based (n= 35), treosulfan-based (n= 21), total body irradiation-
based (n= 5) or an alternative conditioning regimen (n= 4). Graft-
versus-host-disease (GvHD) prophylaxis included cyclosporine ±
methotrexate for the majority of MSD-HSCT and additional anti-
thymocyte globulin in UD-HSCT.

Engraftment and GvHD
All patients achieved initial engraftment. Secondary graft failure
occurred in four patients (Supplementary Table 1) following
MMFD-HSCT (n= 2) or MUD-HSCT (n= 2) resulting in death in two
patients.
The cumulative incidence of acute GvHD (aGvHD) at day 100

was 0.34 [95% CI 0.24–0.48] for grade II–IV and 0.12 [0.06–0.24] for
grade III–IV (Fig. 1A). Following MSD-HSCT two patients developed
grade III–IV aGvHD (12%), while six patients grafted from an UD
experienced grade III–IV aGvHD (15%). None of the patients
transplanted from a MMFD had grade II–IV aGvHD (Supplementary
Table 1).
Fifteen of the 62 patients at risk (24%) developed chronic GvHD

(cGvHD), which scored limited in 11 cases and extensive in the
remaining four. The cumulative incidence of overall and extensive
cGvHD was 0.25 [0.16-0.39] and 0.08 [0.03-0.20], respectively
(Fig. 1B). Among the 16 patients at risk grafted from a MSD, four
(25%) developed cGvHD, while nine of 39 patients at risk (23%)
developed cGvHD following UD-HSCT. Of the patients trans-
planted with a MMFD, two out of seven patients at risk developed
limited cGvHD (Suppl. Table 1).
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Table 1. Patient characteristics and transplantation procedure.

Item Specification At diagnosis/prior to HSCT

N %

Patients 65 100

Gender Male 34 52

Female 31 48

Age at diagnosis of MDS Years, median(range) 12.8 (4.4–18.6)

GATA2 Type of mutation Truncating 43 66

Missense 14 22

Non-Coding Intron 4 4 6

Synonymous 3 5

Whole gene deletion 1 2

MDS subtype at diagnosis RCC 36 55

MDS-EB 22 34

MDS-EBt/ MDR-AML 6 /1 11

Karyotype Monosomy 7 44 68

Der (1;7) 4 6

Trisomy 8 4 6

Normala 12 19

Other 1 1

Non-Hematological features Any 40 71

Immunedeficiencyb 24

Lymphedema/ hydrocele 13

Deafness/hearing impairment 8

Urogenital malformations 10

Neurocognitive/ behavioral problems 10

Highest MDS subtype

(prior to HSCT) RCC 27 42

MDS-EB 23 35

MDS-EBt/ MDR-AML 10/5 23

At HSCT

Age at HSCT Years, median (range) 13.5 (4.6-19.9)

Interval MDS to HSCT Months, median (range) 5.6 (1.4 – 67)

Therapy prior to 1st HSCT No therapy 55 85

AML-type 5 8

other 5 8

BM blasts at HSCT < 5% 34 56

5–19% 19 31

≥ 20% 8 13

No data 4

HSCT procedure

Donor MSD 17 26

MUD (10/10)/(9/10) 24/6 46

UD (6/6)/(5/6)/(8/10)c/ incomplete typing 1/2/6/1 15

MMFD 8 12

Stem cell source BM 37 57

PBSC 19 29

PBSC (T-cell depleted) 8 12

CB 1 2

Conditioning regimen Busulfan- based 35 54

Treosulfan-based 21 32

TBI-based 5 8

Other 4 6
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Infections and toxicity
Evaluating the frequency of infections post-HSCT, 49 patients were
noted to develop any infection. Forty-one had viral infections, 16
bacterial infections, and 9 patients fungal disease (7 aspergillosis,
one candidiasis, one unknown). The most common viral infections
were CMV and EBV in 16 and 10 patients, respectively; one patient
each developed CMV disease and post-transplant lymphoproli-
ferative disease (Table 2). Adenovirus infection was recorded in
four patients.
With respect to non-infectious complications, the rate of

complications resulting in toxicity of grade 3 or more according
to Common Terminology Criteria for Adverse Events was 43%.
Thirteen patients had ≥1 non-infectious complication.

Hepatobiliary (16, including 3 veno-occlusive disease) and
pulmonary (13) toxicity was most common (Table 3). Four patients
experienced neurologic complications, three of which were
described as posterior reversible encephalopathy syndrome.

Overall outcome
Fifty patients were alive 5 years after HSCT, resulting in a
Kaplan–Meier estimate of 5-year OS of 0.75 [0.63–0.87] (Fig. 2A).
The probability of DFS was 0.70 [0.58–0.82] (Fig. 2A). The
cumulative incidence of relapse (CIR) was 0.16 [0.08–0.29] and of
NRM 0.14 [0.08–0.26]; Fig. 2A. Nine patients died of transplant-
related causes. DFS was comparable for patients transplanted
from MUD (0.74 [0.56–0.93]) versus MSD (0.82 [0.64–1.00]),
whereas patients transplanted from mismatched UD (UD other)
had a significantly lower DFS (0.30 [0.01–0.59]; p= 0.01) (Fig. 2B).
The latter was primarily due to a significantly higher NRM for UD
other of 0.40 [0.19–0.85] compared to 0.12 [0.03–0.43] for MSD
and 0.07 [0.02–0.26] for MUD, p= 0.03; (Fig. 2C) whereas there was
no significant difference in the CIR according to type of donor
(Fig. 2D). Of note, of the eight patients transplanted from a MMFD,

Table 1 continued

Item Specification At diagnosis/prior to HSCT

N %

GvHD prophylaxis MSD (17) CSA 7

CSA/MTX 7

ATG/CSA/MTX 3

(M)UD (40) ATGd/CSA/MTXe 36

ATG/CSA 2

ATG/tacrolimus 1

CSA/MTX 1

MMFD (8) ATG 6

ATG/MMF 1

Muromonab (OKT3) 1

HSCT Hematopoietic stem cell transplantation, MDS Myelodysplastic syndrome, RCC Refractory cytopenia of childhood, MDS-EB MDS with excess blasts, MDS-
EBt MDS with excess blasts in transformation, MDR-AML MDS-related acute myeloid leukemia, MSD matched sibling donor, MUD matched unrelated donor, UD
unrelated donor, MMFD mismatched family donor, BM bone marrow, PBSC peripheral blood stem cells, CB cord blood; TBI total body irradiation, ATG/ALG anti-
thymocyte/lymphocyte globuline, CSA cyclosporine, MTX methotrexate, MMF Mycophenolate mofetil.
aIncluding two patients without sufficient metaphases and exclusion of monosomy 7 and trisomy 8 by fluorescence in situ hybridization (FISH).
bDefined as frequent infections and/or laboratory evidence of immune deficiency.
cIncluding one patient with an 8/10 HLA matched sibling donor.
dIncluding one patient with alemtuzumab instead of ATG as serotherapy.
eIncluding two patients with MMF instead of MTX.

1.0a

b

Grade II-IV:

Grade II-IV 0.34 [0.24-0.48]

Limited/ extensive 0.25 [0.16-0.39]

Extensive 0.08 [0.03-0.20]

Grade IIl-IV 0.12 [0.06-0.24]

Grade III-IV:
N = 65, E = 22
N = 65, E = 8

N=62; E=15
N=62; E=4

Limited/ extensive:
Extensive:

0.8

0.6

0.4
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um
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Days after transplantation
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Fig. 1 Incidence of acute and chronic GvHD. A Cumulative
incidence of day 100 grade II–IV and III–IV acute GvHD. B Cumulative
incidence of chronic GvHD in the 62 patients at risk. N numbers, E
events.
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only one died after secondary graft failure, while the other seven
patients are alive and disease-free. In univariate analysis, none of
the other transplantation procedure-related variables such as year
of HSCT, conditioning regimen, time from diagnosis to HSCT, stem

cell source or donor and recipient sex had a significant impact on
DFS, NRM, and CIR (Supplementary Table 2).

Outcome according to MDS type and karyotype
Patients with a BM blast percentage of >20% at any time prior to
HSCT showed a trend toward inferior DFS (0.49 [0.21–0.77])
compared to patients with 5–19% BM blasts (0.73 [0.54–0.92]) or
with <5% blasts (0.81 [0.66–0.96]) (p= 0.15; Fig. 3A). Similarly,
there was a trend toward a higher CIR and NRM (data not shown).
We next assessed the association between karyotype and

morphologic diagnosis. Normal karyotype was associated with
RCC (10/12 patients with normal karyotype had RCC) and
monosomy 7 was associated with advanced MDS (32/38 advanced
MDS patients had monosomy 7) (Supplementary Table 3). Thus,
we performed a stratified analysis combining MDS type and
karyotype. Patients with RCC and normal karyotype showed a
superior DFS (0.90 [0.71–1.00]) compared to patients with
monosomy seven independent of disease status (RCC 0.67
[0.40–0.94], MDS-EB 0.69 [0.48–0.90], MDS-EBt/MDR-AML 0.43
[0.12–0.74]) (Fig. 3B). While none of the patients with RCC and
normal karyotype relapsed, patients with MDS-EBt/MDR-AML and
monosomy 7 karyotype showed the highest relapse rate (0.40
[0.19–0.86]) (Fig. 3C).

Comparison of outcome to MDS without known underlying
predisposition syndrome
Next, we performed an analysis comparing the HSCT outcome of
65 GATA2mut patients with a cohort of 404 GATA2wt patients
registered in EWOG-MDS and transplanted during the same time
period (Supplementary Table 3). As expected, GATA2mut patients
were slightly older, had more advanced disease, and carried a
monosomy 7 karyotype more frequently (Supplementary Table 3).
At 5 years there was no significant difference in OS (GATA2wt 0.82
[0.78–0.86] vs GATA2mut 0.75 [0.63–0.87]) and DFS (GATA2wt 0.78

Table 3. Non-infectious complications post-HSCT.

Type of complications Number of patients
(N)

Pulmonary toxicity 13

Liver complications 13

VOD 3

Renal complications 6

Neurological complications 4

Gastrointestinal complications 3

Cardiac complications 2

Transplant-related microangiopathy 3

Autoimmune hemolytic anemia 1

Acute pancreatitis 1

Number of complications Number of patients
(N)

%

None 37 57

1 Complication 15 23

2 Complications 9 14

3 Complications 2 3

4 Complications 0

5 Complications 2 3

VOD veno-occlusive disease, HSCT hematopoietic stem cell transplantation.

1.0a

c d

b

5-yrs OS 0.75 [0.63-0.87], E=15
MSD 0.82 [0.64-1.00]

MSD:
MUD:
UD other:

MSD:
MUD
UD other:

UD other 0.30 [0.01-0.59]

UD other 0.30 [0.12-0.77]

P=0.01

P=0.03

P=n.s.

P=0.02

P=0.02
P=n.s.

P=0.03
P=n.s.
P=n.s.

N = 17, E = 3
N = 30, E = 7
N = 10, E = 7

N = 17, E = 1
N = 30, E = 5
N = 10, E = 3

MSD
MUD
UD other:

N = 17, E = 2
N = 30, E = 2
N = 10, E = 4

UD other vs. MSD:

UD other 0.40 [0.19-0.85]

MSD 0.12 [0.03-0.43]

UD other vs. MSD:
MUD vs. MSD:

UD other vs. MSD:

UD other vs. MSD:
MUD vs. MSD:

0.74 [0.56-0.93]MUD 10/10, 9/10
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[0.74–0.82] vs GATA2mut 0.70 [0.58–0.82]). Comparing the outcome
of RCC patients with normal karyotype with respect to the
presence or absence of a germline GATA2 mutation, both groups
showed nearly identical probabilities of DFS of 90% and 89%,
respectively (Fig. 4A). Similarly, there was no significant difference
in DFS among patients of any MDS type with monosomy 7 with
respect to the presence or absence of GATA2 deficiency
(Fig. 4B–D).
In multivariate analysis of variables predicting DFS (including

age, karyotype, highest MDS subtype and GATA2 status), the most
important factors were karyotype (monosomy 7 vs. normal; p <
0.01) and most advanced MDS type (RCC vs MDS-EBt/MDR-AML;
p < 0.01, Table 4). GATA2 mutation status was not significantly
associated with DFS.

DISCUSSION
We present a comprehensive analysis of pediatric patients with
GATA2 deficiency undergoing HSCT for MDS. Patients with
inherited bone marrow failure disorders frequently demonstrate
increased transplant-related toxicity and mortality upon under-
going HSCT, but whether this is true for pediatric patients with
GATA2 deficiency has remained unclear. Several studies on HSCT
in GATA2 deficiency reported small numbers of patients and/or
patients of varying ages and heterogeneous disease character-
istics [23]. For example, Parta reported the HSCT outcome of 22
patients with GATA2 deficiency conditioned with a busulfan-based
regimen [10]. Although the results are encouraging, only four
patients were under the age of 20 years, and infection was the
indication in approximately half of the patients, rendering it
difficult to interpret the results for pediatric GATA2-deficient
patients with MDS.
In our study, patients with GATA2 deficiency transplanted for

MDS had a similar outcome as compared to GATA2wt patients. In
multivariate analysis MDS type and karyotype but not GATA2

mutational status were significant variables for DFS, suggesting
that the presence of the GATA2 mutation is not a relevant risk
factor.
We did not observe an unusually high rate of NRM or atypical

non-infectious complications in GATA2mut patients. A recent study
reported a surprisingly high incidence of neurologic toxicities in
40% of transplanted GATA2mut patients [24]. Here, we observed
neurologic complications in four patients. Hofmann also noted an
increased rate of thrombotic events. Although we did not observe
a high incidence of thrombotic complications, several patients
experienced transplant-associated thrombotic microangiopathy,
and three of the four neurologic events were posterior reversible
encephalopathy syndrome. This observation might indicate a
defined endothelial vulnerability in GATA2mut patients, consistent
with the known role of GATA2 in the regulation of vascular
integrity [25].
Interestingly, no mycobacterial infections were reported in this

cohort. We did observe, however, a relatively high rate of fungal
infections. HSCT performed in the past with limited surveillance
and anti-fungal prophylaxis/treatments may have contributed to
these findings. Overall, the frequency and distribution of different
types of infections were consistent with general expectations in
HSCT, with viral infections by far the most common complication.
Similar to organ toxicity, the rate of GvHD was not unusually

high. In particular, cGvHD was observed in only 15 patients (24%).
This is in contrast to the study by Parta [10] reporting cGvHD in
46% of patients, and points towards lower rates of GvHD in
pediatric GATA2mut patients.
EWOG-MDS HSCT recommendations stratify pediatric patients

with MDS according to disease stage, karyotype and hematolo-
gical presentation including bone marrow cellularity (Supplemen-
tary Figure 2). HSCT with a myeloablative regimen such as
busulfan, cyclophosphamide, and melphalan is recommended for
patients with increased blast count [26]. Patients with RCC and
abnormal karyotype are also offered HSCT soon after diagnosis;
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we currently recommend a preparative regimen of thiotepa,
treosulfan, and fludarabine. For patients with RCC and a normal
karyotype, the decision to transplant depends on the hematolo-
gical presentation. Transfusion dependent or neutropenic patients
with RCC and hypocellular bone marrow are offered HSCT
following a reduced toxicity regimen such as treosulfan and
fludarabine, while in the absence of cytopenias patients with
stable disease are generally offered a watch-and-wait strategy. The
HSCT data presented here, in particular the highly similar outcome

in GATAmut as compared to GATAwt patients with respect to OS,
DFS, NRM and relapse, support the hypothesis that the currently
recommended EWOG-MDS algorithm for therapy of pediatric MDS
can also be applied to children with GATA2 deficiency. Although
our series includes a limited number of patients with MDS and
>20% blasts, the dismal outcome of this group with a high risk of
relapse indicates the urgent need for evaluation of novel
strategies including cytoreduction with modern agents such as
CPX351 or venetoclax, and/or post-HSCT therapy with preemptive
azacytidine and donor lymphocyte infusions.
The excellent outcome of HSCT in patients with GATA2 germline

disease, RCC morphology and normal karyotype raises the
question whether these children should be offered HSCT once
they have been diagnosed irrespective of their hematological
presentation. The probability for progression to more advanced
MDS is considerable, and early HSCT will spare patients cumber-
some surveillance as well as the risk of inferior outcome of HSCT in
more advanced disease. A similar issue arises for patients with
GATA2 deficiency presenting with mild to moderate signs of
immunedeficiency. Although the analysis presented here is
limited to patients with MDS, the lack of evidence of increased
transplant-related toxicity inherent to the GATA2 germline
mutation indicates that in young individuals with GATA2
deficiency the indication for HSCT can be based on the expected
clinical course. Thus, preemptive HSCT might be an acceptable
strategy. Our current approach is to perform a donor search as
soon as GATA2 deficiency is diagnosed. In the absence of
cytopenia, karyotypic abnormalities, increase in bone marrow
blasts or clinically relevant immunedeficiency, we monitor the
patient closely and consider a well-matched HSCT even without
severe disease manifestations. Transplanting patients with GATA2
deficiency prior to the acquisition of severe infections or
secondary organ damage, such as progressive pulmonary disease,
is likely to increase long-term survival of adult patients with
GATA2 deficiency.
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Table 4. Multivariate analysis of variables predicting Disease-free-
survival (DFS) in a cohort of 65 patients with GATA2 deficiency and 404
patients without known predisposition syndrome.

Relative risk 95 CI P

Age at HSCT

≥12 yrs. vs. <12 yrs. 1.1 [0.7–1.6] n.s.

GATA2 mutated

yes vs. no 0.7 [0.4–1.3] n.s.

Karyotype

Monosomy 7 vs. normal 22 [1.2–3.9] <0.01

Other vs. normal 1.6 [0.8–3.8] n.s.

Other vs. monosomy 7 0.7 [0.4-1.3] n.s.

Most advanced MDS type prior
to HSCT

MDS-EB vs. RCC 1.9 [1.0–3.4] 0.04

MDS-EBt/ MDR-AML vs. RCC 3.7 [2.2–6.3] <0.01

MDS-EBt/MDR-AML vs. MDS-EB 2.0 [1.2–3.4] 0.01

CI confidence interval, MDS myelodysplastic syndrome, HSCT hematopoie-
tic stem cell transplantation, MDS-EB MDS with excess blasts, MDS-EBt MDS
with excess blasts in transformation, RCC refractory cytopenia of childhood,
MDR-AML MDS-related acute myeloid leukemia, yrs years.
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One limitation of our study is that the presence of secondary
mutations was unknown. It has previously been demonstrated
that somatic ASXL1 or RAS pathway mutations lead to leukemic
transformation and inferior outcome [6, 27, 28]. In future
prospective trials, secondary mutations need to be analyzed
because they may serve as prognostic markers predicting the risk
of relapse, and thus be crucial in guiding HSCT strategy.
In summary, our results indicate that pediatric patients with

GATA2 deficiency are not at higher risk for HSCT-related
complications or mortality compared to MDS patients without
GATA2 germline mutations. Overall, the relatively low rates of
GvHD, infections, and organ toxicities suggest that standard HSCT
protocols can be recommended. Considering the high mortality of
untreated GATA2 deficiency and the high likelihood of developing
MDS/AML, these data support a strategy of early preemptive HSCT
in all pediatric patients with GATA2 deficiency.
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