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Abstract
We derive a shape derivative formula for the family of principal Dirichlet eigenvalues λs(�)

of the fractional Laplacian (−�)s associated with bounded open sets � ⊂ R
N of class C1,1.

This extends, with a help of a new approach, a result in Dalibard and Gérard-Varet (Calc. Var.
19(4):976–1013, 2013)whichwas restricted to the case s = 1

2 . As an application, we consider
the maximization problem for λs(�) among annular-shaped domains of fixed volume of the
type B \ B ′

, where B is a fixed ball and B ′ is ball whose position is varied within B. We prove
that λs(B \ B

′
) is maximal when the two balls are concentric. Our approach also allows to

derive similar results for the fractional torsional rigidity. More generally, we will characterize
one-sided shape derivatives for best constants of a family of subcritical fractional Sobolev
embeddings.

Mathematics Subject Classification Primary 49Q10 · Secondary 35S15 · 35S05

1 Introduction

Let s ∈ (0, 1) and � ⊂ R
N be a bounded open set. The present paper is devoted to the study

of best constants λs,p(�) in the family of subcritical Sobolev inequalities

λs,p(�)‖u‖2L p(�) ≤ [u]2s for all u ∈ Hs
0(�), (1.1)

where p ∈ [1, 2N
N−2s ) if 2s < N and p ∈ [1,∞) if 2s ≥ N = 1. Here, the Sobolev space

Hs
0(�) is given as completion of C∞

c (�) with respect to the norm [ · ]s defined by
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[u]2s = cN ,s

2

∫
RN

∫
RN

(u(x) − u(y))2

|x − y|N+2s dxdy with cN ,s = π− N
2 s4s

�( N2 + s)

�(1 − s)
.

(1.2)

The normalization constant cN ,s is chosen such that [u]2s = ∫
RN |ξ |2s |û(ξ)|2dξ for u ∈

Hs
0(�), where û denotes the Fourier transform of u. The best (i.e., largest possible) constant

in (1.1) is given by

λs,p(�) := inf
{[u]2s : u ∈ Hs

0(�), ‖u‖L p(�) = 1
}
. (1.3)

As a consequence of the subcriticality assumption on p and the boundedness of �, the space
Hs

0(�) compactly embeds into L p(�). Therefore a direct minimization argument shows that
λs,p(�) admits a nonnegative minimizer u ∈ Hs

0(�) with ‖u‖L p(�) = 1. Moreover, every
such minimizer solves, in the weak sense, the semilinear problem

(−�)su = λs,p(�)u p−1 in �, u = 0 in R
N \ �. (1.4)

where (−�)s stands for the fractional Laplacian. It therefore follows from regularity theory
and the strong maximum principle for (−�)s that u is strictly positive in �, see Lemma 2.3
below. We recall that, for functions ϕ ∈ C1,1

c (RN ), the fractional Laplacian is given by

(−�)sϕ(x) = cN ,s PV
∫
RN

ϕ(x) − ϕ(y)

|x − y|N+2s dy = cN ,s

2

∫
RN

2ϕ(x) − ϕ(x + y) − ϕ(x − y)

|y|N+2s dy.

Of particular interest are the cases p = 1 and p = 2 which correspond to the fractional
torsion problem

(−�)su = λs,1(�) in �, u = 0 in R
N \ �, (1.5)

and the eigenvalue problem

(−�)su = λs,2(�)u in �, u = 0 in R
N \ �, (1.6)

associated with the first Dirichlet eigenvalue of the fractional Laplacian, respectively. In these
cases, the minimization problem for λs,p(�) in (1.3) possesses a unique positive minimizer.
Indeed, it is a well-known consequence of the fractional maximum principle that (1.5) admits
a unique solution, and that (1.6) has a unique positive eigenfunction with ‖u‖L2(�) = 1.
Incidentally, the uniqueness of positive minimizers extends to the full range 1 ≤ p ≤ 2, as
we shall show in Lemma A.1 in the appendix of this paper.

Our first goal in this paper is to analyze the dependence of the best constants on the
underlying domain �. For this we shall derive a formula for a one-sided shape derivative of
the map � 	→ λs,p(�). We assume from now on that � ⊂ R

N is a bounded open set of class
C1,1, and we consider a family of deformations {	ε}ε∈(−1,1) with the following properties:

	ε ∈ C1,1(RN ;RN ) for ε ∈ (−1, 1),	0 = idRN , and

the map (−1, 1) → C0,1(RN ,RN ), ε → 	εis of class C
2.

(1.7)

We note that (1.7) implies that 	ε : RN → R
N is a global diffeomorphism if |ε| is small

enough, see e.g. [7, Chapter 4.1]. To clarify, we stress that we only need the C2-dependence
of 	ε on ε with respect to Lipschitz-norms, while 	ε is assumed to be a C1,1-function for
ε ∈ (−1, 1) to guarantee C1,1-regularity of the perturbed domains 	ε(�).

From the variational characterization of λs,p(�) it is not difficult to see that the map
ε 	→ λs,p(	ε(�)) is continuous. However, since λs,p(�) may not have a unique positive
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minimizer, we cannot expect this map to be differentiable. We therefore rely on determining
the right derivative of ε 	→ λs,p(	ε(�)) from which we derive differentiability whenever
λs,p(�) admits a unique positive minimizer, thereby extending the classical Hadamard shape
derivative formula for the first Dirichlet eigenvalue of the Laplacian −�.

Throughout this paper, we consider a fixed function δ ∈ C1,1(RN ) which coincides with
the signed distance function dist(·,RN \ �) − dist(·,�) in a neighborhood of the boundary
∂�. We note here that, since we assume that � is of class C1,1, the signed distance function
is also of class C1,1 in a neighborhood of ∂� but not globally on R

N . We also suppose that
δ is chosen with the property that δ is positive in � and negative in R

N \ �, as it is the case
for the signed distance function.

Our first main result is the following.

Theorem 1.1 Let λs,p(�) be given by (1.3) and consider a family of deformations 	ε sat-
isfying (1.7). Then the map ε 	→ θ(ε) := λs,p(	ε(�)) is right differentiable at ε = 0.
Moreover,

∂+θ(0) = min

{
�(1 + s)2

∫
∂�

(u/δs)2X · ν dx : u ∈ H
}

, (1.8)

where ν denotes the interior unit normal on ∂�, H is the set of positive minimizers for
λs,p(�) and X := ∂ε

∣∣
ε=0	ε .

Here the function u/δs is defined on ∂� as a limit. Namely, for x0 ∈ ∂�, the limit

u

δs
(x0) = lim

x→x0
x∈�

u

δs
(x) (1.9)

exists, as the function u/δs extends to a function in Cα(�) for some α > 0, see [20]. In
addition, the function δ1−s∇u also admits a Hölder continuous extension on � satisfying
δ1−s∇u · ν = su/δs on ∂�, see [8]. As a consequence, the expression u/δs , restricted on
∂�, plays the role of an inner fractional normal derivative. Note that, for s = 1, the limit on
the RHS of (1.9) coincides with the classical inner normal derivative of u at x0.

We observe that the constant�(1+s)2 appears also in the fractional Pohozaev identity, see
e.g. [21]. This is, to some extend, not surprising at least in the classical case since Pohozaev’s
identity can be obtained using techniques of domain variation, see e.g. [23].

We also remark that one-sided derivatives naturally arise in the analysis of parameter-
dependent minimization problems, see e.g. [7, Section 10.2.3] for an abstract result in this
direction. Related to this, they also appear in the analysis of the domain dependence of
eigenvalue problems with possible degeneracy, see e.g. [11] and the references therein.

A natural consequence of Theorem 1.1 is that the map ε 	→ θ(ε) = λs,p(	ε(�)) is dif-
ferentiable at ε = 0 whenever λs,p(�) admits a unique positive minimizer. Indeed, applying
Theorem 1.1 to the map ε 	→ θ̃ (ε) := λs,p(	−ε(�)) yields

∂−θ(0) = −∂+θ̃ (0) = max

{
�(1 + s)2

∫
∂�

(u/δs)2X · ν dx : u ∈ H
}

,

where H is given as in Theorem 1.1. As a consequence, we obtain the following result.

Corollary 1.2 Let λs,p(�) be given by (1.3) and consider a family of deformations 	ε satis-
fying (1.7). Suppose that λs,p(�) admits a unique positive minimizer u ∈ Hs

0(�). Then the
map ε 	→ θ(ε) = λs,p(	ε(�)) is differentiable at ε = 0. Moreover

θ ′(0) = �(1 + s)2
∫

∂�

(u/δs)2X · ν dx, (1.10)
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where X := ∂ε

∣∣
ε=0	ε .

Asmentioned earlier, λs,p(�) admits a unique positiveminimizer u ∈ Hs
0(�) for 1 ≤ p ≤ 2,

see Lemma A.1 in the appendix. Therefore Corollary 1.2 extends, in particular, the classical
Hadamard formula, for the first Dirichlet eigenvalue λ1,2(�) of−�, to the fractional setting.
We recall, see e.g. [15], that the classical Hadamard formula is given by

d

dε

∣∣∣
ε=0

λ1,2(	ε(�)) =
∫

∂�

|∇u|2X · ν dx . (1.11)

An analogue of Corollary 1.2 for the case of the local r -Laplace operator was obtained in
[2,12].We also point out that, prior to this paper, a Hadamard formula in the fractional setting
of the type (1.10) was obtained in [6] for the special case p = 1, s = 1

2 , N = 2 and � of
class C∞. We are not aware of any other previous work related to Theorem 1.1 or 1.2 in the
fractional setting.

Our next result provides a characterization of constrained localminima ofλs,p . Here and in
the following, we call a bounded open subset� of classC1,1 a constrained local minimum for
λs,p if for all families of deformations	ε satisfying (1.7) and the volume invariance condition
|	ε(�)| = |�| for ε ∈ (−1, 1), there exists ε0 ∈ (0, 1) with λs,p(	ε(�)) ≥ λs,p(�) for
ε ∈ (−ε0, ε0). Our classification result reads as follows.

Corollary 1.3 Let p ∈ {1} ∪ [2,∞). If an open subset � of RN of class C3 is a volume
constrained local minimum for � 	→ λs,p(�), then � is a ball.

Corollary 1.3 is a consequence of Theorem1.1, fromwhichwe derive that if� is a constrained
local minimum then any element u ∈ H satisfies the overdetermined condition u/δs ≡
constant on ∂�. Therefore by the rigidity result in [9] we find that � must be a ball. We
point out that we are not able to include the case p ∈ (1, 2) in Corollary 1.3, since the rigidity
result in [9] is based on the moving plane method and therefore requires the nonlinearity in
(1.4) to be Lipschitz. The case p ∈ (1, 2) therefore remains an open problem in Corollary
1.3.

We note that the authors in [6] considered the shape minimization problem for λs,p(�) in
the case p = 1, s = 1

2 , N = 2 among domains � of class C∞ of fixed volume. They showed
in [6] that such minimizers are discs.

Next we consider the optimization problem of � 	→ λs,p(�) for p ∈ {1, 2} and � a
punctured ball, with the hole having the shape of ball. We show that, as the hole moves in
� then λs,p(�) is maximal when the two balls are concentric. In the local case s = 1 and
N = 2, this is a classical result by Hersch [16]. For subsequent generalizations in the case
of the local problem, see [5,14,18].

Theorem 1.4 Let p ∈ {1, 2}, B1(0) be the unit centered ball and τ ∈ (0, 1). Define

A := {a ∈ B1(0) : Bτ (a) ⊂ B1(0)}.
Then the map A → R, a 	→ λs,p(B1(0) \ Bτ (a)) takes its maximum at a = 0.

The proof of Theorem 1.4 is inspired by the argument given in [14,18] for the local case
s = 1. It uses the fractional Hadamard formula in Corollary 1.2 and maximum principles
for anti-symmetric functions. Our proof also shows that the map a 	→ λs,p(B1(0) \ Bτ (a))

takes its minimum when the boundary of the ball Bτ (a) touches the one of B1(0), see Sect. 5
below.

The proof of Theorem 1.1 is based on the use of test functions in the variational character-
ization of λs,p(�) and λs,p(	ε(�)). The general strategy is inspired by the direct approach
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in [11], which is related to a Neumann eigenvalue problem on manifolds. In the case of
λs,p(	ε(�)), it is important to make a change of variables so that λs,p(	ε(�)) is deter-
mined by minimizing an ε-dependent family of seminorms among functions u ∈ Hs

0(�),
see Sect. 2 below. An obvious choice of test functions are minimizers u and vε for λs,p(�)

and λs,p(	ε(�)), respectively. However, due to the fact that u is only of class Cs up to the
boundary, we cannot obtain a boundary integral term directly from the divergence theorem.
In particular, the integration by parts formula given in [21, Theorem 1.9] does not apply to
general vector fields X which appear in (1.8). Hence, we need to replace u with ζku, where
ζk is a cut-off function vanishing in a 1

k -neighborhood of ∂�. This leads to upper and lower
estimates of λs,p(	ε(�)) up to order o(ε), where the first order term is given by an integral
involving (−�)s(ζku) and ∇(ζku). We refer the reader to Sect. 4 below for more precise
information. A highly nontrivial task is now to pass to the limit as k → ∞ in order to get
boundary integrals involving ψ := u/δs . This is the most difficult part of the paper. We refer
to Proposition 2.4 and Sect. 6 below for more details.

The paper is organized as follows. In Sect. 2, we provide preliminary results on conver-
gence properties of integral functional, inner approximations of functions in Hs

0(�) and on
properties of minimizers of (1.3). In Sect. 3, we introduce notation related to domain defor-
mations and related quantities. In Sect. 4 we establish a preliminary variant of Theorem 1.1,
which is given in Proposition 4.1. In this variant, the constant�(1+s)2 in (1.8) is replaced by
an implicitly given value which still depends on cut-off data. The proofs of the main results,
as stated in this introduction, are then completed in Sect. 5. Finally, Sect. 6 is devoted to the
proof of the main technical ingredient of the paper, which is given by Proposition 2.4.

2 Notations and preliminary results

Throughout this section, we fix a bounded open set � ⊂ R
N . As noted in the introduction,

we define the space Hs
0(�) as completion of C∞

c (�) with respect to the norm [ · ]s given in
(1.2). Then Hs

0(�) is a Hilbert space with scalar product

(u, v) 	→ [u, v]s = cN ,s

2

∫
RN

∫
RN

(u(x) − u(y))(v(x) − v(y))

|x − y|N+2s dxdy,

where cN ,s is given in (1.2). It is well known and easy to see that Hs
0(�) coincides with the

closure of C∞
c (�) in the standard fractional Sobolev space Hs(RN ). Moreover, if � has a

continuous boundary, then Hs
0(�) admits the highly useful characterization

Hs
0(�) = {

w ∈ L1
loc(R

N ) : [w]2s < ∞, w ≡ 0 on RN \ �
}
, (2.1)

see e.g. [13, Theorem 1.4.2.2]. We start with an elementary but useful observation.

Lemma 2.1 Let μ ∈ L∞(RN × R
N ), and let (vk)k be a sequence in Hs

0(�) with vk → v in
Hs

0(�) as k → ∞. Then we have

lim
k→∞

∫
R2N

(vk(x) − vk(y))2μ(x, y)

|x − y|N+2s dxdy =
∫
R2N

(v(x) − v(y))2μ(x, y)

|x − y|N+2s dxdy.

Proof We have
∣∣∣
∫
R2N

(vk(x) − vk(y))2 − (v(x) − v(y))2μ(x, y)

|x − y|N+2s dxdy
∣∣∣
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≤ ‖μ‖L∞
∫
R2N

|(vk(x) − vk(y))2 − (v(x) − v(y))2|
|x − y|N+2s dxdy,

where
∫
R2N

|(vk(x) − vk(y))2 − (v(x) − v(y))2|
|x − y|N+2s dxdy

=
∫
R2N

|[(vk(x) − v(x)) − (vk(y) − v(y))][(vk(x) + v(x)) − (vk(y) + v(y))]|
|x − y|N+2s dxdy

≤ 2

cN ,s
[vk − v]s[vk + v]s → 0 as k → ∞.

��
Throughout the remainder of this paper, we fix ρ ∈ C∞

c (−2, 2) with 0 ≤ ρ ≤ 1, ρ ≡ 1
on (−1, 1), and we define

ζ ∈ C∞(R), ζ(t) = 1 − ρ(t). (2.2)

Moreover, for k ∈ N, we define the functions

ρk, ζk ∈ C1,1(RN ), ρk(x) = ρ(kδ(x)), ζk(x) = ζ(kδ(x)). (2.3)

We note that the function ρk is supported in the 2
k -neighborhood of the boundary, while the

function ζk vanishes in the 1
k -neighborhood of the boundary.

Lemma 2.2 Let � ⊂ R
N be a bounded Lipschitz domain and let u ∈ Hs

0(�). Moreover, for
k ∈ N, let uk := uζk ∈ Hs

0(�) denote inner approximations of u. Then we have

uk → u in Hs
0(�).

Proof In the following, the letter C > 0 stands for various constants independent of k. Since
ρk = 1 − ζk , it suffices to show that

uρk ∈ Hs
0(�) for ksufficiently large and [uρk]s → 0 as k → ∞. (2.4)

For ε > 0, we put Aε = {x ∈ � : δ(x) < ε}. Since uρk vanishes in R
N \ A 2

k
, 0 ≤ ρk ≤ 1

on R
N and |ρk(x) − ρk(y)| ≤ C min{k|x − y|, 1} for x, y ∈ R

N , we observe that

1

cN ,s
[ρku]2s = 1

2

∫
RN

∫
RN

[u(x)ρk(x) − u(y)ρk(y)]2
|x − y|N+2s dydx

= 1

2

∫
A 4

k

∫
A 4

k

[u(x)ρk(x) − u(y)ρk(y)]2
|x − y|N+2s dydx

+
∫
A 2

k

u(x)2ρk(x)
2
∫
RN \A 4

k

|x − y|−N−2s dydx

≤ 1

2

∫
A 4

k

∫
A 4

k

[
u(x)

(
ρk(x) − ρk(y)

) + ρk(y)
(
u(x) − u(y)

)]2
|x − y|N+2s dydx

+ C
∫
A 2

k

u(x)2dist(x,RN \ A 4
k
)−2sdx
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≤
∫
A 4

k

u2(x)
∫
A 4

k

(ρk(x) − ρk(y))2

|x − y|N+2s dydx +
∫
A 4

k

∫
A 4

k

(u(x) − u(y))2

|x − y|N+2s dydx

+ C
∫
A 2

k

u(x)2δ−2s(x)dx

≤ Ck2
∫
A 4

k

u2(x)
∫
B 1
k
(x)

|x − y|2−2s−Ndydx

+ C
∫
A 4

k

u2(x)
∫
RN \B 1

k
(x)

|x − y|−N−2sdydx

+
∫
A 4

k

∫
A 4

k

(u(x) − u(y))2

|x − y|N+2s dydx + C
∫
A 2

k

u(x)2δ−2s(x)dx

≤ Ck2s
∫
A 4

k

u2(x)dx +
∫
A 4

k

∫
A 4

k

(u(x) − u(y))2

|x − y|N+2s dydx + C
∫
A 2

k

u(x)2δ−2s(x)dx

≤ C
∫
A 4

k

u2(x)δ−2s(x)dx +
∫
A 4

k

∫
A 4

k

(u(x) − u(y))2

|x − y|N+2s dydx . (2.5)

Now, since� has a Lipschitz boundary, using
∫
RN \� |x − y|−N−2s dy ∼ δ−2s(x) see e.g [3],

we get ∫
�

u2(x)δ−2s(x)dx ≤ C
∫

�

u2(x)
∫
RN \�

|x − y|−N−2s dydx ≤ C[u]2s ,

and therefore ∫
A 4

k

u2(x)δ−2s(x)dx → 0 as k → ∞. (2.6)

Moreover, since also ∫
�

∫
�

(u(x) − u(y))2

|x − y|N+2s dydx ≤ 2

cN ,s
[u]2s ,

we have ∫
A 4

k

∫
A 4

k

(u(x) − u(y))2

|x − y|N+2s dydx → 0 as k → ∞. (2.7)

Combining (2.5)–(2.7), we obtain (2.4), as required. ��
From now on, we fix a bounded C1,1-domain � ⊂ R

N . We also let

Cs
0(�) =

{
w ∈ Cs(�) : w = 0 in R

N \ �
}

,

and we recall the following regularity and positivity properties of nonnegative minimizers
for λs,p(�) as defined in (1.3).

Lemma 2.3 Let u ∈ Hs
0(�) be a nonnegative minimizer for λs,p(�). Then u ∈ Cs

0(�) ∩
C∞
loc(�). Moreover, ψ := u

δs
∈ Cα(�) for some α ∈ (0, 1), and there exists a constant

c = c(N , s,�, α, p) > 0 with the property that

‖ψ‖Cα(�) ≤ c (2.8)

123



231 Page 8 of 31 S. M. Djitte et al.

and

|∇ψ(x)| ≤ cδα−1(x) for all x ∈ �. (2.9)

Moreover, ψ > 0 on �, so in particular u > 0 in �.

Proof By standard arguments in the calculus of variations, u is a weak solution of (1.4). By
[22, Proposition 1.3] we have that u ∈ L∞(�), and therefore the RHS of (1.4) is a function
in L∞(�). Thus the regularity up to the boundary u ∈ Cs

0(�) is proved in [20], where also
theCα-bound (2.8) for the functionψ = u

δs
is established for some α > 0. Moreover, (2.9) is

proved in [8]. It also follows from (1.4), the strong maximum principle and the Hopf lemma
for the fractional Laplacian that ψ is a strictly positive function on �. In particular, u > 0
in �, Therefore u ∈ C∞

loc(�) follows by interior regularity theory (see e.g. [19]) and the fact
that the function t 	→ t p−1 is of class C∞ on (0,∞). ��

The computation of one-sided shape derivatives as given in Theorem 1.1 will be carried
out in Sect. 4, and it requires the following key technical proposition. Since its proof is long
and quite involved, we postpone the proof to Sect. 6 below.

Proposition 2.4 Let X ∈ C0(�,RN ), let u ∈ Cs
0(�) ∩ C1(�), and assume that ψ := u

δs

extends to a function on � satisfying (2.8) and (2.9). Moreover, put Uk := uζk ∈ C1,1
c (�),

where ζk is defined in (2.3). Then

lim
k→∞

∫
�

∇Uk · X
(
u(−�)sζk − I (u, ζk)

)
dx = −κs

∫
∂�

ψ2X · ν dx,

where

κs := −
∫
R

h′(r)(−�)sh(r) dr with h(r) := rs+ζ(r) = max(r , 0)sζ(r) (2.10)

and ζ given in (2.2), and where we use the notation

I (u, v)(x) := cN ,s

∫
RN

(u(x) − u(y))(v(x) − v(y))

|x − y|N+2s dy (2.11)

for u ∈ Cs
c (R

N ), v ∈ C0,1(RN ) and x ∈ R
N .

Remark 2.5 The minus sign in the definition of the constant κs in (2.10) might appear a bit
strange at first glance. We shall see later that, defined in this way, κs has a positive value.
A priori it is not clear that the value of κs does not depend on the particular choice of the
function ζ . This follows a posteriori once we have established in Proposition 4.1 below that

this constant appears in Theorem 1.1. This will then allow us to show that κs = �(1+s)2

2
by applying the resulting shape derivative formula to a one-parameter family of concentric
balls, see Sect. 5 below. A more direct, but somewhat lengthy computation of κs is possible
via the logarithmic Laplacian, which has been introduced in [4].

3 Domain perturbation and the associated variational problem

Here and in the following, we define �ε := 	ε(�). In order to study the dependence of
λs,p(�ε) on ε, it is convenient to pull back the problem on the fixed domain � via a change
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of variables. For thiswe let Jac	ε denote the Jacobian determinant of themap	ε ∈ C1,1(RN ),
and we define the kernels

Kε(x, y) := cN ,s
Jac	ε (x)Jac	ε (y)

|	ε(x) − 	ε(y)|N+2s and K0(x, y) = cN ,s
1

|x − y|N+2s . (3.1)

Then (1.7) gives rise to the well known expansions

Jac	ε (x) = 1 + εdivX(x) + O(ε2), ∂εJac	ε (x) = divX(x) + O(ε) (3.2)

uniformly in x ∈ R
N , where X := ∂ε

∣∣
ε=0	ε ∈ C0,1(RN ;RN ) and therefore divX is a.e.

defined on RN . From (1.7), we also get

|	ε(x) − 	ε(y)|−N−2s = |x − y|−N−2s
(
1 + 2ε

x − y

|x − y| · PX (x, y) + O(ε2)

)− N+2s
2

,

and

∂ε|	ε(x) − 	ε(y)|−N−2s = |x − y|−N−2s
(

−(N + 2s)
x − y

|x − y| · PX (x, y) + O(ε)

)
,

uniformly in x, y ∈ R
N , x �= y with

PX ∈ L∞(RN × R
N ), PX (x, y) = X(x) − X(y)

|x − y| .

Moreover by (3.2) and the fact that ∂ε	ε , X ∈ C0,1(RN ), we have that

Kε(x, y) = K0(x, y) + ε∂ε

∣∣∣
ε=0

Kε(x, y) + O(ε2)K0(x, y), (3.3)

and

∂εKε(x, y) = ∂ε

∣∣∣
ε=0

Kε(x, y) + O(ε)K0(x, y), (3.4)

uniformly in x, y ∈ R
N , x �= y, where

∂ε

∣∣∣
ε=0

Kε(x, y) = −
[
(N + 2s)

x − y

|x − y| · PX (x, y)−(divX(x) + divX(y))
]
K0(x, y).

(3.5)

In particular, it follows from (3.3) and (3.5) that there exist ε0,C > 0 with the property that

1

C
K0(x, y) ≤ Kε(x, y) ≤ CK0(x, y) for all x, y ∈ R

N , x �= y and ε ∈ (−ε0, ε0).

(3.6)

For v ∈ Hs
0(�) and ε ∈ (−ε0, ε0), we now define

Vv(ε) := 1

2

∫
R2N

(v(x) − v(y))2Kε(x, y)dxdy. (3.7)

Then, by (1.3), (1.7) and a change of variables, we have the following variational character-
ization for λs,p(�ε):

λε
s,p := λs,p(�ε) = inf

{
[u]2s : u ∈ Hs

0(�ε),

∫
�ε

|u|p dx = 1

}

= inf

{
Vv(ε) : v ∈ Hs

0(�),

∫
�

|v|pJac	ε (x) dx = 1

}
for ε ∈ (−ε0, ε0). (3.8)
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As mentioned earlier, we prefer to use (3.8) from now on where the underlying domain is
fixed and the integral terms depend on ε instead. It follows from (3.3) and (3.4) that, for given
v ∈ Hs

0(�), the function Vv : (−ε0, ε0) → R is of class C1 with

V ′
v(0) = 1

2

∫
R2N

(v(x) − v(y))2∂ε

∣∣
ε=0Kε(x, y)dxdy, (3.9)

where ∂ε

∣∣
ε=0Kε(x, y) is given in (3.5),

|V ′
v(0)| ≤ C[v]2s with a constant C > 0 (3.10)

and we have the expansions

Vv(ε) = Vv(0) + εV ′
v(0) + O(ε2)[v]2s , V ′

v(ε) = V ′
v(0) + O(ε)[v]2s (3.11)

with O(ε), O(ε2) independent of v. From (3.2), (3.6) and the variational characterization
(3.8), it is easy to see that

1

C
≤ λε

s,p ≤ C for all ε ∈ (−ε0, ε0)with some constant C > 0.

Using this and (3.2), (3.6) once more, we can show that

1

C
≤ ‖vε‖L p(�) ≤ C and

1

C
≤ [vε]s ≤ C . (3.12)

for every ε ∈ (−ε0, ε0) and every minimizer vε ∈ Hs
0(�) for (3.8) with a constant C > 0.

The following lemma is essentially a corollary of Lemma 2.1.

Lemma 3.1 Let (vk)k be a sequence in Hs
0(�) with vk → v in Hs

0(�). Then we have

lim
k→∞Vvk (0) = Vv(0) and lim

k→∞V ′
vk

(0) = V ′
v(0).

Proof The first limit is trivial since Vv(0) = [v]2s for v ∈ Hs
0(�). The second limit follows

from Lemma 2.1, (3.5) and (3.9) by noting that μ ∈ L∞(RN × R
N ) for the function

μ(x, y) = −(N + 2s)
x − y

|x − y| · PX (x, y) + (divX(x) + divX(y)).

��

4 One-sided shape derivative computations

We keep using the notation of the previous sections, and we recall in particular the variational
characterization of λε

s,p = λs,p(�ε) given in (3.8). The aim of this section is to prove the
following result.

Proposition 4.1 We have

∂+
ε

∣∣∣
ε=0

λε
s,p = min

{
2κs

∫
∂�

(u/δs)2X · ν dx : u ∈ H
}

,

where H is the set of positive minimizers for λ0s,p := λs,p(�), X := ∂ε

∣∣
ε=0	ε and κs is

given by (2.10).

The proof of Proposition 4.1 requires several preliminary results. We start with a formula
for the derivative of the function given by (3.7).
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Lemma 4.2 Let U ∈ C1,1
c (�). Then

V ′
U (0) = −2

∫
RN

∇U · X(−�)sUdx . (4.1)

Proof By (3.5), (3.11) and Fubini’s theorem, we have

V ′
U (0) = −(N + 2s)cN ,s

2

∫
R2N

(U (x) −U (y))2
(x − y) · (X(x) − X(y))

|x − y|N+2s+2 dxdy

+ 1

2

∫
R2N

(U (x) −U (y))2K0(x, y)(divX(x) + divX(y))dxdy

= −(N + 2s)cN ,s

2
lim
μ→0

∫
|x−y|>μ

(U (x) −U (y))2
(x − y) · (X(x) − X(y))

|x − y|N+2s+2 dxdy

+
∫
R2N

(U (x) −U (y))2K0(x, y)divX(x)dxdy

= −(N + 2s)cN ,s lim
μ→0

∫
RN

∫
RN \Bμ(y)

(U (x) −U (y))2
(x − y) · X(x)

|x − y|N+2s+2 dxdy

+
∫
R2N

(U (x) −U (y))2K0(x, y)divX(x)dxdy

Applying, for fixed y ∈ R
N and μ > 0, the divergence theorem in the domain {x ∈ R

N :
|x − y| > μ} and using that ∇x |x − y|−N−2s = −(N + 2s) x−y

|x−y|N+2s+2 , we obtain

V ′
U (0) = cN ,s lim

μ→0

∫
RN

∫
RN \Bμ(y)

(U (x) −U (y))2∇x |x − y|−N−2s · X(x)dxdy

+
∫
R2N

(U (x) −U (y))2K0(x, y)divX(x)dxdy

= − lim
μ→0

∫
RN

∫
RN \Bμ(y)

(U (x) −U (y))2K0(x, y)divX(x)dxdy

− lim
μ→0

∫
RN

∫
RN \Bμ(y)

(U (x) −U (y))∇U (x) · X(x)K0(x, y)dxdy

+ lim
μ→0

∫
RN

∫
∂Bμ(y)

(U (x) −U (y))2
y − x

|x − y| · X(x)K0(x, y) dσ(y) dx

+
∫
R2N

(U (x) −U (y))2K0(x, y)divX(x)dxdy

= − lim
μ→0

∫
|x−y|>μ

(U (x) −U (y))∇U (x) · X(x)K0(x, y)d(x, y)

+ lim
μ→0

μ−N−1−2s
∫

|x−y|=μ

(U (x) −U (y))2(y − x) · X(x) dσ(x, y)

= −cN ,s

2
lim
μ→0

∫
RN

∇U (x) · X(x)
∫
RN \Bμ(0)

2U (x) −U (x + z) −U (x − z)

|z|N+2s dzdx

+ 1

2
lim
μ→0

μ−N−1−2s
∫

|x−y|=μ

(U (x) −U (y))2(y − x) · (X(x) − X(y)) dσ(x, y)

(4.2)
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Since U ∈ C1,1
c (�), we have that

cN ,s

2
lim
μ→0

∫
RN

∇U (x) · X(x)
∫
RN \Bμ(0)

2U (x) −U (x + z) −U (x − z)

|z|N+2s dzdx

= cN ,s

2

∫
RN

∇U (x) · X(x)
∫
RN

2U (x) −U (x + z) −U (x − z)

|z|N+2s dzdx

=
∫
RN

(−�)sU (x)∇U (x) · X(x)dx . (4.3)

Moreover, since U is compactly supported, we may fix R > 0 large enough such that
(U (x) − U (y))2 = 0 for all x, y ∈ BR(0) with |x − y| < 1. Setting Nμ := {(x, y) ∈
BR(0) × BR(0) : |x − y| = μ} for 0 < μ < 1 and using that U , X ∈ C0,1(RN ), we thus
deduce that

μ−N−1−2s
∫

|x−y|=μ

(U (x) −U (y))2(y − x) · (X(x) − X(y)) dσ(x, y)

= μ−N−1−2s
∫
Nμ

(U (x) −U (y))2(y − x) · (X(x) − X(y)) dσ(x, y) = O(μ3−1−2s) → 0, (4.4)

as μ → 0, since the 2N − 1-dimensional measure of the set Nμ is of order O(N − 1) as
μ → 0. The claim now follows by combining (4.2)–(4.4). ��

We cannot apply Lemma 4.2 directly to minimizers u ∈ Hs
0(�) of λs,p(�) since these are

not contained in C1,1
c (�). The aim is therefore to apply Lemma 4.2 toUk := uζk ∈ C1,1

c (�)

with ζk given in (2.3), and to use Proposition 2.4. This leads to the following derivative
formula which plays a key role in the proof of Proposition 4.1.

Lemma 4.3 Let u ∈ Hs
0(�) be a solution to (1.4). Then we have

V ′
u(0) = 2λs,p(�)

p

∫
�

u pdiv X dx + 2κs

∫
∂�

(u/δs)2X · ν dx .

Proof By Lemma 2.3 and since � is of class C1,1, we have Uk := uζk ∈ C1,1
c (�) ⊂ Hs

0(�)

for k ∈ N, and Uk → u in Hs
0(�) by Lemma 2.2. Consequently, V ′

u(0) = lim
k→∞V ′

Uk
(0) by

Corollary 3.1, so it remains to show that

lim
k→∞V ′

Uk
(0) = 2λs,p(�)

p

∫
�

u pdivX dx + 2κs

∫
∂�

(u/δs)2X · ν dx . (4.5)

Applying Lemma 4.2 to Uk , we find that

V ′
Uk

(0) = −2
∫
RN

∇Uk · X(−�)sUkdx for k ∈ N.

By the standard product rule for the fractional Laplacian, we have (−�)sUk = u(−�)sζk +
ζk(−�)su − I (u, ζk) with I (u, ζk) given by (2.11). We thus obtain

V ′
Uk

(0) = −2
∫
RN

∇Uk · Xζk(−�)su dx − 2
∫
RN

[∇Uk · X ]u(−�)sζk dx

+ 2
∫
RN

∇Uk · X I (u, ζk) dx

= −2λs,p(�)

∫
�

∇Uk · Xζku
p−1 dx − 2

∫
RN

∇Uk · X
(
u(−�)sζk − I (u, ζk)

)
dx,

(4.6)
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where we used that (−�)su = λs,p(�)u p−1 in�. Consequently, Proposition 2.4 yields that

lim
k→∞V ′

Uk
(0) = −2λs,p(�) lim

k→∞

∫
�

∇Uk · Xζku
p−1 dx + 2κs

∫
∂�

ψ2X · ν dx . (4.7)

Moreover, integrating by parts, we obtain, for k ∈ N,∫
�

[∇Uk · X ]ζku p−1 dx = 1

p

∫
�

[∇u p · X ]ζ 2
k dx +

∫
�

[∇ζk · X ]ζku p dx

= − 1

p

∫
�

u pdivXζ 2
k dx − 2

p

∫
�

u pζk[X · ∇ζk] dx +
∫

�

u pζk[X · ∇ζk] dx . (4.8)

Since u p ∈ Cs
0(�) by Lemma 2.3, it is easy to see from the definition of ζk that the last two

terms in (4.8) tend to zero as k → ∞, whereas

lim
k→∞

∫
�

u pdivXζ 2
k dx =

∫
�

u pdivX dx .

Hence

lim
k→∞

∫
�

∇Uk · Xζku
p−1 dx = − 1

p

∫
�

u pdivX dx .

Plugging this into (4.7), we obtain (4.5), as required. ��

Our next lemma provides an upper estimate for ∂+
ε

∣∣∣
ε=0

λε
s,p .

Lemma 4.4 Let u ∈ H be a positive minimizer for λ0s,p = λs,p(�). Then

lim sup
ε→0+

λε
s,p − λ0s,p

ε
≤2κs

∫
∂�

(u/δs)2X · ν dx . (4.9)

Proof For ε ∈ (−ε0, ε0), we define

j(ε) := Vu(ε)

τ (ε)
for k ∈ Nwith τ(ε) :=

(∫
�

|u|pJac	ε (x) dx

)2/p

.

By (3.8), we then have λε
s,p ≤ j(ε) for ε ∈ (−ε0, ε0). Moreover,

τ(0) = ‖u‖2/pL p(�) = 1, Vu(0) = [u]2s = λs,p(�) and j(0) = Vu(0)

τ (0)
= λ0s,p,

which implies that

∂+
ε

∣∣∣
ε=0

λε
s,p ≤ j ′(0) = 2κs

∫
∂�

(u/δs)2X · ν dx,

by Lemma 4.3 and (3.2), as claimed. ��

Next, we shall prove a lower estimate for ∂+
ε

∣∣∣
ε=0

λε
s,p .

Lemma 4.5 We have

lim inf
ε↘0+

λε
s,p − λ0s,p

ε
≥ inf

{
2κs

∫
∂�

(u/δs)2X · ν dx : u ∈ H
}

.
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Proof Let (εn)n be a sequence of positive numbers converging to zero and with the property
that

lim
n→∞

λ
εn
s,p − λ0s,p

εn
= lim inf

ε↘0+
λε
s,p − λ0s,p

ε
. (4.10)

For n ∈ N, we let vεn be a positiveminimizer corresponding to the variational characterization
of λ

εn
s,p given in (3.8), i.e. we have

λεn
s,p = Vvεn

(εn) and
∫

�

v p
εn
Jac	εn

dx = 1. (4.11)

Since vεn remains bounded in Hs
0(�) by (3.12), we may pass to a sub-sequence with the

property that vεn⇀u in Hs
0(�) for some u ∈ Hs

0(�). Moreover, vεn → u in L p(�) as
n → ∞ since the embedding Hs

0(�) → L p(�) is compact. In the following, to keep the
notation simple, we write ε in place of εn . By (3.10), (3.11) and (4.11), we have

Vvε (0) = Vvε (ε) − εV ′
vε

(0) + O(ε2)[vε]2s = λε
s,p − εV ′

vε
(0) + O(ε2) = λε

s,p + O(ε)

(4.12)

and therefore

Vu(0) = [u]2s ≤ lim inf
ε→0

[vε]2s = lim inf
ε→0

Vvε (0) ≤ lim sup
ε→0

λε
s,p ≤ λ0s,p,

(4.13)

where the last inequality follows fromLemma4.4. In viewof (3.2) and the strong convergence
vε → u in L p(�), we see that

1 =
∫

�

v p
ε Jac	εdx =

∫
�

v p
ε (1 + εdivX)dx + O(ε2) =

∫
�

u p dx + o(1) (4.14)

as ε → 0, and hence ‖u‖L p(�) = 1. Combining this with (4.13), we see that u ∈ H is a
minimizer for λ0s,p , and that equality must hold in all inequalities of (4.13). From this we
deduce that

vε → ustrongly inHs
0(�). (4.15)

Now (4.12) and the variational characterization of λ0s,p imply that

λ0s,p

(∫
�

v p
ε dx

)2/p

≤ Vvε (0) = λs,p(�ε) − εV ′
vε

(0) + O(ε2) (4.16)

whereas by (4.14) we have∫
�

v p
ε dx = 1 − ε

∫
�

v p
ε divXdx + O(ε2) = 1 − ε

∫
�

u pdivXdx + o(ε)

and therefore
(∫

�

v p
ε dx

)2/p

= 1 − 2ε

p

∫
�

u pdivXdx + o(ε). (4.17)

Plugging this into (4.16), we get the inequality

λε
s,p ≥

(
1 − 2ε

p

∫
�

u pdivXdx
)
λ0s,p + εV ′

vε
(0) + o(ε).
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Since, moreover, V ′
vε

(0) → V ′
u(0) as ε → 0 by Lemma 3.1 and (4.15), it follows that

λε
s,p − λ0s,p ≥ ε

(
V ′
u(0) − 2λ0s,p

p

∫
�

u pdivXdx
)

+ o(ε)

and therefore

λε
s,p − λ0s,p ≥ 2εκs

∫
∂�

(u/δs)2X · ν dx + o(ε)

by Lemma 4.3. We thus conclude that

lim
ε→0+

λε
s,p − λ0s,p

ε
≥ 2κs

∫
∂�

(u/δs)2X · ν dx .

Taking the infinimum over u ∈ H in the RHS of this inequality and using (4.10), we get the
result. ��
Proof of Proposition 4.1 (completed) Proposition 4.1 is a consequence of Lemmas 4.4 and 4.5.
Indeed, let

As,p(�) := inf

{
2κs

∫
∂�

(u/δs)2X · ν dx : u ∈ H
}

.

Thanks to (2.8) the infinimum As,p(�) is attained.
Finally by Lemma 4.4 and Lemma 4.5 we get

As,p(�) ≥ ∂+
ε

∣∣∣
ε=0

λε
s,p ≥ lim inf

ε↘0

λε
s,p − λ0s,p

ε
≥ As,p(�).

��

5 Proof of themain results

In this section we complete the proofs of the main results stated in the introduction.

Proof of Theorem 1.1 (completed) In view of Proposition 4.1, the proof of Theorem 1.1 is
complete once we show that

2κs = �(1 + s)2, (5.1)

where � is the usual Gamma function. In view of (2.10), the constant κs does not depend
on N , p and �, we consider the case N = p = 1 and the family of diffeomorphisms 	ε

on R
N given by 	ε(x) = (1 + ε)x , ε ∈ (−1, 1), so that X := ∂ε

∣∣
ε=0	ε is simply given by

X(x) = x . Letting �0 := (−1, 1), we define �ε = 	ε(�0) = (−1 − ε, 1 + ε). Moreover,
we consider wε ∈ Hs

0(�ε) ∩ Cs
0([−1 − ε, 1 + ε]) given by

wε(x) = �s((1 + ε)2 − |x |2)s+ with �s := 2−2s�(1/2)

�(s + 1/2)�(1 + s)
. (5.2)

It is well known that wε is the unique solution of the problem

(−�)swε = 1 in �ε, wε ≡ 0 on RN \ �ε,

123



231 Page 16 of 31 S. M. Djitte et al.

see e.g. [21] or [9]. Recalling (1.4), we thus deduce that uε = λs,1(�ε)wε is the unique
positive minimizer corresponding to (1.3) in the case N = p = 1, which implies that
‖uε‖L1(R) = 1 and therefore

λs,1(�ε) = ‖wε‖−1
L1(R)

= (1 + ε)−(2s+1)‖w0‖−1
L1(R)

. (5.3)

Moreover, by standard properties of the Gamma function,

‖w0‖L1(R) = �s

∫ 1

−1
(1 − |x |2)s dx = 2�s

∫ 1

0
(1 − r2)s dr = �s

∫ 1

0
t−1/2(1 − t)s dt

= �s
�(1/2)�(s + 1)

�(s + 3/2)
= �s

�(1/2)�(s + 1)

(s + 1/2)�(s + 1/2)
= 22s �2s �(s + 1)2

s + 1/2
.

By differentiating (5.3), we get

∂ε

∣∣∣
ε=0

λs,1(�ε) = − 2s + 1

‖w0‖L1(R)

. (5.4)

On the other hand, by Proposition 4.1 and the fact that u0 is the unique positive minimizer
for λs,1, we deduce that

∂+
ε

∣∣∣
ε=0

λs,1(�ε) = −2κs[(u0/δs)2(1) + (u0/δ
s)2(−1)]

= −22+2sκs �2s λs,1(�0)
2 = −22+2sκs �2s

‖w0‖2L1(R)

.

We thus conclude that

2κs = (2s + 1)‖w0‖L1(R)

21+2s�2s
= �(s + 1)2.

Thus, by Proposition 4.1, we get the result as stated in the theorem. ��
Proof of Corollary 1.3 Let h ∈ C3(∂�), with

∫
∂�

h dx = 0. Then it is well known (see e.g.
[11, Lemma 2.2]) that there exists a family of diffeomorphisms	ε : RN → R

N , ε ∈ (−1, 1)
satisfying (1.7) and having the following properties:

|	ε(�)| = |�| for ε ∈ (−1, 1), and X := ∂ε

∣∣
ε=0	εequals hνon ∂�. (5.5)

By assumption, there exists ε0 ∈ (0, 1) with λs,p(	ε(�)) ≥ λs,p(�) for ε ∈ (−ε0, ε0).
Applying Theorem 1.1 and noting that X · ν ≡ h on ∂� by (5.5), we get

min

{
�(1 + s)2

∫
∂�

(u/δs)2h dx : u ∈ H
}

≥ 0.

By the same argument applied to −h, we get

max

{
�(1 + s)2

∫
∂�

(u/δs)2h dx : u ∈ H
}

≤ 0. (5.6)

We thus conclude that∫
∂�

(u/δs)2h dx = 0 for every u ∈ H and for all h ∈ C3(∂�),with
∫

∂�

h dx = 0.

By a standard argument, this implies that u/δs is constant on ∂�. Now, since u solves (1.4)
and p ∈ {1} ∪ [2,∞), we deduce from [9, Theorem 1.2] that � is a ball. ��
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Proof of Theorem 1.4 Consider the unit centered ball B1 = B1(0). For τ ∈ (0, 1) and t ∈
(τ − 1, 1− τ), we define Bt := Bτ (te1), where e1 is the first coordinate direction. To prove
Theorem 1.4, we can take advantage of the invariance under rotations of the problem and
may restrict our attention to domains of the form �(t) = B1 \ Bt . We define

θ : (τ − 1, 1 − τ) → R, θ(t) := λs,p(�(t)). (5.7)

We claim that θ is differentiable and satisfies

θ ′(t) < 0 for t ∈ (0, 1 − τ). (5.8)

For this we fix t ∈ (τ −1, 1− τ) and a vector field X : RN → R
N given by X(x) = ρ(x)e1,

where ρ ∈ C∞
c (B1) satisfies ρ ≡ 1 in a neighborhood of Bt . For ε ∈ (−1, 1), we then define

	ε : RN → R
N by 	ε(x) = x + βεX(x), where β > 0 is chosen sufficiently small to

guarantee that 	ε, ε ∈ (−1, 1) is a family of diffeomorphisms satisfying (1.7) and satisfying
	ε(B1) = B1 for ε ∈ (−1, 1). Then, by construction, we have

	ε(�(t)) = 	ε

(
B1 \ Bt

)
= B1 \ 	ε(Bt ) = B1 \ Bt+βε = �(t + βε). (5.9)

Next we recall that, since p ∈ {1, 2}, there exists a unique positive minimizer u ∈ Hs
0(�(t))

corresponding to the variational characterization (1.3) ofλs,p(�(t)). Hence, byCorollary 1.2,
the map ε 	→ λs,p(	ε(�(t))) is differentiable at ε = 0. In view of (5.9), we thus find that
the map θ in (5.7) is differentiable at t , and

θ ′(t) = 1

β

d

dε

∣∣∣
ε=0

λs,p(	ε(�(t))) = �(1 + s)2
∫

∂�(t)

( u

δs

)2
X · ν dx

= �(1 + s)2
∫

∂Bt

( u

δs

)2
ν1 dx (5.10)

by (1.10). Here ν denotes the interior unit normal on ∂�(t)which coincides with the exterior
unit normal to Bt on ∂Bt , and we used that

X ≡ e1 on ∂Bt , X ≡ 0 on ∂B1 = ∂�(t) \ ∂Bt

to get the last equality in (5.10). Next, for fixed t ∈ (0, 1− τ), let H be the half space defined
by H = {x ∈ R

N : x · e1 > t} and let � = H ∩ �(t). We also let rH : RN → R
N be the

reflection map with respect to he hyperplane ∂H := {x ∈ R
N : x · e1 = t}. For x ∈ R

N , we
denote x̄ := rH (x), u(x) := u(x). Using these notations, we have

θ ′(t) = �(1 + s)2
∫

∂Bt

( u

δs

)2
ν1 dx

= �(1 + s)2
∫

∂Bt∩�

(( u

δs

)2
(x) −

(
u

δs

)2

(x)

)
ν1 dx . (5.11)

Let w = u − u ∈ Hs(RN ). Then w is a (weak) solution of the problem

(−�)sw = λs,p(�(t))u p−1 − λs,p(�(t))u p−1 = cpw in �, (5.12)

where {
cp := λs,p(�(t)) for p = 2,

cp = 0 for p = 1.
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Moreover, by definition,w ≡ u ≥ 0 in H \�, andw ≡ u > 0 in the subset [rH (B1)∩H ]\�

which has positive measure since t > 0. Using that w is anti-symmetric with respect to H
and the fact that λs,p(�) > cp (which follows since � is a proper subdomain of �(t)), we
can apply the weak maximum principle for antisymmetric functions (see [9, Proposition 3.1]
or [17, Proposition 3.5]) to deduce thatw ≥ 0 in�. Moreover, sincew �≡ 0 inRN , it follows
from the strong maximum principle for antisymmetric functions given in [17, Proposition
3.6] that w > 0 in �. Now by the fractional Hopf lemma for antisymmetric functions (see
[9, Proposition 3.3]) we conclude that

0 <
w

δs
= u

δs
− u

δs
and therefore

u

δs
>

u

δs
≥ 0 on ∂Bt ∩ �.

From this and (5.11) we get (5.8), since ν1 > 0 on ∂Bt ∩ �.
To conclude, we observe that the function t 	→ λs,p(t) = λs,p(�(t)) is even, thanks to

the invariance of the problem under rotations. Therefore the function θ attains its maximum
uniquely at t = 0. ��

6 Proof of Proposition 2.4

The aim of this section is to prove Proposition 2.4. For the readers convenience, we repeat
the statement here.

Proposition 6.1 Let X ∈ C0(�,RN ), let u ∈ Cs
0(�) ∩ C1(�), and assume that ψ := u

δs

extends to a function on � satisfying (2.8) and (2.9). Moreover, put Uk := uζk ∈ C1,1
c (�),

where ζk is defined in (2.3). Then

lim
k→∞

∫
�

∇Uk · X
(
u(−�)sζk − I (u, ζk)

)
dx = −κs

∫
∂�

ψ2X · ν dx, (6.1)

where

κs := −
∫
R

h′(r)(−�)sh(r) dr with h(r) := rs+ζ(r) (6.2)

and ζ given in (2.2), and where we use the notation

I (u, v)(x) :=
∫
RN

(u(x) − u(y))(v(x) − v(y))K0(x, y) dy (6.3)

for u ∈ Cs
c (R

N ), v ∈ C0,1(RN ) and x ∈ R
N .

The remainder of this section is devoted to the proof of this proposition. For k ∈ N, we
define

gk := ∇Uk · X
(
u(−�)sζk − I (u, ζk)

)
: � → R. (6.4)

For ε > 0, we put

�ε = {x ∈ R
N : |δ(x)| < ε} and

�ε+ = {x ∈ R
N : 0 < δ(x) < ε} = {x ∈ � : δ(x) < ε}.

For every ε > 0, we then have

lim
k→∞

∫
�\�ε

gk dx = 0. (6.5)
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To see this, we first note that ζk → 1 pointwise on R
N \ ∂�, and therefore a.e. on R

N .
Moreover, choosing a compact neighborhood K ⊂ � of � \ �ε , we have

(−�)sζk(x) = cN ,s

∫
RN \K

1 − ζk(y)

|x − y|N+2s dy for x ∈ � \ �ε and ksufficiently large,

where |1−ζk (y)|
|x−y|N+2s ≤ C

1+|y|N+2s for x ∈ � \ �ε, y ∈ R
N \ K and C > 0 independent

of x and y. Consequently, ‖(−�)sζk‖L∞(�\�ε) remains bounded independently of k and
(−�)sζk → 0 pointwise on � \ �ε by the dominated convergence theorem. Similarly, we
see that ‖I (u, ζk)‖L∞(�\�ε) remains bounded independently of k and I (u, ζk) → 0 pointwise
on � \ �ε . Consequently, we find that

‖gk‖L∞(�\�ε)is bounded independently of kandgk → 0pointwise on� \ �ε.

Hence (6.5) follows again by the dominated convergence theorem. As a consequence,

lim
k→∞

∫
�

gk(x) dx = lim
k→∞

∫
�ε+

gk(x) dx for every ε > 0. (6.6)

Let, as before, ν : ∂� → R
N denotes the unit interior normal vector field on �. Since we

assume that ∂� is of class C1,1, the map ν is Lipschitz, which means that the derivative
dν : T ∂� → R

N is a.e. well defined and bounded. Moreover, we may fix ε > 0 from now
on with the property that the map

� : ∂� × (−ε, ε) → �ε, (σ, r) 	→ �(σ, r) = σ + rν(σ ) (6.7)

is a bi-Lipschitz map with �(∂� × (0, ε)) = �ε+. In particular, � is a.e. differentiable, and
the variable r is precisely the signed distance of the point �(σ, r) to the boundary ∂�, i.e.,

δ(�(σ, r)) = r for σ ∈ ∂�, 0 ≤ r < ε. (6.8)

Moreover, for 0 < ε′ ≤ ε, it follows from (6.6) that

lim
k→∞

∫
�

gk dx = lim
k→∞

∫
�ε′+

gk dx = lim
k→∞

∫
∂�

∫ ε′

0
Jac�(σ, r)gk(�(σ, r)) drdσ

= lim
k→∞

1

k

∫
∂�

∫ kε′

0
jk(σ, r)Gk(σ, r) drdσ, (6.9)

where we define

jk(σ, r) = Jac�(σ,
r

k
) and Gk(σ, r) = gk(�(σ,

r

k
)) for a.e. σ ∈ ∂�, 0 ≤ r < kε.

(6.10)

We note that

‖ jk‖L∞(∂�×[0,kε)) ≤ ‖Jac�‖L∞(�ε) < ∞ for all k, and

lim
k→∞ jk(σ, r) = Jac�(σ, 0) = 1 for a.e. σ ∈ ∂�, r > 0. (6.11)

By definition of the functions gk in (6.4), we may write

Gk(σ, r) = G0
k(σ, r)[G1

k(σ, r) − G2
k(σ, r)] for σ ∈ ∂�, 0 ≤ r < kε (6.12)
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with

G0
k(σ, r) = [∇Uk · X ](�(σ,

r

k
))

G1
k(σ, r) = [u(−�)sζk](�(σ,

r

k
)) and

G2
k(σ, r) = I (u, ζk)(�(σ,

r

k
)).

(6.13)

In order to analyze the limit in (6.9) for suitable ε′ ∈ (0, ε], we provide estimates for the
functions G0

k ,G
1
k,G

2
k separately in the following. We start with an estimate for G0

k given by
the following lemma.

Lemma 6.2 Let α ∈ (0, 1) be given by Lemma 2.3. Then we have

ks−1|G0
k(σ, r)| ≤ C(rs−1 + rs−1+α) for k ∈ N, 0 ≤ r < kε (6.14)

with a constant C > 0, and

lim
k→∞ ks−1G0

k(σ, r) = h′(r)ψ(σ )[X(σ ) · ν(σ )] for σ ∈ ∂�, r > 0 (6.15)

with the function r 	→ h(r) = rs+ζ(r) given in (6.2).

Proof Since u = ψδs , we have

∇u = sδs−1ψ∇δ + δs∇ψ = sδs−1ψ∇δ + O(δs−1+α) in �

by Lemma 2.3, and therefore, since ζk = ζ ◦ (kδ) by (2.3),

∇Uk = ∇
(
uζk

)
=

(
sζ ◦ (kδ) + kδζ ′ ◦ (kδ)

)
ψδs−1∇δ

+O(δs−1+α) in �.

Consequently, by (6.8) we have
[(∇Uk

) ◦ �
]
(σ,

r

k
) =

(
sζ(r) + rζ ′(r)

)
ψ(σ + r

k
ν(σ ))

( r
k

)s−1∇δ(σ + r

k
ν(σ ))

+O
(( r

k

)s−1+α
)

for σ ∈ ∂�, 0 ≤ r < ε with O(rs−1+α) independent of k, and therefore

G0
k(σ, r) =

(
sζ(r) + rζ ′(r)

)
ψ(σ + r

k
ν(σ ))∇δ(σ + r

k
ν(σ )) · X(σ + r

k
ν(σ ))k1−sr s−1

+ k1−s−αO(rs−1+α) for σ ∈ ∂�, 0 ≤ r < kε.

Since α > 0, we deduce that

ks−1G0
k(σ, r) →

(
sζ(r) + rζ ′(r)

)
ψ(σ)∇δ(σ ) · X(σ )rs−1

= h′(r)ψ(σ )X(σ ) · ν(σ ) as k → ∞
for σ ∈ ∂�, r > 0, while

ks−1|G0
k(σ, r)| ≤ C(rs−1 + rs−1+α) for k ∈ N, 0 ≤ r < kε

with a constant C > 0 independent of k and r , as claimed. ��
Next we consider the functions G1

k defined in (6.13), and we first state the following
estimate.
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Proposition 6.3 There exists ε′ > 0 with the property that

|k−2s(−�)sζk(�(σ,
r

k
))| ≤ C

1 + r1+2s for k ∈ N, 0 ≤ r < kε′ (6.16)

with a constant C > 0. Moreover,

lim
k→∞ k−2s(−�)sζk(�(σ,

r

k
)) = (−�)sζ(r) for σ ∈ ∂�, r > 0. (6.17)

Before giving the somewhat lengthy proof of this proposition, we infer the following
corollary related to the functions G1

k .

Corollary 6.4 There exists ε′ > 0 with the property that

|k−sG1
k(σ, r)| ≤ Crs

1 + r1+2s fork ∈ N,0 ≤ r < kε′ (6.18)

with a constant C > 0. Moreover,

lim
k→∞ k−sG1

k(σ, r) = ψ(σ)rs(−�)sζ(r) for σ ∈ ∂�, r > 0. (6.19)

Proof Since u = ψδs we have u(�(σ, r
k )) = k−sψ(σ + r

k ν(σ ))rs for k ∈ N, 0 ≤ r < kε,
and

lim
k→∞ ksu(�(σ,

r

k
)) = ψ(σ)rs for σ ∈ ∂�, r > 0.

Since moreover ‖ψ‖L∞(�ε) < ∞, the claim now follows from Proposition 6.3 by recalling
the definition in G1

k in (6.13). ��
Wenow turn to the proof of Proposition 6.3, andwe need some preliminary considerations.

Since ∂� is of class C1,1 by assumption, there exists an open ball B ⊂ R
N−1 centered at

the origin and, for every σ ∈ ∂�, a parametrization fσ : B → ∂� of class C1,1 with the
property that fσ (0) = σ and d fσ (0) : RN−1 → R

N is a linear isometry. For z ∈ B we then
have

fσ (z) − fσ (0) = d fσ (0)z + O(|z|2)
and therefore

| fσ (0) − fσ (z)|2 = |d fσ (0)z|2 + O(|z|3) = |z|2 + O(|z|3), (6.20)

( fσ (0) − fσ (z)) · ν(σ ) = −d fσ (0)z · ν(σ ) + O(|z|2) = O(|z|2), (6.21)

where we used in (6.21) that d fσ (0)z belongs to the tangent space Tσ ∂� = {ν(σ )}⊥. Here
and in the following, the term O(τ ) stands for a function depending on τ and possibly other
quantities but satisfying |O(τ )| ≤ Cτ with a constant C > 0.

Recalling the definition of the map � in (6.7) and writing νσ (z) := ν( fσ (z)) for z ∈ B,
we now define

�σ : (−ε, ε) × B → �ε, �σ (r , z) = �( fσ (z), r) = fσ (z) + rνσ (z). (6.22)

Then �σ is a bi-Lipschitz map which maps (−ε, ε) × B onto a neighborhood of σ . Conse-
quently, there exists ε′ ∈ (0, ε

2 ) with the property that

|σ − y| ≥ 3ε′ for all y ∈ R
N \ �σ ((−ε, ε) × B). (6.23)

Moreover, ε′ can be chosen independently of σ ∈ ∂�.
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Coming back to the proof of Proposition 6.3, we now write, for σ ∈ ∂� and r ∈ [0, kε′),

(−�)sζk(�(σ,
r

k
)) = cN ,s

(
Ak(σ, r) + Bk(σ, r)

)
(6.24)

with

Ak(σ, r) :=
∫

�σ ((−ε,ε)×B)

ζ(r) − ζk(y)

|�(σ, r
k ) − y|N+2s dy

and

Bk(σ, r) :=
∫
RN \�σ ((−ε,ε)×B)

ζ(r) − ζk(y)

|�(σ, r
k ) − y|N+2s dy.

Here we used that ζk(�(σ, r
k )) = ζ(r) for σ ∈ ∂�, r ∈ [0, kε′) by (6.8) and the definition

of ζk . We first provide a rather straightforward estimate for the functions Bk .

Lemma 6.5 We have

k−2s |Bk(σ, r)| ≤ C

1 + r1+2s for k ∈ N, 0 ≤ r < kε′, σ ∈ ∂� (6.25)

with a constant C > 0 and

lim
k→∞ k−2s |Bk(σ, r)| = 0 for every σ ∈ �, r ≥ 0. (6.26)

Proof By (6.23) and since r < kε′, we have

|�(σ,
r

k
) − y| = |σ − y + r

k
ν(σ )| ≥ |σ − y| − r

k

≥ |σ − y|
3

+ ε′ for y ∈ R
N \ �σ ((−ε, ε) × B).

Recalling that ζ = 1 − ρ, ζk = 1 − ρk and that ρk is supported in �
2
k , we thus estimate

|Bk(σ, r)| ≤
∫
RN \�σ ((−ε,ε)×B)

|ρ(r) − ρk(y)|
|�(σ, r

k ) − y|N+2s dy

≤ 3N+2s |ρ(r)|
∫
RN

(
|σ − y| + 3ε′)−N−2s

dy + (
ε′)−N−2s

∫
RN

|ρk(y)| dy

≤ C
(
|ρ(r)| + |� 2

k |
)

≤ C
(
|ρ(r)| + k−1

)
.

Here and in the following, the letter C stands for various positive constants. This estimate
readily yields (6.26). Moreover,

k−2s |Bk(σ, r)| ≤ Ck−2s
(
|ρ(r)| + k−1

)
≤ C

1 + r1+2s + k−1−2s ≤ C

1 + r1+2s

for k ∈ N, 0 ≤ r < kε′, σ ∈ ∂�, as claimed in (6.25). ��
To complete the proof of Proposition 6.3, it thus remains to consider the functions Ak in

the following. For this, we need the following additional estimates for the maps�σ , σ ∈ ∂�.
We note here that �σ is a.e. differentiable since it is Lipschitz, so the Jacobian determinant
Jac�σ is a.e. well-defined on (−ε, ε) × B.

Lemma 6.6 There exists a constant C0 with the property that for every σ ∈ ∂� we have the
following estimates:
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(i) |Jac�σ (r , z)| ≤ C0 for a.e. r ∈ (−ε, ε), z ∈ B;
(ii) |Jac�σ (r , z) − 1| ≤ C0(|r | + |z|) for a.e. r ∈ (−ε, ε), z ∈ B;
(iii) |Jac�σ (r + t, z) − Jac�σ (r − t, z)| ≤ C0|t | for a.e. r ∈ (−ε, ε), z ∈ B, t ∈ (−ε −

r , ε − r).
Moreover, for σ ∈ ∂�, r ∈ (−ε, ε), z ∈ B, t ∈ (−ε − r , ε − r) we have

(iv) 1
C0

(
t2 + |z|2) 1

2 ≤ |�σ (r , 0) − �σ (r + t, z)| ≤ C0
(
t2 + |z|2) 1

2 ,

and for σ ∈ ∂�, r ∈ (−ε, ε), t ∈ (−ε − r , ε − r) \ {0} and z ∈ 1
|t | B we have

(v)
∣∣∣ |�σ (r ,0)−�σ (r+t,|t |z)|2

t2
− (1 + |z|2)

∣∣∣ ≤ C0(|t | + |r | + |t z|)|z|2;
(vi) ∣∣∣∣∣�σ (r , 0) − �σ (r + t, |t |z)∣∣−N−2s − ∣∣�σ (r , 0) − �σ (r − t, |t |z)∣∣−N−2s

∣∣∣
≤ C0|t |1−N−2s(1 + |z|2)− N+2s

2 .

Proof The inequalities (i) and (iv) are direct consequences of the fact that�σ is bi-Lipschitz.
In particular, if C0 is a Lipschitz constant for �−1

σ , we have

(
t2 + |z|2) 1

2 = |(−t, z)| = |(r , 0) − (r + t, z)| ≤ C0|�σ (r , 0) − �σ (r + t, z)|
for σ ∈ ∂�, r ∈ (−ε, ε), z ∈ B and t ∈ (−ε − r , ε − r), so the first inequality in (iv)
follows. By making C0 larger if necessary so that it is also a Lipschitz constant for �σ , we
then deduce the second inequality in (iv).

To see (ii) and (iii), we note that d�σ is a.e. given by

d�σ (r , z)(r ′, z′) = [d fσ (z) + rdνσ (z)]z′ + r ′νσ (z)

for (r , z) ∈ (−ε, ε) × B, (r ′, z′) ∈ R × R
N−1, which implies that

[d�σ (r , z) − d�σ (0, 0)](r ′, z′) = [d fσ (z) − d fσ (0)]z′ + rdνσ (z) + r ′(νσ (z) − νσ (0)
)

and

[d�σ (r + t, z) − d�σ (r − t, z)](r ′, z′) = 2tdνσ (z)z′.

Since d fσ , νσ are Lipschitz functions on B, dνσ is a bounded function on B and the deter-
minant is a locally Lipschitz continuous function on the space of linear endomorphisms of
R

N , it follows that

|Jac�σ (r , z) − Jac�σ (0, 0)| ≤ C0(|r | + |z|) and |Jac�σ (r + t, z)

−Jac�σ (r − t, z)| ≤ C0|t |
for a.e. r ∈ (−ε, ε), z ∈ B, t ∈ (−ε − r , ε − r). Moreover, Jac�σ (0, 0) = 1 since the map

R × R
N−1 → R

N , (r ′, z′) 	→ d�σ (0, 0)(r ′, z′) = d fσ (0)z′ + r ′νσ (0)

is an isometry. Hence (ii) and (iii) follow.
To see (v) and (vi), we note that by definition of �σ we have

�σ (r , 0) − �σ (r + t, z) = fσ (0) − fσ (z) − tνσ (0) + (r + t)(νσ (0) − νσ (z))

for z ∈ B, r ∈ (0, ε′) and t ∈ (−ε−r , ε−r). Using moreover that (νσ (0)−νσ (z)) ·νσ (0) =
1
2 |νσ (0) − νσ (z)|2, we get

|�σ (r , 0) − �σ (r + t, z)|2 = t2 + | fσ (0) − fσ (z)|2 + (r + t)2|νσ (0) − νσ (z)|2
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− 2t( fσ (0) − fσ (z)) · νσ (0) − t(r + t)|νσ (0) − νσ (z)|2
+ 2(r + t)( fσ (0) − fσ (z)) · (νσ (0) − νσ (z))

= t2 + | fσ (0) − fσ (z)|2 + r(r + t)|νσ (0) − νσ (z)|2
− 2t( fσ (0) − fσ (z)) · νσ (0) + 2(r + t)( fσ (0) − fσ (z)) · (νσ (0) − νσ (z))

= t2 + |z|2 + [|z|mσ (z) + r(r + t)nσ (z) − 2tpσ (z) + 2(r + t)qσ (z)
]|z|2 (6.27)

for z ∈ B, r ∈ (−ε, ε) and t ∈ (−ε − r , ε − r) with the functions

mσ (z) = | fσ (0) − fσ (z)|2 − |z|2
|z|3 , nσ (z) = |νσ (0) − νσ (z)|2

|z|2 ,

pσ (z) = ( fσ (0) − fσ (z)) · νσ (0)

|z|2
and

qσ (z) = ( fσ (0) − fσ (z)) · (νσ (0) − νσ (z))

|z|2 , z ∈ B \ {0},

which are all bounded as a consequence of the Lipschitz continuity of fσ and νσ and of (6.20)
and (6.21). We deduce that

∣∣∣ |�σ (r , 0) − �σ (r + t, |t |z)|2
t2

− (1 + |z|2)
∣∣∣

=
∣∣∣|t z|mσ (|t |z) + r(r + t)nσ (|t |z) − 2tpσ (|t |z) + 2(r + t)qσ (|t |z)

∣∣∣|z|2
≤ C0(|t z| + |r | + |t |)|z|2

for σ ∈ ∂�, r ∈ (−ε, ε), t ∈ (−ε − r , ε − r) \ {0} and z ∈ 1
|t | B if C0 is chosen sufficiently

large, as claimed in (v).
For the proof of (vi), we now set wσ (r , t, z) := 1

t2
|�σ (r , 0) − �σ (r + t, |t |z)|2, and we

note that

wσ (r , t, z) ≥ 1 + |z|2
C2
0

for σ ∈ ∂�, r ∈ (−ε, ε), t ∈ (−ε − r , ε − r) \ {0}, z ∈ 1

|t | B

by (iv). Moreover, from (6.27) we infer that∣∣∣wσ (r , t, z) − wσ (r ,−t, z)
∣∣∣ =

∣∣∣2r tnσ (|t |z) + 4t
(
qσ (|t |z) − pσ (|t |z))

∣∣∣|z|2 ≤ C0|t ||z|2

for σ ∈ ∂�, r ∈ (−ε, ε), t ∈ (−ε − r , ε − r) \ {0} and z ∈ 1
|t | B if C0 is made larger if

necessary. Using these estimates together with the mean value theorem, we get that, for some
τ = τ(σ, r , t, z) with −t < τ < t ,∣∣∣|�σ (r , 0) − �σ (r + t, |t |z)|−N−2s − |�σ (r , 0) − �σ (r − t, |t |z)|−N−2s

∣∣∣
= |t |−N−2s

∣∣∣wσ (r , t, z)−
N+2s
2 − wσ (r ,−t, z)−

N+2s
2

∣∣∣
= (N + 2s)|t |−N−2s

2
wσ (r , τ, z)−

N+2s+2
2

∣∣∣wσ (r , t, z) − wσ (r ,−t, z)
∣∣∣

≤ C0|t |1−N−2s(1 + |z|2)− N+2s+2
2 |z|2 ≤ C0|t |1−N−2s(1 + |z|2)− N+2s

2

for z ∈ B, r ∈ (0, ε′) and t ∈ (−ε + r , ε − r) after making C0 larger if necessary, as claimed
in (vi). ��
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We now have all the tools to study the quantity Ak(σ, r) in (6.24).

Lemma 6.7 We have

k−2s |Ak(σ, r)| ≤ C

1 + r1+2s for k ∈ N, 0 ≤ r < kε′, σ ∈ ∂� (6.28)

with a constant C > 0 and

lim
k→∞ k−2s Ak(σ, r) = (−�)sζ(r)

cN ,s
for every σ ∈ �, r ≥ 0. (6.29)

Proof For σ ∈ ∂� and 0 < r < kε′, we write, with a change of variables,

Ak(σ, r)

=
∫

�σ ((−ε,ε)×B)

ζ(r) − ζk(y)

|�(σ, r
k ) − y|N+2s dy

=
∫ ε

−ε

∫
B
Jac�σ (r̃ , z)

ζ(r) − ζ(kr̃)

|�σ ( rk , 0) − �σ (r̃ , z)|N+2s dzdr̃

= 1

k

∫ kε−r

−kε−r

∫
B
Jac�σ (

r + t

k
, z)

ζ(r) − ζ(r + t)

|�σ ( rk , 0) − �σ ( r+t
k , z)|N+2s

dzdt

=
∫ kε−r

−kε−r

|t |N−1

kN

∫
k
|t | B

Jac�σ (
r + t

k
,
|t |z
k

)
ζ(r) − ζ(r + t)

|�σ ( rk , 0) − �σ ( r+t
k ,

|t |z
k )|N+2s

dzdt

= k2s
∫
R

ζ(r) − ζ(r + t)

|t |1+2s Kk(r , t)dt (6.30)

with the kernels Kk : (0, kε′) × R → R defined by

Kk(r , t) =

⎧⎪⎪⎨
⎪⎪⎩

( |t |
k

)N+2s
∫

k
|t | B

Jac�σ ( r+t
k ,

|t |z
k )∣∣�σ ( rk , 0) − �σ ( r+t

k ,
|t |z
k )

∣∣N+2s dz, t ∈ (−kε − r , kε − r),

0, t /∈ (−kε − r , kε − r).

Consequently,

Ak(σ, r) = k2s
(
J 1k (σ, r) + J 2k (σ, r)

)
(6.31)

with

J 1k (σ, r) := 1

4

∫
R

2ζ(r) − ζ(r + t) − ζ(r − t)

|t |1+2s

(Kk(r , t) + Kk(r ,−t)
)
dt

and

J 2k (σ, r) := −1

4

∫
R

ζ(r + t) − ζ(r − t)

|t |2s
Kk(r , t) − Kk(r ,−t)

|t | dt .

By Lemma 6.6(i), (iv) and the definition of Kk , we have

|Kk(r , t)| ≤ CN+2s+1
0

∫
k
|t | B

(
1 +

∣∣∣z|2
)− N+2s

2
dz ≤ CN+2s+1

0 aN ,s (6.32)

for r ∈ (−kε′, kε′) and t ∈ R \ {0} with

aN ,s :=
∫
RN−1

(1 + |z|2)− N+2s
2 dz < ∞. (6.33)
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Moreover, by Lemma 6.6(i)(ii),(iv),(v) and the dominated convergence theorem, we have

lim
k→∞Kk(r , t) =

∫
RN−1

(1 + |z|2)− N+2s
2 dz = aN ,s for every r ≥ 0, t ∈ R \ {0}.

(6.34)

Using (6.32) and the fact that ρ = 1 − ζ ∈ C∞
c (R), we obtain the estimate

|J 1k (σ, r)| ≤ C
∫
R

|2ζ(r) − ζ(r + t) − ζ(r − t)|
|t |1+2s dt

= C
∫
R

|2ρ(r) − ρ(r + t) − ρ(r − t)|
|t |1+2s dt ≤ C

1 + r1+2s (6.35)

for k ∈ N, r ∈ (0, kε′) and σ ∈ ∂�. Here and in the following, the letter C > 0 stands
for different positive constants. Moreover, by (6.32), (6.34) and the dominated convergence
theorem, we find that

lim
k→∞ J 1k (σ, r) = aN ,s

2

∫
R

2ζ(r) − ζ(r + t) − ζ(r − t)

|t |1+2s dt

= aN ,s

c1,s
(−�)sζ(r) = (−�)sζ(r)

cN ,s
. (6.36)

Here we have used the fact that

cN ,saN ,s = c1,s, (6.37)

see e.g. [10].
Next we deal with J 2k (σ, r), and for this we have to estimate the kernel differences

|Kk(r , t) − Kk(r ,−t)|. By Lemma 6.6(i), (iii), (iv) and (vi), we have

∣∣∣ Jac�σ ( r+t
k ,

|t |z
k )∣∣�σ ( rk , 0) − �σ ( r+t

k ,
|t |z
k )

∣∣N+2s − Jac�σ ( r−t
k ,

|t |z
k )∣∣�σ ( rk , 0) − �σ ( r−t

k ,
|t |z
k )

∣∣N+2s

∣∣∣

≤ C
( |t |
k

)1−N−2s
(1 + |z|2)− N+2s

2

for z ∈ k
|t | B, r ∈ (0, kε′) and t ∈ (−kε + r , kε − r) and therefore

|Kk(r , t) − Kk(r ,−t)|
|t | ≤ C

k

∫
k
|t | B

(1 + |z|2)− N+2s
2 dz

≤ C

k

∫
RN−1

(1 + |z|2)− N+2s
2 dz ≤ C

k
(6.38)

for r ∈ (0, kε′) and t ∈ (−kε + r , kε − r). Moreover, by definition we have

|Kk(r , t) − Kk(r ,−t)| = 0 for t ∈ R \ (−kε − r , kε + r), (6.39)

while for t ∈ (−kε−r ,−kε+r)∪(kε−r , kε+r)we have |t | ≥ kε−ε′ ≥ kε
2 and therefore,

similarly as in (6.32),

|Kk(r , t)|
|t | ≤ C

|t |
∫

k
|t | B

(
1 + |z|2)− N+2s

2 dz ≤ C

k

∫
2
ε
B

(
1 + |z|2)− N+2s

2 dz ≤ C

k
. (6.40)
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Note here that the constant C > 0 on the RHS depends on ε, but this is not a problem.
Combining (6.38)–(6.40) and using that ρ = 1 − ζ ∈ C∞

c (R), we get

|J 2k (σ, r)| ≤ 1

4

∫
R

|ζ(r + t) − ζ(r − t)|
|t |2s

|Kk(r , t) − Kk(r ,−t)|
|t | dt

≤ C

k

∫
R

|ζ(r + t) − ζ(r − t)|
t2s

dt = C

k

∫
R

|ρ(r + t) − ρ(r − t)|
t2s

dt ≤ C(1 + r)−2s

k

for k ∈ N, σ ∈ ∂� and 0 ≤ r < kε′. Hence

|J 2k (σ, r)| ≤ C

1 + r1+2s for k ∈ N, 0 ≤ r < kε′ (6.41)

and

lim
k→∞ |J 2k (σ, r)| = 0 for all r ≥ 0. (6.42)

Now (6.28) follows by combining (6.31), (6.35) and (6.41). Moreover, (6.29) follows by
combining (6.31), (6.36) and (6.42). ��
Proof of Proposition 6.3 The proof is completed by combining (6.24) with Lemmas 6.5
and 6.7. ��

It finally remains to estimate the function G2
k in (6.12).

Lemma 6.8 There exists ε′ > 0 with the property that the function G2
k defined in (6.13)

satisfies

|k−sG2
k(σ, r)| ≤ C

1 + r1+s
for k ∈ N, 0 ≤ r < kε′, σ ∈ ∂� (6.43)

with a constant C > 0. Moreover,

lim
k→∞ k−sG2

k(σ, r) = ψ(σ) Ĩ (r) (6.44)

with

Ĩ (r) = c1,s

∫
R

(
rs+ − (r + t)s+

)(
ζ(r) − ζ(r + t)

)
|t |1+2s dt .

Proof The proof is similar to the one of Proposition 6.3, but there are some differences we
need to deal with. First, as in the proof of Proposition 6.3, we choose ε′ ∈ (0, ε

2 ) small
enough, so that (6.23) holds. Similarly as in (6.24) we can then write

G2
k(σ, r) = cN ,s

(
Ãk(σ, r) + B̃k(σ, r)

)
(6.45)

with

Ãk(σ, r) :=
∫

�σ ((−ε,ε)×B)

(u(�(σ, r
k )) − u(y))(ζ(r) − ζk(y))

|�(σ, r
k ) − y|N+2s dy

and

B̃k(σ, r) =
∫
RN \�σ ((−ε,ε)×B)

(u(�(σ, r
k )) − u(y))(ζ(r) − ζk(y))

|�(σ, r
k ) − y|N+2s dy.
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As noted in the proof of Lemma 6.5, we have

|�(σ,
r

k
) − y| ≥ |σ − y|

3
+ ε′ for y ∈ R

N \ �σ ((−ε, ε) × B), 0 < r < kε′.

Therefore, since u ∈ L∞(RN ), we may estimate as in the proof of Lemma 6.5 to get

|B̃k(σ, r)| ≤ 2‖u‖L∞
∫
RN \�σ ((−ε,ε)×B)

|ρ(r) − ρk(y)|
|�(σ, r

k ) − y|N+2s dy ≤ C
(
|ρ(r)| + k−1

)
.

Here, as before, the letter C stands for various positive constants. Consequently,

lim
k→∞ k−s |B̃k(σ, r)| = 0 for every σ ∈ �, r ≥ 0, (6.46)

since ρ has compact support in R, and

k−s |B̃k(σ, r)| ≤ Ck−s
(
|ρ(r)| + k−1

)
≤ C

1 + r1+s
for k ∈ N, 0 ≤ r < kε′, σ ∈ ∂�.

(6.47)

Hence it remains to estimate Ãk(σ, r). For this we note that, by the same change of variables
as in (6.30), we have

Ãk(σ, r) =
∫ ε

−ε

∫
B
Jac�σ (z, r̃)

(u(�( rk , 0)) − u(�σ (r̃ , z)))(ζ(r) − ζ(kr̃))

|�σ ( rk , 0) − �σ (r̃ , z)|N+2s dzdr̃

= ks
∫
R

ζ(r) − ζ(r + t)

|t |1+s
K̃k(r , t)dt (6.48)

with the kernel

K̃k (r , t)

=

⎧⎪⎪⎨
⎪⎪⎩

( |t |
k

)N+s
∫

k|t | B

(
u(�σ ( rk , 0)) − u(�σ ( r+t

k ,
|t |
k z))

)
Jac�σ ( r+t

k ,
|t |z
k )∣∣�σ ( rk , 0) − �σ ( r+t

k ,
|t |z
k )

∣∣N+2s
dz, t ∈ (−kε − r , kε − r),

0, t /∈ (−kε − r , kε − r).

Since u ∈ Cs(RN ) and �σ is Lipschitz, we have

∣∣u(�σ (
r

k
, 0)) − u(�σ (

r + t

k
,
|t |
k
z)

∣∣ ≤ C
(( |t |

k

)2 + ( |t z|
k

)2) s
2 ≤ C

( |t |
k

)s
(1 + |z|s),

for σ ∈ ∂�, r ∈ (−kε, kε), t ∈ (−kε − r , kε − r) \ {0} and z ∈ k
|t | B. Therefore, by using

Lemma 6.6(i), (iv) as in (6.32),

|K̃k(r , t)| ≤ C
∫
RN−1

(1 + |z|s)(1 + |z|2)− N+2s
2 dz ≤ C

∫
RN−1

(1 + |z|)−N−sdz < ∞.

(6.49)

Inserting this estimate in (6.48), we conclude that

k−s | Ãk(σ, r)| ≤ C
∫
R

|ζ(r) − ζ(r + t)|
|t |1+s

dt = C
∫
R

|ρ(r) − ρ(r + t)|
|t |1+s

dt ≤ C

1 + r1+s
.

for k ∈ N, 0 ≤ r < kε′, σ ∈ ∂�. Combining this inequality with (6.47), we obtain (6.43).
Moreover, since u ∈ Cs

0(�) and ψ = u
δs

∈ C0(�), we have

lim
k→∞ ks

[
u(�σ (

r

k
, 0)) − u(�σ (

r + t

k
,
|t |
k
z))

]
= ψ(σ)(rs+ − (r + t)s+) (6.50)
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for σ ∈ ∂�, r > 0 and t ∈ R and z ∈ R
N−1. Consequently, arguing as for (6.34) with

Lemma 6.6(i)(ii),(iv),(v) and the dominated convergence theorem, we find that

lim
k→∞ K̃k(r , t) = ψ(σ)

(rs+ − (r + t)s+)

|t |s
∫
RN−1

(1 + |z|2)− N+2s
2 dz

= aN ,sψ(σ)
(rs+ − (r + t)s+)

|t |s (6.51)

for σ ∈ ∂�, r > 0 and t ∈ R with aN ,s given in (6.33). Hence, by (6.48), (6.49), (6.51) and
the dominated convergence theorem,

lim
k→∞ k−s Ãk(σ, r) = aN ,sψ(σ)

∫
R

(rs+ − (r + t)s+)(ζ(r) − ζ(r + t))

|t |1+2s dt

= aN ,s

c1,s
ψ(σ) Ĩ (r) = ψ(σ) Ĩ (r)

cN ,s
,

where we used again (6.37) for the last equality. Combining this with (6.45) and (6.46), we
obtain (6.44). ��

We are now ready to complete the

Proof of Proposition 6.1 Combining (6.14), (6.18) and (6.43), we see that there exists ε′ > 0
with the property that the functions Gk defined in (6.4) satisfy

Gk(σ, r)

k
≤ C

rs−1 + rs−1+α

1 + r1+s
for k ∈ N, 0 ≤ r < kε′ (6.52)

with a constant C > 0 independent of k and r . Since s, α ∈ (0, 1), the RHS of this inequality
is integrable over [0,∞). Moreover, by (6.15), (6.19) and (6.44),

1

k
Gk(σ, r) → [X(σ ) · ν(σ )]ψ2(σ )h′(r)

(
rs(−�)sζ(r) − Ĩ (r)

)
(6.53)

for every r > 0, σ ∈ ∂� as k → ∞. Next we note that, by a standard computation,

(−�)sh(r) = (−�)s[rs+ζ(r)] = ζ(r)(−�)sr s+ + rs+(−�)sζ(r) − Ĩ (r)

= rs+(−�)sζ(r) − Ĩ (r) (6.54)

for r > 0 since rs+ is an s-harmonic function on (0,∞) see e.g [1]. Hence, by (6.9), (6.9),
(6.52), (6.53), (6.54) and the dominated convergence theorem, we conclude that

lim
k→∞

∫
�

gkdx =
∫ ∞

0
h′(r)(−�)sh(r)dr

∫
∂�

[X(σ ) · ν(σ )]ψ2(σ )dσ

=
∫
R

h′(r)(−�)sh(r)dr
∫

∂�

[X(σ ) · ν(σ )]ψ2(σ )dσ,

as claimed in (6.1). ��
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Appendix A

Here we give a short proof of the uniqueness of positive minimizers of the problem (1.3) for
1 ≤ p ≤ 2.

Lemma A.1 Let � ⊂ R
N be a bounded open set of class C1,1, let p ∈ [1, 2], and let u1 and

u2 be two positive minimizers of (1.3). Then u1 = u2.

Proof Suppose by contradiction that there are two different positive minimizers u1, u2 for
the minimization problem. Then, since ‖u1‖L p(�) = ‖u2‖L p(�) = 1, the difference u1 −
u2 changes sign. Since moreover u1

δs
and u2

δs
are continuous positive functions on � by

Lemma 2.3, there exists a maximal τ ∈ (0, 1) with

τu1 ≤ u2 on �.

Moreover, τu1 �≡ u2 since u1 − u2 changes sign. Consequently, v := u2 − τu1 satisfies
v ≥ 0 on � and v �≡ 0. Moreover, using that p − 1 ∈ [0, 1] and τ ∈ (0, 1), we find that

(−�)sv = λ
(
u p−1
2 − τu p−1

1

) ≥ λ
(
u p−1
2 − (τu1)

p−1) ≥ 0 in �, v = 0 in R
N \ �

with λ := λs,p(�) > 0. Now the strong maximum principle for the fractional Laplacian and
the fractional Hopf lemma implies that v = u2 − τu1 is strictly positive in � and v

δs
> 0 on

∂�. This contradicts the maximality of τ . Hence uniqueness holds. ��
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