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Zusammenfassung
Diese Dissertation basiert auf folgenden Publikationen:

1. Dilepton production and resonance properties within a new hadronic transport ap-
proach in the context of the GSI-HADES experimental data. J. Staudenmaier, J.
Weil, V. Steinberg, S. Endres & H. Petersen, Phys. Rev. C 98, 054908 (2018) [1].

2. Strangeness production via resonances in heavy-ion collisions at energies available at
the GSI Schwerionensynchrotron. V. Steinberg, J. Staudenmaier, D. Oliinychenko,
F. Li, Ö. Erkiner, H. Elfner, Phys. Rev. C 99, 064908 (2019) [2].

3. Particle production in AgAg collisions at E Kin = 1.58 A GeV within a hadronic
transport approach. J. Staudenmaier, N. Kübler & H. Elfner, Phys. Rev. C 103,
044904 (2021) [3].

4. ‘Smashing more than two’: Deuteron production in relativistic heavy ion collisions
via stochastic multi-particle reactions. J. Staudenmaier, D. Oliinychenko, J. M.
Torres-Rincon & H. Elfner, arXiv:2106.14287 [hep-ph] (2021) [4].

5. The role of proton-antiproton regeneration in the late stages of heavy-ion collisions.
O. Garcia-Montero, J. Staudenmaier, A. Schäfer, J. M. Torres-Rincon & H. Elfner,
arXiv:2107.08812 [hep-ph] (2021) [5].

Die Frage nach den Eigenschaften der starken Wechselwirkung und der (Atom-)Kernmaterie,
die durch sie zusammengehalten wird, ist eine der grundlegenden Forschungsfragen, die von
einigen der weltweit größten Experimente untersucht wird. In diesen Teilchenbeschleuniger-
Experimenten werden schwere Atomkerne (Schwerionen) mit fast Lichtgeschwindigkeit zur
Kollision gebracht, um ein extrem heißes und dichtes Medium zu erzeugen, an welchem
man die Eigenschaften und Phänomene einer der vier Grundkräfte, der starken Wech-
selwirkung, untersuchen kann. Das Medium ist so heiß und dicht, dass der gleiche Zu-
stand wie kurz nach dem Urknall erreicht wird. Hierbei schmelzen die Nukleonen, die
Atomkern-Bestandteile, und ein neuer Phasenzustand der Materie, ein Plasma aus Quarks
und Gluonen, entsteht. Experimentell nachweislich wird ein Quark-Gluon-Plasma in
den Teilchenbeschleunigern mit den höchsten Kollisionsenergien erzeugt: dem Relativistic
Heavy Ion Collider (RHIC) am Brookhaven National Laboratory und im Large Hadron
Collider (LHC) am CERN. Quarks und Gluonen (auch gemeinsam als Partonen bezeich-
net) sind hierbei die elementaren Freiheitsgrade der starken Wechselwirkung. Gluonen
sind die Kraft-Austauschteilchen und Quarks die fundamentalen Bestandteile der Hadro-
nen, wie aus Quarks zusammengesetzte Teilchen genannt werden. Auch Nukleonen sind
Hadronen. Die starke Wechselwirkung verdankt ihren Namen der Stärke ihrer Kopplung,
die durch die Kopplungskonstante charakterisiert ist. Bei alltäglichen, niedrigen Energien
ist die Kopplungskonstante der starken Wechselwirkung groß. Die starke Kopplung führt
zum Einschluss (Confinement) von Quarks und Gluonen in Hadronen. Freie Quarks und
Gluonen kommen nicht natürlich vor. Bei hohen Energien und damit verbundenen kurzen
Längenskalen sinkt die Kopplungsstärke allerdings, da die Kopplungskonstante energieab-
hängig ist. Man spricht von asymptotischer Freiheit, weil die elementaren Teilchen sich bei
diesen Energieskalen frei verhalten. Dieses Phänomen der starken Wechselwirkung diente,
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als eine der ursprünglichen Motivationen Schwerionen bei hoher Energie zur Kollision zu
bringen, um ein Plasma aus freien Quarks und Gluonen (Quark-Gluon-Plasma) zu erzeu-
gen. Der Verlauf einer hochenergetischen Schwerionenkollision hat folglich verschiedene
Phasen mit verschiedenen Freiheitsgraden. Die aus Hadronen bestehenden Atomkerne kol-
lidieren und erzeugen eine extrem heiße und dichte Phase, in der ein Quark-Gluon-Plasma
entsteht. Kühlt das System durch Expansion ab, formt sich wieder ein Gas aus Hadronen.
Bei niedrigeren Strahlenergien verbleiben die Freiheitsgrade hadronisch und es entsteht
kein Quark-Gluon-Plasma.
Diese Arbeit beschäftigt sich mit der theoretischen Beschreibung von diesen hadronis-
chen Phasen in Schwerionenkollisionen. Die grundlegende Theorie der starken Wechsel-
wirkung, die Quantenchromodynamik, ist nur begrenzt und mit sehr großem Aufwand
lösbar. Insbesondere, erlaubt sie keine Beschreibung von dynamischen Systemen, wie
Schwerionenkollisionen. Für diese Beschreibung werden deswegen e�ektive, kinematis-
che Ansätze gewählt. Einer dieser Ansätze sind Transportmodelle, die eine dynamische,
mikroskopische Evolution von Hadronen beschreiben können. Dieser Ansatz ist vor allem
relevant für die Abschnitte einer Schwerionenkollision, in der kein Gleichgewicht für das
beschriebene Medium angenommen werden kann. Ein Zustand, in dem sich zum Beispiel
die späten Abschnitte von Kollisionen mit hohen Strahlenergien befinden.
In dieser Arbeit wird ein solches hadronisches Transportmodell (SMASH) verwendet, um
zu untersuchen, wie sich das hadronische Medium in Schwerionenkollisionen verhält. Im
Speziellen wird sich der Frage gewidmet, was die relevanten mikroskopischen Reaktio-
nen und die Eigenschaften der beschriebenen Freiheitsgrade sind. Dafür wird zuerst
die bestehende hadronische Evolution mit binären Kollisionen durch die Emission von
Dileptonen und Seltsamkeitsproduktion untersucht. Anschließend wird die Evolution um
Mehrteilchenreaktionen erweitert und deren E�ekt auf gemessene Observablen studiert.
Das Studium von Mehrteilchenreaktionen ist Hauptthema dieser Arbeit. Die verschiede-
nen Studien dieser Dissertation und deren Ergebnisse sind im Folgenden erklärt und
zusammengefasst.
Die Produktion von korrelierten Leptonpaaren (Dileptonen) und von Teilchen, die strange
Quarks enthalten (Seltsamkeit), ermöglicht zu überprüfen, ob der verwendete Trans-
portansatz experimentelle Daten bei niedrigen Strahlenergien reproduzieren kann. Beide
Proben sind speziell auf das Medium sensitiv, weil Dileptonen das hadronische Medium
ungestört verlassen und die Seltsamkeit erst im Medium produziert wird (andere Quarks
sind schon Bestandteile der initialen Nukleonen). Deswegen wird anhand dieser Ver-
gleiche validiert, ob Transportansätze, im Speziellen der verwendete (SMASH), in der
Lage sind, das hadronische Medium über die vollständige Dauer einer Schwerionenkolli-
sion bei niedrigen Energien zu beschreiben. Die Untersuchung der Seltsamkeit fokussiert
sich auf die Produktion von „ und � Hadronen. Es ist es möglich die bisherigen Mes-
sungen für die Produktion der beiden doppelt seltsamen Teilchen mit Hilfe eines neuen
Produktionsmechanismus, basierend auf dem Zerfall von schweren Nukleon-Resonanzen,
zu erklären. Auch die Dileptonproduktion ist für kleine Systeme kompatibel mit den ex-
perimentellen Daten. In größeren Systemen ermöglicht sie das Studium von zusätzlichen
In-Medium-E�ekten. Im invarianten Massenspektrum der Dileptonen lassen sich Än-
derungen der Vektormeson-Spektralfunktion beobachten. SMASH verwendet konstante
Vakuum-Eigenschaften für die Resonanzen, einschließlich der Vektormesonen (fl, Ê, „).
Schon bei den betrachteten niedrigen Strahlenergien ist eine Modifikation des invarianten
Massenspektrums der Dielektronen, die nicht mit Vakuum-Eigenschaften vereinbar ist, für
große Kollisionssysteme zu beobachten. Eine im Medium veränderliche Spektralfunktion
lässt sich in einem coarse-graining Modell beschreiben. Da Transport und coarse-graining
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Modell auf der gleichen Evolution basieren, lässt sich die Modifikation im invarianten
Massenspektrum dadurch im Detail quantifizieren und auf eine Modifikation der Spek-
tralfunktion der Vektormesonen, wie sie bei der Wiederherstellung der chiralen Symme-
trie vorausgesagt wird, zurückführen. Die Verwendung von Vakuum-Eigenschaften in einer
hadronischen Transport-Kaskadenrechnung ermöglicht folglich die Isolierung und Quan-
tifizierung von zusätzlichen In-Medium-E�ekten.
Die Grundlage von Mehrteilchenreaktionen in Transportmodellen ist ein stochastisches
Kollisionskriterium. Dieser Ansatz, auch als stochastische Raten bezeichnet, erlaubt, im
Gegensatz zu einem geometrischen Kollisionskriterium auch Mehrteilchenreaktionen zu
beschreiben. Das verwendete Transportmodell wird in dieser Arbeit um ein stochastisches
Kollisionskriterium und verschiedene Mehrteilchenreaktionen erweitert. Die theoretische
Herleitung für die Beschreibung von Mehrteilchenreaktionen mit Hilfe von stochastis-
chen Raten ist anschaulich und ausführlich dargestellt. Ausgehend vom Kollisionsterm
der Boltzmann-Gleichung werden Kollisionswahrscheinlichkeiten für 2-, 3- und 5-Teilchen-
kollisionen hergeleitet und verallgemeinert. Diese Wahrscheinlichkeiten werden unter der
Annahme eines konstanten Matrixelementes in Abhängigkeit der Zerfallsbreite oder des
Wirkungsquerschnitts des umgekehrten Prozesses angegeben. Die hergeleiteten Formeln
dienen als Basis für die Realisierung von Mehrteilchenreaktionen im Transportansatz
SMASH. Die folgenden Mehrteilchenreaktionen sind einbezogen: die Rückreaktion von
mesonischen Dalitzzerfällen (3-nach-1 Reaktionen), Deuteron-Katalyse (3-nach-2 Reak-
tionen) und die Rückreaktion von Nukleon-Annihilation (5-nach-2 Reaktionen). Letzteres
ist die erste Realisierung einer 5-Körper Reaktion in einem Transportmodell.
Zur Überprüfung der Herleitung und der numerischen Umsetzung des neuen Ansatzes
für stochastische Raten in SMASH werden die Ergebnisse in verschiedenen Testsystemen
validiert, bevor realistische Schwerionenkollisionen betrachtet werden. In Boxrechnun-
gen wird die Kollisionsrate und der Äquilibrierungsprozess mit analytischen oder vor-
angegangen Ergebnissen verglichen. Die Gleichgewichtsrechnungen für die stochastischen
Raten stimmen in allen Vergleichen mit den analytischen Erwartungen überein. Es ist zu
beobachten, insbesondere auch für Mehrteilchenreaktionen, dass im Gleichgewicht beide
Reaktionsrichtungen gleich häufig sind (detailed balance Prinzip). Die Etablierung des
neuen Ansatzes wird abgeschlossen mit einer Untersuchung der Stabilität der Ergebnisse
unter Variation der Rechenparameter. In den Gleichgewichtsrechnungen ist außerdem
festzustellen, dass der Äquilibrierungsprozess für Mehrteilchenreaktionen schneller ist.
Im Vergleich zu einer Kettenreaktion mit zwischenzeitlichen Resonanzzuständen, die in
der gleichen Gesamtreaktion resultiert, ist ein Gleichgewicht mit direkten Mehrteilchen-
reaktionen schneller hergestellt. Da bisherige Ergebnisse auf Grund der Limitierung auf
ein geometrisches Kriterium mehrstufige Kettenreaktionen als e�ektive Beschreibung von
Mehrteilchenreaktionen verwenden, ist die Frage zu klären, inwiefern dieser Unterschied
der Äquilibrierungszeit auch in Schwerionenkollisionen einen E�ekt hat.
Die Ergebnisse für Mehrteilchenreaktionen in Schwerionenkollisionen sind nach den drei
im hadronischen Transportansatz realisierten Reaktionen gegliedert. Zuerst sind die Rück-
reaktion von mesonischen Dalitzzerfällen bei niedrigen bis mittleren Strahlenergien unter-
sucht. Diese sind 3fi æ Ê, 3fi æ „ und fifi÷ æ ÷

Õ. Die Reaktionen von Ê, „ und ÷
Õ sind

eine gute erste Probe für stochastische Raten in einem realistischen Kollisionsszenario.
Der Ê Beitrag dominiert die summierten 3-nach-1 Reaktionsrate. „ und ÷

Õ Rückreaktion
sind keine signifikanten Beiträge. Für die Gesamtdynamik in einer Schwerionenkollision
ist der Einfluss der 3-nach-1 Rückreaktionen vernachlässigbar, da sie relativ selten vorkom-
men. Es ist allerdings zu beobachten, dass durchschnittlich jedem vierte Dalitzzerfall eine
Rückreaktion, die die Resonanz regeneriert, folgt.
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Mit Hilfe der Proton- und Deuteron-Mehrteilchenreaktionen werden Kollisionen mit höh-
eren Strahlenergien untersucht. In der späten Phase dieser Kollisionen ist das Medium
hadronisch und nicht mehr im Gleichgewicht. Deswegen wird ihre Evolution mit Trans-
portansätzen berechnet. Kombiniert wird dieser Ansatz mit einer hydrodynamischen
Beschreibung für die heiße, dichte und teilweise partonische Phase und einem geeigneten
Modell, das die initialen Stöße vor der heißen und dichten Phase beschreibt. Der Fokus
der Ergebnisse ist die letzte verdünnte Phase nach der hydrodynamischen Evolution, in
der die Hadronen (in Mehrteilchenreaktionen) interagieren.
Der Produktionszeitpunkt von Deuteronen in Schwerionenkollisionen ist eine aktuell disku-
tierte Forschungsfrage. Gegensätzliche Modellannahmen reproduzieren die Messungen der
Deuteronproduktion. Koaleszenzmodelle nehmen an, dass Deuteronen sich am Ende der
Kollision aus ihren Bestandteilen (Neutron und Proton) formen, wenn diese sich nah im
Phasenraum befinden. Demgegenüber nehmen thermische Modelle eine deutlich frühere
Formation kurz nach dem Phasenübergang an. Diese Annahme wirft die Frage auf, wie
Deuteronen mit einer Bindungsenergie von wenigen MeV die Temperaturen kurz nach
dem Phasenübergang von hunderten MeV überstehen, ohne aufzubrechen (dies wird an-
schaulich mit einem “Schneeball in der Hölle” vergleichen). In dieser Arbeit wird dieses
Paradox mit der vollständig dynamischen Evolution eines Transportansatzes untersucht.
Die beiden genannten Ansätze vernachlässigen jede Reaktionsdynamik für die Deuteron-
produktion. In SMASH werden Deuteronen mikroskopisch in den 3-nach-2 Katalysereak-
tionen fipn ¡ fid, Npn ¡ Nd und N̄pn ¡ N̄d geformt. Mit Hilfe dieses Ansatzes
können die beiden Annahmen von thermischen Modellen und Koaleszenzmodellen unter-
sucht werden. Hierfür werden Gold-Gold Kollisionen bei mittlere Strahlenergie in einem
Hybridmodell untersucht. Im ersten Szenario wird angenommen, dass die d schon in
der heißen und dichten Phase produziert wurden. Die Deuteronanzahl zum Start der
Transportevolution entspricht dabei der im thermischen Modell vorhergesagten Anzahl.
Die Deuteronen sind Teil der Anfangsbedingung des Transportmodells. In diesem Fall
äquilibrieren sich die Katalysereaktionen sofort. Die Nukleonen und Deuteron befinden
sich im Gleichgewicht und die Anzahl der Deuteronen bleibt konstant. Die initialen d

werden andauernd zerstört und wieder produziert. Deswegen stimmen die Vorhersagen
des thermischen Modells mit den experimentellen Daten überein, auch wenn die Deutero-
nen aufbrechen (die “Schneebälle in der Hölle schmelzen”). Vernachlässigt man d in der
Anfangsbedingung für das Transportmodell, so werden sie erst später geformt, analog zu
Koaleszenzmodellen. Interessanterweise führen die Katalysereaktionen zu einem Anstieg
der Deuteronanzahl in der späten Kollisionsphase, der vergleichbar mit der konstanten
Anzahl der d im vorher beschrieben Szenario ist. Die finale Deuteronanzahl ist fol-
glich unabhängig vom Produktionszeitpunkt, wenn die Deuteronproduktion mit 3-nach-2
Katalysereaktionen beschrieben ist. Das erklärt, warum gegensätzliche Modellannahmen
für den Produktionszeitpunkt zur gleichen Deuteronanzahl führen können. Die Ergeb-
nisse mit stochastischen Mehrteilchenreaktionen bestätigen vorangegangene Ergebnisse,
die die 3-nach-2 Katalyse mit geometrischen mehrstufigen Reaktionen modellieren. Der
in Gleichgewichtsrechnungen beobachtete schnellere Äquilibrierungsprozess für die direk-
ten Mehrteilchenreaktionen führt allerdings zu einem schnelleren und erhöhten Anstieg
der Deuteronanzahl (für den Fall ohne d als Teil der Anfangsbedingung). Die Unab-
hängigkeit der Deuteronanzahl von der Anfangsbedingung des Transportmodells ist mit
direkten Mehrteilchenreaktionen im Vergleich zur äquivalenten mehrstufigen Reaktionen
damit noch deutlicher zu beobachten.
Die Frage, wie der E�ekt von inelastische Streuungen zwischen Hadronen auf die Mul-
tiplizität in der späten Kollisionsphase ist, ist auch für Protonen relevant. Anders als
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bei Deuteronen überschätzen thermische Modelle die Protonenanzahl. Ein Mechanismus,
der die Protonenanzahl in der späten Kollisionsphase mindert, sind Annihilationsreaktio-
nen zwischen Nukleonen und Antinukleonen. Die wichtigste Annihilationsreaktionen ist
pp̄ æ 5fi. Die Übereinstimmung mit experimentellen Daten wird durch die Einbeziehung
dieser Reaktion verbessert. Ungeklärt ist allerdings die Frage, inwiefern die Rückreak-
tion 5fi æ pp̄ die Anzahl an Protonen regeneriert, weil diese 5-Teilchenreaktion in bish-
erigen theoretischen Rechnungen vernachlässigt wird. In dieser Arbeit wird eine solche
5-Teilchenreaktion zum ersten Mal in einer mikroskopischen Beschreibung der späten Kol-
lisionsphase einbezogen. Zur Untersuchung dieser Phase werden Gold-Gold und Pb-Pb
Kollisionen bei hohen Energien mit einem Hybridmodell untersucht. In den späten Kol-
lisionsphasen, die mit dem Transportmodell beschrieben werden, lässt sich eine 5fi æ pp̄
Rückreaktion für 20% aller pp̄ æ 5fi Reaktionen feststellen. Ein Unterschied zwischen
einer direkten Mehrteilchenreaktionen und einer mehrstufigen Modellierung der gleichen
Reaktion mit binären Reaktionen wird nicht beobachtet. Bei mittleren Rapiditäten wird
die Hälfte der Protonen regeneriert, die durch Annihilation vernichtet wurden. Damit
haben sowohl die Annihilationsreaktion als auch ihre Rückreaktion signifikanten Einfluss
auf die Multiplizität und müssen für eine vollständige Beschreibung der späten Kollision-
sphase beachtet werden.
Insgesamt kann durch die Ergebnisse gezeigt werden, dass die mikroskopische Beschrei-
bung von inelastischer Streuung in den späten Phasen von Schwerionenkollision wichtig
ist. Insbesondere die Relevanz von Mehrteilchenreaktionen im Hadronengas, die entschei-
denden Einfluss auf finale Multiplizitäten haben, ist verdeutlicht. Der beobachtete Unter-
schied in der Äquilibrierungszeit zwischen mehrstufigen und direkten Mehrteilchenreak-
tionen wirkt sich nicht signifikant auf die Schlussfolgerungen der Ergebnisse aus. Der
Ansatz, Mehrteilchenreaktionen in mehreren binären Schritten zu modellieren, ist somit
validiert. Dieser Ansatz ist jedoch auf Reaktionen, für die geeignete Zwischenzustände
bekannt sind, beschränkt. Der direkte Ansatz mit stochastischen Raten ist hingegen flex-
ibel für alle Reaktionen anwendbar und rigoros von der Boltzmann-Gleichung abgeleitet,
und deswegen letzten Endes theoretisch zu bevorzugen.
Abschließend lassen sich die Untersuchungen in dieser Dissertation wie folgt zusammen-
fassen:

• Die hadronische Evolution mit binären Reaktionen in Kern-Kern Kollisionen wird bei
niedrigen Strahlenergien mit den Transportansatz SMASH untersucht. Die Dilepton-
produktion erlaubt, den Ansatz generell zu verifizieren und Mediummodifikationen
der Vektormeson-Resonanzeigenschaften zu quantifizieren. Ein neuer Produktion-
smechanismus für doppelt seltsame „ und � Hadronen basierend auf dem Zerfall
von schweren Nukleon-Resonanzen führt zu einer Übereinstimmung mit bisherigen
Messungen zur deren Produktion.

• Ein neuer Ansatz für stochastische Raten zur mikroskopischen Beschreibung von
Mehrteilchenreaktionen wird etabliert. Die theoretische Herleitung der notwendi-
gen Kollisionswahrscheinlichkeiten ist ausgehend vom Kollisionsterm der Boltzmann-
Gleichung umfassend dargestellt. Die Realisierung der stochastischen Raten im
Transportmodell SMASH, dessen Evolution mit Mehrteilchenreaktionen erweitert
wird, ist ausführlich verifiziert.

• Die um Mehrteilchenreaktionen erweiterte Evolution wird vor allem in den späten
hadronischen Phasen von Schwerionenkollision bei mittleren und hohen Energien
untersucht. Die Mehrteilchenreaktionen für Deuteronen (fipn æ fid) und Protonen
(5fi æ pp̄) in der späten Nicht-Gleichgewichtsphase der Kollision sind essentiell, um
die beobachtete Produktion der beiden Spezies zu erklären.
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Chapter 1

Introduction

1.1 Strong-interaction matter under extreme conditions

Collisions of highly energetic atomic nuclei produce extreme conditions in the laboratory
that o�er a unique environment to learn about the fundamental aspects of the created
matter and its interactions. The conditions are so extreme that the produced matter
reaches the, to our current knowledge, highest temperature in the present universe. The
densities are equally extreme and only comparable to the center of neutron stars. One
of the major motivations to collide heavy nuclei is to create and investigate a new state
of matter, which is thought to have also existed shortly after the Big Bang. In this new
phase, the nucleons melt and give rise to a plasma of quarks and gluons, the elementary
particles of the strong interaction.

The most relevant force for the strongly interacting medium created in heavy-ion collisions
is the strong interaction, which is one of the four fundamental forces of nature. The other
fundamental forces are gravity, the electromagnetic and the weak force. The strong, elec-
tromagnetic and weak force are part of the standard model (of particle physics), which
describes the known elementary particles and their interactions. As depicted in Figure 1.1,
the elementary fermions (particles with half odd spin) are the quarks (up, down, charm,
strange, top, bottom) and the leptons (electron, muon, tau) with their neutrinos coun-
terparts (electron neutrino, muon neutrino, tau neutrino). The gauge bosons (particles
with integer spin) carry the forces between them: gluons for the strong, photons for the
electromagnetic and W/Z boson for the weak force. The Higgs boson has a unique role as
it is responsible for generating the bare mass of the particles. The theoretical framework
of the standard model is quantum field theory. The theory describing the strong force is
quantum chromodynamics (QCD) (see also Section 1.2.1). The theory of the electromag-
netic interaction is described by quantum electrodynamics (QED). QED can be combined
with the theory of the weak interaction into a unified theory of the electroweak interac-
tion. These theories are unfortunately notoriously hard to solve. Therefore, studying the
predictions, consequences and properties of these theories is a fruitful field of research.

QCD, in particular, has a few remarkable properties: The fundamental degrees of freedoms
(quarks and gluons) are not observed freely. Instead, they are bound inside color-neutral1

1Color is the name for the charge of the strong interaction. There are three colors: red, green, blue
(plus their respective opposite/anti charges). Either the three di�erent (anti-) colors or color and respective
anti-color combine to be colorless.
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Figure 1.1: Elementary particles of the standard model. Figure from [6].

states called hadrons at all times. This phenomenon is called confinement. The most
abundant hadrons are two-quark (mesons) and three-quark states (baryons). More exotic
quark states (e.g. tetra- and pentaquark states) are also theoretically possible and a few
have been experimentally measured [7, 8]. Confinement of quarks is caused by the QCD
coupling strength, which is characterized by the coupling constant –S . In vacuum, i.e.
at low energies, QCD is strongly coupled. The coupling, however, depends on the energy
scale (running coupling). As shown on the left of Figure 1.2, the higher the energy i.e.
the momentum transfer Q (and the shorter the distance) the weaker the coupling gets.
The coupling is said to be asymptotically free

2. A break-up of hadrons into a soup of free
quarks and gluons is therefore expected at high energies, creating a new phase of matter
referred to as the quark-gluon plasma (QGP). The theoretical expectation of observing
a phase of matter, where partons (another name for quarks and gluons) are confined
and a phase, where they are free, is summarized in the QCD phase diagram, drawn in
the temperature and baryon-density (or chemical potential) plane (Figure 1.2, right).
Of specific interest, is the transition between both phases, which di�erent theoretical
predictions (e.g. [13, 14, 15, 16]) suggest to be of first order. However, first principle
QCD calculations at zero net-baryon density show a cross-over phase transition (see also
Section 1.2.1). This limits a first-order phase transition to a certain higher net-baryon
density region and suggests the existence of a critical end-point in which the first-order
phase transition ends. Another important property of QCD is the spontaneous breaking
and restoration of chiral symmetry, which is in detail explained in Section 1.3.1.

Probing the phase diagram and verifying the theoretical predictions of QCD is the goal
of the many experimental heavy-ion programs. The energies in the created hot and dense
medium are expected to be high enough to produce a quark-gluon plasma. Therefore,
particular focus is placed on the search for the quark-gluon plasma phase, the study of

2For their works on asymptotic freedom [9, 10] David Gross, Frank Wilczek and David Politz were
awarded the Nobel prize in 2004.

2



Figure 1.2: Left: Running QCD coupling constant for di�erent momentum transfer Q.
Figure from [11]. Right: Phase diagram of the strong interaction in the T -nB-plane.
Figure adapted from [12].

its properties and the discovery of remnants of the phase transition, which so far remains
to be experimentally observed. The most relevant high-energy experimental facilities for
this work are the Relativistic Heavy Ion Collider (RHIC) at BNL and the Large Hadron
Collider (LHC) at CERN [17]. The high incident energies are achieved by using a collider
setup that uses two accelerated particle beams. The produced particles are measured by
di�erent detectors that are part of large experiments: STAR, PHENIX, PHOBOS and
BRAHMS [18, 19] in the case of RHIC as well as ATLAS, CMS, LHCb and ALICE [17]
at the LHC. The latter being the main heavy-ion experiment dedicated to the study of
the quark-gluon plasma [20]. Also, results of the LHC predecessor, the Super Proton
Synchrotron (SPS), are discussed in the context of the lepton measurements of the NA60
experiment [21]. Di�erent collision energies probe di�erent trajectories in the phase di-
agram (as sketched in the right of Figure 1.2). High energy3 collisions reach very high
temperatures, but only small net-baryon densities, since the colliding nuclei are transpar-
ent at ultra-relativistic speeds. At lower beam energies, higher net-baryon densities are
reached since the nuclear matter is stopped. A relevant example of a facility for low-beam
energy collisions is the SIS18 accelerator at GSI [22]. A fixed-target setup is used at low
beam energies experiment since higher luminosities, a measure of the collision frequency, is
reached for such a setup. This enables the measurement of high statistics for rare probes,
such as leptons. Correlated lepton pairs at SIS18 are measured by the HADES experi-
ment [23] for a wide range of collisions systems. In the search for the phase transition and
the critical point, future facilities and experiments, such as FAIR (CBM) [24], NICA [25],
JPARC-HI [26] or the RHIC-BES [27], focus on the intermediate energy region to probe
a simultaneously hot and dense phase.

One of the most important experimental discoveries so far is the observation of a quark-
gluon plasma phase by the di�erent RHIC experiments. The QGP phase is indicated by
the compatibility of the measured spectra and flow coe�cients with the results of ideal
hydrodynamic approaches [18, 19, 28, 29]. Surprisingly, the created plasma behaves more
like a strongly coupled fluid than a weakly coupled gas [30]. Further evidence of a QGP is
provided by the “quenching“ of high-pt particles (jets) [31, 32]. As a consequence of the

3There is no universal classification what a “low”, “intermediate” or “high” beam energy is. For this
work, “low” beam energies mean

Ô
s Æ 4.5 GeV (as reached by the SIS18 at GSI), “intermediate” beam

energies are
Ô

s = 5 ≠ 20 GeV (e.g. RHIC-BES, FAIR or SPS) and “high” beam energies are reached at
RHIC and LHC (

Ô
s Ø 130 GeV).
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RHIC results, a QGP is also expected at LHC experiments, which are performed at even
higher energies. At LHC, the last to be experimentally discovered elementary particle, the
Higgs boson, was measured in 2012 [33, 34]4. A surprising observation at LHC is the mea-
surement of QGP signatures in small proton-proton and proton-lead collision with high
multiplicities [38]. The results are consistent with hydrodynamic calculations, which are
usually seen as evidence of a QGP phase. As seen from the description of these discoveries,
heavy-ion research needs an alliance of theoretical calculations and experimental measure-
ments to advance. The reason is the indirect access of the experimental measurements to
the fleeting medium. Since experimental detectors only measure the late remnants of the
nucleus-nucleus incident, theoretical calculations are needed to explain how the final par-
ticle distribution is produced. In combination with the di�culty of solving first principle
theories, testing di�erent assumptions of e�ective theories in comparison to experimental
data is, therefore, one of the major techniques in heavy-ion physics.

The topic of this thesis is the e�ective theoretical description of the hadron gas stages in
heavy-ion collisions. Two avenues of study are explored. First, the emission of correlated
lepton pairs and the production of strange hadrons (Section 1.3.1 and 1.3.2) employing
only binary reactions are investigated. Second, the theoretical realization and e�ect of
extending the evolution of the hadron gas with multi-particle reactions (Section 1.2.6)
are studied, in particular focusing on the resulting deuteron and proton abundances (Sec-
tion 1.3.3 and 1.3.4). A complete overview of the topics of study is found in Section 1.4.

1.2 Theoretical description of heavy-ion collisions
A full dynamical calculation of heavy-ion collisions based on the fundamental theory of
quantum chromodynamics is not possible, especially when studying experimentally acces-
sible observables. E�ective models, which use input from first principle calculation where
possible, are necessary to investigate such dynamic systems. The following sections first
introduce the theory of quantum chromodynamics and the di�erent approaches, which
aim to extract solutions of it (Section 1.2.1). Then, the di�erent e�ective approaches that
are most relevant for this thesis are detailed. The main approach followed in this work
is a (hadronic) transport approach (Section 1.2.4). Also employed are coarse-graining
(end of Section 1.2.4) and hydrodynamical (Section 1.2.3) approaches. Thermal mod-
els (Section 1.2.2) are not employed, but tension of their predictions with experimental
data provides important motivation for the conducted studies. The following compilation
hereby assembles the most important approaches for heavy-ion collisions when investigat-
ing bulk matter, also referred to as soft particles, which are the low-momentum particles
that amount for most of the created medium5.

1.2.1 Quantum Chromodynamics
Quantum chromodynamics, as the fundamental theory of the strong interaction, describes
systems of quarks and gluons as well as their bound states i.e. hadrons. As a quantum
field theory, this information is encoded in the Lagrangian, which is given as

LQCD = Â̄i (i“µ(Dµ)ij ≠ m ”ij) Âj ≠ 1
4G

a
µ‹G

µ‹
a . (1.1)

4After the experimental discovery of the Higgs boson, François Englert and Peter Higgs received the
Nobel prize for their works on the Higgs mechanism [35, 36, 37].

5Absent from this introduction are approaches for high-momentum particles and jets [39], since they
are not discussed in this work.
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Âi are the Dirac spinors of the quark fields. The indices of i and j represent color charge
(r,g,b). “

µ are the Dirac matrices, (Dµ)ij is gauge covariant derivative and G
a
µ‹ is the

gluon field strength tensor. The index a runs from 1 to 8. Even though the Lagrangian
of QCD and some of the theory’s fundamental properties (as explained in the previous
section) are known, analyzing results of the theory is complicated and requires evolved
methods. Studies are only possible within narrow limits. Most notably, calculating the
dynamical evolution of a heavy-ion collision is at the moment far out of reach for first-
principle calculations.

Figure 1.3: Temperature dependence of trace anomaly, entropy density and pressure cal-
culated by Lattice QCD at µB = 0. Figure from [40].

The most established approach for first-principle calculations is Lattice QCD (lQCD, [41]).
lQCD calculations non-perturbatively solve QCD by discretizing the space-time (on a
lattice) and afterward extrapolating to the continuum. However, due to numerical issues
(sign-problem) the results for physical quark masses are limited to a chemical potential
of µ = 0. Small finite µ values are accessible e.g. by Taylor expansions around µ =
0 [42]. lQCD is computationally extremely demanding, such that calculations require
state-the-art algorithms and supercomputers to be run. Despite these challenges, it is
possible to extract thermodynamic equilibrium properties for strongly interacting quark-
gluon systems with this method[40] (see Figure 1.3 for an example). The most striking
finding is that of a cross-over phase transition at µ ¥ 0 from a hadron gas to a quark gluon-
plasma [43] at a critical temperature of TC = 155 MeV [44]. Furthermore, lQCD allows to
calculate an equation of state (including the mentioned phase transition) [45, 46, 47] that
is employed as a first principle input for hydrodynamical approaches (see Section 1.2.3).

The main challenge for QCD calculations lies in the nature of the strong coupling con-
stant. Due to asymptotic freedom (as explained in Section 1.1), perturbative methods
can only be applied at high energies and short distances. Perturbative QCD calculations
cannot access the whole low-energy region, which includes the hadronic sector. They
are, however, relevant at high energy scales, which includes the study of jet physics at
high momenta [39]. A newer idea is to apply perturbative methods to the in principle
non-perturbative strongly-coupled region by finding a dual weakly-coupled gravitational
theory to QCD. Such a duality for conformal field theories has already been found, the
so called AdS/CFT correspondence [48], and is employed to study aspects of QCD qual-
itatively [49]. Furthermore, functional approaches exist. Two such non-perturbative field
theoretical approaches are the Functional Renormalization Group (FRG, [50]) and the
Dyson-Schwinger Equations (DSE, [51]). Both are applicable without the limitation to
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µ ¥ 0, but require a truncation of the infinite set of coupled equations, limiting the re-
sults’ resolution. Alternatively, the di�erent limitations, especially the inaccessibility of
the low-energy regime, are circumvented by e�ective field theories that employ di�erent
degrees of freedom, mostly hadrons. The main idea is to rewrite the Lagrangian including
the di�erent degrees of freedom in the most general form that still fulfills the symme-
tries of QCD. The most important symmetry being the chiral symmetry (Chiral E�ective
Field Theory [52]). A popular example of such a theory is the Nambu-Jona-Lasinio (NJL)
model [53, 54]. The below described Color Glass Condensate (CGC) approaches [55] are
also an e�ective field theory.

An important link between fundamental theory calculations and kinematic approaches as
well as experimental measurements is the calculation of cross-sections. A cross-section
characterizes the likelihood of two particles interacting. In approaches that model the
scattering of partons or hadrons microscopically, it is one of the most important param-
eters. Quantum field theory approaches, in particular the mentioned chiral e�ective field
theories, are able to derive the transition amplitude (i.e. matrix element M) by calculating
the scattering (S) matrix for the given Lagrangian. The cross-section is then calculated
as follows [56]

‡ =
⁄ |M|2

4
Ò

(p1 · p2)2 ≠ m
2
1
m

2
2

d�n (1.2)

with the squared matrix element |M|2 entering in the outgoing di�erential phase space
d�n integration (defined in Eq. 4.15) and momentum p as well as mass m of the incoming
particles. Since the underlying theory i.e. QCD is invariant under time reversal (T sym-
metry), the matrix element for the forward and backward process (a ¡ b) has to be the
same:

|Maæb|2 = |Mbæa|2 . (1.3)

The microscopic consequence of this relation is that the number of processes a æ b and
b æ a have to be equal in thermal equilibrium. This is called the principle of detailed

balance and a critical requirement for kinematic approaches.

1.2.2 Thermal Models

A simple, but very successful class of e�ective models are so called statistical hadronization

models (SHM), sometimes also referred to as statistical or thermal models [57]. The as-
sumption is that the medium created in a heavy-ion collision is in full thermal and chemical
equilibrium at one point. The system freezes out chemically during this time according
to the thermodynamic expectation of the grand-canonical ensemble6. The chemical com-
position of the emitted hadronic medium can therefore be determined by calculating the
particle number N of species i according to

Ni = giV

2fi2

⁄ Œ

0

p
2
dp

e(Ei≠µi)/T ± 1
, (1.4)

where gi is the spin degeneracy and the ± is ≠ for bosons and + for fermions. With
this assumption a temperature (T ) and chemical potential (µ) are extracted from the
experimentally measured particle numbers by a common 3-parameter fit in T, µ, V for all
particles. V is the fireball volume at freeze-out and can be excluded from the fit, when
considering particle ratios, where it cancels.

6Depending on the beam energy and collision system also the canonical expectation is employed [58].

6



Measured particle multiplicities and multiplicity ratios are very successfully reproduced
for a wide range of incident energies and systems by finding one (T, µ, V )-set for a given
experiment [59, 60, 61, 62, 63], which suggests that the medium close to chemical freeze-out
is thermalized. If the thermal models result from di�erent experiments are combined, they

Figure 1.4: Comparison of Lattice QCD calculations for the critical temperature (TC)
of the phase transition (band) and the fitted temperature (TCF ) and baryon chemical
potential for di�erent experiments from thermal models (symbols). Taken from FIG.5 in
[63]. See caption in [63] for references to calculations.

agree with the cross-over phase transition region mapped out by Lattice QCD calculations
in the T -µB-plane for the high-beam energy experiments (Figure 1.4, [62, 63]). For high-
energy experiments, the temperature is close to TC ¥ 155 MeV, the critical temperature
measured by Lattice QCD. This finding is consistent with an immediate chemical freeze-
out after the phase transition to hadronic matter. The results also qualitatively follow the
phase transition line assumed for the strong interaction (Figure 1.2).

Not all observables are correctly described or can be calculated with thermal models,
particularly observables that di�erentially probe the momentum space. While an exten-
sion with so called Blast-Wave models [64, 65] is possible in order to describe transverse
momentum and rapidity spectra, no agreement is generally reached e.g for higher flow
coe�cients (v2, v3, v4, ...). Blast-Wave models introduce an additional expansion rate of
the thermal source characterized by a flow velocity —. Furthermore, the assumptions of
thermal models rule out the possibility of any non-equilibrium e�ects in the late stages like
inelastic rescattering that would change the chemical composition of the system. However,
serval results [66, 67] show that non-equilibrium e�ects in the late stages of a collision are
significant for identified particle spectra or correlation and fluctuation observables.

Even though thermal models are not directly employed in this work, the disagreement
of their fit with the measured proton yield at LHC [61] and the double strange baryon
yields of „ and � yield measured by HADES [68] partly motivate the studies in this thesis.
The explored explanation for the observed discrepancies is provided by accounting for
non-equilibrium e�ects with a hadronic transport approach in the late collision stages.
Furthermore, an agreement for the production of light nuclei is observed with the thermal
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model [69, 70], which leads to the question of how such nuclei should survive after freeze-
out if the surrounding temperature is orders of magnitudes larger than the binding energy
(snowballs in hell). More details on this work’s study of these discrepancies and questions
are given in Section 1.3.

1.2.3 Hydrodynamics

Hydrodynamical approaches are employed, since the QGP produced in heavy-ion collision
for a certain time is found to be an almost perfect fluid [30]. Essentially, hydrodynamic
approaches calculate the macroscopic evolution of (thermodynamic) quantities of the sys-
tem, when enforcing conservation of energy, momentum and charge(s) [71]. The main
equations of relativistic hydrodynamics are therefore formulated as follows:

ˆµT
µ‹ = 0 , (1.5)

ˆµj
µ
i = 0 , (1.6)

where j
µ
i is the current of the conserved charge i (e.g. of baryon number or electric charge)

and T
µ‹ the energy-momentum tensor.

Employing hydrodynamics is possible under two assumptions. First, the system needs to
be “macroscopic” so that a fluid description can be applied. This is the case when the
mean-free path of the interacting particles is much smaller than the size of the system.
Second, the system needs to be close to local thermal equilibrium. Both assumptions
are expected to be fulfilled soon after the impact of the nuclei in a heavy-ion collision.
How the system thermalizes so rapidly, however, is still unknown [72, 38]. Interestingly, a
hydrodynamic description is successful even for elementary proton-proton reactions if the
event produces a large multiplicity [73].

The set of equations above is not closed without one additional equation, the equation of

state. It relates the pressure (p) with energy (‘) and charge (n) density.

p = p(‘, n) (1.7)

The equation of state encodes all information and properties of the medium since the
other equations are just expressions of conservation laws. This causes two advantages
of hydrodynamical approaches: (i) the equation of state can encode a phase transition
from QGP to hadron gas and (ii) it is possible to employ an equation of state calculated
from first principles by Lattice QCD [74]. Especially, the inclusion of a phase transition
is challenging in microscopic approaches.

In the ideal case, hydrodynamic approaches are limited to systems in full local thermal
equilibrium. The extension to viscous hydrodynamics can account for small dissipative
e�ects [75, 76, 72]. The applicability is furthermore extended to highly anisotropic system
by (anisotropic hydro,[77]), where the viscous expansion is done for an already anisotropic
distribution. In the viscous hydrodynamics formulation, additional parameters appear
that describe the relaxation of the medium back to equilibrium, so called transport coe�-

cients. A new development is to employ modern mathematical statistics tools (Bayesian

analysis) to constrain those coe�cients systematically [78].

The assumption of (local) equilibrium is not fulfilled in the initial nucleon collisions. There-
fore di�erent approaches are employed to provide a close-to-equilibrium initial state of the
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energy-momentum tensor as the hydrodynamic calculation starting point. This initial
energy distribution is either smooth by averaging over events or lumpy to study event-by-
event fluctuations. The most important initial state approaches can be divided into three
categories [79, 80]: Glauber, color glass condensate and transport approaches. All three
categories usually employ Monte-Carlo methods. Glauber models [81] assume a Woods-
Saxon distribution for the distribution of the nucleons inside the nucleus and a geometric
picture of how the nucleons collide on impact. The color glass condensate (CGC) mod-
els are based on the idea that in relativistic collisions, the parton distribution function
of the nucleons is initially saturated by gluons since small Bjorken-x values are probed.
The collision of the nuclei is therefore governed as the interaction of the color fields pro-
duced by the gluon distributions in the nucleus. Popular CGC-based approaches are
IP-Glasma [82] and MC-KLN (Monte-Carlo Kharzeev-Levin-Nardi) approaches [83, 84].
The last category is marked by partonic or hadronic microscopic transport approaches,
like SMASH [85], UrQMD [86], EPOS [87] or AMPT [88], where the parton or hadron
distributions are converted into the needed energy, baryon and charge density distribution
after the initial scatterings.

Figure 1.5: Anisotropic flow coe�cients from a hydro dynamical approach paired with
CGC initial state model compared to LHC data. Result from [89].

The hydrodynamic calculation evolves the initial anisotropy in coordinate space, provided
by the initial state approach, into an anisotropy in momentum space. This is, for example,
important to match the experimentally measured elliptic flow [79]. In general, hydrody-
namic approaches are remarkably successful in describing the measured bulk matter data
(e.g.[89] and Figure 1.5). In order to compare to identified particle spectra from experi-
ments, the evolved energy-momentum tensor is converted to microscopic hadronic degrees
of freedom by the Cooper-Frye formalism [90]. This conversion is done when the assump-
tions of hydrodynamics (local equilibrium, small mean-free path) break down.

Examples of popular hydrodynamical approaches are vHLLE [91], MUSIC [92, 93] and
CLVisc [94]. In the following, MUSIC (Section 5.3) and vHLLE (Section 5.4) are employed
as part of a hybrid approach (Section 1.2.5) in order to calculate the evolution of the hot
and dense matter close to equilibrium in intermediate and high energy collisions.
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1.2.4 Transport approaches
Transport approaches are a microscopic many-body description of a medium and numeri-
cally solve the Boltzmann equation, sometimes also referred to as the Boltzmann transport
equation (Eq. 1.8). It is the fundamental equation of what is referred to as kinetic the-

ory. Most importantly, the described system is not required to be in equilibrium, so
non-equilibrium dynamics can also be studied. The nonlinear integro-di�erential equation
is not analytically solvable in general. For some special cases analytical solutions exist
though (cf. Figure 2.3 and related discussion for an example). The classic7 Boltzmann
equation reads

ˆf

ˆt
+ p̨

m
Òf + F̨

ˆf

ˆp̨
=

3
ˆf

ˆt

4

coll

, (1.8)

where f = f(r̨, p̨, t) is the phase-space probability density function, meaning that the
number of particle inside a di�erential phase space volume d

3
r̨d

3
p̨/(2fi)3 is given as

dN = f(r̨, p̨, t)d3
r̨d

3
p̨/(2fi)3. The right hand side is called the collision integral and is

in detail discussed in Section 4.1. The equation is only applicable for dilute (enough) sys-
tems, where dilute means that the mean-free path needs to be significantly larger than the
Compton wavelength (⁄C = h

mc). This limitation stems from the derivation of the Boltz-
mann equation from the more fundamental BBGKY hierarchy [95]. When modeling the
Boltzmann equation in numerical Monte-Carlo (transport) approaches, the di�erent par-
ticles are propagated according to equation of motions that are equivalent to the left-hand
side of 1.8. The collision term is modeled by di�erent interactions between the particles.
See Section 2.2 in Chapter 2 for an example of such a prescription. Two categories for
transport approaches exist [96]: the Boltzmann-Uehling-Uhlenbeck (BUU) and the quan-
tum molecular dynamics (QMD) approach. The two di�er in the representation of the
phase-space distribution. BUU approaches use many test particles to model the distribu-
tion, while QMD-like approaches use a Gaussian wave packet to signify the particle wave
function. This di�erence is only relevant when incorporating (mean-field) potentials and
particle correlations [97]. Di�erent degrees of freedom are chosen for transport approaches

Figure 1.6: Pion multiplicity for low kinetic beam energy AuAu collision of a transport
approach with di�erent features (see Chapter 2 for more details). Result from [98].

in the context of theoretical heavy-ion collisions. Approaches that aim to describe the hot
7Note that a relativistic formulation is easily attainable.
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and dense stage beyond the phase transition employ quarks and gluons (partonic trans-
port approaches). For the stages of heavy-ion collisions, where no quark-gluon plasma
has formed, the degrees of freedom are hadrons (hadronic transport approaches). Some
approaches also include both phases.

Hadronic transport approaches have a long history [99, 100, 101, 102, 103] of being em-
ployed to model nucleus-nucleus collisions since the beam energies of older experiments
are (according to today’s standards) low and not su�cient to produce a quark-gluon
plasma. Hadronic transport approaches were instrumental in the discovery of QGP sig-
natures: Since the results at AGS (Alternating Gradient Synchrotron, the predecessor
of the RHIC) could be reproduced by transport models, it was concluded that no QGP
signatures are seen in the experimental data [104]. While the inability of transport ap-
proaches to reproduce the strangeness measurement at SPS (see also Section 1.3.2), was
seen as a clear indication of a QGP formation [105]. Also, for current high beam energy
collisions, hadronic transport approaches are still applied as part of state-of-the-art hybrid
approaches (Section 1.2.5) for the hadron gas phases. Additionally, they remain relevant
for low beam energies, as lower beam energies are again being focused on experimentally
to produce highly dense systems. An example of a successful application of a hadronic
transport approach at low energies is displayed in Figure 1.6. The pion excitation function
at low beam energies is comparable to the experimental measurements.

The hadronic transport approach SMASH [85] is employed in this thesis as the main
theoretical approach (see Chapter 2) for all conducted studies of the hadron gas stages of
heavy-ion collisions. These stages include the initial and final phase of high-energy and
the whole evolution of low-energy collisions, where no phase transition is expected. Other
transport approaches that are successfully employed and still under active development
include UrQMD [106], (P)HSD [107, 108], GiBUU [109], JAM [110], BAMPS [111] and
AMPT [112]. For a recent comparison of the di�erent approaches, the reader is referred
to [113].

Coarse-Graining

Approaches that connect microscopic transport approaches to the macroscopic observables
available in hydrodynamic calculations are called coarse-graining approaches [114]. They
convert the propagated particles into a density distribution in macroscopic grid cells. For
those cells, the temperature (T ) and baryon chemical potential (µB) are calculated using
an interchangeable equation of states from the energy and baryon density of the cells.
Coarse-graining approaches thereby allow to compare macroscopic observables resulting
from transport and hydro approaches [114] and to employ (medium-modified) thermal
emission rates for photons and dileptons [114, 115, 116, 117, 118], which require T and µB

as an input. Results for such a thermal emission of dileptons are presented in Chapter 3.
The employed approach is detailed in Section 2.4.

1.2.5 Hybrid models

As explained in the previous sections, di�erent kinematic approaches have di�erent con-
ditions of applicability. These conditions are expressed as a requirement on the mean-free
path. For transport models, the mean-free path needs to be large i.e. significantly larger
than the Compton wavelength and for hydrodynamic models, the mean-free path needs to
be small i.e. much smaller than the size of the system. Consequently, a hydrodynamical
description is valid for high densities and transport approaches for dilute systems. There-
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fore, a combination of approaches (a hybrid model) is employed [119, 120, 121, 122] to
map the di�erent models to an appropriate stage of a heavy-ion collision. Since pure QCD

Figure 1.7: Stages of a heavy-ion collision. Models employed at di�erent stages depicted
on the right. (adapted from [123])

calculations are not applicable (see Section 1.2.1 above), this is currently the “standard
model” for the evolution of the medium and description of the final state measured in the
experimental detectors at intermediate to high beam energies. QCD calculations are used
as an input where possible.

Hybrid models also separate the collision medium into areas and stages close to and far
from equilibrium, which is necessary due to the equilibrium requirement of hydrodynamic
approaches. This assumption is slightly relaxed for viscous hydrodynamic approaches that
require a medium only close to equilibrium. The combination of approaches is therefore
built as follows (see Figure 1.7 for an illustration). The two colliding nuclei are converted
into an initial energy density by the introduced initial state models above (Glauber, CGC,
transport, ...). They are applied to describe the initial nucleon scatterings in the far from
equilibrium early stage of the collision. For the following hot and dense stage, the medium
is expected to be close to equilibrium. Therefore, the hydrodynamic approach is employed
starting from the calculated initial energy density. Most importantly, this approach can
include an equation of state calculated from Lattice QCD, which encodes a cross-over phase
transition. In high energy collisions, the initial degrees of freedom are quarks and gluons,
described by the state equation at high temperatures and densities. As the medium cools
but hydrodynamics remains applicable, the degrees of freedom become those of a hadron
gas. The ability to account for a phase transition is one of the main advantages of hybrid
approaches. The hydrodynamic approach furthermore relies on the additional input of
transport coe�cients. Comparing the hybrid approach results for di�erent coe�cients
with experimental data enables to constrain them systematically [124, 78]. As the system
expands and evolves out of equilibrium, the assumption of hydrodynamics breaks down and
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hadronic transport models are employed (as a so called afterburner). The macroscopic
hydrodynamic evolution is converted (particilized) into hadronic degrees of freedom by
the Cooper-Frye formalism [90]. A hadronic transport cascade is applied for the late non-
equilibrium rescattering phase since otherwise final particle spectra are not matched [66,
67].

Hybrid approaches are exceptionally successful at high beam energies as probed at RHIC
and LHC [122], which is why they are considered the “standard model”. However, some
limitations are attached, mainly connected to the interface between the di�erent ap-
proaches: 1) An ideal form of the energy-momentum tensor is assumed at initialization
of the hydrodynamic approach. 2) The particlization process by the Cooper-Frye formal-
ism does not account for negative contributions i.e. transport particles cannot feedback
into the hydrodynamic calculation. 3) The condition when to particilize i.e. switch from
hydrodynamic to transport approach, is a free parameter of the approach. The e�ects of
these limitations are largely unclear and could be studied by a more dynamic coupling of
transport and hydrodynamic approach.

As mentioned, some transport approaches also cover the entire evolution at high energies
as an alternative approach to hybrid models [108, 112]. While it is common at low beam
energies to apply transport models to the entire evolution, at high energies accounting for
the changing degrees of freedom in the phase transition arises as a major challenge for
such approaches.

Hybrid approaches are employed in this work for the deuteron and proton studies in
Section 5.3 and Section 5.4, where they are also described.

1.2.6 Multi-particle reactions

Multi-particle reactions are defined as all reactions with more than two particles in initial or
final states. They gain importance with higher density descriptions. Therefore, accounting
for them in a theoretical (transport) description is relevant when considering the highly
compressed matter produced in heavy-ion collisions. In particular, as future experiments
explore high-density collisions at intermediate energies. Multiple experimental programs
are in preparation or ongoing at these energies: the RHIC beam energy scan, FAIR, NICA
and JPARC-HI. All with the major goal to discover signatures of the critical point or a
(first-order) phase transition. In order to distinguish and constrain such experimental
signatures, it is necessary to employ accurate models for the high-density hadron gas
stage. While it is natural to employ hydrodynamic approaches at high density, they require
the strong assumption of local equilibrium. An alternative is to alleviate the restriction
to binary reactions of transport approaches and extend them to include multi-particle
reactions. In this way, the applicability range is extended towards higher densities8 and
the hydro regime, but without an assumption about equilibrium. Multi-particle reactions
are closely connected to the process of a (fast) equilibration and thermalization [111].
For example, in [125], it is shown that when introducing e�ective N-particle reactions by
forcing local thermalization in hadronic transport, the solution of the transport calculation
gets closer to the hydrodynamic solution.

Di�erent multi-particle reactions are known to be important, independently of the density.
For some reactions only the relevance of the binary forward reaction is known and the

8Note that even with multi-particle reactions, transport approaches are still limited to densities, where
the e�ect of quantum interference is negligible.
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relevance of the multi-particle backward reaction is an open question (see Section 1.3.4).
Examples, where the importance of multi-particle reactions has been demonstrated in the
literature, are:

• Deuteron catalysis: Npn ¡ Nd and Npn ¡ Nd in [126, 127].

• Baryon-anti-baryon annihilation: BB̄ ¡ 3 mesons in [128, 129, 130]

• Gluon Bremsstrahlung: gg ¡ ggg in [111].

All studies employ transport approaches, which account for the multi-particle reactions mi-
croscopically. Usually, transport approaches neglect multi-particle reactions, even though
it is theoretically attractive to employ them since they are numerically challenging to
account for. Without multi-particle back-reactions, detailed balance is broken for all reac-
tions that produce more than two particles like 1 æ n decays or 2 æ n scatterings (n > 2).
The reactions are not able to equilibrate. This conflicts with the time-reversal invariance,
which is strictly fulfilled for the strong interaction. Neglecting such back-reactions is,
therefore, a common criticism and point of debate regarding calculation results [131, 132].
Also, the extraction of switching temperatures [133] and transport coe�cients [78] in hy-
brid approaches rely on a correct approach for the hadronic reaction dynamics in the late
collisions stages since final particle yields are used as a constraint.

The theoretically most rigorous approach to include multi-particle reactions in transport
models is a stochastic collision criterion [134, 126]9, which is directly based on collision
probabilities derived from the collision term of the Boltzmann equation. It is inherently
boost-invariant and, most importantly, straightforward to extend to arbitrary n-to-m colli-
sions. Alternatively, multi-particle reactions are modeled using a chain of binary reactions.
This approach is more limited in scope since it relies on appropriate intermediate resonance
states and introduces an artificial reaction time with unknown side e�ects. If no appropri-
ate intermediate resonance state exists, it has to be artificially introduced [135]. Employing
the stochastic criterion avoids such numerical artifacts by treating multi-particle reactions
directly and, therefore, can also constrain their side-e�ects.

In this work, multi-particle reactions known to be important for specific particles are
studied. The three reaction classes are 3-to-1, 3-to-2 and 5-to-2 reactions. For this,
the stochastic criterion is first theoretically derived and then introduced in a hadronic
transport approach. The multi-particle treatment is then employed to investigate the
relevance of the Dalitz decay back-reaction in low to intermediate beam energies, the d
production via catalysis reactions in the afterburner stage at intermediate beam energy
and the regeneration of pp̄ pairs lost by annihilation reactions at high energies (Section 5.2
to 5.4). The motivation behind these studies is discussed in the following sections.

1.3 Observables of interest

1.3.1 Chiral symmetry and dilepton production

One of QCD’s most fundamental symmetries is the chiral symmetry for massless fermions
i.e. quarks, which entails that the right or left "handedness" (chirality) is conserved (see
[136] for a topical review). Since the quarks are not massless and carry a bare mass, the
symmetry is explicitly broken. However, since the masses of the lightest quarks are small,
the chiral symmetry is considered approximately fulfilled for them. More interestingly,

9often referred to as the local ensemble method
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chiral symmetry is also spontaneously broken10. i.e. the Lagrangian is invariant under
chiral transformation, but the solution (ground state) is not. This breaking is caused by the
quark-antiquark condensate and generates the masses of hadrons, which are significantly
larger than their constituent bare quark masses [137]. A manifestation of the spontaneous
breaking is found in the observed hadron spectrum, where chiral partners e.g. fl and a1 are
not degenerate. For high energy densities, the chiral symmetry is expected to be restored
and the quark-antiquark condensate to vanish. This symmetry transition coincides with
the deconfinement phase transition according to Lattice QCD calculation at zero chemical
potential [40], even though they are in principle conceptually distinct. The quark-gluon
plasma, therefore, is expected to be chirally symmetric.

Figure 1.8: Left: Measurements of the fl and a1 spectral functions. Right: Sketched sce-
narios of spectral function changes under chiral symmetry restoration. Results from [136].

If chiral symmetry is restored, the chiral partners fl and a1 become degenerate i.e. their
mass distribution is matching. Note that this is not the case in vacuum, as experimental
measurements (on the left in Figure 1.8) show. A modification of the spectral function
indicating a restoration of chiral symmetry inside a hot and dense medium has been
discussed in the literature extensively [138, 139, 140, 141, 136, 142, 143]. Historically, two
modification scenarios were prevalent, in particular for the fl meson: a shift in mass or a
broadening of the spectral functions [144, 145] (cf. right plot in Figure 1.8). For example,
calculations based on hadronic many-body theory [145] and the functional renormalization
group [146] are performed to obtain a quantitative understanding of this e�ect.

Dileptons are correlated pairs of lepton-antilepton pairs. In heavy-ion collisions, only the
production of electron and muon pairs are relevant since the tau lepton is (too) heavy and
short-lived. The lepton pairs o�er a clean probe for hot and dense matter. Since they only
interact electromagnetically, they escape the medium nearly unperturbed, thus allowing
unique access to the properties of the strongly interacting medium itself and resonances
that decay within it. In contrast, hadronic decay products su�er from rescattering and
absorption such that the interesting information about the hot and dense stage is masked.
Therefore, dileptons are considered one of the most interesting observables.

10Yoichiro Nambu received the Nobel prize in 2008 for his description of the spontaneous breaking of
chiral symmetry of the strong interaction.
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In the context of chiral symmetry and its restoration, the main dilepton source of inter-
est are direct decays of vector mesons, e.g. fl æ e

+
e

≠. The invariant mass spectrum of
the produced dileptons reflects the decaying resonance mass distribution. While a whole
cocktail of sources (described below) contributes to the total dilepton spectrum, around
the fl pole mass, theoretical calculations (e.g. [85]) predict the fl contribution to be domi-
nant. Therefore, the dilepton invariant mass spectrum allows direct access to the spectral
function inside the hot and dense medium.

Figure 1.9: NA60 excess dimuon mass spectrum with di�erent fl spectral modification:
no modification (thick dashed), mass-shift (dash-dotted), broadening (solid). Result
from [147].

Experimentally, the emission of dielectrons and dimuons was studied at several di�erent
facilities. At CERN SPS dimuon production in indium-indium collisions was recorded by
NA60 [148, 147]. The high-quality experimental data allowed the investigation of the fl

spectral function and confirmed the previous dilepton measurement from CERES [149]
that revealed an excess in the low invariant mass region. The findings of NA60 essentially
settled the debate of how the fl spectral shape changes inside a hot and dense medium. As
seen in Figure 1.9, the data is consistent with a broadening and disfavor a mass shift of
the fl [150]. For higher energies up to Ô

sNN = 200 GeV, dileptons are measured at RHIC
by STAR [151] and PHENIX [152]. Both also report an enhancement in the dilepton
invariant mass range from 0.30 to 0.76 GeV, which is again attributed to a broadening
of the fl spectral function. The observed broadening is one of the only experimental
indications of chiral symmetry restoration.

The present work focuses on the dielectron production in the kinematic regime of beam
energies of EKin = 1 ≠ 3.5A GeV, which is covered by the HADES experiment [153, 154,
155, 156, 157, 158, 159] at the GSI facility. The HADES results confirmed previous
measurements from the DLS collaboration [160]. In the future, the CBM experiment at
FAIR [22] will add to the existing experimental data with new results from the intermediate
energy range, specifically probing the dilepton emission from the high net baryon density
region, together with complementary programs from NICA and J-PARC.

The dominant and relevant sources at low beam energies and low invariant masses up to
about 1 GeV are decays of various resonances. The Dalitz decays of the pseudo-scalar
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mesons fi and ÷ plus the Ê Dalitz decay dominate for the lowest masses. The direct
decays of the vector mesons fl, Ê and „ show up as peaks at the respective pole mass in
the spectrum. The di�erent sources are, in general, roughly separated by the invariant
mass region of the produced pairs. For high energy measurements, direct decays of the
heavier J/� and the higher charmonium state �Õ show up as peaks. If c and c̄ pairs do not
form a charmonium state, but rather a D meson with a lighter quark and those DD̄ pairs
decay into an (anti)lepton separately, They are also correlated despite the intermediate
steps. Open charm decays form a dominant contribution from 1 to 2.5 GeV. Similarly,
bb̄ pairs that form B mesons are relevant for the high-mass region above 4 GeV. For
the same mass region, the Drell-Yan-Process is contributing, where during the primary
hard scatterings of hadrons, two quarks from separated hadrons annihilate into a virtual
photon that subsequently decays into a dilepton. Another source is the annihilation from
qq̄ pairs inside the QGP where the quarks are not bound. This source is only dominant
at higher beam-energies in the intermediate-mass region. An isolation of this thermal
contribution from the background by subtracting other contributions (resonance and open
charm decays) in the low or intermediate mass region would o�er unique experimental
access to extract a (time-integrated) temperature of the hot and dense medium. This
temperature would not su�er from a blue shift, which for example, photon momentum
spectra do. Fits of the dilepton invariant mass spectrum for large collision systems are
also performed at lower energies, where no QGP is expected to form, to extract a time-
integrated temperature [161].

In order to connect the theoretical calculations of the vector meson spectral functions with
experimental measurements and to help disentangle the di�erent dilepton cocktail sources,
dynamical approaches that describe the evolution of heavy-ion collisions in detail have to
be employed. In this work, the dilepton emission is studied within a hadronic transport
approach, which is comparable to previous work using the GiBUU [85], the HSD [162]
and the UrQMD [163] approach. These works cover a variety of aspects concerning the
dilepton production at low energies, such as the e�ect of the coupling of the fl meson to
baryonic resonances, Bremsstrahlung, the � contribution and the density dependence.

The employed hadronic transport approach includes the dilepton emission from the dom-
inant sources at low beam energies, which is are dilepton decays of various resonances
(see Section 2.4 for details). The results (Section 3.1) are systematically confronted with
the complete set of HADES dielectron data for elementary, proton-nucleus and nucleus-
nucleus reactions at low beam energies. The resonance treatment based on vacuum prop-
erties allows to establish a well-understood baseline in elementary and small systems. To
investigate medium e�ects on the dilepton emission, a coarse-graining approach based on
the same hadronic evolution is employed, which includes in-medium modifications to the
vector meson spectral functions. The dilepton experimental data set also provides a rich
testing ground spanning from elementary to heavy-ion collision for the evolution of the
transport approach (with only binary collisions) itself.

1.3.2 Strangeness production

The yields of di�erent hadron species are the basic observable to study hot and dense
matter properties and the particle production mechanisms. Since strange quarks (i.e.
the strangeness quantum number) are not present in the nuclei before the collision, they
have to be newly produced in order to form the measured strange hadrons. Even though
rescatterings might perturb the formed hadrons in the medium after their production, the
strangeness is generated by and therefore a messenger of the medium itself. Of particular
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interest is the so called sub-threshold production. If the beam energy is not su�cient
for a direct production in the NN scatterings, higher mass strange hadrons can only be
produced in secondary reactions, which makes them even more sensitive to the medium
dynamic and properties [164].

Figure 1.10: Energy dependence of the �K+�/�p+� ratio measured in central Pb + Pb and
Au + Au collisions (colored symbols) versus elementary pp results for the same energy
(uncolored symbols). Result from [165].

The main research interest regarding strangeness production stems from the historical
idea that strangeness is enhanced in a collision when a quark-gluon plasma is formed [166].
Indeed, experimentally the strangeness production is found to be enhanced, in particular of
strange antibaryons, in nucleus-nucleus reactions compared to elementary reactions, which
is explained by the presence of a QGP phase [167]. Among the most famous enhancement
measurements seen as a QGP signature is the "horn" in the K

+
/fi

+ ratio measured by
NA49 [165] (shown in Figure 1.10).

One of the main approaches to study strangeness production are transport models [106,
168, 109, 98, 164], especially to establish a baseline calculation based on vacuum resonance
properties. Additional medium e�ects like the onset of a QGP phase can then be identified
by finding discrepancies of such approaches to experimental data. One option to isolate in-
medium e�ects is to first constrain the production cross-section (or mechanism in general)
in elementary collisions. The influence of the surrounding medium can then be tested by
comparing it with experimental data for larger systems. At lower beam energies, where
no QGP is expected, many open questions remain regarding medium e�ects, including the
nature of kaon-nucleon potentials or medium-modified cross-sections [169].

Apart from transport approaches, thermal models are employed, for example, in [170].
The agreement with data for light and single strange hadrons to experimental data is
surprisingly good for di�erent energies [171]. However, at lower beam energies, di�erences
are seen for rare double strange hadrons [68, 172]. Since thermal models assume a complete
chemical equilibrium at a relatively early time in the collision, finding discrepancies in the
experimental data always hints at interesting additional non-equilibrium e�ects.
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Figure 1.11: Comparison of the �≠
/(� + �0) ratio for di�erent beam energies. Full line

thermal model prediction. Result from [68].

In this work, (Section 3.2) the low beam energy kinematic regime reached by the SIS-
18 accelerator, which is close to the production threshold [173], is studied. The studies
are partly motivated by the mentioned discrepancies that appeared in the comparison of
thermal model calculations to data (as seen in Figure 1.11 for the �). The � baryon and
the „ meson are enhanced [68, 174]. There are several attempts to explain these high
production yields [175, 176, 177]. The focus in this work is on the possible explanation
from [177], which resolves the discrepancy between theory and experiment by introducing
a new strangeness production mechanism based on the decay of baryonic resonances in a
hadronic transport approach. Before the new mechanism is added and consequences are
discussed, the current status of strangeness production is introduced at the beginning of
Section 3.2.

1.3.3 "Snowballs in hell" – deuterons in heavy-ion reactions

As heavy nuclei collide in accelerator experiments, several species of light nuclei are formed
in the aftermath and measured by the experimental detectors [178, 179]. Light nuclei
include d, t,3 He,

4 He, which are compound states of nucleons, and hyper-nuclei like 3

�
H,

which include a hyperon instead of a nucleon. The focus here is the production of deuterons
(d), which is a relatively weakly bound state of p and n.

Light nuclei are of research interest since it is unclear if their measurement in cosmic rays
is due to ordinary scatterings of protons on other nuclei or if they hint at beyond-standard
model physics [180]. Furthermore, in collider experiments they might indicate nucleon
density fluctuations, which in turn are connected to the critical point [181]. Accounting
for the production of d and the simultaneous loss of nucleons is also important when
calculating and predicting nucleon yields [182].

How and when in a nucleus-nucleus collision light nuclei are produced is an open question
[180, 183] since the di�erent model assumptions about their formation are contrary. Three
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Figure 1.12: Di�erent approaches for deuteron production in PbPb collisions at Ô
sNN =

2.76 TeV match the experimental data. Left: Deuterons from phase-space coalescence.
Result of d/(p + p̄) ratio from [182]. Right: Deuterons from thermal blast-wave model
(dashed line). Result of transverse momentum spectra from [69].

di�erent approaches are pursued to describe the d production (see [180] for more details
and model references). Coalescence models assume deuterons to be formed at the final
stages by nucleons close in phase space. Such models di�er if they take the nucleon wave
function into account and if they model the particle evolution dynamically (via transport
and hydrodynamical approaches). Coalescence models are able to match the measured
d production (e.g. [182], left plot in Figure 1.12). In contrast to the assumption of
late production, are thermal model calculations that are paired with a blast-wave model.
They expect an earlier deuteron production due to the assumed early chemical freeze-out
and are also able to match the experimental data (right plot in Figure 1.12). Since the
freeze-out temperature is assumed to be close to the critical temperature TC , it is unclear
how deuterons with a binding energy of a couple MeV could survive temperatures of
more than a hundred MeV. This paradox is coined as d being like “snowballs in hell”. The
third approach are dynamical approaches that microscopically form and destroy deuterons.
They can follow the d evolution over time and investigate whether the “snowballs” survive
the “hell”.

In this work, a dynamical approach is chosen to study the deuteron production on the
example of AuAu collisions at 7.7 GeV (Section 5.3). Since the most important reactions in-
volving d are multi-particle catalysis reactions (fipn ¡ fid and Npn ¡ Nd, [135, 184]), the
new treatment of multi-particle reactions in a hadronic transport approach (Section 4.3.2)
allows to investigate the deuteron production in the late stages and the “snowballs in
hell”-paradox microscopically. Studying the deuteron production microscopically is an
idea already explored in the literature in [126, 185, 186, 127]. These earlier works mainly
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di�er from the presented approach in the set of d reactions that are included. The di�er-
ences originate in part from the di�culty of accounting for multi-particle reactions. Most
similar is the approach in [126], which also treated the nucleon 3-to-2 catalysis reaction
in a stochastic manner but neglects the fipn ¡ fid reaction due to only studying lower
beam energy collisions. A recent extension of this approach is found in [127] focusing on
the e�ect of the finite d size in small collision systems.

1.3.4 The "proton anomaly"

Thermal models are very successful in reproducing the yield of especially light hadrons
over a large range of energies with a few parameters. An interesting exception is the
proton yield at LHC energies [187, 188, 189, 190], which is overpredicted. This exceptional

Figure 1.13: Comparison of the thermal model fit to experimental data from ALICE.
Note that p shows the largest deviation to the fit, when normalized to the experimental
error [190]. Result from [190].

discrepancy (seen in Figure 1.13) is referred to as the proton anomaly.

The anomalous proton yield sparks interest since it is related to ongoing debates about
the late out-of-equilibrium stages in heavy-ion collisions. The underlying assumption of
thermal models is an early chemical freeze-out without any late rescattering. On the other
hand, Microscopic transport models find inelastic scatterings until much later times and
thereby a later chemical freeze-out. Late-stage rescatterings are found to be significant
for final hadron spectra [66, 67]. Sizable changes to the spectra are important since they
are used to constrain the QCD transport coe�cients [78, 191]. The proton yield is also
specifically sensitive to the switching temperature [133], an important parameter in hybrid
approaches.

The proton overprediction is one of the main signatures of non-equilibrium rescatterings
since it is attributed to the (in thermal models) missing baryonic annihilation reactions.
Indeed, microscopic (transport) calculations find an improved agreement with the ex-
perimental data, if annihilations are included [66, 67, 192, 193]. Note that there are
also extensions of thermal model calculations with fi nucleon interactions that explain
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the anomaly [189]. A missing piece of the di�erent microscopic models, that attribute
the anomaly to annihilations, is the back-reaction of the annihilation reaction. Baryon-
antibaryon annihilations produce multiple pions, but multi-particle reactions are, as ar-
gued in Section 1.2.6, challenging to account for in transport approaches. Therefore,
detailed balance is explicitly broken for the annihilation reaction (an exception is found
in [129, 130]). Non-microscopic calculations estimate the regeneration of BB̄ pairs due to
the back-reaction to be from 20% [194] up to a full regeneration with no remaining baryon
depletion [131]. A first study taking the back-reaction into account microscopically in
multiple steps even found a small net-enhancement for protons at LHC energies [130].

In this work, the multi-particle 5fi back-reaction for the pp̄ annihilation is accounted for in a
microscopic transport approach for the first time. This allows to quantify the regeneration
of (anti-) protons in the late non-equilibrium stages of collisions (Section 5.4). The long-
standing question whether the annihilation reactions are relevant for the final p yield and
whether they potentially alleviate the p anomaly is thereby addressed.

1.4 Structure of this thesis
The various current research topics that are motivated above are addressed in this thesis by
employing a hadronic transport approach to calculate observables of the non-equilibrium
stages in low, intermediate and high energy heavy-ion reactions. The overarching question
is what the reaction dynamics and particle properties within the hadron gas are. The
employed transport model chosen for this purpose is detailed in the following Chapter 2.
This thesis’ main contribution is the extension of the approach for binary interactions to
also account for stochastic multi-particle interactions. The presented results are therefore
categorized by the microscopic interactions that are included in the calculations.

First, the evolution of the hadron gas phases in heavy-ion collision with the existing binary
reactions is probed and constrained in detail by two complementary observables in Chap-
ter 3: dilepton and strangeness production. Dilepton emission (Section 3.1) in particular
allows to understand the existing dynamic since the electromagnetic probe does not alter
the strongly-interacting dynamic. Elementary and intermediate-size systems are studied
and compared to a large set of experimental data to verify and constrain the vacuum and
binary cascade. The larger systems are studied to identify and predict potential in-medium
e�ects by also employing a coarse-graining approach. Similarly, also for the strangeness
production (Section 3.2), di�erently sized systems are studied to identify medium e�ects.
Particular emphasis is placed on an additional production mechanism for double strange
hadrons.

The established cascade baseline of the binary evolution is used as the basis to intro-
duce multi-particle reactions to the approach in Chapter 4. Multi-particle reactions re-
quire a di�erent stochastic collision treatment. The necessary theoretical background and
derivations for 3-body and 5-body reactions are pedagogically presented (Section 4.1).
Afterwards, the extension of the transport model with the stochastic collision criterion
(Section 4.2) and multi-particle reactions (Section 4.3) is described. The results with
multi-particle reactions are discussed in Chapter 5. First, the new stochastic collision
treatment is extensively verified (Section 5.1) by comparisons to analytic expectations
and an investigation of its numerical stability. Then, the e�ect of Dalitz decay back-
reaction is studied (Section 5.2) and topical research questions related to the production
of light nuclei (Section 5.3) as well as protons (Section 5.4) in the late collision stages are
addressed. The latter signify the main results of this thesis.
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Both avenues of study, the investigation of dilepton or strangeness production and of
multi-particle reactions, are ultimately motivated by the study of high-density collisions:
dilepton and strangeness production allow to probe the in-medium e�ects. Dileptons are
sensitive to the vector meson spectral function inside the medium and strangeness pro-
duction to potentials, in-medium cross-section and sub-threshold production mechanisms.
The addition of multi-particle reaction intervenes in the microscopic dynamic itself, which
could be seen as an additional medium e�ect and extends the applicability of transport
approaches to higher densities.

The thesis is closed with conclusions and an outlook in Chapter 6.
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Chapter 2

The hadronic transport approach
SMASH

The calculations in this thesis are obtained by employing the hadronic transport approach
SMASH (Simulating Many Strongly-interacting Hadrons) [98]. SMASH, like all transport
approaches, is based on the Boltzmann equation (Eq. 1.8). The aim is to calculate an
e�ective solution for the particle density function f over time (Section 2.2). The approach
is suitable to calculate the dynamics of a gas of hadrons as created in heavy-ion collisions.
Because transport models are successfully employed over the last decades, a major goal of
the more recent SMASH approach is to combine the successful aspects and experiences of
previous approaches [99, 100, 101, 102, 103, 106, 107, 108, 109, 110, 111, 112].

The approach was first introduced in [98] and is already successfully employed for a
large range of topics: Studies were conducted on the production of di�erent particles
(deuterons [135, 184], strange hadrons [2, 195], photons [196], resonance production at
LHC energies [197]), on di�erent aspects and observables of the hadronic medium (forced
canonical thermalization [125], equilibration and freeze-out when employing an expanding
metric [198], influence of the neutron-skin e�ect [199], baryon stopping in the context
of string fragmentation [200], jet quenching in the hadron gas [201], collective flow at
SIS energies [202], critical behavior with a density functional equation of state [203])
and on the transport coe�cients that result from the employed degrees of freedom and
interactions (shear [204] and bulk [205] viscosity, electrical conductivity [206] and cross-
conductivity [207]). Furthermore, SMASH is employed in the JETSCAPE hybrid stud-
ies [78] and was part of di�erent systematic transport approach comparisons [113, 208, 97].

In this chapter, the di�erent relevant aspects of the approach are introduced. It is based on
the original introduction in [85] and [1] with more recent developments being mentioned as
well. The extension of the approach with multi-particle reactions and the new stochastic
collision criterion are given in Section 4.2 and 4.3 after presenting the necessary derivations
in Section 4.1.

SMASH is freely available as an open-source C++ code [209, 210] to ensure transparency
and reproducibility of all results1. The used version is mentioned in the specific result
sections. More details on technical aspects of the approach are found in Appendix A.

1Employed in this thesis are the versions SMASH-1.1, SMASH-1.6 [211], SMASH-1.7 [212],
SMASH-2.0.1 [213] or the upcoming SMASH-2.1 version.
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2.1 Degrees of freedom
The degrees of freedom of the approach are hadrons2. Most hadronic degrees of freedom
listed by the Particle Data Group (PDG) [56] up to a mass of 2.35 GeV are included,
which in particular contains all hadrons with a 3- or 4-"*" experimental data rating by
the PDG. The included mesons are pseudo-scalar states like fi, ÷, ÷

Õ, vector states like
fl, Ê, „, scalar states like ‡, f0, a0, strange mesons like K and higher mesonic resonances.
Included baryons are N, �, �, �, � and �, as well as the excited baryonic resonance states
(Nú

, �ú
, ...). A full list is found in [98] with an update focused on the strange sector in [2]3.

Particle properties are generally taken from the PDG Book [56] and include mass, decay
width and parity. They are varied within the experimental limits to optimally repro-
duced available experimental observables. Small mass di�erences for isospin partners are
neglected since cross-sections are isospin symmetric in general. The only exception are
certain NN cross-sections as e.g. the isospin asymmetric ÷ production introduced in Sec-
tion 3.1.1. Particles with a decay width smaller than 10 keV (e.g. fi, ÷, K, ...) are considered
to be stable i.e. they do not decay hadronically4.

2.1.1 Resonances
All particles with a decay width larger than 10 keV are considered to be unstable reso-
nances. Resonances have vacuum properties and are tuned to reproduce the elementary
cross-sections. All resonances have Breit-Wigner-shaped spectral functions, which include
a mass-dependent width, which follows the idea from Manley and Saleski in [214]. The
resonance properties are, however, updated in comparison to [214] with current PDG
values. Note that assuming a Breit-Wigner spectral function for ‡ is known to be ques-
tionable. The approximation is made, and the resonance properties are tuned to model
the quasi-elastic scattering of fifi.

Spectral functions

In general, SMASH only employs vacuum spectral functions. They remain constant
throughout the system evolution, since they are assumed to be independent from temper-
ature or density. This provides a baseline to probe additional in-medium modifications.
All resonance spectral functions are relativistic Breit-Wigner functions:

A(m) = 2N
fi

m
2�(m)

(m2 ≠ M
2
0
)2 +2 �(m)2

. (2.1)

Here M0 is the pole mass and m is the actual mass of the resonance. The normalization
factor N is chosen such that Œ⁄

0

dmA(m) = 1 . (2.2)

The normalization factor can deviate from 1 since the decay width is mass-dependent.
The deviation is below 55% for all particles, with most normalization factors close to
unity. Energy-momentum conservation is always enforced in the propagation and creation
of resonances. In this sense, all resonances are always on the mass shell (on-shell). The

2except for the later-described (di)leptons, photons and deuterons
3The up-to-date degrees of freedom and their properties of the di�erent SMASH version are always

accessible through the particles.txt and decaymodes.txt files [209].
4They are still considered for the electromagnetic decays into photons and dileptons, see Section 2.4.
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Figure 2.1: Spectral Function of the vector mesons with dielectron decay mode.

resonance mass is fixed throughout the resonance lifetime and sampled upon formation
according to the spectral function and the available phase space.

The spectral functions vanish at the combined mass of the lightest decay products. It is
important to note that the dilepton decay modes (discussed in Section 2.4) are correctly
taken into account as the kinematic threshold. The spectral functions of resonances that
directly decay into a lepton pair (R æ l

+
l
≠) have contributions below the lightest com-

bined mass of hadronic decay products, which is referred to as the hadronic threshold
here. In Figure 2.1 the spectral functions of the three vector mesons with dielectron decay
channels are depicted as an example. The spectral functions peak at the pole mass M0

and, as expected from their widths, the fl peak is the broadest, followed by the Ê and
the sharp „. Noticeable is the kink for the fl spectral function at around 0.3 GeV. The
decay with the lightest hadronic decay products for the fl is fl æ fi

+
fi

≠, so the hadronic
threshold is at 2mfi. This threshold leads to the kink because the partial hadronic decay
width of the fi decay vanishes at this mass. Since the fl can also decay into an e

+
e

≠

pair the spectral function continues down to 2me. This is also true for the Ê and the „.
Both spectral functions also have contributions down to the combined mass of the actual
lightest decay products – the dielectron mass. This treatment of the leptonic thresholds
was introduced in [85] for the fl meson and is extended to all three vector mesons in this
work. Other approaches [168, 163] neglect the contributions below the hadronic threshold
for numerical reasons (see also footnote in Section 2.4.1). The sub-threshold contributions
are of particular interest for the dilepton emission through R æ l

+
l
≠, since it allows to

quantify their e�ect on the total dilepton spectrum in the low-mass region (see also the
discussions in Section 3.1.2) and compare to thermal dilepton emission in coarse-graining
approaches over the whole invariant mass range. Note, however, that in a Monte-Carlo
approach, it is challenging to numerically populate this mass region below the hadronic
threshold due to the small spectral function (Figure 2.1), which leads to visible statistical
fluctuations in some of the dielectron invariant mass spectra presented in Section 3.1.

Decay widths

The non-trivial shape of the spectral function, as e.g. seen in Figure 2.1, originates from the
mass dependent decay width �(m). The lifetime of the resonances is given as · = 1/�(m).
The width is the sum of all partial decay widths for the di�erent decay modes.

�(m) =
ÿ

i

�i(m) (2.3)
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An example of the results of this summation and the following treatment for particle decay
widths is shown in Figure 2.2 for the N

ú(1440) resonance.

Figure 2.2: Total and partial decay widths of the N
ú(1440) resonance. Figure from [98].

All hadronic partial widths are calculated following the framework of Manley et al. [214]
(without taking the same parameters for the resonance properties). The partial width of
a two-body resonance decay R æ ab is calculated as follows

�Ræab = �0

Ræab
flab(m)
flab(M0) (2.4)

with the resonance mass m, the resonance’s pole mass M0 and �0 = �(M0). The function
flab(m) is defined as

flab(m) =
⁄

dmadmbAa(ma)Ab(mb)

◊ |p̨f |
m

B
2

L(|p̨f |R)F2

ab(m) , (2.5)

where ma and mb are the masses of the decay products a and b, Aa/b is their respective
spectral function and |p̨f | the absolute value of the final-state momentum of a and b in the
center-of-momentum frame. Equation 2.5 also includes the "Blatt-Weisskopf functions"
BL [215] and the form factor Fab [216].

Note that this resonance treatment excludes any decays for which the combined pole
mass of the final state particles is larger than the pole mass from the decaying resonance,
although such a decay would be strictly physical speaking possible. The reason is that the
absolute final state momentum is undefined in this case, as its square is defined as follows

p̨
2

f = p̨
2

cm(m, ma, mb)

= (m2 ≠ (ma + mb)2)(m2 ≠ (ma ≠ mb)2)
4m2

, (2.6)

which for m = M0 (note the denominator in Eq. 2.4) is negative.

The parameterizations employed for the dilepton decays are described in Section 2.4.1.
The decay width prescription above is not applied to dilepton decays.
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2.1.2 Deuterons
Deuterons in SMASH [183, 184] are treated like on-shell point-particles as in [126, 185, 186].
The applicability of this approach specifically for the here studied late stages of a heavy-
ion collision depends on the time in the evolution: the deuteron mean free path at the
start of an afterburner evolution is comparable to twice the geometric size of deuteron
wave-function. In contrast, at later stages, the mean free path increases, making the
approach more justifiable. Because of this, “deuterons” are better thought of as correlated
nucleon pairs. However, it seems that the inclusion of the finite deuteron size is not
important in heavy nucleus-nucleus collisions – a recent study [127] on the inclusion of
the finite deuteron size in a similar approach only found a significant e�ect for a much
smaller fireball created in pp collisions, which are not discussed in this work. As shown
in [183, 184], the approach with on-shell point-like d describes the data for heavy-ion
collisions reasonably well and can capture the fact that deuterons (or “correlated nucleon
pairs”) are created and destroyed. Deuterons are the only light nuclei included in SMASH,
even though their treatment could be extended to include other light nuclei in the future.

Deuterons are produced or destroyed through catalysis by pions or nucleons in the following
reactions and their CPT-conjugates: fid ¡ finp, Nd ¡ Nnp, N̄d ¡ N̄np and fid ¡
NN . Additionally, elastic reactions for fid, Nd and N̄d are included. The challenge in
a transport approach is to treat the 3-body catalysis reactions microscopically. For the
usual applied geometric collision criterion, no generalization for multi-particle reactions
is available. This situation is resolved in this work by introducing the new stochastic
collision criterion or by a chain of binary reactions (see Section 4.3.2).

2.1.3 Test particle method
In BUU-type approaches like SMASH, the spacial particle distribution function is rep-
resented by many point-like test particles 5. The number of particles is scaled with the
test-particle number Ntest as

N ‘æ NNtest . (2.7)
In order to not change the intrinsic dynamics, e.g. the scattering rate, the likelihood of
binary scatterings has to be scaled down by mapping the cross-section as

‡ ‘æ ‡N
≠1

test
. (2.8)

For multi-particle scatterings, the required mapping for the collision probability is dis-
cussed in Section 4.1.6. Reducing the cross-section in this way also decreases the issues of
non-locality of interactions (see Section 2.2.2), since the finite distance over which parti-
cles interact is reduced. Higher numbers of test particles also increase the accuracy of the
phase space density, which is required for the calculation with potentials (Section 2.2.1).

2.2 E�ective solution of the Boltzmann equation
All transport approaches aim to provide an e�ective solution of the Boltzmann equation6:

ˆf

ˆt
+ p̨

m
Òf + F̨

ˆf

ˆp̨
=

3
ˆf

ˆt

4

coll

. (2.9)

5In contrast to QMD approaches that use Gaussian wave packets. Only for the extraction of ther-
modynamic quantities are the particles in SMASH are assumed to be non-point-like and distributed in
space.

6Note that here the non-relativistic formulation is used, but a covariant formulation is also possible.
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This is achieved by accounting for the di�erent terms of the equation on a microscopic
level since a proper analytic solution is generally not attainable. The left side of the
equation describes the time evolution of the particle distribution function in the absence
of collisions7. The second term on the left side is known as the free streaming term, which
accounts for particles flying along straight lines according to their momenta. The third
term describes the e�ect of an external force field on the particle trajectories. Finally,
the right-hand side, the collision term, accounts for the interaction of the particles. This
section is split into the discussion of the left side of the equation in Section 2.2.1 and its
right side in Section 2.2.2 and Section 2.2.3.

Figure 2.3: Ratio of the distribution function over the equilibrium Boltzmann distribution
for di�erent times. Figure from [198].

As mentioned, in general, it is not possible to solve the equation analytically. Therefore, it
cannot be verified if a transport approach provides an e�ective solution to the Boltzmann
equation. However, an exact solution can be obtained in a Friedmann–Robertson–Walker
spacetime with an expanding metric, which can also be implemented in transport ap-
proaches [198]. Figure 2.3 shows the comparison of the exact solution with the one ob-
tained by SMASH in the case of an expanding metric. The result shows that SMASH
e�ectively provides a valid solution of the Boltzmann equation in this setup.

2.2.1 Propagation

Hadrons are generally propagated along straight lines according to their momenta in ac-
cordance with the free-streaming term of the Boltzmann equation.

The propagation of the evolution in transport approaches is often numerically separated
into timesteps. In SMASH, the role of timesteps has changed since its original introduc-
tion [98]. The system is now propagated8 from interaction to interaction (similar to e.g
UrQMD [106]), which has the major advantage of no longer needing the assumption that
each particle only interacts once during one timestep. Note that the latter introduced
stochastic collision criterion requires the revision of this advancement. Since the collision
probability is only defined over an a priori known time-interval �t, the propagation is

7Without the collision term, the equation is referred to as the Vlasov equation.
8Note that this propagation is technically still done within a given timestep, at which certain quantities

are evaluated, for example, the potentials.
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done over the whole timestep at once. The assumption that each particle only interacts
once during one timestep is therefore reinstated for the stochastic collision criterion (see
discussions in Section 5.1.1 and 5.1.5).

To account for attractive and repulsive forces between particles, mean-field potentials are
employed in SMASH (third term on the left of the Boltzmann Equation). An e�ective
nucleon-nucleon interaction is mediated by a Skyrme potential of the form

U(fl, flI3) = a(fl/fl0) + b(fl/fl0)· ± 2Spot

flI3

fl0

, (2.10)

where fl is the Eckart rest frame baryon density, flI3 the Eckart rest frame density of the
relative isospin projection I3/I and fl0 = 0.1681/fm3 is the nuclear ground state density.
The default parameters (a, b, ·, Spot) are taken from a transport code comparison [217].
Only baryons are a�ected by the potential. The potentials lead to curved trajectories9

according to the following modified equation of motions, which are given in their relativistic
form here.

dx
µ
i

dtú = u
µ ≠ ˆH

ú

ˆp
ú
i

�µ
i (2.11)

dpµ

dtú = ˆH
ú

ˆx
µ
i

(2.12)

Quantities labeled with a ‘ú’ are meant to be evaluated in the local rest frame. The boost
� is from an arbitrary frame into the local rest frame � : x æ x

ú. u is the flow 4-velocity
in the computational frame. For the Skyrme interaction, the Hamiltonian for particles i

is given by
H

ú
i =

Ò
≠p

ú
jpj ú + m2 + U(fl) . (2.13)

In addition, a generalization of the Skyrme potential is explored with SMASH [203], which
employs vector-density–dependent interactions (in contrast to the rest-frame-density de-
pendence above). The extension allows realizing equations of state for dense nuclear
matter that include phase transitions and a critical point and to study their e�ects on the
hadronic evolution. In the future, the approach for potentials will be further extended
to also include a scalar-density-dependence of the potentials as they exist in the Walecka
model [218, 219] and to mediate an electromagnetic interaction between charged particles
(similar to [220, 109]).

All results in this thesis are cascade calculations i.e. potentials are not used.

2.2.2 Geometric collision criterion

At the core of microscopic (transport) approaches like SMASH, where point-like (test)
particles propagate and interact, the decision if and when they collide has to be made. The
collision criterion is important for this thesis since it needs to be extended to include multi-
particle reactions. In this section, the common geometric criterion is described. The new
(stochastic) criterion is discussed in Section 4.2 after presenting its theoretical background
in Section 4.1. As the cross-section governs the likelihood of a binary interaction, the

9Numerically, particles are still propagated on straight lines within a timestep. Their momenta are
updated according to the equation of motion at the timestep interval.
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main input to the criterion is the total cross-section, which contributions are detailed in
the following section.

The geometric approach to decide when two particles scatter is based on a geometric
interpretation of the total cross-section [99]. If a collision is accepted by the criterion and
there are di�erent channels contributing to the total cross-section, a channel is chosen
randomly with the weights ‡partial/‡total. For a collision to be accepted, the transverse
distance of closest approach dT has to smaller than the interaction distance dint given by
the cross-section:

dT < dint =
Ú

‡

fi
. (2.14)

There are several definitions available for the transverse distance of closest approach dT of
two particles [106, 221, 222]. SMASH followed the approach introduced by UrQMD [106]
up to version SMASH-2.0 [213], which defines

d
2

T = (r̨a ≠ r̨b)2 ≠ ((r̨a ≠ r̨b) · (p̨a ≠ p̨b))2

(p̨a ≠ p̨b)2
(2.15)

with the particles a and b position r̨ and momentum p̨. The time of the collision is given
as the time of closest approach calculated by

tcoll = ≠(r̨a ≠ r̨b) · (p̨a/Ea ≠ p̨b/Eb)
(p̨a/Ea ≠ p̨b/Eb)2

. (2.16)

The main issue with this formulation is that the time ordering is not unique since the
formulation is not covariant [221]. The result is a frame dependence of the evolution since
the time ordering decides which particles interact first if multiple scatterings are possible
(i.e. accepted by the criterion).

In the recent version SMASH-2.0 [213], the approach for criterion is therefore changed
to the fully covariant formulation10 given in [222], which is employed in the transport
approach JAM [110] and builds on the idea of Kodama [221].

Note that even though the time ordering is frame-independent in this formulation. All cri-
teria (including the new stochastic one) are non-local in the sense that they encode instan-
taneous interaction over a finite distance11, which gives rise to causality violations [224].
The non-locality is mainly alleviated by the use of test particles to reduce the reaction
range.

The main disadvantage of the geometric criterion is the lack of a successful generalization
of dT to more than two particles. This deficiency can either be alleviated by employing
the stochastic criterion or, in certain cases, by employing a chain of binary reactions (see
Section 4.3 for examples). Note that the latter is only possible if physical intermediate
reactions are known12 and therefore less flexible than employing the stochastic criterion.
The stochastic criterion also is inherently covariant.

10Since the covariant equations require a more extensive notation, the reader is directly referred to the
presentation in Section 5.1 of [222] or [223].

11Strictly speaking the non-locality is not caused by the criteria, but by the instantaneous treatment of
interactions in the transport approach in general.

12Otherwise, artificial steps have to be introduced, see Section 4.3.2.
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2.2.3 Interactions
The transport approach maps the di�erent parts of the collision term (see also Sec-
tion 4.1.2) to di�erent types of interactions. The 5 main categories are binary elastic
and inelastic scatterings, the formation and decay of excited resonances, and string frag-
mentation. A sixth category is added in this thesis: multi-particle reactions, which are
introduced in Section 4.3). The emission of electromagnetic probes (dileptons and pho-
tons) is not counted as a category since they are treated perturbatively (Section 2.4).

As explained above, the primary input for the collision criterion is the total cross-section
‡tot of two particles, which is defined as

‡tot =
ÿ

‡partial . (2.17)

‡partial are the partial cross-sections of di�erent possible interactions between the incoming
particles of the collision. The definitions of the di�erent binary interactions and their
partial cross-sections are discussed below. To illustrate that these contributions to the total

Figure 2.4: pp, pfi
≠ and fi

+
fi

≠ cross-sections. Figures produced with [225] and SMASH-
2.0.1 [213].
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cross-section are able to match the experimental measurements, the result for three central
cross-sections (pp, pfi

≠ and fi
+

fi
≠) are depicted in Figure 2.4. The di�erent interaction

categories contributing are shown for pp and pfi
≠, whereas for fi

+
fi

≠ the di�erent resonance
states contributing are specifically separated. In both cases, the partial contributions
combine to a total cross-section that matches the experimental data.

Decay treatment and collisional broadening

The probability of a decay in a certain timestep �t in the decaying resonance’s rest-frame
is given as

Pdecay = �t

·
, (2.18)

where the lifetime · is the inverse of the total decay width. The decay probability can either
be derived assuming an exponential survival probability or directly from the Boltzmann
equation. The latter is demonstrated in Section 4.1.8. The decay probability is used as the
basis for Monte-Carlo decisions whether the resonance should decay in a certain timestep,
such that on average, the lifetime · of a resonance is reproduced. If the resonance decays,
a decay channel of one of the contributing partial widths (cf. Eq. 2.3) is chosen according
to the branching ratio (�partial/�total) of the channel.

Since the decay width is always based on vacuum properties, its value does not change
inside a hadronic medium in SMASH. However, transport approaches include an intrinsic
dynamic shortening of the lifetime, which is referred to as collisional broadening. In
contrast to reactions in the vacuum, in a dense hadronic medium, resonances can scatter
with another particle inelastically before they decay. This e�ectively reduces the lifetime,
which can be translated into an e�ective broadening of the width and, consequently, of
the spectral function. Since this dynamical e�ect is intrinsically included in transport
approaches, they allow disentangling such e�ects from explicit e.g. density or temperature-
dependent changes to the resonance spectral shapes.

Elastic collisions

The elastic cross-sections of most relevance are experimentally well known and therefore di-
rectly parametrized. A parametrized elastic cross-sections exists for nucleon-nucleon [226],
nucleon-anti-nucleon [106], nucleon-kaon [2], (anti-)deuteron-pion [135] and (anti-)deuteron-
(anti-)nucleon [135] scatterings. Additionally, several quasi-elastic processes model the
elastic cross-section contribution via resonance formation and decay at low

Ô
s. For ex-

ample, fifi scatters quasi-elastically via fifi æ {‡, fl} æ fifi and fiN via fiN æ � æ fiN .
As mentioned in Section 2.1.1, the ‡ resonance properties are tuned to reproduce the fifi

elastic cross-section via this quasi-elastic process.

For the remaining processes elastic cross-sections are poorly constrained by experimental
data. Therefore, the cross-section for elastic processes of other baryon-baryon, baryon-
meson and meson-meson processes is derived from the known NN , NN̄ and fiN cross-
section. This empirical prescription is known as the Additive Quark Model (AQM) [227]
and is also used for inelastic scatterings. The same scaling as employed in UrQMD is
followed [106]. Note that at high

Ô
s energies, where no resonances are available to mediate

quasi-elastic processes, the elastic fifi and fiN are also directly parametrized with known
high energy cross-sections.

For elastic scatterings an anisotropic angular distribution is employed based on the NN

distribution from [228].
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Inelastic collisions

Three inelastic collisions are treated individually in SMASH:

• Nucleon-nucleon collisions: Single resonance excitation via NN æ NR with R =
�, N

ú
, �ú and double resonance excitation via NN æ ��, NN æ ��ú, NN æ

�N
ú

• Nucleon-anti-nucleon collisions: Annihilation via NN̄ æ h1fl as an e�ective ap-
proach for NN̄ æ 5fi (discussed separately, together with the reverse reaction, in
Section 4.3.3)

• Nucleon-kaon collisions: Charge exchange via KN æ KN , strangeness exchange
via KN æ fiY with hyperons Y = �, �, � and resonance excitation KN æ K�

The NN cross-sections are defined with parametrized matrix elements |M|2 that are only
dependent on the Mandelstam-s of the process. The cross-section in the double resonance
excitation case is, therefore, given as

‡abæR1R2(s) = (2JR1 + 1)(2JR2 + 1)
s|p̨i|

ÿ

I

1
C

I
abC

I
R1R2

2
2 |M|2ab¡R1R2(s, I)

16fi
(2.19)

◊

Ô
s≠mmin

2⁄

mmin
1

dm1 A1(m1)

Ô
s≠mmin

1⁄

mmin
2

dm2 A2(m2) |p̨f |(
Ô

s, m1, m2).

Here, |p̨i(f)| is the center-of-mass momentum of the initial (final) state, J the spin of
the particles, C are the isospin Clebsch-Gordan factors and A1/2 the respective spectral
function. The case of the single resonance excitation is obtained by replacing one of the
spectral functions with a ” spectral function, which collapses one of the integrals. The
matrix element necessary for the calculation of the NN æ N� cross-section is based on
a fit to a one-boson-exchange model calculation [229]. The paramterization (fit parameter
A = 68, b = 1.104 GeV and c = 1.951) reads

|M|2(s)
16fi

= A

(
Ô

s ≠ b)c
. (2.20)

For the other NN cases the matrix element is parametrized (similar to [106]) as

|M|2

16fi
= AI

2(m2
a + m

2

b) (2.21)

with the isospin- and reaction-dependent parameter AI and the masses of the incoming
particles ma/b. The parameters for the matrix elements are given in Table 2.1. Note that
the case of NN æ NN

ú(1535) is adapted in this work to match the experimental data (see
also Section 3.1.1): The AI -parameter is updated to AI=0 = 91 for NN æ NN

ú(1535).

The strangeness exchange in kaon-nucleon scattering (K̄N æ fiK) is mostly realized via
a hyperon resonance state Y

ú (fiK æ Y
ú æ K̄N). However, to describe the inelastic

cross-section fully, an additional inelastic non-resonant contribution is added with the
cross-section

‡K̄NæfiY (
Ô

s) = A

(
Ô

s ≠ B)2
(2.22)

where A and B are free parameters. This parametrization is taken from [230] with updates
to the parameters described in [2]. For the charge exchange e.g. via K

≠
p ¡ K̄

0
n, the
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process AI=1 AI=0

NN æ N�ú 15 -
NN æ �� 45 120
NN æ �N

ú 7 -
NN æ ��ú 15 25
NN æ NN

ú (except N
ú(1535)) 4.5 14

NN æ NN
ú(1535) 4.5 91

Table 2.1: Parameters for the matrix element in Eq. 2.21 (in units of mbGeV4).

cross-section prescription from GiBUU [109] is followed. The KN æ K� cross-section is
defined as the remainder of the total KN cross-section after subtracting the elastic and
charge exchange contributions.

Inelastic collisions in general are treated isotropically. The exception is the single resonance
excitation in NN æ NR with R = �, N

ú
, �ú. For the � excitation, the same treatment

as for NN elastic is used [228]. For R = N
ú
, �ú, the Ansatz d‡/dt Ã t

≠a is fitted to data
from [231].

Following the principle of detailed balance and imposing time-reversal symmetry for the
matrix elements (Eq. 1.3) the cross-section of the reverse processes of resonance absorption
can be expressed using the same matrix element as the resonance production (see [109]):

‡cdæab(s) = (2Ja + 1)(2Jb + 1)Scd

Sab

----
p̨f

p̨i

----
1
s

ÿ

I

1
C

I
abC

I
cd

2
2 |M|2ab¡cd(s, I)

16fi
(2.23)

with S being symmetry factors for the initial and final state.

Resonance formation

Similar to the resonance absorption, the cross-section of resonance formation (ab æ R)
can be calculated from the forward decay process (R æ ab). The di�erence is that the
integration over the matrix element is already performed as part of the decay width.
Therefore, the cross-section is given in terms of the decay width as

‡abæR(s) = 2JR + 1
(2Ja + 1)(2Jb + 1)Sab

2fi
2

p̨
2

i

�abæR(s)AR(
Ô

s) (2.24)

This formula is already cited in [109], but the relation is also derived in Section 4.1.9 as a
side product of the collision probability calculation for resonance formations.

Note that �abæR(s) only equals �Ræab(s) for stable particles. For unstable incoming
particles, a modified “in-width” is employed in the Manley resonance treatment. The
modification reads

�abæR(m) = �0

Ræab
|p̨ab|B2

L(|p̨ab|R)Fab(m)
mflab(M0) , (2.25)

where the notation matches the one introduced for the decay width in Eq. 2.4.
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String fragmentation

The hadron-hadron cross-section for high
Ô

s is not possible to describe with excitation
of known resonance states since they are experimentally only constrained up to a mass
of ¥ 2 GeV. Therefore, for the high-energy cross-section, the ideas of the Lund string
model [232] are employed: If two strongly interacting particles are separated, a color flux
tube (string) is formed. Due to the nature of the strong coupling constant, the energy
of the string rises the larger the separation. Until at some point, enough energy for a
new quark-anti-quark pair is available. The string fragments at this point and the new
quarks are confined into new hadrons13. String fragmentation in this way models the
multi-particle production at high-energy hadron collisions. This multi-particle production
from the fragmentation of strings is handled by PYTHIA [233]. The string routine in
SMASH is in detailed introduced in [200]

The string treatment of the cross-section is generally used when the scattering’s
Ô

s is larger
than the sum of the masses of the colliding hadrons plus 0.9 GeV. Before this threshold,
a transition region with a width of 1 GeV between resonance and string cross-section
treatment is applied. In some special cases, the transition is adapted [200]. Two di�erent
string processes are distinguished based on energy: soft and hard strings. The total and
elastic cross-sections employed are parameterizations of experimental measurements. The
inelastic cross-section is filled with the string cross-section. Hard strings use cross-sections
calculated with pQCD [233], which only are applicable for highly energetic collisions. To
interpolate between resonance and hard string cross-section in the intermediate energy
range, a soft string routine is applied to match the total cross-section. The soft string
treatment is similar to the one from UrQMD [106, 234]. If the inelastic cross-section
for a particle pair is not known, the Additive Quark Model (AQM) [227] is employed.
Similarly, since PYTHIA only fragments (anti-) nucleons and pions, other particle species
are mapped onto the known fragmentations. As part of the string fragmentation routine,
also BB̄ annihilation reactions are treated as in [106, 234]. While for NN̄ annihilations,
two alternative treatments exist in SMASH (Section 4.3.3), for all other baryons, this
(detailed-balance breaking) treatment is the only way to account for the annihilation
reaction.

Note that the production of multiple particles in 2-hadron scatterings explicitly breaks
detailed balance since the back-reaction is unaccounted for. Even though multi-particle
reactions to restore detailed balance for 2 æ m reactions are introduced in this work, the
breaking of detailed balance with strings remains since no general treatment for m æ 2 is
introduced. Only specific m æ 2 reactions are accounted for because every multi-particle
reaction is introduced individually and specific for the involved particles. Furthermore,
PYTHIA is (conceptually) unable to reverse the fragmentation i.e. cannot reform the
string from the final hadrons.

Pauli Blocking

The quantum statistics of the fermionic or bosonic particles, which is included in the
quantum analog of the Boltzmann equation, the Boltzmann-Uehling-Uhlenbeck (BUU)
equation, is accounted for in transport models by so called Pauli blocking. The di�erence
between B.-eq. and the BUU-eq. are additional factors in the collision integral, which for

13The described string breaking is a way of explaining confinement in general.
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the BUU case reads

3
ˆf

ˆt

4

coll

=
⁄

d
3
p2

(2fi)3
(f Õ

1f
Õ
2(1 ± f1)(1 ± f2) ≠ f1f2(1 ± f

Õ
1)(1 ± f

Õ
2))vrel

⁄
d‡ . (2.26)

Note the additional (1 ± fi) suppression (enhancement) factors compared to the derived
classical analogue in Eq. 4.11 in Section 4.1.2. The sign is + for bosons (boson enhance-

ment) and ≠ for fermions (Pauli blocking). Only Pauli blocking is implemented in SMASH
by blocking reactions, where fermions would scatter into a phase space already occupied
by another fermion. Numerically realized is this by rejecting scatterings with the prob-
ability 1 ≠

r
i(1 ≠ fi), where fi is the phase space density for all final particle species i.

The Pauli blocking e�ect is neglected for all results presented in this thesis.

2.3 Initial conditions
SMASH can calculate the evolution of the hadron gas in five di�erent scenarios, which
are generally distinguished by their initial condition. They are described in the following
subsections.

Collider
In low energy nuclear collision, the degrees of freedom remain hadronic and the dynamics
is therefore captured by a hadronic transport approach. The two colliding nuclei are rep-
resented by collections of hadrons, in general protons and nucleons according to mass and
charge number of the element. Also, elementary and, in principle, exotic nuclei collisions
are possible. The nucleons are distributed according to a Woods-Saxon distribution.

dN

d3r
= fl0

exp
! r≠r0

d

"
+ 1

(2.27)

fl0 = 0.168 fm≠3 and r0 are the ground state density and radius (when d æ 0). d is
the di�usiveness of the nucleus and by default set to d = 0.545 fm. For some nuclei
specific values are set for r0 and d (see [98]). Note that also deformed nuclei are described
by SMASH by skewing the Woods-Saxon distribution with an angular dependent r =
r(◊, „) [235]. The nucleus centers and the starting time are chosen such that the spheres
with radius r0 + d touch at t = 0. The distance of the centers in x-direction matches the
impact parameter b.

Before the momenta are boosted in beam direction according to the configured collision
energy, the nucleons get (optionally) additional Fermi motion. Since the fermionic nu-
cleons cannot all occupy the same phase space inside the nucleus (Pauli principle), the
di�erent momentum states are uniformly filled in the ground state up to the so called
Fermi momentum pF . The Fermi momentum is defined as

pF (r̨) = h̄c(3fi
2
fl(r̨))1/3 (2.28)

with fl(r̨) being the density of nucleons at the point r̨. Since the fermi momenta result in
a sizable contribution to the measured transverse momentum ( pF ¥ 300 MeV), they are
include in the nucleus initial condition (when they are configured). The additional Fermi
motion to the nucleons is assigned isotropically and uniformly up to pF . The additional
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momentum leads to an exploding nucleus. Therefore, either potentials are necessary to
keep the nucleus stable [98], or Fermi motion must be configured as “frozen”. “Frozen”
fermi motion applies the additional p̨ only to interactions, but not to the propagation of
the nucleons.

Infinite Matter (Box)
Infinite matter is simulated by imposing periodic box-shaped boundary conditions in the
calculations. The box scenario is the only case where boundary conditions are imposed.
Otherwise, particles can freely propagate.

The initial condition for the particle numbers inside the box is either manually con-
figured or sampled according grand-canonical thermal multiplicities N

th(T, µB, µS , µQ)
(same equation as in Eq. 5.2), where T and µ are given calculation parameters. The
momenta are also thermally distributed according to

w(p̨) Ã exp(≠
Ò

p̨ 2 + m2/T ) p
2
dp sin ◊ d◊ dÏ . (2.29)

with the probability w to generate momentum p̨. Resonances are sampled at their pole
mass.

Sphere
The scenario of an expanding spherical hadron gas is similar to the one produced in a
heavy-ion collision. It is, therefore, instructive to simulate a scenario with controlled
initial conditions, where hadrons are uniformly distributed in a sphere with a given radius
R. The initial particle numbers and momenta are distributed the same as for the box.
The sphere expands freely due to the assigned momenta.

Note that it is additionally possible to add a high energy particle at the center of the
sphere as well as the box scenario to emulate the traversing of a jet through a hadronic
medium [201].

Afterburner
To employ SMASH as an afterburner of a hydro calculation for the late hadronic stages of
a high-energy heavy-ion collision, the evolution is started from an initial list of hadrons.
This list is created by performing a Cooper-Frye sampling14 on the hydrodynamical hyper-
surface. The listed particles can have di�erent times of production. In this case, the initial
state is scrolled back along their momenta to the earliest time. Particles are prevented
from interacting before their production time.

Initial condition for hydro
A full integration of a hydro-phase into SMASH is recently introduced with the SMASH-
vHLLE-Hybrid [237]. As described, SMASH is able to be employed as an afterburner.
Introduced with version SMASH-2.0 [213] is the possibility to generate initial conditions
for hydrodynamic calculations. For this, a nucleus-nucleus collision is initialized as in the
collider scenario. Instead of evolving the system until freeze-out, an output is generated
containing a list of particles on a hypersurface of chosen constant proper time. This is

14As Cooper-Frye sampling from hypersurfaces is not included in SMASH itself, other approaches have
to be employed, e.g. [236]
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then used as the input for hydrodynamics [91], which in turn feeds a SMASH afterburner
calculation for the late stages of the hybrid calculation.

2.4 Dilepton production
Two electromagnetic probes are produced in SMASH: dileptons and photons. For photons,
the emission in binary scatterings of mesons is of most interest. In SMASH photons
are either produced by fi + fi or fi + fl scattering, including the Bremsstrahlung process
fi + fi æ fi + fi + “ [238]. The reader is referred to [196] for a full description of the photon
treatment, as the focus of this thesis is solely on the dilepton production.

Dileptons in SMASH are produced by direct or Dalitz decays of resonances (Table 2.2).
The vector mesons fl, Ê and „ decay directly into a lepton pair. Therefore, the invari-

fl æ e
+

e
≠

Ê æ e
+

e
≠

„ æ e
+

e
≠

fi æ e
+

e
≠

“

÷ æ e
+

e
≠

“

÷
Õ æ e

+
e

≠
“

Ê æ e
+

e
≠

fi
0

„ æ e
+

e
≠

fi
0

�+ æ e
+

e
≠

p

�0 æ e
+

e
≠

n
0

Table 2.2: Direct and Dalitz dielectron decays

ant mass of the pair equals the mass of the resonance. Although, in principle, direct
decays of either electrons and muons are implemented, the results focus on dielectrons
only (Section 3.1.2). Results of the dimuon production can be found in [239]. Dalitz
decays are incorporated for pseudoscalar mesons (fi,÷,÷Õ), vector mesons (Ê, „), and �
baryons. All resonances are either produced by inelastic scattering, 2æ1 absorption, or
decays of other resonances. This also means that directly decaying resonances, like, e.g.,
the fl meson, include Dalitz-like contribution by coupling to baryonic resonances via pro-
cesses like N

ú
/�ú æ flX æ e

+
e

≠
X (see the pp results in Section 3.1.2). In addition to

the modifications of the vector meson spectral functions due to the explicit coupling to
baryonic degrees of freedom, collisional broadening is dynamically taken into account by
construction as explained in Section 2.2.3. All dilepton decays are treated isotropically.

As SMASH combines and adapts di�erent successful aspects of previous transport ap-
proaches in general, also the dilepton production is a mixture of previous approaches. One
of the major additions is the inclusion of dilepton emission below the hadronic threshold
for all direct vector meson decays. This enables the investigation of dilepton emission
for the full invariant mass range, including below the hadronic invariant mass thresh-
old. In particular, the comparison with coarse-graining results is therefore interesting. In
general, the employed resonance states are most similar to the UrQMD approach [106].
Compared with the published results for the dilepton production in UrQMD [163] more
recent and additional data is used for the resonance properties and cross-sections. The
spectral function is also treated as in UrQMD, but the decay width treatment described
above is the same as in GiBUU [109]. However, no o�-shell propagation is taken into
account like in HSD [240] or GiBUU. The dilepton emission is theoretically based largely
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on the GiBUU approach since it has recently proven to be successful in describing the ex-
perimental data [85]. Other transport models [162, 85] additionally include non-resonant
production of dileptons via NN and fiN Bremsstrahlung. Such contributions are neglected
in this approach.

The two main ingredients to the dilepton treatment in SMASH are introduced in the
following: the employed equations for the di�erent decay widths and the perturbative
treatment of dilepton decays. The results for the dilepton production are found in Sec-
tion 3.1.2. Practical information about the usage of the SMASH dilepton routine is found
in [241].

2.4.1 Decay widths and form factors for dilepton decays

This section details the employed decay widths for the dilepton decays. Note that an ex-
plicit parametrization is used for the decay width instead of the mass-dependent treatment
from Manley et al., used for hadronic decays.

For direct decays �V æl+l≠(mll) with V = fl, Ê, „ under the assumptions of Vector Meson

Dominance [242] is

�V æl+l≠(mll) = �V æl+l≠(M0)
M0

M
4
0

m
3

ll

Û

1 ≠ 4m
2

l

m
2

ll

A

1 + 2m
2

l

m
2

ll

B

(2.30)

with mll being the invariant mass of the lepton pair, M0 the pole mass of the vector
meson and ml the lepton mass. For �V æl+l≠(M0) values from the PDG [243] are used.
The e�ect of the inclusion of the dilepton decay width for the fl resonance total decay
width is depicted in Figure 2.5. The m

≠3

ll dependence is clearly visible at low masses.

Figure 2.5: Decay widths of the fl resonance with and without the dilepton decay mode.

The contributions to the spectral function below the hadronic threshold are also observed
in Figure 2.1. Note that taking such contributions into an account for all vector mesons
is one of the major additions of this dilepton transport treatment.

For Dalitz decays the invariant mass of the dilepton is not fixed by the mass of the
decaying resonance, because of the three decay products. Hence only a di�erential decay
width d�/dmll is given. For the pseudoscalar Dalitz decays P = fi

0
, ÷, ÷

Õ the di�erential
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width is given by [244],

d�P æ“e+e≠

dmll
= 4–

3fi

�P æ““

mll

A

1 ≠ m
2

ll

m
2

P

B
3

|FP (mll)|2 (2.31)

with �fi0æ““ = 7.6 ·10≠6 MeV, �÷æ““ = 5.2 ·10≠4 MeV and �÷Õæ““ = 4.4 ·10≠3 MeV [243],
– = 1/137 and mP the mass of the pseudosalar meson. The form factors FP are

Ffi0(mll) = 1 + bfi0m
2

ll , bfi0 = 5.5 GeV≠2
, (2.32)

F÷(mll) =
A

1 ≠ m
2

ll

�2
÷

B≠1

, �÷ = 0.716 GeV (2.33)

with �÷ taken from [245]. For the ÷
Õ form factor the QED approximation F÷Õ(mll) = 1 is

used. The vector-meson Dalitz decays (V = Ê, „) are parametrized by [244, 246],

d�V æfi0e+e≠

dmll
= 2–

3fi

�V æfi0“

mll

S

U
A

1 + m
2

ll

m
2

V ≠ m2
fi

B
2

≠ 4m
2

V m
2

ll

(m2

V ≠ m2
fi)2

T

V
3/2

|FV (mll)|2 , (2.34)

where mV is the mass of the vector meson, mfi the pion mass and

|FÊ(mll)|2 = �4
Ê

(�2
Ê ≠ m

2

ll)2 + �2
Ê�2

Ê
. (2.35)

The other parameters are set as follows: �Êæfi0“ = 0.703 MeV, �„æfi0“ = 5.4 keV [243],
�Ê = 0.65 GeV and �Ê = 75 MeV [246]. For the „ form factor the QED approximation
|F„(mll)|2 = 1 is chosen. Note, that in previous work [247] the possibility of describing
these decays, similar as the hadronic V æ 3fi decays, in two steps via an intermediate fl

meson V æ fifl æ fie
+

e
≠ has been explored. This would render the parameterizations

given above obsolete and remains an appealing option for the future. For this work,
the more established direct treatment has been chosen, which also allows a more direct
comparison to similar approaches [85, 163] that rely on the same formalism.

For the � Dalitz decay, the di�erential decay width by Krivoruchenko et al. [248] is
applied,

d��æNe+e≠

dmll
= 2–

3fi

��æN“ú(mll)
mll

, (2.36)

��æN“ú(mll) = –

16
(m� + mN )2

m
3

�
m

2

N

[(m� + mN )2 ≠ m
2

ll]1/2 (2.37)

◊ [(m� ≠ mN )2 ≠ m
2

ll]3/2|F�(mll)|2 .

The form factor |F�(mll)|2 is a topic of ongoing debate [249, 250]. For this work, it is
chosen to be constant and fixed at the photon point F�(0) = 3.12 © F�(mll), where it is
known that ��æN“(0) = 702 MeV [243].

2.4.2 Shining method
In experiment and numerical simulations, a major challenge of electromagnetic probes is
their rare production. For dileptons, the decay branching ratios are small, typically on
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the order of 10≠5. The reason is that the electromagnetic coupling constant is orders
of magnitudes smaller than the strong coupling constant. They are therefore treated
perturbatively i.e. the decays are only performed virtually (producing a separate output)
and do not a�ect the hadronic evolution itself 15 , which is a justified approximation due
to the di�erence in the coupling strength. Such a perturbative treatment neglects any
secondary interactions of the leptons after the decay, e.g. by the Coulomb force. This is
also justified since leptons only interact via the weak electromagnetic interaction and are
not perturbed by strong interactions.

The perturbative treatment of leptons follows the so called Time Integration Method, also
referred to as the Shining Method [251, 252]. The idea is to obtain the dilepton yield
�Nl+l≠ by integrating the decay probability of the dilepton decay mode �l+l≠dt over the
Lorentz-corrected (“) lifetime · = t

† ≠ t
ú of a given resonance:

�Nl+l≠ =
⁄ t†

tú

dt

“
�l+l≠ . (2.38)

This is done numerically by continuously emitting (shining) dileptons during the propa-
gation of a resonance and weighting them by taking their decay probability into account.
The (shining) weight wsh for a dilepton pair that is emitted over a timestep of �t is given
by the integrand of the integral above as

wsh = �t

“
�l+l≠ . (2.39)

Since for Dalitz decay, only a di�erential d�

dmll
is available, the integration over the invariant

mass is implicitly Monte-Carlo sampled by using the following shinning weight for Dalitz
decays.

w
Dalitz

sh = �t

“

d�
dmll

�mll (2.40)

�mll is the available invariant mass range for the dilepton mass i.e. the result of sub-
tracting the non-leptonic and twice the electron mass from the resonance mass. Should a
resonance be present at the end of the calculation. A dilepton decay of it is weighted by
the branching ratio.

2.4.3 Coarse-graining approach

Coarse-graining [114] extracts event-averaged macroscopic quantities locally for small
space-time cells. Dileptons are produced by those cells according to thermal emission
rates. The framework used in this work is the same as in [117] and has proven to be
reliable in describing experimental data from SIS up to LHC energies [117, 116, 118, 253].
In the following, a summary of the approach is given. A full review is found in [117].
The coarse-graining approach is strictly speaking not part of the SMASH approach itself

15The perturbative dilepton treatment causes the numerical artifact that some particles only have a
dilepton decay channel and are, therefore “hadronically stable”. This includes vector mesons with a mass
below the hadronic threshold. Such particles are excluded from the shinning treatment until the end of
the calculation since they live indefinitely. Instead of emitting dileptons during their propagation, their
decay is counted (once) at the end. To avoid that resonances with a mass below the hadronic threshold
are part of the final state, they decay into the lepton pair at this point. It is verified that this artifact does
not a�ect the presented results.
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since it only utilizes the generated particle output of SMASH as an input to extract the
coarse-grained evolution.

The approach follows the original idea from [114] by locally averaging over the reaction
evolution and splitting an ensemble of collision events into small spacetime cells. For
those cells, the baryon density flB and the energy density ‘ are calculated in the rest-
frame. Knowing both and assuming (for the low beam energies considered here) a hadron
resonance gas equation of state, the local temperature T and baryon chemical potential
µB are determined. Based on the thermodynamic information, the yield of dileptons from
a certain cell ( dNll

d4xdq ) is given by the corresponding thermal emission rates that include the
in-medium modification on the vector meson spectral function. The rates are defined in
relation to the imaginary part of the electromagnetic current-current correlation function
Im�(ret)

em [254] as
dNll

d4xdq
= ≠–

2
L(M)

fi3M2
f

B Im�(ret)

em . (2.41)

f
B is the Bose-distribution, – is the e.m. coupling constant, M the mass of the resonance

and L(M) the lepton phase space factor.

The medium modified spectral function directly enters in this equation, since the correlator
is directly related to the spectral function i.e. the imaginary part of its retarded propagator
ImD

ret
fl as

Im�(ret)

em = m
4
0

g2
ImD

ret

fl (2.42)

with the degeneracy factor g. See [116] for more details on the employed emission rates.

The in-medium description used in the coarse-grained approach is based on the hadronic
many-body theory [145, 255], where the spectral function depends on temperature and
density. The medium modification of the spectral function is illustrated in Figure 2.6.

Figure 2.6: Melting in-medium spectral functions of the fl meson with rising temperature.
Calculation based on a hadronic many-body theory. Figure from [136].

Since in-medium modifications at these energies are only expected to significantly a�ect
the fl and Ê, dilepton yields from thermal rates are only calculated for these two. If the
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temperature drops inside the cells, the assumption of thermal rates is no longer reasonable;
therefore also non-thermal (freeze-out) transport contributions are included as part of the
coarse-graining model. They are only around the pole masses significant [117]. The Ê

Dalitz decay is also part of the Ê freeze-out contribution. Thermal rates together with the
freeze-out contribution result in the coarse-graining contributions for the fl and Ê (CG-fl
and CG-Ê). The last contribution from the coarse-graining approach are multi-fi states
originating from broad resonances. The dilepton cocktail is completed with the relevant
transport contributions of fi, ÷ and „ from SMASH.
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Chapter 3

Results with binary collisions

This chapter discusses two complementary observables that are especially sensitive to the
medium evolution and its properties: dilepton and strangeness production. These rare
and newly produced probes o�er a perspective of special interest on the medium and com-
plement more basal observables. They in particular are sensitive to resonance properties
and particle production mechanisms (as explained in Section 1.3.1 and Section 1.3.2). The
production of dileptons and strangeness is studied for a large variety of collision systems
at low-beam energies. The idea is to constrain the di�erent treatments in elementary
and small systems, where in-medium e�ects and the likelihood of scatterings of multiple
particles are expected to be small. A transport approach based on vacuum properties is
expected to be compatible with the experimental data in this case. The results bench-
mark the approach and establish a (binary) “vacuum” baseline, which also is exploited
for the multi-particle studies (in Chapter 5). For the larger collisions systems, a highly
compressed and therefore very dense system is created, where the onset of medium e�ects
is expected. Therefore, e�ects of the dense medium on dileptons and strangeness can be
identified by di�erences between the transport and experimental results.

The results in this chapter only employ binary collisions. This limitation is commonly
made in transport approaches. Here, it allows studying and understanding the hadron gas
evolution before intervening in the reaction dynamic itself by introducing multi-particle
reactions. All results in this section are produced with the geometric collision criterion.
Definitions for the kinematic variables and observables used in results in this or the follow-
ing chapters are e.g. found in [256]. Note that, while the later introduced multi-particle
reactions are found to be essential for certain observables, e.g. the yield of deuterons
or protons (see Chapter 5), the presented results for dileptons and strangeness are not
sensitive to them.
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Figure 3.1: Mid-rapidity multiplicities of fi, K and p for di�erent beam energies. Results
produced with [225].

As a starting point and general context for the results with binary collisions, a set of
hadrons abundances produced in elementary proton-proton and heavy-ion AuAu or PbPb
collisions1 with SMASH (version SMASH-2.0.1 [213]) is shown in Figure 3.1. The particle
and anti-particle multiplicities are compared to experimental data at mid-rapidity for
a large range of beam energies. Deviations to the heavy-ion measurements are mainly
seen for K and p̄. The deviation for K is discussed as part of Section 3.2. Despite the
di�erences, the results mark a first general validation of the approach since the hadron
production is mostly compatible with the experimental data, particularly in elementary
collisions. Based on this general observation for hadron production, the complementary
and more specific dilepton production is investigated.

1The collision system (AuAu or PbPb) is chosen to match the system for which the respective experi-
mental data point is taken.
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3.1 Dilepton emission

This section is based on [1] and [3].

Dilepton emission o�ers a complementary observable to hadron production and a wealth
of experimental data to compare, constrain and study di�erent aspects for the properties
of the hadronic medium. Since the lepton pairs escape the created medium unperturbed,
the dilepton invariant mass2 spectrum allows access to the resonance spectral function
and, in turn, address the question if and how the resonances properties change inside a
hot and dense medium (see also Section 1.3.1). The dilepton production in this section is
discussed for elementary, nucleon-nucleus and nucleus-nucleus collisions using SMASH [98]
and coarse-a graining approach [116] in the context of the whole set of HADES measure-
ments.

Di�erent medium e�ects that are closely related to the study of dileptons are a focus of
the discussion. The microscopic transport includes collisional broadening (Section 2.2.3).
Since absorption of resonances by other hadrons is dynamically accounted for, the life-
time is shortened in the presence of a hadronic medium. The reduction of the lifetime
equals an e�ective broadening of the decay width of the resonance. The later employed
coarse-graining approach also includes vector meson spectral functions that are explicitly
dependent on the medium’s temperature and density of the medium [145, 255]. Such
modifications will be labeled as in-medium modifications since they are only employed for
the evolution within a hot and dense medium. In this context, the coupling of baryons
to the vector mesons is of particular interest [136]. In SMASH, this coupling is included
as the decay of baryonic resonances into vector mesons. Whereas in the calculation of
the in-medium spectral functions, the coupling enters as an important contribution to the
self-energy. This is done in a self-consistent way, including interference terms. On the
other hand, the presented transport calculation neglects interference terms and broaden-
ing of the spectral function originating from a consistent treatment of the self-energies in
the vector meson propagator as an approximation. The reported results allow access to
these medium e�ects since they significantly a�ect the dilepton invariant mass spectra by
contrasting the emission of the transport and the coarse-graining approach.

In addition, the following study is motivated by the validation of the SMASH approach
in general and the resonance description in particular. For this, the dilepton yield is
calculated and subsequently compared to experimental data. It is, for example, possible
to specifically probe and constrain the branching ratios of decays of baryonic resonances
into vector mesons. The dilepton production furthermore facilitates comparisons to other
approaches and predictions for newly measured collision systems by HADES [257, 258].

Compared to previous e�orts for the dilepton production in transport approaches [85,
162, 163], which establish a solid foundation for this work, two new aspects are studied
here: First, low-mass contributions to the vector meson decay channels are studied for all
vector mesons. The spectral function for vector mesons does not vanish at the hadronic
threshold. Instead, it vanishes at 2me, the smallest possible invariant mass of the decay
products, when including V æ e

+
e

≠ decays (V = fl, Ê, „). The treatment consequently
leads to low-mass contributions below the hadronic threshold for direct vector meson dilep-
ton decays. These low-mass dilepton yields are investigated. Especially, their significance
relative to other decay channels and for the total yield is studied. Here, all vector mesons

2The invariant mass of the dilepton is given by m2
ll = (p0

ll)2 ≠ p̨ll
2 with pll being the combined lepton

pair four-momentum.
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(fl, Ê, „) are included. This is an extension of previous work with the GiBUU approach,
which considered such contributions only for the fl meson. The UrQMD approach, on the
other hand, neglects them entirely for numerical reasons. Secondly, the employment of a
coarse-graining approach [117] in combination with the just discussed low-mass contribu-
tions o�ers the unique opportunity of a direct comparison. It is possible to investigate
di�erent medium e�ects on the dilepton spectrum, including the low-mass region, based on
the same hadronic evolution. The coarse-graining approach employs in-medium spectral
functions for the vector mesons, whereas the transport calculation’s spectral functions are
based on vacuum properties. Therefore, comparing the decay yield of the vector mesons
produced by both approaches is of particular interest. Although results for a coarse-
grained UrQMD dilepton production are reported [117, 253], such a direct comparison
has not been performed. Additionally, the low-mass contributions are neglected for the
UrQMD transport calculations, making a comparison to the corresponding coarse-grained
results in this mass region unfeasible.

The results are structured as follows. First, a selection of elementary cross-sections of
dilepton emitting resonances is studied. Next, the complete set of available dielectron pro-
duction measurements at SIS energies is discussed in the context of the hadronic transport
approach SMASH. Starting with the smallest systems created during elementary collisions
and ending with the largest system studied (AuAu). These results are then complemented
and compared to the results from the employed coarse-graining approach for the ArKCl,
AgAg and AuAu system, where medium e�ects are expected to become relevant. The
results are produced utilizing the in Section 2.4 introduced dilepton emission. If not
mentioned otherwise, results are obtained using version SMASH-1.1.

3.1.1 Elementary cross-sections of dilepton emitting particles

Cross-section data is a, in general, valuable tool to constrain particle production for dif-
ferent collision energies. This section includes several results for particles that decay into
dileptons. Producing the correct number of resonances in elementary reactions is essential
before investigating the dilepton emission itself. The cross-section results complement the
already reported total and single pion production cross-sections in [98]. Beginning with
the ÷ production cross-section in pp collisions, Figure 3.2 shows the exclusive ÷ production
in pp æ pp÷. A good agreement is observed close to the threshold, whereas too many ÷

mesons are produced from pp æ pp÷ for
Ô

s > 3.25 GeV. The disagreement, however, does
not a�ect the few-GeV energy range of HADES measurements studied in this work. Fig-
ure 3.3 shows the exclusive Ê production cross-section. SMASH results are in reasonable
agreement with the relatively large error bars. In the case of the fl meson, both inclusive
(pp æ fl + X) and exclusive cross-sections (pp æ ppfl) are shown (Figure 3.4). Both are
overestimated (solid lines) compared to the experimental data points, especially the ex-
clusive cross-section, which dominates the inclusive cross-section for energies close to the
threshold. It is important to consider here that the fl meson in SMASH is used as an in-
termediate state to emulate di�erent Dalitz decays in two steps following the idea of strict
Vector Meson Dominance [263]. The advantage of this treatment is the conservation of
detailed balance (see also Section 4.3.1). The two most prominent decays are the 3fi decay
of the Ê (Ê æ flfi æ 3fi) and the N

ú(1520) dilepton Dalitz decay, which is emulated by
N

ú(1520) æ flN æ e
+

e
≠

N . Neglecting these additional proxy contributions (transparent
lines in Figure 3.4) leads to an agreement within errors for the inclusive cross-section data
point, but not for the exclusive channel. Therefore, the overestimation in the inclusive fl

production can be seen as a compromise of the two-step treatment of three-body decays.
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Figure 3.2: Production cross-section for pp æ pp÷. Experimental data from [259, 260,
261].

Figure 3.3: Production cross-section for pp æ ppÊ. Experimental data from [261].

Figure 3.4: Exclusive production cross-section for pp æ ppfl (empty data points from
[262, 261]) and inclusive pp æ fl + X cross-section (full data point from [155]).
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Figure 3.5: cross-section for pn æ pn÷. Experimental data from [264].

Isospin-asymmetric ÷ production

In general, SMASH assumes isospin symmetry in the production of particles, but there
are a few exceptions to this treatment for NN reactions. One is newly introduced here
to improve the description of the dilepton yield stemming from the Dalitz decay of the
÷ meson. There exists experimental evidence that the ÷ production via pn æ pn÷ is
enhanced in comparison to pp æ pp÷ by approximately a factor of 6.5 [264]. The dominant
source of the ÷ meson for low energies is the decay of N

ú(1535). Therefore its production
is enhanced following the suggestion from [265] by modifying the matrix element,

|MpnæNNú(1535)|2 = 6.5 ◊ |MppæNNú(1535)|2. (3.1)

The modification is done by adapting the parameterization of the NN æ NN
ú matrix

element as described in Section 2.2.3.

This introduction of isospin asymmetry in the production of N
ú(1535) and consequently

of ÷ mesons greatly improves agreement with experimental data from [264] as seen in
Figure 3.5.

3.1.2 Results for dilepton production

This section is separated into di�erent parts covering the di�erent collision system types
at low beam energies for which experimental data is available. First, elementary reactions
are studied. Afterward, results for proton-nucleus collisions are discussed and the last
section includes the results for nucleus-nucleus collisions.

The smaller systems (up to CC) verify the hadronic and dilepton emission baseline of the
transport approach with on vacuum properties. On this basis, the dilepton emission for
the larger systems (ArKCl, AgAg and AuAu) can point to and constrain medium e�ects
by deviations to the measurements. The study of medium e�ects is then expanded with
the coarse-graining approach in the following section.

In general, contributions from all decay channels (Table 2.2) are taken into account in the
following, but for the Dalitz decays of „ and ÷

Õ in particular, only negligible contributions
are observed for the systems studied here. Therefore, almost all results exclude both
channels. The initial conditions for the proton-nucleus and nucleus-nucleus collision are
given as explained in Section 2.3. All results that include experimental data from HADES
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are filtered using the HADES acceptance filter (HAFT [266]). Additionally, to match the
experimental analysis procedure, an opening angle (� > 9¶) cut and the single lepton
momentum cut for the specific system have been applied.

Elementary collisions

Elementary collisions o�er the possibility to constrain and test the description of the binary
reactions occurring in a nucleus-nucleus collision. Therefore, they represent a baseline for
the dilepton production in nucleus-nucleus reactions. Results for three di�erent systems
are shown: proton-proton, neutron-proton and fi-proton. For the sake of data comparison,
the same energies as measured by HADES were chosen [155, 153, 154]. Results for the
pion beam are not published yet, so predictions, which are not filtered for acceptance, are
shown in the following.

pp

Dilepton production in proton-proton (pp) reactions is calculated for three di�erent kinetic
energies EKin = 1.25/2.2/3.5 GeV in a fixed-target setup. Figure 3.6 shows the dilepton
invariant mass spectrum for the two lower energies in comparison to HADES data [153,
154].

Figure 3.6: Invariant mass spectrum of dielectrons produced in pp collisions at EKin =
1.25 GeV and EKin = 2.2 GeV. Experimental data from [153, 154].

For the reaction at EKin = 1.25 GeV in Figure 3.6 only four di�erent channels of the whole
dilepton cocktail are contributing. The fi

0 Dalitz decay dominates in the fi
0 invariant mass

region up to around 0.15 GeV. Above 0.15 GeV in the low mass region, the Dalitz decay of
the �+ decay is dominant. Since the �+ and the �0 contributions are plotted separately,
a di�erence of more than one order of magnitude can be observed. The �+ is more likely
to be produced since it can be a product of the primary collision, whereas the �0 can only
be formed in secondary reactions due to charge conservation and the fact that only 2 æ 2
reactions are allowed in SMASH. In the higher invariant mass region, a large contribution
from the direct fl meson channels is noticed. The total yield is in good agreement with
experimental data. Since a kinetic energy of EKin = 1.25 GeV is slightly below and
EKin = 2.2 GeV is above the ÷ production threshold, a contribution from the ÷ meson
is seen in Figure 3.6 for EKin = 2.2 GeV. Also, additional significant contributions from
Ê decays are observed for the higher kinetic energy. Here, the ÷ yield is dominant for
the invariant mass region up to around 0.4 GeV. The fi again dominates for low invariant
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masses and the fl in the mass region above 0.4 GeV. The peak in the Ê æ e
+

e
≠ spectrum

at the Ê pole mass can already be observed for this kinetic energy. The overall agreement
with data is again reasonable. Figure 3.7 shows the invariant mass spectrum produced by

Figure 3.7: Invariant mass spectrum of dielectrons produced by pp collisions at EKin =
3.5 GeV. Experimental data from [155].

fixed target pp reactions with a kinetic energy of 3.5 GeV. Because of the higher energy,
the spectrum reveals two new features: a more pronounced Ê peak and an additional „

contribution. The significant contributions to the spectrum now reach up to 1.1 GeV.
Again, a good agreement with experimental data is observed.

In Figure 3.8 and Figure 3.9, pT and y spectra for di�erent invariant mass windows are
shown for completeness. The lepton pair transverse momentum and rapidity from reactions
at EKin = 3.5 GeV are compared to experimental data from [155] in di�erent invariant
mass windows that reflect the di�erent dominant contributions over the invariant mass
range. Below 150 MeV the fi

0 Dalitz decay dominates. Between 150 MeV and 470 MeV
the ÷ decay is the largest contribution, while above 470 MeV and below 700 MeV the
fl channel exceeds the others. Above 700 MeV the Ê peak is dominant. The plots in
Figure 3.8 and Figure 3.9 show that also for those more di�erential spectra that probe
specific channels and di�erent kinematic observables that probe di�erent regions of the
phase space agreement with experimental data is reasonable.

The contributions from the direct decays of the vector mesons with masses reaching below
the hadronic thresholds are important for all three energies. They originate from the
resonance description discussed in Section 2.1.1 that considers the dilepton decays for the
spectral function. In the case of the fl meson, those contributions are significant for the
total yield in the low mass region. For the Ê they are negligible compared to e.g. the Ê

Dalitz decay in elementary system. Nevertheless, Figure 3.7 does show that contributions
below the hadronic threshold are observed for both mesons. This also holds for the direct
„ decay, but low invariant mass contributions in pp are too small to be visible for the „

meson on the chosen scale.
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Figure 3.8: Transverse momentum spectra of dielectrons produced by pp collisions at
EKin = 3.5 GeV in di�erent invariant mass windows. Experimental data from [155].
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Figure 3.9: Rapidity spectra of dielectrons produced by pp collisions at EKin = 3.5 GeV
in di�erent invariant mass windows. Experimental data from [155].
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After discussing the general features of dilepton production in pp collisions, the focus will
be specifically on the contribution from the vector mesons. The previously shown find-
ings (Figure 3.4) for the elementary production cross-section of fl mesons measured in the
hadronic channel translate directly to the corresponding dilepton spectra. At low energies
(EKin = 1.25 and 2.2 GeV), where the overestimated exclusive fl production via pp æ ppfl

is dominant, the fl yield is large, meaning it pushes the total yield to the upper limits of the
error bars. In contrast, for the highest kinetic energy (EKin = 3.5 GeV), this is not the case.
Overall, the overestimation of the exclusive cross-section does not result in an overestima-
tion of the total dilepton yield, which indicates that the inclusive fl production is in line
with the experimental dilepton results. To fully understand the dilepton production, the

Figure 3.10: Di�erent contributions to the invariant mass spectrum of dielectrons produced
by decays of fl (left) and Ê (right) mesons for pp collisions at EKin = 3.5 GeV. Heavy
N* states include contributions from N

ú(2080), N
ú(2190), N

ú(2220), N
ú(2250), all of the

form N
ú æ flN æ e

+
e

≠
N .

origin of the fl and Ê resonance is investigated. Earlier studies [226, 85, 145, 255] revealed
that the coupling of the vector mesons to baryonic resonances is of importance. Such
information is, however, challenging to obtain in the experiment alone. Therefore only a
few experimental studies are available [231]. Comparisons to theoretical models that keep
track of the whole process history enable insights into important couplings by splitting the
origin of the fl and Ê contributions. Additionally, such studies o�er the possibility to con-
strain resonance properties such as branching ratios. At the left of Figure 3.10 the di�erent
contributions to the overall fl dilepton yield (thick blue (upper) line, same as in Figure 3.7)
are shown for pp reactions at a kinetic energy of 3.5 GeV. To allow comparisons to the
overall invariant mass spectra, all dileptons in Figure 3.10 are also acceptance filtered. Two
di�erent processes are important: fi

+
fi

≠ annihilation and the decays of di�erent baryonic
resonances. The annihilation process has a small yield as expected in elementary pp colli-
sions because it requires rare secondary scatterings. While the fifi process of course has a
threshold at 2mfi, the significant contributions below this threshold come from Dalitz-like
contribution of the lighter baryonic resonances (Bú æ flN æ e

+
e

≠
N , B = N, �), mainly

N
ú(1520), �ú(1620) and �ú(1700). These populate the large low-mass tail of the overall

fl yield. The di�erent shape of the N
ú(1520) is has a kinematic reason. The pole mass

of the resonance is too small to produce a fl at the pole mass in the reaction N
ú æ Nfl.

For higher invariant masses, higher baryonic resonances are important. Especially, the
combined heavy N

ú states (Nú(2080), N
ú(2190), N

ú(2220), N
ú(2250)) dominate the high
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mass tail. Other contributions include higher mesonic states and baryonic resonances that
have no significant e�ect on the overall fl contribution. Figure 3.10 also shows the di�erent
contributions to the overall Ê yield (thick green (upper) line, same as in Figure 3.7) at the
right. Since the Ê width is much smaller, it shows a very clear peak structure in the invari-
ant mass spectrum; Ê mesons are mainly produced by nucleon resonance decays. A clear
mass ordering can be observed. The lightest baryonic resonances, N

ú(1710), N
ú(1875),

have the largest contributions followed by the heavier resonances in order of their pole
masses. The contribution below the hadronic threshold that mainly forms the low-mass
tail is the N

ú(1710) resonance, which is also the lightest resonance that can decay into Ê

with a pole mass below the mN + mÊ threshold.

Overall the dilepton production in SMASH for pp collisions as the cleanest probe for
elementary collisions is well understood and in good agreement with experimental data
and o�ers a solid base to study larger systems.

np

The next system of interest is the elementary neutron-proton (np) system. Dilepton pro-
duction has been measured by HADES, realizing np collisions by using a deuteron beam
on a proton target and triggering on forward-going protons (so called spectator protons).
These reactions are called quasi-free. Since the deuteron is a bound system, the nucle-
ons inside carry additional momentum. The results for this work were obtained following
an ansatz referenced in the HADES publication [153]. The neutron projectile is given
additional momentum according to the momentum distribution of the PARIS potential
[267, 268], neglecting the relatively small binding energy of the deuteron itself. Figure 3.11

Figure 3.11: Invariant mass spectrum of dielectrons produced by quasi-free np reactions
at EKin = 1.25 GeV. Experimental data from [153]

shows results for the dilepton production of quasi-free np reactions at EKin = 1.25 GeV.
The additional momentum of the neutron inside the deuteron leads to a higher kinematic
threshold than in the pp case (Figure 3.6) for the same energy. Hence, contributions up
to 0.6 GeV are significant. The same channels as in pp are contributing, but because the
energy now reaches above the ÷ threshold, an additional ÷ yield is observable. In addition,
the isospin asymmetry for � has vanished since both are equally likely to be excited in
a primary collision. The fi

0 contribution dominates the mass region below 0.15 GeV. In
the low-mass region, ÷, � and fl contribute, while for masses above 0.4 GeV, the direct fl

decay becomes the dominant contribution. Compared to the HADES data [153], a large
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discrepancy is observed for masses higher than 0.15 GeV, suggesting that the fi
0 contri-

bution is described reasonably well, but other channels are underestimated. One possible
extension that would enhance the total yield includes the addition of np Bremsstrahlung
or a np æ d÷ channel. Such extensions, however, were not successful in describing the
experimental data in the similar GiBUU transport model [85]. Two other promising expla-
nations are tested in [269] in the context of the same experimental data. The first focuses
on the, in this work neglected, radiation of dileptons from an internal charged meson line
and is based on a one-boson exchange model [270]. The second focuses on double � exci-
tations as a possible solution [271]. Both models lead to a significantly better agreement
with experimental data, with the first one slightly favored [269]. Additionally, as argued
in [272], the channel np æ de

+
e

≠ might be important for the spectrum.

Similar to other transport approaches [85, 162], the np system seems to be only underesti-
mated at this low energy. The later discussed carbon-carbon collisions for example, which
are close to a superposition of pp and np collisions [153], only show a similar systematic
underestimation of the dilepton production around the same energy of 1A GeV. For the
higher discussed energy (EKin = 2.0A GeV), the agreement with experimental measure-
ments improves considerably. A reasonable agreement is also seen for higher energies in
the studied proton-nucleus system. Improvements, as discussed above, are therefore left
for the future.

Pion beam

Besides the discussed NN reactions, pion-beam reactions, where fi
≠ scatter on a proton

target, are considered. The kinetic energy of EKin = 0.56 GeV matches upcoming HADES
results [257] for this system and is specifically chosen to probe the fl production around
the N

ú(1520) pole mass. Indeed, the fl dilepton decay is observed to be the dominant

Figure 3.12: Invariant mass spectrum of dielectrons produced by fip reactions at EKin =
0.56 GeV.

contribution to the dilepton invariant mass spectrum from fip at EKin = 0.56 GeV (Fig-
ure 3.12). Only for invariant masses lower than 0.15 GeV, it is exceeded by the fi decay
contribution. Other smaller contributions include ÷ and �0, negligible are �+, Ê and
„. Compared to pp the ordering of the �+ and �0 is inverted for this system due to
the same reason as mentioned before: because of charge conservation, only �0 can be
produced in primary collisions. The sharp kinematic threshold at 0.56 GeV due to the
available center of mass-energy is noticeable as well. The red dashed line in Figure 3.12
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indicates the N
ú(1520) contribution to the fl spectrum. It is the only relevant contribu-

tion to the fl spectrum and with this to the overall spectrum above 0.15 GeV. Therefore
this setup provides a good opportunity to test and constrain the coupling of the fl to the
N

ú(1520). Currently, SMASH treats the N
ú(1520) Dalitz decay (Nú(1520) æ e

+
e

≠
N)

via the strict Vector Meson Dominance assumption, where the resonance decays via an
intermediate fl meson. The pion beam experimental data will be valuable to constrain this
assumption and the extensive theoretical investigation of the fl ≠ N interaction in general,
which started with [273, 274, 275] (see [276] for a review). For example, a test of the
simple "QED point-like" R“

ú model [277], where the Dalitz decay is performed directly
and the involved electromagnetic form factor is chosen to be constant, would be possible.

Proton-nucleus collisions

The dilepton production in proton-nucleus (pA) collisions, as a cold nuclear matter sce-
nario, is discussed for a proton projectile that scatters on a niobium target with EKin =
3.5 GeV (pNb). To obtain the cross-section the value reported in [156] (‡pNb = 848 ± 127
mb) is used. A comparison to HADES data [156] of the invariant electron-pair mass spec-

Figure 3.13: Invariant mass spectrum of dielectrons produced by pNb reactions at EKin =
3.5 GeV. Experimental data from [156].

trum is displayed in Figure 3.13. In the low-mass region, the fi and ÷ contributions are
prominent. The fi peak is slightly overestimated, hinting at a problem with the overall
normalization. The experimental data also reveal a stronger shoulder around 0.5 GeV.
Overall experimental data and SMASH results are in reasonable agreement. Therefore,
it seems that the resonance description based on vacuum properties can account for the
dynamics to some extent. In contrast, the underestimation around 0.5 GeV might hint at
an onset of a broadening of the fl-like contribution due to a stronger coupling of the fl to
baryonic resonances.

Figure 3.14 displays the invariant mass spectrum for two di�erent dilepton momentum
windows (0 < pee < 800 MeV and pee > 800 MeV). Again, an overall reasonable agree-
ment is observed. The underestimation of the shoulder at 0.5 GeV is only seen for the
low momentum dileptons, which further points to a broadening of the fl spectral shape.
E�ects by the medium are enhanced for the low momentum dileptons since the decaying
resonances are traversing the medium longer. The Ê and the „ peak are nicely matched.
On the one hand, this validates the extracted N

ú æ „N branching ratio. If one compares
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Figure 3.14: Invariant mass spectrum of dielectrons produced by pNb reactions at EKin =
3.5 GeV in di�erent dielectron momentum (pee) windows. Experimental data from [156].

the peaks between momentum cuts, the peaks are suppressed for the low momentum dilep-
tons. This is caused by the absorption of low-momentum resonances inside the cold nuclear
matter. These findings support the results reported in [156]. Furthermore, this validates
the microscopic dynamics since absorption is a medium e�ect intrinsic to transport ap-
proaches (in contrast to modification of spectral shapes). Initial pp and np reactions are
roughly equally contributing to the pA yield. The relatively solid description of the ex-
perimental data, therefore, hints that the dilepton production cross-section in np collision
at this energy is in better agreement with experimental results than for the lower energies
(cf. Figure 3.11).

The reported findings for the proton-induced reactions (including the results for pp and
np) align with the GiBUU approach [85]. Di�erences are found in the low-mass Ê æ e

+
e

≠

contributions and the fl æ e
+

e
≠ yield composition. The latter is caused by the adaptation

of recent PDG branchings and, in general, a di�erent set of resonance states. Additionally,
the discussion here is extended to include the spectra for the two pee windows. As already
mentioned, similar e�orts as in [85] to improve the agreement with the np experimental
data, such as Bremsstrahlung, are left for the future.

Nucleus-nucleus collisions

In the following, results for four larger nucleus-nucleus collision systems are shown and
compared to experimental data, wherever available. This section also addresses which
spectra are sensitive to additional medium modifications by deviating from results based
on vacuum properties.

CC

Light nucleus-nucleus collisions o�er a good starting point for studying dilepton production
under the assumption of vacuum resonance properties in larger collision systems. Results
in this section include invariant mass spectra of the produced dielectrons in carbon-carbon
(CC) collisions for two kinetic energies: EKin = 1.0A GeV and EKin = 2.0A GeV.

Figure 3.15 shows the spectrum for the lower beam energy on the left with main contribu-
tions originating from the fi, �, ÷ and fl channels. Ê decays do not have a significant impact
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Figure 3.15: Invariant mass spectrum of dielectrons produced by CC reactions. Left:
EKin = 1.0A GeV. Right: EKin = 2.0A GeV. Data from [157, 278].

on the overall yield. The �0 and �+ yields are compatible due to the equal initial numbers
of protons and neutrons, and therefore similar production probability. Comparing with
HADES data [157] reveals a disagreement in the low mass region between 0.15 GeV and
0.4 GeV. Even though the shape potentially matches the data, the total yield is underes-
timated. This can be understood by recalling the previously discussed elementary results
for pp and np. The dilepton production in pp collisions is in good agreement with data,
but np collisions produce too few dileptons. In consequence, an underestimation around
the same kinetic energy is expected since CC is known to be close to a mere superposition
of binary NN reactions [153]. The results for the dilepton invariant mass spectrum in CC
collisions at the higher energy of EKin = 2.0A GeV are shown in Figure 3.15 on the right.
The fi and ÷ contributions dominate the spectrum up to 0.4 GeV, while above this mass,
the yield mainly consists of fl and Ê contributions. At the highest masses, the „ peak is
broadened due to the low resolution of the detector. The data [158] is nicely described
by the total yield. In the region around the Ê-pole mass (M0,Ê = 0.783 GeV), the fl and
Ê contributions are slightly overestimated, which might already indicate an onset of in-
medium modifications. Following the same argumentation as for EKin = 1.0A GeV, that
CC equals a NN superposition as reported in [153], the agreement with the experimen-
tal spectrum suggests that the dilepton emission for elementary np collisions for energies
higher than EKin = 1.0 GeV is in better agreement with experimental data.

Compared to the most recent results from the similar UrQMD transport approach for the
same system ([115], Figure 1), the results presented here compare overall similarly to data,
but are in better agreement in the low and the vector meson pole-mass region. A similar or
better agreement than UrQMD is also found for other systems[115, 163]. On the one hand,
di�erences originate in the detailed investigation of the fl-like contribution by studying the
decay of baryonic resonances (Figure 3.10). The input of the relevant branching ratios in
SMASH was carefully constrained by the dilepton data and more recent PDG data [243].
On the other hand, the di�erent thresholds of the vector meson contributions of the fl and
the Ê lead to notable di�erences. In particular, for the discussed CC system, the fl is, as
the second-largest yield, a significant contribution in the low-mass region. The Ê low-mass
tail is not important for the overall yield. The relative di�erence to the Ê Dalitz decay is,
however, smaller than for pp. In principle, the „ meson again has low-mass contributions,
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but its yield is again too small to be visible on the chosen scale.

The fact that the description of the dilepton production with SMASH matches the data
for EKin = 2.0A GeV validates the resonance treatment and the approach for this energy.
It also shows that no in-medium modifications seem necessary to describe the dilepton
production for such small systems or at least that invariant mass dilepton data are not
sensitive to such modifications. However, it is important to mention that transport ap-
proaches and the shown spectra do include collisional broadening, even if the description
of the resonances is still based on vacuum properties.

ArKCl

On the basis of the dilepton production in elementary and small nucleus-nucleus systems
shown above, larger systems are explored. A good example for an intermediate-sized
collision system is the ArKCl system at EKin = 1.76A GeV measured by HADES [159].
Within SMASH it is modeled with a 40Ar projectile hitting a 37Ar nucleus target to emulate
an average of the 35Cl and 39K composition. Like most of the discussed dielectron invariant

Figure 3.16: Invariant mass spectrum of dielectrons produced by ArKCl collisions at
EKin = 1.76A GeV. Experimental data from [159].

mass spectra, the ArKCl yield shown in Figure 3.16 is dominated by fi and ÷ in the low
and the vector mesons (fl, Ê, „) in the higher invariant mass region above 0.5 GeV. Since
there are more neutrons than protons in the colliding nuclei, the �0 is slightly above the
�+ yield. Although the spectrum is in reasonable agreement with the experimental data
[159] for low and highest invariant masses, two distinct issues are revealed compared to
experimental data. First, the fl contribution is too large in the region between 0.6 GeV and
0.8 GeV. This might be connected to the overproduction in the exclusive fl cross-section
discussed in Section 3.1.1. The fl in pp reactions at EKin = 1.76A GeV (ÔsNN = 2.61 GeV)
is almost solely produced by the overestimated exclusive process pp æ ppfl (Figure 3.4).
The second issue is an underestimation in the mass region between 0.15 GeV and 0.5 GeV.
In combination, both issues indicate the limit of the assumption of resonances with vacuum
properties. The low mass region is known to be enhanced by in-medium modifications,
i.e. a broadening of the vector meson spectral functions, in particular of the fl meson
[136]. This broadening also has an influence on the fl pole mass region since a broadening
will decrease the yield in this region. That in-medium modifications are relevant is also
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supported by the agreement with experimental data for CC reactions at the similar energy
of EKin = 2.0A GeV. The agreement is expected to translate to a larger system if no
additional medium e�ects become relevant.

Therefore, this result suggests that dilepton emission in systems as large as ArKCl is
sensitive to in-medium modifications of resonances that go beyond the intrinsic collisional
broadening mentioned above. To verify this hypothesis, a comparison with a coarse-
graining approach [117] that employs in-medium modifications of spectral functions is
presented in Section 3.1.3.

AgAg

Figure 3.17: Left: Invariant mass spectrum of dielectrons produced by AgAg collisions
at EKin = 1.58A GeV. Right: Origins to the fl æ e

+
e

≠ decay contribution in the high
invariant mass region.

The comparison between the di�erent collision systems allows assessing the magnitude of
medium e�ects. Figure 3.17 (left plot) shows the invariant mass spectrum for dielectrons
produced in AgAg collisions for a kinetic energy of 1.58A GeV. The di�erent channels
contributing to the spectrum are displayed as well, with dominant contributions from the
fi

0 decay for low masses and the vector meson decays (fl, Ê and „) around their respective
pole masses. Also shown in Figure 3.17 (left plot, gray line) is the yield of the other large
collision system studied by HADES: AuAu at EKin = 1.23A GeV, which is discussed in
the next section. The total yield of the larger AuAu system with lower beam energy is
strikingly similar. Only a slightly higher yield is observed for smaller masses. The higher
beam energy of AgAg seems to overall compensate for the smaller system concerning the
dilepton production.

Of special interest in the invariant mass spectrum is the yield above the „ peak, which
o�ers insights into the temperature of the medium and might become experimentally
accessible for the first time with the upcoming high-statistics data for AgAg at these low
energies. Therefore, it is crucial to understand all dilepton emitting sources in this region
of the spectrum. As seen in Figure 3.17 (left plot), the dilepton production observed with
SMASH above the „ peak is dominated by the fl contribution. Figure 3.17 (right plot)
therefore shows the di�erent processes from which the fl yield originates in the mass region
above and around the „ pole mass. The fl contribution is either produced by the decay
of baryonic resonances into flN or by fi annihilation. Observed is a dominance of the fi

annihilations, especially in the mass region above the „ peak. Sub-leading contributions to
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the fl tail are found for di�erent �ú and N
ú decays. Most prominent here is the �ú(1700).

AuAu

The largest collision system discussed in this work is gold-gold (AuAu) scattering at EKin =
1.23A GeV, matching the measurements by HADES [258]. The invariant mass dielectron

Figure 3.18: Invariant mass spectrum of dielectrons produced by AuAu collisions at
EKin = 1.23A GeV.

spectrum (Figure 3.18), which is not acceptance filtered, reveals some di�erences to the
previous cases even without a comparison to the not yet available experimental data.
The � yield is larger in relation to other contributions than for smaller systems. The
„ peak is most prominent in this spectrum and the fl contribution shows a slight bump
at the pole mass since the reaction fifi æ fl dominates over the di�erent Dalitz-like N

ú

and �ú contributions. The large amount of secondary reactions can explain both e�ects.
Figure 3.18 also shows an ÷

Õ contribution, which is only visible since a large vertical scale
is chosen for this plot. This illustrates that its contribution is negligible, especially for
smaller systems. Furthermore, the limited statistics suggest that ÷

Õ is rarely produced
even in large systems. The fl is dominant up to the 2mfi threshold and remains one of the
leading contributions for lower masses. Even though the statistics are limited below the
hadronic threshold, it can be seen that the direct Ê contribution is on the same order of
magnitude as the Ê Dalitz contribution. This shows that towards larger systems (compare
Figure 3.7 and Figure 3.15, right plot), the di�erence between the direct and Dalitz Ê decay
becomes smaller. In other words, the sub-threshold contributions become more prominent
the larger the system. Only the „ contribution remains small since it is suppressed for the
low energies discussed here. This might change for higher energies with a larger overall „

production.

A first partial comparison of the dilepton emission in AuAu systems with transverse data
is reported in Figure 3.23. A complete set of more di�erential predictions is given in
Appendix B, which are also used to study the dependence of medium e�ects on invariant
mass, transverse momentum, rapidity and centrality in the following section.

3.1.3 Coarse-graining results
To investigate the e�ect of in-medium modifications, the hadronic evolution of SMASH is
coarse-grained (CG) in this section following the original idea from [114]. This means that
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macroscopic quantities are extracted locally from the microscopic transport model, en-
abling the determination of thermal dilepton emission from those regions. The framework
used here is developed by Endres et al. [117] and introduced in Section 2.4.3. To recall,
the dilepton radiation is a mix of the dilepton production from thermal dilepton emission
rates and the usual hadronic transport contributions. Thermal rates together with the
freeze-out contributions result in the coarse-graining contributions for the fl and Ê (CG-fl
and CG-Ê). The cocktail is complemented with the relevant transport contributions of fi,
÷ and „ from SMASH.

Before looking at the results for dilepton emission in the context of experimental data,
the thermodynamic properties of the di�erent systems are considered. The evolution of
macroscopic quantities in the central cell at the origin of the coarse-graining grid for
ArKCl, AgAg and AuAu, at their SIS energies is given in Figure 3.19. The upper plot
shows the evolution of the baryon flB and energy ‘ density in units of the ground-state
density, the bottom plot the extracted temperature and baryon chemical potential for
the three systems. The figure illustrates the di�erences in the system’s evolution at the
center of the collision: ArKCl as the smallest system only builds up a smaller density than
the larger systems. AgAg builds up the density quicker since the beam energy is higher
and falls o� faster than AuAu. Both systems, however, behave similarly in terms of the
maximum density that they reach. AuAu, as the largest system, maintains large densities
the longest. The di�erences in density mainly translate into di�erences in the decline of T

and µB over time, which shows a clear ordering with the system size. All systems reach a
plateau in baryon chemical potential at 750≠900 MeV and a similar maximum temperature
of around 100 MeV. Note that the values shown here are maximum values at the point of
highest density (central cell) in the system, which illustrates the phase diagram’s maximal
reach. The result confirms that the cell evolution is reasonable since the expectation
and results reported in [117, 279], that are based on the hadronic space-time evolution of
UrQMD, are matched. This further validates the SMASH approach and forms the basis
for the more advanced analysis of the dilepton emission of the coarse-grained evolution.

Results for the three largest systems studied here are presented – ArKCl, AgAg and AuAu.
The two di�erent approaches used in this work are compared: First, the dilepton yield
from the transport model SMASH as discussed above (referred to as non-CG); although
the medium e�ect of collisional broadening is included, no in-medium modifications are
incorporated. Second, the outcome from the coarse-graining approach, which employs
thermal rates including an in-medium description for the fl and Ê meson; those medium-
modified dilepton contributions are combined with unmodified cocktail contributions (fi,
÷, „) from the SMASH simulations.

Results for the dilepton emission

First, the focus is on the dilepton emission from ArKCl collisions at EKin = 1.76A GeV.
The total SMASH vacuum transport result (non-CG) is underestimating the invariant
mass spectrum for this system in the low mass region and overestimating it in the fl

pole mass region (cf. Figure 3.16). Figure 3.20 shows the results from the coarse-graining
approach, which again are cut in momentum and angular distribution as well as filtered for
the acceptance [266] to compare to experimental data from HADES [159]. All solid lines
refer to SMASH dilepton production (the same as in Figure 3.16). Only the fi and „ yields
are important for the overall spectrum at low and high invariant masses, respectively. The
dashed contributions for fl and Ê display results from the coarse-graining approach and
include the thermal dilepton rates containing in-medium modifications and the freeze-out
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Figure 3.19: Evolution of the energy and baryon density in units of the ground-state
densities ‘0 = 146.5 MeV/fm3 and fl0 = 0.16 fm≠3 (upper plot), temperature T and bary-
ochemical potential µB (lower plot) in the most central cell over time for ArKCl collisions
at EKin = 1.76A GeV, AgAg collisions at EKin = 1.58A GeV and AuAu collisions at
EKin = 1.23A GeV. All results for SMASH-1.6 [211].

67



Figure 3.20: Invariant mass spectrum of dielectrons produced by ArKCl collisions at
EKin = 1.76A GeV within the Coarse-Graining approach. Dashed lines from coarse-
graining and solid lines from SMASH dilepton production (as in Figure 3.16). Experi-
mental data from [159].

contributions for cold cells. Also, the multi-fi contribution is added but has little e�ect
on the overall spectrum due to the low beam energy. On the contrary, the e�ects on the
vector meson dilepton yield are large. For both fl and Ê, the yield is shifted from the pole
mass to the low-mass region.

Quantitatively, the agreement of the overall yield (all) with experimental data [159] in
Figure 3.20 is greatly improved with the in-medium modifications of the vector meson
spectral functions employed in the coarse-graining approach compared to the SMASH
dilepton production based on vacuum resonance properties. Only the normalization on
the fi multiplicity leads to an overestimation of the fi peak for low invariant masses and,
consequently, a slight overproduction around 0.15 GeV. It can be concluded that a sensi-
tivity to in-medium modifications in the ArKCl spectrum is confirmed.

The coarse-graining results for the dilepton production in AgAg reactions with EKin =
1.58A GeV are seen in Figure 3.21. The result in the figure reveals that the multi-fi
yield becomes dominant beyond the „ peak. This essentially is the same finding when
only considering the dilepton production from the SMASH approach (cf. Figure 3.17),
where the (two-fi) fl state is the largest contribution: the region above the „ pole mass is
dominated by fi annihilation reactions. If the total dilepton production from the transport
approach alone (non-CG in Figure 3.21) is compared to the coarse-graining yield, a clear
di�erence is seen. The yield is shifted away from the vector meson peaks. This finding
confirms the result in ArKCl. The dilepton production in larger systems is sensitive to
including medium modifications to the vector mesons spectral function. Comparing the
total contributions from the coarse-graining approach already to the below discussed AuAu
(yellow line in Figure 3.21) reveals again (cf. Figure 3.17) that both systems emit dileptons
similarly. Only the AuAu spectrum in the fl dominated region between 0.15 and 0.6 GeV
shows a small but consistent higher emission than AgAg, which grows towards smaller
invariant masses and hints at larger medium e�ects in the larger (AuAu) system.
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Figure 3.21: Invariant mass spectrum of dielectrons produced by AgAg collisions at
EKin = 1.58A GeV within the coarse-graining approach. Dashed lines from coarse-graining
and solid lines from SMASH dilepton production (as in Figure 3.17).

Figure 3.22: Invariant mass spectrum of dielectrons produced by AuAu collisions at
EKin = 1.23A GeV within the Coarse-Graining approach. Dashed lines from coarse-
graining and solid lines from SMASH dilepton production (as in Figure 3.18).
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Predictions for AuAu collisions at EKin = 1.23A GeV within the coarse-graining approach,
which are not acceptance filtered, are shown in Figure 3.22. The comparison of the SMASH
dilepton result for the total yield from Figure 3.18 (non-CG) with the spectrum from
the coarse-graining approach (all) hints at a large modification of the yield. Di�erences
are observed in the low-mass region and around vector meson pole masses analogously to
ArKCl and AgAg. Still, the e�ect in the intermediate-mass region seems more pronounced
than in ArKCl. Also, in the intermediate invariant mass region, the multi-fi contribution
leads to deviations, similar to AgAg. Again the only relevant yields from the SMASH
contributions are the fi and „ channels.

The presented findings for ArKCl, AgAg and AuAu overall align nicely with previous
results obtained with the UrQMD coarse-graining transport approaches [117, 279].

Figure 3.23: Acceptance-corrected dilepton excess yield from HADES for an invariant
mass window of 0.15 ≠ 0.85 GeV confronted with di�erent model calculations. Excess
yield extracted by subtracting ÷, Ê contributions as well as the NN reference normalized
to the number of neutral pions. Fig. 3 from [280].

Recently, the HADES collaboration confronted the presented predictions for the AuAu
system with experimental data for an invariant mass window of 0.15 ≠ 0.85 GeV [280],
which is most sensitive to the fl dilepton emission. While the available data is only able to
probe the fl contribution, the same conclusions are reached as for ArKCl. The agreement
with experimental data, which appears to have lost any (resonance peak) structure for the
large AuAu system, is greatly improved if the coarse-graining approach is employed. The
fl contribution without medium modifications (blue dashed line, same as the blue solid
line in Figure 3.18) alone overshoot the data for the total yield around the pole. The same
is found for the HSD [162] approach without a fl in-medium broadening. Note, however,
that the two ”vacuum fl“ contributions di�er in the low-mass tail due to the in SMASH
included contributions below the hadronic threshold. The trend of the experimental data
of a rising low mass tail is therefore only observed for SMASH (see discussion in next
section). An in-medium description, i.e. an explicit broadening of the spectral function,
improves the description of the experimental data for all models with only small deviations
remaining. Reassuring is the agreement between the here presented (CG SMASH ) and
the two other coarse-graining approaches [117, 253], which all employ the same underlying

70



in-medium spectral function.

With the presented, albeit limited experimental data comparison, it is clear that the dilep-
ton emission with vacuum resonance properties, which was shown in Figure 3.18, reveals
an even larger overestimation in the intermediate-mass region in comparison to ArKCl.
The in-medium modifications are more important in a larger medium due to the already
observed overestimation in the fl pole mass region without summing overall contributions.
The extension of the available experimental data to higher invariant masses will still be
valuable to e.g. further constrain the „ production (see Section 3.2). Comparing to more
di�erential predictions as presented below for AuAu, will allow probing the dilepton and
its medium e�ects in much greater detail.

Comparison of the vector meson yields

(a) ArKCl (b) AgAg

(c) AuAu

Figure 3.24: Comparison of invariant mass spectra of dielectrons produced by fl and Ê

within the Coarse-Graining approach versus the default SMASH dilepton production.

The study presented here allows for a unique direct comparison between a coarse-graining
approach and the dilepton production from a hadronic transport approach. This becomes
possible since both rely on the same hadronic evolution. SMASH also includes low-mass
vector meson contributions, which enable a comparison in this mass region. The com-
parison for the total yield was already shown above. This section focuses specifically on
the vector meson (fl and Ê) dilepton contributions, which are of most interest since an
in-medium spectral function is employed for them. Therefore, this allows to contrast the
di�erent medium e�ects at play: On the one side, the transport approach with collisional
broadening and vacuum resonance properties is shown, which includes the coupling of
baryonic resonances to the vector mesons via Dalitz decays (cf. Figure 3.10). On the
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other side is a full in-medium description of the vector meson spectral functions.

Figure 3.24a shows the direct comparison between the vector meson yields for the smallest
system of ArKCl. As expected from a broadening scenario of the vector meson spectral
function, an enhancement of the low-mass tail together with a decrease in the pole mass
region, especially for the fl yield, is observed. The fl yield from coarse-graining shows
an almost exponential decrease with mass and dominates the spectrum over most of the
covered invariant mass range. The Ê yield is only around its pole mass equally large.
Also, the broadening of the Ê spectral function is nicely reflected in the dilepton emission
around the peak.

Figure 3.24b and Figure 3.24c similarly show a shift from the pole masses in the fl and
Ê yield, in this case of the AgAg and AuAu system. Again, the broadening of the Ê

peak and the enhancement of the fl low-mass tail is nicely observed. The shape of the fl

contribution almost completely flattens out and reveals an exponential decrease, whereas
for the Ê a dominating peak around the pole mass remains. As expected from the similar
total dilepton spectra for both systems, the modification introduced from the coarse-
graining approach is almost identical. All comparisons in Figure 3.24 interestingly reveal

Figure 3.25: Invariant mass spectra of dielectrons produced by AuAu collisions at EKin =
1.23A GeV for di�erent centrality classes (columns) and pT windows (no pT cut for top
row). Only fl and Ê contribution shown for Coarse-Graining approach (dashed lines) and
the default SMASH dilepton production (solid lines). Di�erence in total emission marked
as red area.

that the SMASH contributions obtain a low-mass tail similar to the CG contributions,
which also appears in the experimental data above the fi dominated invariant region (cf.
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Figure 3.26: Transverse momentum spectra of dielectrons produced by AuAu collisions at
EKin = 1.23A GeV for di�erent centrality classes (columns) and invariant mass windows
(no invariant mass cut for top row). Same comparison between Coarse-Graining approach
(dashed lines) and the default SMASH dilepton production as in Figure 3.25. Di�erence
in total emission marked as red area.

Figure 3.20 or Figure 3.23). In SMASH, the Dalitz-like tail for low masses stems from the
di�erent baryonic-resonance contributions (compare Figure 3.10). Although this is not
a medium e�ect, since it is already observed in proton-proton reactions, the underlying
mechanism leading to the pronounced low-mass tail, namely the coupling of the vector
meson to baryonic resonances, is the same that is found to be important for the in-medium
modifications of the spectral functions used in the coarse-graining framework [145, 255]. It
is clear from the di�erences that collisional broadening plus baryonic Dalitz decays cannot
account for the full e�ect of the medium. Nevertheless, the presented results quantify the
di�erent e�ects on the dilepton spectrum for the first time.

The isolate the di�erence further specific invariant masses, transverse momentum windows
and centrality classes of the electron pairs are displayed in Figures 3.25, 3.26 and 3.27. The
comparison shown in the figures displays the same contributions as Figure 3.24 of the fl

and Ê for the coarse-graining and the (vacuum) transport contributions3. In addition, the
di�erence of the total emission between both approaches, caused by the already observed
sensitivity to the medium e�ects, is marked in red. This allows to easily observe and
further quantify the e�ect of the medium modifications of the vector mesons on the total

3The full results of the transport calculations for the mee, pT and y spectra in the di�erent centralities
classes are provided in Appendix B for completeness.
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Figure 3.27: Rapidity spectra of dielectrons produced by AuAu collisions at EKin =
1.23A GeV for di�erent centrality classes (columns) and invariant mass windows (no invari-
ant mass cut for top row). Same comparison between Coarse-Graining approach (dashed
lines) and the default SMASH dilepton production as in Figure 3.25. Di�erence in total
emission marked as red area.

spectrum. The dependence on the centrality for the mee, pT and y spectra is overall weak.
More peripheral systems appear to be less sensitive. In Figure 3.25, the invariant mass
spectra for lower momenta exhibit a slightly larger modification, which is a similar finding
as shown for pNb in Figure 3.14. The e�ect of the medium in the presented calculations
is most e�ectively isolated by splitting the spectra into di�erent invariant mass windows
as displayed in Figure 3.26 and Figure 3.27. A modification of the total yield is most
pronounced for the 150 to 300 MeV and 300 to 450 MeV invariant mass region. High-
quality experimental data in these phase-space regions would provide further constraints
on the discussed modifications of the vector meson spectral functions.

3.1.4 Summary

The results in this section represent a comprehensive review of the complete set of avail-
able dielectron production measurements at SIS energies based on the hadronic transport
approach SMASH. Dilepton spectra are shown to be sensitive to medium modification of
the vector meson spectral function in larger systems already at the relatively low energies
studied here. These results hint at an onset of chiral symmetry restoration, to which a
changing vector meson spectral function is connected.
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The approach in general and the dilepton production in particular is validated by a good
agreement with experimental data in proton-nucleus and nucleus-nucleus collisions up
to a system size of CC reactions. Binary interactions and vacuum resonance properties
are su�cient to describe the hadronic dynamic for these small systems. The agreement
originates from the solid description of elementary pp collisions. Only for a low kinetic
energy around 1 GeV is an underestimation for quasi-free np collisions and subsequently
for CC observed. The dilepton decays are taken into account for the spectral function
calculation for all vector mesons (fl, Ê, „). The subsequent contributions, down to 2me

below the hadronic threshold, are significant for the low-mass region and become more
prominent the larger the collision system is.

The hadronic transport approach is complemented by the coarse-graining approach based
on the same hadronic evolution to study the sensitivity of the invariant mass spectrum
to in-medium modifications of the vector meson spectral function for the larger systems
(ArKCl, AgAg and AuAu). Both approaches reveal similar features in their dilepton con-
tributions, including the low-mass tail. Nevertheless, the transport description, including
the coupling to baryons and collisional broadening, cannot account for the necessary signif-
icant modifications visible in larger collision systems caused by an in-medium description
of the vector meson spectral function. An agreement with the available experimental
data is only observed if an in-medium description is employed, indicating the dilepton
spectrum’s sensitivity to a change in the vector meson spectral function.

The well-understood dielectron production is furthermore employed to predict upcoming
experimental results. fip is demonstrated to specifically probe the coupling of the fl meson
to the N

ú(1520) baryonic resonance. AgAg is found to be overall very similar to the AuAu
system suggesting that the dilepton production behaves the same for smaller systems with
higher energies compared to larger systems with lower beam energy. The main source for
the dilepton emission for invariant masses higher than the „ pole mass in AgAg, is the fl

contribution originating from (two) fi annihilations. Similarly, the multi-fi contribution is
dominant beyond the „ peak in the coarse-graining approach.

Overall, the ability of the hadronic transport approach to successfully describe the dilepton
production in small systems and to constrain additional medium e�ects in larger systems
is demonstrated.
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3.2 Strangeness production mechanism
This section is based on [2] and [3].

This section probes the production mechanisms of strange hadrons as another comple-
mentary hadronic observable of special interest (see also Section 1.3.2) after studying the
dilepton emission above, which o�ers an unperturbed view into the in-medium resonance
properties. Again the hadronic transport approach SMASH is employed to provide a cas-
cade calculation with vacuum properties. Similar to the dilepton results, using a cascade
calculation without medium e�ects like potentials allows constraining the excess for addi-
tional in-medium modifications in the experimental data. The low beam energy kinematic
regime reached by the discussed SIS-18 experiment HADES is close to the production
threshold [173], making it particularly sensitive to production mechanisms since secondary
reactions become necessary for the particle production. Experimentally, strangeness pro-
duction at low energies is enhanced in nucleus-nucleus reactions compared to elementary
reactions [68, 174]. Upcoming results for the AgAg collision system will allow to further
understand the production of strange hadrons by o�ering experimental data at an in-
termediate size but with slightly higher energy than the previously taken AuAu data at
EKin = 1.23A GeV. Therefore, strangeness production in AgAg is a focus in this section.

In the following, the strangeness production with the transport approach SMASH is first
introduced in general by showing the comparison of K mesons, as the most abundant
strange particle, to experimental data and discussing the scaling of strange hadrons with
the number of participants. Then in the second part of this section, the theoretical dis-
crepancies to data for the few GeV energy regime for the � baryon and the „ meson
are discussed. Much higher yields were observed than expected by thermal model cal-
culations [68] (see also Figure 1.11). There are several attempts to explain these high
production yields [175, 176, 177]. This section focuses on one possible explanation for
the high production yield of the � baryons and „ mesons. Their discrepancies compared
to thermal model calculations might be explained by their production in decays of high
mass nucleon resonances. This mechanism is based on the idea in [177] and will be first
constrained in elementary reactions after being applied to larger systems. In this sense,
the � and „ yield is predicted without explicit medium e�ects and solely based on the
additional production mechanism.

For the � baryon, predictions are provided for the AgAg system based on a constraint of
the decay probabilities from experimental data for elementary reactions. They will allow
constraining the viability of the � (and „) production from high mass resonance decays.
The found branching ratio is verified by comparisons to existing experimental data for
ArKCl collisions.

3.2.1 Kaon production and Npart-scaling

The K production is discussed first in this section4. It is directly related to the � and
„ production, since the dominant decay of the „ meson („ æ KK̄) is an important
production (so called feed-down) mechanism for the antikaons. Constraining the „ pro-
duction itself, thereby simultaneously constraints the (anti-) kaon production. The other
two processes that produce (anti-) kaons in SMASH are (i) decays of baryonic resonances
(Nú

, �ú) into hyperon (Y ) and kaon (Nú
, �ú æ Y K) and (ii) strangeness exchange in a

4The results in this section are given as context for the strangeness production in general and are taken
from [2] and [3]. Original contributions of this thesis are found in the following Section 3.2.2 only.
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Figure 3.28: Exclusive production cross-section for pp æ �pK
+ and pfi

≠ æ �K
0. Ex-

perimental data from [281, 282, 283, 284, 285, 286, 287, 288, 289, 290]. Figure taken
from [2].

Figure 3.29: mT spectra of K
+ and K̄

≠ in AuAu collisions at EKin = 1.23 GeV. Experi-
mental data from [292].Figure taken from [2].

pion-hyperon scattering (fiK æ K̄N), which mostly is realized via a hyperon resonance
state Y

ú (fiK æ Y
ú æ K̄N) (see Section 2.2.3).

The K production in SMASH is carefully constrained by comparisons with elementary
cross-section [2]. An example of two important cross-sections for K production is shown
in Figure 3.28. The cross-section is overall comparable with the available experimental
data. Some energy regions are not perfectly described. Branching ratios of N

ú
, �ú

, Y
ú

that are involved in the K production are varied within the PDG limits until a satisfac-
tory agreement is achieved. In future work, such a process could also be automated and
improved by a Bayesian fit [291]. The agreement of K production in heavy-ion collision
in the few GeV energy range is not as good as illustrated by Figure 3.29, which shows a
data comparison for AuAu collisions at EKin = 1.23 GeV. While the K

+ at large rapidities
agrees with the data, at mid-rapidity, an overproduction is found. The same is true for
K̄

≠ in all rapidity windows. The observed overproduction either reflects the remaining
discrepancies in the elementary cross-section or hints that additional medium e�ects have
a significant influence. Possible in-medium e�ects include modifications to cross-sections
or nucleon-kaon potentials, which are known to a�ect the strangeness production [164].
Furthermore, a hyperon-nucleon potential [293] based on the qualitative features of a chiral
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e�ective theory at the next leading order could potentially be employed. For the presented
results, only Fermi motion is employed. Nucleon-nucleon potentials are neglected since
they are found not to influence the strangeness production.

Figure 3.30: Multiplicities per number of participants N/Npart as a function of Npart. Four
centrality classes (0 ≠ 10%, 10 ≠ 20%, 20 ≠ 30%, 30 ≠ 40%) are used for each system. Solid
lines are fits for the function N Ã (Npart)–. Figure taken from [3].

To put the strangeness production for SMASH (version 1.6) into an even larger context,
Figure 3.30 shows the particle yield N (over Npart) for a selection of strange particles,
including K, for a large set of systems and centrality classes. The centrality is characterized
by the number of participants Npart. Impact parameters and Npart for each centrality class
are determined using Glauber calculations provided by [294].

The results are fitted using the method of least squares to the function
N

Npart

= C · (Npart)–≠1 (3.2)

with – being the fitting parameter of interest here.

This scaling behavior for Npart is chosen to compare – with results from [173] for AuAu
and allows to study if a universal system size dependence can be observed. The universal
value reported in [173] is –

exp = 1.45 ± 0.06. In [173] three other transport approaches
were compared to the experimental data. The values for SMASH are added here including
3 more collisions systems (see Figure 3.30). They deviate from the data by a maximum
of 20% with –�+�0 being the closest to the experimental value. The deviations of – for
the di�erent particle species could be seen as a systematic uncertainty. Note that the
calculations here do not take any potentials into account and represent a cascade baseline.
Since the – parameter at least for K mesons is sensitive to the sti�ness of the EoS, when
potentials are employed, as found in [164], deviations between the experimental value and
the transport approach could change with the inclusion of potentials. Furthermore, using
the model-dependent Npart value by the Glauber model could also explain di�erences for
–.

Overall, Figure 3.30 illustrates that the strange particle multiplicities exhibit the previ-
ously discovered Npart-scaling with system size, with a similar exponent than reported by
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Figure 3.31: Invariant mass spectrum of dielectrons produced by pNb and pp reactions at
EKin = 3.5 GeV. Total and „ æ ee contribution with added N

ú æ „N decays. Experi-
mental data from [156].

the HADES collaboration [173] .

3.2.2 Production of „ and � from the decay of heavy Nú resonances

The additional production mechanism studied here in detail, follows the idea from [177] and
extends the SMASH approach by adding new decay channels for heavy N

ú resonances that
produce „ and �. The two added decay channels are N

ú æ N„ and N
ú æ �KK. They

enhance the production of both species. This is necessary since the yield is underpredicted
for both in comparison to experimental data. One of the main aims of this work is to
predict the „ and � yields with this mechanism after constraining them with available
elementary data. The comparison with upcoming experimental data will show if these
decays are a potential source of the seen excess, particularly for the �. Note that the same
general idea of constraining with experimental data of elementary systems is followed
for the K production and as reported above, partly unsuccessful. However, for the here
proposed mechanism first results for larger systems (ArKCl) already look promising, as
described below.

„ production

Since the experimental data for the „ production in elementary systems is only available
close to the production threshold, results for the dilepton production are employed as the
main constraint for elementary reactions here, which are in detail described in the previous
section. The invariant mass spectrum allows to identify a peak around the „ pole mass,
produced by the „ æ e

+
e

≠ decay that is directly related to the number of produced „ in
the collision.

Figure 3.31 shows the strong „ peak that surfaces around 1 GeV in the invariant dielectron
mass spectrum for the pNb system at EKin = 3.5 GeV (left plot). From the depicted
total yield, it is clear that the „ contribution is dominant in this region (see also the
result with all contributions in Figure 3.13). Therefore the good-quality experimental
data points for this invariant mass are used to constrain the N

ú æ „N branching ratios
for all nucleon resonances with a pole mass of 2080 MeV or higher. The found value for
the fixed branching ratio for SMASH-1.1 is 0.005, which is larger than the value reported
in [295]. The branching leads to an agreement with experimental data, as Figure 3.31
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N(�≠) pNb ArKCl

SMASH-1.6 ¥ 0.0 6.25 ◊ 10≠7

�≠ from Nú 2.04 ◊ 10≠4 1.95 ◊ 10≠4

HADES (2.0 ± 0.4 ± 0.3) ◊ 10≠4 (2.3 ± 0.9) ◊ 10≠4

Table 3.1: �≠ yield in pNb at EKin = 3.5 GeV and ArKCl at EKin = 1.76A GeV collisions.
HADES experimental data from [296, 174].

shows. The pA system is the most elementary system available as constraint, which
means medium e�ects like absorption also play a role. Unfortunately, due to large error
bars, the corresponding elementary pp data that would o�er a clean vacuum reference
only provides an upper bound in the „ peak mass region. Nevertheless, the obtained value
is consistent with this bound since an agreement within error bars is seen in the right plot
of Figure 3.31. The same is true for the larger ArKCl, where the data is also not su�cient
for a constraint (cf. Figure 3.16).

Predictions for the dilepton prediction with this branching ratio for the „ peak for larger
systems were already presented for AgAg and AuAu in Figure 3.17 and 3.18. For the
higher measured beam energy in AgAg collisions, the peak is more pronounced in the
spectrum. Upcoming experimental data at the peak will therefore be valuable to further
constrain the „ production and the N

ú æ N„ decay as its production mechanism.

� production

Theoretical approaches famously underpredict production of � baryons [174]. SMASH
without an extension for the � production is no exception as can be seen in Table 3.1
and 3.2 (results for SMASH-1.6 [211]). In SMASH (version 1.6), the � is produced by the
decay of heavy hyperon resonances like the �(2030), �(2100) or resonances of the � itself.
They are formed either by nucleon-kaon or hyperon-meson scatterings (see Section 2.2.3)
making the production of � rare since these are secondary scatterings with partners that
are not abundant during a collision. In addition, the decaying resonances are heavy and the
branching ratios for decays involving the � are small, which explains the underprediction
for the � multiplicity.

Therefore, the approach is extended by adding new decay channels for heavy N
ú reso-

nances, namely N
ú æ �KK as described above. The resonance treatment in SMASH

(see Section 2.1.1) prevents adding any decays for which the combined pole mass of the
final state particles is larger than the pole mass from the decaying resonance, although
such a decay would be strictly physically speaking possible. This restricts the addition
of the new decay channel to the heaviest N

ú resonances. The decay channel is added to
the two heaviest resonances (N(2220), N(2250)) and their pole mass is shifted slightly
upwards (N(2220) æ N(2350), N(2250) æ N(2400)), which is possible due to their rela-
tively large width (� Ø 400 MeV) and experimental uncertainties for the pole masses (on
the order of 100 MeV).

The branching ratio for the new N
ú æ �KK decay is now constrained with the experi-

mental data from pNb reactions, which is the most elementary data available. The result
is BR(Nú æ �KK) = 0.5. The results for pNb before and after the addition of the �
production from heavy N

ú decays are shown in Table 3.1. Before, although theoretically
possible, no � production (for the given number of calculated reactions) is observed due to
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�≠
/(� + �0) pNb ArKCl

SMASH-1.6 ¥ 0.0 1.1 ◊ 10≠5

�≠ from Nú 1.5 ◊ 10≠2 4.5 ◊ 10≠3

HADES (1.2 ± 0.3 ± 0.4) ◊ 10≠2 (5.6 ± 1.2±1.8
1.7) ◊ 10≠3

Table 3.2: �≠
/(� + �0) ratio in pNb at EKin = 3.5 GeV and in ArKCl at EKin = 1.76A

GeV. HADES experimental data from [296, 174].

the lack of many secondary reactions in the small pNb system. After the addition of the
new channel with the tuned BR(Nú æ �KK) of 0.5, the experimental data from HADES
[296] is matched. The same is true for the �≠

/(� + �0) ratio as seen in Table 3.2. Com-
pared to [177] a larger branching ratio is reported here since the decay is included for less
and heavier resonances. A similar observation was made for the branchings of N

ú decays
into „ above. Interestingly, if one calculates the ratio of the two branching ratios of „ and
�, BR(Nú æ „N)/(BR(Nú æ �KK) = 0.02, the relation exactly matches for the two
branching ratios reported in [177]. Note that, to calculate the ratio, the BR(Nú æ „N)
for SMASH-1.6 [211] needs to be slightly modified to 0.01 in comparison to the quoted
results above for SMASH-1.1. This becomes necessary since other branchings are updated
in SMASH-1.6 [211] with values from the PDG [256].

Next, the � production is compared to available experimental data for a larger system to
verify the newly introduced treatment. Tables 3.1 and 3.2 show that the � production
in ArKCl is also matched well within the errors, which suggests that in-medium e�ects
might not be as significant on the � as on the K production mechanisms.

Figure 3.32: Results for the particle production yields for AgAg collisions at EKin = 1.58A

GeV at 0-10% centrality from SMASH-1.6 [211] (stars) compared to the modified branching
ratios for high mass resonances (circles). Figure from [3].

On this basis, the � production for AgAg collisions is calculated, which matches the
upcoming experimental data set from HADES. Predictions for the most relevant particle
yields in AgAg collisions at EKin = 1.58A GeV in the 0 ≠ 10% centrality class are depicted
in Figure 3.32 to provide the context for the specific study of strange particles. The
results from SMASH-1.6 [211] (stars) are confronted with the yields resulting from the
version, including additional N

ú æ �KK resonance decays (circles). The most abundant
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particles in low-energy collisions are protons and pions with a charged pion ratio fi
+

/fi
≠

that is smaller than 1 reflecting the isospin imbalance of the AgAg collision system. All
strange particle multiplicities are smaller since more energy is needed to produce their
higher masses and newly formed strange quarks. Figure 3.32 also shows that the addition
of N

ú resonances decaying into �≠-baryons only influences the �≠ yield itself significantly.
The „ meson yield is also slightly altered since adding a new decay channel lowers the
weight of the existing channels. The e�ect is fortunately small since the �≠ is merely
produced once in 1000 collisions while the production rates of the other particles are
significantly higher. The predicted values for multiplicity and �≠

/(� + �0) ratios are also
explicitly given for future reference and comparison to the upcoming experimental data
in Table 3.3. Since the �≠ is produced in a multi-step process similar to K

+ [164], the

AgAg N(�≠) �≠
/(� + �0)

SMASH-1.6 8.50 ◊ 10≠6 2.71 ◊ 10≠5

�≠ from Nú 1.78 ◊ 10≠3 5.63 ◊ 10≠3

Table 3.3: Predictions for �≠ yield and �≠
/(� + �0) ratio in AgAg collisions at EKin =

1.58A GeV .

yield is sensitive to the employed treatment of the Fermi motion, the resonance lifetime
and the underlying equation of state for the potentials, which influences the density near
the collision center and in turn also the resonance lifetimes. For the results here, the same
treatment established in other studies with SMASH (other results in this work and [98,
195]) without potentials is chosen to limit the uncertainties and make the calculation
numerically less expensive.
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Summary
Overall, the approach to produce „ mesons and � baryons from heavy N

ú resonance
decays is able to describe them, by other theoretical approaches underpredicted, data
from HADES with only one free parameter. A branching ratio of 0.005 for the N

ú æ
„N decays (for SMASH-1.1 and 0.001 for SMASH 1.6) and 0.5 for the N

ú æ �KK

decays (SMASH-1.6 [211]) is found to lead to an agreement with the experiment. The „

dilepton contribution matches the data in pp, pNb and ArKCl. The � multiplicity and
the �≠

/(� + �0) ratio agree for pNb as well as ArKCl. Interestingly, the relation between
the N

ú decay branching ratios into „ and � is the same as found in previous studies with
other approaches, even though absolutely they are both higher. Note that the available
data is matched with the cascade calculation based on vacuum properties, leaving no
excess that could be attributed to medium e�ects. For the discussed K production, this
situation is di�erent. Also, for the Npart-scaling, while close to experimental values, a
sensitivity to additional medium e�ects like potentials is not ruled out. The comparison
of the predictions in this work with future data, particularly in AgAg collisions, will give
further insights into the origin of the „ and �, their production mechanism, and the role
of potentials.
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Chapter 4

Stochastic rates

In this chapter, collision probabilities for di�erent reactions are directly derived from the
collision integral of the Boltzmann equation. The necessary theoretical considerations are
presented in a comprehensive pedagogical fashion (Section 4.1). Results, in particular,
include the collision probability for multi-particle reactions like 3-to-1, 3-to-2 and 5-to-2
reactions. In addition, the derivations are generalized for n-to-1, n-to-2 and arbitrary
n-to-m reactions, which can be used in the future to extend the approach to other re-
actions. The presented equations are the foundation of a stochastic interpretation of the
microscopic scattering process in a particle gas (stochastic rates or local ensemble method),
where they are used to determine whether and when particles collide. Such a stochastic
collision criterion is introduced in a hadronic transport approach (Section 4.2), which is
an idea already explored in the literature [134, 126, 128, 111, 109, 129, 130]. The ap-
plication of the stochastic collision criterion for specific multi-particle reactions in the
transport approach is discussed at the end of the chapter (Section 4.3). The employed
multi-particle reactions are the mesonic Dalitz decay back-reaction, the deuteron catalysis
and the nucleon-antinucleon annihilation back-reaction. They are of particular interest
for the following studies (in Chapter 5) and enable to address multiple topical research
questions (Section 5.3 and 5.4). Studying reactions with more than two incoming particles
in the following chapter, after presenting the theoretical basis and description within a
transport approach here, is the main topic of this thesis.

Transport approaches usually employ a distance criterion [106, 221, 222] based on a geo-
metric interpretation of the cross-section (see Section 2.2.2). The stochastic rates approach
provides an equivalent treatment for two-particle reactions with three distinct advantages.
First, the equations for stochastic rates are inherently boost-invariant. Second, the col-
lision probabilities are theoretically rigorously based on the fundamental (Boltzmann)
equation of the underlying (kinetic) theory. Third, since no generalization exists for the
distance between more than two particles scattering, the collision integral for geometric
criteria is truncated to only include binary collisions. The collision probability, on the
other hand, is straightforward to generalize to multi-particle reactions.

Before presenting the derivation, the context of the new stochastic rates approach in the
literature is discussed. Compared to previous studies on stochastic rates, the framework
introduced here provides an extension and mainly di�ers in the employed reactions. The
idea of a stochastic collision criterion is introduced in [134] and [126]. In [134], the local

ensemble method is introduced with a focus on the optimization of computing time and
only applied to two-body reactions. The authors of [126] applied the method to multi-
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particle reactions for the first time. Similar as it is done in this work, they also studied
deuteron production. The approach presented here and the one from [126] both include
the deuteron catalysis reaction involving nucleons: Npn æ Nd. For the low energies
discussed in [126] this reaction is likely su�cient since N dominates the system. But,
for higher (intermediate) beam energies (as studied in Chapter 5) the catalysis reaction
have to be extended with the pion catalysis reaction: fipn æ fid [184], similar to a recent
study for small collision systems at high beam energies [127]. Other authors focus on
the BB̄ annihilation reactions that produce multiple mesons [128, 129, 130] with the
PHSD (Parton-Hadron String Dynamics) approach [240]. In their quark rearrangement
model for baryon-antibaryon annihilation and reproduction, all reactions follow the scheme
BB̄ ¡ 3 mesons. In this way, a large set of di�erent reactions can be included. The
later discussed NN̄ ¡ 5fi is therefore modeled as a chain of reactions in this approach.
On the parton level, stochastic rates are studied with the parton transport approach
BAMPS (Boltzmann Approach of Multi-Parton Scatterings), including the ggg ¡ gg

gluon bremsstrahlung reactions [111]. The hadronic transport approach GiBUU also allows
employing a probabilistic collision criterion for three-body reactions (e.g. 3-to-1) [109].

The derivation compiled in the following Section 4.1 resembles and combines notation and
ideas from the ones presented in [128, 111]. Compared to [111], the absence of a known
scattering matrix element makes additional steps necessary before employing the derived
probabilities. A similar idea as in [128] is followed, where the scattering matrix element is
assumed to only depend on the initial center-of-mass energy. This approach di�ers from the
idea in [126], where the matrix element is factorized into two terms as an approximation.
This factorization results in a di�erent formula for the 3-to-2 collision probability (cf.
Section 4.1.10) containing the two-body NN cross-section and a momentum dependent
volume [126]. While also making an assumption about the matrix element, the approach
presented here is more general because it allows treating all processes for which the decay
width or cross-section for the reverse reaction is known.

Overall, this work profits from the previous works on the topic and uses them to extend
the hadronic transport approach SMASH to treat multi-particle reactions. The most
prominent multi-particle results in the literature apply 3-to-2 reactions [126, 128, 111],
which are also introduced in SMASH. Besides treating 3-body reactions, the stochastic
approach is extended in this work to include 5-body reactions for the first time. The
extension is part of the now following derivation of stochastical rates.

4.1 Theory of stochastic rates

4.1.1 Probability of a collision

The particle density distribution function (or also referred to as probability density func-
tion) f = f(r, p, t) gives the number of particles N in the given phase-space interval
d

3
r

d3p
(2fi)3 at (r, p) for time t as

dN = f(r, p, t)d3
r

d
3
p

(2fi)3
. (4.1)

Note that f(r, p, t) is the one-particle distribution function, which gives the number of
particle for one particle species. For a mixture of di�erent species, one-particle distribution
function is needed for each of the species. The factor of (2fi)3 is a choice of normalizing the
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phase space volume. The evolution of the particle density distribution function is given
by the Boltzmann equation (Eq. 1.8) as discussed in Section 1.2.4.

The number of particles inside a timestep of �t changes when collisions occur, basically
particles scattering in and out of the phase-space volume: dN(t + �t) ≠ dN(t) = �Ncoll.
Where �Ncoll inside d

3
r

d3p
(2fi)3 is given as

�Ncoll =
3

ˆf

ˆt

4

coll

�td
3
r

d
3
p

(2fi)3
, (4.2)

where
1

ˆf
ˆt

2

coll
is the referred to as the collision integral. The collision integral states the

number of collisions per timestep per phase space volume.

The probability of a 12 æ 1Õ2Õ collision between a (random) pair of particle 1 and particle
2 inside of �3

x during the next timestep �t (in [t, t + �t]) if considering a random pair
of particles inside the volume is given as the number of collisions between particles 1 and
2 (�N

12æ1
Õ
2

Õ
coll

) over the number of all possible pairings of particles 1 and 2 (�N1�N2):

P12æ1Õ2Õ = �N
12æ1

Õ
2

Õ
coll

�N1�N2

. (4.3)

In preparation for employing the above numerically, the notation was already changed
to signal that non-infinitesimal quantities will be considered, namely d

3
r æ �3

x and
therefore dN æ �N . The proper solution is recovered for su�cient small volumes (�3

x æ
0).

It is already in this most general form obvious that Eq. 4.3 is straight-forward to generalize
for any type of n æ m

Õ reaction with

PnæmÕ = �N
næmÕ
coll

�N1�N2...�Nn
. (4.4)

In principle, all ingredients are listed with the above. The next step is to insert Eq. 4.2
with the collision integral and Eq. 4.1 into Eq. 4.3 and Eq. 4.4. The challenge that needs
to be solved is that the collision integral is not computable in all cases.

4.1.2 The collision integral
Derivation and Stosszahlansatz

In the following, the derivation of the collision integral is discussed since it forms the
basis of the following equations of the collision probability. The derivation follows the one
presented in [297] and follows Boltzmann’s original arguments and assumptions commonly
referred to as the Stosszahlansatz.

The goal is to obtain an expression for �Ncoll/�t, which is the change of particle number
with momentum p1 inside the volume d

3
x

d3p1
(2fi)3 . Note that the non-relativistic case for

the derivation arguments is considered, but full relativistic equations will be eventually
implemented.

The change of particle number can be split into a gain and a loss term to signify that
particles scatter into and out of the phase-space volume.

�Ncoll

�t
= �N

+

�t
≠ �N

≠

�t
. (4.5)
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The assumption referred to as the Stosszahlansatz are the following.

1. Only binary collisions are considered. Note that this assumption is only employed
for the derivation here. The extension of the derived collision integral to account for
any reactions is given in the next section.

2. The momenta p1 and p2 of the two scattering partners before the collision are not
correlated (so called molecular chaos).

3. The distribution function f can be assumed constant over the time and range of the
collision. Or in other words, the mean free path is longer than the collision range.
The collision is short-ranged.

Figure 4.1: Binary collisions of two beams of particles with v1 and v2 (where vi = cpi/Ei)

To find the collision number, a binary collision of two beams of particles with v1 and v2

(where vi = cpi/Ei) is explored (see Figure 4.1). The particle density of both particles is
denoted as dni = fi

d3p
(2fi)3 .

Without loss of generality, the case of one of the scattering beams at rest is examined:
v1 = 0. The total number of particles 1 at x is given by multiplying the momentum density
with d

3
x (see Eq. 4.1). The number of particles 2 colliding with the particles 1 in the time

�t are all in a cylindrical volume (Vzyl, illustrated in Figure 4.2). The base of the volume

Figure 4.2: The “collision cylinder” (adapted from [297])

is the plane in which the particle scatterings are happening, which is given by an angle
element d� multiplied by di�erential cross-section, noted as ‡d� here. The height of the
cylinder in the rest frame of particles 1 is given by vrel�t. The total number of particles
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2 that thereby pass by particles 1 is dN2 = dn2Vzyl = dn2‡d�d�vrel�t. The total number
of collisions is then given as

dNcoll = dN1dN2 = dn1d
3
xdn2‡d�d�vrel�t . (4.6)

Inserting the definition for dn, the equation reads

dNcoll = f1

d
3
p1

(2fi)3
d

3
xf2

d
3
p2

(2fi)3
‡d�d�vrel�t , (4.7)

which results in the number of collisions performed within d
3
rd

3
p1, if the integration of

d
3
p2 and d� is performed. The number of collisions equals the loss of particles 1, therefore

�N
≠ =

⁄

�

⁄

p2
f1f2vrel‡d�

d
3
p1

(2fi)3
d

3
x

d
3
p2

(2fi)3
d��t . (4.8)

The general definition of the di�erential cross-section in the PDG [256] for the binary case
is

‡d� = 1
4E1E2vrel

d
3
p

Õ
1

(2fi)32E
Õ
1

d
3
p

Õ
2

(2fi)32E
Õ
2

1
S1Õ2Õ

|M12æ1Õ2Õ |2(2fi)4
”

(4)(P1 + P2 ≠ P
Õ
1 ≠ P

Õ
2) . (4.9)

More explanations, including details on the matrix element |M12æ1Õ2Õ |2 are given in the
following sections.

Inserting the cross-section definition into the loss term of �N/�t gives

�N
≠

�t
= 1

2E1

⁄
d

3
p2

2E2(2fi)3

1
S1Õ2Õ

⁄
d

3
p

Õ
1

(2fi)32E
Õ
1

d
3
p

Õ
2

(2fi)32E
Õ
2

f1f2

◊ |M12æ1Õ2Õ |2(2fi)4
”

(4)(P1 + P2 ≠ P
Õ
1 ≠ P

Õ
2) d

3
p1

(2fi)3
d

3
x .

(4.10)

Note that even though the necessary symmetry factor S1Õ2Õ is already included here for
consistency, a corresponding explanation is given in the next section.

The gain term �N+
�t is obtained by following the same arguments for two particle beams

colliding with v
Õ
1

and v
Õ
2

scattering within d
3
x

Õ
d

3
p

Õ
1

into d
3
xd

3
p1. Therefore, the final

expression for the collision integral for binary collision is identified as
3

ˆf

ˆt

4

coll

=
⁄

d
3
p2

(2fi)3
(f Õ

1f
Õ
2 ≠ f1f2)vrel

⁄
d‡ (4.11)

with the cross-section integration abbreviated to
s

d‡ for readability.

Note that modifications accounting for the statistics of bosons and fermions were neglected
in this derivation and the following. The reader is referred to [297] for further details.
The quantum extension of the collision integral is the di�erence between the Boltzmann
equation and its quantum analog, the Boltzmann-Uehling-Uhlenbeck (BUU) equation.
The collision integral of the BUU equation is quoted in Eq. 2.26 as part of the discussion
on Pauli blocking1.

1All results in this work do not include Pauli blocking.
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General form

The collision integral has generally gain and loss terms for every reaction that can occur.
The two terms account for particles scattering into and out of the phase space volume.

As a first example, the integral derived in the previous section for 2-to-2 reactions only
is given in full. To introduce some bookkeeping: The reaction indices are 12 æ 1Õ2Õ, so
outgoing particle quantities have primed indices. And the equation focuses specifically on
scatterings of particle 1 (with particle 2), which is possible since looking at one particle
already gives us the number of collisions (they are the same for both). The change of
particles, i.e. number of collisions, for the reaction 12 ¡ 1Õ2Õ for particle species 1 is given
by

3
ˆf

ˆt

412¡1
Õ
2

Õ

coll

= 1
2E1

⁄
d

3
p2

(2fi)32E2

1
S1Õ2Õ

⁄
d

3
p

Õ
1

(2fi)32E
Õ
1

d
3
p

Õ
2

(2fi)32E
Õ
2

f
Õ
1f

Õ
2

◊|M1Õ2Õæ12|2(2fi)4
”

(4)(P Õ
1 + P

Õ
2 ≠ P1 ≠ P2)

≠ 1
2E1

⁄
d

3
p2

(2fi)32E2

1
S1Õ2Õ
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3
p

Õ
1

(2fi)32E
Õ
1

d
3
p

Õ
2

(2fi)32E
Õ
2

f1f2

◊|M12æ1Õ2Õ |2(2fi)4
”

(4)(P1 + P2 ≠ P
Õ
1 ≠ P

Õ
2)

(4.12)

This is noted relativistically, with gain and loss term and integrated over the whole possible
momentum space of particle 2. |M|2 is the matrix element squared and averaged over the
internal degeneracy (e.g. spin states) of the initial particle and summed over the internal
degeneracy of the final particles for the given reaction.

The factor S1Õ2Õ marks the necessary symmetry factors that need to be considered to
avoid double counting in the phase space integration when 1Õ and 2Õ are identical i.e. the
number of indistinguishable states. In general and in the following S is therefore defined
as S = Nid!, where Nid is the number identical particles in the state. So, for 12 ¡ 1Õ2Õ

reactions with 1Õ and 2Õ being identical, S1Õ2Õ = 2! = 2.

To write the collision integral in a more compact form, the following abbreviations are
used in this chapter:

d� = d
3
p

(2fi)32E
(4.13)

for stable particles with E
2 = p

2 + m
2. For resonances with a general spectral function

the form is given as

d� = d
4
p

(2fi)4

fiÔ
s

A(
Ô

s) = dM

2
1

EM

d
3
p

(2fi)3
A(M) , (4.14)

where M =
Ô

s =


p0,2 ≠ p2 the mass of the resonances, E
2

M = p
2 +M

2 and A(M) as the
spectral function. The d�k for stable particles is recovered when considering a ” spectral
function A(M) = 2M”(M2 ≠ m

2) for such particles.

The whole di�erential n-body phase space is shortened to

d�n = (2fi)4
”

(4)

A

P ≠
nÿ

k=1

pk

B
nŸ

k=1

d�k, (4.15)
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where P is total 4-momentum of the reaction. With those abbreviations, the collision
integral reads

3
ˆf

ˆt

412¡1
Õ
2

Õ

coll

= 1
2E1

⁄
d�2

1
S1Õ2Õ

⁄
f

Õ
1f

Õ
2 |M1Õ2Õæ12|2d�2Õ

≠ 1
2E1

⁄
d�2

1
S1Õ2Õ

⁄
f1f2 |M12æ1Õ2Õ |2d�2Õ .

(4.16)

As mentioned, the collision integral has terms for all possible reactions. The gain and loss
terms for a generic 2 æ m reaction is as follows

3
ˆf

ˆt

412¡1
Õ
2

Õ...mÕ

coll

= 1
2E1

⁄
d�2 S†

⁄
f

Õ
1f

Õ
2...f

Õ
m |M1Õ2Õ...mÕæ12|2d�mÕ

+ 1
2E1

⁄ mŸ

k=2

d�k S†
⁄

f
Õ
1f

Õ
2 |M1Õ2Õæ12...m|2d�2Õ

≠ 1
2E1

⁄
d�2 S†

⁄
f1f2 |M12æ1Õ2Õ...mÕ |2d�mÕ

≠ 1
2E1

⁄ mŸ

k=2

d�k S†
⁄

f1f2...fm |M12...mæ1Õ2Õ |2d�2Õ .

(4.17)

Here, the gain (loss) term have 2 terms each, since the particle can be gained (lost) either
by 2 æ m or m æ 2, as it assumed here that particle 1 is part of both sides of the
reaction2. Note that the necessary symmetry factors are abbreviated here with the place
holder S†. Finally, in its most generic form, the collision integral for a n æ m reaction is

3
ˆf

ˆt

412...n¡1
Õ
2

Õ...mÕ

coll

= 1
2E1

⁄ nŸ

k=2

d�k S†
⁄

f
Õ
1f

Õ
2...f

Õ
m |M1Õ2Õ...mÕæ12...n|2d�mÕ

+ 1
2E1

⁄ mŸ

k=2

d�k S†
⁄

f
Õ
1f

Õ
2...f

Õ
n |M1Õ2Õ...nÕæ12...m|2d�nÕ

≠ 1
2E1

⁄ nŸ

k=2

d�k S†
⁄

f1f2...fn |M12...næ1Õ2Õ...mÕ |2d�mÕ

≠ 1
2E1

⁄ mŸ

k=2

d�k S†
⁄

f1f2...fm |M12...mæ1Õ2Õ...n|2d�nÕ .

(4.18)

Note that for the general cases, the assumption of binary collisions of the Stosszahlansatz
is lifted.

4.1.3 Probability for 2-to-2 reactions

Since the two-body scattering case was historically the first one discussed in the literature
[134], the discussion for concrete reaction classes starts with this case. The relevant part
of the collision integral is the loss term, since only the probability within the phase space

2The same is also true, if all particles are identical. This is the most extensive case for the collision
integral, since, if neither particle 1 is appearing on both sides of the reaction nor the particles are identical,
the collision term collapses to only 1 term for gain and loss term for the 2 æ m reaction.
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volume is considered (the gain term involves scatterings into the phase space volume from
outside). The (absolute value of the) loss term is noted di�erentially in �3

p2, since for
the probability in the end shall be given for two particle with momenta inside �3

p1 and
�3

p2 and within the same volume �3
x. Using Eq. 4.2 and the loss term from Eq. 4.12

and refraining from using the above introduced abbreviations for this first example:

�N
12æ1

Õ
2

Õ
coll

�t�3x�3p1/(2fi)3
= 1

2E1

�3
p2

(2fi)32E2

1
S1Õ2Õ

⁄
d

3
p

Õ
1

(2fi)32E
Õ
1

d
3
p

Õ
2

(2fi)32E
Õ
2

f1f2

◊|M12æ1Õ2Õ |2(2fi)4
”

(4)(P1 + P2 ≠ P
Õ
1 ≠ P

Õ
2)

(4.19)

This expression simplifies, since the cross-section appears.

‡12æ1Õ2Õ = 1
2E1

1
2E2

1
vrel

1
S1Õ2Õ

⁄
d

3
p

Õ
1

(2fi)32E
Õ
1

d
3
p

Õ
2

(2fi)32E
Õ
2

◊|M12æ1Õ2Õ |2(2fi)4
”

(4)(P1 + P2 ≠ P
Õ
1 ≠ P

Õ
2),

(4.20)

Note that this identification is possible, since f1f2 do not depend on p
Õ
i. vrel is the relative

velocity is defined as

vrel =

Ò
(p1 · p2)2 ≠ m

2
1
m

2
2

E1E2

=

Ò
(s ≠ m

2
1

≠ m
2
2
)2 ≠ m

2
1
m

2
2

2E1E2

= ⁄
1/2(s, m

2
1
, m

2
2
)

2E1E2

,

(4.21)

Sometimes this is also called Møller velocity. ⁄ is the so called Källén function and defined
as

⁄(a, b, c) = (a ≠ b ≠ c)2 ≠ 4bc. (4.22)

Recalling the definition for the particle density distribution function (Eq. 4.1):

fi = �Ni

�3xi
�3

pi/(2fi)3
. (4.23)

This definition is inserted into Eq. 4.19 and results in the following.

�N
12æ1

Õ
2

Õ
coll

�t�3x�3p1/(2fi)3
= 1

2E1

�3
p2

(2fi)32E2

f1f22E12E2vrel‡12æ1Õ2Õ

= 1
2E1

�3
p2

(2fi)32E2

�N1

�3x�3p1/(2fi)3

�N2

�3x�3p2/(2fi)3
2E12E2vrel‡12æ1Õ2Õ

(4.24)

Note that as �3
xi is the same for all particles, its index is dropped.After reducing and

rearranging according to the definition of the probability in Eq. 4.3, the probability for
2-to-2 reactions known from the literature is obtained.

P12æ1Õ2Õ = �N
12æ1

Õ
2

Õ
coll

�N1�N2

= �t

�3x
vrel‡12æ1Õ2Õ (4.25)

As long as the cross-section for the specific 12 æ 1Õ2Õ process is known, the probability is
therefore straight-forward to calculate. Furthermore, it is clear from the expression that
the probability is inherently boost invariant.
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4.1.4 Probability for 2-to-m reactions
The cross-section is not only defined for a 2-body scattering with a 2-body final state. In
its most general form it is given for an m-body final state (see for example [256]):

‡12æ1Õ2Õ...mÕ = 1
2E1

1
2E2

1
vrel

1
S1Õ2Õ...mÕ

⁄
|M12æ1Õ2Õ...mÕ |2d�mÕ . (4.26)

Comparing this expression with the relevant (third) term of the collision integral
1

ˆf
ˆt

212¡1
Õ
2

Õ...mÕ

coll
in Eq. 4.17, one again identifies the cross-section. The rest of the cal-

culation is analogue to the 2-to-2 case discussed in the previous section. The collision
probability obtained reads as follows,

P12æ1Õ2Õ...mÕ = �N
12æ1

Õ
2

Õ...mÕ
coll

�N1�N2

= �t

�3x
vrel‡12æ1Õ2Õ...mÕ . (4.27)

Again this probability is straight-forward to calculate if the cross-section is known for the
specific process. It is important to stress here that 2-to-m processes are straight-forward
to treat with a geometric collision criterion. For all 2-body scattering processes where a
cross-section is defined, a geometric interpretation of it and, therefore, a distance-based
collision criterion is possible. The challenge is to treat the back-reaction (m æ 2) for
m > 2 in order to obtain detailed balance. As long as 2-body scattering processes are
discussed, the stochastic collision criterion o�ers an alternative but ultimately equivalent
treatment (leaving the aspect of invariance under Lorentz transformations aside).

4.1.5 Probability for n-to-m reactions
The real advantage of the stochastic collision criterion is that it is straight-forward to
apply to n-to-m reactions with n > 2 and/or m > 2. This requires a general formulation
of the probability. The loss rate of particle 1 reads,

�N
12...næ1

Õ
2

Õ...mÕ
coll

�t�3x�3p1/(2fi)3
=

----
ˆf

ˆt

----
12...næ1

Õ
2

Õ...mÕ

coll,loss

. (4.28)

Here the notation of the collision term signifies that the absolute value of the loss term
is meant. Inserting the definition of the collision integral (di�erential in the initial state
momenta) and writing the distribution function before the integral, the equation reads

�N
12...næ1

Õ
2

Õ...mÕ
coll

�t�3x�3p1/(2fi)3
= 1

2E1

nŸ

j=2

�3
pj

(2fi)32Ej
f1

nŸ

k=2

fk
1

S1Õ2Õ...mÕ

◊
⁄

|M12...næ1Õ2Õ...mÕ |2d�mÕ .

(4.29)

The remaining integral is abbreviated with

I
Õ
nm = 1

S1Õ2Õ...mÕ

⁄
|M12...næ1Õ2Õ...mÕ |2d�mÕ . (4.30)

Using the definition of the distribution function in Eq. 4.1 and the abbreviation, the
equation reads

�N
12...næ1

Õ
2

Õ...mÕ
coll

�t�3x
�3p1
(2fi)3

= 1
2E1

nŸ

j=2

�3
pj

(2fi)32Ej

�N1

�3x
�3p1
(2fi)3

nŸ

k=2

�Nk

�3x
�3pk
(2fi)3

I
Õ
nm . (4.31)
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The probability for a n-to-m reaction is finally obtained by recalling Eq. 4.4 and rearrang-
ing:

P12...næ1Õ2Õ...mÕ = �N
12...næ1

Õ
2

Õ...mÕ
collrn

j=1
�Nj

= 1
2n

rn
j=1

Ej
I

Õ
nm

�t

(�3x)n≠1
. (4.32)

This represents the most general definition of the collision probability of the
stochastic criterion. However, note that this definition is not applicable for most cases
since the matrix element in the Imn integral is generally unknown, in particular for multi-
particle processes. But, for n æ m processes where the cross-section or decay width of
the reverse m æ n process is known (m = 1, 2), this issue can be resolved as described in
the following sections for several reaction classes.

4.1.6 Test-particle method with stochastic rates
Transport approaches e�ectively solve the Boltzmann equation by sampling the distribu-
tion density function f(r, p, t) with single particles that have a fixed r and p for a given
t. To represent and ultimately evolve a smooth distribution density, many point-like par-
ticles are needed. Therefore it is a common practice to increase (oversample) the number
of particles by a factor Ntest (test particle number). Since the density increases accord-
ingly, the number of interactions would also artificially be increased and the results would
change. Therefore the probability of a collision has to be lowered at the same time.

To determine how the probability has to be scaled with the test particle number, first the
scaling for the particle amount (�N) and the collision number (�Ncoll) is given

�N æ Ntest�N

�Ncoll æ Ntest�Ncoll ,
(4.33)

so both scale linearly with the the number of test particles. Recalling Eq. 4.4, the scaled
probability P

Õ
næm is therefore given as

P
Õ
næm = Ntest�Nnæm

N
n
test

�N1�N2...�Nn
= Pnæm

1
N

n≠1

test

. (4.34)

When employing the test-particle method, the probability has to be scaled with 1

Nn≠1
test

.
This scaling matches the results reported in the literature of 1

Ntest
for 2-body scattering in

[134] and 1

N2
test

for 3-body scattering in [126, 217].

4.1.7 Phase space integrals
In the following sections, the integrated m-body phase space appears in equations for
the probability. Therefore its form for the relevant cases is discussed in this section as a
prerequisite. The integration appears for the final state in the integral Inm (Eq. 4.31 and
Eq.4.32), because it is assumed that the matrix element does not depend on the final state
momenta as an approximation. So the integrations left to calculate are of the form

�m =
⁄

d�m . (4.35)

Note that the phase space integrals (except for the one-body case) assume the particles to
be stable i.e. have ”-like, infinitely narrow spectral functions A(M) = 2M”(M2 ≠ m

2), so
d� = d3p

(2fi)32E , which is the relevant case for this work. See Section4.1.10 for a discussion
on the two- or more-body phase space involving resonances.
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One-body phase space

The phase space for one-body resonances is trivially obtained when plugging in d� as
given in Eq. 4.1.2 for resonances.

�1 =
⁄

d�1(2fi)4
”

(4)(P ≠ P1) =
⁄

d
4
p1

(2fi)4

fi

m
A(m)(2fi)4

”
(4)(P ≠ P1) = fiÔ

s
A(

Ô
s) (4.36)

Two-body phase space

For two particles, the phase space is given as

�2(s, m1, m2) =
⁄

d�1d�2(2fi)4
”

(4)(P ≠ P1 ≠ P2) = ⁄
1/2(s, m

2
1
, m

2
2
)

8fis
, (4.37)

which is still easily obtained with ⁄ defined as in Eq. 4.22.

Three-body phase space

The definition for the three-body phase space is

�3 =
⁄

d�1d�2d�3(2fi)4
”

(4)(P ≠ P1 ≠ P2 ≠ P3). (4.38)

This is reformulated for stable particles with the definitions employed in the PDG Book
for the three-body decay width [256], which is employed to create Dalitz plots (= scatter
plot in m

2
12

and m
2
23

):

d�1æ3 = 1
2M

|M1æ3|2d�3 = 1
(2fi)3

1
32M3

|M1æ3|2dm
2

12dm
2

23, (4.39)

where dm
2

ij = (Pi + Pj)2 and M
2 = s the squared mass of the resonance. The phase space

integration is rewritten as
�3 = 1

(2fi)3

1
16M2

I3 (4.40)

with the integral I3 defined as

I3 ©
⁄

dm
2

12dm
2

23 =
⁄

(M≠m3)
2

(m1+m2)2
[(m2

23,max ≠ m
2

23,min)]dm
2

12. (4.41)

The min and max values are defined as in the PDG book as

m
2

23,min = (Eú
2 + E

ú
3)2 ≠

3Ò
E

ú 2
2

≠ m
2
2

+
Ò

E
ú 2
3

≠ m
2
3

4
2

m
2

23,max = (Eú
2 + E

ú
3)2 ≠

3Ò
E

ú 2
2

≠ m
2
2

≠
Ò

E
ú 2
3

≠ m
2
3

4
2

(4.42)

with E
ú
2

= (m2
12

≠ m
2
1

+ m
2
2
)/2m12 and E

ú
3

= (M2 ≠ m
2
12

≠ m
2
3
)/2m12.

For example, for the Ê æ 3fi decay (for Ê with pole mass) this results in I3 = 0.07514
GeV4. For the massless case m1 = m2 = m3 = 0 a simple analytical from is obtained [298]:

�3 = 1
(2fi)5

fi
2
M

2

8 , (4.43)
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which gives I3 in the massless case as

I3 = M
4

2 . (4.44)

The massless case is in particular useful for cross-checking the numerical integration rou-
tines.

An analytical formula for the three-body phase space is given in Ref. [299]. For the case
of three equal masses (meq) that formula reduces to [300]

�3(M2) = 1
128fi3M2

Ò
(M ≠ meq)(M + 3meq) (4.45)

◊
51

2(M ≠ meq)(M2 + 3m
2

eq)E(keq) ≠ 4m
2

eqMK(keq)]
6

,

with the complete elliptic integrals,

K(k) =
⁄

1

0

dt


(1 ≠ t2)(1 ≠ k2t2)
, (4.46)

E(k) =
⁄

1

0

dt

Û
1 ≠ k2t2

1 ≠ t2
, (4.47)

and

keq =
Û

(M + meq)3(M ≠ 3meq)
(M ≠ meq)3(M + 3meq) . (4.48)

Furthermore, it is possible to write down a cyclic phase-space integration, where the m-
body phase space is defined as an integration over the lower order phase space (see e.g.
Appendix B in [129]). Employing this idea, the n-body phase space is calculated with

�n =
⁄

ds1

2fi

ds2

2fi
�2(s, s1, s2)�k(s1, m

2

1, m
2

2, ..., m
2

k)�n≠k(s2, m
2

k+1, ..., m
2

n) . (4.49)

For n = 3, when assuming �1 = fiÔ
s
A(

Ô
s) = 2fi”(s ≠ m

2
1
), this results in

�3(s, m
2

1, m
2

2, m
2

3) = 1
2fi

⁄
(
Ô

s≠m3)
2

(m1+m2)2
ds1�2(s, s1, m

2

3)�2(s1, m
2

1, m
2

2). (4.50)

Five-body phase space

The five-body phase space

�5 =
⁄

d�1d�2d�3d�4d�5(2fi)4
”

(4)(P ≠ P1 ≠ P2 ≠ P3 ≠ P4 ≠ P5) (4.51)

is even more tedious to calculate than the 3-body phase space (even for stable particles)
and simple analytic forms are di�cult to derive Therefore, the phase space needs to be
sampled numerically. The numerical calculation can be based on the recursive definition of
the n-body phase space given in Eq. 4.49. Together with the 3-body phase space (Eq. 4.50)
the 5-body is given as

�5(s, m
2

1, m
2

2, m
2

3, m
2

4, m
2

5) = 1
2fi

⁄
(
Ô

s≠m1≠m2)
2

(m3+m4+m5)2
ds1�3(s, m

2

1, m
2

2, s1)�3(s1, m
2

3, m
2

4, m
2

5)

(4.52)
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with the massless case in [298] given as

�5 = s
3

2(4fi)74! 3! . (4.53)

The massless case is a particularly useful case to verify the numeric calculation. When
employing the 5-body phase space for the massive case, it will be parametrized. See
Section 4.3.3.

4.1.8 Decays
Even though the focus in this chapter is on scatterings of two or more particles, the same
method of defining a probability is also valid for decays.

P1æm = �Ndec

�NR
, (4.54)

where �NR is the particle number of the resonance (R) that is decaying and �Ndec the
number of decays, both inside the sub-volume �3

x. The rate of decays is (see Eq. 4.28)

�Ndec

�t
= �3

x
�3

pR

(2fi)3

----
ˆf

ˆt

----
Ræ1

Õ
2

Õ...mÕ

coll,loss

(4.55)

The loss term for a 1 æ m decay is
----
ˆf

ˆt

----
Ræ1

Õ
2

Õ...mÕ

coll,loss

= 1
2ER

1
S1Õ2Õ...mÕ

⁄
fR|M1æ1Õ2Õ...mÕ |2d�mÕ . (4.56)

Inserting the loss term and decay rate into the decay probability in Eq. 4.54 results in

P1æm = �t
1

2ER

1
S1Õ2Õ...mÕ

⁄
|M1æ1Õ2Õ...mÕ |2d�mÕ , (4.57)

where also (the non-infinitesimal version of) Eq. 4.1 is used for the distribution function:

fR = �NR

�3x
d3pR
(2fi)3

(4.58)

In this formulation of the probability, the total decay rate can be identified

�1æm = 1
2M

1
S1Õ2Õ...mÕ

⁄
|M1æ1Õ2Õ...mÕ |2d�mÕ , (4.59)

where M is the (o�-shell) mass of the resonance that is equal to the
Ô

s of the final state.
Two examples of decays considered in this work are 1 æ 2 and 1 æ 3 decays. The decay
width in those cases reads

�1æ2 = 1
2M

1
S12

⁄
|M1æ2|2d�1d�2(2fi)4

”
(4)(P ≠ p1 ≠ p2) (4.60)

and

�1æ3 = 1
2M

1
S123

⁄
|M1æ3|2d�1d�2d�3(2fi)4

”
(4)(P ≠ p1 ≠ p2 ≠ p3), (4.61)
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where the necessary symmetry factors are included that divide by the number of identical
final states if identical particles are found in the final state. Note that here and in the
following the primed notation is changed. Only quantities are noted as primed (to identify
the final state), when it is not clear from the number of particles whether they belong to
the initial or final states.

In the case of a constant i.e. independent from final momenta |M|2 the total 1 æ 2 decay
rate is

�1æ2 = 1
32fi2

1
S12

|M1æ2|2 |p1|
M2

4fi , (4.62)

which is found in [256] for the decay rate in the center-of-mass frame (or rest frame of the
resonance and with

|p1| = ⁄
1/2(s, m

Õ2
1

, m
Õ2
2

)
2
Ô

s
,

Ô
s = M , (4.63)

where the definition of ⁄ is found in Eq. 4.22. The 2-body decay rate therefore is

�1æ2 = 1
16fi

1
S12

|M1æ2|2 ⁄
1/2(M2

, m
Õ2
1

, m
Õ2
2

)
M3

(4.64)

in the case of a constant matrix element. For 1 æ 3 decay in this case, the decay rate
reads

�1æ3 = 1
2M

1
S123

|M1æ3|2 �3 (4.65)

with the 3-body phase space integration �3 already discussed in Section 4.1.7 in detail.

Coming back to the probability, with the general definition of �1æm the decay probability
reads

P1æm = �t
M

ER
�1æm, (4.66)

which simplifies in the rest frame (RF) of the resonance (M = ER) to:

P
RF

1æm = �t �1æm. (4.67)

Note that this matches the expression for the decay probability that is employed in SMASH
as cited in Eq. 2.18.

4.1.9 Resonance formation in 2-to-1 reactions

After listing the equations for the (2-body) decay, this section focuses on the reversed
process. The goal is to show that when defining a 2-to-1 cross-section ‡2æ1 (as Eq. 2.24),
the general formulation of the collision probability criterion for 2-body reactions from
Eq. 4.27 can be employed. For the formation the loss term reads

----
ˆf

ˆt

----
12æR

coll,loss

= 1
2E1

⁄
d�2

⁄
d�Rf1f2|M2æ1|2(2fi)4

”
(4)(P ≠ p1 ≠ p2) (4.68)

where P is the momentum of the formed resonance.
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The probability for the 2-to-1 resonance formation case reads

P2æ1 = �Nform

�N1�N2

(4.69)

The rate for resonance formations is given as

�Nform

�t
= �3

x
�3

p1

(2fi)3

----
ˆf

ˆt

----
12æR

coll,loss

(4.70)

With the above, the probability is found to be

P2æ1 = �t

�3x

1
4E1E2

⁄
d�R|M2æ1|2(2fi)4

”
(4)(P ≠ p1 ≠ p2), (4.71)

where again the definition of f as specified in Eq. 4.58 is inserted. Since the integration
over d�R is done for a resonance, the expression for a quasiparticle has to be used as
follows

P2æ1 = �t

�3x

1
4E1E2

⁄
d

4
pR

(2fi)4

fi

M
AR(M)|M2æ1|2(2fi)4

”
(4)(P ≠ p1 ≠ p2), (4.72)

where AR(M) is the resonance spectral function. At this point the assumption of a
constant |M|2 has to be made in order to identify ‡2æ1 later one. The integration over
d�R can be (trivially) performed in this case

P2æ1 = �t

�3x

1
4E1E2

|M2æ1|2
⁄

d
4
pR

(2fi)4

fi

M
AR(M)(2fi)4

”
(4)(P ≠ p1 ≠ p2)

= �t

�3x

1
4E1E2

|M2æ1|2 fiÔ
s

AR(
Ô

s) ,

(4.73)

where the spectral function is evaluated at
Ô

s =


(E1 + E2)2 ≠ (p1 + p2)2, due to the
Dirac delta functions. The matrix element for the 2 æ 1 and 1 æ 2 process is directly
related due to the principle of detailed balance. Only the spin factors caused by the
averaging over spin states have to be accounted for (more details on the matter at the
beginning of the next section). The relation is

|M2æ1|2 = gR

g1g2

|M1æ2|2 , (4.74)

where gk = 2sk + 1 are the spin degeneracy. sk is the spin of the respective state.

Due to the relation of the two matrix element, it is possible to substitute the expression
in Eq. 4.64 for the decay width of the 1 æ 2 process for the constant matrix element:

P2æ1 = gR

g1g2

S12

�t

�3x

1
E1E2

4fi
2
M

2�1æ2

⁄1/2(M2, m
2
1
, m

2
2
)
A(

Ô
s) (4.75)

Note that
Ô

s = M still applies. According to Eq. 2.24 ‡2æ1 (with adapted notation) is
defined as follows

‡12æR = gR

g1g2

S12

2fi
2

p
2
1cm

�Ræ12A(
Ô

s) (4.76)
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with p1cm =
Ò

(p1 · p2)2 ≠ m
2
1
m

2
2
/
Ô

s = ⁄
1/2(M2

, m
2
1
, m

2
2
)/(2

Ô
s). Using the relative ve-

locity vrel = ⁄
1/2(s, m

2
1
, m

2
2
)/(2E1E2) the probability can be rewritten in terms of ‡2æ1

P2æ1 = gR

g1g2

�t

�3x
vrelS12

2fi
2

p
2
1cm

�Ræ12A(
Ô

s) = �t

�3x
vrel ‡2æ1 , (4.77)

which indeed matches the general form for 2-body reactions in Eq. 4.27.

4.1.10 Probability for multi-particle reactions
With Eq. 4.32 the probability is defined for an assumed n æ m reaction when the matrix
element is known. This is, however, not the case in general. Therefore, the matrix element
is assumed to be constant i.e. independent, concerning the final momenta. Thus the
integration in Inm (Eq. 4.31) does not include integrating the matrix element anymore,
but just the phase-space itself.

Inm = 1
S1Õ2Õ...mÕ

⁄
d�mÕ |Mn¡mÕ |2 (4.78)

Even though an approximation, this allows to express the probability of n æ 2 or n æ 1
in terms of the cross-section or decay-width of the reverse 2 æ n or 1 æ n reaction as
already demonstrated for 2-to-1 reactions. This is possible since the matrix element is
invariant unter time reversal.

|Mnæm|2 = |Mmæn|2 (4.79)

But, this relation does not directly apply here since the matrix element square always
appears averaged over the spin states of the initial particle and summed over the spin
states of the final particles in the above equations. The averaging and summation is done
as follows

|Mnæm|2 = 1
nŸ

j=1

gj

ÿ

initial
final

|Mnæm|2 (4.80)

with gi are the spin degeneracy factors. Therefore the more practical relation here between
the forward and backward |M|2 is given by

|Mnæm|2 =
rm

j=1
gkrn

j=1
gj

|Mmæn|2 , (4.81)

which introduces spin factors in the equation.

Expressing the probability in terms of the cross-section or decay-width of the reverse pro-
cess for di�erent reactions classes and in turn, removing the dependency on the unknown
matrix element is the focus of this section. It is also the main method to treat multi-
particle reactions theoretically in this work since the matrix is unknown for the reactions
of interest.

Probability for 3-to-1 reactions

As explained, the goal for the 3-to-1 reaction is to obtain an expression for P3æ1 containing
�1æ3. Using Eq. 4.32 the probability for this case reads:

P3æ1 = �t

(�3x)2

1
8E1E2E3

⁄
d

4
pR

(2fi)4

fi

M
AR(M)|M3æ1|2(2fi)4

”
(4)(P ≠ p1 ≠ p2 ≠ p3) , (4.82)
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where, since the final state particle needs to be a resonance (R) for the 3-to-1 case, the
quasi-particle phase-space integration (cf. Eq. 4.14, M =

Ô
s) is used.

Performing the (trivial) integration over the spectral function and assuming a constant
matrix element as mentioned above leads to

P3æ1 = �t

(�3x)2

1
8E1E2E3

|M3æ1|2 fiÔ
s

AR(
Ô

s) (4.83)

with the spectral function again being, due to the Dirac delta functions, evaluated atÔ
s =


(E1 + E2 + E3)2 ≠ (p1 + p2 + p3)2 .

Considering now the decay width for the 3 æ 1 process (as given in Eq. 4.65)

�1æ3 = 1
S123

1
2M

|M1æ3|2 �3 , (4.84)

the matrix element in Eq. 4.83 can now be substituted (using Eq. 4.81) to obtain the final
form for the 3-to-1 probability:

P3æ1 = gR

g1g2g3

S123

�t

(�3x)2

fi

4E1E2E3

�1æ3

�3

A(
Ô

S) (4.85)

Note that when not using natural units (h̄ = c = 1), for the equation to be unit-less, its
right-hand side must be multiplied by a factor of (h̄c)5. The 3-body phase space is given
by Eq. 4.108 and S123 is the symmetry factor for the number of identical final states of the
decay process. For example, if two particles are identical in the final state, S123 = 2! = 2.

Note that Eq. 4.85 also matches the equation employed in the GiBUU code [109, 301] for
the same process, when substituting the spectral function convention in SMASH with the
one from GiBUU: A(SMASH)(M) = 2MAGiBUU(M).

Generalization to n-to-1 reactions

The steps from the previous section are straight-forward to generalize to any n-to-1 reac-
tion, which is useful in all cases where the decay width of the reverse process is known.
The probability for the n-to-1 case is given as

Pnæ1 = 1
2n

rn
j=1

Ej

�t

(�3x)n≠1

◊
⁄

d
4
pR

(2fi)4

fi

M
AR(M)|Mnæ1|2(2fi)4

”
(4)

A

P ≠
nÿ

k

pk

B

= 1
2n

rn
j=1

Ej

�t

(�3x)n≠1
|Mnæ1|2 fiÔ

s
AR(

Ô
s) .

(4.86)

For the second step the assumption of a constant matrix element is used. The decay width
for this case is

�1æn = 1
Sn

1
2M

|M1æn|2 �n . (4.87)

Here Sn denotes the symmetry factor for the incoming n-body initial state of the multi-
particle reaction.
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Combining the two previous equations, the general form for the probability of any decay
back-reaction is obtained.

Pnæ1 = gRrn
i=1

gi
Sn

�t

(�3x)n≠1

fi

2n≠1
rn

j=1
Ej

�1æn

�n
AR(

Ô
s) (4.88)

The already discussed equations 4.77 and 4.85 are, the for this work relevant, special cases
of this equation.

Probability for 3-to-2 reactions

Starting again with the general probability definition in Eq. 4.32. Note that the primed
variables mark final state quantities.

P3æ2 = 1
8E1E2E3

I32

�t

(�3x)2
(4.89)

with the integration over the final phase space given by

I32 = 1
S

Õ
12

⁄
d�Õ

2|M3æ2|2 = 1
S

Õ
12

|M3æ2|2�Õ
2 , (4.90)

with S
Õ
12

being the now additionally needed symmetry factor for the 2-body (final) state of
the reaction. For the second step the again the assumption of it being independent form
the final phase space integration was made.

The cross-section for the inverse process in the center-of-mass frame is given [256] by

‡
cm
2æ3 = 1

S123

1
4p1cm

Ô
s

⁄
d�3|M2æ3|2 . (4.91)

With the relation p1cm
Ô

s = vrelE
Õ
1
E

Õ
2

and the constant matrix element assumption, the
2-to-3 cross-section becomes

‡2æ3 = 1
S123

1
4vrelE

Õ
1
E

Õ
2

�3|M2æ3|2 (4.92)

Together Eq. 4.90 and Eq. 4.92 result in an expression independent of the unknown matrix
element (by substituting it via Eq. 4.81):

I32 = g
Õ
1
g

Õ
2

g1g2g3

S123

S
Õ
12

�Õ
2

�3

4vrelE
Õ
1E

Õ
2‡2æ3 (4.93)

Inserting I32 in the probability definition, the definition for the 2-body phase space from
Eq. 4.37 and vrel finally results in

P3æ2 = g
Õ
1
g

Õ
2

g1g2g3

S123

S
Õ
12

1
4E1E2E3

�t

(�3x)2

⁄

�3 8fis
‡2æ3 (4.94)

with ⁄ = ⁄(s, m
Õ2
1

, m
Õ2
2

) and �3 given by Eq. 4.108. When not using natural units (h̄ =
c = 1), the expression has to be multiplied by a factor of (h̄c)5. The expression for P3æ2

only depends on the masses of the outgoing particles and the Mandelstam s and therefore
is valid for cases where all final particles are stable i.e. have fixed masses. The case with
resonances in the final state is discussed in Section 4.1.10. Note that this probability
matches the one employed in the HSD approach (given in [128] with di�erences in the
notation).
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Probability for 5-to-2 reactions

The derivation for the 5-to-2 probability follows the same scheme as for 3-to-2 reactions.
It is not presented so far in the literature. The general definition of the n-to-m probability
(Eq. 4.32) for n = 5 and m = 2 is

P5æ2 = 1
32E1E2E3E4E5

I52

�t

(�3x)4
(4.95)

with I52 = 1

SÕ
12

s
d�Õ

2
|M5æ2|2. Assuming the matrix element independent of the final

momenta, leads
I52 = 1

S
Õ
12

|M5æ2|2�Õ
2 . (4.96)

The cross-section for the inverse 2-to-5 process with this assumption is

‡2æ5 = 1
S12345

1
4vrelE

Õ
1
E

Õ
2

�5|M2æ5|2 . (4.97)

Inserting Eq. 4.97 for the matrix element in Eq. 4.96 via Eq. 4.81, the phase space inte-
gration for the final state reads

I52 = g
Õ
1
g

Õ
2

g1g2g3g4g5

S12345

S
Õ
12

�Õ
2

�5

4vrelE
Õ
1E

Õ
2‡2æ5 = g

Õ
1
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Õ
2

g1g2g3g4g5

S12345

S
Õ
12

⁄

�5

1
4fis

‡2æ5 (4.98)

where ⁄ = ⁄(s, m
Õ2
1

, m
Õ2
2

) and the already introduced definitions for vrel (Eq. 4.21) as well
as �2 (Eq. 4.37) are used for the second step. Inserting this into the probability, the final
formula for the 5-to-2 probability that depends on the cross-section for the reverse 2-to-5
process is obtained

P5æ2 = g
Õ
1
g

Õ
2

g1g2g3g4g5

S12345

S
Õ
12

1
32E1E2E3E4E5

�t

(�3x)4

⁄

�5

1
4fis

‡2æ5 (4.99)

Note that when not using natural units (h̄ = c = 1), the right-hand side has to be
multiplied with a factor of (h̄c)11 to obtain a unit-less probability. The 5-body phase
space integration �5 is described in Section 4.1.7.

Generalization to n-to-2 reactions

Also for 2-body back-reactions, it is possible to formulate a general equation for the n-to-2
probability that can be employed in case the cross-section for the reverse 2-to-n reaction
is known. Eq. 4.32 for the case of m = 2 equals

Pnæ2 = 1
2n

rn
j=1

Ej

�t

(�3x)n≠1

1
S

Õ
12

⁄
d�Õ

2|Mnæ2|2

= 1
2n
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Ej

�t

(�3x)n≠1

1
S

Õ
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Ò
⁄(s, m

Õ2
1

, m
Õ2
2

)
8fis

|Mnæ2|2 ,

(4.100)

where the matrix element is again assumed to be constant for this section and the definition
of �2 (Eq. 4.37) is used in the last step. The general definition for the cross-section of a
2-to-n process is

‡2æn = 1
Sn

1
4vrelE

Õ
1
E

Õ
2

�n|M2æn|2 = 1
Sn

1
2
Ò

⁄(s, m
Õ2
1

, m
Õ2
2

)
�n|M2æn|2 , (4.101)
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where Eq. 4.21 for vrel is used in the second step. With the above two equations and
Eq. 4.81 the probability for an arbitrary n-to-2 process is given as

Pnæ2 = g
Õ
1
g

Õ
2rn

i=1
gi

Sn

S
Õ
12

1
2n

rn
j=1

Ej

�t

(�3x)n≠1

⁄(s, m
Õ2
1

, m
Õ2
2

)
�n

1
4fis

‡2æn (4.102)

Equations 4.94 and 4.99 are special cases of this equation.

Extension for n-to-2 reactions involving resonances

The derived formulas for n-to-2 reactions are valid for all cases where the outgoing particles
are stable i.e. have a fixed mass. All relevant n-to-2 cases for this work (Section 4.3) have
stable outgoing particles. The generalization to include resonances in the final state for 2
or more particles is nevertheless noted in this section.

Reactions with resonances in the initial state can be treated with the presented equations if
they are assigned a fixed mass when they scatter. This is, for example, the case in hadronic
transport approaches that represent the spectral function by many (test) particles with
”-like spectral functions at specific masses. The complicating factor for resonances in
the final state is the integration over the final phase space that need to be done over
the spectral functions. Recalling Eq. 4.1.2 one has to replace d3p

(2fi)32E æ d4p
(2fi)4

fi
mA(m) in

those integration. The two-body phase space then reads (assuming both particles to be
resonances)
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=
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Õ
1 ≠ P

Õ
2)

=
⁄

d
4
p

Õ
1

(2fi)4
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Õ
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Õ
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Õ
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(4.103)

with dp
0 = dm

mÔ
(m2+p2)

following from m
2 = p

2
0
≠p

2. The 2̃ notation signifies a resonance
in the final state here. If not all particles are resonances, the respective d� integration, of
course, still simplifies to d3p

(2fi)32E . The formula in Eq. 4.37 does not apply anymore since it
includes additional integrations over the spectral function, which need to be calculated for
the given resonance (spectral function). Therefore it also cannot be used to simplify �2

in the probability definition as done for the 3-to-2 and 5-to-2 case above. The discussion
in this section is meant as a starting point to derive the full equations for the case of
resonances in the final state to be studied in the future.

Note that for the reverse 2-to-n case, the probability as defined in Eq. 4.27 is valid even for
the case of resonances in the final state, since the complexity of the additional integrations
over the spectral function is included in the ‡2æn cross-section.
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Summary
This concludes the comprehensive presentation of the necessary theoretical background
of the stochastic rates approach. The collision probabilities are derived from the Boltz-
mann equation. The probability is defined as the fraction of a number of collisions over
all possible particle pairings in a given phase-space cell. The main assumption of the
derivations is to consider the matrix element to be independent of the final state momenta
(i.e. constant). For this case, the collision probabilities can be expressed in terms of the
known decay width or cross-section of the reverse process. The main results are colli-
sion probabilities derived for binary, 3-body and 5-body collisions, which are displayed
in Eq. 4.27, Eq. 4.85, Eq. 4.94 and Eq. 4.99. Furthermore, resonance formation as a
special case of binary collisions (Section 4.1.9), the decay treatment (Section 4.1.8) and
the generalization to arbitrary n æ {1, 2} reactions (Section 4.1.10) are discussed. The
generalizations of the approach with a constant matrix element and its application to 5-
body collisions are new contributions of this thesis. Overall, the theoretical prerequisite to
realize a stochastic collision criterion and multi-particle reactions in a transport approach
are thereby described.
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4.2 Stochastic collision criterion in transport approaches
The realization of a stochastic collision criterion for binary scattering on the example of the
hadronic approach SMASH is discussed in this section. The criterion of whether particles
interact in a transport approach is based on the above-derived collision probabilities.
They are used for a random decision of whether particles scatter. A stochastic collision
criterion is already applied in serval other transport approaches, where it is often referred
to as the local-ensemble method [134, 126, 128, 111, 109, 129, 130] (see Section 1.2.6
and the introduction of this chapter for more details). A stochastic treatment employed
for binary interactions is in principle3 equivalent to a geometric collision criterion (as
described in Section 2.2.2). The extension to include multi-particle reactions is discussed
in the following section. The final probability equations that are employed in SMASH are
repeated in the following.

The employed collision probability for binary reactions is defined in terms of the cross-
section as

P2æm = �t

�3x
vrel‡2æm , (4.104)

with the relative velocity vrel given by Eq. 4.21. This equation is derived in Section 4.1.4
and a special case (n = 2) of the general equation for the n æ m collision probability given
in Eq. 4.32. The probability is employed for all two-body scatterings, including string
processes (m Æ 2) and resonance formation. For the latter, it is shown in Section 4.1.9
that, for the case of resonance formation (n = 2, m = 1) the cross-section coincides with
‡2æ1 used in SMASH as given in Eq. 2.24. Note that the probability for a decay process
(n = 1) is defined as

P1æm = �t
M

E1

�1æm , (4.105)

where m is the number of final particles. As discussed in Section 4.1.8, this decay proba-
bility is the same already used in SMASH (Eq. 2.18), therefore the decay treatment does
not have to be altered for the stochastic criterion. As explained in Section 4.1.6, when
employing test particles, the probability needs to be scaled:

P
Õ
næm = Pnæm

N
n≠1

test

. (4.106)

The numerical realization of the stochastic criterion is the same for all (stochastic) scat-
terings, including the new multi-particle reactions. The space is divided into equally
sized cells (�3

x). The probability is calculated for all n-particle combinations within each
timestep, so only particles within a cell can interact. n is chosen according to the number
of particles that can interact (so n = 2 is the default for binary reactions and if multi-
particle reactions are used, then n > 2). The calculated probability (0 Æ P Æ 1) is used
for a Monte-Carlo decision i.e. if a generated random number between 0 and 1 is smaller
or equal to the probability, the reaction is accepted. The collision time is randomly chosen
within the given timestep �t. In case multiple reactions for the same particle are ac-
cepted, only the first reaction is performed. Newly created particles in inelastic collisions
are placed at the position of a random incoming particle to avoid density artifacts. In
contrast to the geometric criterion, the stochastic criterion is a strictly timestep-based
method. The timesteps, therefore, have to be chosen small enough that the assumption

3Both criteria are applicable within certain limits related e.g. to boost invariance or calculation param-
eters that might lead to di�erences. See Section 5.1 for examples.
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that each particle only interacts once per timestep is justified and the defined probability
is not exceeding 1 for a given �3

x. Also, the cells �3
x have to be chosen su�ciently small,

since only in the limit of �3
x æ 0 (and �t æ 0) the numerical solution matches the exact

solution of the Boltzmann equation. At the same time, the cells still have to be su�ciently
filled with particles. Choosing an appropriate pair of �3

x and �t and the sensitivity of
the results to this choice is discussed in detail in Section 5.1.5. The stochastic collision
criterion is introduced as an option with the version SMASH-1.7 [212]. Further details of
the implementation and numerical realization are given in Appendix A.

4.3 Multi-particle reactions in SMASH

The di�culty of describing multi-particle reactions generally arises from the collision cri-
terion. In transport approaches, the most common criterion whether particles collide is
the geometric criterion (Section 2.2.2). So far, no generalization of this criterion to multi-
particle reactions is available. The stochastic collision criterion, on the other hand, is
easily generalized to multi-particle reactions.

The main purpose of introducing the stochastic criterion in SMASH is to treat multi-
particle reactions while adhering to detailed balance. It is applied to individual reactions
that are known to be relevant and interesting (Section 1.3): the mesonic Dalitz decay
back-reaction (3-to-1), the deuteron catalysis reactions (3-to-2) and the proton-antiproton
annihilation back-reaction (5-to-2). Note that detailed balance is not globally conserved for
all calculations due to string fragmentation, which emits multiple particles. back-reactions
are not introduced for such reactions in this work.

With a collision criterion that only is able to perform binary collisions (like the geometric
one in SMASH), an alternative approach to model multi-particle reaction is to employ a
chain of reaction of binary collisions (e.g. fififi æ flfi æ Ê for fififi æ Ê). Detailed balance
is conserved for every step and therefore also for the overall reaction. This multi-step con-
struct with intermediate resonances is employed in SMASH in several places to adhere to
detailed balance with a geometric criterion. The direct, stochastic multi-particle reactions
allow to constrain the e�ect that this helper construct has on the results, which is done
throughout the following results. Note that such a reaction chain approach is only well-
motivated in instances where fitting intermediate reactions are known. On the contrary,
the stochastic treatment allows treating multi-particle reactions directly for arbitrary reac-
tions. Additionally, it is more rigoros since it is directly derived from the collision integral
of the Boltzmann equation and therefore more closely follows kinetic theory expectations
(Section 5.1.2).

In the following sections, the di�erent multi-particle reactions in SMASH are introduced4.
They are based on the derived probability equations in Section 4.1. The matrix element
is assumed to be independent of the final momenta here to express the probabilities in
terms of decay width or cross-section of the reverse process and avoid needing to employ
a generally unknown matrix element. More details on implementation and practical in-
formation for SMASH calculations with multi-particle reactions are given in Appendix A.
In Appendix A.4, also a discussion of the increased computing time that is required to
account for the larger combinatorics of multi-particle reactions is included.

4Three-body reactions are available since SMASH-2.0 [213] and the 5-to-2 action will be part of the next
tagged version of SMASH (probably SMASH-2.1).
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4.3.1 Meson 3-to-1 reactions
The 3 æ 1 probability is applied in SMASH for a set of known three-body decay (back-)
reactions of mesonic resonances: fififi æ Ê, fififi æ „ and fifi÷ æ ÷

Õ. In particular, for
the Ê and ÷

Õ, the three-body decay is the dominant decay channel. With the stochastic
criterion, it is now possible to treat the multi-particle back-reaction directly, while fulfilling
detailed balance. The back-reaction had to be treated in two steps with a resonance in
the intermediate state with the geometric criterion. For the Ê the reaction chain reads
fififi æ flfi æ Ê. The same chain is also used for the „. In the case of the ÷

Õ, the ‡

is needed as an intermediate step; fifi÷ æ ‡÷ æ ÷
Õ. Note that the Ê is a special case,

since it might actually decay (in part) through Ê æ flfi [247]. Whereas, in the other
cases, including the multi-step treatments of 3-to-2 and 5-to-2, are mainly motivated by
modeling a multi-particle reaction with detailed balance in a binary collision approach.

The formula for the probability is

P3æ1 = gR

g1g2g3

S123

�t

(�3x)2

fi

4E1E2E3

�1æ3

�3

A(
Ô

S) (4.107)

as derived in Section 4.1.10 (same as Eq. 4.85) with assumption of matrix element that
is independent of the final momenta. The 3-body phase space is defined following the
convention in the PDG Book [256]

�3 = 1
(2fi)3

1
16M2

I3 , (4.108)

with the integral I3 defined as

I3 ©
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dm
2

12dm
2

23 =
⁄
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(m1+m2)2
[(m2

23,max ≠ m
2

23,min)]dm
2

12. (4.109)

The min and max values are defined as in the PDG book (Eq. 4.42). See Section 4.1.7 for
more possible definitions and details of �3. The 3-body phase space is integrated explicitly
for all possible reaction pairs. For an accepted reaction, the outgoing particles are sampled
isotropically. The treatment of the 1 æ 3 is the same as for all other decays in SMASH,
where for three-body decays the width is not mass-dependent but assumed to be constant.

The needed symmetry and degeneracy factors for fi
+

fi
≠

fi
0 æ Ê, fi

+
fi

≠
fi

0 æ „, fi
+

fi
≠

÷ æ
÷

Õ and fi
+

fi
≠

÷ æ ÷
Õ reactions are gÊ = g„ = 3, gfi = g÷ = g÷Õ = q, Sfi+fi≠fi0 = Sfi+fi≠÷ = 1!

and Sfi0fi0÷ = 2!.

4.3.2 Deuteron 3-to-2 reactions
The next class of multi-particle reactions realized with the stochastic collision criterion are
3 ¡ 2 reactions. These are needed for the microscopic description of creation and destruc-
tion of deuterons in the hadron gas. The expression for P3æ2 is derived in Section 4.1.10
with the assumption of the matrix element being independent of the final momenta. The
probability for the 2-to-3 process is given by Eq. 4.104 as for all binary scatterings.

The P3æ2 probability is applied to the deuteron formation catalysis reactions fipn ¡ fid,
Npn ¡ Nd and N̄pn ¡ N̄d. The probability for a 3-to-2 process is given as

P3æ2 = g
Õ
1
g

Õ
2

g1g2g3

S123

S
Õ
12

1
4E1E2E3

�t

(�3x)2

⁄

�3 8fis
‡2æ3 (4.110)
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(same as Eq. 4.94). The 3-body phase space (�3) treatment is the same as for 3-to-1
reactions. ‡2æ3 (i.e. ‡fid and ‡fiN ) is fitted to available experimental data in [183]. The
symmetry factors for the reactions fipn æ fid, N̄pn æ N̄d and their charge conjugated are
Sfipn

SÕ
fid

= 1, while for Npn æ Nd and its charge conjugate, as there are 2 identical particles

in the initial state, SNpn

SÕ
Nd

= 2. The spin degeneracies read gd/3 = gN,p,n/2 = gfi = 1.

Previous to this work, the deuteron catalysis reaction had to be treated via a binary
reaction chain involving a fake resonance. The 3 ¡ 2 reaction is broken down into two steps
with a fake decaying resonance (called d

Õ with the decay mode d
Õ ¡ np) in the intermediate

step, so that the reaction (chain) only contains 2-body collisions: Xd ¡ Xd
Õ ¡ Xnp.

The properties of the d
Õ are chosen to reproduce the fid, Nd and N̄d cross-sections and to

achieve a lifetime that lasts the time n and p spend flying by each other. This treatment
of the deuteron reactions is introduced in detail in [183] and is labeled in the results as
the 2-to-2 stochastic or 2-to-2 geometric treatment depending on the employed collision
criterion. The direct 3-to-2 treatment is labeled as 3-to-2 stochastic. All treatments are
employed and compared for the results (Section 5.3).

4.3.3 Proton-antiproton 5-to-2 reactions
The third multi-particle treatment in SMASH concerns 5 ¡ 2 reactions. The specific
reaction of interest is 5fi æ NN̄ , which is the detailed balance restoring back-reaction of
NN̄ annihilation. While the 5fi reaction is desired equivalently for p and n, the 5fi æ pp̄
reaction is the main interest since protons are experimentally more accessible. The results
(Section 5.4) therefore focus on discussing the proton reaction.

The collision probability for a 5-to-2 reaction under the assumption that the matrix ele-
ment only depends on the initial center-of-mass energy is

P5æ2 = g
Õ
1
g

Õ
2

g1g2g3g4g5

S12345

S
Õ
12

1
32E1E2E3E4E5

�t

(�3x)4

⁄

�5

1
4fis

‡2æ5 (4.111)

as derived in Section 4.1.10 (same as Eq. 4.99). For the annihilation reaction, Spp̄ = 1 and
Sfi+fi+fi≠fi≠fi0 = 2!2! = 4 as well as gp/p̄ = 2 and gfi = 1. As this collision probability is
calculated for all possible 5- (and 2-) particle combinations, calculations including 5-to-2
reactions are computationally expensive due to involved combinatorics.

The 5-body phase space is parametrized, when it is employed for the collision proba-
bility above, which saves part of the computational expenses. The general form of the
parametrization chosen to fit the numerically sampled 5-body phase space (according to
Eq. 4.52) for the case of 5 pions (mi = mfi) is

fn(s) = A(s ≠ s0)5

3
1 +

3
s

s0

4n4 ≠–
n

, (4.112)

where s0 = 25m
2
fi. The order n=1 already fits the phase space su�ciently, so the final

form for parametrization is

f1(s) = A(s ≠ s0)5

3
1 + s

s0

4≠–

(4.113)

with the parameter values A = 2.1018 · 10≠10 and – = 1.92802. Figure 4.3 shows the
comparison of the numeric result with the parameterization and the analytic form from
Eq. 4.53. The plot verifies first that the numeric sampling of Eq. 4.52 is correct, since for
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Figure 4.3: Numeric result for �5 in the case of five pions (mi = mfi) compared with
the parameterization from Eq. 4.113 and the numeric result for the almost massless case
(mi = 10≠5 MeV) compared with analytic expression for the massless case (Eq. 4.53) [302].

the almost massless case of mi = 10≠5 MeV, it matches the analytic form. Furthermore,
the parametrization also shows an excellent agreement for mi = mfi, verifying the fitting
procedure. Note that for the 2-to-5 process, the 5-body final state is (also) sampled
isotropically (details are found in Appendix A).

An alternative treatment to fulfill detailed balance for NN̄ annihilations is a chain of
two-body reactions via intermediate resonances (referred to as the resonance treatment
in the following), which is possible to employ with the geometric criterion. As such, the
annihilation of N and N̄ is performed via NN̄ æ h1fl, which subsequently decays to 5fi

(via NN̄ æ h1fl æ flfififi æ 5fi). This multi-step process, in turn, provides the back-
reaction 5fi æ NN̄, needed for the restoration of NN̄ pairs. Detailed balance is conserved
for all intermediate reactions and therefore for the 5-to-2 reaction overall. Note that
the NN̄ æ h1fl is experimentally not constrained and this reaction chain construct only
allows to treat a 5-body final state. Also, the reaction is slowed down by introducing the
intermediate resonances, which exist a certain time before their decay. The e�ect of this on
the final result will be gauged by the comparison to the direct stochastic treatment. When
proton-antiproton annihilations are realized via string fragmentation, the back-reaction is
unaccounted for and detailed balance is broken.

The treatment of NN̄ annihilation in this work makes two approximations:

First, the cross-section of the annihilation reaction is defined as the remainder of the
parametrized total pp̄ cross-section after subtracting its elastic contribution. This approx-
imation assumes that the inelastic cross-section is saturated with annihilation reactions
and neglects the remaining sub-leading inelastic contributions [303, 304, 128] (while still
matching the total cross-section). The cross-section for the annihilation reaction for both
treatments, resonances (NN̄ æ h1fl) and 2-to-5 (NN̄ æ 5fi), is chosen to be identical to
ensure comparability. The nn̄ cross-section is treated analogously. As depicted in Fig-
ure 4.4, defining the annihilation cross-section as the full inelastic (i.e. total minus elastic)
cross-section naturally lead to an agreement of the total cross-sections of resonance and
2-to-5 treatment with the total parametrization. In the meantime, this overestimates the
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Figure 4.4: pp̄ cross-sections a function Ô
sNN .

parametrization of the annihilation cross-section data as a compromise. The parameteri-
zations are tuned to match the available experimental data and are taken from [106].

Second, only the most likely NN̄ annihilation final state is considered. In principle, the
whole set of processes NN̄ æ mfi, with m = 2, 3... pions [304] is possible. However, the
most likely reaction is m = 5 [304] for the typical energies of the N(N̄) in the employed
afterburner calculation (

Ô
s of NN̄ is close to the two-nucleon mass threshold). Therefore,

the set of annihilation processes is e�ectively modeled by NN̄ æ 5fi as an average.
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Chapter 5

Results with multi-particle
collisions

The primary goal of this thesis is to study a gas of hadrons, as it is produced in heavy-
ion collisions when including the reaction of multiple particles. The employed reactions
are the back-reaction of mesonic Dalitz decays (3-to-1), the deuteron catalysis reaction
(3-to-2) and the 5-pion back-reaction of nucleon-antinucleon annihilations (5-to-2). They
are realized in the hadronic transport approach SMASH, as introduced in the previous
chapter together with the underlying theory and the stochastic collision criterion.

The main results for realistic heavy-ion collision scenarios are found in the last three sec-
tions. They include an investigation of the e�ects of 3-to-2 and 5-to-2 reactions on the
deuteron and proton abundances in the dilute non-equilibrium stages of a heavy-ion colli-
sion (Section 5.3 and Section 5.4). Thereby, the results address topical research questions
(Section 1.3) about the general relevance of non-equilibrium rescatterings, the “snowballs
in hell”-paradox i.e. the time of d formation and the significance of pp̄ regeneration by 5fi.
Furthermore, the relevance of mesonic Dalitz decays over the whole collision evolution is
explored (Section 5.2).

Before these topical questions are addressed, the extensions to the hadronic transport
approach are carefully and extensively verified (Section 5.1). For this, the new stochastic
collision criterion is mainly employed in infinite matter calculations to test the equilibrium
properties of the di�erent stochastic reactions. The stochastic criterion is theoretically
only a complete solution of the Boltzmann equation for infinite and infinitesimal values
of timestep, cell size and test particle number. Since this requirement is numerically only
approximated, also the numerical stability when varying these calculation parameters is
thoroughly explored.

113



5.1 Stochastic rates in and out-of equilibrium
The stochastic rates extension to SMASH, introduced in Chapter 4, is verified in this
section by demonstrating an agreement of the stochastic rates with analytic results or
the geometric criterion. The stochastic rates are tested for simplified systems, where
analytic expectations for the scattering rate, the equilibrated yield or the equilibration
process are available. First, equilibrium systems in a box are studied with only elastic
(Section 5.1.1) or a limited set of inelastic reactions (Section 5.1.2). A particular focus
is placed on the observation of detailed balance. In addition, the equilibration process
for direct multi-particle reactions is compared with binary reaction chains that model the
same multi-particle reaction e�ectively. Then, more realistic hadron gases are studied in
a sphere or collider scenario, which include out-of-equilibrium phases (Section 5.1.3 and
Section 5.1.4). The scattering rate and multiplicity of stochastic and geometric criterion
are compared to validate their equivalence for binary scatterings in a realistic medium.
Also, the numerical stability for di�erent calculation parameters is verified (Section 5.1.5).
Albeit a rather numerical-technical aspect, understanding the dependence of the results
on calculation parameters is an important prerequisite before addressing more exciting
physical questions. A brief summary of the most important findings is given at the end of
the section.

Even though only few physically relevant results are presented in this section, the presented
detailed verification helps to establish the new framework for stochastic rates. This is one
of the main achievements of this work since it provides not only the basis for the later
presented studies, but also ample opportunities for future multi-particle studies.

5.1.1 Elastic scattering rate

To test if the collision number adheres to the kinematic theory prediction (Ntheory

coll
), a basic

box scenario (as explained in Section 2.3) is chosen. The stochastic criterion has to match
the theoretical value since both are directly based on the same theory. The box is filled
with neutral pions that only scatter elastically with a fixed elastic cross-section. To verify
the stochastic criterion for 2-to-2 elastic reactions, six di�erent calculation parameters
are varied while keeping the others fixed. The di�erent parameters are noted in the
figures. Shown is always the ratio of the number of collisions observed over the theoretical
prediction.

The results are seen in Figure 5.1. No dependency from the test particle number or
temperature is observed. While this is the ideal case, the other results are also important
since they outline the limits of the new stochastic collision approach. Deviations in the
form of a too low scattering rate are observed for large timestep sizes, for small box
volumes and large particle numbers (at small N there is no deviation since the error
bars are compatible with 1). Also, towards large elastic cross-sections, the scattering rate
slightly drops. The deviations that show are not caused by the stochastic criterion per
se, but by strictly using timesteps for the system propagation (see also Section 5.1). This
implies the assumption that only one collision per timestep per particle happens, which
breaks down if the timesteps become too large. Whether a timestep is too large depends
on the density since the denser the system is, the more collisions should happen. This is
nicely seen for the di�erent plots in Figure 5.1. If the density is increased (by varying N

or V ) the timestep becomes too large, leading to the observed deviations in the results.
Along the same line, if the cross-section is increased, too many (more than one) collisions
are supposed to happen inside the timestep; therefore, the scattering rate drops. It was
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Figure 5.1: Ratio of the calculated over the theoretical expected scattering rate in an
elastic box.
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checked that with a smaller timestep size of dt = 0.001, the cross-section plots also meet
the analytical expectation for the largest cross-section values.

Overall, it is seen that the stochastic criterion, apart from the discussed deviations in
extreme parameter regions, exactly matches the theoretical expectation for the two-body
elastic scattering rate. The agreement is generally better than for the geometric criterion.

5.1.2 Equilibration and detailed balance of the stochastic criterion

Conserving detailed balance for reactions with more than two outgoing particles and there-
fore being able to employ processes with more than 2 particles one of the main motivations
of employing the stochastic criterion. In the following, it is verified that detailed balance
is conserved for the newly introduced multi-particle reactions. These results are the first
results for multi-particle reactions in the transport approach SMASH. As the test system,
di�erent homogenous, infinite matter (i.e. box) scenarios (as explained in Section 2.3) are
chosen that only include a simplified set of relevant reactions and degrees of freedom. The
results extend the test of the scattering rate for elastic collisions in the previous section
by probing (di�erent) inelastic reactions and the equilibration properties of the system in
more detail. These systematic tests form the basis for studying dynamic non-equilibrium
systems like nucleus-nucleus collisions that are measured in experiment.

For simple systems, it is possible to test detailed balance and straightforward to calcu-
late analytic expectations for the equilibrated multiplicities and the equilibration process.
Comparisons to these analytic expectations allow to further test and validate the approach
for stochastic rates. This includes the verification of the derived and implemented formulas
for the probability. Any errors in the symmetry and degeneracy factors would be imme-
diately apparent by a disagreement with the analytic results. The discussed (thermal)
analytic expectations have to be matched since the stochastic rates are rigorously based
on the Boltzmann equation (as shown in Section 4.1).

This section is structured as follows: After some general remarks on how the transport and
analytical results are obtained, results for simple mesonic boxes, testing the stochastic (and
geometric) criterion for inelastic 2-body reactions, are shown. Afterward, the equilibration
and detailed balance for all in this work newly-introduced multi-particle reactions, 3 ¡ 1,
3 ¡ 2 and 5 ¡ 2, is verified.

Analytic calculations

A few theoretical and technical remarks are necessary to explain before presenting the box
calculation results.

To compare with the thermal multiplicity expectation for the ideal gas, it is necessary
to extract the temperate of the equilibrated system, which can di�er from the initial
temperature due to the inelastic reactions between particles. The temperature is measured
by fitting the energy spectrum of the particles inside the box, which equilibrium form is
assumed to be thermal i.e. proportional to T as follows

1
E

Ô
E2 ≠ m2

dN

dE
Ã e

≠E+µ
T . (5.1)

Since fi are an abundant species for all systems, the energy spectrum of one fi species (fi+)
is fitted to ensure the most accurate temperature.
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The thermal particle density n for the extracted T and particle with mass m is given by
the grand-canonical ideal gas expectation

n = gm
2
T

2fi2(h̄c)3
e
( µi

T )
K2

3
m

T

4
, (5.2)

where g is the spin degeneracy, µi the relevant chemical potentials like baryon and strangeness
chemical potential (normally 0 for the following results) and second-order Bessel function
K2. The thermal particle multiplicity N

th i.e. number of particles in the box is obtained
by multiplying with the box volume: N

th = nV . Unfortunately, the thermal multiplicity
cannot be compared directly with the following results, since the degrees of freedom and
interactions are simplified. A comparison would only be valid for the full hadron gas,
where the densities are independent from each other. In the case of only employing spe-
cific particles and reactions, the chemical potential µ would need be calculated specifically,
since the expected multiplicity is modified: Ni = N

th
i e

µi/T .

It is however possible to compare with a ratio of N
th in order to avoid the extra step of

computing the specific chemical potential. Assume as an example a box with just one
2 ¡ 1 reaction (A ¡ BB). In this case 2NA + NB = const., and therefore the chemical
potentials are assigned as µA = 2µ and µB = µ. The chemical potential then could be
obtained by solving the equation 2N

init

A + N
init

B = const. = N
th
A e

2µ/T + N
th
B e

µ/T (N init

i are
the multiplicity values at initialization). But it is also possible to take the ratio R = NA

N2
B

,
where the chemical potential cancels and the observed ratio equals the ratio of thermal
multiplicities:

R = NA

N
2

B

= N
th
A e

2µ/T

N
th
B e2µ/T

= N
th
A

N
th
B

(5.3)

The ratio of the equilibrated number of particles inside the boxes are therefore directly
comparable to the ratios calculated with Equation 5.2. The equilibrated multiplicity
thereby are verified analytical. Since the stochastic criterion is directly rooted in kinetic
theory, an approach employing the stochastic criterion needs to agree with these analytic
values.

The second analytic comparison performed in this section is based on so called rate equa-

tions. While more involved to calculate, the analytic result are time-dependent multiplic-
ities, from initialization to their equilibrium values. The comparison to those provide an
even more thorough examination of the presented stochastic rate approach. The needed
equations are also based on thermodynamics with the idea introduce in [194]. It is essen-
tially an extension of the arguments made above for the multiplicity ratios. Solving the
couple system of rate equations results in the yield over time relaxing to its equilibrium
values. A di�erence to [194] here is that the considered systems are not expanding, but
static boxes. For this, the system is assumed to be in kinetic equilibrium with a constant
temperature. The equilibrium yield is again described by a grand-canonical ensemble.
But since the particle species are not assumed to be chemically equilibrated, every species
is assigned a fugacity ⁄i, which time dependence needs to be solved for in the end. The
time dependent particle multiplicity is therefore defined as

Ni = V n
th
i (T )⁄i , (5.4)

n
th
i (T ) © gi

(2fih̄)3

⁄
dMd

3
p e

≠EM /T A(M)

= giT

2fi2h̄
3

⁄
dMM

2
K2(M/T )A(M) (5.5)
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with the box volume V , the degeneracy of the species gi and A(M) as the spectral
function. K2(x) is the modified Bessel function (second kind) and E

2

M = p
2 + M

2. The
reaction rates i.e. number of reactions per unit volume per unit time for for 2 ¡ n is given
by

dN2æn

d4x
= A⁄1⁄2 , (5.6)

dNnæ2

d4x
= A

nŸ

j=1

⁄j , (5.7)

with

A ©
⁄

g1d
3
p1

(2fih̄)3

g2d
3
p2

(2fih̄)3
‡2ænvrele

≠(E1+E2)/T

= È‡2ænvrelÍ n
th
1 (T )nth

2 (T ) . (5.8)

And, the rates for decay and formation of a 1 ¡ n reaction are

dN1æn

d4x
= A⁄1 , (5.9)

dNnæ1

d4x
= A

nŸ

j=1

⁄j , (5.10)

with

A ©
⁄

dM
d

3
p

(2fih̄)3

M

EM
�(M)e≠EM /T A(M)

= È�Í n
th
1 (T ) , (5.11)

Expressions for È‡2ænvrelÍ and È�Í are found in [4]. Using the equations above, a system
of equation can now be deducted for arbitrary systems of degrees of freedom and reactions
between them. In the following, the results of [305] and [4] are used. The full sets needed to
obtain the analytic results used for comparison are therefore found in the cited references
[305] and [4]. One example is given as an illustration: Considering a system of d, fi, N

with two possible 3 ¡ 2 reactions: fipn ¡ fid and Npn ¡ Nd (the in this work employed
d catalysis reactions), the system of rate equation reads as follows.

Y
_______]

_______[

n
th
d ⁄̇d = (Rfid + RNd)(⁄2

p ≠ ⁄d)
n

th
p

˙⁄N = ≠(Rfid + RNd)(⁄2
p ≠ ⁄d)

⁄̇fi = 0
Rfid = È‡vrelÍfidn

th
fi n

th
d ⁄fi

RNd = È‡vrelÍNd2n
th
p n

th
d ⁄N

(5.12)

where the d⁄
dt derivative is abbreviated by ⁄̇. The number of p and n is assumed to be

equal and the initial yield needed to solve the system are determined by the box setup.
The resulting yields of this example system are found as the dashed line in Figure 5.9.

Binary reactions

As the first result, Figure 5.2 shows a box calculation with only fi and fl mesons. The only
included reaction in the calculation is fl ¡ fifi.
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Figure 5.2: Box of fl and fi mesons. Left: Time evolution of particle numbers. Upper right:
Temperature time evolution. Lower right: Number of forward and backward reactions
after equilibration.

Since in the following the results are presented in a similar fashion, first a few general
explanations on Figure 5.2 are given: On the left-hand side, the number of particles over
time is shown. The lines being averages of the di�erent isospin types if listed together in
the legend. Generally, the results employ the stochastic criterion. Only on the multiplicity
plot, the same calculation employing the geometric criterion is shown for comparison as
the dotted line. Error bands are plotted in grey behind the lines. On the upper right,
the time evolution of the temperature is shown, which is obtained, as described above,
by fitting the fi

+ energy spectra. The dotted line illustrates the time over which the
temperature average is obtained, which is also noted in the plot. The lower right plot lists
the number of forward and backward reactions for the di�erent reactions on the x-axis.
One triangle shows the number of forward and the one facing in the other direction the
number of backward reactions. Forward and backward reactions are counted for the time
interval noted in the top left of the plot. In general, the counting of the reactions and the
averaging of the temperature is done from a time, where the system can be considered in
chemical equilibrium i.e. the number of particles is constant, which can be verified from
the multiplicity plot on the left. Note that counting forward and backward reactions is
necessary to verify that detailed balance is conserved. Chemical equilibrium alone is not
su�cient since it is also possible with unbalance, cyclic reactions. Together this set of
plots allows to check if and how the system equilibrates and whether detailed balance is
conserved for all present reactions.

Coming back to the results from Figure 5.2, the number of particles quickly equilibrates
with around 15 fl being formed by fifi reactions and is in chemical equilibrium at about 10
fm. The temperature average and reaction counting starts at 20 fm, where the system can
be safely considered in chemical equilibrium. The temperature in equilibrium is T = 0.336
GeV and from the lower right plot it is clear that detailed balance is conserved since all
possible isospin combinations of fl æ fifi and fifi æ fl respectively occur equally often.

The stochastic and the geometric criterion results agree for this box calculation, which
presents a first verification that the new treatment of the stochastic criterion is also correct
for inelastic 2-body reactions.
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Figure 5.3: Box of ‡ and fi mesons. Left: Time evolution of particle numbers. Upper right:
Temperature time evolution. Lower right: Number of forward and backward reactions
after equilibration.

A similar box result in this case with ‡ ¡ fifi is found in Figure 5.3. Again only one
2 ¡ 1 reaction is probed. As seen in the left plot, the system even faster equilibrates
since the number of initialized fi is closer to the equilibrated number and so also the
temperature is nearly constant (upper right plot). The number of forward and backward
reactions is again equal for the respective isospin combinations, with the total number of
‡ ¡ fi

0
fi

0 being half of ‡ ¡ fi
+

fi
0≠ due to the identical particles (fi0) in the 2-body state

(causing a symmetry factor of 2!). The result again confirms that for such simple, one
inelastic reaction, systems the results are independent of the chosen collision criterion as
the multiplicity evolution in the box matches.

Criterion ÈT Í [GeV] ÈNflÍ ÈNfiÍ Rflfi R
th
flfi

----
Rflfi≠Rth

flfi

Rth
flfi

----
Stochastic 0.336 13.2 73.9 2.438E-03 2.337E-03 0.043
Geometric 0.317 13.3 73.4 2.466E-03 2.579E-03 0.044

Table 5.1: For box of fl and fi mesons in Figure 5.2. Rflfi = Nfl

N2
fi

.

Criterion ÈT Í [GeV] ÈN‡Í ÈNfiÍ R‡fi R
th
‡fi

---R‡fi≠Rth
‡fi

Rth
‡fi

---
Stochastic 0.304 6.5 95.5 7.136E-04 7.650E-04 0.067
Geometric 0.303 6.5 95.3 7.141E-04 7.690E-04 0.071

Table 5.2: For box of ‡ and fi mesons in Figure 5.3. R‡fi = N‡
N2

fi
.

Even though both approaches for the collision criterion agree, it is still not clear if the
transport approach agrees with the thermal (analytic) expectation. As explained above,
one possible verification is to compare with the kinetic theory expectation for the equili-
brated multiplicities, where a ratio is taken to cancel the chemical potential specific to the
reaction. The relevant values for the ‡ ¡ fifi and fl ¡ fifi boxes are displayed in Table 5.1
and Table 5.2. The multiplicity ratio that is taken is given in the caption. The equilibrated
multiplicities are averages fitted over the same range as the temperature, so in the both
cases for 20 ≠ 100 fm. R

th is the same ratio with the calculated analytic grand-canonical
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ideal gas expectation according to Equation 5.2 (multiplied by the volume of the box).
The comparison is performed in the last column, where the absolute value of the relative
di�erence is displayed. For the precision of the temperature and multiplicity fit that is
limited by statistics, a relative di�erence of less than 10% can be seen as agreement. Ta-
ble 5.1 and Table 5.2 therefore show that the equilibrated multiplicities match the analytic
expectation.

Figure 5.4: Box of fl, Ê and fi mesons (without Ê æ 2fi reaction). Left: Time evolution
of particle numbers. Upper right: Temperature time evolution. Lower right: Number of
forward and backward reactions after equilibration.

The second scenario are two mesonic infinite matter calculations with two reactions in-
cluded for each. Surprisingly, already for this still simple calculation a disagreement
between both collision criterion is observed.

The first box includes fi, fl and Ê mesons with two reactions possible between them:
fl ¡ fifi and Ê ¡ flfi. Note that the usually included Ê ¡ fifi reaction is neglected for
simplicity. The multiplicity and temperature evolution as well as the reaction number
comparison for this setup are presented in Figure 5.4. First of all, the results for the
stochastic criterion show the system chemical and thermally equilibrating with detailed
balance being conserved for all isospin possibilities of both possible reactions. fl ¡ fifi

being much more frequent than Ê ¡ flfi, since the latter is suppressed by needing a fl

being formed and colliding with another fi before decaying. Interestingly, the multiplicity
time evolution di�ers for the geometric criterion.

Criterion ÈT Í [GeV] ÈNfl0Í ÈNÊÍ ÈNfi+Í RÊfi R
th
Êfi

---RÊfi≠Rth
Êfi

Rth
Êfi

---
Stochastic 0.160 46.8 108.7 97.6 1.170E-04 1.140E-04 0.026
Geometric 0.148 57.0 78.2 107.9 6.222E-05 1.441E-04 0.568

Table 5.3: For box of fl, Ê and fi mesons in Figure 5.4. RÊfi = NÊ
N3

fi
.

The di�erence is not only seen in the multiplicity values, but also for the equilibrated mul-
tiplicity values as seen on the left plot and confirmed by the averaged values in Table 5.3.
The di�erence being the strongest for the Ê. The di�erence also leads to di�erent temper-
atures for both boxes. The table shows one of the possible multiplicity ratios RÊfi = NÊ

N3
fi

,

121



where the chemical ratio specific to the present reactions cancels. It is clear that the
equilibrated multiplicity ratio for the geometric criterion di�ers from the analytic expec-
tation, even though the di�erent temperature does mean a di�erent expected ratio. The
stochastic criterion meanwhile matches the analytic expectation perfectly.

Figure 5.5: Box of fl, f2 and fi mesons. Left: Time evolution of particle numbers. Up-
per right: Temperature time evolution. Lower right: Number of forward and backward
reactions after equilibration.

These findings are confirmed by the second two-reaction box calculation, which includes
the hadrons fi, fl and f2, which are interacting via fl ¡ fifi and f2 ¡ flfl. The results in
Figure 5.5 show again the system equilibrating with detailed balance being conserved for all
reactions for the stochastic criterion. While detailed balance being also conserved for the
geometric criterion (not shown), again the multiplicity evolution di�ers. Similar as for the
other 3-particle box, 5he values for the ratio Rf2fl = Nf2

N2
fl

of the equilibrated multiplicities in
Table 5.4 di�er again for the geometric criterion from the analytic expectation. Whereas,
the stochastic criterion results agree with it.

Criterion ÈT Í [GeV] ÈNfl0Í ÈNf2Í ÈNfi+Í Rf2fl R
th
f2fl

----
Rf2fl≠Rth

f2fl

Rth
f2fl

----
Stochastic 0.193 32.5 7.8 83.8 7.404E-03 7.187E-03 0.030
Geometric 0.168 38.4 6.5 89.1 4.403E-03 1.181E-02 0.627

Table 5.4: For box of fl, f2 and fi mesons in Figure 5.5. Rf2fl = Nf2
N2

fl
.

Since the above results for all mesonic boxes match the analytic expectation for the ratios
of multiplicities, the verification for the inelastic two-body reactions is successful. The
stochastic criterion is generally an improvement compared to the geometric criterion result
regarding the agreement with the analytic results. This is expected since the theoretical
foundation of the geometric criterion is not as rigorous. Even though slightly surprising
that a di�erence between both criteria is already apparent for such simple systems, the
studied systems are specific test scenarios. It is unclear how relevant the di�erences are
in more realistic, dynamic scenarios like a heavy-ion collision. A more detailed study on
why the geometric criterion di�ers from the correct benchmark results obtained with the
stochastic criterion is left for future studies and beyond the scope of the verification of the
introduced stochastic criterion.
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3-to-1 reactions

The first result for the more interesting, newly-introduced multi-particle reactions is pre-
sented in Figure 5.6. Here and in the following, no direct comparison to the geometric

Figure 5.6: Box of Ê and fi mesons interacting via Ê ¡ fi
0
fi

+
fi

≠. Top: Time evolution of
multiplicities. Middle: Time evolution of multiplicity ratio. Bottom: Number of forward
and backward reactions after equilibration.

criterion is possible anymore since it cannot be employed for multi-particle reactions. The
box calculation only includes the Ê ¡ fi

0
fi

+
fi

≠ reaction and Ê and fi as the only two par-
ticle species. Previously SMASH only could describe the 1 æ 3 decay. If no back-reaction
is included (dotted line), which was so far the only option, the Ê mesons naturally are
observed to only dissipate over time without reaching an equilibrium state. With the
stochastic reaction, it is possible to account for the 3-body back-reaction to reach equi-
librium and detailed balance for Ê ¡ fi

0
fi

+
fi

≠. Figure 5.6 shows on the top plot that
chemical equilibration of the system of Ê and fi is reached in this case. The middle plot
summarizes the information previously displayed in tables by showing the time evolution
of the relevant ratio compared to the analytic result for the fitted equilibration tempera-
ture (here ÈT Í = 0.179 GeV). Since the ratio matches the analytic value over time, also
the equilibrated multiplicity produced by the Ê ¡ fi

0
fi

+
fi

≠ reaction is verified. Most
importantly, the bottom plot shows that detailed balance is conserved for the first time
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for a multi-particle reaction directly in SMASH.

Figure 5.7: Left: Box of „ and fi mesons interacting via „ ¡ fi
0
fi

+
fi

≠. Right: Box of ÷
Õ, ÷

and fi mesons interacting via ÷
Õ ¡ ÷fifi. For both: Time evolution of multiplicities (top)

and of multiplicity ratios (bottom).

The results for 3-to-1 reactions are complemented with Figure 5.7, which shows the box
calculation results for the other 3-to-1 reactions discussed in this work. On the left, the
result for „ ¡ fi

0
fi

+
fi

≠ is displayed for a box with only „ and fi. On the right, a box with
÷, ÷

Õ and fi for the reactions ÷
Õ æ ÷fifi. Note that the isospin asymmetry for the fi is caused

by having ÷fi
+

fi
≠ and ÷fi

0
fi

0 as the two possible 3-body states, with the latter having two
identical particles. For both decay back-reactions of „ and ÷

Õ, the system equilibrates
and detailed balance is conserved for all 3 ¡ 1 reactions (plot for the latter not shown).
The ratios of the equilibrated multiplicities again match the analytic expectation for the
temperature of the box.

Figure 5.8: Time evolution of multiplicities for a box of fl, Ê and fi mesons. Comparison
between direct 3-to-1 and two-step 2-body reaction chain treatment for Ê ¡ fififi. Both
results employ the stochastic criterion.
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One interesting comparison already possible with the so-far presented, is to compare the
result for the direct Ê 3-to-1 reaction (Figure 5.6) with the result modeling same reaction
with a 2-body reaction chain (Figure 5.4). Because of the limitation of the geometric cri-
terion of only being applicable for 2-body reaction, it is common to emulate multi-particle
reaction with 2-body reaction chains where each step still conserves detailed balance. One
of the main advantages of the stochastic criterion is that this emulation is not necessary.
It, therefore, enables to constrain the e�ect of these 2-body reaction chains on the results,
which will be done in this work on multiple occasions.

The first comparison of this kind is shown in Figure 5.8. The direct 3-to-1 reaction
Ê ¡ fififi is compared with the two-step 2-body reaction chain Ê ¡ flfi ¡ fififi emulating
the same reaction. Note that for the Ê reaction specifically, it might be physical that both
the direct and the two-step reaction are possible. Still, for this case, both are strictly
distinguished to study the maximum e�ect of employing either treatment. Both results
are obtained with the stochastic criterion, but only the solid line includes the Ê ¡ fififi

reaction. The result is similar to the setup in Figure 5.6, but includes the fl ¡ fifi reaction
to allow for a more direct comparison to the reaction chain approach, which necessarily
includes it. Interestingly, the multiplicity evolution is not matching. The multiplicities
equilibrate faster in the direct 3-to-1 case. This is explained by the fact that for multi-
particle reactions, more particles are reacting at once. In addition, a number of fl mesons
decay before they react with fi to an Ê, which e�ectively slows down the equilibration
further in the 2-to-2 case. This di�erence in equilibration time is one of the main di�erences
observed in this work between multi-particle reactions and 2-body reaction chains and is
also by the rate equations as seen below.

Two more notes on the result shown in Figure 5.8: First, the extracted temperature is
the same for both treatments and also the equilibrated multiplicities matches the analytic
expectation for both cases, which underlines the need to probe the time evolution analyt-
ically as done with rate equations in the following. Second, comparing the equilibration
time for the system with just the Ê ¡ fififi reaction in Figure 5.6 (around 50 fm) with
the equilibration time in Figure 5.8 or Figure 5.4 (around 150 fm), it is clear that just
equilibrating the one 3-to-1 reaction is much faster. This is a trivial finding, since more
reactions need more time to equilibrate. But for the 3-to-1 case, the fl ¡ fifi reaction can
just be neglected since it was only added for the sake of the comparison and, in a sense,
artificially slowed the equilibration down. In contrast, fl ¡ fifi is essential in mediating the
same reaction in the 2-to-2 case. Therefore, the equilibration time when just considering
the Ê ¡ fififi reaction in a box is by construction even large between the two approaches
then observed in Figure 5.8.

3-to-2 reactions

The next class of multi-particle reactions discussed are 3-to-2 reactions for deuterons. The
two reactions are finp ¡ fid and Nnp ¡ Nd, which are known to be relevant for d for-
mation and break-up. Figure 5.9 displays the evolution of a box scenario initialized with
fi and N including both reactions and shows deuterons forming over time. The included
fid ¡ NN reactions are neglected for the presented calculation since it equilibrates much
slower due to its small cross-section, making it less relevant. The figure includes five di�er-
ent time evolutions. The colored lines show the time evolution of the transport approach.
All multiplicity evolutions show that the system equilibrates (with the fi multiplicity con-
stant since the fi is always the same in the incoming and outgoing state). That detailed
balance is conserved after equilibration was checked separately. Three di�erent treatments
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Figure 5.9: Time evolution of multiplicities for a box of d, N and fi. Comparison between
di�erent treatments of finp ¡ fid and Nnp ¡ Nd. Analytic result obtained with rate
equations [4].

of finp ¡ fid and Nnp ¡ Nd are distinguished in the plot. The stochastic 3-to-2 case
that directly performs the reactions via the stochastic criterion is most relevant to this
work. The geometric criterion relies on a 2-body reaction chain via a fake d

Õ resonance
({fi, N}np ¡ {fi, N}d

Õ ¡ {fi, N}d) as already explained before (Section 4.3.2). The result
for the 2-to-2 treatment is shown for the stochastic and geometric criterion. The 2-to-2
result is invariant under a change of the criterion.

However, interestingly there is a di�erence between the 3-to-2 and 2-to-2 treatment. The
multi-particle reaction clearly equilibrates the medium faster, which is the same finding
as in Figure 5.8. Moreover, Figure 5.9 also shows that this is analytically expected.
The above-described rate equations (thinner black lines ) also show the medium faster
equilibrating in the 3-to-2 case. The analytic result agrees perfectly with the transport
calculation validating the implementation of the stochastic multi-particle reactions again,
in this case for the deuteron 3-to-2 reactions. The validation is even more explicit since,
if available, the rate equation also validates the dynamical equilibration process over time
as well as the found di�erence between the di�erent treatments. The earlier comparison,
in contrast, only checked the static number of particles after equilibration.

5-to-2 reactions

5-to-2 reactions are the multi-particle reaction class remaining to be discussed. This
is the first time that 5-body reactions are treated directly in transport approaches. The
application for this reaction class are NN annihilation reactions that are known to produce
5fi on average. The relevance of the 5fi annihilation back-reaction is a long-standing open
question addressed in the last section of this chapter. Here, it is first verified that the
equilibration properties of the 5-to-2 reaction are correctly described. Figure 5.10a shows
the multiplicities of p and fi rapidly equilibrating due to them interacting directly via
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(a) Stochastic 5-to-2 approach (only pp ¡ 5fi) (b) Resonance approach

(c) Reaction numbers (Stochastic 5-to-2 ap-
proach (only pp ¡ 5fi))

(d) Reaction numbers (Resonance approach, ge-
ometric)

(e) Stochastic 5-to-2 (incl. fl and h1 in box) vs.
resonance approach

Figure 5.10: Time evolution of multiplicities and reaction numbers for box calculations
including di�erent approaches for NN ¡ 5fi reactions. Analytic rate equation result from
[305].
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pp ¡ 5fi. This result is naturally obtained with the stochastic criterion as the only
criterion able to employ multi-particle reactions (stochastic 5-to-2 approach). The nn ¡
5fi reactions is neglected for this calculation, in order to compare to the analytic calculation
from [305], which only includes the p reaction. The analytic calculation in Figure 5.10a
is again obtained with rate equations and agrees with the 5-to-2 transport calculation,
thereby verifying the equilibration properties of the stochastic 5-to-2 treatment. More
importantly, then the observed chemical equilibration is the fact that detailed balance is
fulfilled. As observed in Figure 5.10c, the number of forward and backward reactions are
indeed the same.

Since the transport approach with the geometric criterion is limited to 2-body reac-
tions, a di�erent construct to model NN ¡ 5fi is also employed (Section 4.3.3). The
5-to-2 reaction is modeled as a chain of 2-body reactions, in this case involving the two
mesonic resonances fl and h1 (hence this approach is referred to as resonance approach):
NN ¡ flh1 ¡ 3fifl ¡ 5fi. The geometric (and stochastic) criterion is able to conserve
detailed balance for every 2-body reaction in this chain, and therefore, detailed balance is
also conserved overall. Figure 5.10b shows that employing the stochastic and geometric
criterion leads to a similar multiplicity evolution. The system to realize the reaction chain
is more complex in comparison to the simpler system in Figure 5.10a for the stochastic 5-
to-2 approach. Also, the time to equilibrate the simpler system with the stochastic 5-to-2
approach in Figure 5.10a is much shorter than the system for the resonance approach in
Figure 5.10b. Note that a comparison between both results in terms of multiplicity is not
possible, since one cannot decide how the intermediate states fl and h1 contribute to either
the fi yield via decays or the N yield via annihilation. Figure 5.10d shows that all three
participating reactions are also fulfilling detailed balance once the system is in chemical
equilibrium. Only one isospin combination example with the geometric criterion is shown
for legibility. Detailed balance is also fulfilled for the other isospin combinations and when
the stochastic criterion is employed for the resonance approach (not shown).

To further compare the the two approaches, Figure 5.10e presents a direct comparison be-
tween the resonance approach (same as in Figure 5.10b) and the 5-to-2 approach including
fl and h1 in the box calculation additionally. This comparison has the same degrees of
freedom, but di�erent interactions. With the interactions fl ¡ fifi and h1 ¡ fifl being part
the same for both results and the annihilation being di�erent : either via NN ¡ 5fi or
via NN ¡ h1fl. The idea is to produce a fairer comparison between the two approaches
in terms of the degrees of freedom than comparing Figure 5.10a and Figure 5.10b. The
result is that the time to equilibrate in Figure 5.10e is not as clearly di�erent for the
two approaches in this more complex system. For the stochastic 5-to-2 approach, the fi

multiplicity is faster to equilibrate, while the other multiplicities equilibrate at the same
rate. In particular, the h1 appears to hinder the equilibration of the system. Overall, both
comparisons (in Figure 5.10e or between Figure 5.10c and Figure 5.10b) are valid and high-
light di�erent aspects: The NN ¡ 5fi reaction in the 5-to-2 approach does equilibrate
much faster than employing a 2-body reaction chain, but this di�erence in a more complex
system with more reactions it seems to be weakened. How the di�erence in equilibration
finding is reflected in a dynamic heavy-ion collision is studied in Section 5.4.

The main di�erence between the 5-to-2 and the resonance approach is the presence of
intermediate states that propagate the medium for a certain (life) time. In a previous
study [204], interesting results were achieved by scaling the lifetime, therefore removing the
propagation of resonances through the medium and making the (decay) reaction happening
instantaneously. In [204], the lifetime of intermediate resonance and with this the reaction
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(a) Lifetime scaled with a factor of 10≠5. (b) Comparison to halved lifetime.

Figure 5.11: Time evolution of multiplicities for box including NN ¡ 5fi reaction via
resonances with scaled lifetimes.

timescale is found to have a significant e�ect on transport coe�cients, namely the shear
viscosity. Previously disagreeing results on transport coe�cients are compatible when the
reaction timescale is scaled to be the same. A similar idea is explored in Figure 5.11,
where the lifetimes are scaled to explore the e�ect on the di�erence between the 5-to-2
and resonance approach. The lifetime is practically set to zero by scaling it with 10≠5

(left plot) and halved by scaling it with 0.5 (right plot, dotted line). However, it appears
that achieving a better agreement between the direct 5-to-2 approach and the resonance
approach with instantaneous reaction (¥ 0 lifetime) is not possible. Since resonances
directly decay, no secondary reaction between resonances can occur (including flh1). So,
as the left of Figure 5.11 reveals, no new NN pairs are formed and they annihilate until
none are left. The agreement also is worse for the results with halved lifetimes, displayed
in the right plot. Even though an equilibrium for the N, N̄ yield is reached for this result,
this equilibrated yield (compared to the resonance result with normal lifetimes) is not
closer to the yield obtained by the 5-to-2 approach. Therefore, the lifetime shortening of
the intermediate resonances in the reaction chain has not the same e�ect as the multi-
particle reactions here. The reaction timescale is inherently di�erent. This makes a
comparison of the e�ect of both treatments, especially the multi-particle reactions, on
transport coe�cients like the shear viscosity (extending previous studies like [207, 205]
and [204]) in the future, particularly interesting, because of the found e�ect of reaction
timescale on them.

The main purpose of the box results above1 is to verify the implementation of the stochastic
criterion for inelastic two-body and multi-particle reactions in the employed transport
approach. The results of this section are summarized as follows:

The treatment of the stochastic criterion in general and the newly introduced multi-particle
reactions, in particular, are validated by the results. As mentioned, due to the stochastic
rates being rigorously based on the Boltzmann equation, the described setups provide a
simple testing ground for the criterion since analytic expectations for the multiplicities
(ratios) can be obtained. The analytic expectation for the equilibrated multiplicity ra-
tios is met for all cases with the stochastic criterion. Also, the dynamic equilibration

1Note that most of the results presented in this section can directly be reproduced by detailed balance
tests included in the SMASH analysis suite [225].
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process expectation is perfectly matched, where rate equations are available. As shown,
the stochastic criterion results are an improvement compared to the geometric criterion
for binary reactions, regarding the agreement with the analytic results. Multi-particle
back-reactions for decay and scattering processes with 3 or 5 outgoing particles conserve
detailed balance in equilibrium. The agreement with the analytic expectation also verifies
the derived and implemented probability formulas, including the employed symmetry and
degeneracy factors. Furthermore, it is shown that multi-particle reactions equilibrate the
system faster than 2-body reaction chains used to model the same reaction. It is interest-
ing to study the implication of this di�erence for dynamic non-equilibrium nucleus-nucleus
systems, also to constrain the e�ect of a reaction chain on results obtained so far. In gen-
eral, based on the verification of the equilibrium properties of stochastic criterion and
multi-particle reactions in this section, it is possible to explore physically more interesting
and realistic non-equilibrium scenarios in the following.

5.1.3 Collision rate for an expanding sphere

Figure 5.12: Collision rate for the stochastic and geometric collision criterion in an ex-
panding sphere scenario.

After studying static infinite matter calculations, this section starts to explore the more
dynamic situation of an expanding sphere (as detailed in Section 2.3). This system is
evolving out of equilibrium since it is rapidly diluting due to its expansion. Therefore,
the calculation is physically closer to the medium created in a heavy-ion collision but still
simple enough to serve as a testing ground for the stochastic approach.

The sphere is initialized2 with 100 particles, 60fi and 40N with the same number of
particles for each isospin state. It has a radius of r = 5 fm and expands due to the set
temperature of T = 200 MeV.

Figure 5.12 shows the result for the collision rate in the case of the geometric (blue line)
and stochastic (red line) criterion for the described initial condition. In this case, no
multi-particle reactions were employed to only compare the two di�erent approaches for
2-body collisions. As seen in the figure, the collision rate agrees for both collision criteria.
This result further validates the stochastic approach for finding collision since no e�ect of

2see Section 2.3 for more details on the initial condition of the sphere.
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the employed collision criterion is expected in the simple sphere system. Note, however,
that the collision rate for the stochastic criterion does depend on the (proper) choice of
cell size and test particle number (here lmin = 1.26 fm and Ntest = 10) as discussed in
Section 5.1.5 below (cf. Figure 5.23).

5.1.4 Particle yields and ÈpT Í in nucleus-nucleus collisions
After all, the aim of hadronic transport approaches is the description of heavy-ion col-
lisions. Even though the collision criterion is fundamental to the microscopic of the ap-
proach, and therefore it is expected that observables exhibit some sensitivity to its choice,
basal observables should ideally not be sensitive to the choice of criterion. Thus, the parti-
cle production in AuAu collisions at di�erent

Ô
s energies is probed in this section. Again,

only two-body reactions are included in the calculations to ensure comparability to study
the choice of criteria.

(a) (b)

(c)

Figure 5.13: Multiplicity (with and without mid-rapidity cut) and mean transverse mo-
mentum for AuAu collisions at di�erent

Ô
s energies for stochastic and geometric criterion.

No multi-body reactions included.

Figure 5.13 shows the comparison of calculating the multiplicity and mean transverse
momentum, ÈpT Í, for three abundant, stable particles fi, K, N for the geometric (cf. Fig-
ure 3.1) and stochastic criterion. The multiplicity is the main observable for particle
production and ÈpT Í the most basic observable of measuring the collision dynamics in
the plane transverse to the beam axis. Stochastic and geometric criteria are found to be
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compatible for the probed low to intermediate beam energy range. Small di�erences are
only observed for the largest energies. Di�erences in multiplicity are slightly enhanced
at mid-rapidity, which is expected since there most collisions take place. All di�erences
are found to minimize by choosing a more appropriate set of simulation parameters for
the stochastic criterion (red lines), namely more test particles and smaller grid cells (see
the following Section 5.1.5 for details). The here found independence from the choice of
criteria for basal observables also further validates the treatment of stochastic rates in
SMASH.

Note that the stochastic criterion is not applicable for describing the very dilute system
in elementary collisions3. Therefore, no such result is presented.

5.1.5 Numerical stability of results with the stochastic criterion

Recalling the di�erent probability formulas in Section 4.1 and especially the most general
probability formulation in Eq. 4.32

P12...næ1Õ2Õ...mÕ = 1
2n

rn
j=1

Ej
Inm

�t

(�3x)n≠1
, (5.13)

it is apparent that the choice of �t and �3
x a�ects the calculated collision probability.

In the numeric application, �t represents the timestep of the evolution and �3
x the

subvolume, where particles might interact, which is the cell volume of a spacial grid.
Numerically, both are essentially free parameters. To use P12...næ1Õ2Õ...mÕ as the probability
for a collision decision in a transport approach, the pair of �t and �3

x has to be chosen
appropriately such that P Æ 1. So already from the equation for the collision probability,
it is apparent that the combination of timestep �t and subvolume �3

x, and the stability
of the results under changes of both, need to be considered for the stochastic collision
criterion.

Even though the following results are predominantly technical, they are essential to un-
derstand as prerequisites to probe physically more interesting systems, particularly since
realizing suitable numerical conditions for stochastic rates is known to be challenging. The
following dependencies related to the subvolume �3

x i.e. the cell size of the grid and the
timestep size �t are numerical artifacts of the implementation of the stochastic criterion
and not of the underlying equations. After all, these artifacts arise, since the theoreti-
cal equations only provide the exact solution of the Boltzmann equation for infinitesimal
quantities, i.e. for the limits �3

x æ 0 and �t æ 0 (as well as for the number of test parti-
cles Ntest æ Œ). These limits can only be approximated numerically. In other words, the
cell volume and timestep should be as small as possible and test particle numbers as large
as possible from a purely theoretical point of view. But, this theoretical requirement has
to be balanced with the simulation runtime simultaneously, which increases for smaller
(and therefore more) cells or timesteps and more test particles.

Timesteps

As mentioned, employing the formula for the collision probability recited in Equation 5.13
only leads to an exact solution of the Boltzmann equation for infinitesimal �t. Numerically
this limit is only approximated for a transport approach, where the evolution is split into

3In fact, the stochastic criterion in SMASH is not at all possible to employ for elementary collisions
(technically the grid and all cells have no volume).
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Figure 5.14: Collision rate in a box with fi
0 mesons interacting with a constant elastic cross-

section of ‡ = 10 mb for di�erent densities and time-step sizes compared with the analytic
expectation of n‡. Density given in units of nuclear ground-state density ( fl0 = 0.16 fm≠3).
Calculation with the stochastic criterion.

�t-sized timesteps. Note that for the geometric criterion, the evolution is often not done
in timesteps, but the system is propagated from collision to collision (Section 2.2.1). This
is not possible for the stochastic criterion since the collision probability is defined over an
a priori known time-interval �t.

The main limitation of a timestep-based evolution is given by the assumption that only
one interaction per particle per timestep is possible. Therefore, the collision rate is under-
estimated if more than one collision per particle would be expected for the given timestep.
This e�ect is illustrated by the result in Figure 5.14, which shows the collision rate for
a fi

0 gas in a box (see Section 2.3) at di�erent densities. The analytic expectation (here
simply n‡) for the collision rate is matched for the di�erently sized timesteps only for
low-densities. The collision rate is underestimated for large densities if the timestep is
(too) large since more than one collision per timestep would be necessary to match it.
Therefore for all results produced with the stochastic criterion, the timestep needs to be
small enough that secondary interactions within a timestep are avoided (see also results in
Section 5.1.1). The drop in collision rate is not necessarily an e�ect of a rising density but
is applicable to all cases, where more than one collision per timestep would become likely.
A similar result, for example, is observed for an increase of the cross-section in Figure 5.1.

In terms of the collision probability, these results illustrate that the probability has to be
small, such that numerically not more than one collision is accepted per timestep. Since
the probability directly scales with the timestep P Ã �t, a small �t ensures that this is
the case. In addition, a small �t ensures that P Æ 1. Note that while P Æ 1 is necessary
for P to be used in a Monte-Carlo decision, it is not su�cient to avoid underestimating
the collision rate. If the probability is large (while still Æ 1), it can still be likely that the
Monte-Carlo decision accepts more than one interaction per particle per timestep. While
this is theoretically a correct result, since the derived probability formula predicts it, all
secondary interactions within a timestep are discarded in SMASH. In testing, a fraction of
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less than 1% of discarded interactions relative to the total number of interactions showed
no e�ect on the scattering rate. Above this percentage, SMASH, therefore, emits a warning
since the e�ect of a smaller timestep on the results has to be investigated specifically.

Cell size

Ideally, results do not depend on the chosen cell size since it is a free parameter of the
approach. However, from the comment at the beginning of this section (about the need
to choose an appropriate pair of �t and �3

x to limit the probability to 1), it is already
clear that this is not the case from considering the probability equation alone. Therefore,
the aim is to find a sensible interval for the cell size, in which results do not depend on
the choice of �3

x.

Studying the results for di�erent cell sizes4 reveals that this interval is limited by two
extreme cases, where the results start to exhibit a cell size dependence. On the one side,
such a dependence appears for small cells if the cells are filled very sparsely. On the
other side, the cells are too large when they overestimate the size of the medium itself.
In the following, results illustrating both e�ects for small and large cells are shown and
explained. In contrast to the e�ect of di�erently sized timesteps, the e�ect of the cell size
is also di�erent for reaction classes i.e. di�erent numbers of incoming particles n, since the
probability depends on 1

(�3x)n≠1 (cf. Equation 5.13). So generally multi-particle reactions
(n > 2) are more sensitive than 2-body reactions.

Figure 5.15: Illustration of cell-size overestimation. Black square displays the grid cell and
yellow dots the particles inside the cell.

The cell size is too large if a single cell is large than the relevant medium itself. Consider
the situation in Figure 5.15 as an example. Physically, the situation is identical in both
scenarios, but the calculated scattering probability and with this the resulting scattering
rate will be smaller on the right-hand side. Would the medium still be the same size
or larger than the cell on the right-hand side, the smaller scattering probability would
be compensated by the larger number of possible particle parings (note that in this case
also more than one cell would be necessary on the left). The result would be a constant
scattering rate. In other words, the cell size is overestimated if the medium inside each
cell is highly inhomogeneous. The cells need to be small enough to resolve the particle
distribution of the system.

Figure 5.16 illustrates how this overestimation is reflected in the total number of scatterings
(= interactions with 2 or more particles incoming) in a sphere (see Section 2.3) of fi, N and
N as a test setup5 For this and the following results, the size of the grid cells is controlled

4How the cell sizes can be varied is detailed in Appendix A.2.
5Note that the grid for this result was modified to have a fixed size that is larger than the sphere to

allow for cells to be larger than the sphere. This reflects the situation in a hadronic afterburner calculation,
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Figure 5.16: Number of scatterings in sphere of fi, N and N̄ for di�erent cell sizes (mini-
mum cell lengths lmin).

by giving a minimum value for the cell length (lmin)6. Only a minimal value is given since
the equally-sized cells are scaled up to fill the whole grid size. Usually, the size of the
cells is not significantly larger than the minimal value (especially if the number of cells is
large). For the interpretation of the following results, this di�erence is also not relevant.

Figure 5.16 shows the (scaled down) total number of scatterings as well as the number
of NN̄ æ 5fi and 5fi æ NN̄ reactions. Clearly visible is the drop in the number of
scatterings for larger cell sizes due to them being too large and the collision probability
underestimated. However, it is also visible that below a certain cell size, the scattering
number is constant and not dependent on the cell size as it should be. Furthermore, it is
seen that the multi-particle reaction is more sensitive to the cell size and the number of
5fi æ NN̄ reactions start to decline already for smaller cells, also dragging the NN̄ æ
5fi reaction down. This confirms that multi-particle reactions are more sensitive to the
e�ect of a large cell size and has two reasons: As noted, the cell volume goes into the
5-body reaction probability to the power 4 (and not 1 as for binary reactions). And,
most 5fi æ NN̄ reactions happen early when the system is still dense and small and the
cell size is too large for the spherical medium. In comparison, 2-body reactions are still
happening later when the medium expands and the cell size is not overestimating the
medium anymore. That the reaction number drops starting with (minimum) cell lengths
of lmin = 4 fm is also clear when considering the size of the sphere (r = 2 fm). The
cuboid gird cells overestimate the spherical medium when the diameter is matching the
cell length. Note that the described e�ect for too large cells cannot be observed in a box
since the grid is always as large as the box and, therefore, the homogenous medium cannot
be overestimated.

While the overestimation e�ect is obvious when looking at the number or rate of reactions,
how e.g. observables like the multiplicity are influenced might not be as trivial due to the

where the grid is much larger than the fireball due to the spectators at the grid borders. Normally, the grid
size is determined by the minimum and maximum position of the particles, preventing an overestimation
in the sphere setup.

6Technically, this is achieved by changing the maximum cross-section from the configuration file, as
explained in Appendix A.2.
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di�erent sensitivity of forward (multi-particle) compared to backward (2-body) reactions.

Figure 5.17: Collision rate of fid æ finp and finp æ fid in afterburner calculations for
AuAu collisions at

Ô
s = 7.7 GeV for di�erent (minimum) cell sizes. The 3-to-2 reaction

rate (dashed lines) is shifted by 40 fm for readability.

That the dependence for too large cell sizes is also observed in a more realistic scenario
of an afterburner calculation for AuAu collision at 7.7 GeV incident energy is seen in
Figure 5.17. With the collision rate for the deuteron reactions remaining constant for
the two upper plots with a lmin of 1.3 fm and 1.8 fm, the rate starts to decline with a
minimum cell length of lmin = 2.5 fm, as seen for the more sensitive multi-particle reaction
finp æ fid. Nevertheless, also the fid æ finp two-reaction is a�ected. The change of the
balance of forward and backward reactions in turn changes the multiplicity of the d as
seen in Figure 5.18. The overestimation of the cell size more severely a�ects the deuteron
producing multi-particle reaction and, therefore, the yield is suppressed. Note that the
afterburner results for deuteron reaction rate and multiplicity are obtained with a modified
version of SMASH that blocks immediate back-reactions to prevent the below-described
issue for too small cells.

To additionally visualize the overestimation of the cell size, Figure 5.19 shows the particle
distribution of d, as the here relevant particle species, in the afterburner calculation at
di�erent times in the x-z-plane. Also plotted is a cell equivalent to a cell length of lmin = 2.5
fm, which is the first cell size that shows a decline in the collision rate in Figure 5.17. The
figure illustrates that the overestimation in an afterburner calculation is along the beam
(z) axis, where the nuclei are Lorentz-contracted. Comparing the medium size in the
Lorentz-contracted nuclei region and the also shown example cell, it is plausible that such
cells are too large and would therefore explain the declining number of (multi-particle)
reactions and declining multiplicities for this size in the previous result.
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Figure 5.18: Multiplicity evolution of deuterons in afterburner calculations for AuAu col-
lisions at

Ô
s = 7.7 GeV for AuAu collisions at

Ô
s = 7.7 GeV for di�erent (minimum) cell

sizes.
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AuAu collisions at
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for scale.
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On the other hand, the cells can also be too small. Since only particles inside a cell are
interacting, the scattering rate is expected to drop and stall eventually, when on average
only one or fewer particles are inside a cell.

Figure 5.20: Number of scatterings for the first 30 fm in a box calculation. Default
calculation (filled symbols) and back-reactions artificially blocked (unfilled symbols).

Figure 5.20 shows the number of scattering for di�erent cell sizes in a box. Surprisingly,
even though the expected decline of scatterings is seen for tiny cells, the scattering number
first rises when reducing the cell size. The calculations where the probability extends values
of 1 are marked in red. Such calculations should normally be ignored and redone with
adjusted simulation parameters. However, in this case, they are still interesting since the
same issue of the rising scattering rate a�ects the P Æ 1 calculations (green markers), even
though not as severe. In addition, the probability larger 1, as mentioned in the discussion
of the timestep size above, can be interpreted as the prediction of more than 1 scattering
per particle. So, the expected e�ect of P > 1 would be a decline of the scattering number,
not a rise. Note that due to employing a box, the issue of overestimating the cell size is
avoided.

The scattering rate is exploding for smaller cells because of immediate back-reactions of
just performed scatterings. The outgoing particles are placed inside the cell of the incom-
ing particles. If they do not propagate outside of the cell within the remaining timestep,
a scattering of the previous outgoing particles might occur again since only outgoing par-
ticles of inelastic reactions are newly created and have to be placed. Conceptually, such
back-reactions are valid and should be possible. But, with smaller cell sizes (�3

x), the
probability is rising (P Ã 1

(�3x)n≠1 ) and if the cells are only filled sparsely, the back-reaction
will at some point almost certainly happen, since there are no possible other processes be-
tween the particles inside the cell. The additional result displayed in Figure 5.20 proves
that back-reactions explain the observed rising number of scatterings (empty black mark-
ers). That is, since the expected dropping dependence for small cell sizes is recovered if
back-reactions are artificially blocked. As mentioned, even though back-reactions are a
numerical artifact, conceptually, they should be possible. So, artificially blocking them is
not a permanent solution but helps to illustrate the e�ect. The issue appears, after all,
due to being in a parameter region, where the stochastic criterion is not expected to work:
high probability (close to 1) and only few particles inside a cell. In particular, the latter
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makes a stochastic interpretation of the collision process di�cult.

Figure 5.21: Number of scatterings for the first 30 fm for di�erent (minimum) cell sizes in
a box calculation. Left: More particles. Right: More test particles.

In Figure 5.21 the number of scatterings is seen for more (test) particles inside the box.
This resolves the factor of too few particles inside a cell or shifts the issue to even smaller
cell sizes. Indeed, on the left, in a more dense system with more particles inside the box,
the rise in the number of scattering vanishes. Only calculations with P > 1 exhibit a
change of scattering number. Of course, the density is a property of the physical system
and cannot be changed outside test scenarios. Therefore, on the right plot, the more
practical solution of employing test particles is shown. Here, the rising scattering rate
is shifted since the smallest cell sizes still su�er from too few particles inside each cell.
Still, the issue is resolved for cell sizes, where without test particles, the scattering number
already starts to rise. The advantage of test particles is that also the probability is scaled-
down and that they can be added as a calculation parameter at all times. As seen on the
figure, the issue of P > 1 is also shifted (cf. Figure 5.20).

Figure 5.22: Collision rate of 5fi æ pp in afterburner calculations for AuAu collisions atÔ
s = 200 GeV for di�erent (minimum) cell sizes.

The issue of the cells being too small and a connected (counter-intuitive) rise of the scat-
tering number can, of course, also be avoided by employing large enough cells. Figure 5.22
shows the scattering rate of 5fi æ pp in an afterburner calculation for AuAu collision at
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a beam energy of 200 GeV. Also, here, in this physically more realistic calculation, the
rise of the scattering rate is observed for small cells, with the 5-body scattering rate be-
ing particularly sensitive. But for the two largest (minimum) cell lengths, the scattering
saturates. As long as the issues for small and large cells do not overlap, which is the case
for the large medium produced at the high beam energies, it is su�cient just to employ
cells of these sizes.

Figure 5.23: Number of scatterings for di�erent (minimum) cell sizes with the stochas-
tic criterion in an expanding sphere scenario. Reference calculation with the geometric
criterion done for default lmin (corresponding to default of ‡max = 200 mb) and Ntest = 1.

Figure 5.23 illustrates both observed cell size dependencies in a sphere and thereby sum-
marizes the discussion of the cell size. The rise and drop of scatterings are seen for
small and large cells, respectively. In case of Ntest = 1 both e�ects are even overlapping.
Since the issue for small cells is improved upon with test particles, the lessons7 to avoid
a cell size dependence could be summarized as follows: The cells should be small, but
at the same time situations, where back-reaction become artificially enhanced need to be
avoided. Therefore, the cells in the medium need to be su�ciently filled and the calculated
probabilities should be small. Both are achieved by employing (more) test particles8.

7with the current implementation of the grid
8The number of necessary test particles is depending on the concrete scenario and has to be explored

on a case by case basis.
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Summary
The extensive verification provided in this section establishes the new framework for
stochastic rates. It justifies their application for the microscopic dynamics of heavy-ion
collisions for the remainder of this chapter and future studies. The results obtained with
the stochastic criterion agree perfectly with the available analytic calculations for all cases
studied, in contrast to the geometric criterion. They mark the first demonstration of de-
tailed balance for multi-particle reactions in SMASH. 5-body reactions are described for
the first time in any transport approach. The numerical stability under the variation of
di�erent calculation parameters is shown and its limits are determined.

Furthermore, it is observed that the system equilibrates faster when employing multi-
particle reactions in comparison to an equivalent binary reaction treatment. This obser-
vation is made consistently for all described multi-particle reactions (3-to-1, 3-to-2 and
5-to-2). The e�ect of this faster equilibration in realistic systems on experimental observ-
ables is studied in the following.
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5.2 Three-body decay back-reactions in nucleus-nucleus col-
lision

The introduction of the 3-to-1 (back-) reactions fififi æ Ê, fififi æ „ and fifi÷ æ ÷
Õ

(Section 4.3.1) enables the study the respective Dalitz decays of Ê, „ and ÷
Õ, while fulfilling

detailed balance. The presented calculations in this section are the first multi-particle
reaction results in realistic heavy-ion collisions as they are measured by experiments. They
are based on the verification presented in the previous Section 5.1. The beam energies
studied are lower as e.g. accessible by HADES or the upcoming CBM experiment. While
the 3-to-2 deuteron and 5-to-2 pp̄ reaction address the more topical research questions,
the results for 3-to-1 complement the multi-particle studies in this work and provide first
insights into their relevance. While it is found that their relevance for the medium overall
is minimal, the following results nevertheless quantify the number of reactions and are a
helpful first test case in a realistic hadronic medium. In particular, because of the similarity
of the di�erent approaches for d or pp̄ reactions and the Ê Dalitz decay. The multi-particle
reaction in both cases is either treated directly (via the introduced stochastic criterion) or
via a two-body reaction chain (also possible with the geometric criterion).

The collision system for all results (except for the system size investigation) is AuAu. The
collisions are always central (b = 0). The idea is to maximize the density of the medium
and thereby the e�ect of multi-particle reactions. The results, therefore, are an upper
limit of the 3-to-1 scattering numbers.

Figure 5.24: Number and ratio of 3-to-1 scatterings compared to the total number of
scatterings (per event) in AuAu collisions for di�erent beam energies (impact parameter
b = 0 fm). Some scattering numbers scaled down (up) for readability.

First, the energy dependence of the total number of 3-to-1 scatterings in AuAu events is
investigated. Figure 5.24 reveals that the number of 3-to-1 reactions is around 5 orders
of magnitude smaller than the total number of scatterings. Here the total includes all
reactions, also decays. 3-to-1 reactions for mesonic resonances are therefore irrelevant for
the overall bulk dynamic and evolution of the system. An e�ect will only be observed for
specific observables.

However, if one compares the number of 3-to-1 reactions to the number of the reverse Dalitz
decays, a sizable regeneration of the resonances by the multi-particle back-reactions is seen
(Figure 5.25). A ratio of around 0.25 is found with a slight decline towards higher energies.
This means, on average, every fourth decay has a back-reaction.
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Figure 5.25: Number and ratio of 3-to-1 scatterings (per event) and 1-to-3 decays in AuAu
collisions for di�erent beam energies (impact parameter b = 0 fm).

The two approaches for fulfilling detailed balance for the Ê Dalitz (direct Ê ¡ fififi or
fl ¡ flfi ¡ fififi ) are found to be overall comparable, similar as for the reported for
box calculations in Section 5.1.2. The ratio for 3fi æ Ê over flfi æ Ê found in testing
at low beam energies is between 0.8 (AgAg at EKin = 1.58 GeV) and 0.85 (AuAu at
EKin = 1.23 GeV) i.e. the 3-particle reaction appears to be (15-20%) less likely. Note,
however, that the reported numbers are upper limits for the di�erence since the fifl pair
reacting to form a Ê meson does not necessarily have to be produced by 3fi. Therefore,
other processes might feed the counted flfi æ Ê reactions. Two results discussed in this
work would be in principle sensitive to a change in Ê number caused by a di�erence in the
3-to-1 back-reaction treatment: the Ê pp cross-section (Figure 3.3) and Ê pole mass region
of the di�erent dielectron invariant mass spectra presented in Section 3.1. Unfortunately,
neither of the results is experimentally constrained precise enough to di�erentiate an e�ect
of the order of 20%.

Figure 5.26: Number and ratio of 3-to-1 compared to the total number of scatterings
(per event) for di�erent system sizes at a kinetic beam energy of 1.5A GeV and impact
parameter b = 0 fm. System size characterized by radius of nucleus given by R = 1.2 3Ô

A,
where A is the number of nucleons in the nuclei. Studied systems: CC, AgAg, AuAu.
Some scattering numbers scaled down (up) for readability.
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In Figure 5.26 the e�ect of the system size on the 3-to-1 reaction number is shown. Three
systems9 are probed, CC, AgAg and AuAu, all at a kinetic beam energy of 1.5A GeV and
impact parameter b = 0 fm. As a proxy for the system size, the radius of a nucleus is
calculated with R = 1.2 3Ô

A (A is the number of nucleons in the nuclei). As expected, the
number of 3-to-1 increases with the system size since the density of the created medium is
higher. The same is also true relative to the number of total scatterings, where the ratio
triples from CC to AuAu, even though it remains small in absolute terms.

Comparing the di�erent 3-to-1 reactions in Figure 5.26 as well as Figure 5.24, it appears
that only the 3fi æ Ê reaction is of relevance and essentially equals the total 3-to-1
reactions. The reason is a combination of kinematics and decay width of the resonance
states, which suppress the „ and ÷

Õ 3-to-1 channel compared to Ê. All three, Ê, „ and ÷
Õ,

resonances are narrow i.e. have relatively small decay widths, which already suppressed
the back-reaction in general. But, the ÷

Õ width is another order of magnitude smaller than
the one of Ê and „. In addition, the mass of „ is 30% larger; its width is half the Ê meson
width, and the Dalitz 3fi decay only has a branching ratio of 20% for „ (in comparison to
89% for the Ê).

Figure 5.27: The number of 3-to-1 and total scatterings for di�erent hadron densities (left)
and times (right) in AuAu collision at Ô

sNN = 5.0 GeV. Vertical lines in the left panel
are the mean densities. Total number scaled down for readability.

Complementing the results for the number of scatterings are first calculations that show
the scattering numbers di�erentially in density and time in Figure 5.27. Interestingly, the
(mean) density at which 3-to-1 reactions are happening is observed to be lower than for all
reactions, which is opposite to a first expectation. Since more particles are necessary, one
would expect that the density, on average, needs to be higher for multi-particle reactions.
The right plot in Figure 5.27 for the scattering rate partly explains this contradiction. The
3-to-1 reaction rate peaks later in time than the total reaction rate. The total reaction
here may be dominated by the initial scatterings and subsequent decay chains, which
would explain an earlier peak. Or, the 3-to-1 reaction rate is potentially delayed because
the necessary pion abundance first needs to be produced. The di�erent processes that
contribute to the total reaction rate need to be di�erentiated to fully understand this
e�ect, which is left for future work. In any case, the shifted 3-body reaction rate explains
the di�erence in (average) density since, in general, as the system expands, also the density
drops over time.

9Note that since the stochastic criterion (in SMASH) is not applicable, no elementary systems are
included.

144



Overall, the results for 3-to-1 reactions in this section are a constructive first step to explore
multi-particle reactions in heavy-ion reactions. 3-to-1 reactions are not relevant for the
overall dynamic of the system, with their reaction rate being sub-leading in comparison to
the total scattering rate. Therefore, to observe an e�ect, sensitive observables for Ê, „ and
÷

Õ need to be considered to resolve that 25% of all studied Dalitz decays have a backward
reaction. The most promising resonances being Ê, which back-reaction dominates the
3-to-1 reaction rate.
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5.3 Deuteron production in afterburner calculations

This section is based on [4].

In this section, the dynamic deuteron production employing the microscopic three-body
deuteron catalysis reactions is explored on the example of AuAu collisions at Ô

sNN = 7.7
GeV. The reactions include fipn ¡ fid, Npn ¡ Nd and fid ¡ NN . The most important
of these reactions is the pion catalysis (fipn ¡ fid), since at energies above Ô

sNN ¥ 5
GeV, it starts to dominate, as illustrated by the following results. At lower collision
energies, baryons dominate at mid-rapidity; therefore, nucleons are the most frequent
catalysts [126]. The fid ¡ NN reaction is sub-leading in all cases due to its smaller
cross-section.

Deuteron observables in heavy-ion collisions are usually not computed by a dynamical
approach, but, as explained in Section 1.3.3, either by final-state coalescence from nucleons
or by a thermal approach assuming chemical equilibrium of deuterons with hadrons. Such
approaches neglect any d reaction dynamic. Both model types reproduce experimental
data with radically di�erent assumptions about the deuteron formation (“snowballs in
hell” paradox). Thermal models assume early and coalescence models late formation of
deuterons. The dynamical transport approach employed here allows contrasting both
deuteron production pictures by probing the deuteron evolution in the late (afterburner)
stages of the AuAu collisions. For this, two scenarios at particlization10 are distinguished.
In one case, deuterons are assumed to be produced in the hydrodynamic stage of the
collision (w/ d at particlization); in the other case, no deuterons are present at the start
of the afterburner calculation (w/o d at particlization). The distinction allows to compare
the two di�erent pictures for deuteron production: the thermal model-like picture, where
d are produced early at high temperatures and the coalescence-like picture, where d are
assumed to be formed at later times from nucleons close in phase space.

Studying the microscopic deuteron production by pion catalysis is an idea introduced
in [183] for central Pb+Pb collisions at LHC energies and further tested for non-central
collisions and at lower energies down to Ô

sNN = 7.7 GeV [135, 184]. However, these earlier
works received criticism [306], because the approach for the fipn ¡ fid reaction involves
the non-existent intermediate resonance d

Õ (Section 2.1.2). The results in this section build
on those studies and reassess their conclusions on a more solid theoretical basis with the
new (direct) multi-particle reactions. They also allow to compare both approaches for
deuteron catalysis reactions and estimate the e�ect of the multi-step 2-to-2 d

Õ treatment
on the results.

Note that the validation of the equilibrium properties for both treatments presented in Sec-
tion 5.1.2, i.e. exhibiting the correct chemical equilibration and detailed balance, is essen-
tial for the following investigations of AuAu collisions. The two treatments are verified by
the agreement with the analytic rate equation solution in a box, as seen in Figure 5.9, and
the more general validation of the stochastic criterion discussed throughout Section 5.1.
The box results for the deuteron reactions in Figure 5.9 already reveal (in accordance with
the rate equations) a faster equilibration for the direct 3-to-2 reactions compared to the
2-to-2 approach – a finding also observed for the 3-to-1 and 5-to-2 multi-particle reactions
(cf. Figure 5.8 and 5.10). This leads to the interesting question of whether and how this

10Particlization means the switching from the hydrodynamical approach to the transport approach by
(Cooper-Frye) sampling the di�erent hadron species on the hydro hyper-surface. The sampled hadrons
provide the initial conditions for the transport approach.
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di�erence manifests itself in a collider (afterburner) setup.

A hybrid approach is employed as the state-of-the-art for central AuAu collisions atÔ
sNN = 7.7 GeV. All presented results only display the deuteron evolution in the after-

burner stage of the hybrid approach. The hydro approach is MUSIC v3.0 [92, 93, 307, 308]
with a smooth parametrized initial energy density [309] that is tuned to reproduce charged
particle spectra and yields. As the equation of state, the lattice QCD based “NEOS-
BSQ” [310] is chosen. Shear viscous corrections are included, while bulk viscous correc-
tions and baryon number di�usion are neglected. Particlization is performed at a constant
energy-density hypersurface, ‘(·, x, y, ÷s) = 0.26 GeV/fm3. This condition corresponds to
almost the same temperature but slightly lower energy density and baryon chemical po-
tential as the thermal model fit of the hadron yield at chemical freeze-out for the same
collision system [311]. The particlization is performed with a standard grand-canonical
Cooper-Frye procedure including shear viscous corrections[92, 93]. As mentioned, whether
deuterons are sampled depends on the calculation. The d

Õ resonance is never sampled.
Most importantly, the hydrodynamic calculation produces a sensible distribution of pions
and nucleons as an initial condition for the afterburner. As shown in [184], the experimen-
tal rapidity or transverse mass spectra of fi and N are well reproduced by the provided
distributions. On this basis, the d production employing the two catalysis reactions is
studied.

Results
All following results are for the deuteron production in the late stages of AuAu collisions
at Ô

sNN = 7.7 GeV employing the mentioned catalysis reaction, fid ¡ NN and elastic
collisions between d and N or fi. The 3-to-2 reactions are either direct multi-particle
reactions (3-to-2 treatment) or they are modeled with a 2-to-2 reaction chain including
the d

Õ resonance (2-to-2 treatment). The latter approach is either done with the geometric
(geometric 2-to-2 ) or the stochastic (stochastic 2-to-2 ) criterion to also probe di�erences
stemming from the criterion itself.

Figure 5.28: Evolution of deuteron yields in AuAu afterburner stage for all centrality class
(3-to-2 approach).

Figure 5.28 shows the number of all deuterons propagated in the afterburner stage over
time for all considered multiplicity classes from central 0 ≠ 10% up to peripheral 50 ≠
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60% when employing direct stochastic 3-to-2 reactions. Apart from the initial d number
calculated from the hydro hyper-surface at 0 ≠ 10% being initially lower than 10 ≠ 20%,
the multiplicities are clearly and consistently ordered by centrality for both particlization
cases.

Figure 5.29: Evolution of mid-rapidity deuteron yields in AuAu afterburner stage for
di�erent centrality classes. Experimental data from [312, 313].

In Figure 5.29 the di�erent approaches (3-to-2 and 2-to-2) are compared at mid-rapidity
as the most interesting, since experimental accessible, rapidity region. The d production
is enhanced when employing direct 3-to-2 reactions. Especially in the case with no d

at particlization, a more rapid increase of the d number is observed, which drives the
number close to the case with d at particlization. The final number of deuterons is almost
identical for the two particlization scenarios. The remaining di�erence is on the order of
experimental errors.

This result sheds light on the apparent contradiction of thermal and coalescence models
and why both match experimental data. The d yield stays approximately constant if d are
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Centrality Nw/o

d, equil

/
Nw/

d, equil

0-10% 0.900
10-20% 0.860
20-30% 0.795
30-40% 0.769
40-50% 0.731
50-60% 0.759

Table 5.5: Ratio of the equilibrated d yields for the two particlization scenarios.

initialized at the beginning of the afterburner (thermal model picture). The same yield
is also generated with a later production of d from nucleons (coalescence model picture)
with no initial d.

The di�erence between yields is smaller for the calculation with the 3-to-2 reactions in
comparison to the 2-to-2 approach. Those findings are understandable considering the
above observed faster equilibration when employing multi-particle reactions. The 3-to-2
reactions drive the system faster to statistical equilibrium before it freezes out due to its
expansion. The even smaller di�erence with 3-to-2 reactions subsequently validates and
confirms the conclusions drawn in [135] with 2-to-2 reactions. The expansion is also why
the yields without d at particlization are not in full agreement with d at particlization.
The d reactions seize too quickly due to the cooling before enough d can be produced
(cf. Figure 5.31 and 5.32). Both particlization scenarios also agree with the experimental
values for 0-10% centrality, which shows that it is possible to reproduce the d yield with
the assumption of multi-particle catalysis reaction as the main production mechanism.
Comparing the presented centrality classes in Figure 5.29, the more peripheral collisions
naturally produce less d in general. The two deuteron reaction treatments also produce
more similar yields in the case with d at particlization.

Going from central to more peripheral collisions, the equilibrated yield without d at par-
ticlization (Nw/o

d, equil
) in comparison to the final yield with d at particlization (Nw/

d, equil
) is

less in agreement as Table 5.5 shows. The smaller medium created in peripheral collisions
seems to suppress the full statistical equilibration of the system before freeze-out when all
d are produced in the late (afterburner) stages.

Figure 5.30: Evolution of 3 ¡ 2 reaction rates in AuAu afterburner with d at particlization.
Left: 0-10% centrality class. Right: 4fi multiplicity for 0-10% including stochastic 2-to-2
reactions with smaller �t = 0.01 fm.
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The yield comparison for all three approaches for the catalysis reactions is shown for the
highest initial d (4fi) multiplicity (10-20% centrality) in Figure 5.30. Most importantly,
the results illustrate that employing the stochastic criterion for the 2-to-2 reaction chain
yields similar results as reported above, obtained with the geometric criterion. The small
remaining di�erence between the two 2-to-2 treatments is minimized when the timestep is
chosen smaller, as seen on the right plot in Figure 5.30. The number of test particles has
been chosen to be Ntest = 20 for all results. It was separately verified that higher numbers
of test particles and di�erent cell sizes match the displayed results. The timestep for the
below reported stochastic 2-to-2 results is chosen su�ciently small in the following as a
consequence of the finding in Figure 5.30.

Figure 5.31: Evolution of 3 ¡ 2 reaction rates in AuAu afterburner with d at particlization.
Left: 0-10% centrality class. Right: 30-40% centrality class.

The evolution of the d yield is the result of the competing 3 æ 2 formation and 2 æ 3
break-up reaction rates shown in Figure 5.31 for the case with d at particlization and in
Figure 5.32 for without d at particlization. Forward and backward (direct) 3-to-2 reactions
rates are close for central collisions in Figure 5.31, but as also seen for the yield, some time
is necessary before they are close to being equilibrated. The catalysis reactions proceed
rapidly enough to keep deuterons in relative equilibrium with nucleons. This explains the
“snowballs in hell” paradox i.e. the light nuclei do not survive. Instead, they are destroyed
and created at similar rates, keeping the overall yield constant.

The collision rates also clearly indicate the dominance of the fi catalysis reactions. This
underlines the necessity to include the fi in addition to the N reactions for this beam
energy, which is the main extension compared to [126]. The fi reactions are also closer to
being equilibrated than the N reactions. For more peripheral reactions and hence a smaller
medium, the 2 æ 3 rate dominates over the formation reactions. This relatively lower 3-
to-2 reaction rate again hints at incomplete statistical equilibration in the smaller system.
Considering the calculation without d in Figure 5.32, the 3 æ 2 reaction dominates for all
rates, as expected by the rapid rise of d numbers at the beginning of the evolution. The
reaction rate figures also allow to pinpoint a chemical freeze-out at least for the shown
3 ¡ 2 d reactions at around 50 fm for central collisions (0-10%). Since the system is
smaller for more peripheral collisions (30-40%), the freeze-out is earlier at around 30 fm.
Note that while the NN ¡ fid reaction is also included in the calculation, its contribution
is only sub-leading, even compared to the N catalysis reaction, and therefore the rate is
not shown.

In addition to the yields, first, the average transverse momentum is presented for protons
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Figure 5.32: Evolution of 3 ¡ 2 reaction rates in AuAu afterburner without d at parti-
clization. left: 0-10% centrality class. Right: 30-40% centrality class.

Figure 5.33: Average transverse momentum for protons (top) and deuterons (bottom).
Experimental data from [311, 314].

and deuterons in Figure 5.33 for six centrality classes. The mean-pT slightly declines
towards more peripheral collisions. Here and in the following, three treatments for the
deuteron catalysis reactions are compared: calculating with the 2-to-2 reaction chain
for the geometric (blue round points) and the stochastic (orange triangles) criterion as
well as direct 3-to-2 reactions (red squares) that are only possible with the stochastic
criterion. The mean-pT results are una�ected by the di�erent approaches and all agree
with the available experimental data [312, 313] within errors for both p and d, validating
the transverse dynamics of the calculations. Note that this confirms the previous findings
in [184], where the hybrid approach employed was carefully constrained by an extensive
experimental data set.

Figure 5.34 presents the results for the elliptic flow (v2) for p and d for the same six
centrality classes, as a more sensitive probe of the momentum distribution. Due to limited
statistics of the calculation, only the integrated v2 is presented, which still allows to
contrast the di�erent approach for the d reactions. Even though no experimental data
is available for this observable, the order of magnitude of around 0.1 is comparable to
the pT dependent v2 reported in [314]. Regarding the integrated v2 of d in the bottom
panel of the figure, the di�erent reaction treatments are found to have an e�ect. While for
central collisions, they agree, the elliptic flow is decreased for the 3-to-2 reactions and by
employing the stochastic criterion for more peripheral collisions. The latter is also found
for the protons in the upper panel. The additional e�ect for 2-to-2 reactions for the two
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Figure 5.34: Integrated elliptic flow for protons (top) and deuterons (bottom).

di�erent collision criteria might hint at limitations of the stochastic criterion for the small
systems in peripheral collisions. However, a more uniform, thermalized medium and a
subsequent lower v2 might also be expected when employing multi-particle reactions. In

Figure 5.35: Integrated elliptic flow for deuterons with and without d at particlization.

Figure 5.35 the impact of d solely being produced in the afterburner on the elliptic flow
is studied. Observing a clear di�erence here would potentially allow disentangling the
two pictures for d production times. Even though a clear di�erence is not found, a small
decrease is seen for the case without d at particlization. The di�erence is not significant for
all centrality classes; the e�ect for the average over all centralities, however, is significant.

Summary
This study represents the second application of multi-particle reactions in the hadronic
transport approach SMASH and the first results that show the significance of multi-particle
reactions for current research questions. For the deuterons, multi-particle reactions are of
major importance since they treat the catalysis reactions while fulfilling detailed balance.
The stochastic collision criterion avoids introducing an artificial resonance by treating the
deuteron 3 æ 2 catalysis reactions in one step.

The deuteron production in gold-gold collisions at a beam energy of 7.7 GeV is studied in
a hybrid approach, where the deuteron yield agrees with the experimental data whether
the nuclei are produced at the time of particlization or not. This explains the apparent
contradiction that thermal and coalescence models reproduce the d yield. The “snowballs
in hell” do not survive but are constantly destroyed and (re-)formed, keeping the d yield
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constant. And, if no d are initialized early, they are generated at later times, like assumed
in coalescence approaches. A yield similar to the thermal model yield is generated in this
case. These findings confirm the previous studies of employing the slower equilibrating
two-body reaction chain involving the fake d

Õ resonance [183, 184].

Even though the interpretation of the results is the same for the 3-to-2 and 2-to-2 treat-
ment, some di�erences are observed. The faster equilibration process of the multi-particle
reactions leads to a more rapid increase in the deuteron yield before the system freezes
out chemically due to the system’s expansion. The d yield is consequently enhanced. The
di�erence in the final number of d, when comparing the scenarios of d being produced in
the hydrodynamic stage or just in the hadronic afterburner, is thereby greatly reduced
when employing multi-particle reactions due to three-body reactions driving the d faster
to statistical equilibrium. The reduced di�erence when employing 3-to-2 in comparison to
2-to-2 reactions is attributed to the di�erent times required to equilibrate already found
in box calculations (Figure 5.9), which is significantly reduced for the 3-to-2 treatment, as
predicted by rate equations.

As an additional result, a decrease in the elliptic flow is found when employing the stochas-
tic criterion and multi-particle reactions for more peripheral collisions. Similarly, a small
decline in flow for all centralities is reported if all d are produced during the collision’s
late (afterburner) stages. No dependency is found for mean transverse momentum, where
an agreement with experimental data for all centrality classes is seen.
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5.4 Proton-antiproton regeneration in the late collision
stages

This section is based on [5].

The e�ect of proton-antiproton annihilation (pp̄ æ 5fi) on the (anti-) proton yield in the
late stages of heavy-ion collisions, while respecting detailed balance for the annihilation
reaction, is investigated in this section. Stochastic multi-particle reactions are utilized
to include the 5-body back-reactions for the first time in a full microscopic transport
description. This allows to simultaneously quantify the e�ect of (anti-) protons lost due
to annihilation, the amount of (anti-) protons regenerated by the back-reaction and the
result of this interplay on the final yields. The long-standing question about the p anomaly
(Section 1.3.4) is addressed. The presented study builds on di�erent previous works,
which showed the significance of baryon-anti-baryon annihilation reactions in the late
collision stages [66, 67, 192, 193]. Specifically clarifying the role of the (5-body) back-
reaction is a motivation, since, as discussed in Section 1.3.4, the few available theoretical
calculations disagree on the factor and, therefore, significance of regeneration. The number
of regeneration reactions relative to annihilation ranges from 20% to over 100% [194, 131,
129, 130]. A full regeneration would mean that no p are depleted by proton-antiproton
annihilations in the late collisions stages and rule out the reaction as a possible explanation
for the p anomaly.

The heavy-ion collision systems studied to quantify the e�ect of annihilations, are PbPb
and AuAu at an energy of Ô

sNN = 17.3 GeV, Ô
sNN = 200 GeV and Ô

sNN = 5.02
TeV, as measured at RHIC and LHC. The theoretical approach is a hybrid model. The
focus of the displayed results is on the transport afterburner calculation for the late non-
equilibrium stages, which includes the pp̄ ¡ 5fi reactions. The employed hybrid approach
is the SMASH-vHLLE-Hybrid [237], which embeds the viscous 3+1D viscous hydrody-
namic evolution of vHLLE [91] into the SMASH transport approach. The initial con-
ditions and the afterburner phase are calculated using SMASH [98, 213]. Particlization
as the initial conditions for the afterburner is achieved with the SMASH-hadron-sampler
[124, 236]. For the initial conditions, the SMASH evolution is performed until nuclear
overlap signified by a constant proper time (· = 0.5 fm for Ô

sNN Ø 200 GeV). When
particles cross the constant proper time hypersurface, gaussian smearing is applied. The
initial conditions are averaged over 100 events for three centrality classes (0-5%, 20-30%
and 30-40%). Averaged initial conditions are su�cient to study particle yields that are not
dependent on event-by-event fluctuations. The 3+1D hydro calculation starting from the
initial conditions employs a chiral model equation of state [315]. The shear viscosity is set
to ÷/s = 0.1 and the bulk viscosity to ’/s = 0.05 for all collision energies. As the switching
condition for particlization, an energy density of ‘crit = 0.5 GeV/fm3 is chosen [316]. The
SMASH-hadron-sampler generates 2000 events from the resulting ‘crit-hypersurface, par-
ticlizing the fluid elements for the afterburner calculation. Overall, the hybrid approach
is not tuned to precisely describe experimental data but employs parameters that are
known [191, 78] to reproduce bulk properties well.

In the following, the regeneration of (anti-) protons as the species of most interest is
studied, which serve as a proxy for all BB̄ annihilation reactions. Even though the nn̄ ¡
5fi reactions are part of the calculations, the n yield is not discussed since it is di�cult to
measure. All BB̄ annihilation (except NN̄) are realized via string fragmentation, where the
back-reaction is unaccounted for and detailed balance is broken. Note that for the results
labeled as no back-reaction also NN̄ is realized via string fragmentation, which resembles
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previous theoretical approaches [66, 67, 192, 193] that only account for the annihilation,
but not the regeneration reaction. The two detailed balance fulfilling treatments for the
5 ¡ 2 reactions are introduced in Section 4.3.3. The direct treatment of the forward and
backward 5 ¡ 2 reaction via the stochastic collision criterion is referred to as the stochastic

treatment in the following, as it is only possible with the stochastic criterion. The other
treatment handles the same overall reaction via intermediate resonances as a chain of two-
body reactions (NN̄ æ h1fl æ flfififi æ 5fi). This is computationally less intensive and
applicable with the geometric collision criterion, which only allows to conserve detailed
balance for two-body reactions. The treatment is referred to as the resonance treatment in
the following. The results for the resonance treatment are calculated using the geometric
collision criterion11. The comparison of both 5 ¡ 2 treatments, stochastic and resonance,
allows gauging the e�ects and validity of employing multi-step reaction chains involving
resonances with finite lifetimes for multi-particle reactions. The stochastic treatment
builds on the previous work in [128], where proton-antiproton annihilations reactions are
studied as well. However, only 3 ¡ 2 reactions are used, where the 5fi final state is
created by resonance decays from reactions like pp̄ æ flflfi. This is comparable to the
resonance treatment used here. Note that proton-antiproton annihilations in this study
only produce a 5fi final state as an e�ective approach and average of the other possible
pp̄ æ mfi with m = 2, 3... reactions. In the typical energy range of the pp̄ scattering (close
to the two-nucleon mass threshold) in the afterburner evolution, m = 5 is known to be the
most likely result of the annihilation reaction [304]. The limitation to m = 5 also allows
directly comparing the resonance with the stochastic approach since the former does not
allow other final states.

The following results rely on the presented verification of the 5-to-2 treatments in Sec-
tion 5.1.2. The box calculations verify the equilibrium properties. In particular, the
comparison to the analytic evolution [305] gauges that the equilibrated yield and the equi-
libration process are correct for the stochastic treatment. It is also found that employing
multi-particle (stochastic) reactions leads to a faster equilibration of the medium in com-
parison to the resonance treatment, which is compatible with findings for 3-to-2 and 3-to-1
reactions (Section 5.1.2). For the deuteron 3-to-2 reactions, it is furthermore shown in the
previous result section (Section 5.3) that the di�erences of equilibration time in box calcu-
lations relate to di�erent particle yields in the afterburner calculation. Whether a similar
relation is also seen for the proton 5-to-2 reaction is studied in the following.

Results

The first results show the reaction rate in the afterburner calculation for the two treatments
accounting for the 5fi æ pp̄ annihilation back-reaction at di�erent energies (Figure 5.36).
This allows to gauge whether the longer reaction time or re-scatterings within the medium
of the intermediate resonance of the resonance treatment a�ects the results. Note that
in the case of the resonance treatment, only the h1fl ¡ pp̄ is tracked as the annihilation
forward and backward reaction since subsequent reaction steps mix with the medium.
Both treatments appear to be equivalent for forward and backward reaction rate (pp̄ anni.
and prod.), which is a surprising di�erence to the reported result of the box calculations in
Section 5.1.2. The di�erent equilibration of the two 5fi ¡ pp̄ treatments has a negligible
e�ect on the studied expanding full hadron gas. In contrast, the d catalysis reactions at
lower beam energies revealed di�erences between multi-step and multi-particle treatments
(previous Section 5.3). A possible explanation could be that the, compared to lower beam

11Using the stochastic criterion would be equivalent as the box calculation in Figure 5.10b shows.
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Figure 5.36: Reaction rates of annihilation (anni.) and back-reaction (prod.) for stochastic
and resonance treatment for di�erent collision systems and energies. Figure from [5].

energies, larger and longer-lived fi-rich medium minimizes e�ects of a slower reaction. So,
while the stochastic treatment is more flexible and rigorous and thereby lends credibility,
it appears that the 5-to-2 reaction can be modeled in multiple steps without a�ecting the
reported afterburner results. Figure 5.36 also displays that the BB̄ annihilation rate12

is not saturated by pp̄, which shows that also other baryon annihilation reactions are
substantial for the reaction dynamics.

In order to quantify the abundance of the pp̄ annihilation back-reaction (BR) in the
full microscopic description of the late collision stages, the reaction rate is integrated to
obtain the total reaction numbers (Ncoll). A monotonic rise with incident energy Ô

sNN

is found (Figure 5.37, top). The pp̄ back-reaction contribution is 15 ≠ 20% relative to
all pp̄ annihilations (Figure 5.37, bottom). Remarkably, this fraction is constant over the
full range of energies (ÔsNN = 0.0175 ≠ 5.02 TeV), and centralities (0 ≠ 50 %) that are
investigated. Similarly, the ratio of pp̄ relative to BB̄ is constant and ranges between
25% and 30%. This can be used to extrapolate the total amount of annihilation and
regeneration of BB̄ pairs by assuming pp̄ as a proxy for BB̄. As the rates match (cf.
Figure 5.36), only results obtained with one of the reaction treatments is displayed in
Figure 5.37 (in this case, the resonance approach).

The inclusion of back-reactions in the afterburner calculations finally enables to study of
the e�ect of annihilation and regeneration on the particle yield itself. Three scenarios are

12No comparison between treatments is displayed for BB̄ annihilations since they always proceed via
string fragmentation.
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Figure 5.37: Top: Reaction numbers for BB̄ and pp̄ annihilation and back-reaction (BR).
Bottom: Reaction number ratio of pp̄ over BB̄ annihilation and pp̄ back-reaction over
annihilation. Results for di�erent systems (Au-Au, Ô

sNN = 39, 200 GeV, Pb-Pb, Ô
sNN =

17.3 GeV, 2.76 and 5.02 TeV.) and di�erent centrality classes (0-5, 20-30 and 40-50%).
Figure from [5].

distinguished in the calculations: (i) Performing only decays after particlization allows
to account for the feed down from resonance decays but neglects any rescattering e�ect.
This is the same picture of particle production as assumed by thermal models [188, 190].
(ii) Including no back-reaction shows the maximal depletion e�ect of proton-antiproton
annihilations on the p (p̄) yield and is already studied with comparable approaches in [67,
317, 193]. (iii) The 5fi æ pp̄ back-reaction is taken into account to respect detailed
balance for the annihilation reaction and quantify the regeneration e�ect. First, the 4fi

yield13 is considered for the three scenarios (Figure 5.38). The maximum annihilation
rescattering e�ect is found as the di�erence between the results with only decays and
with no back-reaction (dotted and dashed lines). A clear energy dependence is observed.
The significance of annihilations is larger at higher energies. Also, the p yield is more
depleted than the p̄ yield. The regenerated yield (solid lines) is consistent with the found
ratio between back- and annihilation reaction of 15 ≠ 20%, which is consequential since
the reaction number are also counted for the full phase space (4fi). Notably, the back-
reaction does not regenerate the full yield lost by annihilations (i.e. the solid line is
not consistent with the dotted line). Finally, also for the yield, no significant e�ect of
employing either the resonance or the stochastic reaction treatment is observed. The
phase space region of most interest sits at mid-rapidity, as the created medium is centered
in this region and is una�ected by spectators. Also, current high-energy experiments are
collider setups, so most of their (proton) measurements are only available in this region.
Therefore, the annihilation and regeneration e�ect of most interest is on the mid-rapidity
yield (Figure 5.39). Including rescattering for (anti-) protons by annihilation (without
back-reactions) lowers the mid-rapidity yield14 compared to only accounting for the decays.

13The yield without any kinematic restrictions on the phase space of the final particles is referred to as
4fi yield. The name stems from the integration over all angles.

14Note that while the di�erence between the p and p̄ yield decreases with the higher energies, a small
di�erence remains even at Ô

sNN = 5.02 TeV. This is in contrast to experimental measurements that find
p and p̄ yields compatible at these energies. The di�erence is caused by a small finite positive µB value at
particlization, which can be improved upon by updated initial conditions. As the aim of this study is not
to precisely describe experimental data, improving the initial condition is left for future work.
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Figure 5.38: Time evolution of p and p̄ (4fi) yields. Figure from [5].

The agreement with experimental data [318, 319] is thereby improved. Including the back-
reactions regenerates about 50% of the p (p̄) yield at mid-rapidity lost by annihilations
for all investigated energies. Even though the e�ect of regeneration is sizable, still a net-
reduction of the p (p̄) yield is found when fulfilling detailed balance for 5fi ¡ pp̄, which is
favored by the available experimental data. The e�ect of the back-reactions is enhanced
at mid-rapidity compared to 4fi.

The reported findings agree with previous studies with the comparable UrQMD ap-
proach [192, 193, 320], as a decrease of the (anti-) proton yield, which improves the
agreement with experimental data, is observed even when treating the annihilation re-
action with detailed balance. In particular, no full regeneration of the yield as reported
in [131] is observed. The expansion appears to supersede the backward reaction probabil-
ity. The results agree with reports employing rate equation in an expanding volume [194].
Remarkably, the authors also report a regeneration of 20% on the (4fi) yield when includ-
ing back-reactions, which is the same percentage reported in this work. Lastly, comparing
with the results of the PHSD approach [130] that treat a more extensive set of BB̄ reac-
tions via detailed balance conserving 3-to-2 reactions, a similar net reduction of protons
at Ô

sNN = 200 GeV is found. Conversely, the net enhancement reported at Ô
sNN = 5.02

TeV disagrees with the findings here.
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Figure 5.39: Time evolution of p and p̄ mid-rapidity yields. Experimental data from [318,
319]. Figure from [5].

Summary
This section reports the first results for 5-body annihilation back-reactions in a transport
approach for the late non-equilibrium heavy-ion collision phase. pp̄ æ 5fi annihilation
reactions are included in the calculation in accordance with the principle of detailed bal-
ance by also treating the 5fi æ pp̄ back-reaction. This allows to address how significant
the proton annihilation reaction depletes and regenerates the p (p̄) yield. The fraction of
back-reactions relative to annihilations is found to be 20% over all studied energies and
centralities. Consequently, the total (4fi) yield is 20% regenerated by the back-reaction.
The back-reaction e�ect is enhanced at mid-rapidity, where about half of the p (p̄) yield
is regenerated. For the reported results, treating the back-reaction directly via stochastic
5-to-2 reaction or in multiple binary reaction steps is equivalent. Note, however, that only
the stochastic treatment can flexibly account for all reactions of the form pp̄ æ mfi and
further baryon-anti-baryon annihilation reactions in future studies. Overall, both forward
and backward annihilation reactions are found to be important non-equilibrium e�ects on
the proton yield. In particular, the sizable regeneration is important for the extraction of
transport coe�cients [191, 78] or the switching temperature of hybrid approaches [133],
which are sensitive to the final proton yield. The results, in general, also underline the sig-
nificance of a non-equilibrium rescattering phase towards the end of a heavy-ion collision.
The assumption of an early chemical freeze-out at a common temperature and chemi-
cal potential for all particle species is not supported, even when employing multi-particle
reactions to fulfill detailed balance for the proton-antiproton annihilation.
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Chapter 6

Conclusion and outlook

The overall addressed question in this work is: How does the hadronic medium evolve in
heavy-ion collisions i.e. what are the relevant microscopic reaction mechanisms and the
properties of the involved degrees of freedom? The main goal is to address this question
specifically for hadronic multi-particle interactions. For this goal, the hadronic transport
approach SMASH is extended with stochastic rates, which allow to include detailed balance
fulfilling multi-particle reactions in the approach. Three types of reactions are newly-
accounted for: 3-to-1, 3-to-2 and 5-to-2 reactions. After extensive verifications of the
stochastic rates approach, they are used to study the e�ect of multi-particle interactions,
particularly in afterburner calculations. These studies follow complementary results for the
dilepton and strangeness production of the hadronic transport approach employing only
binary reactions. The overarching conclusions obtained in those two avenues of study, for
binary and multi-particle reactions, are given together with an outlook for possible future
studies in this chapter.

Hadronic transport approaches with binary reactions are found to be capable of describing
observables when employed for the entire evolution of low-energy heavy-ion collisions. This
is illustrated by the agreement of dilepton and strangeness production for smaller systems
with SMASH calculations, which also specifically verifies the applied transport approach.
It is, in particular, possible to match the measured strangeness production of „ and �
hadrons via additional heavy N

ú decay channels, also in larger systems. The predicted
production for upcoming measurements will allow to test this production mechanism.

For larger systems or higher energies, hadronic transport cascade calculations with vacuum
resonance properties can point out additional medium e�ects. This is demonstrated exten-
sively for the dilepton emission in comparisons to the full set of HADES dielectron data.
The dilepton invariant mass spectra are sensitive to a medium modification of the vector
meson spectral function for large collision systems already at low beam energies. Such a
change of the spectral function is predicted for an onset of chiral symmetry restoration.
The sensitivity to medium modifications is mapped out theoretically in detail by compar-
isons to a coarse-graining approach, which employs medium-modified spectral functions
and is based on the same evolution.

The theoretical foundation of (multi-particle) stochastic rates are collision probabilities
derived from the Boltzmann equation’s collision term with the assumption of a constant
matrix element. The derivation is presented in a comprehensive and pedagogical fashion
and includes results for binary, 3- and 5-body reactions. The derived collision probabili-

161



ties are employed for a stochastic collision criterion and various detailed-balance fulfilling
multi-particle reactions: the mesonic Dalitz decay back-reaction (3-to-1), the deuteron
catalysis (3-to-2 ) and the proton-antiproton annihilation back-reaction (5-to-2). The
introduced stochastic rates approach is extensively verified by studies of the numerical
stability and comparisons to previous results and analytic expectations. The stochastic
rates results agree perfectly with the respective analytic results. This work represents the
first successful application of a stochastic criterion and direct multi-particle reactions in
SMASH.

Physically, multi-particle reactions are demonstrated to be significant for di�erent observ-
ables, most notably the yield of the partaking particles, even in the late dilute stage of
heavy-ion reactions. They lead to a faster equilibration of the system than equivalent
binary multi-step treatments. The di�erence in equilibration consequently influences the
yield in afterburner calculations. Interestingly, the interpretation of results is not depen-
dent on employing multi-particle or multi-step treatments, which a posteriori validates
the latter. Stochastic multi-particle reactions are still preferable, even though numerically
more challenging since they allow treating the reactions directly on a theoretically rigorous
and fully flexible basis, without the need to introduce, partly poorly motivated, multi-step
helper constructs. As the first test case of multi-particle reactions in heavy-ion reactions,
the mesonic 3-to-1 Dalitz decay is found to be dominated by the 3fi æ Ê. While the e�ect
on the medium is found to be negligible overall, the regeneration is found to be sizable:
up to a quarter of Dalitz decays are regenerated.

Non-equilibrium rescattering e�ects are shown to be relevant for late collision stages for
two-particle species: deuteron and protons. In both cases, the relevant rescatterings in-
volve multiple particles. The deuteron fi and N catalysis reactions equilibrate quickly in
the afterburner stage at intermediate energies. The constant formation and destruction
keeps the yield constant and microscopically explains the “snowballs in hell”-paradox.
The yield is also generated with no d present at early times, which explains why coales-
cence models can also match the multiplicity. The results with multi-particle reactions
are therefore able to confirm previous studies with an artificial multi-step treatment. New
is the study of the 5-body back-reaction of proton-antiproton annihilations. This work
marks the first realization of microscopic 5-body reactions in a transport approach to ful-
fill detailed balance for pp̄ ¡ 5fi. A sizeable regeneration due to the back-reaction of up
to half of the proton-antiproton pairs lost due to annihilations is found. Consequently,
both annihilation and regeneration in the late non-equilibrium stage are shown to have a
significant e�ect on the p yield.
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Outlook
A significant achievement, besides the mentioned physical results, is the establishment of
a new general framework for stochastic rates that is flexible to account for any n æ m

reactions, with m = 1, 2, in future studies. The presented general derivations, verifications,
and explanations are given to facilitate such extensions. Of particular research interest
are extensions of the d and p studies with more reactions that adhere to detailed balance.
The d study would be complemented by considering other light nuclei like (hyper-)triton
and helium. While the conclusions employing the 2-to-2 reaction treatment involving the
artificial d

Õ are confirmed by this work, introducing additional fake resonances like t
Õ would

be tedious and enhance the found di�erences to the theoretically preferable direct 3-to-2
treatment. Also, the study of annihilation reactions could be extended by considering
other BB̄ (back-)reactions. Multi-particle reactions involving strangeness are known [129]
as well and could be explored. For the multi-particle framework in this work, all reactions
have to be introduced individually. Detailed balance is therefore not fulfilled globally
in all calculations due to the string fragmentation processes. Following the principle of
detailed balance globally would be theoretically desirable and requires a generic treatment
of the multi-particle back-reactions. One of the major challenges is the non-deterministic
forward direction of the string fragmentation. An idea related to a global back-reaction
treatment is the statistical determination of the unknown forward cross-sections [321].

SMASH has been used extensively for the study of transport coe�cients [204, 205, 207,
206]. Therefore, the e�ect of multi-particle interactions on the di�erent transport co-
e�cients, particularly the shear viscosity and baryon di�usion, would be interesting to
investigate. Here, the comparison between instantaneous multi-particle and slower multi-
step approaches is interesting since it has been demonstrated in [204] that the lifetime
a�ects the coe�cients. Also, a detailed investigation of the Lorentz-invariance of the
di�erent criteria [223] is omitted and left for future work. Several of the mentioned (fu-
ture) studies would benefit and maybe even require further optimization of the calculation
runtime. Di�erent options for performance optimizations are given for this purpose in
Appendix A.4.

Regarding the results with binary reactions, comparing the calculated predictions for
dileptons and double strange hadrons to upcoming experimental data will provide further
inside into the sensitivity to medium modification of dilepton emission and the strangeness
production mechanism. In the future, the dilepton production in intermediate and high
beam energy collisions could be addressed based on the presented well-understood baseline
at low beam energies. A hybrid dilepton approach would allow to explore high-beam energy
reactions of RHIC or LHC. Here, the dilepton production of SMASH for the hadronic
afterburner stage could be combined with the dilepton radiation from a hydrodynamic
calculation. Since dilepton emission remains a key observable for high-density collisions
at upcoming facilities, like CBM at FAIR, such a hybrid approach could also be applied
to intermediate beam energy collisions.

Overall, the results of this work provide many conductive points of reference to continue
the study of the hadron gas phases in heavy-ion collisions.
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Appendix A

Numerical realization and
implementation details of
the stochastic criterion

This appendix lists relevant technical details on numerical realization and implementation
of the stochastic criterion in the transport approach SMASH, which form the basis for the
physical results discussed in the main parts of this work.

A.1 Open Software and setup on Github

All results of the transport approach SMASH in this thesis are easily reproducible and
maximally transparent since the source code is publicly available [209]. SMASH was
developed as an open source code under the GPL-3.0 license from the beginning and was
made publicly available at the end of 2018.

Considerable e�ort is made to follow best practices of Open Source development and
to adhere to the overall principle of Open Science [322]. This entails that the program
is versioned consistently and clearly documented, with all recent versions being citable
by their own DOI [210]. This is relevant for this work, since di�erent results are only
reproducible with certain program versions. All major versions are thoroughly checked
for the stability of a basal set of physical results [225]. All changes to the code are
required to pass unit tests and automatic checks ensure that documentation and formatting
guidelines are satisfied. Furthermore, the program is presented in a way that external
researchers can easily contribute, which simultaneously ensures accessibility and easy-of-
use for researchers, who (just) want to employ the code to reproduce results, compare to
experimental data or use it for their own studies. For all this, the code is documented
extensively [241, 323].

Even though Open Software is not common in the heavy-ion field of research, the con-
tributors to the SMASH approach believe that it is a good scientific practice and ensures
the reproducibility and traceability of the results and in term lends credibly to results.
Furthermore, the project is publicly funded and, therefore, should be available to the
public.

Github is chosen as the platform to make this availability possible. As it is the most
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Figure A.1: Two repository setup and workflow for the SMASH source code.

popular platform for open source codes, it allows to organize large software e�orts easily.
It enables internal and external collaboration by providing functionality like issue track-
ing, pull requests and a wiki. To prevent all beginning students from developing publicly
and protect new, unpublished work if necessary, two repositories, a public and a private
one, are employed. Both are regularly synced when a new version is released (tagged).
The procedure of this syncing is displayed in Figure A.1. New developments are usually
done on feature branches in the private repositories. They are only merged after a review
process performed by one of the other contributors and by an automatic continuous inte-
gration routine that runs the unit tests and ensures complete documentation and correct
formatting. A new version is released when both master branches are merged. This either
occurs when changes to the public version (e.g. by an external contribution) are made or
on a bi-annual schedule.

A.2 Numerical realization of the stochastic criterion

The stochastic criterion1 in the SMASH approach builds on the existing realization of
the geometric criterion. Since the only essential di�erence between both is how it is
decided whether and when two incoming particles scatter, the surrounding routine is
mostly identical for both criteria. The main di�erence concerns the role of the grid, which

1In this section, the application of the stochastic criterion for 2-body reactions is discussed, which
matches the applicability of the geometric criterion. The extension to multi-particle reaction is discussed
in the following section.
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is an essential calculation input and not a mere optimization for the stochastic criterion
(see subsection below).

The general routine for two particles to scatter is as follows. First all possible two particle
pairs within a grid cell are paired (find_actions_in_cell()2). Those pairs of incoming
particles are then checked for a (two) particle collision (check_collision_two_part(),
formerly check_collision()). For this potential scattering (ScatterAction), the total
cross-section is calculated as the sum of the partial cross-sections of all possible processes
between the incoming particles. The total cross-section is then scaled when the incom-
ing particles are not fully formed. In the case of the stochastic criterion, the collision
probability is then calculated using the total cross-section according to Eq. 4.25:

P2æm = �t

�3x
vrel‡2æm . (A.1)

As shown in Section 4.1, the equation is valid for all 2-body collisions, which includes
elastic or inelastic 2-to-2, 2-to-1 resonance formations and 2-to-m string fragmentations.
The relative velocity (vrel) and total cross-section (‡2æm) are physical observables between
the scattering partners. Whereas �t and �3

x are numerical calculation parameters. �t

is the timestep size of the calculation, which is provided as an input of the calculation in
the configuration file (Delta_Time). The grid cell volume determines �3

x. All quantities
are considered in the calculation frame.

The calculated collision probability is used for a Monte Carlo decision, whether a collision
between both particles is performed. A random number between 0 and 1 is generated
and the collision is accepted when the random number is equal or below the collision
probability. The collision probability is limited to 1. If it exceeds 1 depending on the
configuration, an error (default) or a warning is emitted by SMASH. Which of the di�erent
processes contributing to the total cross-section is performed is also randomly decided
based on the fraction ‡partial/‡total of the process. Contrary to the geometric criterion,
scatterings are not rejected because they are farther away than the maximal transverse
distance, which stems from the geometric interpretation from the maximal cross-section.
The cells are anyway required to be small. Also, reactions of particles that have just reacted
are allowed to react again directly. This avoids any biases in the stochastic treatment of
the evolution (i.e. the underlying Markov chain). This is also found in calculations, where
immediate back-reactions are needed to fully reproduce the correct scattering rate (cf.
Figure 5.1 and Figure 5.14). But, allowing immediate back-reactions also leads to some
artificial increase of scatterings for sparsely filled, small cells (as discussed in Section 5.1.5).
The time when particles scatter is distributed randomly within the given timestep. As the
position of newly produced particles in inelastic scatterings, the position of one randomly
determined incoming particle is chosen. This placing avoids density artifacts, in particular
when calculating with periodic boundary conditions. The final momenta are distributed
as usual by SMASH mostly isotropically (see Section 2.2.3). The sampling of the outgoing
momenta for the 5-body final state needed to be added in addition (see Figure A.3 and
related discussion below).

Note that the stochastic collision treatment is introduced over multiple versions of SMASH.
The stochastic criterion for binary reactions is introduced with version SMASH-1.7 [212].
Three-body reactions are available since SMASH-2.0 [213] and the 5-to-2 action will be

2Where fitting, function, class or config parameter names from the SMASH source code [209] are
provided in monospace lettering in the following.
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part of the next minor tagged version of SMASH. For the latter, all results include the
specific commit hash needed to reproduce them (instead of the not yet available tagged
version).

A.2.1 Grid

The role of the grid is di�erent from the geometric criterion. In the geometric case,
the grid is a mere optimization of the particle number (N) scaling [98]. Collisions are
searched within a grid cell and with particles in neighboring cells (nearest neighbor search).
Thereby, not every particle pair is considered, leading to scaling the computing time with
less than N

2. Particle pairs that (within the current timestep �t) cannot get closer than
the transverse distance (dT,max) determined by the maximum cross-section (‡max) are
neglected by the geometric collision search. Therefore, the minimal grid cell length in this
case is given by lmin =

Ò
((2�t)2 + d

2

T,max
with dT,max =

Ò
‡max
fiNtest

. This ensures that all
particles are in adjacent cells that should be considered for a scattering i.e. are not too far
apart for the geometric interpretation of the cross-section. The maximum cross-section is
200 mb by default, which translates to lmin ¥ 2.5 fm. Note that dT,max and consequently
lmin is scaled when employing test particles. In order to vary the grid size for the stochastic
criterion (like in Section 5.1.5), the maximum cross-section ‡max has to be changed in the
config file (parameter: Maximum_Cross_Section) to the value corresponding to the the
desired lmin. Note that the value specified for ‡max has to be multiplied by Ntest to prevent
a grid size scaling with the test particle number when fixing the grid size manually3.

The general structure of the grid can be directly applied for the stochastic criterion with
only minor changes necessary. It is, however, not an optimization but an essential part
of the calculation itself. The stability of calculation results under changes for the grid
(cell volume) is discussed in detail in Section 5.1.5 for this reason. For the stochastic
criterion, only particles within the same cell are checked for collisions and no neighbor
search occurs. That is, since the collision probability is defined only for a certain sub-
volume �3

x, which in SMASH equals a grid cell. Particularly useful is the dynamic grid
setup, which spans from the minimum to the maximum position of all particles along the
three axis. The grid, therefore, dynamically expands with the medium. Only in the case
of a box calculation, the grid is static and the size equals the size of the box. The grid
construction was adapted for this work always to have equal sized cell lengths for a given
axis. In this way, all cells have the same volume �3

x for a given timestep, which is needed
for the collision probability calculation. The length of the grid is divided by lmin to obtain
the number of cells along an axis. The cell lengths are scaled up until they match the
length of the grid, which is also why only a minimum cell length is given. Note that
should the grid have zero length along one axis and the grid cell volume would be 0, the
collision probability would diverge. Therefore, in this case, collisions are rejected since no
probability is defined. An example of this extreme case are elementary collision systems
like proton-proton. The stochastic criterion is not applicable for such cases. However, for
such dilute systems, a stochastic interpretation of the scattering process is in any case
questionable. Furthermore, for all presented results, the dynamic grid setup is changed4

to not limit the number of cells per dimension to 3Ô
N . In this way, the geometric criterion

is usually optimized for the dilute limit (one cell per particle), which is most likely to
3A timely change to SMASH to include a specific (minimal) gird length configuration parameter that

is not scaled by the test particle number is planned.
4A permanent modification to SMASH to ignore the limitation of the number of cells for the stochastic

criterion by default is planned.
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be reached in afterburner calculations. Instead of creating more grid cells as the system
expands, the cell sizes are grown. In case of the geometric criterion, this does not change
the collision parings. But, since the stochastic criterion is dependent on the cell size itself,
they ought to be fixed, even though this requires a larger number of cells than particles
of which many might be empty.

A.3 Code design of the ScatterActionMulti class

While the stochastic criterion only requires minor changes5, realizing multi-particle re-
actions in the SMASH transport approach is a larger e�ort, since most of the available
structure expects that only two particles scatter. Nevertheless, being built as a modular
approach, adding the new functionality of more than two-particle scattering can be re-
alized without large changes to the existing codebase. The main additions and changes
are explained in the following. At the end of the section, more practical explanations on
employing multi-particles for calculations are given.

smash::Action

smash::DecayAction

smash::Hypersurfacecrossing
Action

smash::ScatterAction

smash::ScatterActionMulti

smash::ThermalizationAction

smash::WallcrossingAction

smash::DecayActionDilepton

smash::BremsstrahlungAction

smash::ScatterActionPhoton

Figure A.2: Action class hierarchy in SMASH. New ScatterActionMulti class high-
lighted.

The only major change to existing functionality concerns the pairing of particles in a given
grid cell. With the addition of multi-particle reactions, multi-particle pairings are needed
to be checked for reactions as well. Therefore, the new check_collision_multi_part()
is called with lists of all possible 3 or 5 incoming particle parings (in find_actions_in_
cell()), but only when the corresponding multi-particle reaction is included in the cal-
culation. The decision of whether a multi-particle reaction is accepted is analog to the
two-body collision with the collision probability being used of a Monte Carlo decision.
The only di�erence is that not the cross-section (which is ill-defined for multiple parti-
cles) being scaled by the number of test particles, but the collision probability itself (by
N

≠(n≠1)

test
), where n is the number of incoming particles). The collision time is distributed

5mainly to check_collision() in the ScatterActionsFinder class
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randomly within the timestep and the position of the outgoing particles is randomly cho-
sen as one of the incoming particle positions, like for two-body stochastic collisions. The
Collisions_Within_Nucleus flag that determines whether to allow the first collisions
within the same nucleus works in the same fashion as for other scatter actions.

All routines related to multi-particle actions are part of a new Action class: the Scatter
ActionMulti. The class is like the other Action classes derived from the Action base
class (see FigureA.2). It is necessary to add a new Action class besides the existing
ScatterAction class, since the ScatterAction class requires exactly two incoming par-
ticles throughout almost all of its functionality. The new ScatterActionMulti takes an
arbitrary long list of incoming particles. A ScatterActionMulti is created for all particle
pairings within each cell. The main method of the class is add_possible_reactions(),
which adds all possible scatterings for the incoming particles as channels to created action
object, if there are any. The already calculated collision probabilities (see Section 4.3 for
the equations) are stored as the weights of the processes. As such, the class holds the calcu-
lations for all implemented multi-particle collision probabilities (probability_three_to_
one(), probability_three_to_two() and probability_five_to_two()) as well as the
needed 3- and 5-body phase space integrations (calculate_I3() and parametrization_
phi5_pions()). A di�erence compared to the (two-body) ScatterAction is that the
total (partial) weight of the multi-particle action is not the total (partial) cross-section,
but the total (partial) collision probability. If a multi-particle reaction is accepted, the
final state is generated like for other action classes (in generate_final_state()) with
the appropriate (already existing) sampling of the outgoing phase space. If more than
one reaction is possible between the incoming particles, the reaction is chosen according
to the partial weight, which is the collision probability of the specific reaction. A full
code documentation of the ScatterActionMulti class is found as part of the general code
documentation under [323].

In addition to implementing the multi-particle reactions themselves, also their reverse
counterparts need to be treated. For the 3-to-1 reactions, the reverse reaction (1 æ 3
decay) is already possible by changing the decay modes input file. For the 2-to-3 and
2-to-5 reactions, the CrossSections class is changed. The 2-to-5 reaction (NN æ
fi

+
fi

≠
fi

+
fi

≠
fi

0) mirrors the treatment via resonances (NN æ h1fl). The 2-to-3 deuteron
reaction also uses the same cross-section parameters as the treatment involving the d

Õ. The
final state, however, is for both classes directly i.e. in one step generated. Here, in addition
the sampling of the 5-body phase space had to be added and tested (sample_5body_phase
space()). As seen in Figure A.3, the sampling produced an isotropic distribution. The
generation of the final state by the ScatterAction class is adapted to account for the new
2-to-3 and 2-to-5 reactions.

To distinguish the di�erent processes, new ProcessTypes were included for all directions:
TwoToThree, TwoToFive, MultiParticleThreeMesonsToOne, MultiParticleThreeTo
Two, MultiParticleFiveToTwo. Two unit tests for the mesonic 3-to-1 and 3-to-2 deuteron
processes are added to check that the correct number of reaction channels with the correct
process types are found when the correct initial state is given as the input to the relevant
functions.

A.3.1 Using multi-particle reactions in SMASH

Multi-particle reaction, as well as the stochastic criterion, can be enabled in the config-
uration file (config.yaml). The stochastic criterion is necessary to be employed when
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Figure A.3: Test of new isotropic 5-body phase space sampling
(sample_5body_phasespace()). „ and ◊ between 1 random pair of 5-body state.

multi-particle reactions are used. On the contrary, the stochastic criterion can also be
used without multi-particle reactions for all cases where the geometric criterion is applied.
By default, the geometric collision criterion is used and therefore, multi-particle reactions
are disabled.

In the following, examples are given, how multi-particle reactions are configured. The
examples quote the relevant section of the configuration file (Collision_Term) that needs
to be changed. For all examples, a small enough time step has to be set (Delta_Time:
0.1 is a good starting point, see Section 5.1.5 and the end of this section). A good general
starting point for first calculations using multi-particle reaction are the example input
files for the multi-particle box (under input/multi_particle_box in the SMASH source
[209]) and the detailed balance tests for multi-particle reaction in the analysis suite [225].

The mesonic 3-to-1 reactions (3fi æ Ê, 3fi æ „ and ÷fifi æ ÷
Õ) are configured as follows:

Collision_Term:
Collision_Criterion: Stochastic
Multi_Particle_Reactions: ["Meson_3to1"]

Note that without including the inverse reaction i.e. the Dalitz decays in the decay modes
file as shown below, no 3-to-1 reactions are performed since detailed balance would be
broken.

w
0.893 1 p+ p≠ p0

f
0.152 1 p+ p≠ p0

h’
0.426 0 p+ p≠ h
0.228 0 p0 p0 h
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For the deuteron 3-to-2 reaction, the configuration involves excluding the 2-to-2 reactions
that involve the d

Õ resonance, which is done by including all 2-to-2 reactions but the d
Õ

ones ("PiDeuteron_to_pidprime" and "NDeuteron_to_Ndprime"). The fid ¡ NN as
2-to-2 d reaction without the d

Õ, is included on purpose.

Collision_Term:
Collision_Criterion: Stochastic
Included_2to2: ["Elastic","NN_to_NR", "NN_to_DR", "KN_to_KN",

"Strangeness_exchange", "NNbar", "PiDeuteron_to_NN"]
Multi_Particle_Reactions: ["Deuteron_3to2"]

Note that when configuring the deuteron 3-to-2 reaction, the respective 2-to-3 reaction is
automatically included as well.

Furthermore, the particles file has to include the deuteron and d
Õ6 as shown below.

d 1.8756 0 + 1000010020
d’ 1.8856 0.1 - 1000010021

And, since the d
Õ is unstable its decay mode also has to be included when running with

3-to-2 reactions. The implied resonance formation of d
Õ is ignored in this case.

d’
1. 1 N N

The d
Õ, even though not produced in the calculation, is necessary since the d cross-section

is parametrized using the d
Õ pole mass and decay width as parameters. This is also the

reason why the 2-to-2 reactions involving the d
Õ need to be excluded. Otherwise, the

deuteron 3-to-2 reactions would be double-counted.

To employ the 5-to-2 reaction 5fi ¡ NN in both directions, the following needs to be
used.

Collision_Term:
Collision_Criterion: Stochastic
Multi_Particle_Reactions: ["NNbar_5to2"]
NNbar_Treatment: "two to five"

Future versions of SMASH might change resonance properties, such as branching fractions
or pole masses. So, if important for a calculation, the numbers quotes above need to be
verified before. Also, new 2-to-2 reactions might be added in the future, so it might

6While using the same parameterization of the d cross-section ensures comparability to the 2-to-2
approach, the need to include the dÕ when not needing it as a degree of freedom in the calculation is not
ideal. An improvement left for the future is to use a direct parametrization of the d cross-section in the
future, which would avoid the need of listing the dÕ in the particle and decay mode file.
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be necessary to ensure that the list of all 2-to-2 reactions but the d
Õ ones is still up-to-

date. Of course, the di�erent multi-particle reactions can be combined as necessary for a
calculation.

A couple of common warnings and errors occur while running SMASH with the stochastic
criterion and multi-particle reactions. The program errors and does not start if the config
is not correct e.g. when trying to run a multi-particle reaction with the geometric criterion,
otherwise detailed balance would be broken. The collision probability is not limited to
1 by definition. The user needs to ensure that this is the case by choosing appropriate
parameters, especially a small enough timestep. Should the collision probability exceed
1, SMASH throws an error by default. While a probability larger than 1 is a conceptual
issue, it is not a�ecting the calculated results if it is rare. Therefore, for production runs,
the additional config option Only_Warn_For_High_Probability: True can be set. The
user must ensure that this warning only occurs rarely e.g. for extreme kinematic cases
or diverging cross-sections. As shown in Section 5.1.5, an important assumption for the
stochastic criterion (for two- or multi-particle reactions) is that not more than 1 reaction
per timestep per particle is accepted. Should more than one reaction be found in SMASH,
all reactions after the first one are discarded. The number of discarded reactions needs
to be low. Otherwise the mentioned assumption is invalid. In testing, the e�ects of too
many discarded reactions are seen starting from 1% of discarded reaction for all performed
reactions. Therefore, a warning is printed at the end of the calculation if this percentage
is exceeded. The results are not a�ected necessarily. But, if this warning is printed, it
needs to be cross-checked whether e.g. a smaller timestep changes the results.

A.4 Performance of multi-particle reactions

In the original publication [134], which discusses the stochastic criterion (called local en-

semble method in the publication), its performance i.e. computing time advantages, are
reported. For the current implementation of SMASH, the opposite is found: The stochas-
tic criterion is slower than its geometric counterpart. The main reason for not finding a
performance advantage is the number of pairings built for the particles inside each cell. In
SMASH, all possible pairs are checked for collisions, which results in N(N ≠1)/2 pairs and
calculations of the collision probability for N (test) particles within a cell . The authors
of [134] only choose one random set of possible pairs, which are only N/2 combinations.
To account for the missed pairings, the collision probability P is scaled up as

P
Õ = P

N
pairs

possible

N
pairs

build

= P
N(N ≠ 1)/2

N/2 . (A.2)

Note that the first part of the equation also applies for multi-particle reactions. Even
when not all particles can be part of an n-particle pairing, the number of possible n-
particle pairings can still be used to scale the probability. The significant reduction in
combinations improves the computing time, which would only scale linearly with N . Even
though this would improve the runtime, the advantage in SMASH is not expected to be as
significant as found in [134] due to the employed nearest neighbor search for the geometric
criterion (see Section A.2.1), which already leads to a reduction from the full quadric
scaling. The observed increase in runtime for the stochastic criterion compared to the
geometric criterion results from the strict timestep-based approach, which requires small
timesteps.
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The focus of this work is to obtain correct physical results and verifying the stochastic ap-
proach. For this purpose, it abstains from optimizing prematurely. In pairing all particles,
also the same routine as for the geometric criterion is kept. This is valuable to compare
both criteria, which is done extensively in the presented results to verify the approach.
Therefore, the explained optimizations above and in the following are left for future work
and can be done based on the rich verification presented throughout this thesis. The
observed slowdown is further enhanced when including multi-particle reactions in the cal-
culation, leading to even more possible pairings. In particular, for the introduced 5-body
reactions, combinatorics are the largest issue. At a certain number of particles inside a
cell, the whole calculation time is used for looping through all 5-particle pairings. Here, re-
ducing the combinatorics by scaling the probability would help. For the 3-body reactions,
the main bottleneck at the moment is the integration of the 3-body phase space, which is
performed for every 3-particle pairing that is found. Similar to the 5-body phase space, a
parametrization of the 3-body phase space could improve the performance. More general
optimizations could prevent the creation and thereby memory allocation of action objects
for all parings in SMASH. Memory is allocated regardless of the action being accepted or
not, which leads to many memory operations being performed even for directly discarded
pairings. To reduce the memory allocations for 5-body reactions, where a lot of pairings
are possible, an action object is already only created if all particles are pions since the
only possible 5-body reaction is 5fi æ NN at the moment. Another idea is to parallelize
the search for actions within each cell. Since for the stochastic criterion, collisions only
happen within each grid cell, the collision search could directly be parallelized.

Two other possibilities related to optimizing the runtime are to implement adaptive
timesteps and a dynamic switching between the geometric and stochastic criterion. Adap-
tive timesteps firstly could prevent probabilities larger than 1 by reducing the timestep
automatically should such a probability be calculated (as done in BAMPS [111]). At the
same time, if the system becomes more dilute, the timestep could also be increased with-
out violating the assumption of only 1 interaction per timestep per particle. This idea is
related to the dynamic switching of criteria. Since the stochastic criterion requires a higher
number of particles inside each cell to properly function (cf. Section 5.1.5), the criterion
could be switched for the late, dilute stages of a collision that are mainly free-streaming.
In this stage, the geometric criterion is more applicable and significantly faster since it
does not need any timesteps and propagates from interaction to interaction. The main
challenge for both of these optimizations is to find robust a priori criterion when either
the adaptation of the timestep or the switching of criteria should occur. For example, it
might be natural to consider a density basis for the switching of the criteria. However,
considering the example of a heavy-ion collision, the density varies widely over time and
over phase-space regions. The spectators fly unperturbed with their ground state density
away, in the collision zone, the density is high and between spectators and the collision
zone, the density is mostly zero. Therefore, finding a good density criterion that takes all
this into account and works for di�erent beam energies is complex.

194



Appendix B

More di�erential dilepton
predictions for AuAu collisions

Figure B.1: Invariant mass spectra of dielectrons produced by AuAu collisions at EKin =
1.23A GeV for di�erent centrality classes (columns) and pT windows (no pT cut for top
row).
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To complement the over centrality classes and momentum integrated invariant mass spec-
trum of the dielectrons production in AuAu collisions at EKin = 1.23A GeV in Figure 3.18
from Section 3.1.2, more di�erential spectra are presented in this appendix in Figure B.1,
B.2 and B.3. The total, fl and Ê contributions are the same as displayed in Figures 3.25,
3.26 and 3.27. The presented spectra match the upcoming experimental analysis and
provide predictions over the whole range of phase space. In particular, probing multiple
invariant mass windows appears to be promising. As seen in Figure B.2 and B.3, di�er-
ent invariant mass cuts cause di�erent contributions to be dominant and allow to study
especially the vector meson decays. Linestyles for all figures are given by the legend in
Figures 3.25.

Figure B.2: Transverse momentum spectra of dielectrons produced by AuAu collisions at
EKin = 1.23A GeV for di�erent centrality classes (columns) and invariant mass windows
(no invariant mass cut for top row). Linestyles as in B.1.
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Figure B.3: Rapidity spectra of dielectrons produced by AuAu collisions at EKin =
1.23A GeV for di�erent centrality classes (columns) and invariant mass windows (no in-
variant mass cut for top row). Linestyles as in B.1.
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