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Abstract The QCD phase-diagram is studied, at finite mag-
netic field. Our calculations are based on the QCD effective
model, the SU(3) Polyakov linear-sigma model (PLSM), in
which the chiral symmetry is integrated in the hadron phase
and in the parton phase, the up-, down- and strange-quark
degrees of freedom are incorporated besides the inclusion of
Polyakov loop potentials in the pure gauge limit, which are
motivated by various underlying QCD symmetries. The Lan-
dau quantization and the magnetic catalysis are implemented.
The response of the QCD matter to an external magnetic field
such as magnetization, magnetic susceptibility and perme-
ability has been estimated. We conclude that the parton phase
has higher values of magnetization, magnetic susceptibility,
and permeability relative to the hadron phase. Depending on
the contributions to the Landau levels, we conclude that the
chiral magnetic field enhances the chiral quark condensates
and hence the chiral QCD phase-diagram, i.e. the hadron-
parton phase-transition likely takes place, at lower critical
temperatures and chemical potentials.

1 Introduction

Exploring the quantum chromodynamic (QCD) phase-dia-
gram and studying the phase structures and the deconfine-
ment phase-transitions of strongly interacting matter are
among the fundamental issues in nuclear physics. Study-
ing QCD matter in laboratory is one of the greatest chal-
lenges of the experimental nuclear physics as the parton
matter is not directly accessible. There are different exper-
imental methods implemented in accelerating and collid-
ing ions (hadrons). Due to the center-of-mass energy of the
collision achieved, different domains of the QCD phase-
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diagram could be drawn. The first prediction of end of the
hadron domain, at high temperatures, was fomulated long
time before the invention of QCD, where the partons are
assumed as the effective degrees-of-freedom (dof), at tem-
peratures larger than the Hagedorn temperature TH [1,2].
The hadron matter forms fireballs of new particles, which
can again produce new fireballs. In 1975, Cabibbo pro-
posed a QCD phase diagram in T − nB plane [3], where
TH in the statistical Bootstrap model (SBM) [1] was inter-
preted as the critical temperature Tc and is conjectured to be
associated to second-order phase-transition into the decon-
finement state. At large baryon density, nB , a weak inter-
action between quarks and gluons—due to the asymptotic
dof—has been recognized [4]. A Historical summary on the
QCD phase diagram and its investigation in the heavy-ion
collisions (HIC) experiments are available, for instance, in
Refs. [5,6].

In statistical physics, the phase transitions are defined
as singularities or non-analyticity in the free energy as a
function of thermodynamic quantities. In lattice QCD sim-
ulations, the corresponding partition functions are taken
as functional integrals over compact groups described and
evaluated in dependence on the temperature T , the chemi-
cal potential μ, the volume V , the magnetic field eB, . . .,
etc.

In HIC and due to oppositely ultra-relativistic motion of
colliding heavy-ions, a huge magnetic field can be gener-
ated. Their motion generates an electric current which in turn
induces magnetic field to the system. In a non-central HIC,
the two counter-propagating nuclei collide, at finite impact
parameter b. In Fig. 1 the magnetic field in the center of the
over-lapping surface in Au + Au collisions, for instance, at
b = 10 fm and

√
sNN = 200 GeV, is visualized. This is

perpendicular to the reaction plane owing to the symmetry
of the collision. Let us assume that all colliding nuclei are
located, at the center of the nucleus, by applying Biot–Savart
law,
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− eBy ∼ 2ZAuγ
e2

4π
vz

(
2

b

)2

≈ 1019 Gauss, (1)

where the negative sign appears due to the assumption that
the magnetic field is pointing in −y direction, vz = (1 −
(2mN/

√
s)2)1/2 ≈ 0.99 is the velocity of accelerated nuclei,

mN is the nucleon mass, γ = 1/

√
1 − v2

z ≈ 100 is the
Lorentz gamma, and ZAu = 79 is the change number of
the gold nucleus. It is assumed that such a huge magnetic
field would have great impacts on the dynamics of the parton
(quarks and gluons) matter produced in HIC.

Over the last few decades, great efforts have been done to
map out the QCD phase-diagram. Right panel of Fig. 1 illus-
trates a schematic version. At low temperatures and baryon
chemical potentials, the quarks and gluons are still confine-
ment forming colorless hadrons. At T ∼ 150 MeV, there is a
crossover to the partonic colored phase; quark–gluon plasma.
With increasing baryon-chemical potential, at low tempera-
tures, the quarks shall be grouped in pairs known as corre-
lated Cooper-pairs, which likely condense. Various exper-
iments aim at studying the phase structures and the QCD
phase-diagram such as RHIC at BNL

√
sNN = 200 GeV

and LHC at CERN with energies up
√
sNN = 13 Tev. At√

sNN = 4 − 11 GeV, the large density regime shall be
explored by CBM at FAIR and MPD at JINR.

In the heavy-ion experiments, as a result of the non-central
heavy-ion collisions, a huge magnetic field could be created.
For instance, at RHIC and LHC energies, the magnetic field
ranges between m2

π and 10–15 m2
π , respectively [8,9], where

m2
π ∼ 108 Gauss. It is worth mentioning that this value of

course is just a snapshot, since the magnetic field is strongly
time-dependent. Detailed discussion on such a dynamical
system does not lay within the scope of the present study.
On the other hand, the proposed approach, the PLSM, take
into account the evolution of such dynamical system. The
magnetic field lifetime in HIC including the electric and chi-
ral magnetic effects [10,11] and the electromagnetic impacts
on the heavy-ion phenomenology are reviewed in Ref. [12].
The features of the electromagnetic fields in HIC shall be
addressed, quantitatively.

So far, there are various numerical approaches support-
ing the concept of magnetic catalysis in hot quark-matter
and well agreeing with the recent PLSM result in strong
magnetic-field such as the numerical lattice QCD simulations
[13–17], the hadron resonance gas (HRG) model [18,19], and
the Polyakov–Nambu–Jona–Lasinio model [20–27]. Great
details on understanding the phase structure of the QCD
matter in strong magnetic-field are reviewed, for instance,
in Refs. [28–31].

In 1960s, the linear sigma model (LSM), a low-energy
model, was introduced by Gell-Mann and Levey [32], long
before the invertion of the Quantum Chromdynamics (QCD),
the theory of the strong interaction. Many studies have been

performed on LSM O(4) at (non)-zero temperature [33,34]
and for N f = 2, 3, and 4 quark flavors [35–37]. Moreover,
the LSM is coupled with the Polyakov loop fields, known as
the PLSM, to include the interaction and dynamics of the col-
ored gluons. We have a solid term in developing the PLSM
to obtain reliable results. For instance, in estimating the fea-
tures of the moments in thermal QCD medium [38], obtaining
the thermal spectrum for masses of meson states and QCD
equation-s-tate (EoS) in thermal and dense QCD medium at
(non)-zero magnetic backgrounds [39–41], Furthermore, the
magnetic properties of the QCD matter such as the magne-
tization, magnetic susceptibility and inverse magnetic catal-
ysis could be estimated [42–44]. We have also improved the
PLSM to study the thermal structure of the transport prop-
erties, the bulk and the shear viscosity, the thermal and the
electric conductivity of the QCD matter [45,46]. The exten-
sion to N f = 4)-PLSM [47,48] is an essential improvement
in order to match with the recent lattice QCD simulations.

The present paper is divided into two main sections. Sec-
tion 2 summarizes the main features of the effective QCD
approach, the Polyakov linear-Sigma model. Section 3 out-
lines the results obtained.

2 The Approach

2.1 Polyakov linear-sigma model

Assuming that the hadronic degrees-of-freedom (dof) are the
colors of their quark constituents, various effective models
relying on the chiral symmetry of QCD have been proposed
[49]. The linear sigma model (LSM) implements the chiral
symmetry in the hadronic sector and incorporates additional
partonic (quarks) dof. We briefly summary the basic con-
cepts of the SU(N f ) Polyakov LSM (PLSM) in Sect. 2.2.
Various approaches for the Polyakov loop potentials shall be
discussed in Sect. 2.3. The inclusion of the magnetic effects
in the mean field approximation by means of the Landau
quantization shall be elaborated in Sect. 2.4.

2.2 SU(N f ) lagrangian

For LSM with SU(3)L× SU(3)R and N f = 2, 3, 4 quark
flavors and Nc color dof, the symmetric LSM Lagrangian
Lchiral = L f + Lm , where the fermionic part is given as

L f = ψ̄
[
i∂/−g Ta

(
σa+i γ5 πa+γμV

μ
a +γμγ5A

μ
a

) ]
ψ,

(2)

with μ is an additional Lorentz index [50], g is the Yukawa
coupling of the quarks to the mesonic contributions Lm =
LSP + LV A + LI nt + LU (1)A represented to LSP scalars
(J PC = 0++) and pseudo-scalars (J PC = 0−+), LV A to
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Fig. 1 Left panel shows the geometry of non-central HIC. b is the
impact parameter and RA is the radius of the nucleus. The magnetic
field B is expected to be perpendicular to the reaction plane due to the

left–right symmetry of the collision geometry. The figure is taken from
[7]. Right panel illustrates a schematic QCD phase-diagram

vectors (J PC = 1−) and axial-vectors (J PC = 1++) mesons
andLI nt being the interaction between them. The Lagrangian
of the anomaly term is given by LU (1)A [32,39,51–55].

LSP = Tr(∂μΦ†∂μΦ − m2Φ†Φ) − λ1[Tr(Φ†Φ)]2

−λ2Tr(Φ†Φ)2 + Tr[H(Φ + Φ†)], (3)

LAV = −1

4
Tr(L2

μν + R2
μν) + Tr

[(
m2

1

2
+ Δ

)
(L2

μ + R2
μ)

]

+i
g2

2
(Tr{Lμν [Lμ, Lν ]} + Tr{Rμν [Rμ, Rν ]})

+g3[Tr(LμLνL
μLν) + Tr(RμRνR

μRν)]
+g4[Tr

(
LμL

μLνL
ν
) + Tr

(
RμR

μRν R
ν
)]

+g5Tr
(
LμL

μ
)

Tr
(
Rν R

ν
)

+g6[Tr(LμL
μ) Tr(LνL

ν) + Tr(RμR
μ) Tr(RνR

ν)],
(4)

LI nt = h1

2
Tr(Φ†Φ)Tr(L2

μ + R2
μ) + h2Tr[|LμΦ|2 + |ΦRμ|2]

+2h3Tr(LμΦRμΦ†), (5)
LU (1)A = c[Det(Φ) + Det(Φ†)] + c0[Det(Φ) − Det(Φ†)]2

+c1[Det(Φ) + Det(Φ†)] Tr[ΦΦ†]. (6)

Equation (3) represents kinetic and potential terms for the
scalar meson nonets. The third term – in this expression
– gives the explicit symmetry breaking, which is defined
in Eq. (11). This part of the Lagrangian creates scalar and
pseudo-scalar mesonic states defined in Φ nonets, Eq. (10).
Equation (5) represents the vector meson nonets involving
explicit symmetry breaking as given in the second term in
Eq. (11). It is obvious that the 3 × 3 matrix of the vector
meson nonets involves vector and axial–vector fields, Eq.
(10). Thus, this part creates vector and axial-vector mesonic
states and expresses the interactions between (pseudo)-scalar
and (axial)-vector as outlined in Eq. (6). Because of the
explicit and spontaneous symmetry breaking, an anomaly

term LU (1)A in SU(3)r× SU(3)� is included in the effective
Lagrangian. The parameters c, c0, c1 have to be determined,
experimentally [56]. The first two terms in this Lagrangian
approximate the original axial anomaly term [57,58], while
the third term, which is proportional to the first term, is a
mixed one. The first anomaly term, in which other terms are
used to compare with other effects of different anomaly terms
on the hadronic structure [55], is the one taken into account
in the present calculations.

In order to repreoduce the related experimental results,
the higher-order terms with local chiral symmetry have been
included in [56]. It is worthy highlighting that LU (1)A sym-
metry is anomalous [59] and known as the QCD vacuum
anomaly [59,60], i.e. broken by quantum effects. Without
this term, a ninth pseudo-scalar Goldstone boson correspond-
ing to the spontaneous breaking of the chiral U(3)�× U(3)r
symmetry likely unfold [59,60]. Therefore, the anomaly term
is essential and the local chiral symmetry would not cause
further numerical problems, at a mass scale of 1 − 2 GeV
[56]. The constraint terms are conjetured to have great influ-
ences [56]. Thus, it is assumed that the LU (1)A problem is
effectively controlled by the inclusion of the c-term. Also,
it should be noticed that m2 (squared tree-level masses of
mesons) and m2

1 have contributions from the spontaneous
symmetry breaking [56].

The inclusion of scalar and vector meson nonets in the
Lagrangian of PLSM is possible with a redefinition for
the contra-covariant derivative of the quark-meson contribu-
tions, Eq. (7), where dof of scalar Φ and vector Lμ and Rμ

meson nonets are coupled to Aμ, the electromagnetic field.
Equations (8) and (9), the left- and right-handed field strength
tensors, respectively, represent self interaction between vec-
tor and axial-vector mesons Aμ. Emerging from the glob-
ally invariant PLSM Lagrangian, the local chiral invariance
requires that g1 = g2 = g3 = g4 = g5 = g6 = g[56]
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DμΦ ≡ ∂μΦ − ig1(L
μΦ − ΦRμ) − ieAμ[T3, Φ], (7)

Lμν ≡ ∂μLν − ieAμ[T3, L
ν ] − {

∂νLμ − ieAν [T3, L
μ]} ,

(8)
Rμν ≡ ∂μRν − ieAμ[T3, R

ν ] − {
∂ν Rμ − ieAν [T3, R

μ]} .

(9)

It is obvious that Ta = λ̂a/2 with a = 0 . . . 8 are nine U(3)
generators, where λ̂a are Gell–Mann matrices with fields Φ

of 3 × 3 complex matrix comprising of scalars σa (J PC =
0++), pseudo-scalars πa (J PC = 0−+), Vμ

a , vectors (J PC =
1−−), and Aμ

a axial-vectors (J PC = 1++) meson states,
which are given as

Φ =
8∑

a=0

Ta(σa + iπa), Lμ =
8∑

a=0

Ta (Vμ
a + Aμ

a ),

Rμ =
8∑

a=0

Ta (Vμ
a − Aμ

a ). (10)

The chiral symmetry is explicitly broken by

H =
8∑

a=0

Taha, Δ =
8∑

a=0

Taδa . (11)

A non–vanishing vacuum expectation value for Φ, 〈Φ〉 =
Taσa breaks the chiral symmetry, spontaneously. Because
of the parity is not broken in the vacuum, there are no
non-vanishing vacuum expectation values for fields πa . In
U (3)V ×U (3)A symmetry, these patterns of the explicit sym-
metry breaking have been obtained as given in Ref. [61].

Due to finite quark masses in the (pseudo)-scalar and
(axial)-vector sectors, the breaking of U(3)A if H0,Δ0 �= 0
and the symmetry breaking of U (3)V → SU(2)V × U (1)V
if H8,Δ8 �= 0 [61]. The symmetry breaking terms are orig-
inated from U(3)L× U(3)R =U(3)V× U(3)A. They are pro-
portional to the matrices H and Δ, Eq. (11). The spontaneous
chiral symmetry breaking is conjectured to take place in vac-
uum state. Therefore, a finite vacuum expectation value for
Φ and Φ̄ are assumed to carry the quantum numbers of the
vacuum, itself [51]. Thus, the explicit symmetry breaking
components (diagonal) h0, h3 and h8 and δ0, δ3 and δ8 van-
ish [51], leading to extracting three finite condensates σ̄0, σ̄3

and σ̄8. On the other hand, σ̄3 breaks the isospin symmetry
SU(2) [51]. To avoid this situation, we restrict ourselves to
SU(3). This can be N f = 2+1 [60] flavors. Correspondingly,
two degenerate light (up- and down-quarks) and one heavier
strange-quark are assumed, i.e. mu = md �= ms , where the
violation of the isospin symmetry is neglected. This facili-
tates the choice of ha (h0 �= 0, h3 = 0 and h8 �= 0) and for
δa (δ0 �= 0, δ3 = 0 and δ8 �= 0).

2.3 Polyakov loops

The LSM Lagrangian can be coupled to the Polyakov loops
[60,62],

L = Lchiral − U(φ, φ∗, T ), (12)

where the second term, U(φ, φ∗, T ), represents the effec-
tive Polyakov loop potential [63]. There are various propos-
als motivated by different underlying QCD symmetries in
the pure gauge limit. These are different parameterizations
reproducing first-order transition, at T ∼ 187 MeV, Nc = 3,
and N f = 2 + 1 [20,64,65].

– A simple choice based on Ginzburg–Landau ansatz
[20,66]. The underlying Z(3) center symmetry which
is spontaneously broken should be conserved. Hence,
an expansion in terms of the order-parameter can be
expressed as

Upoly
T 4 = −b2

4

(
|φ|2 + |φ∗|2

)
− b3

6
(φ3 + φ∗3)

+ b4

16

(
|φ|2 + |φ∗|2

)2
(13)

with the temperature-dependent coefficients b2(T ) =
a0 +a1(T0/T )+a2(T0//T )2 +a3(T0/T )3. The parame-
ters are estimated from the pure gauge lattice simulations,
such that the equation of state and the Polyakov loop
expectation values are well reproduced. The Φ terms are
required to break the U(1) symmetry of the remaining
terms to Z(3). a0 = 6.75, a1 = −1.95, a2 = 2.625,
a3 = −7.44, b3 = 0.75 and b4 = 7.5 [20] and decon-
finement temperature T0 = 270 MeV, can be used to
estimate the pure gauge QCD thermodynamics and the
Polyakov loop potential as functions of temperature.

– An improved ansatz for the logarithmic form constrains
φ and φ∗ [64].

Ulog
T 4 = −1

2
a(T )φ∗φ + b(T )

ln ×
[
1 − 6φ∗φ + 4

(
φ3 + φ∗3

)
− 3

(
φ∗φ

)2
]
, (14)

with the temperature-dependent coefficients a(T ) =
a0 + a1(T0/T ) + a2(T0/T )2 and b(T ) = b3(T0/T )3.
This potential is qualitatively consistent with the leading-
order results from strong coupling expansion [67]. Equa-
tion (14) diverges as φ∗ → 1. This sets on limits
to the Polyakov loop variables, i.e. they remain small,
especially at high temperatures. a0, a1, a2, and b3 can
be determined from lattice QCD simulations, Table 1.
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Higher-order terms have been included [68],

UPolyLog

T 4 = −a(T )

2
φ∗φ + b(T ) ln

[
1 − 6 φ∗φ

+4 (φ∗3 + φ3) − 3 (φ∗φ)2
]

+c(T )

2
(φ∗3 + φ3) + d(T ) (φ∗φ)2. (15)

It should be noticed that if c(T ) and d(T ) vanish,
Eq. (15) is reduced to Eq. (14). The various coefficients in
Eq. (15) are determined [68] x(T ) = (x0 + x1 (T 0/T )+
x2 (T 0/T )2)(1+x3 (T 0/T )+x4 (T 0/T )2) and b(T ) =
b0(T 0/T )b1(1 − eb2(T 0/T )b3

), where x = (a, c, d). The
different parameters are also summarized in Table 1.

– A potential inspired by a strong-coupling analysis [65]

UFuku
T 4 = − b

T 3

[
54 exp (−a/T )φ∗φ

+ ln
(

1−6φ∗φ−3(φ∗φ)2+4(φ3+φ∗3)
)]

.

(16)

The nearest-neighbor interaction is given in the first term,
while the logarithm term is the Haar measure, Eq. (14).
There are only two parameters, a determines the decon-
finement transition, i.e. the transition temperature in pure
gauge theory and b controls the mixing of the chiral and
the deconfinement transition. At deconfinement tempera-
ture T0 � 270MeV, a = 664MeV and b = 196.2MeV3.

In the present work, we have utilized the higher–order
parameterization of the Polyakov loop fields based on
the alternatively-improved extension of φ and φ∗, for
instance, the polynomial-logarithmic Polyakov loop poten-
tials Eq. (15).

2.4 Landau quantization

The quantity 2n+1−σ can be replaced by a summation over
the Landau Levels 0 ≤ ν ≤ νmax f . The earlier is the Lowest
Landau Level (LLL), while the latter stands for Maximum
Landau Level (MLL), i.e. νmax . For the sake of completeness,
we recall that 2 − δ0ν represents degenerate Landau Levels
and νmax f contributes to the maximum quantization number,
i.e. νmax f → ∞).

νmax f =
⌊

τ 2
f − Λ2

QCD

2|q f |B

⌋
, (17)

where the brackets represent floor of enclosed quantities
and the parameter τ is related to μ, at varying T , i. e. for
results given in varying T , we should take into consideration

τ ≡ μ f . Concretely, when analyzing the results in thermal
medium, μ f is given by τ f , while when analyzing the results
in dense medium, T is given as function of τ .

Equation (17) refers to the contribution of single and dou-
ble degenerates for the upper Landau levels. For the present
study, we merely need to highlight that various works should
have been analyzed [69–73]. Their results in MLL, νmax f , at
different temperatures and densities, for instance, can be pro-
posed in terms of the medium parameters such as μ, T and
eB. For the present calculations, we have to determine the
maximum LL in order to infinity the contributions of MLL.
We assume MLL as νmax f , where f → ∞. For details, inter-
ested readers are kindly advised to consult Ref. [44].

At finite magnetic field, the dispersion relation contributes
the Landau Level, so that

EB, f (B) =
(
p2
z + m2

f + |q f |(2n + 1 − Σ)B
)1/2

. (18)

Thus, the dispersion relation itself is modified by a quanti-
zation number, n, known as the Landau quantum number.
σ is related to the spin quantum number, Σ = ±Sz/2 and
m f (q f ) is the quark flavor mass (charge). The present study
counts for different contributions from Landau levels. The
chiral condensates and deconfinement order-parameters shall
be analyzed in a wide range of temperatures, baryon chemi-
cal potentials, magnetic fields, so that the chiral QCD phase-
diagram could be mapped out in various directions.

A more challenging question is how the Landau quantiza-
tion is fixed by the magnetic field, let us consider, for exam-
ple, a Fermi sphere of quarks, where the system is consid-
ered as discrete energy levels with respect to the momentum
space. At magnetic field background the all spin directions
are aligned though the transverse magnetic field, B = Bêz
“polarization”. With increasing the magnetic field, the order
of Fermi energy increases and the energy levels are dis-
cretizied. This is called the “Landau levels”. Moreover,
the phenomena of magnetic catalysis is mainly defined as
an enhancement of the dynamical symmetry breaking by an
external magnetic field. For instance, upon increasing the
magnetic field tends to enhance or ”catalysis” the quark-
antiquark condensate. This chiral condensate is strongly
associated with the breaking of chiral symmetries and also
creates masses. Apparently, this is magnetic catalysis [44].

The phenomena of (inverse)-magnetic catalysis are revie-
wed in great detail in Ref. [28,30], where the magnetic field
enhances the spontaneous symmetry breaking and the chiral
critical temperature decreases as increases the magnetic field
strength, i.e. inverse magnetic catalysis.

2.5 Mean-field approximation

For a spatially uniform system in a thermal equilibrium, at
finite temperature T and finite quark chemical potential μ f ,
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Table 1 Fit parameters of logarithmic [64] and polynomial-logarithmic Polyakov loop potentials [68] deduced from recent lattice QCD simulations

Ref. [64] a0 a1 a2 b3

3.51 −2.47 15.2 −1.75

Ref. [68] a0 a1 a2 a3 a4

−44.14 151.4 −90.0677 2.77173 3.56403

b0 b1 b2 b3

−0.32665 5.85559 −82.9823 3.0

c0 c1 c2 c3 c4

−50.7961 114.038 −89.4596 3.08718 6.72812

d0 d1 d2 d3 d4

27.0885 −56.0859 71.2225 2.9715 6.61433

where f stands for u, d and s quarks, the partition function
can be constructed. The grand canonical partition function
governs the change in numbers of particles and antiparticles.
Then, a path integral over quark, antiquark and meson fields
leads to [60]

Z = Tr exp

⎡
⎣−(Ĥ −

∑
f =u,d,s

μ f N̂ f )/T

⎤
⎦

=
∫ ∏

a

DσaDπa

∫
DψDψ̄ exp

[ ∫
x

(
Ĥ − μ f N̂

+
∑

f =u,d,s

μ f ψ̄ f γ
0ψ f

)]
, (19)

in which, we have abbreviated the space–time integration as

∫
x

≡
∫ β

0
dτ

∫
V
d3x . (20)

The integration runs over imaginary time τ = i t from 0 to
β = 1/T . For a symmetric quark matter, uniform indepen-
dent chemical potentials are imposed μ f ≡ μu = μd = μs

[49,60,66].

μu = μB

3
+ μI

2
+ 1

3
μY ,

μd = μB

3
− μI

2
+ 1

3
μY , (21)

μs = μB

3
− 2

3
μY ,

where μB , μI and μY are the baryon, isospin and hyper-
charge chemical potentials, respectively.

Converting the condensates σ0 and σ8 into a pure non-
strange σl and a pure strange σs quark flavor leads to [74]

(
σl
σs

)
= 1√

3

(√
2 1

1 −√
2

) (
σ0

σ8

)
. (22)

Then, the purely mesonic potential is given as

U (σl , σs) = −hlσl − hsσs + m2

2
(σ 2

l + σ 2
s ) − c

2
√

2
σ 2
l σs

+λ1

2
σ 2
l σ 2

s + (2λ1 + λ2)

8
σ 4
l + (λ1 + λ2)

4
σ 4
s .

(23)

The quarks and anti-quark contributions can be divided into
two regimes:

– At vanishing magnetic field (eB = 0) but finite temper-
ature (T ) and baryon chemical potential (μ f ),

Ωq̄q (T, μ f ) = −2T
∑
f =l,s

∫ ∞

0

d3p
(2π)3

×
{

ln

[
1 + 3

(
φ + φ∗e− E f −μ f

T

)
e− E f −μ f

T + e−3
E f −μ f

T

]

+ ln

[
1 + 3

(
φ∗ + φe− E f +μ f

T

)
e− E f +μ f

T + e−3
E f +μ f

T

]}
,

(24)

where the E f = [p2 + m2
f ]1/2 is the flavor-dependent

single-particle energies of quark mass ( f = l, s, c) as,

ml=u,d = g
σl

2
ms = g

σs√
2

ms = g
σc√

2
, (25)

where the σ -field coupled through Yukawa coupling g
and the subscript l being the degenerate light up and down
quarks. The SU(3) Polyakov linear-sigma model (PLSM)
in mean-field approximation is utilized in analyzing the
thermodynamic properties of quark matter in thermal and
dense QCD medium at finite isospin asymmetry in [75].

– At finite magnetic background (eB �= 0) where the
magnetic field B = Bêz , all the spin directions should
be aligned in parallel with the magnetic field, and the
momentum directions are only determined according to
chirality. The concepts of Landau quantization and mag-
netic catalysis, where the magnetic field is assumed to
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be oriented along the z-direction [76,77]. One can notice
that the spin (Polarization) plays an essential role in the
dimensional reduction of Dirac particles such as quarks.
This latter process is known as dimension reduction or
magnetic catalysis effect [28,30]. Moreover, the thermo-
dynamic potential should be implemented in a finite tem-
perature, T , chemical potential, μB , and B as,

Ωq̄q (T, μ f , B) = −
∑
f =l,s

|q f |B T

(2π)2

νmax f∑
ν=0

(2 − δ0ν)

∫ ∞

0
dpz

×
{

ln

[
1 + 3

(
φ + φ∗e− EB, f −μ f

T

)
e− EB, f −μ f

T + e−3
EB, f −μ f

T

]

+ ln

[
1 + 3

(
φ∗ + φe− EB, f +μ f

T

)
e− EB, f +μ f

T + e−3
EB, f +μ f

T

]}
.

(26)

Accordingly, one can solve the Dirac equation to obtain
the modified dispersion relation, Eq. 18. At finite volume,
V , and finite magnetic field, eB, the free energy is defined
as F = −T · log[Z]/V or

F = U (σl , σs) + U(φ, φ∗, T ) + Ωq̄q(T, μ f , B)

+δ0,eB Ωq̄q(T, μ f ), (27)

in which,the LSM mesonic potential U (σl , σs) counts
for the contributions of the valence quarks. At very low
temperatures, this part of the potential could be excluded,
especially in the regime of temperatures typical for the
QCD phase transition [38]

F = U(φ, φ∗, T )

+Ωq̄q(T, μ f , B) + δ0,eBΩq̄q(T, μ f ). (28)

At vanishing magnetic field B = 0, the second term
vanishes, Eq. (26), while δ = 1 in the third term, i.e.
Ωq̄q(T, μ f ), Eq. (24), should be evaluated with the stan-
dard dispersion-relation, E f . Therefore, Eq. (28), can be
given as

F = U(φ, φ∗, T ) + Ωq̄q(T, μ f ). (29)

When the magnetic field is switched on, δ = 0 and there-
fore the fourth term vanishes, as well. In this case, Eq. (28)
can be reduced to

F = U(φ, φ∗, T ) + Ωq̄q(T, μ f , B). (30)

The potential of quark and antiquark contribution, at finite
magnetic filed, Ωq̄q(T, μ f , B), can be divided into two
regimes as shown in Eq. (26):

1. The first integral in Eq. (26) refers to the contribution of
the magnetic field in zero Landau level, ν = 0. In this
case, the modified dispersion-relation, Eq (18), tends to
the standard one, E f .

2. The second integral in Eq. (26) gives the contribution of
the magnetic field for the upper Landau levels, ν = 1 →
∞, where the dispersion relation will be modified, EB, f ,
as given in Eq. (18).

Furthermore, the excluding of U (σl , σs) potential from the
free energy, especially, at high temperature, tends to maintain
dominant contributions of the sea quarks than the valence
quarks. In order to evaluate the expectation values of the
PLSM order-parameters

∂F
∂σl

= ∂F
∂σs

= ∂F
∂φ

= ∂F
∂φ∗

∣∣∣∣
min

= 0. (31)

In nonzero chemical-potential (μ �= 0) and finite Ployakov
loop variables, the PLSM free energy, at finite V , Eq. (28), is
complex. A minimization of a such function would be seen
as void of meaning.

An analysis of the order parameters is given by minimizing
the real part of the PLSM free energy (Re F). In principle,
the (thermal) expectation values of the Ployakov loop φ̄ and
its conjugate φ̄∗ must be real quantities as discussed in Ref.
[78]. The solutions of these equations can be determined by
minimizing the real part pf the PLSM free energy (Re F)
at a saddle point. The remaining parameters are the chiral
order-parameters σ̄l , σ̄s and the Polyakov-loop expectation
values φ̄, φ̄∗ as functions of T , μ and eB.

3 Results

3.1 Chiral and deconfinement order-parameters

The estimation of the chiral condensates (σl and σs) and the
deconfinement order-parameters (φ and φ∗) in dense and
thermal medium should be first computed by minimizing
the free energy, Eq. (31). The parameters of PLSM, as dis-
cussed in Sects. 2.2 and 2.3, are estimated, at mass of (vac-
uum) sigma-meson σ = 800 MeV, are measured (vacuum)
light and strange chiral condensates are σlo = 92.5 MeV and
σso = 94.2 MeV, respectively.

Figure 2 presents both PLSM chiral-condensates and
order–parameters, at finite baryon chemical potentials and
magnetic fields eB = m2

π (upper panel) and eB = 10m2
π

(bottom panel) as functions of T . In the left-hand panels,
(a) and (c) for normalized chiral-condensates, σl/σlo and
σs/σso , we notice that the chiral condensates are shifted to
lower values with increasing baryon chemical potential. This
means that the chiral critical temperature (Tχ ) decreases with
increasing eB and with increasing μ, as well. Therefore, we
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(a)

(c)

(b)

(d)

Fig. 2 Left-hand panels a and c show normalized chiral condensate
with respect to the vacuum value as functions of temperature. Right-
hand panels b and d give the expectation values of the Polyakov loop
fields (φ and φ∗) as functions of temperatures, as well. The upper pan-

els presents the PLSM results, at magnetic fields eB = m2
π , while the

bottom panels at eB = 10m2
π and μ = 0 (solid curves), 100 (dashed

curves), 200 MeV (dotted curves)

can draw a conclusion that the effect of strong magnetic field
is almost the same as that of the baryon chemical potentials,
namely on decreasing the phase transition (crossover).

In right-hand panels (b) and (d) for the Polyakov loop
parameters, φ and φ∗ as functions of T , at diffident baryon
chemical potentials, we find that both order parameters
become differentiable, at finite μ; μ = 100 MeV (dashed
curves) and μ = 200 MeV (dotted curves), while at μ =
0 MeV (solid curves), φ = φ∗. The deconfinement critical
temperature, Tφ , is shifted to lower values as the magnetic
field and baryon chemical potential increase. We thus draw
the conclusion that the φ and φ∗ have opposite dependence on
temperatures. The latter increases as the magnetic field and
the baryon chemical potential μ increase, while the earlier
decreases.

Figure 3 depicts the temperature dependence of normal-
ized chiral condensates (a) and deconfinement order param-
eters (b), at eB = 0 (solid curves), 0.1 (dashed curves),
0.2 (dotted curves) and 0.4 GeV2 (dot–dashed curves) and
vanishing baryon chemical potential. The left-hand panel (a)
depicts the same as the left-hand panel of Fig. 2 but for dif-
ferent values of the magnetic field, at fixed values of baryon

chemical potential. We notice that the chiral critical temper-
ature deceases and the crossover phase-transition becomes
sharper with increasing magnetic field. This can be inter-
preted due to the maximum occupation of the Landau levels
(νmax → ∞). We conclude that the phase transition seems
to be of first order, whenever the chiral condensate passes
through a meta-stable phase, in which light quarks become
massless and move freely.

In right-hand panel (b), the temperature dependence of
the deconfinement phase-transition is depicted, at μ = 0.
φ = φ∗, at eB = 0 (solid curves), but having different values,
ar 0.1 (dashed curves), 0.2 (dotted curves) and 0.4 GeV2

(dot–dashed curves). It is obvious that the deconfinement
critical temperature, Tφ , slightly decreases as the magnetic
field increases.

It would be noticed that if one compares the curve for
eB = 0.1 GeV2 with the curve of eB = 10m2

π � 0.2 GeV2,
which would be nearly similar values, one would find a slight
difference. This is an artifact. It comes from the effect of the
occupation Landau levels. The Landau levels and the quan-
tization number are determined for the medium parameters
such as T , μ, eB.
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(a) (b)

Fig. 3 Left-hand panel: the chiral condensates normalized to the vac-
uum value are given as functions of temperature. Right-hand panel: the
expectation values of Polyakov loop parameters, φ and φ∗, are calcu-

lated in dependence on T , at eB = 0 (solid curves), 0.1 (dashed curves),
0.2 (dotted curves) and 0.4 GeV2 (dot–dashed curves) and vanishing
baryon chemical potential

Fig. 4 The normalized chiral condensates are given as functions of
temperatures, at eB = 0.2 GeV2. Different MLL are taken into consid-
ration

As discussed, PLSM is well-suited to study the chiral limit.
The inclusion of magnetic field can be achieved by modify-
ing the dispersion relation of quarks and antiquarks, Eq. (24).
In doing this, the dimension of the momentum-space should
be reduced from three to one and scaled via quark charge and
magnetic field. This process is known as magnetic catalysis
effect of dimension reduction [28]. Furthermore, the intro-
duction of the magnetic field requires suitable implementa-
tion of the Landau quantization, Sect. 2.4.

Figure 4 shows the effects of the occupation number of
the Landau levels on the temperature dependence of the chi-
ral condensate, σl and σs , at a finite magnetic field eB =
0.2 GeV and a vanishing baryon chemical potential. We
observe that the change in the Landau levels is relatively sig-
nificant only in crossover phase-transition region and seems
to disappear otherwise. At MLL = 14 (solid curves), 51
(dotted curves) and ∞ (dashed curves), the normalized chi-
ral condensates for light and strange quarks are analyzed as
functions of temperatures, at finite magnetic field and van-
ishing chemical potential. We conclude that the increase in

the Landau levels very slightly sharpens the phase transition
or the crossover and decreases the critical temperature Tχ .

Furthermore, the temperature dependence of the chi-
ral condensates, σl and σs , and the deconfinement order-
parameters, φ and φ∗, are estimated, at different values of
magnetic fields (eB) and baryon chemical potential (μ). Fig-
ure 5 shows the deconfinement order–parameters as functions
of baryon chemical potentials, at T = 50 MeV (upper-panel)
and T = 100 MeV (bottom-panel), from which we notice
that the magnetic effect is very obvious. In left-hand panels
a and c, the chiral condensates are given in dependence on
magnetic fields; eB = 1 (solid curves) 10 (dashed curves),
15 (dotted curves), 20 (dot–dashed curves), and 25m2

π (dou-
ble dotted curves). Firstly, we conclude that the temperature
causes a rapid decrease in the chiral condensates around the
chiral phase-transition similar to what was observed in a pre-
vious study from PLSM without magnetic field [39]. Sec-
ondly, a small sudden drop in the chiral condensates refer-
ring to first-order phase-transition takes place. There is a
gap difference between light and strange chiral condensates,
at very high density. This could be understood because of
the inclusion of the anomaly term in Eq. (23), where the fit
parameters are accordingly modified [39,60]. This was con-
jectured as an evident on numerical estimation of the chiral
condensates. The magnetic field seems to have a sudden drop
in the chiral phase-structure. This causes an increase in the
critical temperatures. We can draw a conclusion that increas-
ing magnetic field tends to sharpen the phase transition and
to accelerate the formation of metastable phase.

The right-hand panels (b) and (d) give the deconfinement
phase-transition in dependence on magnetic fields; eB = 1
(solid curves), 10 (dashed curves), 15 (dotted curves), 20
(dot–dashed curves), and 25m2

π (double dotted curves). The
increase in temperature increases the deconfinement phase-
transition to larger baryon chemical potential. The thermal
and magnetic effects of the hadronic medium on the evolu-
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(a)

(b)

(d)

(c)

Fig. 5 Left-hand panels a and c show the chiral condensates, σl and
σs , normalized to the vacuum value as functions of the baryon chemi-
cal potentials, at eB = 1 (solid curves) 10 (dashed curves), 15 (dotted
curves), 20 (dot–dashed curves), and 25m2

π (double dotted curves).

Right-hand panels b and d give the expectation values of the Polyakov
loop parameters, φ and φ∗, as functions of baryon chemical potentials,
at finite temperatures. Top panel shows the results, at T = 50 MeV,
while the bottom panel at T = 100 MeV

tion of Polyakov loop parameters seem to be very smooth.
The slope of φ and φ∗ to the baryon chemical potential can
approximately be estimated. It is obvious that the magnetic
field decreases these slopes (increases the critical tempera-
ture), while the temperature increases them (decreases the
critical temperature).

3.2 Thermodynamics

We start this analysis with a brief introduction to the basic
quantities of thermodynamics, at non-vanishing magnetic
field strength. For a statistical system in equilibrium with vol-
ume V , temperature T and chemical potential μ, the grand-
canonical density operator, ρ̂, the grand-canonical partition
function, Z(T, V, μ), and the grand potential, Ω(T, V, μ)

can be introduced in the natural units κB = h̄ = c = 1. The
pressure as a function of finite magnetic field eB reads

P(T, μ, eB) = −Ω(T, μ, eB), (32)

which enables us to characterize the phenomenology to the
strong interacting QCD matter, at finite magnetic fields, as

the case in HIC, including magnetization, magnetic suscep-
tibility and permeability.

Then, the free energy density can be written as [79]

f = ε − T s = εtot − εfield − T s (33)

= εtot − T s − eB M, (34)

where F = −T log ·Z , the total energy density εtot =
ε + εfield, which in turn is divided into two terms; one for
the energy density of the medium ε and another one of the
magnetic field εfield = eBM.

We notice that the partition function in vanishing mag-
netic field is given by an integral over six-dimensional phase-
space. The dispersion relations follow the Lorentz invariance
principle. But, in finite magnetic field, the integral dimen-
sional is reduced and simultaneously accompanied by a con-
siderable modification in the dispersion relation.

The velocity of a test particle with momentum ∂εtot/∂P
in finite magnetic field B can be expressed as

vp = c

[
c p

c p + 2|q f |(κ + 1
2 − σ

2 )B

]
, (35)
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where σ = ±S/2. Then, the causality is guaranteed for vp

not-exceeding the speed of light c, i.e. as long as the B-term
is finite positive, which should be quantitatively estimated as
a function of temperature and magnetic field. From Eq. (34),
the entropy density and the magnetization, for instance, could
be derived as

s = − 1

V

∂F
∂T

, M = − 1

V

∂F
∂(eB)

. (36)

Other thermodynamic quantities, such as, pressure can be
derived, as well. Because the magnetic field is conjectured
to mark a preferred direction, Pi might be different along the
geometry effect of the magnetic field. As V = Lx L yLz and
the magnetic field is distributed along z direction, we can
distinguish between two different systems.

– B-scheme, in which the magnetic field remains constant
in direction, results in an isotropic pressure

Px = Py = Pz = −f (37)

– ϕ-scheme, which sets up magnetic flux ϕ = eB · Lx L y ,
remains constant and results in an anisotropic pressure

Px = Py = Pz − eBM (38)

Accordingly, the thermodynamic quantities should be modi-
fied. For instance, in Φ-scheme, the trace anomaly (the inter-
action measure) reads

I = ε − 3pz + 2eB · M. (39)

The speed of sound squared, at constant entropy, is given as
[80],

c2
s =

(
∂p

∂ε

)
s

= ∂p

∂T
/

∂ε

∂T
= s

cv

, (40)

where the specific heat, cv , gives the thermal rate change
of the energy density, at constant volume. In finite magnetic
field, Stefan–Boltzmann (SB) limits can be deduced from
lowest–order perturbation theory [81]

T log Z(V, T, μ, eB) = 19 Vπ2

36
T 4

+bfree
1 (eB)2 V log

(
T

ΛH

)
+ · · · ,

(41)

Figure 6 depicts the normalized pressure p/T 4 (left-hand
panel) and the normalized trace–anomaly (εtot − 3P)/T 4

(right-hand panel) as functions of temperatures, at vanish-
ing baryon chemical potential but finite values of magnetic
fields eB = 0.0 (solid curve), eB = 0.1 (dotted curve)
and eB = 0.3 GeV2 (double–dotted curve). The results are
compared with recent lattice QCD [81] (open square), (close

square) and (open triangle), respectively. It is obvious that the
pressure increases with increasing magnetic field, especially,
at low temperatures. At high temperatures, p/T 4 is limited
to the SB limits, which apparently negligibly are affected by
the magnetic field.

The right-hand panel of Fig. 6 presents the modified nor-
malized trace-anomaly, Eq. (39), as a function of tempera-
ture and magnetic field strengths, eB = 0.0 (solid curve),
eB = 0.1 (dotted curve) and eB = 0.3 GeV2 (double–
dotted curve). These are also compared with recent lattice
QCD [81] (open square), (close square) and (open triangle),
respectively.

The normalized entropy density, s/T 3, which is derived
from pz with respect to T , vanishes at T = 0. This may
be understood from the fact that the vacuum contribution
is conjectured to be a pure quantum effect. This emerges
from the interaction of virtual quarks with the external field.
Thus, it likely doesn’t contribute to entropy [81]. We also
notice that, at T > 0, the magnetic field changes the thermal
distributions and is expected to modify entropy,

s = ε + pz
T

. (42)

We find that near the Tc-regime, s/T 3 excellently agrees with
the lattice QCD calculations. This might not be also the case,
at higher temperatures.

Figure 7 presents s/T 3 and the equation of state ε(p)
included in εtot in dependence on T , at μ = 0 MeV and
the same values of the magnetic field as depicted in Fig. 6,
namely eB = 0.0 (solid curve), eB = 0.1 (dotted curve) and
eB = 0.3 GeV2 (double–dotted curve). The corresponding
curves and lattice points are the same as in Fig. 6. We find a
reasonable agreement with the lattice QCD simulations The
phase transition seems to smoothly take place. The temper-
ature dependence continues even above Tc. s/T 3 keeps its
increase with increasing T/Tc so that it becomes slightly
lower than the lattice results.

The right-hand panel of Fig. 7b presents the PLSM calcu-
lations for p/ε, at eB = 0.0 (solid curve), eB = 0.1 (dotted
curve) and eB = 0.3 GeV2 (double–dotted curve). We also
compare with recent lattice QCD [81] (open square), (close
square) and (open triangle), respectively. A fair agreement is
also obtained, especially at eB = 0.1, at low temperature. It
is obvious that such an agreement could be improved with
increasing magnetic fields.

Now, we are able to estimate some fundamental properties
of the strongly interacting QCD matter in finite magnetic field
such as the magnetization, the magnetic susceptibility, and
the permeability. The response of QCD matter to an exter-
nal magnetic field can be estimated from the free energy
density. The magnetic susceptibility with proper renormal-
ization has been introduced in litrature [82]. The magnetic
permeability measures the ability of the QCD matter to gen-
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(a) (b)

Fig. 6 Left-hand panel a the normalized pressure p/T 4 versus T/Tc
is calculated in PLSM, at finite magnetic fields eB = 0.0 (solid curve),
eB = 0.1 (dotted curve) and eB = 0.3 GeV2 (double–dotted curve)

and compared with recent lattice QCD (open square), (close square) and
(open triangle), respectively [81]. Right-hand panel bThe same as in the
left-hand panel but for the normalized trace-anomaly (εtot − 3P)/T 4

(a)

(b)

Fig. 7 Left–hand panel a the normalized entropy s/T 3 versus T/Tc
calculated in PLSM, at finite magnetic fields, eB = 0.0 (solid curve),
eB = 0.1 (dotted curve) and eB = 0.3 GeV2 (double–dotted curve).

The results are compared with recent lattice QCD (open square), (close
square) and (open triangle), respectively [81]. Right–hand panel b
shows the same as in the left-hand panel but here Pεtot

erate magnetic field or the ability to store magnetic potential
energy, which is proportionally constant for the magnetic
flux. The magnetic flux- in turn- is produced from influences
of the magnetic field. The magnetic permeability can be cal-
culated along the magnetic field on the transverse direction
to momentum space pz .

In thermal, dense and magnetic medium, the partition
function ln Z is to be properly modified, from which the
magnetization can be derived, Eq. (36). The sign of mag-
netization defines an essential magnetic property, namely
whether QCD matter is para- or dia-magnetic, i.e. M > 0
(bara) or M < 0 (dia).

– For dia-magnetized QCD matter, the color charges align
oppositely to the direction of the magnetic field and pro-
duce an induced current, which spreads as small loops
attempting to cancel the effects of the applied magnetic
field, and

– For para-magnetized QCD matter, most color charges
align towards the direction of the magnetic field.

Fig. 8 The magnetization M is calculated as a function of T , at eB =
0.0 − 0.4 GeV2 and compared with recent lattice QCD simulations
(symbols) [81]

As discussed, the magnetization greatly affects the ther-
modynamic properties of the QCD matter, as the magne-
tization measures the response of the system of interest to
finite magnetic field. The latter is likely extremly generated

123



Eur. Phys. J. A (2021) 57 :200 Page 13 of 17 200

in HIC, at least in very short time intervals. Aslo, because of
the relativistic, off-center motion of spectators, i.e. periph-
eral collisions, the rapid motion of electric charges generates
magnetic field perpendicular to plane of both motion direc-
tion and the electric field. Also, because of local imbalance
in the momenta carried by the colliding nucleons in periph-
eral and central collisions. This local imbalance leads to an
angular momentum and thus a magnetic field [83]. As dis-
cussed, such a magnetic field is typically very huge, O(m2

π ).
It largely exceeds the detector’s magnet field.

The magnetization, M, can be derived from Eq. (28). The
values obtained can be given in GeV2 in the natural units.
The sign of M refers to para- or dia-magnetic QCD matter.
If M > 0 or M < 0, the QCD matter is either para- or
dia-magnetized, respectively.

In Fig. 8, M is given as a function of T , at eB = 0.1
(dotted), 0.2 (dashed), 0.3 (double–dotted) and 0.4 GeV2

(dash–dotted curve) at vanishing μ. The results are com-
pared with recent lattice QCD [81] at eB = 0.1 (closed
square), 0.2 (circle), 0.3 (triangle) and 0.4 GeV2 (astride). It
is obvious that M > 0 and increases as the magnetic field
increases. This result indicates that paramagnetic properties
of the QCD matter. At temperatures below the critical value,
the PLSM results resemble the lattice data in an excellent
way. At temperatures characterizing QGP (higher than the
critical temperature), the PLSM curve becomes larger than
the lattice data, especially at very high temperatures. In this
range of temperatures, the colorless hadrons are conjectured
to deconfine into colored quarks and gluons. The discrep-
ancies suggest that the corresponding dof are not sufficient
enough to achieve a good agreement, especially at very high
temperature. Furthermore, we notice that the PLSM calcu-
lations give an evident on paramagnetic features of the hot
QCD matter.

Also, the magnetic susceptibility and permeability reflect
the magnetic response of the hot QCD matter. In other words,
the response of QCD matter to the magnetic field can be deter-
mined by the slope of M with respect to the magnetic field.
The second derivative of the free energy density with respect
to the finite magnetic field is the magnetic susceptibility,

χB = − 1

V

∂2F
∂(eB)2 |eB=0. (43)

In response to the magnetic field, the magnetic susceptibility
is a dimensionless proportionality parameter indicating the
degree of magnetization of the QCD matter.

Furthermore, the relative magnetic permeability, μr , nor-
malized to the vacuum magnetic permeability μ0 can be
translated as the magnetic effect in thermal QCD medium.
This can be determined by different methods. With a direct
relation to the magnetic susceptibility, we have

μr = 1 + χB . (44)

As shall be introduced, this relation agrees well with the
lattice QCD simulations, in which the magnetic permeability
is expressed in terms of the magnetic susceptibility,

μB ≡ Bind

Bext
= 1

1 − 4παm · χB
, (45)

where αm = e2/4π is the fine structure constant. This
expression distinguishes between dimensionless proportion-
ality constants, namely external Bext and induced magnetic
field Bind . We highlight that the higher–order permeability
seems to be limited by the magnetic susceptibility, which is
given by the reciprocal of the square of elementary charge e,
i.e. χB → 1/e2 when μ → ∞.

Left–hand panel of Fig. 9a shows the magnetic suscepti-
bility as functions of temperature, at eB = 0.0 GeV2 and van-
ishing μ. The results deduced from PLSM are compared with
various lattice simulations (symbols), in which different cal-
culation methods and algorithms are applied. We also com-
pare with the resonance gas model (HRG) model. The recent
lattice QCD simulations [81] (open circle) were estimated
by using half–half method in 243 × 32 lattice (closed trian-
gle) and integral method in 283 × 10 lattice (open triangle).
The diamonds represent lattice simulations for N f = 2 + 1
and when using HISQ/tree action with light quark masses
ml/ms = 0.05 and temporal dimension Nτ = 8, the lat-
tice results [14]. The closed circles stand for results obtained
from isotropy lattice [84].

Right-panel of Fig. 9b depicts the relative permeability
with respect to that of the vacuum compared to recent lattice
QCD calculations (open triangles) [81] in a wide range of
temperatures, at eB = 0.0 GeV2 and at vanishing μ. It is
apparent that the agreement between PLSM and lattice QCD
calculations is excellent.

Features of PLSM and lattice QCD results can be summa-
rized as follows.

– The magnetic susceptibility obtained from the HRG
model [81] (dashed curve) confirms the nature of the
QCD matter as dia-magnetized, especially at low tem-
peratures. Here, the free energy density is the sum over
all contributions from the colorless hadrons and their res-
onances contributes to the hadron interactions in order to
assure negative magnetic susceptibility [81].

– In PLSM, the free energy density is divided into three
terms. The first one is the pure mesonic potential which
is obtained from the Lagrangian for the pure gauge. The
second one gives the contributions of the quark and anti-
quarks, which – as the name says – have mesonic fluc-
tuations from the quarks and the antiquarks. The third
term represents the interactions of the color charges and
the gluons. This means that there two types of contribu-
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(a) (b)

Fig. 9 Left-hand panel a the magnetic susceptibility χB versus T/Tc calculated in PLSM, at eB = 0 GeV2. Right-hand panel b The same as in
the left-hand panel but for the magnetic permeability

tions to the hadronic fluctuations, while only one type
contributes to the gluon interactions.

– At very low temperatures, the slope of χ(T ) is appar-
ently negative (inside-box in left-hand panel of Fig. 9)
[85]. This gives a signature that the QCD matter is dia-
magnetized and also well reproduces the different lat-
tice simulations. When switching to the high tempera-
ture regime, i.e. restoring the broken chiral symmetry,
we observe a transition between dia- and para-magnetic
properties, where QCD para-magnetism is likely, at high
temperature.

– We notice that the PLSM results confirm that the
strongly interacting QCD matter has para-magnetic prop-
erties. The magnetic susceptibility steeply increases
when increasing temperatures towards the deconfinement
phase-transition. These conclusions have been found in
a wide range of temperatures 100 ≤ T ≤ 250 MeV
[86,87].

3.3 QCD phase-diagram at finite magnetic field

There are two different mechanisms manifesting the influ-
ences of the magnetic field on the QCD phase-diagram. The
first one is that the magnetic field improves the QCD phase-
transition due to its contributions to the Landau quantizations
or the Landau levels. The second one is that the magnetic
field contributes to the suppression in the chiral condensate
due to the restoration of the broken chiral symmetry. This
suppression is known as inverse magnetic catalysis. It is a
decrease in the chiral critical temperature with the increase
in the magnetic field.

The PLSM has two main types of the order parameters;
the chiral condensates, which are connected with two light
quarks, σl , and one strange quark, σs , and the Polyakov loop
variables, φ and φ∗. The intersects of φ and φ∗ with the
chiral condensates are used in determining the quasi-critical
temperatures (dotted curve) in Fig. 10. The solid curve is esti-

mated from higher-order moments of quark multiplicity (not
shown in the present paper), where the critical temperatures
are estimated at the peak of normalized quark susceptibility
χq/T 2. From both methods, we find that the critical temper-
atures decrease with increasing magnetic fields referring to
an inverse magnetic catalysis.

In Fig. 10, the influences of the magnetic field on the chi-
ral QCD phase-diagram are depicted. Left-hand panel shows
the variation of the critical temperature with increasing mag-
netic field, at almost vanishing μ. The PLSM calculations are
compared with recent lattice simulations given (circles with
errorbars) [81]. The vertical bands refer to the magnetic fields
generated, at RHIC (orders of per cent of GeV2 or ∼ m2

π )
and LHC energies (orders of per ten GeV2 or ∼ 10−15m2

π ).
The PLSM calculations take into consideration two methods
in order to estimate the critical temperatures. One is based
in normalized quark susceptibility χq/T 2 and the other one
is based on the freeze-out condition s/T 3, where s is the
entropy density.

There is an excellent agreement, especially at 0 ≤
eB [GeV2] ≤ 0.2. The solid curve matches well with
the lattice simulations, at a wider range of magnetic fields
0.13 ≤ eB [GeV2] ≤ 0.55. The first method of determining
the critical temperature apparently overestimates the lattice
results, at low temperature, while the second method slightly
underestimates these, especially at high temperatures. We
conclude that the chiral magnetic field improves the agree-
ment as it enhances the chiral condensates. This depends also
on the type of contributions to the Landau levels introduced
to the QCD effective approach.

The middle-panel draws the dependence of the critical
baryon chemical potential on the magnetic fields, at T = 50
(solid curve) and 100 MeV (dashed curve). At constant mag-
netic field as that at RHIC or LHC energy, large critical
baryon chemical potential can be reached, even at low tem-
peratures, i.e. μ decreases with increasing eB. The inter-
section between the deconfinement phase-transition and the
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(a)
(b)

Fig. 10 Three chiral QCD phase-diagrams. Left-hand panel: critical temperature T to magnetic field eB. Middle-panel: critical baryon chemical
potential μ to eB. Right-hand panel: T to μ. The vertical bands refer to magnetic fields likely generated, at RHIC and LHC energies

light quark chiral condensate is utilized to determine μ, at
which the broken chiral symmetry is restored. There is no
lattice QCD simulations to compare with.

The right-hand panel presents T -μ phase-diagram, at
eB = m2

π (solid curve), 10m2
π (dashed curve) and 20m2

π

(dotted curve). In determining the critical temperature, vari-
ous methods have been utilized, for example, the intersection
between the Polyakov loop variables φ and φ∗, which are
related to the deconfinement phase-transition, and the chiral
condensates of light and strange quarks, σl and σs , respec-
tively. The latter is related to the restoration of the broken
chiral symmetry. For example, the critical temperature cor-
responding to the chiral restoration of light quark, T χl

c , can be
determined by the intersection between φ and σl , while the
critical temperature corresponding to the chiral restoration
of strange quark, T χs

c , can be defined from the intersection
between φ∗ and σs . We observe that increasing magnetic
field enhances the chiral QCD phase-diagram, i.e. the chiral
phase-transition takes place at lower temperature. The esti-
mation of freeze-out parameters, T and μ, in dependence on
the heavy-ion centralities or the impact parameters allows to
analyze the influence of the magnetic field, experimentally
[9]. There are various experimental results on chemical and
thermal freeze-out as reviewed in ref. [88].

In Fig. 11, the chemical freeze-out condition s(T, eB, μ)/

T 3 = 7 is implemented in order to estimate the feeze-out
temperature T . The entropy density is calculated, at dif-
ferent temperatures, baryon chemical potentials, and mag-
netic fields. At a given value of the entropy density nor-
malized to T 3, the related baryon chemical potential, μ,
and the corresponding magnetic field, eB, are determined.
These three parameters are then depicted in Fig. 11. It is
a multi-dimensional chemical freeze-out boundary showing
the dependence the freeze-out diagram (T − μ), which can
directly be related to the one analyzed from ethe experimental
measurements of various particle ratios [88], on the magnetic
field. It is obvious that, at small μ, the effect of the magnetic
field is almost negligible. At higher temperatures, the drop in
Tc around the chiral phase-transition moves to lower values
with increasing eB. Again, this refers to an inverse cataly-

Fig. 11 As in Fig. 10 but here the multi-dimensional chemical freeze-
out boundary combines the chemical freeze-out parameters T with the
magnetic field eB and the baryon chemical potentila μ

sis. At very high temperatures, there a slight increase in T
with increasing eB. Increasing eB makes the chiral phase-
transition smother. It is important to notice that the shape of
T –μ phase-diagram looks different from the one at vanishing
eB [88].

4 Conclusions

In relativistic HIC, the off-center motion of spectators in the
peripheral collisions and the rapid motion of electric charges
generate huge magnetic fields perpendicular to the plane of
the motion direction and the electric field. Also, the local
imbalance in momenta carried by the colliding nucleons in
both peripheral and central collisions generates a huge mag-
netic field, as well. The response of QCD matter modeled in
PLSM to these external magnetic fields such as magnetiza-
tion, magnetic susceptibility and permeability is determined.
The chiral magnetic properties of the QCD phase-diagram
are analyzed. The inclusion of finite magnetic field in PLSM
can be accomplished by firstly modifying the dispersion rela-
tion of the quarks and antiquarks, so that the dimension of
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the momentum-space is reduced from three to one and then
scaled via quark charge and magnetic field (magnetic catal-
ysis) and secondly Landau quantization should be integrated
in. The latter modifies the dispersion relation by a quanti-
zation number; the Landau quantum number. σ , which is
related to the spin quantum number and to the masses of
quark flavors. Both chiral condensates and deconfinement
order-parameters have been analyzed in a wide range of tem-
peratures, baryon chemical potentials, magnetic fields, so that
the chiral QCD phase-diagram could be mapped out in vari-
ous directions.

The magnetization remarkably affects the thermodynamic
properties of the QCD matter. The PLSM results give an evi-
dent on paramagnetic features of the hot QCD matter. The
magnetic susceptibility, at low temperatures, is negative indi-
cating that the QCD matter is dia-magnetized. At higher tem-
peratures regime, i.e. restoring the broken chiral symmetry,
there is a transition from dia- to para-magnetic properties.
The permeability is a characterizing property of a magnetic
material measuring the ability to create magnetic field and
to store magnetic potential energy. The latter is proportion-
ally constant for magnetic flux, which is produced from the
influences of the magnetic field. At low temperatures (hadron
phase) the QCD permeability is small but rapidly increases
around the deconfinement phase-transition. At high temper-
atures (parton phase) the QCD permeability is large. We con-
clude that in a wide range of temperatures, the magnetic per-
meability normalized to the vacuum value agrees well with
the lattice QCD simulations, so that this quantity can be uti-
lized as a magnetic order–parameter.

To estimate the variation of the chiral critical temperature
with the magnetic field, the PLSM results are confronted to
the recent lattice QCD data. We found that the chiral critical
temperature decreases as the magnetic field increases. We
conclude that the magnetic catalysis of the thermal QCD
medium is inverse and an inverse interrelation between the
chiral chemical potential and the magnetic field is obtained.
The chiral phase-diagram is shifted to lower temperatures due
to the increase in the magnetic field. This result is confirmed
by two different methods, one from the thermal and dense
phase-transition of the PLSM parameters and the another one
by applying a condition from freeze-out parameters s/T 3.
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