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Abstract: For a long time, strong coupling expansions have not been applied systematically in lattice QCD thermody-

namics, in view of the success of numerical Monte Carlo studies. The persistent sign problem at finite baryo-chemical

potential, however, has motivated investigations using these methods, either by themselves or combined with numerical

evaluations, as a route to finite density physics. This article reviews the strategies, by which a number of qualitative

insights have been attained, notably the emergence of the hadron resonance gas or the identification of the onset transition

to baryon matter in specific regions of the QCD parameter space. For the simpler case of Yang–Mills theory, the

deconfinement transition can be determined quantitatively even in the scaling region, showing possible prospects for

continuum physics.
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1. Introduction

Quantum Chromodynamics (QCD) at finite temperatures

and baryon densities is the theoretical foundation for an

understanding of observed phenomena in a wide range of

fields, like the thermal history of the early universe, heavy-

ion collision experiments or the composition and properties

of neutron stars. Since the interactions of QCD are strong

on scales up to several GeV, ordinary weak coupling per-

turbation theory fails for temperatures and baryo-chemical

potentials T ; lB.2 GeV. The non-perturbative treatment

by numerical Monte Carlo simulations of lattice QCD is to

date still restricted to vanishing or small baryo-chemical

potentials, because of a severe sign problem at finite bar-

yon density (for an introduction, see [1]).

The continued absence of a genuine algorithmic solution

to this problem has motivated renewed interest in strong

coupling and hopping expansion methods over the last

decade. Contrary to weak coupling expansions, which

typically result in asymptotic series, strong coupling

expansions in the Euclidean framework are known to yield

convergent series with well-defined radii of convergence.

In the early days of lattice gauge theory they were used to

get analytical results for some physical quantities of

interest, such as glueball masses [2, 3] or the energy

density of lattice Yang–Mills theories [4, 5]. These calcu-

lations were restricted to zero temperature, with the

exception of some mean field analyses of phase transitions

in the strong coupling limit [6–9], and a series for the

temperature-dependent string tension [10]. More recent

attempts to explore strong coupling methods as a system-

atic calculational tool for thermodynamics started with an

investigation of Yang–Mills theory [11]. While Monte

Carlo methods appear superior where they work, analytic

results provide additional understanding for the interpre-

tation of data. Moreover a two-stage approach, with an

analytic derivation of effective lattice theories and their

subsequent analytic or numerical solution, appears to be

reasonably promising for finite baryon density. It is cur-

rently the only way to investigate the onset transition to

baryon matter in lattice QCD directly, albeit far from the

physical parameter values. The purpose of this article is to

review these developments with a focus on the concepts

and the results, whereas technical details are left to the

references.

2. A proof of concept: the SU(3) spin model

Before approaching the difficulty and complexity of QCD,

it is useful to illustrate the basic strategies at the example of

a simpler theory that is fully understood and has served

several times as a testing ground for methods to deal with
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the sign problem. We consider the SU(3) spin model with

the action

S ¼�
X

x

�X3

k¼1

s LðxÞL�ðx þ k̂Þ þ L�ðxÞLðx þ k̂Þ
� �

þ gLðxÞ þ �gL�ðxÞ
�
:

ð1Þ

The fields LðxÞ ¼ TrWðxÞ are complex scalars representing

the trace of SU(3)-matrices W(x), with s a nearest neigh-

bour coupling and g; �g external field-like parameters.

Writing g ¼ j expðlÞ; �g ¼ gð�lÞ, the model closely

resembles an effective action of lattice QCD with static

quarks in the strong coupling region, to be discussed in

Sec. 4. For j ¼ 0, it features spontaneous breaking of its

Z(3) centre symmetry by a first-order phase transition at

some sc. This transition persists for j 6¼ 0 along a line

scðjÞ, until it vanishes in a critical endpoint. For l 6¼ 0, the

model has a sign problem. The latter can be cured by a

reformulation in terms of a flux representation [12],

allowing for numerical simulations [13] by means of a

worm algorithm. Likewise, a complex Langevin algorithm

has been successfully applied [14–16].

Here, we are interested in a solution by series expansion

methods, which are more familiar in condensed matter

physics. Specifically, consider a linked cluster expansion of

the free energy density (for an introduction, see [17]),

which has been evaluated through 14 orders in s, and for

each order up to convergence in j [18],

f ¼ � lnðZÞ
V

¼
X14

n¼0

anðj; lÞsn ; DS ¼ � of

os
� of

og
: ð2Þ

The equation of state can be parametrised by the combined

derivatives DS, corresponding to the interaction measure in

QCD. It can be straightforwardly determined in Monte

Carlo simulations, and all thermodynamic functions follow

by integration or differentiation. Results corresponding to

the three highest orders are shown in Fig. 1 (left). Excellent

convergence and agreement with Monte Carlo results is

observed until the phase transition, representing the radius

of convergence, is approached. A finite polynomial is

unable to describe a non-analytic phase transition, but is

sensitive to it by loss of convergence.

A marked improvement near the transition can be

obtained by infinite-order resummations through Padé

approximants, defined as rational functions,

½L;M�ðxÞ � a0 þ a1x þ . . .þ aLxL

1þ b1x þ . . .þ bMxM
: ð3Þ

The coefficients ai; bi are uniquely determined for

L þ M �N, if N represents the highest available order of

the expansion. In this way the [L, M] approximant repro-

duces the known series up to and including OðxLþMÞ. Padé

approximants are able to show singular behaviour and can

model scaling properties near second-order phase transi-

tions. The [6, 6] approximant to DS is shown also in Fig. 1

(left). It accurately reproduces the simulated equation of

state all the way to the phase transition, which it indicates

by a singularity.

At l ¼ 0 the phase transition is known to be first-order

for small j, ending in a critical point at some jc, which is

of the same type as standard liquid-gas transitions.

Therefore, the susceptibility and the specific heat,

v ¼ � o2f

og2
� o2f

o�g2
� 2

o2f

ogo�g
; C ¼ � o2f

os2
; ð4Þ

when approaching from any direction not parallel to the

scaling axes, must both diverge with a common critical

exponent, v�C � js� scj��
, � ¼ c=bd. This is reflected in

a simple pole of the Dlog-Padé’s, e.g.

DvðsÞ �
d

ds
log v� � �

ðs� scÞ
: ð5Þ

A difficulty is that Padé’s also show poles for first-order

transitions, where they indicate the end of the metastability

range, as well as spurious poles, which renders the analysis

quite intricate. In order to detect a true critical point one

has to require convergence of the poles predicted by dif-

ferent Padé’s, as well as convergence of the poles in both

observables, Dv;DC. In this way, a critical point can be

located within some scatter specifying a systematic error.

Once the series are long enough to achieve this, an appli-

cation to finite chemical potential, real or imaginary, poses

no additional problem. Hence, the phase structure and the

order of the phase transition can be fully determined, as

shown in Fig. 1 (right), in quantitative agreement with

numerical results. This example provides further motiva-

tion to explore such methods also in QCD, where no

algorithmic solutions to the sign problem exist yet.

3. Strong coupling and hopping expansions in QCD

at finite T

3.1. Yang–Mills theory

Consider the Yang–Mills partition function with the stan-

dard Wilson action

Z ¼
Z

DU exp
�
� SYM½U�

�
;

SYM ¼
X

p

b
2Nc

TrUp þ TrUy
p

� �
;

ð6Þ

with plaquette variables Up and the lattice coupling

b ¼ 2Nc

g2 . From the lattice action it is obvious that the
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exponential can be expanded in powers of b, where the

expansion point b ¼ 0 corresponds to the strong (infinite)

coupling limit. However, in the continuum limit b ! 1,

and thus convergence is expected to be slow. A powerful

resummation including all orders in b is immediately

achieved by expanding instead in the group characters

vrðUpÞ ¼ TrDrðUpÞ, which are traces of the representation

matrices Dr of the plaquette variables. Using the formalism

of moments and cumulants [5, 19], it can be shown that this

expansion exponentiates, such that a series for the (formal)

free energy density ~f � � 1
X ln Z is obtained in terms of

clusters C of graphs U,

~f ¼ � 6 ln c0ðbÞ �
1

X

X

C¼ðXni
i Þ

aðCÞ
Y

i

UðXiÞni ;

UðXiÞ ¼
Z

DU
Y

p2Xi

drarðbÞvrðUpÞ :
ð7Þ

Here X ¼ V � Ns is the lattice volume, dr and arðbÞ are the
dimension and expansion coefficient of representation r,

and c0 is the expansion coefficient of the trivial represen-

tation. The combinatorial factor a(C) equals 1 for clusters

C consisting of only one so-called polymer Xi, which

represent closed surfaces of plaquettes. The coefficients of

higher representations can be expressed in terms of

uðbÞ � af ðbÞ ¼ b=18þ b2=216þ . . ., the coefficient of

the fundamental representation. It is a numerically known

function over the entire range of lattice gauge couplings

with uðbÞ 2 ½0; 1Þ, and constitutes the expansion parameter

for the character expansion.

For thermodynamics the physical temperature T ¼
1=ðaNsÞ is realised by compactifying the temporal exten-

sion of the lattice. The physical free energy is then obtained

by subtracting the divergent vacuum contribution,

f ðNs; uÞ ¼ ~f ðNs; uÞ � ~f ð1; uÞ; ð8Þ

and the pressure is P ¼ �f . Group integrals are evaluated

using the formulae
Z

dUvrðUVÞvrðWU�1Þ ¼ vrðVWÞ;
Z

dUvrðUÞ ¼ dr;0;

ð9Þ

the latter enforces contributing graphs Xi to be objects with

a closed surface.

The leading order graph is a tube of length Ns, Fig. 2

(left). Summing over all such graphs on the lattice, their

contribution to the pressure is

PLOðNs; uÞ ¼ 6

Ns
u4Ns : ð10Þ

Thus, the strong coupling limit at b ¼ 0 (and thus T ¼ 0)

has zero free energy density or pressure, as expected.

Moreover, we recognise a qualitative feature known from

full lattice simulations, where it is difficult to extract, and

hadron resonance gas descriptions, namely the

exponentially slow rise of the pressure with T. In order to

get more quantitative, corrections to the free energy density

through order u8 with respect to the leading order term for

various Ns have been calculated for SU(2) [11] and for

SU(3) [20, 21]. A direct comparison with Monte Carlo

simulations is easiest for the energy density,

eðbÞ ¼ 1

6

d

db
f ðbÞ ¼ hTrUp iNs

� hTrUp iNs¼1; ð11Þ

which is shown in Fig. 3 for the example of SU(2). On the

left, the series is shown order by order in the character

coefficient uðbÞ, and evaluated as a function of b. The
series loses convergence as it approaches the deconfine-

ment transition, whose critical coupling bc bounds the

Fig. 1 Left: Equation of state from the linked cluster expansion

compared to Monte Carlo. The vertical line marks the centre breaking

phase transition. Right: Order of the phase transitions, at an implicit

scðj;lÞ, in the SU(3) spin model. First-order and crossover regions

are separated by a critical line with 3d Z(2) universality. From [18]
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radius of convergence in this case. On the right, a resum-

mation of the series is achieved by Padé approximants.

This clearly improves the convergence and comparison

between different approximants provides an estimate for

the systematic error associated with the truncated series.

Good agreement with the Monte Carlo data is observed in

the controlled region, which is however restricted to rela-

tively small b-values.
At the finite temperature phase transition the free energy

f ðNs; uðbcÞÞ is continuous, with a discontinuous first or

second derivative, depending on the order of the transition.

For SU(2), we have a second-order transition, for which the

‘‘heat capacity’’

CðNs; uÞ ¼ u2 d2

du2
f ðNs; uÞ ð12Þ

diverges as CðuÞ� ðuc � uÞa, with a critical exponent

characteristic of the universality class. Its logarithmic

derivative

DCðNs; uÞ � d

du
lnCðNs; uÞ� � a

uc � u
ð13Þ

has a simple pole with residue a and is therefore well-

suited for an analysis by Padé approximants. The averaged

predictions of the approximants in Fig. 3 are bc ¼ 1:65ð35Þ

and a ¼ 0:052ð19Þ [11], compared to the Monte Carlo

value bc ¼ 1:880ð3Þ [22] and the 3d Ising exponent

a ¼ 0:12.

Another interesting qualitative result can be obtained for

thermal screening masses, which are obtained from the

exponential decay of spatial correlation functions. The

correlator of plaquettes is given by

CðzÞ ¼ hTrUp1ð0Þ TrUp2ðzÞi ¼ N2 o2

ob1ob2
ln Zðb; b1b2Þ

����
b1;2¼b

:

ð14Þ

At zero temperature (infinite Ns) the exponential decay is

the same as for correlations in the time direction, and thus

determined by the glueball masses. At finite temperature

(finite Ns) the LO graph for the difference to the vacuum

mass is shown in Fig. 2 (right) and gives

DmLOðNs; uÞ ¼ mðNsÞ � mð1Þ ¼ � 2

3
Nsu

4Ns�6 : ð15Þ

Thus finite temperature lowers the screening mass in the

confined phase, but the effect is suppressed by its high

order in the expansion parameter. This explains the

insensitivity of screening masses to T observed in simula-

tions of the confined phase, where they stay very close to

the vacuum hadron masses up to the phase transition [23].

Fig. 2 Leading order graphs for the free energy density (left) and screening mass (right)

Fig. 3 Left: Energy density to different orders in the character expansion. Right: Resummation by Padé approximants and comparison with

Monte Carlo. From [11]
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Such an understanding is not attainable from simulations

alone.

3.2. QCD with heavy quarks

Including fermions for a treatment of full QCD requires an

additional expansion. The Wilson fermion determinant can

be formulated as a power series in the hopping parameter

jf ¼ ð2amf þ 8Þ�1
for every flavour f. Defining the usual

hopping matrix M in Dirac, colour and coordinate space,

Grassmann integration over fermion fields gives to leading

order in jf per flavour

� Sf
q ¼ �Tr ln ð1� jf MÞ ¼

X

l

jl
f

l
trMlðUÞ

¼ �ð2jf ÞNs
X

x

elNsLðxÞ þ e�lNsLyðxÞ
� �

þ . . .

ð16Þ

with Mab;ab;yx ¼
X

l

dy;xþl̂ð1þ clÞabUab;xl : ð17Þ

The Kronecker deltas in M ensure that only closed loops

contribute, and l counts their length. Again, for finite

temperature effects we only need the difference between

finite and infinite Ns, and hence are interested in the loops

winding through the temporal boundary. One can formalise

this by considering a hopping expansion in the spatial

directions only, while the hops in the Euclidean time

direction are taken into account fully. Thus the leading

order heavy fermionic contributions to the effective action

can be written as in Eq. (16), which only holds for finite T,

and the dots represent loops that wind more than once.

Now one can calculate again the free energy density and

pressure, this time performing character expansions in both

U and L. Expanding all terms up to Oðj3NsÞ and doing the

group integrals one finds for two flavours u, d [21]

P ¼ 1

Nsa4

�
4ð2juÞ2Ns þ 8ð2ju2jdÞNs þ 4ð2jdÞ2Ns

�

þ 1

Nsa4

�
4ð2juÞ3Ns þ 6

�
ð2juÞ22jd

�Ns

þ6
�
2juð2jdÞ2

�Ns þ 4ð2jdÞ3Ns

��
e3alNs þ e�3alNs

�
:

ð18Þ

Next we identify the hadron masses to leading order in the

hopping expansion,

Mesons: amf �f 0 ¼ � ln 2jf � ln 2jf 0 ð19Þ

Baryons: amff 0f 00 ¼ � ln 2jf � ln 2jf 0 � ln 2jf 00 :

ð20Þ

The pressure can then be rewritten as

P ¼ 1

Nsa4

X

0�
e�m 0�ð ÞNs þ 3

X

1�
e�m 1�ð ÞNs

( )

þ 1

Nsa4

(
4
X

1
2

þ

e�m 1
2

þð ÞNs þ 8
X

3
2

þ

e�m 3
2

þð ÞNs

)
cosh

	
lBNs



;

ð21Þ

which is the expression corresponding to an ideal gas of

hadrons. We have thus derived from first principles that

QCD reduces to a hadron resonance gas in the strong

coupling and heavy mass regime. Note that this also holds

for Yang–Mills theory, which can be represented as a

glueball gas [11, 21]. It is then plausible that this feature is

generic and independent of quark mass, which explains the

success of hadron resonance gas descriptions of the lattice

QCD equation of state in the confined phase, where the

physical gauge coupling is fairly strong [24, 25].

3.3. Effective lattice theories from strong coupling

methods

In the previous section we have seen that strong coupling

methods lead to interesting qualitative insights in QCD

thermodynamics, but they are also limited quantitatively if

we are interested in continuum physics. This can be

improved significantly by a procedure in two stages: 1)

construct an effective lattice theory by integrating out part

of the degrees of freedom, and 2) solve the effective theory

by series expansion or otherwise. Two types of effective

degrees of freedom arise naturally, depending on the

integration order,

Z ¼
Z

DUD �wDw e�SQCD½U; �w;w� ¼
Z

DU0 e�Seff ½U0�

¼
Z

D �wDw e�Seff ½ �w;w� :

ð22Þ

In the first case, fermions as well as all spatial link vari-

ables are integrated over, leaving a theory of temporal links

only, which on a periodic lattice can be expressed by

Polyakov loops. In the second case, all gauge links are

integrated, leaving a fermionic effective theory in terms of

mesons and baryons, because of gauge invariance. Both

representations are perfectly equivalent to QCD. Trunca-

tions involved in doing the integrations reduce this equiv-

alence to specific parameter regions, where the

corresponding approximations hold.

4. Effective lattice theory for QCD with heavy quarks

The representation of QCD in terms of Polyakov loops was

first developed to characterise the deconfinement phase

Strong coupling methods in QCD thermodynamics 1603



transition in pure gauge theories [6, 26], and has later been

considered perturbatively and non-perturbatively in the

continuum [27–31] and on the lattice [32–36]. Here our

interest is in the derivation of the effective theories by

strong coupling methods. In this case their form is uniquely

determined and can be systematically worked out and

improved. Starting point is Wilson’s lattice formulation, as

before. However, instead of the free energy we now

compute the effective action defined in the first of Eq. (22),

�Seff ½U0� � ln

Z
DUi expð�SYM½U0;Ui� � Sf

q½U0;Ui�Þ :

ð23Þ

This is done again by combining a character expansion of

the exponentiated gauge action with a hopping expansion

of the exponentiated quark action. The gauge integrals can

then be done term by term for the truncated expansion to

leave an effective action depending on temporal links only.

These combine to temporal Wilson lines WðxÞ, which close
through the periodic boundary and implicitly contain the

dependence on the Euclidean time extent Ns. As a result,

the effective partition function is three-dimensional,

resembling a continuous spin model [37, 38],

Z ¼
Z

DW
Y

\x;y[
1þ kðLxL

�
y þ L�

xLyÞ
h i

	
Y

x

½1þ h1Lx þ h2
1L

�
x þ h3

1�
2Nf

½1þ �h1L
�
x þ �h2

1Lx þ �h3
1�
2Nf

	
Y

\x;y[

�
1� h2Tr

h1Wx

1þ h1Wx
Tr

h1Wy

1þ h1Wy

�

�
1� h2Tr

�h1W
y
x

1þ �h1W
y
x

Tr
�h1W

y
y

1þ �h1W
y
y

�

	 . . . :

ð24Þ

The first line corresponds to the nearest neighbour

interaction of pure gauge theory (including a

resummation into a log-action), the second line to the

static quark determinant and the third line to the leading

contributions of the kinetic quark determinant. The

couplings of the effective theory are functions of the

original lattice QCD parameters (for higher order

expressions see [38]),

k ¼uNs exp½Nsð4u4 þ . . .Þ� ;
h1 ¼ð2jealÞNs 1þ . . .ð Þ ¼ e

l�m
T ð1þ . . .Þ; �h1 ¼ h1ð�lÞ ;

h2 ¼j2Ns=Ncð1þ . . .Þ :
ð25Þ

Here am ¼ � lnð2jÞ ¼ amB=3 denotes the leading-order

constituent quark mass in a baryon (not to be confused with

the current quark mass mq in the QCD action). The higher

the order to which the effective action is considered, the

more couplings appear which are increasingly non-local,

connecting loops Wx to all powers and over all lattice

separations. Note that the effective couplings are (re-

summed) power series in the original expansion parameters

u and j, and hence can in turn be treated as small expan-

sion parameters themselves. Any truncated effective theory

can thus be treated by series expansion methods as dis-

cussed in the simple example of Sec.2. On the other hand,

the effective theory has a much reduced sign problem, and

can be simulated by even a choice of different algorithms.

One current line of work is to design flux representations

for this type of actions that can cure the sign problem and

be simulated efficiently [39, 40].

4.1. Deconfinement transition in Yang–Mills theory

To appreciate the advantage of going through an

effective theory, and the resummation it causes, let us again

consider SU(3) Yang–Mills theory, so that h1 ¼ �h1 ¼ h2 ¼
0 and Eq. (24) is reduced to the first line. The similarity

with the spin model in Sec. 2 is now apparent (except for

the resummed log-action), and one can compute the free

energy and the susceptibility of the Polyakov loop with

similar methods as power series in k. These converge up to

the nearest singularity, which can again be identified by

Padé approximants. A singularity at a real critical kc

indicates the phase transition. Note however, that for SU(3)

we have a first-order phase transition, so that the singularity

corresponds to the end of the metastability region of the

disordered phase, i.e. the true critical coupling is slightly

overestimated. With a series through Oðk8Þ the estimates

for kc shown in Fig. 4 (left) are obtained, which agree with

a Monte Carlo determination within 2%. This critical

coupling can be converted into the critical Yang–Mills

coupling bcðNsÞ by inverting the first of Eq. (25). Com-

parison with the full 4d Monte Carlo result [22] shows

agreement to better than 10% for the entire range of

Ns 2 ½2; 16�. This is a dramatic improvement compared to

the direct calculations in 4d QCD in Sec 3.1, which were

only feasible for small Ns. This result also constitutes a

completely analytic calculation of the deconfinement

transition of lattice Yang–Mills theory. In fact, the bc-

values for the larger Ns are in the scaling region and a

continuum extrapolation of the critical temperature is

possible, as shown in Fig. 5 (left). The resulting Tc in the

continuum also agrees within 10% with the known value

from full 4d simulations. This calculation demonstrates

that, in some cases, it is quite feasible to obtain continuum

results from strong coupling methods.
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4.2. Deconfinement transition in QCD with heavy

quarks

Once quarks are included via the hopping expansion, a

fully analytic evaluation becomes much more complex due

to the additional couplings, but the effective theory can still

be simulated efficiently. Moreover, while the partition

function Eq. (24) still has a sign problem, it is considerably

milder than that of 4d QCD, due to the fact that many

degrees of freedom have been integrated out already. In

[38] a flux representation of the effective theory including

the static determinant was simulated, and the resulting

phase diagram for Nf ¼ 2;Ns ¼ 6 is shown in Fig. 5

(right). Since the centre symmetry of the Yang–Mills the-

ory is explicitly broken by the quark determinant, the first-

order transition weakens with decreasing quark mass until

it vanishes at some critical value mc
q. The transition also

weakens with chemical potential, so that for mq [mc
q one

finds a first-order deconfinement transition coming from

the T-axis and terminating in a critical endpoint, whose

location depends on the quark mass. A continuum extrap-

olation would require larger Ns-values, which in turn

demand higher orders for the hopping expansion to con-

verge. Note that recent 4d QCD simulations using a hop-

ping expanded determinant [42], as well as full QCD

simulations [43] permit control over the systematics at

l ¼ 0.

4.3. Onset transition to baryon matter

With the same methods the cold and dense regime, where

the sign problem is most severe, can also be studied. In

particular, the onset transition to baryon matter has been

seen explicitly to various orders in the combined expan-

sions [44–46]. Once more valuable physical insight can be

gained by an analytic calculation to leading order within

the effective theory. In the strong coupling (b ¼ 0) limit

with a static quark determinant only, the partition function

factorises into one-site integrals which can be solved

exactly. In the zero temperature limit, mesonic

Fig. 4 Left: Critical coupling of the effective lattice theory representing SU(3) Yang–Mills. Right: Critical Yang–Mills couplings predicted by

the effective theory, compared to Monte Carlo results. From [41]

Fig. 5 Left: Continuum extrapolation of the critical temperature predicted by the effective theory. Right: Phase diagram for QCD with heavy

quarks. From [38]
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contributions are exponentially suppressed by chemical

potential (they carry factors of �h1, cf. Eq. (25)) and for

Nf ¼ 1 we have

Zðb ¼ 0Þ�!T!0
zV
0 with z0 ¼ 1þ 4h3

1 þ h6
1;

h1 ¼ ð2jealÞNs ¼ eðm�lÞ=T :
ð26Þ

This corresponds to a free baryon gas with two species.

With one quark flavour only, there are no nucleons and the

prefactor of the first term indicates a spin 3/2 quadruplet of

D’s, whereas the second term corresponds to a spin 0 six

quark state or di-baryon. The quark number density is now

easily evaluated

n ¼ T

V

o

ol
ln Z ¼ 1

a3

4NchNc

1 þ 2Nch2Nc

1

1þ 4hNc

1 þ h2Nc

1

;

lim
T!0

a3n ¼
0; l\m

2Nc; l[m

�
:

ð27Þ

Thus at T ¼ 0 we find a discontinuous transition when the

quark chemical potential equals the constituent mass m.

This reflects two expected physical phenomena: the ‘‘silver

blaze’’ property of QCD, i.e. the fact that the baryon

number stays zero for small l even though the partition

function explicitly depends on it [47]. Once the baryon

chemical potential lB ¼ 3l is large enough to make a

baryon (mB ¼ 3m in the static strong coupling limit), a

discontinuous phase transition to a saturated baryon crystal

takes place. The saturation density is 2Nc quarks per fla-

vour and lattice site and reflects the Pauli principle. This is

clearly a discretisation effect that has to disappear in the

continuum limit.

In the case of two flavours the corresponding expression

for the free gas of baryons reads

z0 ¼ð1þ 4h3
d þ h6

dÞ þ ð6h2
d þ 4h5

dÞhu þ ð6hd þ 10h4
dÞh2

u

þ ð4þ 20h3
d þ 4h6

dÞh3
u

þ ð10h2
d þ 6h5

dÞh4
u þ ð4hd þ 6h4

dÞh5
u

þ ð1þ 4h3
d þ h6

dÞh6
u ;

ð28Þ

with now two h1 couplings for the u- and d-quarks. In this

case we easily identify in addition the spin 1/2 nucleons as

well has many other baryonic multi-quark states with their

correct spin degeneracy. A similar result is obtained for

mesons if we instead consider an isospin chemical potential

in the low temperature limit [45]. Remarkably, the entire

spin-flavour-structure of the QCD bound states is obtained

in this simple static strong coupling limit.

When corrections are added the step function is

smoothed out. Fig. 6 (left) shows the baryon density

computed through orders Oðj8u5Þ and plotted in contin-

uum units. As the continuum is approached, the artefact of

lattice saturation moves to infinity, as expected. Fig. 6 (left)

shows a crossover, whereas for light quarks simulations

show a first-order transition for large Ns, Fig. 6 (right), and

a crossover for smaller Ns. This can again be understood

with analytic insight from the hopping expansion. The

dimensionless quantity

�ðl; TÞ ¼ e � nBmB

nBmB
¼ � 4

3

1

a3nB

6h3
1 þ 3h6

1

z0

� �2

j2 þ . . . ;

ð29Þ

here evaluated at b ¼ 0 in the simpler case Nf ¼ 1 [45],

gives an interaction energy per baryon in units of the

baryon mass when T ! 0. For l\m, it evaluates to zero in

accordance with the silver blaze property. For l[m it is

nonzero and implies an attractive interaction, consistent

with the baryon gas ‘‘condensing’’ to a liquid (or crystal on

the lattice). Starting as � j2, it decreases with growing

quark mass to zero in the static limit, as one would also

expect from Yukawa potentials in nuclear physics. Hence,

the end point of the liquid gas transition, TcðmÞ, shrinks to
zero with increasing quark mass, which explains the dif-

ference between the left and right of Fig. 6.

4.4. Large Nc and quarkyonic matter

Interesting conjectures concerning the QCD phase

structure were made some years ago, based on large Nc

arguments [48]. In particular, the phase diagram in the limit

of large Nc, with fixed ’t Hooft coupling,

Nc ! 1 with kH ¼ g2Nc ¼ const:; ð30Þ

was argued to look as in Fig. 7 (left). With fermion con-

tributions suppressed by large Nc, the deconfinement

transition is a straight line separating the plasma phase,

where the pressure scales as p�N2
c (perturbation theory),

from the hadron gas phase, where it scales as p�N0
c (ideal

gas of hadrons). In [48] it is argued that at finite density

there should then be a third phase with p�Nc, which was

termed quarkyonic since it shows aspects of both baryon

and quark matter. In particular, at low temperatures the

fermi sphere in momentum space is argued to be composed

of a baryonic shell of thickness �KQCD, and quark matter

inside.

With the analytic expansion tools and an effective lattice

theory at hand, one can now address these issues by direct

calculations starting from QCD. For large Nc, the baryon

mass grows as mB �Nc, so the size of the constituent quark

mass should not matter in that limit. This suggests to

investigate the cold and dense region for large Nc by direct

calculation with the effective theory for heavy QCD. First,

the effective theory of the previous sections was derived
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for a general number of colours [50] (see also [51]). Sec-

ond, the onset transition to baryon matter has been anal-

ysed for general Nc in [49], where no large Nc

approximations are implied.

Fig. 8 (left) shows the baryon onset transition to steepen

with growing Nc, such that it always become first-order in

the large Nc limit when the t’Hooft coupling and Ns are

held fixed. This is independent of the value of Ns, which

Fig. 6 Left: Baryon number onset (crossover) for heavy quarks on different lattices [44]. Right: First-order onset transition for light quarks

(j ¼ 0:12) and low T (large Ns) [45]

Fig. 7 Left: Phase diagram for QCD with Nc ! 1 [48]. Right: Evolution of the phase diagram for heavy quarks with growing Nc [49]

Fig. 8 Left: The onset transition always becomes first order for large Nc. Right: p�Nc for large Nc in baryon matter [49]
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parametrises temperature. This strengthening of the onset

transition implies its critical endpoint TcðNcÞ to move to

ever larger temperatures with growing Nc, as indicated in

Fig. 7 (right). Together with the straightening of the

deconfinement line with Nc, which follows from the

behaviour of Feynman diagrams at large Nc, we thus

understand how the conjectured phase diagram in Fig. 7

(left) emerges smoothly from the phase diagram with Nc ¼
3 and heavy quarks. Furthermore, right after the onset

transition h1J1, through three orders in the hopping

expansion at b ¼ 0, the coefficients of the pressure are

proportional to �Nc once Nc is large, which is suggestive

of a property to all orders. This Nc-scaling is stable under

gauge corrections and, with a leading order correction in

Nc, holds all the way down to Nc ¼ 3� 9, Fig. 8 (right).

Note also, that a lattice filling with baryon number

smoothly changes from baryon matter (at the onset of

condensation) to quark matter (at saturation) as a function

of lB, which is consistent with the momentum space pic-

ture of quarkyonic matter.

It thus seems that lattice QCD with heavy quarks shows

the defining features ascribed to quarkyonic matter. On the

other hand, for the moderate densities right after the baryon

onset, one would expect no discernible difference from

ordinary baryon matter. It remains an open question what

happens at larger densities, in particular for the case of

light quarks, when there may or may not be an additional

chiral transition after baryon onset.

5. Effective lattice theory for chiral and light quarks

The light quark regime has also been addressed already a

long time ago by effective theories at strong coupling. In

particular, it was attempted to describe dense baryonic

matter in Hamiltonian approaches, with constructions

based on the strong coupling limit and partial chiral sym-

metry on the lattice [52–54]. Here, we stick to the Eucli-

dean approach, starting from the partition function, to

apply systematic expansions. However, being interested in

the chiral phase transition, we now consider the lattice

action with staggered fermions,

Z ¼
Y

x

Z
dvxd�vxe2amq �vxvx

Y

‘

Z
dU‘ e�SYM½U� � e

Tr U‘M
y
‘
þU

y
‘

M‘

h i

;

ð31Þ

My� � j

i
¼ glðxÞealBdl;0 �vi

xvxþl;j;

Ml
k ¼ �glðxÞe�alBdl;0 �vk

xþlvx;l;

where ð‘; x; pÞ label lattice links, sites and plaquettes and

glðxÞ are the staggered phases. In the continuum limit, this

represents Nf ¼ 4 QCD if no rooting is applied. Expanding

in b, one obtains

Z ¼
Y

x

Z
dvxd�vx e2amq �vxvx

X

fnp; �npg

Y

‘;p

b
2Nc

� �npþ �np

np! �np!

Z
dU‘Tr½Up�npTr½Uy

p �
�np e

Tr U‘M
y
‘
þU

y
‘

M‘

h i

;

ð32Þ

with plaquette (anti-plaquette) occupation numbers

fnp; �npg. In the strong coupling limit, b ¼ 0, the gauge

action vanishes and the link integration reduces to one-link

integrals [55]. Subsequent integration over the Grassmann

variables then yields the partition function as a sum over

graphs in terms of mesons and baryons [56]. Leading OðbÞ-
corrections have been derived in [57]. Recently, after an

intricate reorganisation of the involved degrees of freedom,

an all-order dual formulation in terms of monomers,

dimers, world lines and world sheets has been given

[58, 59]. Its contributions through Oðb2Þ can be simplified

to

Zðmq; lÞ ¼
X

fk;n;l;npg

Y

b¼ðx;mÞ

ðNc � kbÞ!
Nc!ðkb � jfbjÞ!

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
mesonhoppings

Y

x

Nc!

nx!
ð2amqÞnx

|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}
chiralcondensate

	
Y

l3

wðl3; lÞ
Y

lf

~wðlf ; lÞ
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

baryonhoppings

Y

p

ð b
2Nc

Þnpþ �np

np! �np!
|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
gluonpropagation

:

ð33Þ

The integer valued occupation variables satisfy constraints

at sites and bonds, which result from the Grassmann and

gauge integrations. Note that this formulation in general

also contains negative weights, but the remaining sign

problem is mostly mild enough to be handled by

reweighting techniques. A particular advantage of this

formulation is the feasibility to simulate the chiral limit

directly, as well as any finite quark mass. On the other

hand, gauge corrections are more difficult to include.

Moreover, in the present formulation the expansion of the

gauge sector in b is slower to converge than the previously

discussed character expansion, to which it might be

extended in the future. Nevertheless, this formulation

offers yet another road to studying QCD at finite density in

a complementary parameter regime compared to the pre-

vious sections.

Early mean field [61] and Monte Carlo [62] studies

based on a polymer representation have been restricted to
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the strong coupling limit, b ¼ 0. Modern simulations are

done using a worm algorithm [63], which can be extended

to include gauge corrections. Fig. 9 (left) shows the phase

diagram in the chiral limit, m ¼ 0, both for b ¼ 0 and with

leading gauge corrections OðbÞ included [57]. In the chiral

limit there always is a non-analytic chiral phase transition,

with a tricritical point where the first-order transition at

finite density meets the second-order line. In the strong

coupling limit, this tricritical point coincides with the end

point of the nuclear liquid gas transition.

When gauge corrections are switched on, these start

splitting up, but surprisingly the first-order lines of the

chiral and nuclear transitions are still indistinguishably

close. Fig. 9 (right) shows the strong coupling limit, but

now with finite quark mass switched on. The second-order

transition line changes to crossover, as expected. A very

interesting feature is the decrease with mass of the endpoint

TcðmÞ of the nuclear liquid gas transition. Obtained from a

different discretisation and in a very different parameter

range, this behaviour agrees with the finding for heavy

quarks discussed in the last sections. Note also that the

endpoint of the chiral transition quickly moves to lBJ3T ,

which is consistent with all results reported for Nf ¼ 2þ 1

QCD at the physical point (for overviews and references,

see [64–66]).

6. Conclusions

In view of the sign problem of QCD at finite baryon den-

sity, which continues to evade purely algorithmic solutions,

systematic studies of strong coupling methods, either

directly or through development of effective theories, have

provided a number of genuinely new results for QCD

thermodynamics:

– The behaviour of screening masses for temperatures up

to the crossover

– A derivation of the hadron resonance gas in the strong

coupling regime

– The deconfinement transition for heavy quarks at all

baryon chemical potentials

– The chiral phase transition in the massless limit in the

region of strong, but finite, couplings

– The onset transition to baryon matter and its equation

of state, both for heavy quarks on fine lattices, and for

light quarks on coarse lattices

– A smooth connection to thermodynamics at large Nc

These results were so far obtained in parameter regions far

away from the physical point in the continuum. Neverthe-

less, all the physics expected up to nuclear densities has

been seen qualitatively on the lattice. It is now a matter of

pushing these approaches to higher orders, and to evaluate

them with refined algorithms. Given existing automatisa-

tion techniques to achieve high-order calculations for spin

models and their sign problems, known in the condensed

matter literature, the author believes this path is worth to be

pursued further.
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