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Abstract
The recently introduced Lipschitz–Killing curvature measures on pseudo-Riemannian
manifolds satisfy a Weyl principle, i.e. are invariant under isometric embeddings. We
show that they are uniquely characterized by this property. We apply this characteriza-
tion to prove a Künneth-type formula for Lipschitz–Killing curvature measures, and
to classify the invariant generalized valuations and curvature measures on all isotropic
pseudo-Riemannian space forms.
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1 Introduction

1.1 Background

A valuation on a finite-dimensional vector space V is a functional μ : K(V ) → A,
where K(V ) denotes the set of compact convex subsets of V and A is an abelian
semigroup, such that

μ(K ∪ L) + μ(K ∩ L) = μ(K ) + μ(L)

whenever K , L, K ∪ L ∈ K(V ), and μ(∅) = 0.
An important example is given by the intrinsic volumes. If V is a Euclidean vector

space of dimension n with unit ball B, and K ∈ K(V ), then, as observed by Steiner
[36], the volume of the r -tube Kr := K + r B around K is a polynomial in r :

vol Kr =
n∑

k=0

μk(K )ωn−krn−k .

Hereωn−k is the volume of the (n−k)-dimensional Euclidean unit ball. The coefficient
μk(K ) is called k-th intrinsic volume. If ι : V → W is an isometric embedding of
Euclidean vector spaces, then μW

k (ι(K )) = μV
k (K ) for all K ∈ K(V ). In particular,

μk is invariant under translations and rotations. Conversely, if μ is a continuous (with
respect to the Hausdorff metric on K(V )), translation- and rotation-invariant real-
valued valuation, then μ is a linear combination of intrinsic volumes by a famous
theorem of Hadwiger.

Hadwiger’s theorem has inspired a lot of research. To mention just a few of the
numerous results, we refer the reader to [1,8–10,14,15] for versions for subgroups
of the orthogonal group, to [6,28,30,34,37,38] for valuations taking values in some
abelian semigroups, and to [31,32] for semi-continuous valuations.

A differential geometric version of Steiner’s formula was found by Weyl [39].
Instead of taking a compact convex body, he considered a compact submanifold M
(possibly with boundary) of a Euclidean space and showed that the volume of an r -
tube is a polynomial for small enough r . Moreover, the coefficients only depend on
the intrinsic geometry of the submanifold, and not on the embedding. We refer to this
as Weyl’s principle.

For both formulas, the Steiner and the Weyl formula, local versions exist, where
one looks only at those points in the r -tube such that the foot point on K or M belongs
to a given Borel subset of V . The coefficients �k, k = 0, . . . , n are then valuations
with values in the space of signed measures on V and are called Lipschitz–Killing
curvature measures. For instance, if (M, g) is a compact m-dimensional Riemannian
submanifold without boundary, then �M

m−2(M, U ) = 1
4π

∫
U sc · dvol, where U ⊂ M

is a Borel subset and sc is the scalar curvature of (M, g).
The structural similarity of the results by Steiner and Weyl is not a coincidence

and can be explained with Alesker’s much more recent theory of valuations on man-
ifolds. In this language, the intrinsic volumes are valuations which are defined on
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arbitrary Riemannian manifolds and which behave naturally with respect to isometric
embeddings; and the Lipschitz–Killing curvature measures are curvature measures
naturally associated to Riemannian manifolds. Conversely, Fu and Wannerer [25]
have recently shown in the spirit of Hadwiger’s characterization that the intrinsic
volumes/Lipschitz–Killing curvature measures are characterized by the Weyl princi-
ple, i.e. any valuation/curvature measure on Riemannian manifolds that satisfies the
Weyl principle is a linear combination of intrinsic volumes/Lipschitz–Killing mea-
sures.

It is a very natural question to look for analogous results in pseudo-Riemannian
geometry. In this case, the tubes are in general not compact, but nevertheless one can
try to associate valuations and curvature measures to pseudo-Riemannian manifolds.
In the flat case, this was achieved in [7] and [12]. It turns out that the continuity
assumption is too restrictive and should be replaced by the notion of generalized
valuations or curvature measures. The very rough idea is that a generalized valuation
can not be evaluated on every compact differentiable polyhedron, but only on smooth
enough setswhich are transversal (in someprecise sense) to the light cone of themetric.
These sets are called LC-transversal. One obtains a sequence μk, k ≥ 0 of complex-
valued generalized valuations called intrinsic volumes, and a sequence �k, k ≥ 0 of
complex-valued generalized curvature measures called Lipschitz–Killing curvature
measures.

The extension to the curved case was carried out in [13]. To every pseudo-
Riemannian manifold M p,q we associate a space LK(M) of intrinsic volumes, which
are generalized valuations on M ; and a space L̃K(M) of Lipschitz–Killing curvature
measures, which are generalized curvature measures on M . They can be evaluated
on smooth enough LC-transversal sets. The most important property of these objects
is the Weyl principle, which states that for every isometric immersion M � N of
pseudo-Riemannian manifolds, the restriction of the intrinsic volume μN

k to M equals
μM

k and the restriction of the Lipschitz–Killing curvature measure �N
k to M equals

�M
k . A characterization of the intrinsic volumes as the only generalized valuations on

pseudo-Riemannian manifolds satisfying a Weyl principle appeared in [13, Theorem
D], based on the results from [12].

1.2 Results

To complete the analogy with the Euclidean/Riemannian case, we still need a char-
acterization theorem for generalized curvature measures satisfying a Weyl principle.
As noted above, each Lipschitz-Killing curvature measure satisfies the Weyl prin-
ciple, i.e. it associates to each pseudo-Riemannian manifold (M, Q) a generalized
curvature measure �M

k such that whenever M � N is an isometric immersion, then
�N

k |M = �M
k . The same holds true for linear combinations

∑∞
k=0 ak�k + bk�̄k .

Note that when evaluated on a given Riemannian manifold M , the sum is finite since
�M

k = 0 for k > dim M . Our first main theorem states that, conversely, every assign-
ment of a generalized curvature measure �M to each pseudo-Riemannian manifold
M that satisfies �N |M = �M is of this form. In other words, the space L̃K(M) of
Lipschitz–Killing curvature measures is characterized by the Weyl principle.
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11822 A. Bernig et al.

To state the theorem more precisely, we need some terminology. Let �Met denote
the category of pseudo-Riemannian manifolds with isometric immersions. Let GCrv
be the category where the objects are pairs (M,�), with M a smooth manifold,
and � ∈ C−∞(M, C) (the space of generalized curvature measures). The morphisms
e : (M,�M ) → (N ,�N ) are immersions e : M � N such that e∗�N is well-defined,
and �M = e∗�N . The category GVal of manifolds with generalized valuations is
defined similarly.

A Weyl functor on pseudo-Riemannian manifolds with values in generalized curva-
ture measures is any covariant functor � : �Met → GCrv intertwining the forgetful
functor to the category of smooth manifolds. More generally, we may similarly define
Weyl functors between any two categories of manifolds equipped with a geometric
structure, when natural restriction operations are available for both structures. Impor-
tant examples of Weyl functors are the intrinsic volumes of Riemannian manifolds,
taking values in smooth valuations, and the Lipschitz–Killing curvature measures
[22,25]. For a different example, a family of Weyl functors on contact manifolds with
values in generalized valuations was described in [21].

In this language, the intrinsic volumes and Lipschitz-Killing curvature measures on
Riemannian manifolds were extended in [13] to Weyl functors μk : �Met → GVal
and�k : �Met → GCrv, respectively. It was moreover shown that theWeyl functors
�Met → GVal are spanned over R by μ0 = χ and {μk, μk}k≥1. Our first result is a
similar classification for the curvature measures.

Theorem A Any Weyl functor � : �Met → GCrv is given by a unique infinite linear
combination � = ∑∞

k=0 ak�k + bk�̄k .

TheoremAmaybe used to prove geometric formulas by the template method, where
the templates are special pseudo-Riemannian manifolds. As a first application of this
method, we prove the following formula, which is well-known in the Riemannian case
[17, Equation 3.34].

Theorem B (Künneth-type formula) Let (M1, Q1), (M2, Q2) be pseudo-Riemannian
manifolds. Let Ai ⊂ Mi , i = 1, 2 be LC-transversal differentiable polyhedra. Then

�
M1×M2
k (A1 × A2, •) =

∑

k1+k2=k

�
M1
k1

(A1, •) � �
M2
k2

(A2, •).

Here �
M1
k1

(A1, •) � �
M2
k2

(A2, •) denotes the exterior product of the generalized mea-

sures �
M1
k1

(A1, •) and �
M2
k2

(A2, •).
By the Weyl principle, we have for every pseudo-Riemannian manifold

LK(M) ⊂ V−∞(M)Isom(M), L̃K(M) ⊂ C−∞(M)Isom(M),

where Isom(M) is the isometry group.
A (pseudo-Riemannian) space form is a complete connected pseudo-Riemannian

manifold of constant sectional curvature. We refer to Sect. 2.1 for the classification of
space forms. A connected space form is isotropic if the isometry group acts transitively
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on the level sets of the metric. Examples include all pseudospheres, pseudohyperbolic
spaces, and flat pseudo-Euclidean spaces. Our third main theorem states that the dis-
played inclusions become equalities if M is an isotropic space form. It thus gives a
complete description of isometry invariant generalized valuations and curvature mea-
sures for these space forms, and can be considered as a Hadwiger-type theorem.

Theorem C Let (M, Q) be an isotropic space form. Then

V−∞(M)Isom(M) = LK(M),

C−∞(M)Isom(M) = L̃K(M).

The following special case of the theorem completes the classification of isometry
invariant generalized valuations from [12] and will be the main ingredient in the proof
of Theorem C.

Proposition 1.1 (Classification of isometry invariant curvature measures on pseudo-
Euclidean space) Let V be an n-dimensional real vector space endowed with a
non-degenerate quadratic form of signature (p, q) and isometry group O(p, q). Let
Curv−∞

k (V )O(p,q) be the space of k-homogeneous, translation-invariant andO(p, q)-
invariant generalized curvature measures on V . Then

dim Curv−∞
k (V )O(p,q) =

{
2 if p, q ≥ 1 and 0 ≤ k ≤ n − 1,

1 if min(p, q) = 0 or k = n.
(1)

In each case, a basis is given by the real and/or imaginary parts of the Lipschitz–Killing
curvature measure �k .

2 Preliminaries

2.1 Pseudo-Riemannian Space Forms

We refer to [33,40] for the material in this subsection.

Definition 2.1 (i) The pseudo-Euclidean space of signature (p, q) isR
p,q = R

p+q

with a quadratic form of signature (p, q), e.g. Q = ∑p
i=1 dx2i −∑p+q

i=p+1 dx2i .
(ii) The pseudosphere of signature (p, q) and radius r > 0 is

S p,q
r = {v ∈ R

p+1,q : Q(v) = r2}.

The pseudosphere Sn,1
1 ⊂ R

n+1,1 is called de Sitter space and denoted by d Sn,1.
(iii) The pseudohyperbolic space of signature (p, q) and radius r > 0 is

H p,q
r = {v ∈ R

p,q+1 : Q(v) = −r2}.

The pseudohyperbolic space Hn,1
1 is called the anti-de Sitter space.
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The isometry groups of these spaces are given by

Isom(Rp,q) ∼= O(p, q) = O(p, q) � R
p,q ,

Isom(S p,q
r ) ∼= O(p + 1, q),

Isom(H p,q
r ) ∼= O(p, q + 1).

In each case, the action is transitive and the stabilizer at any point is conjugate to
O(p, q).

Definition 2.2 A complete connected pseudo-Riemannian manifold of constant sec-
tional curvature is called space form. A connected space form whose isometry group
acts transitively on the level sets of the metric is called isotropic.

By a theorem of Wolf [40], the stabilizer of a point in the isometry group of an
isotropic space form acts on the tangent space by the full orthogonal group.

The next theorem gives a classification of simply connected space forms. They are
all isotropic.

Theorem 2.3 Let (M, Q) be a pseudo-Riemannian space form of signature (p, q) and
curvature K . Then, the universal cover of M is isometric to

(i) R
p,q if K = 0;

(ii) S p,q
1√
K

if K > 0 and p ≥ 2;

(iii) S̃1,q
1√
K

(simply connected pseudo-Riemannian covering of S1,q
1
K

) if K > 0, p = 1;

(iv) cS0,q
1√
K

(connected component of S0,q
1√
K

) if K > 0, p = 0;

(v) H p,q
1√−K

if K < 0, q ≥ 2;

(vi) H̃ p,1
1√−K

(simply connected pseudo-Riemannian covering of H p,1
1√−K

) if K < 0, q =
1;

(vii) cH p,0
1√−K

(connected component of H p,0
1√−K

) if K < 0, q = 0.

2.2 Valuations and Curvature Measures onManifolds

In this subsection,we recall the definitions of the basic objects of this paper: smooth and
generalized valuations and smooth and generalized curvature measures on manifolds.
We refer to [13, Section 2] for more details.

Let M be a smooth manifold, assumed oriented for simplicity. By π : PM → M
we denote the cosphere bundle. We let P(M) denote the set of compact differentiable
polyhedra. A smooth valuation on a manifold M is a functional μ : P(M) → R of
the form

μ(A) =
∫

A
φ +

∫

nc(A)

ω, φ ∈ 
n(M), ω ∈ 
n−1(PM ). (2)

Here, nc(A) is the normal cycle of A, which is an integral current in PM . The space
of smooth valuations is a Fréchet space which is denoted by V∞(M). Examples are
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the Euler characteristic χ , the volume, and more generally the intrinsic volumes of a
Riemannian manifold (M, g).

There is a natural notion of the support of a valuation, and the space of com-
pactly supported smooth valuations is denoted by V∞

c (M) and equipped with a natural
LF-topology. A generalized valuation is an element of the dual space V−∞(M) :=
V∞

c (M)∗. It can be represented by generalized forms φ ∈ 
n−∞(M), ω ∈ 
n−1−∞(PM ).
In this case, (2) still makes sense for particularly nice A. Every A ∈ P(M) defines a
generalized valuation χA by setting 〈χA, μ〉 = μ(A), and every smooth valuation can
also be considered as a generalized valuation by Alesker-Poincaré duality. The wave
front of a generalized valuation describes its singularities, we refer to [4, Section 8]
for the definition. Given closed subsets � ⊂ P+(T ∗M), � ⊂ P+(T ∗

PM ), the space
of generalized valuations with wave front included in (�, �) is denoted by V−∞

�,� (M).
A smooth curvature measure is a functional of the form

�(A, U ) =
∫

A∩U
φ +

∫

nc(A)∩π−1(U )

ω, φ ∈ 
n(M), ω ∈ 
n−1(PM ). (3)

Here A ∈ P(M) andU ⊂ M is a Borel subset. The Fréchet space of smooth curvature
measures is denoted by C∞(M). Sometimes we also write [φ,ω] for the curvature
measure defined by (3).

The pairs of forms (φ, ω) such that the valuationμ from (2) is trivial were described
in [11] in terms of the contact structure on PM . We need a (simpler) version of this
description for curvature measures.

Note that a local contact form α is unique up to multiplication by a non-zero
function. In the following, we will do some constructions using α, and will leave it to
the reader to check that each construction is independent of the choice of α.

A form ω ∈ 
k(PM ) is called primitive if k ≤ n − 1 and

dαn−k ∧ ω ≡ 0 mod α.

The Lefschetz decomposition of a form ω ∈ 
k(PM ) is given by

ω ≡

⌊
k
2

⌋

∑

i=0

ωi mod α,

where ωi ∈ 
k(PM ) is of the form ωi = dαi ∧ ω̃i with ω̃i ∈ 
k−2i (PM ) primitive.
See [29] for these notions.

Proposition 2.4 Let φ ∈ 
n(M), ω ∈ 
n−1(PM ). The following conditions are equiv-
alent.

(i) The curvature measure � defined by (3) vanishes.
(ii) φ = 0 and ω belongs to the ideal generated by α and dα.
(iii) φ = 0 and

∫

PM

α ∧ ω ∧ τ0 = 0
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11826 A. Bernig et al.

for all primitive forms τ0 ∈ 
n−1
c (PM ).

Proof (i i) �⇒ (i) This follows from the fact that normal cycles are Legendrian.
(i) �⇒ (i i) Take a smooth compact submanifold A ⊂ M of dimension n with
smooth boundary ∂ A. Then for every f ∈ C∞

c (M), we have

∫

A
f φ +

∫

nc(A)

π∗ f · ω = 0.

Taking f be supported in intA, we find that φ = 0. Letting the support of f
shrink to a point on the boundary, it follows that ω vanishes on all tangent spaces
to nc(A). Since these tangent spaces are dense in the set of all Legendrian planes
(i.e. (n − 1)-dimensional linear subspaces E of some TξPM such that α|E , dα|E
vanish), it follows that ω vanishes on all Legendrian planes. By [11, Lemma 1.4]
this implies that ω ∈ 〈α, dα〉.

(i i) �⇒ (i i i) Obvious.
(i i i) �⇒ (i i) Let τ ∈ 
n−1

c (PM ) be arbitrary and let

ω ≡

⌊
n−1
2

⌋

∑

i=0

ωi mod α, τ ≡

⌊
n−1
2

⌋

∑

i=0

τi mod α,

be the Lefschetz decompositions. Then ωi ∧ τ0 ≡ 0 and τi ∧ω0 ≡ 0 for all i > 0.
The assumption is thus equivalent to

0 =
∫

PM

α ∧ ω ∧ τ0 =
∫

PM

α ∧ ω0 ∧ τ0 =
∫

PM

α ∧ ω0 ∧ τ,

which implies by Poincaré duality that α ∧ ω0 = 0. Hence ω0 is a multiple of α.
Since each ωi , i > 0 is a multiple of dα, the statement follows.

��
A generalized curvature measure is given by a pair φ ∈ 
n−∞(M), ω ∈ 
n−1−∞(PM ).

It can be evaluated at pairs μ, f , where μ ∈ V∞
c (M) and f ∈ C∞

c (M). We write
�(μ, f ) for this evaluation. The space of generalized curvature measures is denoted
by C−∞(M). As for generalized valuations, the singularities of a generalized cur-
vature measure can be described by its wave front set [13, Section 2.3]. The set
of generalized curvature measures with wave front set contained in (�, �), where
� ⊂ P+(T ∗M), � ⊂ P+(T ∗

PM ) are closed subsets, is denoted by C−∞
�,� (M).

If A ∈ P(M) satisfies certain transversality conditions (which are given in terms
of wave front sets), then

�(A, f ) =
∫

A
f φ +

∫

nc(A)

π∗ f · ω, f ∈ C∞
c (M)

is well-defined.
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Proposition 2.5 Let φ ∈ 
n−∞(M), ω ∈ 
n−1−∞(PM ). The following conditions are
equivalent.

(i) The generalized curvature measure � defined by (φ, ω) vanishes.
(ii) φ = 0 and ω belongs to the ideal in 
∗−∞(PM ) generated by α and dα.
(iii) φ = 0 and

∫

PM

α ∧ ω ∧ τ0 = 0

for all primitive forms τ0 ∈ 
n−1
c (PM ).

Proof The implications (i i) �⇒ (i), (i i) ⇐⇒ (i i i) are as in the proof of
Proposition 2.4.

For the implication (i) �⇒ (i i), wework locally andwith coordinates and assume
that M = R

n . Convolvewith an approximate identity ρ j ∈ C∞
c (GL(n)), whereGL(n)

is the affine group of R
n . Then ρ j ∗� is the smooth curvature measure represented by

the smooth forms (ρ j ∗φ, ρ j ∗ω), but obviously it is the trivial curvature measure. By
Proposition 2.4, ρ j ∗ φ = 0, while ρ j ∗ ω belongs to the ideal 〈α, dα〉 ⊂ 
n−1(PM ).
For j → ∞, ρ j ∗ φ → φ and ρ j ∗ ω → ω in the weak topology, hence φ = 0.
Since 〈α, dα〉 ∩ 
n−1−∞(PM ) is closed in the weak topology (which follows from the
implication (i i) ⇐⇒ (i i i)), it follows that ω belongs to this space. ��

Sometimes we also need C-valued valuations and curvature measures, which are
defined in an analogous way. In all the following, the range which is either R or C is
often omitted from notation, and should be determined from context.

2.3 Translation-Invariant Valuations and Curvature Measures

If V is a vector space of dimension n, the spaces of smooth or generalized translation-
invariant valuations and curvature measures are denoted by Val±∞,Curv±∞. They
admit gradings by homogeneity

Val±∞ =
n⊕

k=0

Val±∞
k ,

Curv±∞ =
n⊕

k=0

Curv±∞
k .

A k-homogeneous element in one of these spaces can be represented by a pair
(0, ω) with ω translation-invariant and of bidegree (k, n − k − 1) if k < n; and by a
pair (φ, 0) with φ translation-invariant if k = n.

Proposition 2.6 The (smooth or generalized) curvature measure induced by a
translation-invariant (smooth or generalized) form ω of bidegree (k, n − k − 1) with
k < n vanishes if and only if ω belongs to the ideal in 
∗(PV )tr or 
∗−∞(PV )tr

generated by α and dα.
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The proof is similar to the proofs of Propositions 2.4 and 2.5 andwe omit the details.
In this case, instead of taking the usual Poincaré pairing on manifolds, we have to use
the Poincaré pairing on translation-invariant forms as follows. Take the wedge product
of two translation-invariant forms of complementary degrees, and push-forward to V .
Then we obtain a translation-invariant n-form on V , hence a multiple of the volume
form. The corresponding factor is then the pairing of the two forms. This pairing is
non-degenerate.

2.4 LC-Transversality

Let (M, Q) be a pseudo-Riemannian manifold. We denote by LC∗
M ⊂ PM =

P+(T ∗M) the set of null-directions in the cosphere bundle and by LCM ⊂ P+(T M)

the set of null-directions in the sphere bundle. For a submanifold X ⊂ M , we let
N∗X ⊂ T ∗M be the conormal bundle, which we consider often as a subset of
P+(T ∗M). We also write T ∗

X M instead of N∗X if we want to emphasize the ambient
space.

Definition 2.7 ( [13, Section 4.2]) A differentiable polyhedron A ⊂ M is called LC-
transversal if each smooth stratum of nc(A) intersects LC∗

M transversally.

In particular, a submanifold X ⊂ M is LC-transversal if N∗X � LC∗
M . Since LC∗

M
is a hypersurface, this amounts to saying that there is for each (x, [ξ ]) ∈ N∗X ∩LC∗

M
some vector w ∈ T(x,[ξ ])N∗X which is not in T(x,[ξ ]) LC∗

M .
We will need the following generalization of LC-transversality.

Definition 2.8 A generalized valuation ψ ∈ V−∞(M) is called LC-transversal if
ψ ∈ V−∞

�,� (M) with � ∩ N∗(LC∗
M ) = ∅.

This relates to the LC-transversality of subsets as follows.

Lemma 2.9 If a differentiable polyhedron A ⊂ M is LC-transversal, then the gener-
alized valuation χA is LC-transversal.

Proof Recall that χA = [([[A]], [[nc(A)]])]. Now WF([[nc(A)]]) is contained in the
union of the conormal bundles to the smooth strata of nc(A). By assumption, the latter
conormal bundles have empty intersection with N∗ LC∗

M . ��

3 Uniqueness of the Lipschitz–Killing Functors

In this section we will prove Proposition 1.1, which is the technical heart of the proof
of Theorems A and C . We will need two technical lemmas. The first one is from [12],
see also [7, Section 4.4] for some of the notation. To state it, we need some preparation.

Let X be a smooth manifold, and E a smooth vector bundle over X . For any ν ≥ 0
and a locally closed submanifold Y ⊂ X , define the vector bundle Fν

Y over Y with
fiber

Fν
Y |y = Symν(NyY ) ⊗ Dens∗(NyY ) ⊗ E |y .
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Uniqueness of Curvature Measures... 11829

For a closed submanifold Y ⊂ X , let �−∞,ν
Y (X , E) ⊂ �−∞

Y (X , E) be the space of
all generalized sections supported on Y with differential order not greater that ν ≥ 0
in directions normal to Y . One then has a natural isomorphism

�
−∞,ν
Y (X , E)/�

−∞,ν−1
Y (X , E) ∼= �−∞(Y , Fν

Y ).

Now let a Lie group G act on X in such a way that there are finitely many orbits,
all of which are locally closed submanifolds. We will assume that E is a G-vector
bundle. If Y ⊂ X is a G-invariant locally closed submanifold, then Fν

Y is naturally a
G-bundle. If Y is in fact a closed submanifold then �

−∞,ν
Y (X , E)G , ν ≥ 0, form a

filtration on �−∞
Y (X , E)G .

Lemma 3.1 ( [12, Lemma A.1]) Let Z ⊂ X be a closed G-invariant subset. Decompose
Z = ⋃J

j=1 Y j where each Y j is a G-orbit and fix an element y j ∈ Y j . Then

dim �−∞
Z (X , E)G ≤

∞∑

ν=0

J∑

j=1

dim �∞(Y j , Fν
Y j

)G =
∞∑

ν=0

J∑

j=1

dim
(

Fν
Y j
|y j

)Stab(y j )

.

For a G-module X and a character χ on G, we write X G,χ = {ω ∈ X : gω =
χ(g)ω, g ∈ G} and call its elements (G, χ)-invariant. By tensorizing all representa-
tions with the one-dimensional representation C on which G acts by χ(g), a similar
upper bound holds for (G, χ) resp. (Stab(y j ), χ)-invariant subspaces. We will use the
character det : O(p, q) → R.

The second technical lemma concerns generalized functions on the real line.
Assume σ ∈ C∞(−ε, ε), σ(0) = 0 and σ ′(0) �= 0. Let gα , α ≥ 0 be a smooth
family of smooth injective maps from (−ε, ε) to itself, given by gα(x) = xbα(x)

where b0(x) = 1, bα(x) ≤ 1, bα(x) is smooth in both variables, and d
dα

∣∣
0 bα(0) �= 0.

Define ψα(x) = σ(gα(x))
σ (x)

for x �= 0, and ψα(0) = limx→0 ψα(x) = g′
α(0) = bα(0).

Proposition 3.2 Let W be the space of generalized functions f ∈ C−∞(−ε, ε) satis-
fying the equation g∗

α f = ψ−m
α · f for all |α| ≤ α0, for some α0 > 0 and m ∈ N.

Then the subspace of W of functions supported at x = 0 is at most one-dimensional.
Moreover, there is δ > 0 such that the space of restrictions of W to (−δ, δ) \ {0} is
also at most one-dimensional.

Proof Write σ(x) = xs(x) and w(x) = ∂
∂α

∣∣
0 bα(x). Assume w(x), s(x) �= 0 for

|x | ≤ ε1 ≤ ε. We have

ψα(x) = gα(x)

x

s(gα(x))

s(x)
= bα(x)

s(gα(x))

s(x)
⇒ ∂

∂α

∣∣∣∣
0
ψα(x) = w(x) + 1

s(x)
xs′(x)w(x).

Differentiating the functional equation at α = 0, we find

xw(x) f ′ = −m f w(x)

(
1+ x

s′(x)

s(x)

)
⇐⇒ xs(x) f ′ = −m(s(x) + xs′(x)) f .
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Write F(σ ) = f (x) in an interval |x | < ε2 ≤ ε1 where σ is invertible. Then
f ′(x) = F ′(σ )(s(x) + xs′(x)), and the equation becomes

σ F ′(σ ) = −m F(σ ),

which is the equation of a (−m)-homogeneous function in a neighborhood of the
origin, and the statement follows from [26, Chapter 1, §3]. ��
Proof of Proposition 1.1 A translation-invariant generalized curvature measure of
degree n is induced by a translation-invariant generalized n-form on V . Since trans-
lations act transitively on V , such forms are actually smooth and hence multiples of
the volume form. Hence Curv−∞,O(p,q)

n is spanned by the volume.
Let us assume in the following that 0 ≤ k ≤ n − 1. Consider first the case

min(p, q) = 0, i.e. the case of a Euclidean (or anti-Euclidean) vector space. The
action of the Euclidean motion group O(p, q) on the cosphere bundle is transi-
tive, which implies that all invariant generalized forms are smooth. However, from
the classification of the invariant smooth forms in [23,24] it follows immediately
that Curv−∞,O(p,q)

k
∼= Curv∞,O(p,q)

k
∼= Val∞,O(p,q)

k , and the latter space is one-
dimensional by Hadwiger’s theorem.

In the remaining case min(p, q) > 0 we proceed as in [12, Section 5.3].
Let P+(V ∗) := V ∗ \ {0}/R+ and let PV := V × P+(V ∗) be the cosphere bundle

over V . For ξ ∈ P+(V ∗) we denote by ξ Q the Q-orthogonal complement, which is a
hyperplane in V . Denote by Dk,l the vector bundle over P+(V ∗) whose fiber over ξ

is given by

Dk,l |ξ = ∧k
(V ∗) ⊗∧l

(ξ Q) ⊗ ξ l .

Then the space of translation-invariant forms is given by



k,l
−∞(PV )tr ∼= �−∞(P+(V ∗), Dk,l).

The space of vertical translation-invariant generalized forms is



k,l
v,−∞(PV )tr ∼= �−∞(P+(V ∗), Dk,l

v ),

where Dk,l
v is the vector bundle with fiber

Dk,l
v |ξ = ξ ⊗∧k−1

(V ∗/ξ) ⊗∧l
(ξ Q) ⊗ ξ l .

The space of horizontal translation-invariant generalized forms (i.e. the quotient of
all generalized translation-invariant forms by the vertical translation-invariant gener-
alized forms) is



k,l
h,−∞(PV )tr ∼= �−∞(P+(V ∗), Dk,l

h ),
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where Dk,l
h is the vector bundle with fiber

Dk,l
h |ξ = Dk,l/Dk,l

v = ∧k
(ξ Q∗) ⊗∧l

(ξ Q) ⊗ ξ l .

Let Dk,l
p |ξ ⊂ Dk,l

h |ξ be the subspace of primitive elements. By Proposition 2.6

Curv−∞
k

∼= 

k,n−k−1
p,−∞ (PV )tr ∼= �−∞(P+(V ∗), Dk,n−k−1

p ).

Let G := O(p, q). Since the orientation of the conormal cycle depends on the
choice of an orientation on V , we have

Curv−∞,G
k

∼= �−∞(P+(V ∗), Dk,n−k−1
p )G,det.

Recall from [12, Proposition 4.9] that the action of G on P+(V ∗) has two open
orbits M+ := {ξ : Q(ξ, ξ) > 0}, M− := {ξ : Q(ξ, ξ) < 0} and one closed orbit
M0 := {ξ : Q(ξ, ξ) = 0}, which is called light cone. By [12, Proposition 4.2] the
normal bundle is given by Nξ M0 = ξ∗ ⊗ ξ∗.

We claim that the space �−∞
M0 (P+(V ∗), Dk,n−k−1

p )G,det of (G, det)-invariant and
primitive generalized forms supported on the light cone is trivial if (n − k) is odd, and
at most one-dimensional if (n − k) is even.

To prove the claim, we fix ξ ∈ M0 and denote by H ⊂ G the stabilizer of ξ . By
Lemma 3.1 and [12, Lemma 5.7],

dim �−∞
M0 (P+(V ∗), Dk,n−k−1

p )G,det

≤
∞∑

ν=0

dim
(
Symν Nξ M0 ⊗ Dens∗(Nξ M0) ⊗ Dk,n−k−1

p |ξ
)H ,det

=
∞∑

ν=0

dim
(

Dk,n−k−1
p |ξ ⊗ ξ−2ν−2

)H ,det

≤
∞∑

ν=0

dim
(

Dk,n−k−1
h |ξ ⊗ ξ−2ν−2

)H ,det
. (4)

Set

U := Dk,n−k−1
h |ξ ⊗ ξ−2ν−2 ∼= ∧k

(ξ Q)∗ ⊗∧n−k−1
ξ Q ⊗ ξβ

with β = n − k − 2ν − 3.
Since we have an exact sequence

0 → ξ → ξ Q → ξ Q/ξ → 0,

we get an exact sequence

0 → (ξ Q/ξ)∗ → (ξ Q)∗ → ξ∗ → 0.
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Note that (ξ Q/ξ)∗ ∼= ξ Q/ξ , since the restriction of Q to ξ Q/ξ is non-degenerate.
The action of H on this space is that of O(p − 1, q − 1).

Hence

Uu := ∧k
(ξ Q/ξ) ⊗∧n−k−1

ξ Q ⊗ ξβ ⊂ U .

By [12, Lemma 2.1] we have

Wu := U/Uu ∼= ∧k−1
(ξ Q/ξ) ⊗∧n−k−1

ξ Q ⊗ ξβ−1.

As in [12] we define the spaces

Ak,l,β := ∧k
(ξ Q/ξ) ⊗∧l

(ξ Q/ξ) ⊗ ξβ.

By [12, Lemma 5.1] we have

dim AH ,det
k,l,β =

{
0 if k + l �= n − 2 or β �= 0,

1 if k + l = n − 2 and β = 0.

Note that the kernel of ∧k
ξ Q → ∧k

(ξ Q/ξ) is canonically isomorphic to∧k−1
(ξ Q/ξ) ⊗ ξ . Define the subspaces

Uuu := ∧k
(ξ Q/ξ) ⊗∧n−k−2

(ξ Q/ξ) ⊗ ξβ+1 ∼= Ak,n−k−2,β+1 ⊂ Uu,

Uwu := ∧k−1
(ξ Q/ξ) ⊗∧n−k−2

(ξ Q/ξ) ⊗ ξβ ∼= Ak−1,n−k−2,β ⊂ Wu,

and the quotients

Wuu := Uu/Uuu ∼= ∧k
(ξ Q/ξ) ⊗∧n−k−1

(ξ Q/ξ) ⊗ ξβ ∼= Ak,n−k−1,β ,

Wwu := Wu/Uwu ∼= ∧k−1
(ξ Q/ξ) ⊗∧n−k−1

(ξ Q/ξ) ⊗ ξβ−1 ∼= Ak−1,n−k−1,β−1.

If A is an H -representation and B a subrepresentation, then dim AH ,det ≤
dim B H ,det + dim(A/B)H ,det. We thus obtain that

dim W H ,det
u ≤ dimU H ,det

wu + dim W H ,det
wu

= dim AH ,det
k−1,n−k−2,β + dim AH ,det

k−1,n−k−1,β−1

=
{
0 β �= 1

1 β = 1.

Hence Wu can only contain an (H , det)-invariant if β = 1. Let us show by a direct
argument as in [12, Prop. 5.10] that also in the case β = 1, there is no such invariant.
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Let ρ ∈ W H ,det
u . Let Y ⊂ ξ Q be a complement of ξ and HY ⊂ H := Stab(ξ) be

the stabilizer of Y . The decomposition

Wu,β=1 = (∧k−1
(ξ Q/ξ) ⊗∧n−k−1Y ) ⊕ (∧k−1

(ξ Q/ξ) ⊗∧n−k−2Y ⊗ ξ)

is compatible with the action of HY . The projection of ρ to the second summand
is HY -invariant. Since there are elements in HY acting by the identity on Y (and
hence on ξ Q/ξ ) and by rescaling ξ , the second summand can not contain non-zero
(HY , det)-invariant elements. Hence ρ must belong to the first summand. Since Y was
an arbitrary complement of ξ , our invariant must belong to the intersection

⋂

Y

∧k−1
(ξ Q/ξ) ⊗∧n−k−1Y .

Fix some Y that gives a minimal-length representation

ρ =
m∑

i=1

ηi ⊗ yi , ηi ∈ ∧k−1
(ξ Q/ξ), yi ∈ ∧n−k−1Y .

By the minimality of the representation, the ηi are linearly independent.
The subgroup of H acting by Id on ξ Q/ξ is transitive on all hyperplanes Y com-

plementing ξ . Acting by such an element g on ρ, we get the equality

∑
ηi ⊗ (yi − y′i ) = 0, where y′i = g(yi ) ∈ ∧n−k−1Y ′.

It follows that yi = y′i for all i , hence yi ∈ ⋂
Y ∧n−k−1Y . It is elementary to prove

that this intersection is trivial, and hence yi = 0 for all i and therefore ρ = 0.
On the other hand, we have

dimU H ,det
u ≤ dimU H ,det

uu + dim W H ,det
uu

= dim AH ,det
k,n−k−2,β+1 + dim AH ,det

k,n−k−1,β

=
{
0 β �= −1

1 β = −1,

and therefore

dimU H ,det ≤ dimU H ,det
u + dim W H ,det

u

{
= 0 β �= −1

≤ 1 β = −1.

We distinguish two cases. If (n − k) is odd, then β = n − k − 2ν − 3 �= −1 for
all ν. By (4), the space of (G, det)-invariant generalized primitive forms of degree
(k, n − k − 1) supported on the light cone is trivial. Let φ ∈ 


k,n−k−1
p,−∞ (PV )tr be

(G, det)-invariant. The restriction of φ to each open orbit of PV must be a multiple
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of the form φ±
k,r constructed in [13, Section 5.1]. Hence there are constants c± such

that φ = c+φ+
k,r on S+V and φ = c−φ−

k,r on S−V . In [13, Definition 5.14] we have

constructed global generalized forms φ0
k,r , φ

1
k,r such that φ0

k,r = φ+
k,r on S+M and

φ0
k,r = 0 on S−M ; and φ1

k,r = 0 on S+M , φ1
k,r = (−1)

n−k−1
2 φ−

k,r on S−M .

It follows that the global form φ − c+φ0
k,r − c−(−1)

n−k−1
2 φ1

k,r is supported on the
light cone. Since this form is (G, det)-invariant, it vanishes.

Let (n−k) be even. Letφ ∈ 

k,n−k−1
p,−∞ (PV )tr be (G, det)-invariant. In the following,

we identify V = V ∗ using the quadratic form Q. By the above, we obtain that φ =
c+φ+

k,r on S+V and φ = c−φ−
k,r on S−V for some constants c±. We will show that

c+ = c−.
Fix a compatible Euclidean structure P on V (see [12, Definition 2.7]). From [13,

Equation (60)], we have

φ+
k,r = σ

− n−k
2+ ρk,r , φ−

k,r = −σ
− n−k

2− ρk,r ,

where ρk,r is a globally defined smooth form, and σ+, σ− are the positive and negative
parts of σ = σ+ − σ− = Q

P .
Write V = R

p,q = R
1,1 ⊕ R

p−1,q−1 and L := P+(R1,1) ⊂ P+(V ), ξ0, ξ
′
0 ∈ L

the degenerate lines. Take gα ∈ SO+(Q) fixing R
p−1,q−1 and acting by an α-boost

on R
1,1, with gα|ξ0 = eα , gα|ξ ′0 = e−α . Thus {gα : α ∈ R} � SO+(1, 1). Let

ψα(ξ) := g∗ασ

σ

∣∣∣
ξ
.

We will use the standard Euclidean structure on R
1,1 and introduce the polar angle

θ for which θ(ξ0) = π
4 . Consider the interval L ′ with 0 ≤ θ ≤ π

2 . Then σ = cos 2θ
is a coordinate in the interior of L ′. With respect to this coordinate, we have gα(σ ) =
σbα(σ ) with

bα(σ ) = 1

cosh 2α + sinh(2α)
√
1− σ 2

.

Since φk,r = σ− n−k
2 ρk,r is SO(p, q)-invariant, we find that

g∗
αρk,r = ψ

n−k
2

α ρk,r . (5)

By O(p, q)-invariance it follows that the wave front set of φ is disjoint from N∗L .
Letting jL : L ↪→ P+(V ) be the inclusion and denoting D = j∗L Dk,n−1−k , we may
therefore define φL = j∗Lφ ∈ �−∞(L, D).

By definition, Dk,n−k−1 = ∧k V ⊗ ∧n−k−1
ξ Q ⊗ ξn−k−1. Under the action of

SO+(1, 1), we can decompose into equivariant summands

V = R
p−1,q−1 ⊕ ξ0 ⊕ ξ ′0

ξ Q = R
p−1,q−1 ⊕ ξ̃ ,
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where ξ̃ ⊂ R
1,1. The first summand can be further written as a sum of lines on which

SO+(1, 1) acts trivially.
It follows that D can be SO+(1, 1)-equivariantly decomposed into the sum of line

bundles, D = ⊕N
i=1D j . Let π j : D → D j be the projection. Since ρk,r is a smooth

and non-vanishing form, there exists j0 such that π j0(ρk,r ) is a smooth non-vanishing
section of D j0 over a neighborhood of ξ0, denoted L̃0. It follows that

π j0(φL) = f π j0(ρk,r )

for some f ∈ C−∞(L̃0). By (5) and the invariance of φL we obtain that

g∗
α f = ψα(ξ)−

n−k
2 f ,

and applying Proposition 3.2 shows that outside of ξ0, f must coincide with a multiple

of σ− n−k
2 , that is c+ = c−.

On the other hand, since (n−k) is even, β = −1 if and only if ν = n−k
2 −1. By (4)

it follows that the space of (G, det)-invariant generalized primitive forms of degree
(k, n − k − 1) supported on the light cone is at most 1-dimensional.

In both cases we find dim Curv−∞,O(p,q)
k = dim


k,n−k−1
p,−∞ (PV )tr ,G,det ≤ 2. ��

Proof of TheoremA Consider a Weyl functor � : �Met → GCrv. Fix p, q > 0.
From Proposition 1.1 we obtain that

�R
p,q =

p+q∑

k=0

ak�
R

p,q

k + bk�̄
R

p,q

k

for some constants ak, bk . Since the�k, �̄k are linearly independent and satisfy aWeyl
principle, the ak, bk are unique and independent of the choice of R

p,q provided that

k < p + q. Then �R
p′,q′ = ∑∞

k=0 ak�
R

p′,q′
k + bk�̄

R
p′,q′

k on each pseudo-Euclidean

space R
p′,q ′

. By functoriality and the pseudo-Riemannian Nash embedding theorem
[18], we then have on each pseudo-Riemann manifold M

�M =
∞∑

k=0

ak�
M
k + bk�̄

M
k .

��

4 A Künneth-Type Formula for Lipschitz–Killing Curvature Measures

4.1 Disintegration of Curvature Measures

We start with a general proposition.
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Proposition 4.1 Let X1, X2 be smooth manifolds and X := X1 × X2. Let � ∈
C∞(X), φ2 ∈ V∞

c (X2), f2 ∈ C∞
c (X2). Then there exists a unique smooth curva-

ture measure �̃ ∈ C∞(X1) such that

�̃(φ1, f1) = �(φ1 � φ2, f1 � f2), φ1 ∈ V∞
c (X1), f1 ∈ C∞(X1). (6)

Proof Uniqueness is clear. To prove existence, we use the notations and maps from
[5, Section 4.1]. The relevant diagram is

PX1 PX1 × PX2

q1 q2
PX2

P̂X

�

F

PX1 × X2

p1

i1
PX

πX

X1 × PX2

i2

p2

PX1

πX1

PX2

πX2

X1 X = X1 × X2
p̃1 p̃2

X2

Let φi ∈ V∞
c (Xi ), i = 1, 2 be represented by forms φi ∈ 
ni (Xi ), ωi ∈


ni−1(PXi ). According to [3,5], the exterior product φ1 � φ2 ∈ V−∞(X1 × X2)

is represented by generalized forms φ ∈ 

n1+n2−∞ (X1 × X2), ω ∈ 


n1+n2−1
−∞ (PX ) such

that

(πX )∗ω = p̃∗1(πX1)∗ω1 · p̃∗2(πX2)∗ω2

a∗(Dω + π∗
Xφ) = F∗�∗ [

q∗
1a∗(Dω1 + π∗

X1
φ1) ∧ q∗

2a∗(Dω2 + π∗
X2

φ2)
]

+ ( p̃1 ◦ πX )∗(πX1)∗ω1 ∧ i2∗ p∗2a∗(Dω2 + π∗
X2

φ2)

+ i1∗ p∗1a∗(Dω1 + π∗
X1

φ1) ∧ ( p̃2 ◦ πX )∗(πX2)∗ω2. (7)

The second equation implies that

Dω + π∗
Xφ = F∗�∗ [

q∗
1 (Dω1 + π∗

X1
φ1) ∧ q∗

2 (Dω2 + π∗
X2

φ2)
]

+ (−1)n1( p̃1 ◦ πX )∗(πX1)∗ω1 ∧ i2∗ p∗2(Dω2 + π∗
X2

φ2)

+ (−1)n2 i1∗ p∗1(Dω1 + π∗
X1

φ1) ∧ ( p̃2 ◦ πX )∗(πX2)∗ω2. (8)

The signs come from the fact that the degree of the antipodal map is given by (−1)n1

on PX1 × X2; by (−1)n2 on X1 × PX2 ; and (−1)n1+n2 on PX and on P̂X .

123



Uniqueness of Curvature Measures... 11837

Let � ∈ C∞(X1 × X2) be a smooth curvature measure, given by forms ρ ∈

n1+n2(X1 × X2), η ∈ 
n1+n2−1(PX ). Then

�(φ1 � φ2, f1 � f2) =
∫

X
p̃∗1 f1 · p̃∗2 f2 · (πX )∗ω ∧ ρ

+
∫

PX

π∗
X p̃∗1 f1 · π∗

X p̃∗2 f2 · (Dω + π∗
Xφ) ∧ η.

Using (7), we see that the first summand is given by

∫

X
p̃∗1( f1 · (πX1)∗ω1) · p̃∗2( f2 · (πX2)∗ω2) ∧ ρ

=
∫

X1

f1 · (πX1)∗ω1 ∧ ( p̃1)∗
[

p̃∗2( f2 · (πX2)∗ω2) ∧ ρ
]
.

According to (8), the second summand splits as the sum T1 + T2 + T3 where

T1 =
∫

PX

F∗�∗ [
q∗
1 (Dω1 + π∗

X1
φ1) ∧ q∗

2 (Dω2 + π∗
X2

φ2)
] ∧ π∗

X p̃∗1 f1 · π∗
X p̃∗2 f2 ∧ η

=
∫

PX1×PX2

q∗
1 (Dω1 + π∗

X1
φ1) ∧ q∗

2 (Dω2 + π∗
X2

φ2) ∧ q∗
1π∗

X1
f1 ∧ q∗

2π∗
X2

f2 ∧ �∗F∗η

=
∫

PX1

π∗
X1

f1 · (Dω1 + π∗
X1

φ1) ∧ (q1)∗
[
q∗
2 (Dω2 + π∗

X2
φ2) ∧ q∗

2π∗
X2

f2 ∧ �∗F∗η
]
,

T2 = (−1)n1

∫

PX

π∗
X p̃∗1 f1 · π∗

X p̃∗2 f2 · ( p̃1 ◦ πX )∗(πX1 )∗ω1 ∧ i2∗ p∗2(Dω2 + π∗
X2

φ2) ∧ η

= (−1)n1

∫

X1

f1 · (πX1 )∗ω1 ∧ ( p̃1 ◦ πX )∗
[
π∗

X p̃∗2 f2 · i2∗ p∗2(Dω2 + π∗
X2

φ2) ∧ η
]
,

T3 = (−1)n2

∫

PX

π∗
X p̃∗1 f1 · π∗

X p̃∗2 f2 · i1∗ p∗1(Dω1 + π∗
X1

φ1) ∧ ( p̃2 ◦ πX )∗(πX2 )∗ω2 ∧ η

= (−1)n2

∫

PX1×X2

i∗1
[
π∗

X p̃∗1 f1 · π∗
X p̃∗2 f2 · ( p̃2 ◦ πX )∗(πX2 )∗ω2 ∧ η

]

∧ p∗1(Dω1 + π∗
X1

φ1)

= (−1)n2+n1n2

∫

PX1×X2

p∗1(Dω1 + π∗
X1

φ1) ∧ i∗1
[
π∗

X p̃∗1 f1 · π∗
X p̃∗2 f2 · ( p̃2 ◦ πX )∗

(πX2 )∗ω2 ∧ η
]

= (−1)n2+n1n2

∫

PX1

π∗
X1

f1 · (Dω1 + π∗
X1

φ1) ∧ (p1)∗i∗1
[
π∗

X p̃∗2 f2 · ( p̃2 ◦ πX )∗

(πX2 )∗ω2 ∧ η
]
.

We set

φ̃ := ( p̃1)∗
[

p̃∗2 f2 · p̃∗2(πX2)∗ω2 ∧ ρ
]

+ (−1)n1( p̃1 ◦ πX )∗
[
π∗

X p̃∗2 f2 · i2∗ p∗2(Dω2 + π∗
X2

φ2) ∧ η
] ∈ 
n1(X1) (9)

123



11838 A. Bernig et al.

ω̃ := (q1)∗
[
q∗
2 (Dω2 + π∗

X2
φ2) ∧ q∗

2π∗
X2

f2 ∧ �∗F∗η
]

+ (−1)n1+n1n2(p1)∗i∗1
[
π∗

X p̃∗2 f2 · ( p̃2 ◦ πX )∗(πX2)∗ω2 ∧ η
] ∈ 
n1−1(PX1).

(10)

Since p1, p̃1, q1 are submersions, it follows that ω̃ and the first summand of φ̃ are
smooth. For the second summand, this is not immediate because of the push-forward
under the map i2 which is not a submersion. But the restriction of p̃1 ◦πX to the image
of i2 is obviously a submersion, hence this term is smooth as well.

We thus see that the curvature measure �̃ := [φ̃, ω̃] ∈ C∞(X1) satisfies (6). ��
We need a version of the previous proposition for generalized curvature measures.

In this case, the left hand side of (6) is well-defined only if � satisfies an additional
condition of transversality, compare also [4, Section 4].

Recall from [5] the set M = M1 ∪M2 ⊂ PX with

M1 := imi1 = {(x1, x2, [ξ1 : 0]), x1 ∈ X1, x2 ∈ X2, ξ1 ∈ T ∗
x1 X1 \ 0},

M2 := imi2 = {(x1, x2, [0 : ξ2]), x1 ∈ X1, x2 ∈ X2, ξ2 ∈ T ∗
x2 X2 \ 0}.

Definition 4.2 Let X1, X2 be smoothmanifolds. Then a generalized curvaturemeasure
� ∈ C−∞(X1 × X2) is called transversal, if it belongs to

⋃

�

C−∞
T ∗X\0,�(X1 × X2),

where � runs over all closed conical subsets in T ∗
PX \ 0 that are disjoint from the

conormal bundle T ∗
MPX = {(x, [ξ ]) ∈ PX : x ∈ M, ξ |Tx M = 0}.

By [5, Proposition 4.1], a transversal curvature measure can be applied to a pair
(φ1 � φ2, f1 � f2) with φi ∈ V∞

c (Xi ), fi ∈ C∞
c (Xi ).

Proposition 4.3 Let X1, X2 be smooth manifolds. Let � ∈ C−∞(X1×X2) be transver-
sal and φ2 ∈ V∞

c (X2), f2 ∈ C∞
c (X2). Then there exists a unique generalized

curvature measure �̃ ∈ C−∞(X1) such that

�̃(φ1, f1) = �(φ1 � φ2, f1 � f2), φ1 ∈ V∞
c (X1), f1 ∈ C∞

c (X1). (11)

Proof Let � ∈ C−∞
T ∗X\0,�(X1 × X2), where � is disjoint from T ∗

MPX . Let � be

represented by generalized forms ρ ∈ 

n1+n2−∞ (X1 × X2), η ∈ 


n1+n2−1
� (PX ).

As in the previous proof, we are going to define the forms φ̃ ∈ 

n1−∞(X), ω̃ ∈



n1−1
−∞ (PX ) by (9) and (10).
We have to check that this is possible. For φ̃ we note that the wave front set of

i2∗ p∗2(Dω2 + π∗
X2

φ2) is contained in T ∗
M2

PX ⊂ T ∗
MPX , hence the wedge product

with η is defined, and then φ̃ is well-defined.
The first term in the definition of ω̃ is well-defined since F is a submersion. The

second term is well-defined since i1 is transversal to �.
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From the same arguments as in the previous proof, we see that the generalized
curvature measure �̃ := [φ̃, ω̃] satisfies (11). ��

4.2 Proof of the Künneth-Type Formula

Proposition 4.4 Let (Mi , Qi ) be pseudo-Riemannian manifolds and ψi ∈ V−∞(Mi )

for i = 1, 2 be LC-transversal. Then ψ1 � ψ2 ∈ V−∞(M1 × M2) is LC-transversal.
More precisely, if WF(ψi ) ⊂ (�i , �i ) and �i ∩ N∗(LC∗

Mi
) = ∅ for i = 1, 2, then

there exists (�, �) with � ∩ N∗(LC∗
M1×M2

) = ∅ and such that

� : V−∞
�1,�1

(M1) × V−∞
�2,�2

(M2) → V−∞
�,� (M1 × M2) (12)

is continuous.

Proof We prove the statement in the case of LC-transversal submanifolds X1, X2.
Let Q1, Q2 be the metrics on M1, M2 and Q := Q1 ⊕ Q2. Since they are non-

degenerate, the manifolds

LC∗
Mi

= {(x, [ξ ]) ∈ PMi : Qi (ξ) = 0}, i = 1, 2,

LC∗
M1×M2

= {(x1, x2, [ξ1 : ξ2]) ∈ PM1×M2 : Q1(ξ1) + Q2(ξ2) = 0}

are of codimension 1.
The conormal bundle of X1 × X2 is given by

N∗(X1 × X2) = {(x1, x2, [ξ1 : ξ2]) ∈ PM1×M2 : ξi = 0 or (xi , [ξi ]) ∈ N∗Xi ,∀i = 1, 2}.

We claim that X1 × X2 is LC-transversal, i.e. that N∗(X1 × X2) intersects
LC∗

M1×M2
transversally. Let (x1, x2, [ξ1 : ξ2]) ∈ N∗(X1 × X2) ∩ LC∗

M1×M2
. Since

LC∗
M1×M2

is a hypersurface, we must show that there exists some tangent vector
w ∈ T(x1,x2,[ξ1:ξ2])N∗(X1 × X2) which is not in T(x1,x2,[ξ1:ξ2]) LC∗

M1×M2
.

We consider two cases. If Q1(ξ1) �= 0, then ξ1 �= 0 and the curve c(t) :=
(x1, x2, [tξ1 : ξ2]) stays inside N∗(X1× X2). But the vector w := c′(1) is not tangent
to LC∗

M1×M2
.

If Q1(ξ1) = 0, then also Q2(ξ2) = 0. Suppose that ξ1 �= 0. Since X1 is LC-regular,
there exists some tangent vectorw1 ∈ T(x1,[ξ1])N∗X1 withw1 /∈ T(x1,[ξ1]) LC∗

M1
. Then

the image w of w1 under the natural embedding

T(x,[ξ1])N∗X1 → T(x1,x2,[ξ1:ξ2])N∗(X1 × X2)

is not tangent to LC∗
M1×M2

. Finally, if ξ1 = 0 then ξ2 �= 0 and we may argue as before,
using that X2 is LC-regular.

We omit the proof of the general case of the statement. In this case, a careful analysis
of the wave front set of the exterior product ψ1 � ψ2 is needed. By [5, Proposition
4.1] it consists of the union of three sets, and each of these sets can be shown to be
disjoint from the wave front set of LC∗

M1×M2
by arguments which are similar to the

given ones. ��
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Proof of Theorem B By [13, Proposition 7.1], we have

�
M1×M2
k ∈ C−∞

∅,N∗(LC∗
M1×M2

)
(M1 × M2).

We claim that

N∗(LC∗
M1×M2

) ∩ T ∗
MPM1×M2 = ∅,

which implies that �M1×M2
k is transversal in the sense of Definition 4.2. To prove the

claim, take an element in LC∗
M1×M2

∩M. Without loss of generality, suppose that it
belongs toM1, i.e. it is of the form (x1, x2, [ξ1 : 0]) with x1 ∈ M1, x2 ∈ M2 and ξ1 a
null-covector of M1. The claim now follows from the fact that 0 is a regular value of
Q1 ∈ C∞(T M1 \ 0).

Fix φ2 ∈ V∞
c (M2), f2 ∈ C∞

c (M2). By Proposition 4.3,

(φ1, f1)  → �
M1×M2
k (φ1 � φ2, f1 � f2)

is a generalized curvature measure on M1, which will be denoted by �
M1×M2
k (• �

φ2, • � f2).
If i : M1 → M̃1 is an isometric embedding, then i × id : M1 × M2 → M̃1 × M2

is also an isometric embedding. By Weyl’s principle [13, Theorem D] we have

(i × id)∗�M̃1×M2
k (• � φ2, • � f2) = �

M1×M2
k (• � φ2, • � f2).

Hence M1  → �
M1×M2
k (• � φ2, • � f2) is a Weyl functor. By Theorem A, there

are constants aM2,k
k1

(φ2, f2) and bM2,k
k1

(φ2, f2), k = 0, 1, . . . which do not depend on
M1 such that

�
M1×M2
k (• � φ2, • � f2〉 =

∞∑

k1=0

aM2,k
k1

(φ2, f2)�
M1
k1

+ bM2,k
k1

(φ2, f2)�
M1
k1 (13)

for all M1.
Take n1 ≥ 2 and a pseudo-Riemannian manifold M1 of dimension n1 and signature

(p1, q1) with p1, q1 ≥ 1. By [13, Corollary 7.8], the generalized curvature measures
�

M1
k1

, �̄
M1
k1

, 0 ≤ k1 < n1 and �
M1
n1 are linearly independent. By [13, Proposition

7.7] we have �̄
M1
n1 = (−1)q1�

M1
n1 . We thus find φi

1 ∈ Vc(M1), f i
1 ∈ C∞

c (M1), i =
1, . . . , 2n1 + 1 such that the system of linear equations
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�
M1×M2
k (φi

1 � •, f i
1 � •〉 =

n1−1∑

k1=0

aM2,k
k1

�
M1
k1

(φi
1, f i

1 ) + bM2,k
k1

�
M1
k1 (φi

1, f i
1 )

+ (aM2,k
n1 + (−1)q1bM2,k

n1 )�M1
n1 (φi

1, f i
1 ),

i = 1, . . . , 2n1 + 1

has a non degenerate coefficient matrix. Since the left hand side is a Weyl functor for
each i , it follows that aM2,k

k1
, bM2,k

k1
, 0 ≤ k1 < n1 and aM2,k

n1 + (−1)q1bM2,k
n1 are Weyl

functors. Taking n1 arbitrarily large, we see that aM2,k
k1

, bM2,k
k1

are Weyl functors for
all k1 ≥ 0.

We thus may write

aM2,k
k1

=
∞∑

k2=0

ak
k1,k2�

M2
k2

+ âk
k1,k2�̄

M2
k2

,

bM2,k
k1

=
∞∑

k2=0

bk
k1,k2�

M2
k2

+ b̂k
k1,k2�̄

M2
k2

,

with scalars ak
k1,k2

, âk
k1,k2

, bk
k1,k2

, b̂k
k1,k2

which do not depend on M1 and M2. Then

�
M1×M2
k (φ1 � φ2, • � •)

=
∑

k1,k2

ak
k1,k2�

M1
k1

(φ1, •) � �
M2
k2

(φ2, •) + âk
k1,k2�

M1
k1

(φ1, •) � �̄
M2
k2

(φ2, •)

+ bk
k1,k2�̄

M1
k1

(φ1, •) � �
M2
k2

(φ2, •) + b̂k
k1,k2�̄

M1
k1

(φ1, •) � �̄
M2
k2

(φ2, •).

Using the scaling property of the Lipschitz–Killing curvature measures [13, Propo-
sition 7.10] we find that ak

k1,k2
= âk

k1,k2
= bk

k1,k2
= b̂k

k1,k2
= 0 unless k1 + k2 = k.

It remains to determine ak1+k2
k1,k2

, âk1+k2
k1,k2

, bk1+k2
k1,k2

, b̂k1+k2
k1,k2

. Take pseudo-Riemannian
manifolds M1, M2 of dimensions k1 and k2 respectively. Then, whatever the signatures
are, we have volM1×M2 = volM1 � volM2 . Taking riemannian and lorentzian signature
metrics on M1 and M2 and using [13, Proposition 7.7.], we obtain a system of four
linear equations with the unique solution ak1+k2

k1,k2
= 1, âk1+k2

k1,k2
= bk1+k2

k1,k2
= b̂k1+k2

k1,k2
= 0.

We thus have

�
M1×M2
k (φ1 � φ2, • × •) =

∑

k1+k2=k

�
M1
k1

(φ1, •) � �
M2
k2

(φ2, •) (14)

for all φ1 ∈ V∞
c (M1), φ2 ∈ V∞

c (M2).
Finally, let Ai ∈ P(Mi ), i = 1, 2 be LC-transversal. By Lemma 2.9, χAi are LC-

transversal generalized valuations. Then by Proposition 4.4 it follows that χA1×A2 =
χA1 � χA2 is LC-transversal. Set (�i , �i ) := WF(χAi ). By assumption, we have

�i ∩ N∗(LC∗
Mi

) = ∅, i = 1, 2.
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By Proposition 4.4 there exist some (�, �) with

� ∩ N∗(LC∗
M1×M2

) = ∅,

such that the exterior product � : V−∞
�1,�1

(M1) × V−∞
�2,�2

(M2) → V−∞
�,� (M1 × M2) is

continuous.
Take a sequence φm

i ∈ V∞
c (Mi ) which converges to χAi in V−∞

�i ,�i
(Mi ). The

sequence φm
1 � φm

2 then converges in V−∞
�,� (M1 × M2) to χA1 � χA2 .

By [13, Proposition 7.1]wemay take the limit inEq. (14)which yields the statement.
��

5 Generalized Valuations and Curvature Measures on Isotropic Space
Forms

The aim of this section is to prove TheoremC. The following special case of valuations
on pseudo-Euclidean spaces R

p,q was considered in [7] for min(p, q) = 1 and in [12]
in general.

Theorem 5.1 The space of translation and O(p, q)-invariant generalized valuations
on R

p,q coincides with LK(Rp,q).

The corresponding statement for curvature measures is Proposition 1.1. To extend
this statement to isotropic space forms, we will need the following technical lemma.

Lemma 5.2 Let M be a smooth manifold, G a Lie group acting smoothly and transi-
tively on M, and E a G-equivariant Frechét bundle over M. Then the G-invariants of
the dual space �∞

c (M, E)∗ coincide with �(M, E∗ ⊗ |ωM |)G.

Proof Take s ∈ (
�∞

c (M, E)∗
)G . For φ ∈ �∞

c (M, E) one can define s ·φ ∈ M−∞(M)

by setting
∫

f · d(s · φ) := s( f φ) for all f ∈ C∞
c (M). We apply the theorem

of Dixmier-Malliavin [19] (see also [16] for an exposition) to the action of G on
�∞

c (M, E). To do this, one has to combine in a straightforward manner the proofs of
the two standard versions of the theorem, for compactly supported smooth functions
onG, and for smooth vectors in a representation ofG on a Frechét space. Alternatively,
one can invoke a generalization ofDixmier-Malliavin’s theorem to bornological vector
spaces by Dor [20].

It follows that φ can be represented as φ = ∑N
j=1

∫
G w j (g)g∗φ j dg with w j ∈

C∞
c (G), φ j ∈ �∞

c (M, E). Then by G-invariance of s,

s · φ =
N∑

j=1

∫

G
w j (g)s · g∗φ j dg =

N∑

j=1

∫

G
w j (g)g∗(s · φ j )dg.

It follows that s · φ is a smooth measure on M . In particular, it defines a density on
every tangent plane, (s ·φ)|x ∈ Dens(Tx M). We next claim that (s ·φ)|x only depends
on s and φ(x) ∈ E |x . Indeed, assume φ(x) = 0, and choose a coordinate chart U
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near x with coordinates y j such that y j (x) = 0 for all j . Choose a bump function
ρ ∈ C∞(M) supported inside U and identically equal to 1 in a neighborhood U ′ ⊂ U
of x , and write φ = φ1 + (1− ρ)φ, where φ1 = ρ · φ is supported in U . It holds that
(s · (1− ρ)φ)|U ′ = 0.

Now use the action of G to identify φ1|U with φ̃ ∈ C∞
c (U , E |x ). Write

φ̃(y) =
∫ 1

0

d

dt
φ̃(t y)dt =

dim M∑

j=1

y j

∫ 1

0

∂

∂ y j
φ̃(t y)dt .

Hence we have φ1|U = ∑
j y jψ j with ψ j ∈ �∞

c (U , E). Thus

(s · φ)|U ′ = (s · φ1)|U ′ =
∑

j

y j · (s · ψ j )|U ′,

and so (s ·φ)|x = 0. It follows that s defines elements sx ∈ (E |x )∗ ⊗Dens(Tx M), that
is, we get a section s̃ ∈ �(M, E∗ ⊗ |ωM |), which by construction is G-invariant and
in particular continuous. It remains to verify that s̃ induces the same functional s on
�∞

c (M, E), which again is immediate from construction: 〈s̃, φ〉 = ∫
M (s · φ) = s(φ).

��
Consider the cosphere bundle π : PM → M . The space 
n−1(PM ) of differential

forms has a natural filtration


n−1(PM ) = 
n−1
0 (PM ) ⊃ 
n−1

1 (PM ) ⊃ · · · ⊃ 
n−1
n−1(PM ) ⊃ 
n−1

n (PM ) = {0},

where 
n−1
k (PM ) = 〈π∗
k(M)〉n−1. Here 〈A〉n−1 denotes the subspace of forms of

degree (n − 1) in the ideal generated by A. This induces a filtration

C∞(M) = C∞0 (M) ⊃ C∞1 (M) ⊃ · · · ⊃ C∞n (M) ⊃ C∞n+1(M) = {0}, (15)

where C∞k (M) denotes the space of curvature measures � of the form � = [ω, φ]
with ω ∈ 
n−1

k (PM ) for 0 ≤ k ≤ n − 1, and � = [0, φ] with φ ∈ 
n(M) for k = n.
Denote by Curv∞k (T M) the bundle over M whose fiber at a point x consists of the

space Curv∞k (Tx M). In [35], a map (there denoted by �′
k)

σk : C∞k (M) → �∞(Curv∞k (T M))

is constructed as follows.
Fix x ∈ M and take φ a local diffeomorphism φ : Tx M → M with φ(0) =

x, dφ|0 = id. Then for � ∈ C∞k (M)

σk�(x) := lim
t→0

1

tk
(φ ◦ ht )

∗�,

where ht : Tx M → Tx M is multiplication by t .
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In terms of forms, this map can be described as follows. If k = n, then � is a
smooth measure on M , and evaluation at a point x ∈ M gives us a Lebesgue measure
on Tx M , hence an element of Curv∞n (Tx M).

If k < n, we may represent � = [φ,ω] with ω ∈ 
n−1
k (PM ). Fix a point (x, ξ) ∈

PM . We use dπ∗ to identify

T ∗
x M � dπ∗T ∗

x M = Tξ (π
−1(x))⊥.

Consider the projection

〈∧k T ∗
x M

〉

n−1
→

〈∧k T ∗
x M

〉

n−1
/
〈∧k+1T ∗

x M
〉

n−1

= ∧k T ∗
x M ⊗∧n−1−k

(T ∗
x,ξPM/T ∗

x M),

Noting that

T ∗
x,ξPM/T ∗

x M � T ∗
ξ (π−1(x)),

this gives rise to a map

σ̃k : 
n−1
k (PM ) → �(PM ,∧k T ∗

x M ⊗∧n−1−k T ∗
ξ π−1(x)).

The fiber π−1(x) can be identified with the fiber of the cosphere bundle of Tx M ,
and so

∧k T ∗
x M ⊗∧n−1−k T ∗

ξ π−1(x) = ∧k,n−1−k T ∗
x,ξ (PTx M ).

Let i : π−1(x) ↪→ PM be the inclusion. For ω ∈ 
n−1
k (PM ) we consider the

restriction i∗(σ̃kω) (as a section of the pull-back bundle) and extend it to a translation-
invariant form of PTx M . We thus get a map

σ̄k : 
n−1
k (PM ) → �(M,
k,n−1−k(PTx M )tr),

which fulfills

σk�(x) = σk[φ,ω](x) = [0, σ̄kω(x)].

Indeed, for ω = π∗β ∧ η with β ∈ 
k(M), η ∈ 
n−k−1(PM ) we have

σ̃kω(x, ξ) = βx ⊗ r∗(ηξ ),

where r : Tξπ
−1(x) → TξPM is the inclusion. On the other hand, if h̄t , φ̄ are the maps

on the cosphere bundles induced by ht , φ, then for each v ∈ Tx M
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lim
t→0

t−k(h̄∗
t φ̄

∗ω)v,ξ = lim
t→0

t−k(h∗
t φ

∗β)v ∧ (h̄∗
t φ̄

∗η)v,ξ = βx ∧ r∗(ηξ ).

Therefore, limt→0 t−k(h̄∗
t φ̄

∗ω) is translation-invariant and equals σ̄kω(x) as claimed.
The kernel of σk is C∞k+1(M), while σk is evidently onto, hence we have an isomor-

phism

σk : C∞k (M)/C∞k+1(M)
�−→ �∞(Curv∞k (T M)).

We now generalize these concepts to generalized curvature measures under an
additional assumption.

Definition 5.3 Let M be a smooth manifold and � ∈ C−∞(M). We define the space
of horizontally smooth curvature measures by

Chs(M) :=
⋃

�

C−∞
∅,�

(M),

where � runs over all closed conical subsets in T ∗
PM \ 0 that are disjoint from

dπ∗(T ∗M) \ 0. The topology is the inductive limit topology, in particular a sequence
� j ∈ Chs(M) converges to some � ∈ Chs(M) if there is some fixed � such that
� j ∈ C−∞

∅,�
(M) for all j and � j → � in C−∞

∅,�
(M).

Note that
n−1
k (PM ) equals the space of smooth sections of somefinite-dimensional

vector bundle over PM . We let 
n−1,−∞
k (PM ) be the corresponding space of general-

ized sections of the same vector bundle and define C−∞
k (M) as above. Then we have

a filtration analogous to (15).

Proposition 5.4 Let M be a smooth manifold and x ∈ M. Then the map

σk : C∞k (M) → �∞(Curv∞k (T M))

can be extended by continuity to a map

σk : Chs
k (M) → �(Curv−∞

k (T M)),

whose kernel is Chs
k+1(M).

Proof Fix x ∈ M . A generalized form ω ∈ 

n−1,−∞
k (PM ) can be restricted, as

a section of the vector bundle with fiber ∧n−1T ∗
x,ξPM , to the fiber π−1(x) under

the assumption that WF(ω) and N∗π−1(x) are disjoint, which is precisely what
we get from the horizontal smoothness. Clearly the corresponding restriction map
is continuous. Tracing the construction in the smooth case, we obtain a generalized,
translation-invariant form on PTx M of bidegree (k, n − 1− k), and hence an element
of Curv−∞

k (T M). Using Proposition 2.5, it is easy to check that the resulting map
vanishes on those forms which induce the trivial curvature measure, completing the
proof. ��
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Proposition 5.5 Let M be a smooth manifold, G a Lie group that acts smoothly and
transitively on M. Then

C−∞(M)G ⊂ Chs(M).

Proof Let X1, . . . , Xm be a basis of the Lie algebra g and let X#
1 , . . . , X#

m be the
induced vector fields on M . Since G acts transitively, we have that at each point
x ∈ M , X#

1 |x , . . . , X#
m |x generate the tangent space Tx M . These vector fields induce

in a natural way vector fields X̃#
1 , . . . , X̃#

m on PM such that dπ(X̃#
i ) = X#

i .
By Proposition 2.5, a generalized curvature measure � can be identified with the

generalized sections of a certain finite-dimensional vector bundle E over PM .
If � is G-invariant, then this section is G-invariant. Let Pi denote the differential

operator acting on sections of E corresponding to X̃#
i . By [27, Theorem 8.3.1] we have

WF(�) ⊂ Char(Pi ) ∪WF(Pi�)︸ ︷︷ ︸
=∅

.

The characteristic set of Pi at a given point (x, [ξ ]) ∈ PM consists of all η ∈
T ∗

(x,[ξ ])π−1(x) \ {0} that vanish on X̃#
i . On the other hand, the conormal bundle of

π−1(x) consists of all such η that vanish on all tangent vectors to π−1(x).
Now the vectors X̃#

1 , . . . , X̃#
m and the tangent vectors to π−1(x) span T(x,[ξ ])PM ,

hence WF(�) ∩ N∗π−1(x) = ∅ as claimed. ��
Proof of Theorem C Let M be an isotropic space form of signature (p, q). The isometry
group G := Isom(M) acts transitively on M . By the Weyl principle, the intrinsic
volumes are invariant under isometries, i.e. LK(M) ⊂ V−∞(M)G . We have to prove
the opposite inclusion.

Given μ ∈ V−∞(M)G , take k ∈ {0, . . . , n + 1} with μ ∈ W−∞
k (M). If k = n + 1,

then μ = 0 and we are done. Suppose that k < n + 1.
We note that, by Proposition 7.3.2 of [2],

W−∞
k (M)/W−∞

k+1 (M) = (W∞
n−k,c(M)/W∞

n−k+1,c(M)
)∗

= �∞
c (Val∞n−k(T M))∗.

Passing to G-invariants and using Lemma 5.2 yields

[W−∞
k (M)/W−∞

k+1 (M)
]G = �∞(Val−∞

k (T M))G .

Denote by βk : W−∞
k (M)G → �∞(Val−∞

k (T M))G the induced map.
Fix some point x0 ∈ M and let G0 be the stabilizer of G at x0. Since M is isotropic,

βkμ(x0) ∈ Val−∞
k (Tx0 M)G0 = Val−∞

k (Rp,q)O(p,q).

By [12], we may find a linear combination τ := aμk + bμ̄k of intrinsic volumes
such that βkτ(x0) = βkμ(x0). By G-invariance, it follows that βkτ = βkμ, i.e.
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μ − τ ∈ W−∞
k+1 (M)G . Induction over k then yields some τ̃ ∈ LK(M) with μ − τ̃ ∈

W−∞
n+1 (M)G = {0}.
The argument in the case of generalized curvature measures is similar. Take

� ∈ C−∞(M)G , take k ∈ {0, . . . , n+1}with� ∈ C−∞
k (M). If k = n+1, then� = 0

and we are done. Suppose that k < n+1. Fix a point x0 ∈ M . By Proposition 5.5,� is
horizontally smooth. Then σk�(x0) ∈ Curv−∞

k (Rp,q)O(p,q) is well-defined by Propo-
sition 5.4.ByProposition 1.1wefind a linear combination� := a�k+b�̄k ∈ L̃K(M)

of Lipschitz–Killing measures such that σk�(x0) = σk�(x0). By G-invariance, we
have σk� = σk�, hence � − � ∈ C−∞

k+1 (M)G and by induction on k we find some

�̃ ∈ L̃K(M) with � − �̃ ∈ C−∞
n+1(M)G = {0}. ��
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