
Reviewers' Comments: 

 

Reviewer #1: 

Remarks to the Author: 

This is a rare occasion on which, as a reviewer, I can say I really like the paper very much, almost 

in every aspect. The overall objectives of the paper are exciting and important, the results are in 

line with those objectives, and the results sustain the discussion. I have no objections to the 

publication of this 

paper. I highly congratulate the authors for this magnificent work. 

 

 

I only include a series of suggestions to clarify specific points or perhaps enhancing the 

interpretation of some of the presented results: 

 

 

1) The authors mention previous efforts to classify sleep stages using fMRI data (e.g. Tagliazucchi 

Neuroimage 2012). 

However, the paper is missing a direct comparison and discussion of the results obtained in that 

paper versus the ones obtained here. This is furthermore important if we consider that both papers 

use the same dataset. 

 

 

 

2) In the same vein, I found interesting (and intriguing!) that the method presented in this paper 

has the lowest performance when the awake state is compared with the different sleep stages. 

These results are contrary to the ones shown in Tagliazucchi 2012, and very counterintuitive if we 

take into consideration the electrophysiological similarities of the different stages. 

 

 

 

3) The authors report a ‘Common intrinsic manifold topology’ across participants with a group 

classification performance of 76%. However, by visually inspecting the individual embeddings is 

hard to imagine a generalization across participants. Each of the subspaces corresponding to a 

sleep/awake stages are easy to separate on an individual basis, but they don’t seem to occupy an 

analogous subspace across participants. 

 

In that sense, I wonder if the group results emerge from a bimodal distribution (that is, subjects 

that either entirely resembles the group and others that for which the subspaces corresponding to 

each stage lie in a completely different location) or a homogenous similarity. If the former is true, 

it would be worth investigating if these individual subspaces can somehow be interpreted as an 

‘individual fingerprint’ that can be used to identify subjects univocally. Also, it would be worth 

discussing if some mapping can be applied across subjects to validate the real universal value of 

the subspaces corresponding to each sleep/awake stage. 

 

 

 

Reviewer #2: 

Remarks to the Author: 

This paper applies a nonlinear dimensionality reduction method (Laplacian eigenmaps) to fMRI 

data in sleep and wake (specifically to phase coherence matrices). The main results are that wake 

and non-REM sleep states occupy distinct areas in the reduced dimensional space, and that these 

states can be reliably distinguished in that space. Since wake and sleep states can be distinguished 

at the group level, it is argued that the reduced representation captures some "invariant" and 

"intrinsic" aspects of human brain dynamics. The topic is one of wide interest, but I have various 

concerns about the results and the methods, so some of the conclusions appear overblown. Some 

issues are probably just matters of presentation, others perhaps not. The following points should 

be addressed: 

 

1. It is claimed that "the intrinsic manifolds of all participants share a common topology", but what 



IS that topology? From Fig. 2A-H (and more so all subjects in Fig. S1) there is clearly 

*substantial* variability across subjects. It seems very difficult indeed to claim that there is a clear 

common topology here. Fig. 2I and Fig. S3 show an embedding combining all subjects together, 

which bears little resemblance to the subject-level data. The main common feature appears to be 

a highly radial organization of the points, though I'm not sure what that means, and the radial 

orientations differ widely between subjects. This needs to be clarified. 

 

2. So what is the proposed dimensionality of the intrinsic dynamics? The choice of d=3 is used for 

the classifications, though there's also d=10 in the supplementary figures, and a scan over 

dimensions in Figures 3F and 3G. Perhaps a case can be made for d=3 being near the knee in Fig. 

3F (though probably a poorer choice than ~5-8), but there is no evidence that any 'optimal' 

dimensionality is found at the group level (Fig. 3G), since the accuracy seems far from plateauing. 

With 18 subjects and no apparent optimal dimensionality for a 25 dimension embedding, is the 

method failing to converge on any useful commonality? 

 

3. It is strange for the classification problem to be tackled as a set of pairwise SVMs for states A vs 

B for all pairs, rather than state A vs not-A (for all states), or some other non-binary classification 

that handles all the states together. The headline claim that the method can "decode" the states 

with an average accuracy of 93% seems inadequately substantiated -- it is standard for such 

problems to present the confusion matrix showing the probabilities of correct classification and 

incorrect classification for all possible combinations. 

 

4. Is Figure 1G a schematic or an actual example of a 2D embedding? Why are the points arranged 

on a grid when they are not obviously gridded in the actual results? If the brain takes the path 

Awake --> S1 --> S2 --> S3, does that mean it starts in the bottom left corner, heads up to the 

top left, then backtracks halfway and heads to the right? Why essentially no points 'off axis'? 

 

5. After presenting Fig. 2 briefly, the results jump into decoding of states. But there's a lot going 

on in Fig. 2 that should be explained in more detail. The paper does not address whether the data 

exhibits sensible trajectories through the reduced space. Is each point one snapshot in time? In 

what temporal order are they linked? Does the brain traverse in and out of the origin along 

different radial paths for each state (or around loops for e.g. Fig. 2E), or does it take 'shortcuts' 

from one arm to the next? Do these trajectories make sense in light of all the existing work on 

transition probabilities for sleep states etc.? Also the PCA results should at least be mentioned 

before moving on. 

 

6. p11, "These findings point out the crucial role of nonlinear brain dynamics in order to 

characterize different brain states" -- this seems to refer to one sense of nonlinearity (of some 

abstract embedding), but the usual way to test whether brain dynamics are nonlinear is to 

compare to linear surrogate data. e.g., would linear surrogates on the original time series, if fed 

through the same analysis pipeline, end up with the same result? There are numerous methods for 

performing such analyses (e.g. Breakspear et al. 2004 HBM, Liegeois et al. 2017 NeuroImage). I 

note the authors did use permutation testing that shuffled the time series, but this is known to be 

a strawman surrogate for dynamic functional connectivity, cf. Liegeois et al. 2017. 

 

7. The precise workflow from the coherence to the reduced space is a little unclear. So each point 

in time has a phase coherency matrix (Fig. 1F), and the coherence connectivity dynamics matrix 

(not shown) captures the similarities between all the phase coherency matrices at all pairs of time 

points. Then this is pruned into a graph thus linking states across time. There's a mention of a 

distance matrix in the RMST section, but what is the distance metric here? How much of the 

smoothness of the manifolds is due to imposing some continuity over time? The way that time is 

encoded in the CCD matrix as all the pairwise comparisons makes it hard for me to intuitively 

grasp how that summary matrix can be decomposed into distinct states across time, vs the 

schematic Fig. 1F-G where I can think of each phase coherency matrix (==time point) occupying a 

single point in the reduced space. 

 

8. How exactly was the PCA calculated? What was the input? 

 

9. Did the data include REM sleep? If not, why not? If yes, how were those periods handled? 



 

10. The Methods section "Intrinsic manifolds of brain activity" should be in the Results to better 

guide the reader through what was done (it does a better job of summarizing the workflow than 

the description of Fig. 1 in the Results). 

 

11. Figures and supplementary figures are presented together without saying what each shows 

distinctly (reader needs to work out what is different in the paired supplementary figure). 

 

12. The Atasoy et al. connectome harmonics work is cited as an application of Laplacian 

eigenmaps, but that was eigenfunctions of the graph Laplacian (those papers never referred to 

'eigenmaps'); related to but not the same as the dimensionality reduction technique here. If this is 

relevant background, then also relevant would be Tokariev et al. 2019 Nature Commun relating 

cortical eigenmodes to sleep states. 

 

13. "the intrinsic manifold yields a smooth, continuous representation of the brain dynamics" -- 

well it's clearly not continuous in the strict sense since there are discrete points, and hence cannot 

be smooth either. 

 

14. Fig. 3, there are two panel Es, and in the caption "D) and H)" is meant to be "G) and H)" (after 

fixing the E duplication). 

 

15. p8, accuracy of "68±1%" seems peculiarly precise, how is the uncertainty calculated? 

 

16. "PCA was unable to capture the structure underlying brain dynamics" -- well, it was weakly but 

significantly different from chance so it partly captures something (PCA clearly performed poorly, 

but don't overcook it). 

 

17. Does PCA's failure come down to nonlinearity or something else? Just because a NL method 

does well and a linear method does not, doesn't mean that the fault lies with the linearity. 

 

18. It is mentioned that this classifier outperforms previous efforts to detect sleep states from 

fMRI, but by how much? This should be quantified. 

 

19. Regarding dynamics existing on subspaces of the high-dimensional phase space, this idea of 

course goes back a long way, at the very least to Haken, and obviously all the work on modeling 

neural masses and fields etc. And even ignoring such theoretical efforts, fMRI obviously has spatial 

smoothness so no one should think of every voxel being independent.  

 

20. Abstract mentions "nonlinear transitions", but "transitions" doesn't appear again. In what 

sense are the transitions nonlinear? Also not clear that transitions are even studied here. 

 

21. The Methods presents the Hilbert transform to a peculiar depth; it could be shortened. Did the 

authors just use MATLAB's hilb()? If not, why not? 

 

22. "We first extracted the instantaneous phase signal of the ultraslow fluctuations (0.04 - 0.07 

Hz)" vs "Data were band-pass filtered in the range 0.01–0.1 Hz" -- which was it? And why 0.04-

0.07 Hz anyway? 

 

23. p18, typo "RMTS" 

 

24. Why does the dimensionality reduction section review other methods? If including that 

material, it should be earlier in the paper to provide more context, or else just remove it to keep 

things simpler. 

 

 

 

Reviewer #3: 

Remarks to the Author: 

The current study presents a novel method for calculating low dimensional manifolds in fMRI data 



and applies it to data at different sleep/wake cycles. I thought the paper was interesting 

considering recent trends to investigate low dimensional manifolds in fMRI data. In general the 

paper was well written with clear aims etc., I have a few comments below. 

 

Was any further fMRI preprocessing performed? The methods seem very sparse compared to 

common practice where nuisance variables such as head motion are regressed (Ciric et al., 2017). 

 

Projecting the dimensions back into brain space would be helpful for the reader to contextualize 

the manifolds - which are by nature quite abstract - e.g., what the authors have done in Figure 1E. 

 

The paper has a few typos, e.g., page 21 paragraphs regarding SVM, ‘splitting’ should probably be 

‘split’, ‘resting’ should probably be ‘remaining’. 

 

I am wondering why the predictions were on a stage-by-stage basis and not all sleep categories in 

a single classification model. Wouldn’t an ‘all in one’ analysis demonstrate the point in a simpler 

fashion? (which could have the current analyses as follow-ups) 

 

Relatedly, is it possible that different features contributed to the classification accuracy depending 

on the given contrast? Is it possible to, for example, plot the SVM weights to see which features 

contributed? 

 

The authors compare the current method to PCA - another method used in fMRI to identify low 

dimensional states. Would a more appropriate ‘null’ model be data that is high dimensional? 



Dear Reviewers, 

We wish to thank you for your constructive comments and suggestions. We have considered all your 

points during revision and the following is a point-by-point explanation of all the changes made. After 

addressing these raised questions, we believe that our revised manuscript has been improved in terms 

of its clarity, readability, and ultimately in its contribution to the neuroscience community. 

In addition to this response letter, we include two versions of the revised manuscript: a "marked" 

version that highlights all of the changes made since the original submission and a "clean" version 

that includes all changes but without any highlights. In the "marked" version, all newly added parts 

are marked as blue, whereas the edited parts are marked as green, and the corresponding Reviewers’ 

comment is marked as comment throughout the manuscript next to each highlighted change. 

Following your suggestions, we have made two main modifications in our revised manuscript, which 

we believe have substantially improved the quality of our study and our manuscript. Firstly, we 

revised our method for computing the intrinsic manifold for the group data. In the revised manuscript 

we compute the group manifold by registering individual subject manifolds and not by estimating a 

single manifold using all subjects’ data altogether. This change in the estimation of the group 

manifold by mapping individual manifolds to the same space has significantly improved the accuracy 

of classification at the group level. Secondly, we extended our classification experiments to also 

include multi-class evaluation. Following your suggestions, we demonstrate the accuracy and 

robustness of the intrinsic manifold approach for classification by also performing all-vs-all multi-

class decoding of different sleep stages and wakefulness based on multi-class support vector machines 

(SVM). 

 

Please do not hesitate to contact us if we can provide any further clarification. 

Sincerely, 

Joan Rué-Queralt and Selen Atasoy (on behalf of all co-authors) 

 

 

 



Detailed Response for Reviewers on the Manuscript 

COMMSBIO-20-1817-T 

 

RESPONSE TO REVIEWER 1 

Comment 1.0: This is a rare occasion on which, as a reviewer, I can say I really like the paper very 

much, almost in every aspect. The overall objectives of the paper are exciting and important, the 

results are in line with those objectives, and the results sustain the discussion. I have no objections 

to the publication of this paper. I highly congratulate the authors for this magnificent work.  

I only include a series of suggestions to clarify specific points or perhaps enhancing the 

interpretation of some of the presented results:  

Answer 1.0: We thank the Reviewer very much for this positive remark and appreciate their support. 

We believe that through their and other Reviewers’ suggestions, the presentation and quality of our 

paper has further improved in the revised manuscript.  

 

Comment 1.1: The authors mention previous efforts to classify sleep stages using fMRI data (e.g. 

Tagliazucchi Neuroimage 2012). However, the paper is missing a direct comparison and discussion 

of the results obtained in that paper versus the ones obtained here. This is furthermore important if 

we consider that both papers use the same dataset. 

Answer 1.1: We thank the Reviewer for pointing out this opportunity to improve the clarity of our 

presentation. We agree that our comparison to the cited previous efforts has not been discussed in 

sufficient detail. It is important to note there are some practical and conceptual differences between 

previous efforts and the current approach, which make a direct comparison of the classification 

accuracies of the two approaches rather difficult. These are:  

The first practical difference is that, using the same dataset, the authors in Tagliazzuchi et al. 

Neuroimage 2012 classify windows of timepoints (1-4 minutes long). Unlike this window-based 

approach, our method classifies each individual timepoint in the fMRI data. Thus the classification 

accuracies in that publication refer to a window of time points, whereas in our work they are 

estimated for each individual time point. Another important practical difference is that in their work, 

Tagliazzuchi and colleagues used 5-fold cross-validation, and reported the maximum accuracy among 

the 5 test sets. In our group analysis, we take a more conservative approach and perform leave-one-

subject-out cross-validation. This allows us to make statements on the generalizability of the learned 

classifiers among unseen subjects. Importantly, we report the mean accuracy over test sets and not the 

maximum. Yet, despite the conservative classification approach taken by our method, we followed the 



Reviewer’s suggestion and included a table for comparison of the two methods’ classification 

accuracies. Below we report the results of Tagliazzuchi et al. Neuroimage 2012, in comparison to our 

results on group manifolds, and on individual manifolds. We note that a fair comparison between the 

methods in terms of their classification accuracies is only possible when the accuracy of the intrinsic 

manifold method using individual manifolds is compared to the results presented in Tagliazzuchi et 

al. Neuroimage 2012, as only in that comparison, data from the same subjects are included in both 

training and testing sets for both methods. 

 Tagliazucci 2012 (TW: 1 
min;  max  accuracy out 
of 6-fold – see their 
TABLE 5) 

Intrinsic manifold 
(GROUP, single time-
points;  mean accuracy 
out of leave-one-
subject-out) 

Intrinsic manifold 
(INDIVIDUAL, 
single time-points;  
mean accuracy out 
of 6-fold cross-
validation) 

Awake – N1 0.76  0.82 0.96 

Awake – N2 0.88 0.91 0.99 

Awake – N3 0.89 0.96 0.99 

N1 – N2 0.83 0.90 0.99 

N1 – N3 0.93 0.97 0.99 

N2 – N3 0.87 0.94 0.99 

 

Finally, a more conceptual difference worth noting is the underlying assumption on the domain 

structure of the brain activity data (as estimated by BOLD intensity). Tagliazucchi et al. Neuroimage 

2012 use a nonlinear SVM Classifier, which seeks to find the best linear separation between classes in 

an infinite dimensional feature space. In our approach, we find this linear separation in a low 

dimensional embedding of the data (d=7).  

Following the Reviewer’s suggestion, we have now included a detailed explanation of the comparison 

with previous efforts including all the above-mentioned points, in the revised manuscript on page 16. 

We have also included the above table in the supplementary material, see Table S4. 

  

Comment 1.2: In the same vein, I found interesting (and intriguing!) that the method presented in 

this paper has the lowest performance when the awake state is compared with the different sleep 

stages. These results are contrary to the ones shown in Tagliazucchi 2012, and very 

counterintuitive if we take into consideration the electrophysiological similarities of the different 

stages. 

 

Answer 1.2: We thank the Reviewer for pointing out this important observation. As now clarified in 

the revised version of the manuscript, like the previous efforts (Tagliazucchi and Laufs Neuron 2014 



and Altmann et al. NeuroImage 2016), our approach yield that the sleep stage N1 as the state hardest 

to decode from brain activity. Our classification analysis showed that N1 was mostly confused with 

wakefulness, a result that goes in line with the current consensus that N1 stage does not represent a 

clear sleep stage, but it rather consists on vaguely defined mix of wakefulness and sleep (Carskadon 

and Dement, Principles and practice of sleep medicine Ch.2 2011). Given that N1 is not consistently 

defined in EEG polysomnography, it is easy to appreciate the difficulty in characterizing this stage 

using the fMRI data (Stevner et al. Nat. Comm. 2019). 

We believe that the relatively lower performance of classification for wakefulness and N1 is due to 

the large variability of brain states in the awake state and the unclear definition of N1. Wakeful 

conscious state has been mainly characterized by the dynamical exploration of a rich and flexible 

repertoire of brain states (Barttfeld PNAS 2015). This variability in the dynamics is blurred out in the 

results in Tagliazucci et al. Neuroimage 2012 due to the long time-windows used for averaging before 

defining the brain states to be decoded. However, in our method using every single time point, this 

variability of the awake brain dynamics is clearly observable and plays a crucial role in the relatively 

lower (95%) performance of the presented approach in the awake state classification in comparison to 

deep sleep stages (98% and 100%, for N2 and N3 respectively). We have extended our interpretation 

of these results in the discussion section of the revised manuscript (see page 16). 

 

Comment 1.3: The authors report a ‘Common intrinsic manifold topology’ across participants with 

a group classification performance of 76%. However, by visually inspecting the individual 

embeddings is hard to imagine a generalization across participants. Each of the subspaces 

corresponding to a sleep/awake stages are easy to separate on an individual basis, but they don’t 

seem to occupy an analogous subspace across participants.  

In that sense, I wonder if the group results emerge from a bimodal distribution (that is, subjects 

that either entirely resembles the group and others that for which the subspaces corresponding to 

each stage lie in a completely different location) or a homogenous similarity. If the former is true, 

it would be worth investigating if these individual subspaces can somehow be interpreted as an 

‘individual fingerprint’ that can be used to identify subjects univocally. Also, it would be worth 

discussing if some mapping can be applied across subjects to validate the real universal value of the 

subspaces corresponding to each sleep/awake stage. 

 

Answer 1.3: We thank the Reviewer for pointing out this interesting interpretation of our results. We 

believe that this is a very important research direction and thank the Reviewer for this insight. Our 

conclusion about the common intrinsic manifold topology is based on the classification accuracy on 

our leave-one-subject out experiments. It is possible that these results emerge from a bimodal 

distribution, however exploring these individual differences, and analyzing the differences between 



the individual and group manifolds are beyond the scope of this manuscript. However, inspired by the 

Reviewer’s comment, we reformulated our group analysis in the revised manuscript. Given that we 

are interested in the manifolds’ topology, rather than its exact state-space location, we registered all 

individual intrinsic manifolds to a common space by applying an affine transformation (shown in 

Figure 2I in the revised manuscript). The group manifold is then given by this registration of all 

individual manifolds. Remarkably, using this new approach our results not only validate the 

generalizability of the intrinsic manifolds across subjects as shown by the high group-analysis 

classification accuracies, but also yield higher classification accuracy than our previous approach. 

This is further explained on pages 8 and 22. 

 

We thank the Reviewer for the inspiration of the reported improvement in our methods and also refer 

to our comment to Reviewer 2.1 for further discussion on this subject.  

 

RESPONSE TO REVIEWER 2 

Comment 2.0: This paper applies a nonlinear dimensionality reduction method (Laplacian 

eigenmaps) to fMRI data in sleep and wake (specifically to phase coherence matrices). The main 

results are that wake and non-REM sleep states occupy distinct areas in the reduced dimensional 

space, and that these states can be reliably distinguished in that space. Since wake and sleep states 

can be distinguished at the group level, it is argued that the reduced representation captures some 

"invariant" and "intrinsic" aspects of human brain dynamics. The topic is one of wide interest, but 

I have various concerns about the results and the methods, so some of the conclusions appear 

overblown. Some issues are probably just matters of presentation, others perhaps not. The 

following points should be addressed:  

Answer 2.0: We thank the Reviewer for their constructive and thoughtful comments. We have 

addressed all of the raised concerns of the Reviewer, which in our opinion significantly improved the 

quality of our manuscript.  

Comment 2.1: It is claimed that "the intrinsic manifolds of all participants share a common 

topology", but what IS that topology? From Fig. 2A-H (and more so all subjects in Fig. S1) there is 

clearly *substantial* variability across subjects. It seems very difficult indeed to claim that there is 

a clear common topology here. Fig. 2I and Fig. S3 show an embedding combining all subjects 

together, which bears little resemblance to the subject-level data. The main common feature 

appears to be a highly radial organization of the points, though I'm not sure what that means, and 

the radial orientations differ widely between subjects. This needs to be clarified. 

 



Answer 2.1: We thank the Reviewer for pointing out this interesting and important observation about 

our results.  Our claim that the intrinsic manifolds of different subject share a common topology is 

driven by the fact that our leave-one-subject out experiment yields significantly accurate classification 

accuracy. This means that using the intrinsic manifold of the sleep data that does not belong to that 

particular subject as a training set, our method is able to significantly accurately classify each time 

point of a new subject’s fMRI data, which would not be possible if there was not a common topology 

shared by the intrinsic manifolds across different subjects. However, we agree with the Reviewer that 

our results and the use of the word ‘topology’ call for further clarification. To this end, a useful 

analogy would be to think of the geometry vs topology of different trees. Every tree has a unique 

geometry in their structure, yet all trees in a family of trees, (i.e., oak trees), together may share a 

common topology, which is the topology of an oak tree.  Similarly, in our results, no two individual 

manifolds are the same, yet they share some structural features that constitute their topology and make 

them recognizable by the SVM classifier. The fact that we can significantly accurately classify the 

sleep stages of one subject based on the training in other subjects, strongly implies that there exists a 

common topology across the different subject intrinsic manifolds, even though the geometry of 

different subjects’ manifold may be different. Following the Reviewer’s suggestions, we added a 

detailed clarification of this point in the revised version of the manuscript, see page 15. 

 

 

Please also refer to our comment to Reviewer 1.3.  

 

 

Comment 2.2: So what is the proposed dimensionality of the intrinsic dynamics? The choice of d=3 

is used for the classifications, though there's also d=10 in the supplementary figures, and a scan 

over dimensions in Figures 3F and 3G. Perhaps a case can be made for d=3 being near the knee in 

Fig. 3F (though probably a poorer choice than ~5-8), but there is no evidence that any 'optimal' 

dimensionality is found at the group level (Fig. 3G), since the accuracy seems far from plateauing. 

With 18 subjects and no apparent optimal dimensionality for a 25 dimension embedding, is the 

method failing to converge on any useful commonality?. 

Answer 2.2: We thank the Reviewer for pointing out this opportunity to improve the clarity of our 

presentation. In the previous version of the manuscript, the intrinsic manifold parameters were 

optimized to maximize the 1-vs-1 SVM accuracy of classification. As pointed out by the Reviewer, 

the results of the classification did not plateaued when increasing the manifold dimensionality. In the 

revised version of the manuscript, the intrinsic manifold parameters were optimized to maximize the 

multi-class SVM accuracy of classification, as also suggested by Reviewer 3 in comment 4. When 

considering the multi-class classification accuracy, our results yield the optimum dimensionality of 

the intrinsic manifold to be d=7. This optimal dimensionality is evidences by the ‘knee’ shape, and 



has been tested for statistical significance (p < 0.05, Wilcoxon Rank-sum two-sided test, corrected for 

multiple comparisons via FDR). This fact has been clarified in the revised version of the manuscript 

(see pages 8 and 10). 

 

 

Comment 2.3: It is strange for the classification problem to be tackled as a set of pairwise SVMs 

for states A vs B for all pairs, rather than state A vs not-A (for all states), or some other non-binary 

classification that handles all the states together. The headline claim that the method can "decode" 

the states with an average accuracy of 93% seems inadequately substantiated -- it is standard for 

such problems to present the confusion matrix showing the probabilities of correct classification 

and incorrect classification for all possible combinations.. 

 

Answer 2.3: We thank the Reviewer for pointing out this important point. We agree with the 

Reviewer that an additional one-vs-all sleep stage type of classification is more commonly used and 

would be possibly more adequate for any claims done about decoding brain states. Following the 

Reviewer’s suggestion, we have included an additional one-vs-all classification analysis in the revised 

version of the manuscript, explained in detail in the Methods section (see pages 22 and 23). 

Remarkably, even in this multi-class classification approach, the intrinsic manifold representation 

yields an average accuracy of 96%, which is now reported on page 7 in the revised manuscript. 

 

Comment 2.4: Is Figure 1G a schematic or an actual example of a 2D embedding? Why are the 

points arranged on a grid when they are not obviously gridded in the actual results? If the brain 

takes the path Awake --> S1 --> S2 --> S3, does that mean it starts in the bottom left corner, heads 

up to the top left, then backtracks halfway and heads to the right? Why essentially no points 'off 

axis'?. 

Answer 2.4: We thank the Reviewer for this important question. Firstly, we would like to clarify the 

presentation in Figure 1G. This figure was included into the manuscript for the schematic 

demonstration of the presented approach and illustrates the changes in phase coherency throughout 

the intrinsic manifold. Figure 1G shows the phase coherency at different points of a 2D embedding 

for a representative subject. To this end, we have defined 2D bins using the first two manifold 

dimensions, and computed the average phase coherency of data points in those bins. It is worth noting 

that in order to have an equal representation for each sleep state, we take the same number of time 

points for each sleep stage and wakefulness from the dataset, which may lead to some gaps in the 

temporal continuity of the data. For example, for one subject, we can pick data points belonging to N1 

after awake state, and some N1 time-points before the participant is waking up, if the number of 

continuous time-points just right after awaking is not large enough (in our case 87 TRs, i.e. 

approximately 3 minutes of scanning time). Thus, the focus of this work is on sleep stage 



categorization rather than the temporal transitions between sleep stages. However, we do appreciate 

the relevance of studying the temporal trajectories, which we have planned to conduct in our future 

research. In the revised manuscript we have further clarified the purpose of Figure 1G, see page 7. 

Importantly, inspired by the Reviewer’s question, in the revised version of the manuscript we have 

included a new figure (Figure S4) and a video (Video S5) representing the temporal evolution of the 

brain state in the manifold. Surprisingly, we discovered that brain activity exhibits both intra-stage 

smooth transitions and inter-stage sharp jumps in its intrinsic manifold, as clearly illustrated in our 

supplementary video (Video S5). Specifically, these new results show how temporal traces belonging 

to one class (sleep stage) are clustered separately in the intrinsic manifold, even though the temporal 

structure of the data is disrupted, inducing ‘shortcuts’ between branches of the structure. A detailed 

explanation on Figure S4 and Video S5 has been included on page 6.   

 

Comment 2.5: After presenting Fig. 2 briefly, the results jump into decoding of states. But there's a 

lot going on in Fig. 2 that should be explained in more detail. The paper does not address whether 

the data exhibits sensible trajectories through the reduced space. Is each point one snapshot in 

time? In what temporal order are they linked? Does the brain traverse in and out of the origin 

along different radial paths for each state (or around loops for e.g. Fig. 2E), or does it take 

'shortcuts' from one arm to the next? Do these trajectories make sense in light of all the existing 

work on transition probabilities for sleep states etc.? Also the PCA results should at least be 

mentioned before moving on. 

Answer 2.5: We appreciate the Reviewer’s insightful comment. In this work, we did not explore 

transitions, as temporal continuity is disrupted during the analysis to favor the presence of equal time 

points in each sleep stage and wakefulness, as explained in our response to Reviewer’s previous 

comment (R2.4).  We have, however, added a Supplementary Figure (Fig S4) in order to explore the 

temporal path of brain dynamics on the intrinsic manifold. Figure S4 shows the intrinsic manifold 

labeled according to the temporal evolution. Remarkably, these newly added results reveal that there 

exists temporal continuity within one stage, such as N1, or N2, or wakefulness, yet different stages are 

separated through “jumps/shortcuts”, where the brain dynamics exhibit a jump on the intrinsic 

manifold from one branch of one state (e.g. N3) to that of another (e.g. awake), as can be seen in 

Figure S4 and Video S5. Given these results, one can appreciate the effectiveness of the presented 

intrinsic manifold method to separate different brain states such as different stages of sleep and 

wakefulness. A detailed explanation of this newly added analysis is included on pages 6 and 10.  

 

 

Comment 2.6: p11, "These findings point out the crucial role of nonlinear brain dynamics in order 

to characterize different brain states" -- this seems to refer to one sense of nonlinearity (of some 

abstract embedding), but the usual way to test whether brain dynamics are nonlinear is to compare 



to linear surrogate data. e.g., would linear surrogates on the original time series, if fed through the 

same analysis pipeline, end up with the same result? There are numerous methods for performing 

such analyses (e.g. Breakspear et al. 2004 HBM, Liegeois et al. 2017 NeuroImage). I note the 

authors did use permutation testing that shuffled the time series, but this is known to be a 

strawman surrogate for dynamic functional connectivity, cf. Liegeois et al. 2017. 

Answer 2.6: We thank the Reviewer for pointing this crucial piece of information. In the revised 

version of the manuscript, we use phase randomized surrogates as suggested in Liegeois et al. 

NeuroImage 2017. The decoding results on the intrinsic manifolds obtained from the original time-

series are significantly higher than the results on the linear surrogate manifolds (i.e., on the manifolds 

obtained from phase-randomized surrogate time-series). In the revised version of the manuscript, we 

have described this modification in the section Statistical significance analysis, on page 24.  

Comment 2.7:  

a) The precise workflow from the coherence to the reduced space is a little unclear. So each point 

in time has a phase coherency matrix (Fig. 1F), and the coherence connectivity dynamics matrix 

(not shown) captures the similarities between all the phase coherency matrices at all pairs of time 

points. Then this is pruned into a graph thus linking states across time. There's a mention of a 

distance matrix in the RMST section, but what is the distance metric here? 

Answer 2.7a: We thank the Reviewer for these points. We understand from the Reviewer’s 

comments that the pipeline of our method was not explained in sufficient clarity. The distance matrix 

in Reviewer’s question is constructed from the similarity matrix; i.e. the coherence connectivity 

dynamics (CCD) matrix, by changing similarities into distances (1-CCD). The minimum spanning 

tree then performs a minimization over distance weights. We included a detailed explanation of our 

pipeline into the revised version on page 20.  

 

b) How much of the smoothness of the manifolds is due to imposing some continuity over time? 

Answer 2.7b: In our method there is no step that explicitly imposes any temporal continuity. 

Considering this fact, it is quite remarkable that the method without any explicit temporal constraints 

yields temporally smooth manifolds within a sleep stage. Yet, it may be worth noting that the low-

pass temporal filtering may implicitly impose some degree of temporal continuity. In order to avoid 

any bias that may be caused by this smoothing, we applied the same filtering to the surrogate time-

series.   

 

c) The way that time is encoded in the CCD matrix as all the pairwise comparisons makes it hard 

for me to intuitively grasp how that summary matrix can be decomposed into distinct states across 



time, vs the schematic Fig. 1F-G where I can think of each phase coherency matrix (==time point) 

occupying a single point in the reduced space. 

Answer 2.7c: The Reviewer understanding is correct. Each Phase Coherency matrix corresponds to 

one time-point, and occupies single time-point in both the high- and the reduced-dimensional spaces. 

The summary matrix contains all the pair-wise relationships between data points, and represents these 

relationships in a graph. In fact, the summary matrix corresponds to the adjacency matrix of the 

graph. Using Laplacian Eigenmaps, we extract the manifold from that graph. The Laplacian 

eigenfunctions define the basis in which time-points that have similar phase coherency relations are 

closely located. We have improved the explanation of our pipeline in the revised version on page 5. 

 

Comment 2.8: How exactly was the PCA calculated? What was the input? 

Answer 2.8: PCA was computed on the pre-processed BOLD time-series, with AAL parcellation and 

and time-points as observations. We used Matlab’s pca() function. We added this information in the 

methods in the revised version of the manuscript on page 22. 

 

 

Comment 2.9: Did the data include REM sleep? If not, why not? If yes, how were those periods 

handled. 

Answer 2.9: As indicated throughout the manuscript, the dataset used as input of our method did not 

include any REM sleep. We feel that the data from the entire sleep cycle including REM sleep would 

have been very interesting to explore. However our dataset was limited to a sleep cycle of 60 minutes, 

which did not include REM sleep. The analyzed EEG-fMRI data originates from healthy volunteers 

who were not sleep deprived. This was assured by a medical interview, sleep diaries and 

questionaires. In normal sleep, the first epoch of REM sleep can be expected around 90 min after a 

subject has fallen asleep. Our subjects in the scanner underwent the 52 min EPI data acquisition right 

after the necessary preparatory scans. Hence, even if subjects fell asleep immediatey in the scanner, 

the maximum sleeping time could have been 60 mins, and REM sleep is not expected to occur whitin 

the scanning time. Indeed, none of the included subjects exhibited REM sleep as verified by sleep 

scoring of the scanner EEG by sleep experts. This information has been added in the revised version 

of the manuscript (please see page 18). 

 

Comment 2.10: The Methods section "Intrinsic manifolds of brain activity" should be in the 

Results to better guide the reader through what was done (it does a better job of summarizing the 

workflow than the description of Fig. 1 in the Results). 



Answer 2.10: We thank the Reviewer for pointing this out. We adapted the revised version and 

included the section “Intrinsic manifolds of brain activity” as the first point in the Results section. We 

believe this restructuring greatly improved the clarity of our presentation. Please, see page 5. 

 

Comment 2.11: Figures and supplementary figures are presented together without saying what 

each shows distinctly (reader needs to work out what is different in the paired supplementary 

figure). 

Answer 2.11: We thank the Reviewer for pointing this out. We adapted the revised version and 

included the information on the differences between the figures. Please see pages 7 and 13. 

 

Comment 2.12: The Atasoy et al. connectome harmonics work is cited as an application of 

Laplacian eigenmaps, but that was eigenfunctions of the graph Laplacian (those papers never 

referred to 'eigenmaps'); related to but not the same as the dimensionality reduction technique 

here. If this is relevant background, then also relevant would be Tokariev et al. 2019 Nature 

Commun relating cortical eigenmodes to sleep states. 

Answer 2.12: We thank the Reviewer for pointing out the reference of Tokariev et al. Nat. Comm. 

2019. We fully agree on its relevance and added it to the revised version of the manuscript. Please see 

page 4. We believe the citation Atasoy et al. Nat. Comm. 2016 is relevant for this work, as the referred 

connectome harmonics are estimated as the Laplacian eigenfunctions of brain’s structural 

connectivity and thus the connectome harmonics framework demonstrates the application of the 

Laplacian eigenmaps, which are Laplace eigenfunctions, in the spatial domain, i.e. brain’s anatomical 

connectivity. In this work we utilize the same framework, the Laplacian eigenfuctions, to extract the 

relevant information from brain dynamics in the temporal domain. We further clarified this link on 

page 4 in the revised manuscript.  

 

 

Comment 2.13: "the intrinsic manifold yields a smooth, continuous representation of the brain 

dynamics" -- well it's clearly not continuous in the strict sense since there are discrete points, and 

hence cannot be smooth either. 

Answer 2.13:  

We thank the Reviewer for noting this point of possible confusion. The word “continuity”, is used in 

our manuscript in the spatial sense referring to the structured and non-random spatial distribution of 

data points on the intrinsic manifold and does not refer to the temporal smoothness, i.e. temporal 

continuity of the data points on the manifold. We have clarified this point in the revised manuscript on 

page 6. It may also be worth noting that by definition, Laplacian eigenmaps yield smoothly varying 

functions:  



Intuitively, a function on a graph is smooth if its value at a node is similar to its value at each of the 

node’s neighbors (https://arxiv.org/abs/2011.01307, Section 4.1.) Mathematically, the smoothnesss of 

a function can be measured by the Dirichlet energy defined as: 

(ࢌ)ࡱ = 	න ℳݔ૛݀‖(ݔ)ࢌ∇‖ = 	න ℳݔ݀	(ݔ)ࢌઢ(ݔ)ࢌ  

 

Since the Laplace operator (ઢ) may be thought of as the functional derivative of the Dirichlet energy, 

Laplace eigenfunctions (Laplacian Eigenmaps) are estimated by maximizing the smoothness of the 

embedding. For a detailed explanation on the smoothness of Laplacian eigenfunctions, please refer to 

https://arxiv.org/abs/2011.01307, section 4.1. Also, in the seminal paper of Belkin and Niyogi Neural 

Computation 2003, which introduces the method of Lapalcian Eigenmaps used in our method, the 

idea of maximizing smoothness is expressed in terms of minimizing “how far apart ࢌ maps nearby 

points”. 

 

Comment 2.14: Fig. 3, there are two panel Es, and in the caption "D) and H)" is meant to be "G) 

and H)" (after fixing the E duplication). 

Answer 2.14: We thank the Reviewer for pointing this out. These typos have been corrected in the 

revised version. Please see page 12. 

 

Comment 2.15: p8, accuracy of "68±1%" seems peculiarly precise, how is the uncertainty 

calculated. 

Answer 2.15: This accuracy corresponds to the average across the mean accuracies in awake stage 

comparisons. Its uncertainty is calculated as follows:   ࢋ࢑ࢇ࢝࡭ࢋ = ૚૜ටࡺି࡭ࢋ૚૛ + ૛૛ࡺି࡭ࢋ + ૜૛ࡺି࡭ࢋ , 

where ࢄି࡭ࢋ૛  is the average classification accuracy uncertainty for each awake stage comparison 

(standard deviation across subjects of the mean cross-validation accuracy).  This is stated in the 

revised manuscript on page 23.  

 

Comment 2.16: "PCA was unable to capture the structure underlying brain dynamics" -- well, it 

was weakly but significantly different from chance so it partly captures something (PCA clearly 

performed poorly, but don't overcook it). 

Answer 2.16: We thank the Reviewer for pointing this out. In the revised version, we changed 

“unable to capture” for “performed poorly at capturing”. Please see page 10.  

 



Comment 2.17: Does PCA's failure come down to nonlinearity or something else? Just because a 

NL method does well and a linear method does not, doesn't mean that the fault lies with the 

linearity. 

Answer 2.17: We thank the Reviewer for pointing this idea out. We understand the Reviewer’s 

concern when pointing out that the low performance of PCA (in comparison to intrinsic manifold 

method) in the sleep stage classification task can be attributed to PCA’s linear nature or to other 

details of its framework. Inspired by the Reviewer’s comment, and in order to fully assess the role of 

the nonlinearities in the superior performance of our method, we compared the intrinsic manifold not 

only to PCA but also to linear surrogate manifolds. These linear surrogate manifolds were estimated 

similarly to the intrinsic manifolds, with the only difference being that the phase of the time-series 

was randomized (see Methods). These results revealed that we can be certain that nonlinearities play a 

crucial role in the data, as indicated by the significant improved accuracies on the intrinsic manifolds 

with respect to the linear surrogate manifolds. This explanation has been included in the revised 

version of the manuscript (see page 12)  

 

Comment 2.18: It is mentioned that this classifier outperforms previous efforts to detect sleep 

states from fMRI, but by how much? This should be quantified. 

Answer 2.18: We thank the Reviewer for this important comment. We have addressed this by 

including a further comparison to previous methods, as also asked for by Reviewer 1. Please refer to 

our response to the comments R1.1 and R1.2.  

 

Comment 2.19: Regarding dynamics existing on subspaces of the high-dimensional phase space, 

this idea of course goes back a long way, at the very least to Haken, and obviously all the work on 

modeling neural masses and fields etc. And even ignoring such theoretical efforts, fMRI obviously 

has spatial smoothness so no one should think of every voxel being independent.  

 

Answer 2.19: We thank the Reviewer for pointing out the overlap between our work and the 

suggested literature. We have included citations referring to Herman Haken and following related 

work on metastability and quasi-attractor dynamics in the Introduction of the revised manuscript. We 

have also clarified the fact that voxels in fMRI data are not independent due to spatial smoothness 

(please see page 2). 

 

Comment 2.20: Abstract mentions "nonlinear transitions", but "transitions" doesn't appear 

again. In what sense are the transitions nonlinear? Also not clear that transitions are even studied 

here. 

Answer 2.20: We thank the Reviewer for pointing this out. Indeed, this work does not explicitly 

study transitions, but only the differences between sleep stages in terms of brain dynamics, although 



the sleep stage transitions correspond to jumps in the trajectory of brain dynamics on the intrinsic 

manifold, as shown in Supplemetary Figure S4, and as also discussed in our response to comment 

R2.5. To improve the clarity of our presentation, following the Reviewer’s comment, we have 

removed the only mention of the term “transitions” (which was located in the abstract).  

 

Comment 2.21: The Methods presents the Hilbert transform to a peculiar depth; it could be 

shortened. Did the authors just use MATLAB's hilb()? If not, why not? 

Answer 2.21: We thank the Reviewer for pointing this out. We removed the detailed explanation of 

the Hilbert transform in this revision, and included a reference to the MATLAB’s function has been 

added in the Coherence Connectivity Dynamics section.  Pease see page 21.  

 

Comment 2.22: "We first extracted the instantaneous phase signal of the ultraslow fluctuations 

(0.04 - 0.07 Hz)" vs "Data were band-pass filtered in the range 0.01–0.1 Hz" -- which was it? And 

why 0.04-0.07 Hz anyway? 

Answer 2.22: We thank the Reviewer for pointing this out. In the revised version of the manuscript, 

we used a band-pass filter in the range 0.04 - 0.07 Hz. The choice of this frequency range was driven 

to the findings of Glerean et al. Brain Connectivity 2012, which points out the importance of using 

this particular frequency range for bandpass filtering when using the Hilbert transform to estimate 

functional connectivity based on phase coherency. 

    

Comment 2.23: p18, typo "RMTS" 

Answer 2.23: We thank the Reviewer for pointing this out. The typo is corrected in this revision. 

 

Comment 2.24: Why does the dimensionality reduction section review other methods? If including 

that material, it should be earlier in the paper to provide more context, or else just remove it to keep 

things simpler. 

Answer 2.24: We thank the Reviewer for pointing out that we overly detailed the section on 

dimensionality reduction methods. We have shortened this part in the revised version of the 

manuscript, focusing only on the techniques used in this work, namely Principal Component Analysis 

and Laplacian Eigenmaps. We have taken the liberty of preserving some key details on 

dimensionality reduction that we found crucial to understand the similarities and differences between 

the two aforementioned techniques. 

 

RESPONSE TO REVIEWER 3 

Comment 3.0: The current study presents a novel method for calculating low dimensional 

manifolds in fMRI data and applies it to data at different sleep/wake cycles. I thought the paper 



was interesting considering recent trends to investigate low dimensional manifolds in fMRI data. 

In general the paper was well written with clear aims etc., I have a few comments below. 

Answer 3.0: We thank the Reviewer for their constructive and supportive comments. We believe that 

through their and other Reviewers’ suggestions, the presentation and quality of our paper has further 

improved in the revised manuscript.  

 

Comment 3.1: Was any further fMRI preprocessing performed? The methods seem very sparse 

compared to common practice where nuisance variables such as head motion are regressed (Ciric 

et al., 2017).  

Answer 3.1: We thank the Reviewer for noticing the lack of preprocessing steps described. In the 

revised version manuscript, we have added the complete fMRI pre-processing pipeline, including the 

description of noise and motion regression and provided a complete description of every 

preprocessing step. Please refer to fMRI pre-processing subsection of Methods, on page 19. 

 

Comment 3.2: Projecting the dimensions back into brain space would be helpful for the reader to 

contextualize the manifolds - which are by nature quite abstract - e.g., what the authors have done 

in Figure 1E.  

Answer 3.2: We thank the Reviewer for this comment. We would like to point out that due to the 

nature of the nonlinear dimensionality reduction, the mapping function from the high- to the low-

dimensional space is not available. Therefore, it cannot be reversed to project the data-points back 

into the high-dimensional space. Unlike linear methods like PCA, these methods reveal directly the 

low dimensional coordinates of the data points, and the nonlinear mapping is implicitly applied in the 

estimation of these coordinates but the mapping function is not explicitly available as it is in linear 

methods such as PCA. For this reason, in Figure 1E we illustrate how phase coherence changes along 

the manifold to illustrate the steps our method takes to estimate the intrinsic manifold from the high 

dimensional fMRI data. We have described this aspect of our method in the revised version of the 

manuscript (see page 22).  

 

Comment 3.3: The paper has a few typos, e.g., page 21 paragraphs regarding SVM, ‘splitting’ 

should probably be ‘split’, ‘resting’ should probably be ‘remaining’. ). 

Answer 3.3: We thank the Reviewer for pointing this out. The typos are corrected in this revision.  

 

Comment 3.4:  I am wondering why the predictions were on a stage-by-stage basis and not all sleep 

categories in a single classification model. Wouldn’t an ‘all in one’ analysis demonstrate the point 

in a simpler fashion? (which could have the current analyses as follow-ups) 



Answer 3.4: We thank the Reviewer for this important point. We agree with the Reviewer that an 

additional all in one sleep stage type of classification would be adequate in order to be able to 

demonstrate brain decoding in a simpler fashion. In the revised version of the manuscript, we have 

included this additional “all in one” classification analysis, explained in detail in methods (see page 

23) and reported the results of decoding on page 7.   

 

Please also refer to our comment to Reviewer 2.3.  

 

 

Comment 3.5: Relatedly, is it possible that different features contributed to the classification 

accuracy depending on the given contrast? Is it possible to, for example, plot the SVM weights to 

see which features contributed?  

Answer 3.5: We thank the Reviewer for this comment. We have thought about exploiting this 

information. The features considered (Eigenvectors of the CCD graph Laplacian) indicate gradients of 

low variability among temporal points. These features do not explicitly contain spatial information 

about brain maps, but only temporal relationships among data-points. After observing the low-

dimensionality of the intrinsic manifold, it seemed only 7 dimensions contribute significantly in the 

decoding. This contribution is further explained by the dimensionality analysis in Figure 3L,N.  

 

Comment 3.6: The authors compare the current method to PCA - another method used in fMRI to 

identify low dimensional states. Would a more appropriate ‘null’ model be data that is high 

dimensional?  

 

Answer 3.6: We thank the Reviewer for this important comment. We agree that a high-dimensional 

space is a very appropriate null model to test that data is low-dimensional. Following the Reviewer’s 

suggestion, in the revised version of the manuscript, we now use PCA as a null model for linearity (in 

the sleep stage differences), and high dimensional data (with 90 parcels AAL parcellation the original 

dimensionality of the data is 90). Specifically, in the revised version, we tested whether the intrinsic 

manifolds were low dimensional by comparing the classification accuracies in manifolds of increasing 

dimensionality, and by comparing them against the classification in the original high dimensional 

data. Our results indicate that from d=7 to the original dimensionality (90), adding new dimensions in 

the intrinsic manifold does not improve the classification accuracy (for all dimensions d=>7, p-

value>0.05, Wilcoxon Rank-sum two-sided test, corrected for multiple comparisons via FDR). These 

results indicate that the different sleep stages can be optimally decoded from the intrinsic manifolds 

with dimensionality d=7. A detailed explanation has been included in the revised version of the 

manuscript (see page 8).  



Reviewers' Comments: 

 

Reviewer #1: 

Remarks to the Author: 

No more questions or suggestions from me. 

 

Congratulations to the authors. 

 

 

 

Reviewer #2: 

Remarks to the Author: 

The authors have done a good job in revising the paper. 

 

 

 

Reviewer #3: 

Remarks to the Author: 

The authors have adequately addressed all of my concerns. Congratulations on a nice paper. 


