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Abstract
We present an immersed boundary method for the solution of elliptic interface prob-
lems with discontinuous coefficients which provides a second-order approximation of
the solution. The proposedmethod can be categorised as an extended or enriched finite
element method. In contrast to other extended FEM approaches, the new shape func-
tions get projected in order to satisfy the Kronecker-delta property with respect to the
interface. The resulting combination of projection and restriction was already derived
in Höllbacher and Wittum (TBA, 2019a) for application to particulate flows. The
crucial benefits are the preservation of the symmetry and positive definiteness of the
continuous bilinear operator. Besides, no additional stabilisation terms are necessary.
Furthermore, since our enrichment can be interpreted as adaptive mesh refinement,
the standard integration schemes can be applied on the cut elements. Finally, small cut
elements do not impair the condition of the scheme andwe propose a simple procedure
to ensure good conditioning independent of the location of the interface. The stability
and convergence of the solution will be proven and the numerical tests demonstrate
optimal order of convergence.

Mathematics Subject Classification 35A15

1 Introduction

Many applications in engineering and biology involve immersed interfaces moving in
time within the computational domain. Examples include electrostatics, heat conduc-
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tion, diffusion problems and elasticity. The application of our interest is the motion of
incompressible immiscible fluids.

Interface problems can be discretised using fitted or unfitted finite element spaces.
In a fitted approach, the variational formulation is based on the continuous bilinear
form and therefore inherits all its properties. Especially stability and optimal order
of convergence can be guaranteed. However, in case of moving interfaces, the mesh
generation process becomes expensive.

In order to avoid expensive re-meshing the immersed boundary method (IBM) has
become a popular method to ease the representation of the geometry by allowing the
interface to cut the elements. The original IBMwas formulated byPeskin [28] for fluid-
structure interactions. New Lagrangian points (LP) are defined along the interface.
Since the singular forces arising at the interface can be understood as delta functions,
Peskin introduces suitable discrete delta functions (DDF) for the Lagrangian degrees
of freedom which spread the forces into the surrounding domain. The discontinuity
will be smoothed out and therefore one drawback is a minor accuracy. In [30,31] a
generalized IBM with higher order approximation is developed. The discrete delta
function acts as a link between the moving interface and fixed Eulerian grid. Since
it employs explicit expressions for the body force, it is categorized into the class of
direct forcing schemes and can be interpreted as fitted method. A good overview is
given in [25].

An alternative approach are unfitted finite elements. As for the IBM of Peskin,
the Eulerian mesh does not resolve the interface. By introducing local modifications,
enrichments or extensions of the finite element spaces, the features of the interface
can be approximated properly. The most prominent example is the extended finite
element method (XFEM) first introduced by Moës et al. [26] to model the disconti-
nuities without adapting the grid to the interface. In [13,29] XFEM is applied to flow
problems in order to model the discontinuity of the pressure. In the recent work of
Kirchhart et al. [22] theoretical analysis of the XFEM is applied to the interface Stokes
problem. Other developements include the generalized finite element method [21] and
the unfitted Nitsche method by Hansbo and Hansbo [15], also called cut finite element
method (CutFEM). In contrast to the early XFEMapproaches slightly different enrich-
ment functions are utilised for the description of the discontinuity at the interface and
Nitsche’s method, cf. [27], is applied to impose the interface conditions weakly. Fur-
ther penalty terms need to be introduced to stabilize the system. CutFEM was first
derived for the elliptic interface problem by Hansbo and Hansbo [15], later Becker et
al. [3] and Hansbo et al. [17] developed the method for a Stokes interface problem and
in [6,16] the weak coupling approach was applied to fluid-structure interaction. In [6]
the problem of pressure oscillation at the interface is treated by introducing penalty
terms. A drawback of these methods is that the structure of the operators becomes
more complicated due to additional enrichment. Furthermore, some enrichments pro-
duce ill-conditioning due to “small” cut elements for which the volume on one of
the parts of the cut element gets very small and equally the support of the associated
shape function. Additional penalisation terms yields operators which differ from the
original elliptic operator. Since in the literature the terms XFEM and CutFEM are not
perfectly distinguishable we will use the term CutFEM because we mainly refer to
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A sharp interface method using enriched finite elements… 761

the extended finite element spaces as defined in [15]. One focus of this article is the
comparison of differently modified local finite element spaces.

The immersed boundary method derived in this work lies in-between fitted and
unfitted methods. After enriching and modifying the local finite element spaces in a
proper way the proposed spaces on cut elements are conforming to the interface. This
resembles an enrichment by discrete delta-like functions. But in contrast to Peskins
approach they can be embedded into the function space of theEulerianmesh. The result
is a fittedmethod and the essential benefit of the enrichment is that desireable porperties
of the continuous bilinear form like symmetry and positive definiteness are preserved.
In particular, stability results can be derived easily without the necessity to introduce
additional penalisation terms. Furthermore, our enrichment can be interpreted as a
standard Galerkin scheme on an adaptively refined mesh. This perspective enables
to apply the standard integration schemes which simplifies the assembling procedure
on cut elements. Finally, a good condition of the discrete system can be provided
by slight changes dependent on the location of the interface. But in contrast to other
extended methods, where the conditioning is impaired on small cut elements, our
enriched spaces features a natural stabilisation on cut elements with small support
of the shape function. Our enrichment can be summarized as projection onto a space
which inherits the interface under the condition to form a partition of unity (PU) which
yields a reduction of the shape functions surrounding the interface. The projection and
the reduction are therefore the key ingredients of the proposed immersed boundary
method.

In an earlier work, c.f. [19], the construction of the proposed enrichment spaces
were derived via a vertex-centered finite volume method (FVM). For the formulation
of a vertex-centered FV (finite volume element method, boxmethod) usually a second,
dual mesh is introduced. Using first-order trial functions on the primal mesh (given
triangulation) andpiecewise constant test functions on the corresponding dualmesh the
FVschemecanbe formulated in variational form (Petrov–Galerkinmethod). Therefore
we will further refer to it as a Petrov–Galerkin finite volume method (PG-FVM).
Expoliting the Petrov–Galerkin interpretation of this method enables the development
of the associated enriched finite element scheme. As a consequence, our method is
applicable to FE schemes and to vertex-centered FV schemes. It should be emphasized
that another commonFVdiscretisation, the so-called cell-centered FVscheme, follows
another approach. The technique which will be derived in this paper refers to the
vertex-centered scheme. Since one focus of this article is the comparison of differently
modified local finite element spaces,we emphasize that also theDDFcanbe interpreted
as an extension of the function spaces used for the approximation of the solution.

The paper is organized as follows: In Sect. 2 we introduce the enriched spaces
for a general elliptic interface problem of diffusion with discontinuous coefficients,
since it likewise reflects many interface problem of interest. A suitable finite element
(projFEM) andfinite volume scheme (projFVM)will be derived. In Sect. 3we compare
the spaces with those of CutFEM and DDF-IBM. In Sect. 4 the properties of the
enriched spaces are described inmore detail. In Sect. 5 consistency, symmetry, stability
and convergence of the scheme are proven. Finally, we present numerical results in
Sect. 6 for the projFVM.
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Fig. 1 Computational domain
with embedded interface Γ

2 Mathematical formulation

For the formulation of our immersed boundary method we consider the elliptic equa-
tion with discontinuous coefficients

−∇ · (α∇u) = f in Ω1 ∪ Ω2, (1)

[α∇u · n] = g on Γ , (2)

[u] = 0 on Γ , (3)

u = 0 on ∂Ω, (4)

on a polygonal and convex domain Ω := Ω1 ∪ Ω2 ∪ Γ ⊂ R
d with embedded,

sufficiently smooth interface Γ = ∂Ω1 ∩ ∂Ω2 (Fig. 1). The jump condition on Γ is
given by [α∇u ·n] := (α1∇u1 −α2∇u2) ·nwith normal vector n on Γ pointing from
Ω1 toΩ2.We assume α j > 0 to be constant in each subdomainΩ j , j = 1, 2.Wewant
to emphasize that, with regard to the applications of interest, we focus on moderate
jumps of the coefficients. Additional treatment might be necessary for α1/α2 � 1 or
� 1. Further, we assume that the interface is sufficiently resolved by the mesh. In
[7,15,29] different assumptions are stated to similarly assure this property.

With the standard Sobolev spaces Hk(Ω) and Hk
0 (Ω) with norm ‖ · ‖k,Ω we

formulate the weak formulation as follows: Find u ∈ H1
0 (Ω) s.t.

a(u, v) = ( f , v)0,Ω + (g, v)0,Γ ∀ v ∈ H1
0 (Ω). (5)

with bilinear form a(u, v) := (α∇u,∇v)0,Ω with respect to the coefficient α and
standard L2(Ω) scalar product (·, ·)0,Ω (Fig. 1).

We further introduce the Sobolev space of functions

H2(Ω1,2) := {v ∈ H1
0 (Ω) : v|Ωi ∈ H2(Ωi ), i = 1, 2}

and according norm

‖ · ‖22,Ω1∪Ω2
:= ‖ · ‖22,Ω1

+ ‖ · ‖22,Ω2
.

Assumig f ∈ L2(Ω) and g ∈ H1/2(Γ ) the problem (5) has a unique solution u ∈
H2(Ω1,2), see [15]. In the next section we shall introduce appropriate discrete spaces
to solve (5).
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In [19] we derived an enrichment of the finite element spaces on cut elements
which yields conforming finite elements w.r.t. the interface. Therein the scheme was
applied to particulate flows. For this application the correct discretisation of the forces
as a vectorial measure acting at the particle interface is crucial. The main motivation
therefore was the consistency of the gradients of the shape functions instead of the
their values. In this paper, we want to apply this gradient-consistent enrichment to the
simpler Laplace equation with embedded interface. For this application, the second
feature of the projected spaces being a fitted enrichment will be more important. We
also compare the proposed enrichement with the extended spaces of the CutFEM and
the DDF-IBM of Peskin.

2.1 Locally enriched finite element spaces

Wewill derive a conformingfinite element formulationof the interface problemalready
defined for the application to particulate flows in [19]. Therefore, we define enriched
spaces on the elements cut by the interface.

We first introduce some notations for quantities related to the mesh and the
immersed interface. Let Th be a shape-regular, simplicial triangulation of Ω and
Γ ⊂ Ω the interface which usually does not coincide with the boundary of the
elements of Th . Let Xh,Γ := ⋃

T∈Th
∂T ∩ Γ be the set of all intersecting points of Γ

with the edges of elements. The (d-1)-dimensional convex hull of all points of Xh,Γ

yields a piecewise planar approximation Γh of Γ . Let further Ω1,h and Ω2,h be the
corresponding subdomains ofΩ satisfying ∂Ω1,h ∩∂Ω2,h = Γh . We introduce the set
of all cut elements Th,Cut := {T ∈ Th : T ∩Γ �= ∅}. By means of Ω1,h and Ω2,h all
cut elements T ∈ Th,Cut can be decomposed into the parts lying on either side of Γh ,
i.e. T 1

h,Cut := {T ∩ Ω1,h : T ∈ Th,Cut} and T 2
h,Cut := {T ∩ Ω2,h : T ∈ Th,Cut},

respectively (see Fig. 2). Based on the sub-elements of T 1
h,Cut and T 2

h,Cut we define
the new grid

T ∗
h := ( Th \ Th,Cut ) ∪ T 1

h,Cut ∪ T 2
h,Cut.

T ∗
h can be interpreted as a special non-regular refinement of Th with respect to Γ .
In order to construct appropriate function spaces we further introduce some nota-

tions for the different set of vertices. Let Xh and X ∗
h be the set of all vertices

of Th and T ∗
h , respectively, and Xh,Cut the vertices of all cut elements. The set

of vertices Xh,Cut can be decomposed into the set Xh,Γ of vertices on Γh and
those being part of Xh and belonging to either side Ω j , j = 1, 2, of the inter-
face. This yields Xh,Cut = Xh,Γ ∪ X 1

h,Cut ∪ X 2
h,Cut, with near-interface vertices

X j
h,Cut := {x ∈ Xh,Cut \ Xh,Γ : x ∈ Ω j }, j = 1, 2. By numbering all vertices of

the refined mesh T ∗
h we can assign indices to different subgroups in accordance to the

described groups of vertices. Following the notations for the vertices we denote the
corresponding set of indices by Ih , I∗

h , Ih,Cut, Ih,Γ , I1
h,Cut and I2

h,Cut. This yields

for example Ih ⊂ I∗
h . For comprehensive notation we equip the additional vertices

on the interface Γh with a star, i.e. Xh,Γ = {x∗
k}k∈Ih,Γ

, see Fig. 2.
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764 S. Höllbacher, G. Wittum

Fig. 2 Cut element T = T1 ∪ T2:
T1 ∈ T 1

h,Cut, T2 ∈ T 2
h,Cut,

x∗
k ∈ Xh,Γ , xi ∈ X 1

h,Cut

Following standard finite element theory we define a basis {ϕi }i∈Ih of nodal func-
tions ϕi on Th satisfying ϕi (x j ) = δi j , x j ∈ Xh . Let Vh denote the according finite
element space. For ϕi being the piecewise linear functions with respect to Th it is
Vh = P1(Th). Based on T ∗

h we can similarly define a nodal basis {ϕ∗
i }i∈I∗

h
. The

resulting enriched finite element space will be denoted by V∗
h . It should be noted that

T 1
h,Cut and T 2

h,Cut will contain not only triangles or tetrahedrons, but also quadrilat-
erals or hexahedrons, prisms and pyramids, respectively (see Sect. 4.3 for a detailed
description of considered elements). As a consequence, the enriched space V∗

h on T ∗
h

will contain not only linear but also multi-linear shape functions.

Remark 1 (Non-extended enrichment of finite element spaces) We emphasize that the
described enrichment does not lead to an extension of the domain across the boundary,
since it introduces the degrees of freedom on the interface.

2.2 projFEM: a conforming finite element formulation of the interface conditions

We define a slightly adapted coefficient αh |Ω j,h := α j , j = 1, 2. In the case of
the piecewise constant coefficient αh(x) the finite element bilinear form aFE(u, v) :
V∗
h × V∗

h → R of the left hand side of (1) reads

aFE(u, v) := (αh∇u,∇v).

We can directly write down the projected FEM (projFEM) as follows: Find u ∈ V∗
h

s.t.
aFE(u, v) = ( fh, v) + (g, v)Γ ∀ v ∈ V∗

h , (6)

with linear operators ( fh, v) := ∫
Ω

fh v dx and (g, v)Γ := ∫
Γ
g v ds, v ∈

V∗
h . Let fh onΩ j,h be some appropriate approximation to f onΩ j , j = 1, 2, satisfying

| ( f , vh) − ( fh, vh) | ≤ Ch ‖ vh ‖0,Ω1∪Ω2 for all vh ∈ Π(V∗
h ). In contrast to αh the

interface condition (g, vh)Γ will be evaluated along the original interfaceΓ and not be
replaced by Γh . The resulting finite element scheme is a Galerkin formulation on the
entire domain Ω with respect to the enriched space V∗

h and additional right hand side
(g, v)Γ . We emphasize that testing with ϕ∗

k ∈ V∗
h with k ∈ Ih,Γ yields the following

kind-of-weak form of the interface condition (2):

aFE(u, ϕ∗
k ) =

∫

Ω

αh∇u · ∇ϕ∗
k dx = ( fh, ϕ

∗
k ) + (g, ϕ∗

k )Γ , k ∈ Ih,Γ . (7)
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2.3 projFVM: a conforming finite volume formulation of the interface condition

We now apply the enriched space V∗
h in order to solve the interface problem in the

PG-FV formulation. In [19] we proceeded in inverse direction and started with the
vertex-centered PG-FV formulation in order to derive the enriched finite element
spaces. This illustrates nicely, that because of their close relation either direction can
be appropriate, depending on the purpose and application.

Choosing different trial and test spaces yields so-called Petrov–Galerkin schemes.
The choice of piecewise constant test functions introduces additional boundary inte-
grals in the weak formulation (as in the context of DG schemes). As a consequence,
the resulting Petrov–Galerkin scheme is a finite volume formulation balancing along
the according boundaries. Application of the enriched space V∗

h finally yields the
following projected finite volume formulation (projFVM): Find u ∈ V∗

h s.t.

aFV(u, v) = ( fh, v) + (g, v)Γ ∀ v ∈ V∗
h, (8)

with bilinear form

aFV(u, v) := −
∑

i∈I∗
h

∫

∂Bi
αh∇u · n v ds,

a set of so-called control volumes B∗
h := {B∗

i }i∈I∗
h
and the function space of piecewise

constants on each control volume B∗
i ∈ B∗

h defined as

V∗
h := {v ∈ P0(B∗

h) : v|∂Ω = 0 }.

The control volumes w.r.t Th will be denoted by Bi accordingly. We emphasize that
for a given simplicial mesh Th the set Bh is required to form a partition of the domain
Ω , but not necessarily is a simplicial decomposition or even identical with Th . In
the case of the vertex-centered PG-FVM used in this work each Bi is constructed
around the vertex xi ∈ Th by connecting the barycenters of all neighbouring edges,
faces and volumes to a convex hull enclosing xi (see Fig. 3). The indicator functions
χi (x)|Bi ≡ 1, χi (x) ≡ 0 else, for all Bi ∈ Bh form a basis of the test space Vh and by
construction we can define a bijective mapping Π : Vh → Vh , Π(ϕi ) := χi between
the basis of the Galerkin and Petrov–Galerkin test spaces. Analogously, we can define
the mapping Π : V∗

h → V∗
h , Π(ϕ∗

i ) := χ∗
i between the enriched test spaces.

The standard control volumes related to the original mesh Th are depicted in Fig. 4a
and those with respect to T ∗

h in Fig. 4b. We emphasize that for xi ∈ X j
h,Cut ⊂ Xh ,

j = 1, 2, the support of the according shape functions ϕ∗
i gets reduced to the cut parts

T j
h,Cut, j = 1, 2 of an element and therefore the related B∗

i gets reduced accordingly
(compare the colored control volumes in Fig. 4a and b). Consequently, the partition
B∗
h contains the additional interface-enclosing control volumes B∗

k associated to the
additional vertices x∗

k ∈ Xh,Γ satisfying Γ ∩ Bi �= ∅, as depicted shaded in grey in
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766 S. Höllbacher, G. Wittum

Fig. 3 Vertex-centered PG-FVM
(box method [1]) with
barycentric control volume Bi
associated to the vertex xi

Fig. 4b. By means of the bijective mapping Π it is

dim(Π(V∗
h ) ) = dim(V∗

h ).

Consequently, the enrichment by the grey control volumes is compatible with the
enrichment V∗

h of the finite element test space. We can interpret the space of piecewise
constant functions Π(V∗

h ) as the enriched test space for the PG-FVM with respect to
the interface Γ .

In analogy to (7) we can state: Testing with χ∗
k ∈ Π(V∗

h ) with k ∈ Ih,Γ yields the
following kind-of-weak form of the interface condition (2):

aFV(u, χ∗
k ) =

∫

∂B∗
k

αh∇u · n ds = ( fh, χ
∗
k ) + (g, χ∗

k )Γ k ∈ Ih,Γ . (9)

Therefore, the pointwise interface condition (2) is replaced by equilibrated fluxes
across the boundary of the control volume B∗

k , enclosing the part Γ ∩ B∗
k of the

interface, as depicted in Fig. 4b

2.4 Relating the Galerkin FEM and the PG-FVM

For the special choice of control volumes as drawn in Fig. 3 the resulting Petrov–
Galerkin scheme is known to satisfy

∫

∂Bi∩T
∇u · n ds = −

∫

T
∇u · ∇ϕi dx, (10)

on all simplicial elements T ∈ T ∗
h with accordingly piecewise linear functions

u, ϕi ∈ P1(T ∗
h ) and normalized test function ϕi (xi ) = 1. This identity was first

proven by Bank and Rose [1] for the two-dimensional case and later also for arbitrary
dimension byChen [8], Xu andZou [35] andHackbusch [14]. Therefore, for piecewise
linear spaces on simplices it reproduces the stiffness matrix for the Laplace (assum-
ing piecewise constant coefficients on each triangle). We write down the following,
generalized identification between aFE : V∗

h ×V∗
h → R and aFV : V∗

h ×Π(V∗
h ) → R:

aFE(u, v) = aFV(u,Π(v)) + Rest(h) ∀ u, v ∈ V∗
h , (11)
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Th.(a) Control volumes w.r.t. (b) Control volumes w.r.t. T ∗
h .

Fig. 4 Barycenter control volumes a for the original triangulation Th and b for the enriched triangulation
T ∗
h . It is Bi = supp( Π(ϕi )) for xi ∈ Xh , B

∗
i = supp( Π(ϕ∗

i )) for xi ∈ X 1
h,Cut and B∗

k = supp( Π(ϕ∗
k ))

for x∗
k ∈ Xh,Γ

with Rest(h) = 0 due to (10) in the case of the original, simplicial mesh Th . In [36] the
estimate Rest(h) = O(h2) was derived for rectangular meshes. The only requirement
is an approximation of α(x) by a piecewise constant representation. In the works of Ye
[36] and Chou andKwak [9] that strong relation serves for the analysis of finite volume
schemes for the Stokes equations. In [19,20] we similarly exploited this identification
for the formulation of the FEM for particulate flow.

The identification (11) then yields aFE(u, ϕi ) ≈ aFV(u, χi ) for all i ∈ I∗
h and

with regard to (7) and (9) we can particularly state for all k ∈ Ih,Γ that

∫

ωk

αh∇u · ∇ϕ∗
k dx ≈

∫

∂B∗
k

αh∇u · n ds k ∈ Ih,Γ ,

with equality on simplicial elements. In other words, testing on a volume by integrating
on the supportωk := supp(ϕ∗

k ), k ∈ Ih,Γ can be replaced by balancing along a surface
by integrating along the boundary ∂B∗

k of that special interface-enclosing control
volumes of the PG-FVM in (8). We emphasize the relation B∗

k ⊂ ωk .
We want to mention the slight difference in the right hand sides in (7) compared to

(9). For simplicial meshes we get identity of the right hand sides for f ∈ P0(Th), see
e.g. [4], but in general both may differ.

Due to the construction of x∗
k ∈ Xh,Γ the associated B∗

k in particular satisfy the
relation

Γ ⊂
⋃

k∈Ih,Γ

B∗
k ,

independent of the original grid Th , see also Fig. 4b. Finally, condition (3) is satisfied
as well, since the shape functions ϕ∗

k , k ∈ Ih,Γ are continuous across the interface. We
emphasize that their gradients have a jump along the discrete interface Γh ∩ B∗

k , not
along Γ and together with the adaption of αh the solution inherits the discontinuous
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gradient across Γh instead of Γ . In Sect. 5 we prove that these adaptions are still
consistent.

3 Comparison of projFEM/projFVMwith CutFEM and DDF-IBM

Since the immersed boundary method derived in this work shares ideas of the IBM
by Peskin [28] as well as the extended finite element techniques of CutFEM we
will compare the according function spaces. First, we emphasize the following: A
DDF-IBM introduces new nodes into the system. But since explicit expressions of
the boundary conditions are formulated as force terms, these nodes are not treated as
independent degrees of freedom. In contrast, XFEM techniques as CutFEM introduce
additional shape functions on the cut elements and thereby new degrees of freedom.
Since the shape functions are commonly defined w.r.t. the underlying Eulerian grid,
the new degrees of freedom are not located directly on the immersed interface but the
domain gets extended across the interface. Main motivation of both strategies is to
maintain the standard discretisation scheme on the background mesh.

For a proper comparison with CutFEM and DDF-IBM we construct the enriched
space V∗

h anew and apply three distinct steps starting with the original Eulerian space
Vh .

Step 1—Projection Define the set of new nodes

Xh,Γ := X ∗
h \ Xh = {x∗

k }k∈Ih,Γ

as Lagrangian points (LP) of Th with respect to Γ (see the blue vertices on Γ in Fig.
5a). The resulting discrete interface Γh defines a suitable projection of Γ onto the grid
Th .

Step 2—Embedding For all k ∈ Ih,Γ define functions δk associated to each point
xk ∈ Xh,Γ forming the Lagrangian space LΓ := span{δk}k∈Ih,Γ

. For the sake of
stability and consistency it is reasonable to embed the Lagrangian space LΓ into an
appropriate Eulerian (finite element) space with respect to Th . Since Xh,Γ is the set of
intersections of Γ with the edges of triangles T ∈ Th , the definition

δk(x) := ϕ∗
k (x) ∈ Pk(T ∗

h ), k ≥ 1

yields a natural embedding LΓ ⊂ V∗
h into the enriched V∗

h which differs from the
original space Vh only on cut elements.

Step 3—Reduction We request that the enriched space forms a partition of unity
(PU) (see also Sect. 4, Remark 2). Therefore, the basis functions ϕi ∈ Vh in the near-
interface nodes xi ∈ X j

h,Cut, j = 1, 2, which share support with the functions δk ,
need to be projected onto corresponding shape functions with respect to the adapted
mesh T ∗

h . We end up with reduced shape functions satisfying ϕ∗
i (x)|Ω j,h ≡ 0 for all

i /∈ I j
h,Cut, j = 1, 2, see Fig. 7a. We denote by V−

h := span{ϕ∗
i }i /∈Ih,Γ

the reduced
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x∗
k ∈ Xh,Γ xi ∈ Xh(a) projFEM: (b) XFEM: (c) DDF-IBM: yi ∈ Γ

Fig. 5 Newly defined nodes (blue) on a cut element: a projFEM: new DoFs x∗
k on the intersection of

interface and edge. b XFEM: new DoFs xi in the vertices across the interface (= doubling). c DDF-IBM:
Nodes yi equidistantly distributed along the interface

ϕ∗
k ∈ LΓ ⊂ V∗

h. ϕi ∈ R1(Vh).(a) projFVM: (b)XFEM: (c)DDF-IBM: δi ∈ LΓ .

Fig. 6 Different local spaces on a cut element:aprojFEM/projFVM:Projected and embedded shape function
ϕ∗
k . b XFEM: Extended and restricted shape function ϕi |Ω1,h . c DDF-IBM: discrete delta function δi as

force source

Eulerian spacewith respect to Th and Γ . By means of the Lagrangian shape functions
δk ∈ LΓ and the reduced shape functions ϕ∗

i ∈ V−
h we finally define the enriched

finite element space as the direct sum

V∗
h = V−

h ⊕ LΓ .

Remark that for the reduced space we in general obtain V−
h �⊂ Vh due to the bilinear

cut elements.
Based on these three sub-steps we can compare our approach with two common

immersed interface methods.

3.1 XFEM: embedding without reduction and projection

In the CutFEM approach of Hansbo and Hansbo [15] the discontinuity across Γ gets
introduced into the local space of each cut element by doubling its degrees of freedom,
see Fig. 5b. This is equivalent to extending each domain Ω j across Γ - presuming
the smoothness of the inner boundary. Subsequently, the two function spaces are
restricted onto Ω1 and Ω2 which reconstructs the discontinuity. The doubling enables
the retainment of the shape functions on the original mesh Th and we obtain the locally
extended space by

Vexth := R1(Vh) ⊕ R2(Vh),
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with the according restriction operators R j : L2(Ω) → L2(Ω j ), j = 1, 2, see
Fig. 6b. By construction, the space Vexth forms a PU, which is important to assure
mass conservation, see Remark 2. However, the drawback of that construction is
an asymmetry on the restricted elements R j (T ). Re-symmetrisation and stabilisation
become necessary. Besides that, the gradient near the interface will remain unchanged
independent of the location of the interface, see also Fig. 7b. For the detailed discussion
of that observation we refer to Sect. 4.1.

3.2 DDF-IBM: Projection without embedding and reduction

In common DDF-IBM the unadapted discrete scheme is employed on the background
Eulerian grid. In addition, LPs {yi }Ni=1 are introduced, usually distributed equidistantly
on the immersed boundary, see Fig. 5c, together with the associated discrete delta
functions {δi }Ni=1, see Fig. 6c. Defining the Lagrangian space LΓ := span{δi }Ni=1 of
all discrete delta functions we get a representation of the whole space as

VDDFh := Vh × LΓ .

We want to emphasize that the LPs commonly do not serve as distinct degrees of
freedom but as interpolation functions for prescribed forces which get distributed
from the interface onto the Eulerian grid points. This technically yields VDDFh = Vh .
Moreover, the discrete delta functions are not necessarily chosen in accordance with
the shape functions on the Eulerian grid, i.e. δi /∈ Vh .Most DDF-IBMapproaches even
do not define shape functions on the Eulerian grid since DDF-IBM is often applied
for finite difference schemes on cartesian grids. The embedding into a common space
is not intended. In addition, the set of functions Vh ×LΓ does mostly not form a PU.
The DDF are defined to provide a good approximation of the forces rather than of the
solution itself.

ϕ∗
i ∈ V−

h .(a) Reduced shape fct (b) Restricted shape fct ϕi ∈ R1(Vh).

Fig. 7 Shape functions for the near-interface vertices and its gradients (red arrow): a Reduced shape
function with steeper gradients and pointing normal to the immersed interface; b Restricted shape function
with unchanged gradient and pointing normal to the opposite edge of the according DoF
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4 Properties of the enriched space

The projection and reduction step are the building blocks for the construction of
T ∗
h when deriving it from the originally given mesh Th . The direct consequence is

the Kronecker-delta property of the enriching shape funcitons w.r.t. the interface. Its
implications for the properties of the discrete schemewill be explained in the following.

Furthermore, the enriched spaces by construction form a partition of unity. In par-
ticular, projection and reduction are mutually dependent when claiming the partition
of unity property, i.e. projection entails reduction and vice versa. The following remark
emphasizes the importance of requesting partition of unity.

Remark 2 (Partition of Unity) The PU-property

∑

i∈I∗
h

ϕi (x) = 1 ∀x ∈ Ω

is a necessary and sufficient condition to guarantee mass conservation, see e.g. [23].
The standard finite element shape functions defined on the original mesh Th satisfy
the PU property. After the introduction of the shape functions in the projected LPs the
reduction step becomes necessary in order to preserve the PU property.

4.1 The Kronecker-delta property: consistency of the gradients

For application to particulate flows in [19] the construction of the enriched spaces
by means of projection and reduction was driven by the requirement of consistent
gradients of the shape functions near the interface. In the context of fluid problems
directions of forces at the interface play a crucial role and these were shown to be
related to the gradient of the test space. For more details we refer to [19].

4.2 The Kronecker-delta property: natural stabilisation by steeper gradients

With regard to scalar elliptic problemswewant to point out the impact of the projection
and restriction on the stability. Since the enriched spaces can be interpreted as a
special non-regular, interface-adapted refinement, the resulting finite element spaces
are conforming. As a consequence, the formulation is based on the continuous bilinear
formand inherits its nice properties: First, the symmetry ismaintained andnot impaired
by additional penalisation terms. Second and more important, the stability of the
bilinear operator can be easily guaranteed. In fact, for good approximation properties
and conditioning the shape regularity of T ∗

h is the only criterion that needs to be
ensured, see Sect. 5.1. And in particular, small cut elements are not an issue. If the
area of one part of the cut element is small, the small support of the shape function
results in an almost-dependency between the degrees of freedom if the enrichment is
based on shape functions w.r.t. to the original mesh. In contrast, V∗

h provides a natural
stabilisation on small cut elements because of its gradients: For linear finite elements
it is |∇ϕi |T = 1/hi (with hi being the height of T w.r.t. xi and the opposite edge) and
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therefore they scale inversely proportional to the area of the element. For illustration,
we consider the two dimensional case of a triangle T ∈ Th of the original mesh. The
local coupling matrix A ∈ R

3×3, with Ai j := a(ϕi , ϕ j ), is given as follows:

a(ϕi , ϕ j ) =
∫

T
∇ϕi (x) · ∇ϕ j (x) dx = |T | |∇ϕi (x)| |∇ϕ j (x)| cos(α)

= 0.5 ei/h j cos(α).

Considering the simplified case that the interface cuts the two edges of T in the same
relation, i.e. Γh || ei for one i ∈ {1, 2, 3}. For the corresponding objects on the cut part
T̃ this yields ẽi = λei and h̃ j = λh j for some 0 < λ < 1. Hence, it is ẽi/h̃i = ei/hi
and Ãi j = Ai j . Therefore, the condition of the matrix is not impaired because of small
support. For the general case we still get Ãi j ≈ Ai j . Therefore, the shape regularity of
a mesh is the only condition for the discrete system to be well-conditioned. A criterion
for a suitable adaption of the scheme will be derived in Sect. 5.1.

4.3 Existence of a local finite element space on cut elements

Appropriate nodal shape functions for x∗
k ∈ Xh,Γ with its support on the elements

T ∈ T j
h,Cut, j = 1, 2, need to be provided. For piecewise linear finite element spaces

Vh := P1(Th) on simplicial triangulations suitable local spaces can be defined quite
easily. In two dimensions the simplex is a triangle which gets cut into two triangles
or a triangle and a quadrilateral (see Fig. 5a) on which correspondingly a linear and
bi-linear ansatz exists, see Fig. 6a. In three dimensions the simplex is a tetrahedron
and gets cut into combinations of tetrahedra, prisms and pyramids, see Fig. 8. For all
these elements local shape functions of second order exist. The details on the local
spaces used for our computations can be found in [32]. Consequently, for Tj ∈ T j

h,Cut,
j = 1, 2, we get the optimal approximation error [5]

‖∇k(u − Ihu) ‖0,Tj ≤ c h2−k
Tj

‖∇2u ‖0,Tj , k = 0, 1, (12)

with constant c > 0 and hTj being half the diameter of the triangle Tj .
Our approach certainlywill affordmore effort for the definition of suitable local spaces
on the cut elements, if the mesh contains also quadrilaterals or octahedrons in two or
three dimensions, respectively. For all considered applications the simplicial grid was
appropriate.

4.4 Cut elements as new reference elements

Because of the reduction step the discretisation w.r.t. the original mesh Th can not be
applied for the near-interface nodes. However, by the use of reference elements for the
assembling process the usual assembling can be applied: Algorithms for finite element
schemes on unstructured meshes usually exploit the possibility to map each (unstruc-
tured) element of the mesh onto a reference element. The assembling of the discrete
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the interface; 3
edges (top) and 4
edges (bottom) cut
by the interface.

interface; 2 oppo-
site edges cut by
the interface.

(a) No vertex on (b) 1 vertex on the (c) 2 vertices on the
interface; opposite
edge cut by the in-
terface (top); 3 ver-
tices on the inter-
face (bottom).

Fig. 8 Different cut elements for d = 3: a–c categorization by the number of vertices and edges cut by the
immersed interface

system therefore depends solely on the coordinates of the corners of an element.
With regard to Sect. 4.3 we can assume that for the sub-elements the discretisation
on the reference element is well defined. As a consequence, the same standard rou-
tines for unstructured elements can be applied to the assembling on each cut element
T ∈ Th,Cut. This simply requires calling these routines twice and with respect to
the corresponding new coordinates. Moreover, we maintain local stencils and optimal
convergence properties as will be shown in Sect. 5.3. We emphasize, that in particular
no special integration rules on the cut elements (due to e.g. restriction and change of
support) need to be defined.

5 Numerical analysis

In this section we will derive theoretical results for the projFEM in (6). Unfortunately,
due to R(h) �= 0 for the space V∗

h , the theoretical results can not directly be transferred
to the projFVM in (8). However, since the enrichedmesh T ∗

h contains only a fewmulti-
linear elements along the interface compared to the global number of elements, it is
reasonable to assume that Rest(h) = O(h2) also holds for the projFVM, provided that
T ∗
h again is shape regular. We therefore already state for the projFVM in (8) that the
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results derived in the following subsections, based on finite element theory, together
with the identification (11) at least allow us to expect a similar convergence behaviour
for the projFVM. The numerical results presented in Sect. 6 apply the projFVM to
elliptic problems and confirm our reasoning.

5.1 Conditioning

In the case of a moving interface the elements of Th can be cut in arbitrary ways.
Consequently, the shape-regularity of the mesh T ∗

h is not guaranteed (i.e. the existence
of a constant κ > 0 independent of the location of the interface, s.t. hT /ρT ≤ κ , with
hT and ρT being the circumcenter and incircle-radius of an arbitrary T ∈ T ∗

h ). That
is a potential source of ill-conditioning of our discrete scheme. In order to preserve
shape-regularity we simply re-define those points x∗

k ∈ Xh,Γ whose distance to a point
on the Eulerian mesh falls below a certain threshold. This way, also the approximation
property will not be impaired. To formulate a suitable criterion for a re-definition we
choose a lower bound D > 0 satisfying D < hmin, with hmin := min{hT : T ∈ Th}
being the minimal circumcenter in the original grid. The re-definition then reads:

∀k ∈ Ih,Γ : If di,k := |xi − x∗
k | ≤ D for xi ∈ Th, re-define x∗

k := xi . (13)

The adapted triangulation T ∗
h satisfies the condition hT /κ ≤ ρT . The proof can be

found in [18]. The resulting discrete interface Γh approximates Γ less accurately.
However, for the choice of D := h2 < hmin, with h being the mean circumcenter
of the given grid, we can conclude that the resulting piecewise planar interface Γh

satisfies
dist(Γh, Γ ) ≤ c h2. (14)

In Sect. 5.3 we will show that the corresponding discrete scheme maintains optimal
approximation order. A higher condition number in favor of a stable solution pro-
cess for the linear system appears to be a valid strategy confirmed by the numerical
simulations in Sect. 6.

In common XFEM approaches the ill-conditioning of the discrete system is sim-
ilarly an issue. But in contrast to the shape-regularity above, already small but
shape-regular cut elements are critical, see Sect. 4.2. There we also explained that the
stabilising effect of the steeper gradients of the projected and reduced shape functions
(which in particular are not defined w.r.t. the original mesh). The Hansbo-averageing
is a general strategy to handle the issue of ill-conditioning due to small support for
the CutFEM spaces. We want to mention it in order to contrast it to the proposed
re-definition in (13):

Remark 3 (Hansbo-averageing) Formulations based on Nitsche’s method [27] intro-
duce an averaging operator {·} to re-weight the shape functions on the cut elements
by

{ϕ} := (κ1ϕ1 + κ2ϕ2)|Γ , ϕ j ∈ R j (Vh), (15)

with weights κ1 and κ2 satisfying κ1 + κ2 = 1 in order to preserve consistency of the
discrete scheme. For Tj := supp(ϕ j ) ∩ T , j = 1, 2, the so called Hansbo-averaging,
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cf. [15], defines κ j := Tj/T . Hence, the weights depend on the size of the relative
area of each sub-element which resembles the parameter di, j in (13). Other weighting
strategies are defined in [17,29,33] likewise depending on the properties of the sub-
elements.

Remark 4 (Neglection vs. Redefinition) A weighting rule which defines κ1 := 0 and
κ2 := 1 in (15) in the case of very small support, i.e. T1/T ≈ 0, corresponds to
neglecting the presence of the interface on the cut element T . Optimal approximation
of the solution can be preserved if a criterion for neglecting is defined suitably, cf. [29].
It should be emphasized that the described re-definition in (13) resembles the strategy
of neglecting but does not correspond to it: Consider the case of a two-dimensional
triangle cut by the interface in such a way that after application of criterion (13) the
whole triangle lies on one side of the interface. Therefore, the triangle will not be part
of the enrichment. In contrast to neglecting the interface, the re-definition of the LP
leads to a slight displacement of the interface. In particular, also on the neighbouring
elements the shape of Γh gets displaced. The essential consequence is the continuity
of the interface across neighbouring cut elements.

5.2 Coercivity and symmetry

The coercivity of aFE(·, ·) onV∗
h directly follows from the coercivity of the continuous

bilinear form. That directly implies the important advantage of our approach that no
additional stabilisation is neededwhich can cause numerical fluxes across the interface.
With regard to the coercivity of aFV(·, ·) on V∗

h , we state the following:

Remark 5 (Coercivity of aFV(·, ·)) Due to (11) the coercivity of the finite volume
scheme is potentially impaired only on themulti-linear elements.Basedonour assump-
tion that Rest(h) = O(h2) there exists a hFV > 0 and an according constant C(hFV)

such that the coercivity is satisfied with constant C(hFV) and for all h ≤ hFV.

A further advantage of the proposed projFEM and projFVM is the avoidance of the
weak boundary condition term ([α∇u · n], v)Γ so that the symmetry of the scheme
is preserved. Since the original problem is self-adjoint, the lack of symmetry and
therefore adjoint-consistency can lead to impaired numerical results. For that reason
Nitsche’s method retrieves symmetry by introducing suitable additional terms.

5.3 A priori error analysis

In order to derive an a priori error estimate for problem (5) we in particular need to
bound the approximation error. The shape-regularity is guaranteed by means of 13.
This enables to use the standard nodal interpolation operator Ih : H2(Ω) → V∗

h w.r.t.
T ∗
h , i.e. (Ihu)(xk) = u(xk) for all xk ∈ X ∗

h . For all elements T /∈ Th,Cut being not
cut by the interface, we get the optimal approximation error [5]

‖∇k(u − Ihu) ‖0,T ≤ C h2−k
T ‖∇2u ‖0,T , k = 0, 1, (16)

with constant C > 0 and hT being half the diameter of the triangle T , see also (12).
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For a complete a priori analysis two difficulties need to be addressed: the solution
u is not smooth across the interface Γ and due to Γh �⊂ Γ the piecewise linear,
discrete interface is not aligned with the real interface. It is therefore necessary to
derive appropriate interpolation estimates on the according elements T ∈ Th,Cut.

Lemma 1 (Interpolation Error on T ∗
h ) Let Ω := Ω1 ∪ Ω2 ∪ Γ ⊂ R

d be a polygonal
and convex domain with embedded smooth interface Γ = ∂Ω1 ∩ ∂Ω2. Let further
Ih : H2(Ω) → V∗

h be the standard nodal interpolation operator w.r.t. T ∗. For all
u ∈ H2(Ω1,2) it holds that

‖∇(u − Ihu) ‖0,Ω ≤ Ch ‖ u ‖2,Ω1∪Ω2 .

Proof Let Tc ∈ Th,Cut. By means of 16 it is sufficient to derive an estimate for
‖∇(u − Ihu) ‖0,Tc . The proof is based on the reasoning in the work of Frei and
Richter [11], Frei [10] and Basting and Prignitz [2]. Their proofs rely on a continuous
extension ũi ∈ H2(Ω) of u ∈ H2(Ωi ), i = 1, 2. Such an extension exists, see [34]
and satisfies

‖ u − ũi ‖2,Ωi = 0, ‖ũi‖2,Ω ≤ C ‖u‖2,Ωi . (17)

Insertion of ± ũi and ± Ihũi yields

‖∇(u − Ihu) ‖0,Tc ≤ ‖∇(u − ũi ) ‖0,Tc + ‖∇(ũi − Ihũi ) ‖0,Tc . (18)

Since all Lagrange nodes lie on the interface, it is Ihũi = Ihu and therefore the
according term of the insertion vanishes. To derive an estimate for ‖∇(u − ũi ) ‖0,Tc
we can apply the same argumentation as in [10,11]. Herein, they use a Poincare-like
estimate to bound ‖∇u ‖0,Tc . Combined with the continuity of the extension (17) this
yields [10,11]

‖∇(u − ũi ) ‖0,Tc ≤ ‖∇u ‖0,Tc + ‖∇ũi ‖0,Tc ≤ Ch ‖u‖2,Ω1∪Ω2 . (19)

To derive an estimate for the interpolation error ‖∇(ũi − Ihũi ) ‖0,Tc we can use
the standard estimate stated in (12), since it is Tc = T1 ∪ T2, with T1 ∈ T 1

h,Cut,

T2 ∈ T 2
h,Cut. Together with an enlargement onto Ω and again the continuity of the

extension (17) we get

‖∇(ũi − Ihũi ) ‖0,Tc ≤ Ch ‖∇2ũi ‖0,Tc ≤ Ch ‖∇2ũi ‖0,Ω ≤ Ch ‖∇2u ‖0,Ωi .

Combining the last estimate with (18) and (19) completes the proof. ��
The final discretisation error bound can be derived by combining the interpolation

error stated in Lemma 1 with the consistency error. That is the common procedure in
Strang’s lemmata. Let u ∈ H2(Ω1,2) and uh ∈ V∗

h be solutions of problem (5) and
(6), respectively. For arbitrary, but fixed coefficients α1 and α2 let further cα be the
according coercivity constant, i.e.

aFE(vh, vh) ≥ cα‖vh‖21,Ω ∀vh ∈ V∗
h ,
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with cα > 0 being independent of h. Application of Strang’s first lemma directly
yields the following estimate for the discretisation error:

‖ u − uh ‖1,Ω ≤
(

1 + cc
cα

)

inf
vh∈V∗

h

‖ u − vh ‖1,Ω (20)

+ cc
cα

sup
wh∈V∗

h

| a(vh, wh) − aFE(vh, wh) |
‖wh ‖1,Ω (21)

+ cc
cα

sup
wh∈V∗

h

| l(wh) − lFE(wh) |
‖wh ‖1,Ω , (22)

with continuity constant cc > 0 being indepentend of h, l(wh) = ( f , wh)+ (g, wh)Γ
and lFE(wh) = ( fh, wh) + (g, wh)Γ . An appropriate definition of fh yields an O(h)

error bound of the term in (22). In order to proof Theorem 1 it remains to bound the
consistency error in (21) due to the difference between the continuous and discrete
bilinear forms

∣
∣ a(vh, wh) − aFE(vh, wh)

∣
∣ = ∣

∣ ( (α − αh)∇vh,∇wh)
∣
∣.

We state the following optimal approximation error bound:

Theorem 1 Let u ∈ H2(Ω1,2) and uh ∈ V∗
h be the solution of problem (5) and (6),

respectively. Then the a priori error estimate

‖ u − uh ‖1,Ω ≤ Ch ‖ u ‖2,Ω1∪Ω2 (23)

holds with constant C independent of h.

Proof Remark that | a(vh, wh)−aFE(vh, wh) | vanishes on Ω j ∩Ω j,h , j = 1, 2. The
relevant region is the one, which gets cut off by the linearized interface Γh . We shell
denote this region by O1,2, since it is overlapping either with Ω1 or with Ω2. From
(14) we obtain | O1,2 | = O(h2), j = 1, 2, see also [2,29]. Since Th,Cut contains
all cut elements Tc = T1 ∪ T2, which are not yet devided into its two pieces, it is
O1,2 ⊂ Th,Cut and | Th,Cut | = O(h). Since the gradient ∇φh is piecewise constant
for φh ∈ V∗

h , we directly get

‖∇φh ‖20,O1,2
≤ Ch ‖∇φh ‖20,T

h,Cut
.

We finally get the estimate

∣
∣ a(vh, wh) − aFE(vh, wh)

∣
∣ = ∣

∣
∫

O1,2

(α(x) − αh(x) )∇vh · ∇wh dx
∣
∣

≤ Ch ‖∇vh ‖0,Ω1∪Ω2‖∇wh ‖0,Ω1∪Ω2 ,

for all vh , wh ∈ V∗
h . Combined with the estimate in Lemma 1 this yields (23). ��
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n h ‖u − uh‖2 rate L2
289 h0 6.230e-03 —

1089 h0/2 1.683e-03 1.89
4467 h0/4 4.144e-04 2.02

16641 h0/8 1.039e-04 1.99
66049 h0/16 2.635e-05 1.98

263169 h0/32 6.598e-06 1.99

L2-error.(a) Computed (b) Sketch of the solution.

Fig. 9 Second order convergence for the interface problem (24)

In the work of Frei and Richter [11], Frei [10] and Basting and Prignitz [2] slightly
different discrete spaces are suggested, where they similarly introduce Lagrange nodes
on the interface and derive the same error estimates. Furthermore, for the CutFEM
spaces, comparable approximation error bounds have been derived in Reusken [29]
and Hansbo and Hansbo [15].

6 Numerical experiments

In this section we apply the projFVM introduced in Sect. 2 to the problem (1)–(4) for
different test cases.

6.1 Experiment 1

This test case was already investigated by Liu et al. [24]. The computational domain
is the unit squareΩ = (−1, 1)2 and the interface Γ is defined as the circle with radius
R = 0.5 and center xm = (0.0, 0.0). As diffusion coefficientswe chooseα1 = α2 = 1.
The analytical solution for Δu = 0 is given by

u(x) =
{
1 + ln(2 ||x||) x ∈ Ω1,

1 x ∈ Ω2.
(24)

The Dirichlet data is defined according to the exact solution u(x) yielding the non-zero
jump condition g(x) = 2.

The L2-errors obtained under global mesh refinement are depicted in Fig. 9a. We
get a convergence of order O(h2) in accordance with Theorem 1.

6.2 Experiment 2

This test case was already investigated with variations by Frei and Richter [11] and
Gangl andLanger [12]. The computational domain is the unit squareΩ = (−1, 1)2 and
the interfaceΓ is defined as the circle with radius R = 0.4 and center xm = (0.0, 0.0).
As diffusion coefficients we choose α1 = 10 and α2 = 1. The analytical solution is
given by
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n h ‖u − uh‖2 rate L2
289 h0 1.575e-00 —

1089 h0/2 4.107e-01 1.94
4467 h0/4 1.125e-01 1.87

16641 h0/8 2.377e-02 2.24
66049 h0/16 5.945e-03 1.99

263169 h0/32 1.488e-03 1.99

L2-error.(a)Computed (b) Sketch of the solution.

Fig. 10 Second order convergence for the interface problem (25) and xm = (0.0, 0.0)

n h ‖u − uh‖2 rate L2
289 h0 1.737e-00 —

1089 h0/2 3.962e-01 2.13
4467 h0/4 1.054e-01 1.91

16641 h0/8 2.491e-02 2.08
66049 h0/16 7.033e-03 1.82

263169 h0/32 1.789e-03 1.98

L2-error.(a)Computed
(b)Sketch of the solution.

Fig. 11 Second order convergence for the interface problem (25) and xm = (−0.08, 0.3)

u(x) =
{

−2α1||x − xm ||4 x ∈ Ω1,

−4α1α
2
2R

2||x − xm ||2 + 2R4α1(2α2α1 − 1) x ∈ Ω2.
(25)

The right hand side and the Dirichlet data are defined according to the exact solution
u(x). Remark that the weak discontinuity in the solution along Γ combined with the
jumping coefficients yield a jump condition equal to zero, i.e. g(x) = 0.

The L2-errors obtained under global mesh refinement are depicted in Fig. 10a. We
get a convergence of order O(h2) in accordance with Theorem 1.

The same experiment was performed with shifted center xm = (−0.08, 0.3) and
same radius R = 0.4. A comparable L2-error was obtained and is depicted in Fig. 11a.

7 Conclusions

We proposed enriched finite element spaces which yield an interface fitted scheme
for elliptic interface problems. Therefore, the derived method provides the advantage
of an immersed interface method avoiding costy remeshing. In [19] the enrichment
was derived for particulate flows. The motivation was a correct discretisation of the
forces acting on the boundary. Therein, the focus was the gradient of the enriching
shape functions. In this paper we could show that applied to a general elliptic interface
problem we get the same order of approximation as comparable enriched methods.
But in contrast to those, the discrete operator even herits the symmetry and positive
definiteness of the continuous operator since it is a fitted method.
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We further compared our method with the enrichment of a CutFEM and the idea
of Peskins original IBM by looking at the local finite element spaces used in the
according approach. Instead of extending and restricting the domain at the interface
for the CutFEM, we apply as we call it projection and reduction. By opposing the
shape functions on cut elements we could argue, that as already for the application in
[19] the gradient of the enriching shape functions has a crucial role. Its slight change
depicted in Figs. 6 and 7 inherits a natural stabilisation on small cut elements.

In summary, a deeper insight into the properties of the enriching shape functions
could provide a physically meaningful formulation of the interface problemwith good
numerical properties and without the need for additional, usually non-physical penalty
terms.

In the case of deformable interfaces a good approximation of an immersed interface
and the forces due to gradients becomes even more relevant. Therefore, the next step
will be the application of the derived approach to multiphase flows.
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